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Resumo
Esta tese tem como objetivo avançar no campo de sistemas de radar ao lidar com os
seguintes problemas centrais: (i) detecção de alvos distribuídos e pontuais imersos em
ruído Gaussiano branco complexo; (ii) desempenho de sistemas de radar na presença de
clutter terrestre do tipo Weibull; e (iii) estimação Doppler para alvos de alta velocidade
sob ruído Gaussiano de fundo. A primeira parte da tese (Capítulos 2–4) ataca o primeiro
problema, por meio do projeto e da análise de detectores phased array ótimos e subótimos
para alvos distribuídos e alvos pontuais não-flutuantes. Para cada detector, as estatísticas
da variável de decisão são analisadas sob a hipótese de algum – ou mesmo nenhum –
conhecimento acerca dos parâmetros do alvo e da potência média do ruído. A partir daí,
calculam-se a probabilidade de detecção e a probabilidade de falso alarme. A segunda
parte da tese (Capítulos 5 e 6) confronta o segundo problema, fornecendo ferramentas
matemáticas eficientes para avaliar o desempenho de um detector square-law operando
em clutter terrestre do tipo Weibull. Aqui, as probabilidades de detecção e falso alarme
são obtidas em forma fechada e em representação por séries de convergência rápida. Para
isso, faz-se uso da função-H de Fox, bem como de um cálculo abrangente de resíduos.
Finalmente, na terceira parte da tese (Capítulo 7), é fornecida uma análise estatística
completa da estimação Doppler de alvos com alta velocidade sujeitos a ruído Gaussiano
de fundo. A solução apresentada combina duas técnicas de processamento de sinais: o pro-
cessamento de subpulso e o Teorema Chinês do Resto clássico. Além disso, o desempenho
dessa técnica híbrida é avaliado em forma fechada. Vale ressaltar que todas as expressões
supracitadas da tese são contribuições originais, com destaque para aquelas obtidas em
representações por série, que se mostram atrativas pela ampla economia tanto de tempo
de execução quanto de carga computacional.

Palavras-chaves: Detecção ótima, radar phased array, alvos não-flutuantes, probabili-
dade de detecção, probabilidade de falso alarme, teste por razão de verossimilhança gen-
eralizada, clutter terrestre, processamento de subpulso, Teorema Chinês do resto.



Abstract
This dissertation aims to advance in the field of radar systems by dealing with the fol-
lowing key problems: (i) detection of distributed and point-like targets embedded in com-
plex white Gaussian noise; (ii) radar performance in the presence of Weibull-distributed
ground clutter; and (iii) doppler estimation for high-velocity targets in background Gaus-
sian noise. The first part of this dissertation (Chapters 2–4) addresses the first problem by
designing and analyzing optimal and suboptimal phased-array detectors for distributed
and non-fluctuating point-like targets. For each detector, the decision-variable statistics
are investigated assuming a certain or no knowledge about the parameters of the target
echoes and the average noise power. In each case, the probability of detection and the
probability of false alarm are derived. The second part of this dissertation (Chapters 5
and 6) addresses the second problem by providing efficient mathematical tools to eval-
uate the performance of a square-law detector operating in Weibull-distributed ground
clutter. In this case, the probabilities of detection and false alarm are expressed in terms
of both closed-form expressions and fast convergent series. To do so, we rely upon the Fox
H-function as well as a comprehensive calculus of residues. Finally, in the third part of
this dissertation (Chapter 7), we provide a thorough statistical analysis for the Doppler
estimation of high-speed targets in background Gaussian noise. The proposed solution
combines two signal processing techniques: subpulse processing and the classic Chinese
Remainder Theorem. Also, the performance of this hybrid technique is assessed in closed
form. It is worth mentioning that all the aforementioned expressions from this dissertation
are original contributions, with emphasis on those obtained in terms of series representa-
tions, which proved attractive for large savings in both execution time and computational
load.

Keywords: Optimum detection, phased-array radar, non-fluctuating targets, probability
of detection, probability of false alarm, generalized likelihood ratio test, ground clutter,
subpulse processing, Chinese Remainder Theorem.
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1 Introduction

This dissertation comprises an assortment of somewhat independent contribu-
tions to the field of modern radar systems. Before setting into them, we briefly review two
required mathematical tools and some essential theoretical background on radar signal
processing.

1.1 Preliminaries

In this section, we shortly describe the multivariate Fox H-function and the
Residue Theorem as those tools will be extensively used in the next chapters.

1.1.1 The Multivariate Fox H-function

The Fox H-function has been used in a wide variety of recent applications,
including mobile communications and radar systems (cf. [1, 2, 3, 4, 5] for a detailed
discussion on this). In [6], the authors considered the most general case of the Fox H-
function for multiple variables, defined as

H [x; (𝛿, D) ; (𝛽, B) ; ℒ𝑆] ,
(︃

1
2𝜋𝑗

)︃𝑁 ∮︁
ℒs

Θ (s) x−sds, (1.1)

in which 𝑗 =
√

−1 is the imaginary unit, s , [𝑠1, · · · , 𝑠𝑁 ], x , [𝑥1, · · · , 𝑥𝑁 ], 𝛽 ,

[𝛽1, · · · , 𝛽𝑁 ], and 𝛿 , [𝛿1, · · · , 𝛿𝑁 ] denote vectors of complex numbers, and B , (𝑏𝑖,𝑗)𝑛×𝑁

and D , (𝑑𝑖,𝑗)𝑚×𝑁 are matrices of real numbers. Also, x−s ,
∏︀𝑁

𝑖=1 𝑥−𝑠𝑖
𝑖 , ds , ∏︀𝑁

𝑖=1 d𝑠𝑖,
ℒs , ℒs,1 × · · · × ℒs,𝑁 , ℒs,𝑘 is an appropriate contour on the complex 𝑠𝑘 plane, and

Θ (s) ,
∏︀𝑚

𝑖=1 Γ
(︁
𝛿𝑖 +∑︀𝑁

𝑘=1 𝑑𝑖,𝑘𝑠𝑘

)︁
∏︀𝑛

𝑖=1 Γ
(︁
𝛽𝑖 +∑︀𝑁

𝑘=1 𝑏𝑖,𝑘𝑠𝑘

)︁ , (1.2)

in which Γ(·) is the gamma function [7, Eq. (6.1.1)].

1.1.2 The Residue Theorem

Let 𝑓 (𝑧) be an analytic complex function defined on and inside a simple closed
path 𝐶 on the complex plane, except for finitely many singular points 𝑧1, 𝑧2, . . . , 𝑧𝑘 inside
𝐶. Then, the integral of 𝑓 (𝑧) taken counterclockwise around 𝐶 equals 2𝜋𝑗 times the sum
of residues of 𝑓 (𝑧) at 𝑧1, 𝑧2, . . . , 𝑧𝑘. That is [8],∮︁

𝐶
𝑓 (𝑧) d𝑧 = 2𝜋𝑗

𝑘∑︁
𝑖=1

Res [𝑓 (𝑧) ; 𝑧 = 𝑧𝑖] , (1.3)
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where Res [𝑓 (𝑧) ; 𝑧 = 𝑧𝑖] represents the residue of 𝑓 (𝑧) evaluated at the poles 𝑧𝑖 (𝑖 =
1, 2, . . . , 𝑘). The residue of 𝑓 (𝑧) at an 𝑚th-order pole at 𝑧0 is defined as [8, Eq. (16.3.5)]

Res [𝑓 (𝑧) ; 𝑧 = 𝑧0] ,
1

(𝑚 − 1)! lim
𝑧→𝑧0

[︃
𝑑𝑚−1

𝑑𝑧𝑚−1 ((𝑧 − 𝑧0)𝑚 𝑓 (𝑧))
]︃

. (1.4)

1.2 Theoretical Background

In this section, we revisit important concepts that will be used throughout this
dissertation.

1.2.1 Radar Cross Section

The target’s radar cross section (RCS) plays an essential role in radar detec-
tion. It determines the amount of energy reflected by a target, directly affecting the power
of the target echoes received by the radar. RCS depends on various system parameters:
target’s geometry and composition; transmitter’s position relative to the target; receiver’s
position relative to target; operational frequency; transmitter’s polarization; and receiver’s
polarization [9]. Since the target’s RCS is extremely sensitive to those parameters, it is
common and more effective to describe its behaviour on a statistical basis [10]. This ar-
gument leads to considering the target’s RCS as a random variable (RV) with a suitable
probability density function (PDF). It is important to emphasize that, in reality, the RCS
is not random. If it was possible to describe the target’s surface shape, materials, and
location in enough detail, then its RCS could in principle be calculated accurately using
deterministic methods [11]. However, in practice, the RCS databases are obtained for in-
dustrial applications and military purposes and are not available for the civil scientific
community.

1.2.2 Distributed and Point-like Targets

A distributed target (also called extended target or volume target) is an object
whose physical extent occupies several resolution cells (e.g., ships, tanks, precipitation,
and clouds) [10]. This type of target is characterized by several particles occupying the
same resolution volume,1 the echoes of which overlap in the resulting back-propagation
signal. Distributed targets are commonly used to represent meteorological phenomena, in
which the phase and amplitude characteristics are considered to follow a statistical distri-
bution [12]. Occasionally distributed targets are composed of several particles moving at
different speeds. In that case, their frequency spectrum exhibits a certain dispersion. This
1 A resolution volume is the smallest three-dimensional region (range, azimuth, and elevation) in which

the radar can still distinguish multiple targets [10].
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behavior is a direct consequence of turbulence and variations in the movement of particles
within the meteorological phenomena. Such behavior imposes serious complications in the
processing of this type of signal [13].

On the other hand, a point-like target is defined as an object with small spatial
extent, confined within a single resolution cell [10]. As in the case of distributed targets,
the amplitude and phase characteristics are also governed by statistical distributions. The
random variations of the received target echo can be characterized by the widely used
Swerling models [14]. In essence, these models intend to address the common problem
of making a detection decision based on a block of echo samples from a given resolution
cell [9]. Specifically, the Swerling models (labeled from 0 to IV) seek to characterize the
RCS of point-like targets. The exponential and fourth-degree chi-squared distributions
are used. The exponential distribution arises when there is a large number of individual
scatterers randomly distributed in space and each with approximately the same individual
RCS. This distribution is used in the Sweling cases I and II [14, 15, 16]. In case there is a
large number of individual scatterers, one being dominant and the rest having the same
RCS, the exponential distribution is no longer a good fit. The noncentral chi-squared
distribution with two degrees of freedom gives the exact PDF for this case, but this PDF
is considered somewhat difficult to work with because its expression contains a Bessel
function. Instead, the fourth-degree chi-squared distribution is used in the Swerling cases
III and IV, since it is an analytically more tractable approximation [15, 17]. The case
where the target’s RCS exhibits no random behavior is called Swerling 0 [10].

1.2.3 Optimal and Suboptimal Detectors

Before the radar performs any task (e.g., searching, tracking, or imaging), the
system must decide whether a target of interest is present or absent in a certain angle,
range, or Doppler bin [9]. Unfortunately, the presence of unwanted signals such as thermal
noise, clutter, and jamming, ubiquitous in practice, often renders this decision more com-
plicated. The optimal decision is achieved by applying the likelihood ratio test (LRT) [18].
This decision is based on the Neyman-Pearson (NP) criterion, which maximizes the prob-
ability of detection (PD) for any given probability of false alarm (PFA) [19]. But the
LRT provides an optimal decision only if the probability density functions of the received
samples are fully known, and this requirement does not fit most practical problems. In
view of this, a more general decision rule is commonly used to deal with these types of
scenarios: the so-called generalized likelihood ratio test (GLRT) [20]. In the GLRT, all
unknown PDF parameters are replaced by their maximum likelihood estimates (MLEs).
This structure allows the GLRT to work over a wide range of scenarios. Although there
is no optimality associated with the GLRT, it turns out to work quite well, in practice.



Chapter 1. Introduction 24

1.2.4 Detection in Weibull-Distributed Ground Clutter

Different types of interference signals, such as thermal noise, clutter, and jam-
ming can hinder the detection process of a radar system [9]. Clutter is a radar return
from one or more objects of no interest to the radar mission. For example, the mission of
many radar systems is the detection and tracking of aircraft, ships, or ground vehicles.
To these systems, the clutter may be an interfering return from a natural object such as
precipitation, vegetation, soil, rocks, or the sea. However, to radars designed for remote
sensing such as synthetic aperture radar (SAR) imagers, those natural objects may be the
primary targets of interest [21]. Throughout this dissertation but Chapter 2, we assume
that the targets of interest are man-made, while natural target returns are unwanted (i.e.,
clutter).

The clutter statistics can be similar to those of noise when the natural targets
are composed of small, nearly equal-sized scatterers but can be quite different when the
nature of the scatterers change or when scatterers of different types (e.g., a tree line)
are present in the radar’s field of view. For these cases, amplitude distributions having
much longer tails than the Rayleigh distribution (used to model thermal noise) have been
observed. More importantly, although the noise is independent of transmission frequency,
spatial position, and environmental parameters, the clutter varies with all of these pa-
rameters, making its characterization very complex [22]. The clutter can be classified
in two main categories: surface clutter and volume clutter. The surface clutter includes
trees, vegetation, ground terrain, man-made structures, and sea surface (sea clutter). The
volume clutter normally has large extent (size) and includes chaff, precipitation, clouds,
birds, and insects [23]. In particular, the radar performance can be significantly degraded
in the presence of ground clutter. Through experimental data, it has been observed that
the ground-clutter statistics are well modeled by the Weibull distribution [24, 25]. As
a result, this distribution has been widely used to assess the radar performance in the
presence of ground clutter. In this dissertation, we focus on Weibull-distributed ground
clutter.

1.2.5 CFAR Detection

As mentioned earlier, the radar detection is strongly affected by unwanted in-
terference signals like thermal noise, clutter, and jamming. To overcome this problem,
modern radar systems employ dedicated constant false-alarm rate (CFAR) detectors.
These detectors have the property of maintaining a constant false-alarm rate in the pres-
ence of strong interference. In essence, a CFAR detector dinamically sets the detection
threshold above the interference level. This is carried out by continuously estimating the
interference power over a data window [26, 23]. The CFAR architecture is illustrated in
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Figure 1.1 – The CFAR architecture.

Fig. 1.1, and the detection algorithm runs as follows. First, the samples at the output
of the rectifier are stored in a computer memory as a one-dimensional (1-D) vector, also
called data window, composed of several thousand range cells. The CFAR window re-
sides within the data window and is composed of leading and lagging reference windows,
guard cells (GCs), and the cell under test (CUT) [9], as shown in Fig. 1.1. The number
of cells within the CFAR window depends strongly on the range resolution of the radar.
Secondly, the unknown interference power, 𝜉, is estimated by applying a specific function,
𝜉 = (𝑓𝑙𝑎𝑔, 𝑓𝑙𝑒𝑎𝑑), given in terms of the data contained in the leading and lagging windows.
This function is chosen based on the type of effect that must be mitigated. At last, a
detection decision on whether a target is present or absent, is carried out by compar-
ing the sample value within the CUT, 𝑌 , with a combined threshold, say, 𝛾𝜉, where 𝛾

is the CFAR constant [9]. If 𝑌 exceeds the threshold, then the system decides for “tar-
get present”; otherwise, the system decides for “target absent”. Among a wide variety of
existing CFAR detectors, we highlight the following:

• Cell-averaging constant false-alarm rate (CA-CFAR): The CA-CFAR detector raises
the detection threshold above the interference power. This detector is relatively
simple in that it computes the detection threshold by averaging the interference
power in the reference window [25].

• Greatest-of cell-averaging constant false-alarm rate (GOCA-CFAR): The GOCA-
CFAR detector was conceived to reduce clutter-edge false alarms. These false alarms
are suppressed by computing the average interference power in the lagging and
leading windows separately and selecting the largest sample mean as the CFAR
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statistic [27].

• Smallest-of cell-averaging constant false-alarme rate (SOCA-CFAR): The SOCA-
CFAR detector estimates the interference power in the lagging and leading reference
windows and selects the smallest estimate as the CFAR statistic. In so doing, this
detector can suppress interfering targets that may reside in the either leading or
lagging window but not targets in both windows [9].

1.2.6 Doppler Estimation

Suppose that a target is approaching the radar with a radial velocity 𝑣 and
the radar transmits a series of 𝑀 pulses separated by a pulse repetition interval (PRI)
of 𝑇 seconds. The range to the target when the 𝑚-th pulse (1 ≤ 𝑚 ≤ 𝑀) is transmitted
is 𝑅0 − 𝑚𝑣𝑇 meters, with 𝑅0 being the initial range. Then, the phase shift of the 𝑚-th
pulse will be (−4𝜋/𝜆)(𝑅0 − 𝑚𝑣𝑇 ) radians [10]. Accordingly, when the radar samples (at
𝑡 = 2𝑅0 + 𝑚𝑇 ) the signals collected during a coherent processing interval (CPI), the
measured output for the 𝑚-th pulse will be [9]

𝑦 [𝑚] =𝐴 exp
[︂
𝑗
(︂

𝜃0 −
(︂4𝜋

𝜆

)︂
(𝑅0 − 𝑣𝑚𝑇 )

)︂]︂

=𝐴 exp

⎡⎢⎢⎢⎣𝑗

⎛⎜⎜⎜⎝2𝜋
(︂2𝑣

𝜆

)︂
(𝑚𝑇 ) + 𝜃0 −

(︂4𝜋𝑅0

𝜆

)︂
⏟  ⏞  

𝜃′

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦

=𝐴 exp [𝑗 (2𝜋𝑓𝑑𝑚𝑇 + 𝜃′)] , (1.5)

where 𝑗 =
√

−1 is the imaginary unit, 𝐴 is the received amplitude, 𝜃0 is the initial phase,
and 𝑓𝑑 is the Doppler frequency shift. The shift will be positive for closing targets and neg-
ative for receding targets. The sinusoid in (1.5) is the result of the changing echo phases,
which in turn are caused by the changes in the target range between pulses [9]. Since
the discrete Fourier transform (DFT) provides the mechanism to test multiple candidate
frequencies, it is then applied over the 𝑦 [𝑚] samples so as to capture the target’s Doppler
shift.

1.2.7 Chinese Remainder Theorem

Measurements made with a pulse waveform can be ambiguous in range, Doppler,
or both. Pulsed radars frequently operate in scenarios that are ambiguous in one or both of
the range and Doppler dimensions. Fortunately, there are some techniques that can resolve
such ambiguities, although at the cost of extra measurement time and processing load.
These techniques make use of multiple pulse repetition frequencies (PRFs) [28, 29, 30].
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Among them, the most known and used technique is the classic Chinese Remainder The-
orem (CCRT). It is a fast and accurate method to resolve range and Doppler ambigui-
ties [31, 32]. Next, we briefly explain its operation.

For now, let us consider only range ambiguity. Once the PRF is selected, it
establishes an unambiguous range 𝑅𝑢𝑎 = 𝑐/2PRF = 𝑐PRI/2. A target at an actual range
𝑅𝑡 > 𝑅𝑢𝑎 will be detected at an apparent range 𝑅𝑎 that satisfies [9]

𝑅𝑡 = 𝑅𝑎 + 𝑘𝑅𝑢𝑎 (1.6)

for some integer 𝑘. That is, when the radar detects a target at an apparent range 𝑅𝑎,
the actual range could be 𝑅𝑎 plus any multiple of 𝑅𝑢𝑎. It is convenient to express the
apparent, true, and unambiguous ranges in terms of their corresponding range bins. For
example, 𝑛𝑎 , 𝑅𝑎/Δ𝑅, where Δ𝑅 is the range bin spacing. Dividing both parts by Δ𝑅,
Eq. (1.6) then becomes

𝑛𝑡 = 𝑛𝑎 + 𝑘𝑁, (1.7)

where 𝑁 the total number of range bins. The basic approach to resolving range ambiguities
relies on multiple PRFs. Suppose there are 𝑁𝑖 (𝑖 ∈ {1, 2, . . . , 𝐼}, with 𝐼 being the number
of PRFs) range bins in the unambiguous range interval on PRF 𝑖. Then, we have that
𝑅𝑢𝑎,𝑖 = 𝑁𝑖Δ𝑅𝑖. Note that the unambiguous range is different for each PRF. Therefore,
assuming that the range bin spacing is the same for each PRF used, the true range bin
must satisfy Eq. (1.7) for each of the PRFs used:

𝑛𝑡 = 𝑛𝑎1 + 𝑘1𝑁1 = 𝑛𝑎2 + 𝑘2𝑁2 = . . . = 𝑛𝑎𝐼
+ 𝑘𝐼𝑁𝐼 . (1.8)

The CCRT solves the above set of congruences by using the estimated measurements
𝑛𝑎1 , 𝑛𝑎2 , . . . , 𝑛𝑎𝐼

of each PRF [33, 34, 35]. It is worth noting that the major disadvantage
of the CCRT is that the use of multiple PRFs consumes a large amount of the radar
timeline. Additionally, if the number of targets to be detected exceeds the number of
PRFs, then ghosts may appear.2

1.3 Summary of Contributions and Dissertation Outline

This dissertation comprises most of our research results in the field of radar
systems across the following topics: (i) detection of distributed and point-like targets em-
bedded in complex white Gaussian Noise (CWGN); (ii) radar performance in the presence
of Weibull-distributed ground clutter; (iii) Doppler estimation for high-velocity targets in
2 Ghosts are false targets resulting from false coincidences of Doppler- or range-ambiguous data [1].
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background Gaussian noise. The dissertation is presented as a compilation of papers pub-
lished in technical journals and conference proceedings, as well as papers currently under
review. The contents presented here are copies of our published or submitted materials.
The corresponding permission grants to reproduce the published papers are attached in
Appendix A. The remainder of the dissertation is structured in three main parts as follows.

Part I: Optimal and suboptimal phased-array detectors for dis-
tributed and non-fluctuating point-like targets

Chapter 2. This chapter, named Contribution I, is a replica of our paper enti-
tled “Optimum detection for a class of stationary meteorological radars”, published in the
Proceedings of the 26th European Signal Processing Conference (EUSIPCO 2018) [36].
That work is an extension of [37, 38], in which the authors proposed an optimum detector
for meteorological phenomena by exploiting the correlation between the received signals
from two fixed wide-beam antennas. In those works, it was observed that an extremely
large amount of signal samples would be required to render the radar performance accept-
able, and that such a problem could be alleviated by increasing the number of antennas.
The chapter is a first step in this direction, extending the original radar proposal from
two to an arbitrary number of antennas. In addition to designing an optimum detector for
the new radar, we assess its performance by deriving asymptotic, closed-form expressions
for the resulting detection and false-alarm probabilities. As a term of comparison, we also
design and analyze a suboptimal detection scheme based on the traditional phased-array
approach. All our derivations are validated via Monte-Carlo simulations.

Chapter 3. This chapter, named Contribution II, is a replica of our paper
entitled “Alternative representations for the probability of detection of non-fluctuating
targets,” published in the IET Electronic Letters [5]. In that work, we address the phased-
array detection problem of weak signals in background noise. More specifically, we con-
sider a non-fluctuating target embedded in CWGN, with both the target amplitude and
the noise power being unknown. Scanning the open technical literature, we realized that
no closed-form solutions nor analytically tractable approximations for the associated PD
were available. This is mainly because the computation of the PD requires evaluating a
cumbersome PDF for the target-plus-noise scenario [39, 40]. In the chapter, we derive
an exact closed-form expression and a fast convergent series representation for the afore-
mentioned PD. To do so, we rely on the bivariate Fox H-function and a comprehensive
calculus of residues. In particular, the series representation proves efficient and compu-
tationally attractive, achieving a high accuracy even for a small number of terms, while
showing a remarkable reduction in both the computational load and the computation
time as compared to the numerical evaluation of the existing integral-form solution.
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Chapter 4. This chapter, named Contribution III, is a replica of our paper
entitled “New findings on GLRT radar detection of non-fluctuating targets via phased
arrays,” currently under review in the IEEE Access. In that work, we design and analyze
a new GLRT-based detector which takes place after the analog beamforming operation.
For the analysis, we consider a non-fluctuating target embedded in CWGN, with the am-
plitude of the target echo and the noise power being assumed unknown. Distinguished
works have analyzed the performance for the referred scenario and proposed GLRT-based
detectors [40, 41, 42, 43]. But those detectors appear at an early stage (i.e., prior to the
formation of any beamforming waveform), thereby imposing high demands on hardware,
processing, and data storage. From a hardware perspective, most radar systems fail to
meet such strong requirements. In fact, due to hardware and computational constraints,
most radars use a combination of analog and digital beamformers (sums) before any es-
timation or further pre-processing. Our main motivation in the chapter is to derive a
GLRT detector that meets acceptable hardware and system requirements and, in turn,
delivers accurate decisions. To this end, we design and analyze a more practical and easy-
to-implement GLRT detector after the analog beamforming operation. The performance
of the proposed detector is analyzed and the PD and PFA are derived in closed form. An
alternative fast convergent series for the PD is also derived. This series proves to be very
efficient and computationally tractable, saving both computation time and computational
load. Remarkably, we show that in the low signal-to-noise ratio (SNR) regime, our pro-
posed post-beamforming GLRT detector outperforms the classic pre-beamforming GLRT
detector (and the workhorse square-law detector). This finding suggests that when the
signals are weak, we had better reinforce (add) them before applying the GLRT decision
framework. It is also shown that the PFA of the proposed post-beamforming GLRT de-
tector is independent of the number of antennas, which allows us to adjust the PD while
maintaining a fixed PFA.

Part II: Square-law detection over Weibull-distributed ground
clutter

Chapter 5. This chapter, named Contribution IV, is a replica of our paper
entitled “CA-CFAR detection performance in homogeneous Weibull clutter,” published in
the IEEE Geoscience and Remote Sensing Letters [1]. That work presents a novel, highly
accurate approximation for the PD of a CA-CFAR radar system operating in an homo-
geneous Weibull-clutter environment. More importantly, we consider a realistic scenario
with both target returns and clutter residues within the CUT. Due to the mathematical
complexity surrounding this type of scenario, no performance analysis had been carried
out in the literature to date. The contributions of the chapter are two-fold: first, we de-
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rive novel closed-form expressions for the PDF and the cumulative distribution function
(CDF) of the sum of an exponentially fluctuating target embedded in Weibull clutter; and
then, we obtain a closed-form expression for the corresponding PD. All derived closed-
form expressions are given in terms of the bivariate Fox H-function, for which we provide a
portable and efficient MATHEMATICA’s routine. In addition, we provide alternative and
easily computable series representations. The validity of all expressions is confirmed via
Monte-Carlo simulations. Our results are compared with the idealized Neyman-Pearson
detector so as to quantify the CFAR losses, indicating that even a small change in the
shape parameter of the clutter distribution can significantly affect the radar detection
performance.

Chapter 6. This chapter, named Contribution V, is a replica of our paper
entitled “Square-law detection of exponential targets in Weibull-distributed ground clut-
ter,” to appear in the IEEE Geoscience and Remote Sensing Letters [44]. In that work,
we focus on the PD of a square-law detector in the presence of exponential targets and
Weibull-distributed ground clutter. To the best of our knowledge, no radar performance
analysis has been published so far using the exact statistics of a square-law detector when
subject to exponential targets and Weibull clutter interference. In the chapter, we derive
a closed-form solution and a fast convergent series for the aforementioned PD. The closed-
form solution is given in terms of the Fox H-function, whereas the series representation is
obtained by exploiting the orthogonal selection of poles in Cauchy’s residue theorem. In
passing, we also obtain closed-form solutions and series representations for the PDF and
CDF of the sum statistics that govern the output of a square-law detector.

Part III: Doppler estimation of high-speed targets in background
Gaussian noise

Chapter 7. This chapter, named Contribution IV, is a replica of our paper
entitled “Doppler estimation for high-velocity targets using subpulse processing and the
Chinese Remainder Theorem,” currently under review in the IEEE Transactions on Signal
Processing. A preliminary version of these results were published in the Proceedings of
the IEEE 53th Asilomar Conference on Signals, Systems, and Computers [35]. That work
addresses the problem of estimating the velocity of fast-moving targets. In pulsed Doppler
radars, the Chinese Remainder Theorem (CRT) is a common method to resolve Doppler
ambiguities caused by fast-moving targets [28, 29, 30, 32, 33]. Another issue concerning
high-velocity targets is related to SNR losses after performing range compression. This loss
can be partially mitigated by the use of subpulse processing (SP) [45, 46]. Modern radars
combine the CRT and SP in order to reliably unfold the target velocity. However, both
techniques have hardware and physical limitations when it comes to estimating high target
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velocities. Besides, the performance of such techniques may be degraded in the presence of
background Gaussian noise. In the chapter, we provide a comprehensive statistical analysis
of Doppler estimation. More precisely, we derive closed-form expressions for the PD and
PFA when both the CRT and SP are used. A comparison between SP and the classic
pulse processing (PP) technique is also carried out. Numerical results and Monte-Carlo
simulations corroborate the validity of our expressions and show that the SP–plus–CCRT
technique can greatly reduce the PFA compared to previous studies.
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Optimum Detection for a Class of Stationary
Meteorological Radars

Fernando Darío Almeida García, Marco Antonio Miguel Miranda,
and José Cândido Silveira Santos Filho

Abstract

Recently, an innovative low-cost approach for the construction of meteorological radars
has been introduced by exploiting the correlation between the received signals from two
fixed wide-beam antennas. Yet, it was then found that a very large amount of signal
samples would be required to ensure a satisfactory performance of the proposed radar.
On the other hand, it was also envisaged that such a problem could be circumvented by
the use of more than two antennas. This work is a first step in this direction, extending
the original radar proposal from two to an arbitrary number of antennas. In addition to
designing an optimum detector for the new radar, we assess its performance by deriving
asymptotic, closed-form expressions for the resulting detection and false-alarm probabili-
ties. As a term of comparison, we also design and analyze a suboptimal detection scheme
based on the traditional phased-array approach. Numerical examples are given to vali-
date the provided analysis and to illustrate the performance gain achieved from the use
of additional antennas.

2.1 Introduction

Radar applications have provided important advances in different technolog-
ical areas, such as remote sensing, meteorology, air traffic control, spatial monitoring,
and national security [1, 2, 3]. In particular, for meteorological applications, three main
types of radar exist, in terms of structure and operation mode: (i) the large narrow-beam
antenna; (ii) the antenna array; and (iii) spaced antennas. In the first radar type, a horn-
shaped antenna and parabolic reflectors with circular aperture are used. The azimuth
scanning is obtained by rotating the antenna through a motor, and the elevation scan-
ning is obtained by changing the tilt in each rotation [4]. Because of this, the scanning
cycle is relatively long (circa 15–20 min). In addition, this approach requires a very ro-
bust mechanical equipment and high maintenance costs. In the second radar type, an
equivalent narrow beam is obtained by appropriately controlling the relative phases and
amplitudes of each radiating element in the antenna array. Therefore, the beam position
can be adjusted electronically, rendering a minimum scanning cycle, generally in the order
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of microseconds [5, 6]. On the other hand, this approach has a high implementation cost
due to the use of a massive number of antenna elements. Finally, the third radar type
is a special employment of the second one. In particular, only a few radiating elements
of the antenna array are activated to determine the position and the radial velocity of
the meteorological phenomenon of interest. Interferometric techniques are then used to
properly combine the amplitude and phase information of the received signals [7, 6].

In [8], an innovative low-cost, fast-scanning approach with potential use for
nowcasting weather predictions was introduced. The approach is based on two stationary
(i.e., fixed) wide-beam antennas. The central idea is to achieve narrow-beam resolution by
exploiting the signal correlation between the two wide-beam antennas. Whenever there
is a meteorological target in the intersection area between the resolution cells of the two
antennas, the received antenna signals are expected to be mutually correlated. Otherwise,
these signals are expected to be independent. Therefore, the amount of correlation be-
tween the antenna signals may serve as a basis for a detection algorithm. The higher the
correlation in the presence of a target, the better the expected detection performance.
This correlation has been derived in [8] in terms of radar parameters such as frequency
bandwidth, baseline distance, and antenna directivity. Related material on the correlation
between received radar signals can be found in [9, 10], although for the different contexts
of a single rotating, narrow-beam antenna and polarization diversity, respectively (cf. [8]
for more discussion on this).

In [11], an optimum detector was provided for the two-antenna radar scheme
proposed in [8]. Also, analytical expressions were obtained for the corresponding proba-
bilities of detection (PD) and false alarm (PFA). However, it was then observed that an
extremely large amount of signal samples would be required to render the radar perfor-
mance acceptable, and that such a problem could be alleviated by increasing the number
of antennas.

This work is a first step in that direction. In particular, we generalize the radar
scheme investigated in [8, 11] from two to an arbitrary number of antennas, by deriving
the optimum detection algorithm and associated closed-form expressions of PD and PFA1.
Sample cases are presented to show the detection improvement achieved with beyond two
antennas. For comparison, a suboptimal detection algorithm is also considered, based on
the traditional approach of phased arrays.

In what follows, 𝑓(·)(·) denotes probability density function (PDF); E [·], ex-
pectation; VAR [·], variance; det (·), determinant; (·)𝑇 , transposition; and (·)−1, matrix
inversion.
1 The results presented herein have been used to assist in the design of meteorological radar systems

for Bradar Indústria S.A., a branch of Embraer Defense and Security.
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Figure 2.1 – Top view of the investigated radar system.

2.2 Radar Model

We consider a multi-static radar system composed of 𝑁 fixed wide-beam an-
tennas. The antennas are aligned and separated by a certain baseline distance 𝐵 in the
azimuth direction, as shown in Fig. 2.1. A single antenna transmits a linear frequency-
modulated pulse, whereas all antennas receive the echo signals. In addition, pulse com-
pression is assumed at the reception [12].

The ability of a radar system to resolve two targets over range, azimuth, or
elevation defines its resolution cell [2]. Fig. 2.1 shows a top view of the range-azimuth
resolution cells of each antenna, for a given range distance. The resolution cells form an
intersection (hatched) region, inside of which the existence or absence of targets is to be
determined. Therefore, the angular span of the intersection region gives the equivalent
azimuthal resolution 𝜃res of the radar system. Note that 𝜃res decreases as the number 𝑁

of antennas increases. This should be considered in practice for a proper radar design. In
meteorological applications, 𝜃res < 2o is typically required. As for the range resolution 𝛿,
this is given by 𝛿 = 𝑐/(2Δ𝑓) from the assumption of pulse compression, where 𝑐 is the
speed of light and Δ𝑓 is the bandwidth of the transmitted signal [2].

The signal received by each antenna is a sum of the echoes coming from a large
amount of scatterers within the resolution cell. These scatterers represent the meteoro-
logical phenomenon under observation (e.g., rain or clouds). Already taking into account
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the presence of noise and clutter, the signals received by the antennas can be written as

𝑆𝑘,𝑖 = 𝑋𝑘,𝑖 + 𝑗𝑌𝑘,𝑖 (2.1)

where 𝑖 ∈ {1, . . . , 𝑛} is a discrete-time index, 𝑛 is the number of samples observed in
each antenna, 𝑋𝑘,𝑖 is the in-phase component at the 𝑘-th antenna, and 𝑌𝑘,𝑖 is the associ-
ated quadrature component, 𝑘 ∈ {1, . . . , 𝑁}. As argued in [8], 𝑋𝑘,𝑖 and 𝑌𝑙,𝑖 are mutually
independent random processes, ∀(𝑘, 𝑙). In addition, assuming that the pulse repetition
interval is much larger than the coherence time associated with the random motion of
the scatterers, 𝑆𝑘,𝑖 is independent of 𝑆𝑙,𝑚, ∀(𝑘, 𝑙) and ∀𝑖 ̸= 𝑚 [13, 14, 15]. On the other
hand, depending on the absence or existence of a target in the intersection region among
the antennas’ resolution cells, 𝑋𝑘,𝑖 and 𝑋𝑙,𝑖, as well as 𝑌𝑘,𝑖 and 𝑌𝑙,𝑖, ∀𝑘 ̸= 𝑙, can either be
mutually independent or bear a certain correlation coefficient 𝜌𝑘𝑙, respectively. Finally,
under quite general conditions, 𝑆𝑘,𝑖 can be modeled as a circularly symmetrical Gaus-
sian random process, ∀𝑘. Herein, for simplicity, we also consider that 𝑆𝑘,𝑖 and 𝑆𝑙,𝑚 are
identically distributed, ∀(𝑖, 𝑘, 𝑙, 𝑚).

The signal variance and the correlation coefficient 𝜌𝑘𝑙 for an arbitrary pair of
antennas have been fully characterized in [8] as a function of the radar’s relevant physical
parameters. Hence, no further discussion on this topic shall be presented here. Instead, our
aim is to design and analyze an optimum detector for the proposed extended radar setup,
in terms of arbitrary values of the variance and 𝜌𝑘𝑙, 𝑘, 𝑙 ∈ {1, . . . , 𝑁}. This is attained in
the next section.

2.3 Hypothesis Test
The fundamental problem of a radar system is to decide for the absence or

existence of a target. In our case, this problem is posed over each intersection region
among the antennas’ resolution cells, for multiple range combinations (cf. Fig. 2.1). In so
doing, the radar system scans the entire sector illuminated by the antennas. For simplicity,
the observables 𝑆𝑘𝑖 defined in (2.1) shall be denoted in compact form as

𝑋 , [𝑋1,1, 𝑋2,1, . . . , 𝑋𝑁,1, 𝑋1,2, 𝑋2,2, . . . , 𝑋𝑁,2, . . . , 𝑋1,𝑛, 𝑋2,𝑛, . . . , 𝑋𝑁,𝑛] (2.2)

𝑌 , [𝑌1,1, 𝑌2,1, . . . , 𝑌𝑁,1, 𝑌1,2, 𝑌2,2, . . . , 𝑌𝑁,2, . . . , 𝑌1,𝑛, 𝑌2,𝑛, . . . , 𝑌𝑁,𝑛] . (2.3)

We have the following binary hypothesis test:

• Hypothesis ℋ0: target is absent. In this case, from the radar model described in the
previous section, 𝑋 and 𝑌 are formed by mutually independent Gaussian compo-
nents with zero mean and variance 𝜎2

0.
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• Hypothesis ℋ1: target is present. In this case, 𝑋 is still independent of 𝑌 , but now
𝑋𝑘,𝑖 and 𝑋𝑙,𝑖 (as well as 𝑌𝑘,𝑖 and 𝑌𝑙,𝑖) are jointly Gaussian random variables with zero
mean, variance 𝜎2

1, and correlation coefficient 𝜌𝑘𝑙. It is worth noting that 𝜎2
1 > 𝜎2

0,
since 𝜎2

1 represents the variance of noise plus target echo, whereas 𝜎2
0 represents the

variance of noise alone.

2.4 Detection Schemes

2.4.1 Optimum Detection

The joint PDF of 𝑋 and 𝑌 can be written as [16]

𝑓𝑋𝑌 (𝑋, 𝑌 |ℋ𝜈) = 1
((2𝜋)𝑁 det (ℳℋ𝜈 )) 𝑛

exp
[︃
−1

2

𝑛∑︁
𝑖=1

(︁
𝑋 𝑖

𝑇 ℳℋ𝜈

−1𝑋 𝑖 + 𝑌 𝑖
𝑇 ℳℋ𝜈

−1𝑌 𝑖

)︁]︃
,

(2.4)
where 𝜈 ∈ {0, 1}, depending on the hypothesis, 𝑋 𝑖 , [𝑋1𝑖 𝑋2𝑖 · · · 𝑋𝑁𝑖] 𝑇 , and 𝑌 𝑖 ,

[𝑌1𝑖 𝑌2𝑖 · · · 𝑌𝑁𝑖] 𝑇 . In addition, ℳℋ0 , 𝜎2
0I and ℳℋ1 , 𝜎2

1Σ are the covariance matrices
of 𝑋 𝑖 (as well as 𝑌 𝑖) under each hypothesis, with I being the identity matrix and

Σ ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 𝜌12 𝜌13 . . . 𝜌1𝑁

𝜌21 1 𝜌23 𝜌2𝑁

𝜌31 𝜌32 1 𝜌3𝑁

... . . . ...
𝜌𝑁1 𝜌𝑁2 𝜌𝑁3 . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.5)

Note that ℳℋ0 and ℳℋ1 are 𝑁 × 𝑁 symmetrical matrices.

2.4.1.1 Detection Design

In a binary hypothesis test, the optimum decision (i.e., one that maximizes
PD for any given PFA) is established by the Neyman-Pearson Lemma [16]. According to
this, the system decides for ℋ1 whenever the likelihood ratio test (LRT) of ℋ1 over ℋ0

exceeds a certain threshold, say 𝛾′, and it decides for ℋ0 otherwise. In other words,

Λopt ,
𝑓𝑋𝑌 (𝑋, 𝑌 |ℋ1)
𝑓𝑋𝑌 (𝑋, 𝑌 |ℋ0)

ℋ1

≷

ℋ0

𝛾′. (2.6)

Substituting (2.4) into (2.6), and making the necessary simplifications, we obtain

Λopt =
(︃

det (ℳℋ0)
det (ℳℋ1)

)︃𝑛

exp
[︃
−1

2

𝑛∑︁
𝑖=1

(︁
𝑋𝑇

𝑖 ℳ𝑋 𝑖 + 𝑌 𝑇
𝑖 ℳ𝑌 𝑖

)︁]︃
, (2.7)

where ℳ ,ℳ−1
ℋ1 − ℳ−1

ℋ0 .
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For simplicity, we use equivalently the so-called log-LRT representation, given as [1]

ln [Λopt]
ℋ1

≷

ℋ0

ln [𝛾′] . (2.8)

Now, absorbing the terms that do not depend on 𝑋 𝑖 and 𝑌 𝑖 into a new corresponding
decision threshold, 𝛾, we can reformulate the decision rule as

𝑊

ℋ1

≷

ℋ0

𝛾, (2.9)

where 𝑊 is the new decision variable, obtained as

𝑊 , − 1
𝑛

𝑛∑︁
𝑖=1

(︁
𝑋𝑇

𝑖 ℳ𝑋 𝑖 + 𝑌 𝑇
𝑖 ℳ𝑌 𝑖

)︁
. (2.10)

2.4.1.2 Detection Analysis

From the Central Limit Theorem, 𝑊 approaches a Gaussian distribution as
the amount of signal samples approaches infinity [16]. In what follows, we consider that
𝑛 is large enough to render the Gaussian assumption a good approximation, thereby
allowing for an asymptotic performance analysis of the proposed radar system2. In this
case, 𝑊 can be fully characterized by its mean value and variance under each hypothesis,
as calculated next.

For convenience, we obtain each element of Σ−1 in terms of the correlation
matrix Σ as [17]

Σ−1
(𝑝,𝑞) =

(−1)𝑝+𝑞 det
(︁
Σ̃ [𝑝, 𝑞]

)︁
det (Σ) , (2.11)

with (·)(𝑝,𝑞) denoting the element at the 𝑝-th row and the 𝑞-th column of a matrix, and
Σ̃ [𝑝, 𝑞] ∈ R(𝑁−1)×(𝑁−1) being an auxiliary matrix obtained by removing the 𝑝-th row and
the 𝑞-th column of Σ.

Now, using (2.5), (2.10), and (2.11), and applying the Laplace Theorem [17],
we eventually show that the mean values of 𝑊 under each hypothesis are given by

E [𝑊 |ℋ0] = 2
⎛⎝𝑁 − 𝜎2

0
𝜎2

1 det (Σ)

𝑁∑︁
𝑝=1

det
(︁
Σ̃ [𝑝, 𝑝]

)︁⎞⎠ (2.12)

E [𝑊 |ℋ1] = 2𝑁

(︃
𝜎2

1
𝜎2

0
− 1

)︃
, (2.13)

2 As shall be seen from the numerical examples, the Gaussian assumption proves to be very accurate
for practicable values of 𝑛, say, 100–200 samples.
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and that the corresponding variances are given, respectively, by

VAR [𝑊 |ℋ0] = 4𝜎4
0

𝑛

⎛⎜⎜⎝ 𝑁∑︁
𝑝=1

⎛⎝− 1
𝜎2

0
+

det
(︁
Σ̃ [𝑝, 𝑝]

)︁
𝜎2

1 det (Σ)

⎞⎠2

+ 1
𝜎4

1 det (Σ)2

𝑁−1∑︁
𝑝=1

𝑁∑︁
𝑞=2

𝑝<𝑞

det
(︁
Σ̃ [𝑝, 𝑞]

)︁2

⎞⎟⎟⎠
(2.14)

VAR [𝑊 |ℋ1] = 2𝜎4
1

𝑛

⎛⎜⎜⎜⎝
𝑁∑︁

𝑝=1

𝑁∑︁
𝑞=1

𝑝≤𝑞

𝑁∑︁
𝑟=1

𝑁∑︁
𝑠=1

𝑟≤𝑠

(|sgn(𝑝 − 𝑞)| + 1)
⎛⎝(−1)𝑝+𝑞 det

(︁
Σ̃ [𝑝, 𝑞]

)︁
𝜎2

1 det(Σ) −
I(𝑝,𝑞)

𝜎2
0

⎞⎠

× (|sgn(𝑟 − 𝑠)| + 1)
⎛⎝(−1)𝑟+𝑠 det

(︁
Σ̃ [𝑟, 𝑠]

)︁
𝜎2

1 det(Σ) −
I(𝑟,𝑠)

𝜎2
0

⎞⎠(︁Σ(𝑝,𝑟)Σ(𝑞,𝑠) + Σ(𝑝,𝑠)Σ(𝑞,𝑟)
)︁⎞⎠ ,

(2.15)
where sgn (·) represents the sign function.

From (2.12)–(2.15), PFA and PD can be finally obtained with use of the fol-
lowing general formulas for a Gaussian decision variable along with a binary threshold
detector [2]:

𝑃FA =𝑄

⎛⎝ 𝛾 − E [𝑊 |ℋ0]√︁
VAR [𝑊 |ℋ0]

⎞⎠ (2.16)

𝑃D =𝑄

⎛⎝ 𝛾 − E [𝑊 |ℋ1]√︁
VAR [𝑊 |ℋ1]

⎞⎠ , (2.17)

where 𝑄(𝑥) ,
∫︀∞

𝑥 (1/
√

2𝜋) exp(−𝑡2/2)𝑑𝑡 is the complementary cumulative distribution
function of a standard (zero mean, unit variance) Gaussian random variable.

2.4.2 Phased-Array Detection

In this section, for comparison, we consider a suboptimal detection scheme
based on the operation mode of a traditional phased array. In such a radar, each antenna
element is assigned a certain gain and a certain phase shift, with the resulting antenna
signals being added at the processing stage [6]. For simplicity, and to render a fair com-
parison with the optimum detector, here we assume a unity gain and a null phase shift for
all antenna elements. Like for the optimum detector, we consider a collection of 𝑛 signal
samples for each of the 𝑁 antennas. Therefore, the received signals can be written as

𝑆 =
𝑁∑︁

𝑘=1

(︁
𝑋𝑆𝑘

+ 𝑗𝑌𝑆𝑘

)︁
, (2.18)

where 𝑋𝑆𝑘
, [𝑋𝑘,1, 𝑋𝑘,2, · · · , 𝑋𝑘,𝑛] 𝑇 and 𝑌𝑆𝑘

, [𝑌𝑘,1, 𝑌𝑘,2, · · · , 𝑌𝑘,𝑛] 𝑇 . The PDF of 𝑆 can
be written as

f𝑆 (𝑆|ℋ𝜈) = 1(︁
2𝜋𝑁𝜎2

ℋ𝜈

)︁𝑛 exp
⎡⎣−

∑︀𝑛
𝑖=1

(︁(︁∑︀𝑁
𝑘=1 𝑋𝑘,𝑖

)︁
2 +

(︁∑︀𝑁
𝑘=1 𝑌𝑘,𝑖

)︁
2
)︁

2𝑁𝜎2
ℋ𝜈

⎤⎦ , (2.19)
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in which 𝜎2
ℋ0 = 𝑁𝜎2

0 and 𝜎2
ℋ1 = 𝜎2

11𝑇 Σ1 represent the variance of the sum of 𝑁 Gaussian
components under the hypotheses ℋ0 and ℋ1, respectively, 1 = [1, 1, · · · , 1]𝑇 ∈ N𝑁 being
the unitary vector.

2.4.2.1 Detection Design

The LRT for the phased array detector is defined as

Λpha ,
𝑓𝑆 (𝑆|ℋ1)
𝑓𝑆 (𝑆|ℋ0)

ℋ1

≷

ℋ0

𝛾′. (2.20)

Substituting (2.19) in (2.20), and after some minor simplifications, we obtain

Λpha =
(︃

𝜎2
ℋ0

𝜎2
ℋ1

)︃
𝑛 exp

[︃(︃
𝜎2

ℋ1 − 𝜎2
ℋ0

2𝜎2
ℋ1𝜎2

ℋ0

)︃
𝑛∑︁

𝑖=1

{︃(︃
𝑁∑︁

𝑘=1
𝑋𝑘,𝑖

)︃
2 +

(︃
𝑁∑︁

𝑘=1
𝑌𝑘,𝑖

)︃
2
}︃]︃

. (2.21)

After applying the log-LRT transformation, and since the term 𝜎2
ℋ1

−𝜎2
ℋ0

2𝜎2
ℋ1

𝜎2
ℋ0

is always positive,
we arrive at a new decision rule in terms of 𝑋𝑘,𝑖 and 𝑌𝑘,𝑖 alone, namely

𝑍

ℋ1

≷

ℋ0

𝛾, (2.22)

where
𝑍 ,

𝑛∑︁
𝑖=1

{︃(︃
𝑁∑︁

𝑘=1
𝑋𝑘,𝑖

)︃
2 +

(︃
𝑁∑︁

𝑘=1
𝑌𝑘,𝑖

)︃
2
}︃

. (2.23)

2.4.2.2 Detection Analysis

Note that 𝑍/𝜎2
ℋ𝜈

follows a chi-squared distribution with 2𝑛 degrees of freedom.
Therefore, after a simple transformation of variables, we obtain the PDF of 𝑍 under each
hypothesis as

f𝑍 (𝑧|ℋ𝜈) = 1
𝑧Γ(𝑛) exp

(︃
− 𝑧

2𝜎2
ℋ𝜈

)︃(︃
𝑧

2𝜎2
ℋ𝜈

)︃
𝑛, (2.24)

where Γ (·) represents the gamma function. Finally, PFA and PD can be calculated as

𝑃FA =
∫︁ ∞

𝛾
f𝑍 (𝑧|ℋ0) 𝑑𝑧 =

Γ
(︁
𝑛, 𝛾

2𝑁𝜎2
0

)︁
Γ(𝑛) (2.25)

𝑃D =
∫︁ ∞

𝛾
f𝑍 (𝑧|ℋ1) 𝑑𝑧 =

Γ
(︂

𝑛, 𝛾
2𝜎2

11𝑇 Σ1

)︂
Γ(𝑛) , (2.26)

in which Γ (·, ·) represents the incomplete gamma function.
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Figure 2.2 – ROC curves for the optimum and phased-array detectors (𝜌12 = 0.5, 𝑁 = 2,
𝜎2

0 = 1, and 𝜎2
1 = 1.1).

2.5 Numerical Results

In this section we present comparative numerical results in terms of the amount
of antennas (𝑁), the amount of signal samples per antenna (𝑛), and the correlation matrix
(Σ). The optimum and phased-array detectors we proposed are assessed both analytically
and via simulation. For illustration purposes, we consider 𝜌12 = 0.05, 𝜌13 = 0.03, 𝜌14 =
0.01, 𝜌23 = 0.05, 𝜌24 = 0.03, and 𝜌34 = 0.05.

Fig. 2.2 shows the receiver operating characteristic (ROC) curves for both
detectors, with 𝑁 = 2, 𝜎2

0 = 1, 𝜎2
1 = 1.1, and varying 𝑛. Note how the analytical expres-

sions we derived for the detection and false-alarm probabilities of the optimum detector
perfectly agree with the simulation results, confirming the validity of the Gaussian as-
sumption for the decision variable. Also note the improvement for both detectors as the
number of samples increases, and how the optimum detector performs much better than
the phased-array detector, yielding a much higher PD for any given PFA. In particular,
for 𝑃FA = 10−10 and 𝑛 = 120, the PD values are 98.1% for the optimum detector and
78.1% for the phased-array detector.

Fig. 2.3 shows the ROC curves for the optimum detector with two antennas
proposed in [11] and the optimum detector with three and four antennas proposed here,
for 𝑛 = 100, 𝜎2

0 = 1, and 𝜎2
1 = 1.2. Once again, note how analytical expressions and

simulation results fully match each other, validating (2.16), (2.17), (2.25), and (2.26).
Also note how the optimum detector performs much better with four antennas.
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Figure 2.3 – ROC curves for the optimum and phased-array detectors (𝜎2
0 = 1, 𝜎2

1 = 1.2,
𝑛 = 100, 𝜌12 = 0.05, 𝜌13 = 0.03, 𝜌14 = 0.01, 𝜌23 = 0.05, 𝜌24 = 0.03, and
𝜌34 = 0.05).
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Figure 2.4 – ROC curves for the optimum and phased-array detectors (𝑛 = 100, 𝑁 = 2,
𝜎2

0 = 1, and 𝜎2
1 = 1.1).

Finally, Fig. 2.4 shows the ROC curves for the optimum and phased-array
detectors with two antennas, 𝜎2

0 = 1, 𝜎2
1 = 1.1, 𝑛 = 100, and varying 𝜌12 = 𝜌. Note

that, as discussed in the Introduction, the performance of each detector improves as the
correlation coefficient increases.
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2.6 Conclusions

In [8] and [11], an innovative approach for the construction of meteorological
radars was introduced, based on two fixed wide-beam antennas. In principle, the new
approach is cheaper and faster than the traditional one, which is based on a large rotating
narrow-beam antenna. However, the former was observed to require an extremely high
number of signal samples in order to operate effectively. In this work, we alleviated the
referred drawback of this new meteorological radar paradigm by extending it from two to
an arbitrary number of antennas. We not only designed the optimum and phased-array
detection algorithms for the extended radar setup, but also analyzed their performances
in terms of detection and false-alarm probabilities. Our results indicate that the increase
in number of antennas brings a considerable performance gain.
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Alternative Representations for the Probability of
Detection of Non-fluctuating Targets

Fernando Darío Almeida García, Henry Ramiro Carvajal Mora, Nathaly Verónica
Orozco Garzón, and José Cândido Silveira Santos Filho

Abstract

We derive a closed-form exact expression and a fast convergent series for the probability
of phased-array detection of non-fluctuating targets embedded in complex white Gaussian
noise. To be realistic, we assume that the amplitude of the target echoes and the noise
power are unknown parameters. Our series representation achieved impressive savings in
computational load and computation time when compared to the numerical evaluation of
the existing integral-form solution.

3.1 Introduction

A major concern in any radar system is to decide whether or not a target
is present in a certain range, angle, and Doppler bin [1]. Different types of interference
can hinder the detection process, including thermal noise, ground clutter, sea clutter,
and jamming. Moreover, due to the inherent randomness of the interference and target
returns, the radar performance must be given in terms of statistical metrics, such as the
probability of detection (PD) and the probability of false alarm (PFA).

The optimal decision about the presence or absence of a target is obtained
through the likelihood ratio test (LRT). This decision is based on the Neyman-Pearson
criterion, which maximizes PD for any given PFA [2]. The LRT has been explored in a
wide variety of applications. Yet it contains a significant limitation. To provide an optimal
decision, the LRT requires full knowledge of the probability density function (PDF) for
the interference and target returns. Of course, this is too strong a requirement that most
practical radar problems fail to meet. A more realistic strategy emerged to address the
cases in which the PDF parameters are unknown: the so-called generalized likelihood ratio
test (GLRT) [3]. Although there is no optimality associated with the GLRT, in practice
it turns out to work quite well. All the unknown PDF parameters are replaced by their
maximum-likelihood estimates (MLE). This structure allows the GLRT to work over a
much wider range of scenarios than the LRT.

Well-known detectors considering non-fluctuating targets along with a single
echo sample [3], coherent integration [1], and non-coherent integration [2, 4] have been ana-
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lyzed under the LRT framework. On the other hand, detectors considering non-fluctuating
targets and the GLRT can be found in [2, 5, 6]. These detectors assumed a partial or com-
plete lack of knowledge about the amplitude of the target echo and the noise power. Also,
the rapid increase in the use of phased-array radars has led to the development of more
complex GLRT detectors that operate over fluctuating targets (cf. [7, 8, 9] for more dis-
cussion on this). In any case, due to the mathematical intricacy of the detection statistics,
the PD performance of most GLRT detectors have been so far obtained in integral form
only, computed through numerical integration, or estimated via Monte-Carlo simulations.

In this work, we address the phased-array detection of weak signals in back-
ground noise. Specifically, we consider a non-fluctuating target embedded in complex
white Gaussian noise, with both the target amplitude and the noise power being un-
known. The open technical literature contains no closed-form solutions or analytically
tractable approximations for the associated detection performance. This is because the
computation of the PD requires evaluating a cumbersome PDF for the target-plus-noise
scenario [10, 11]. Herein we derive an exact closed-form expression and a fast convergent
series representation for the aforementioned PD. Our closed-form expression is given in
terms of the bivariate Fox H-function, whereas our series representation is obtained by
exploiting the orthogonal selection of poles in Cauchy’s residue theorem. The series proves
efficient and computationally attractive, achieving a high accuracy even for a small num-
ber of terms, thereby showing a remarkable reduction in the computational load and in
the computation time as compared to the numerical evaluation of the existing integral-
form solution.

3.2 System Model

We consider a linear phased-array radar composed of 𝑁 antennas, each of
which receives a collection of 𝑀 echo samples. The overall received signals can be written
in matrix form as

X ,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑋1,1 𝑋2,1 · · · 𝑋𝑁,1

𝑋1,2 𝑋2,2 · · · 𝑋𝑁,2
... ... . . . ...

𝑋1,𝑀 𝑋2,𝑀 · · · 𝑋𝑁,𝑀

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (3.1)

Y ,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑌1,1 𝑌2,1 · · · 𝑌𝑁,1

𝑌1,2 𝑌2,2 · · · 𝑌𝑁,2
... ... . . . ...

𝑌1,𝑀 𝑌2,𝑀 · · · 𝑌𝑁,𝑀

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (3.2)
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where 𝑋𝑛,𝑚 and 𝑌𝑛,𝑚 represent the in-phase and quadrature components, respectively,
𝑚 ∈ {1, 2, . . . , 𝑀} is a discrete-time index, and 𝑛 ∈ {1, 2, . . . , 𝑁} is a spatial index that
identifies each antenna.

Herein, the radar detection relies on a standard binary hypothesis test:

• Hypothesis ℋ0: target is absent. In this case, due to the noise alone, the components
of X and Y can be modeled as independent Gaussian random variables (RV) with
zero mean and unknown variance 𝜎2.

• Hypothesis ℋ1: target is present. In this case, the received signals are composed
of noise plus target echoes. Consequently, the in-phase components 𝑋1,𝑚, 𝑋2,𝑚,

· · · , 𝑋𝑁,𝑚 (∀𝑚), can be modeled as independent Gaussian RVs with unknown means
𝜇𝑋1 , 𝜇𝑋2 , · · · , 𝜇𝑋𝑁

, respectively, and unknown variance 𝜎2. Similarly, the quadrature
components, 𝑌1,𝑚, 𝑌2,𝑚, · · · , 𝑌𝑁,𝑚 (∀𝑚) can be modeled as independent Gaussian
RVs with unknown means 𝜇𝑌1 , 𝜇𝑌2 , · · · , 𝜇𝑌𝑁

, respectively, and unknown variance 𝜎2.

Taking into account the above description, the joint PDF of X and Y under
the hypothesis ℋ0 is given by

fXY
(︁
X, Y|ℋ0; 𝜎2

)︁
=

exp
[︁
− 1

2𝜎2
∑︀𝑀

𝑚=1

(︁
X𝑇

𝑚X𝑚 + Y𝑇
𝑚Y𝑚

)︁]︁
(2𝜋𝜎2)𝑀𝑁 , (3.3)

where, for convenience, we define X𝑚 , [𝑋1,𝑚, 𝑋2,𝑚, · · · , 𝑋𝑁,𝑚]𝑇 and Y𝑚 , [𝑌1,𝑚, 𝑌2,𝑚,

· · · , 𝑌𝑁,𝑚]𝑇 . On the other hand, the joint PDF of X and Y under the hypothesis ℋ1 is
given by

fXY
(︁
X, Y|ℋ1;𝜇𝜇𝜇𝑋 ,𝜇𝜇𝜇𝑌 , 𝜎2

)︁
= 1

(2𝜋𝜎2)𝑀𝑁 × exp
[︃
− 1

2𝜎2

𝑀∑︁
𝑚=1

(︁
M𝑇

X,𝑚MX,𝑚 + M𝑇
Y,𝑚MY,𝑚

)︁]︃
,

(3.4)

where once again we define MX,𝑚 , X𝑚 − 𝜇𝜇𝜇𝑋 and MY,𝑚 , Y𝑚 − 𝜇𝜇𝜇𝑌 , with 𝜇𝜇𝜇𝑋 ,

[𝜇𝑋1 , 𝜇𝑋2 , · · · , 𝜇𝑋𝑁
]𝑇 and 𝜇𝜇𝜇𝑌 , [𝜇𝑌1 , 𝜇𝑌2 , · · · , 𝜇𝑌𝑁

]𝑇 .

In such a scenario, the GLRT decision rule can be written as [3]

𝑓XY (X, Y|ℋ1; 𝜇̂𝜇𝜇𝑋 , 𝜇̂𝜇𝜇𝑌 , 𝜎̂2
1)

𝑓XY (X, Y|ℋ0; 𝜎̂2
0)

ℋ1

≷

ℋ0

ϒ, (3.5)

where ϒ is an arbitrary threshold; 𝜎̂2
0 is the MLE for 𝜎2, obtained from (3.3); and 𝜎̂2

1, 𝜇̂𝜇𝜇𝑋 ,
and 𝜇̂𝜇𝜇𝑌 are the MLEs for 𝜎2, 𝜇𝜇𝜇𝑋 , and 𝜇𝜇𝜇𝑌 , respectively, obtained from (3.4). An equivalent
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decision rule for (3.5) is defined as [3, 11]

𝑍

ℋ1

≷

ℋ0

𝛾, (3.6)

where 𝑍 is a modified detection statistic obtained in terms of X and Y, and 𝛾 is a
corresponding new threshold. It has been shown that, conditioned on ℋ0, 𝑍 follows a
central F-distribution with PDF given by [3, 1]

f𝑍 (𝑧|ℋ0) = (𝑀 − 1)(𝑀−1)𝑁𝑧𝑁−1(𝑀 + 𝑧 − 1)−𝑀𝑁

𝐵(𝑁, (𝑀 − 1)𝑁) , (3.7)

where 𝐵(·, ·) is the beta function [12, Eq. (5.12.3)]. Moreover, conditioned on ℋ1, 𝑍 follows
a doubly noncentral F-distribution with PDF given by [11, 10]

f𝑍 (𝑧|ℋ1) =

(︁
𝑀−1

𝑀+𝑧−1

)︁𝑀𝑁−𝑁 (︁
𝑧

𝑀+𝑧−1

)︁𝑁
exp (−𝑀Ψ) 1𝐹1

(︁
𝑀𝑁 ; 𝑁 ; 𝑧𝑀Ψ

𝑀+𝑧−1

)︁
𝑧 𝐵(𝑁, 𝑀𝑁 − 𝑁) , (3.8)

where Ψ , ∑︀𝑁
𝑛=1 SNR𝑛, with SNR𝑛 , (𝜇2

𝑋𝑛
+ 𝜇2

𝑌𝑛
)/2𝜎2 being the signal-to-noise ratio at

the 𝑛-th antenna and 1𝐹1 (·; ·; ·) being the Kummer confluent hypergeometric function [12,
Eq. (13.1.2)].

3.3 Known Integral-Form Detection Performance

The detection performance of any radar system is governed by its PFA and
PD. Using (3.7) and (3.8), these metrics have been calculated as [11]

𝑃FA ,
∫︁ ∞

𝛾
f𝑍 (𝑧|ℋ0) d𝑧

=
𝐵 1−𝑀

𝛾
(𝑀𝑁 − 𝑁, 1 − 𝑀𝑁)(︁

𝑀−1
1−𝑀

)︁𝑁−𝑀𝑁
𝐵(𝑁, 𝑀𝑁 − 𝑁)

(3.9)

𝑃D ,
∫︁ ∞

𝛾
f𝑍 (𝑧|ℋ1) d𝑧

=(𝑀 − 1)𝑀𝑁−𝑁 exp (−𝑀Ψ)
𝐵(𝑁, 𝑀𝑁 − 𝑁)

×
∫︁ ∞

𝛾
𝑧𝑁−1

(︂ 1
𝑀 + 𝑧 − 1

)︂𝑀𝑁

1𝐹1

(︃
𝑀𝑁 ; 𝑁 ; 𝑧𝑀Ψ

𝑀 + 𝑧 − 1

)︃
d𝑧, (3.10)

where 𝐵(·)(·, ·)is the incomplete beta function [12, Eq. (8.17.1)]. To our best knowledge, no
closed-form solution or analytically tractable approximation is available for (3.10). Next
we provide them both.
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3.4 Closed-form Detection Performance

In this section, we derive a novel closed-form expression for (3.10), given in
terms of the bivariate Fox H-function. We begin by using [13, Eq. (07.20.26.0006.01)] to
rewrite (3.10) as

𝑃D =(𝑀 − 1)𝑀𝑁−𝑁 exp(−𝑀Ψ)
Γ(𝑀𝑁 − 𝑁)

∫︁ ∞

𝛾
𝑧𝑁−1

(︂ 1
𝑀 + 𝑧 − 1

)︂𝑀𝑁

× 𝐺1,1
1,2

⎡⎣ 1 − 𝑀𝑁

0, 1 − 𝑁

⃒⃒⃒⃒
⃒⃒ 𝑧𝑀Ψ
1 − 𝑧 − 𝑀

⎤⎦ d𝑧, (3.11)

where 𝐺𝑝,𝑞
𝑚,𝑛 [·] is the Meijer’s G-function [12, Eq. (16.17.1)]. Then, we replace the Meijer’s

G-function by its contour integral representation [13, Eq. (07.34.02.0001.01)]:

𝑃D =(𝑀 − 1)𝑀𝑁−𝑁 exp(−𝑀Ψ)
Γ(𝑀𝑁 − 𝑁)

∫︁ ∞

𝛾
𝑧𝑁−1

(︂ 1
𝑀 + 𝑧 − 1

)︂𝑀𝑁

×
(︃

1
2𝜋𝑗

)︃∮︁
ℒ*

s,1

Γ(𝑠1)Γ(𝑀𝑁 − 𝑠1)
(︁
− 𝑧𝑀Ψ

𝑀+𝑧−1

)︁−𝑠1

Γ(𝑁 − 𝑠1)
d𝑠1d𝑧, (3.12)

where ℒ*
s,1 is a closed complex contour that separates the poles of the gamma function

Γ(𝑠1) from the poles of Γ(𝑀𝑁 − 𝑠1). Since
∫︀∞

𝛾 |f𝑍 (𝑧|ℋ1)| d𝑧 < ∞, we can invoke Fubini’s
theorem to interchange the order of integration:

𝑃D =(𝑀 − 1)𝑀𝑁−𝑁 exp(−𝑀Ψ)
(2𝜋𝑗)Γ(𝑀𝑁 − 𝑁)

∮︁
ℒ*

s,1

Γ(𝑠1)Γ(𝑀𝑁 − 𝑠1)(−𝑀Ψ)−𝑠1

Γ(𝑁 − 𝑠1)

×
∫︁ ∞

𝛾
𝑧𝑁−𝑠1−1(𝑀 + 𝑧 − 1)𝑠1−𝑀𝑁d𝑧 d𝑠1. (3.13)

Now, solving the inner real integral, we obtain

𝑃D =

(︁
𝑀−1
1−𝑀

)︁𝑀𝑁−𝑁
exp(−𝑀Ψ)

Γ(𝑀𝑁 − 𝑁)

(︃
1

2𝜋𝑗

)︃∮︁
ℒ*

s,1

(−𝑀Ψ)−𝑠1Γ(𝑠1)Γ(𝑀𝑁 − 𝑠1)
Γ(𝑁 − 𝑠1)

× 𝐵 1−𝑀
𝛾

(𝑀𝑁 − 𝑁, −𝑀𝑁 + 𝑠1 + 1) d𝑠1. (3.14)

Finally, after using the complex integral representation of the incomplete beta function [13,
Eq. (06.19.07.0001.01)], we can rewrite (3.14) in closed-form as

𝑃D =Φ 𝐻0,1:0,1:0,1
1,0:2,0:2,0

⎡⎣ −𝑀Ψ
−1−𝑀

𝛾

⃒⃒⃒⃒
⃒⃒ (𝐴, 𝛼) : (𝐵, 𝛽) : (𝐷, 𝛿)

(−) : (−) : (−)

⎤⎦ (3.15)

where 𝐻𝑝,𝑞:𝑝1,𝑞1:𝑝2,𝑞2
𝑣,𝑤:𝑣1,𝑤1:𝑣2,𝑤2 [·] is the bivariate Fox H-function defined in [14], Φ = exp(−𝑀Ψ)

((𝑀 − 1)/𝛾)𝑀𝑁−𝑁 /Γ(𝑀𝑁 − 𝑁), 𝐴 = [−𝑀𝑁 − 1], 𝛼 = [−1, −1], 𝐵 = [0, 1], 𝛽 = [0, 1],
𝐷 = [0, 1], and 𝛿 = [𝑀𝑁 − 𝑁 + 1, 1]. (As stated in [14], an empty vector or matrix,
denoted as (–), is interpreted as unity.)

An important remark is in order. Although the Fox H-function is still un-
available as a built-in routine in standard computing software such as MATHEMATICA,
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MATLAB, or MAPLE, the technical community has alleviated this drawback by devel-
oping Python and MATHEMATICA routines for the Fox H-function with up to four
variables (cf. [15, 16] for more discussion on this). Alternatively, in the next section we
provide a fast convergent series representation for (3.15) that, as shall be seen, requires
only a few dozen terms to achieve an outstanding accuracy.

3.5 Efficient Series Representation

In this section, we derive a series representation for (3.15) by exploiting the
orthogonal separation of poles in Cauchy’s residue theorem. To this end, we consider two
suitable closed contours: (i) ℒs,1 is a contour that separates the poles of Γ(𝑠1) from those
of Γ(𝑀𝑁 − 𝑠1 − 𝑠2), and (ii) ℒs,2 is a contour that separates the poles of Γ(𝑠2) from those
of Γ(𝑀𝑁 − 𝑠1 − 𝑠2) and Γ(𝑀𝑁 − 𝑁 − 𝑠2). Thus, we can express (3.15) through the sum
of residues as [17]

𝑃D = Φ
∞∑︁

𝑘=0

∞∑︁
𝑙=0

Res [Ξ (𝑠1, 𝑠2) ; 𝑠1 = −𝑘, 𝑠2 = −𝑙] , (3.16)

where Res [Ξ (𝑠1, 𝑠2) ; 𝑠1 − 𝑘, 𝑠2 = −𝑙] denotes the residue of Ξ (𝑠1, 𝑠2) evaluated at the
poles 𝑠1 = −𝑘 and 𝑠2 = −𝑙, and

Ξ (𝑠1, 𝑠2) ,
Γ(𝑠1)Γ(𝑠2)Γ(𝑀𝑁 − 𝑁 − 𝑠2)Γ(𝑀𝑁 − 𝑠1 − 𝑠2)(−𝑀Ψ)−𝑠1

(︁
−1−𝑀

𝛾

)︁−𝑠2

Γ(𝑁 − 𝑠1)Γ(𝑀𝑁 − 𝑁 − 𝑠2 + 1) (3.17)

is the integration kernel of (3.15). Now, applying the residue operation in (3.16) and
recalling that Γ(𝑠1) and Γ(𝑠2) generate simple poles at all non-positive integers [12, Eq.
(5.2.1)], we obtain

𝑃D =Φ
∞∑︁

𝑘=0

∞∑︁
𝑙=0

{︃
(−1)𝑘+𝑙Γ(𝑙 + 𝑀𝑁 − 𝑁)Γ(𝑘 + 𝑙 + 𝑀𝑁)Γ(𝑙 + 𝑀𝑁 − 𝑁 + 1)

𝑘! 𝑙! Γ(𝑘 + 𝑁)

× (−𝑀Ψ)𝑘

(︃
−1 − 𝑀

𝛾

)︃𝑙
⎫⎬⎭ . (3.18)

Finally, using [12, Eq. (15.2.1)], and after mathematical simplifications, we reduce (3.18) to

𝑃D = exp(−𝑀Ψ)
(︃

𝑀 − 1
𝛾

)︃𝑀𝑁−𝑁 ∞∑︁
𝑘=0

{︃
Γ(𝑘 + 𝑀𝑁)(𝑀Ψ)𝑘

𝑘! Γ(𝑘 + 𝑁)

× 2𝐹1

(︃
𝑘 + 𝑀𝑁, 𝑀𝑁 − 𝑁 ; 𝑀𝑁 − 𝑁 + 1; 1 − 𝑀

𝛾

)︃}︃
, (3.19)

where 2𝐹1(𝑎, 𝑏; 𝑐; 𝑥) = 2𝐹1(𝑎, 𝑏; 𝑐; 𝑥)/Γ(𝑐) is the regularized Gauss hypergeometric func-
tion, with 2𝐹1(·, ·; ·; ·) being the Gauss hypergeometric function [12, Eq. (15.1.1)].

It is worth noting that (3.19) is an original analytical contribution of this
work that can be quickly executed on an ordinary desktop computer, using well-known



Chapter 3. Contribution II 56

○ ○ ○ ○ ○ ○ ○ ○
○

○
○
○
○
○
○
○
○
○
○
○
○
○
○
○○
○○
○○○

○○○○

△ △ △ △ △ △ △ △
△

△
△
△
△
△
△
△
△
△
△
△
△
△
△
△△
△△
△△△

△△△△

○ ○ ○ ○ ○ ○
○

○
○
○
○
○

○
○
○
○
○
○
○
○
○○
○○
○○○○

○○○○○○○○○○○○○○○○○○○○

△ △ △ △ △ △
△

△
△
△
△
△

△
△
△
△
△
△
△
△
△△
△△
△△△△

△△△△△△△△△△△△△△△△△△△△

○ ○ ○ ○ ○ ○ ○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○
○○
○○
○○○
○○○○○○○○○

○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

△ △ △ △ △ △ △
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△
△△
△△
△△△
△△△△△△△△△

△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△

○ ○ ○ ○
○

○
○
○
○
○

○

○
○
○
○
○
○
○
○
○○
○○○

○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

△ △ △ △
△

△
△
△
△
△

△

△
△
△
△
△
△
△
△
△△
△△△

△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△

○ ○ ○
○

○
○

○

○

○

○

○

○
○
○
○
○
○○
○○○

○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

△ △ △
△

△
△

△

△

△

△

△

△
△
△
△
△
△△
△△△

△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△△

�

�

�

�

�

�

����������� ��� (����)

△ ����������� ��� (����)

○ ����������� ��� (����)

-� -� -� -� � � �
���

���

���

���

���

���

������-��-����� ����� ��� �������� ����� ��

�
��
�
�
�
���
��
�
�
�
�
��
�
���
�
�
�
�

Figure 3.1 – 𝑃D vs SNR𝑛: 𝑀 = 10, P𝐹 𝐴 = 10−8, and different values of 𝑁 .
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Figure 3.2 – 𝑃D vs SNR𝑛: 𝑁 = 4, P𝐹 𝐴 = 10−8, and different values of 𝑀 .

mathematical functions that are readily available for calculation. Importantly, a few dozen
terms suffice to attain highly accurate results, as shown next.

3.6 Numerical Results and Discussions

In this section, we validate our analytical contributions and discuss represen-
tative sample results. For this purpose, we plot receiver operating characteristic (ROC)
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Figure 3.3 – 𝑃D vs SNR𝑛: 𝑀 = 10, 𝑁 = 4, and different values of PFA.

Table 3.1 – Test cases

Case Parameter settings 𝑃D
1 𝑀 = 10, 𝑁 = 4, 𝑃FA = 10−4, SNR𝑛 = −5 dB 33.26 %
2 𝑀 = 10, 𝑁 = 3, 𝑃FA = 10−4, SNR𝑛 = −5 dB 18.85 %
3 𝑀 = 15, 𝑁 = 4, 𝑃FA = 10−4, SNR𝑛 = −5 dB 76.29 %
4 𝑀 = 20, 𝑁 = 4, 𝑃FA = 10−4, SNR𝑛 = −5 dB 95.32 %
5 𝑀 = 8, 𝑁 = 4, 𝑃FA = 10−5, SNR𝑛 = −5 dB 5.954 %
6 𝑀 = 8, 𝑁 = 4, 𝑃FA = 10−6, SNR𝑛 = −5 dB 1.845 %
7 𝑀 = 12, 𝑁 = 5, 𝑃FA = 10−5, SNR𝑛 = −3 dB 90.40 %
8 𝑀 = 12, 𝑁 = 5, 𝑃FA = 10−5, SNR𝑛 = −2 dB 98.31 %

curves. Moreover, we assess the efficiency of (3.19) as compared to numerically integrating
(3.10). Herein, (3.10) and (3.15) are evaluated by using the fastest MATHEMATICA’s
numerical integration method, “GlobalAdaptive”, with an accuracy goal of 10−10.

As mentioned previously, we make use of the ROC curves, 𝑃D vs SNR𝑛, to
corroborate our novel expressions. More specifically, we vary the number of antennas,
the number of samples, and the PFA, as shown in Figs. 3.1–3.3. In (3.19), the number
of terms was set to 50. For illustration purposes, we consider an homogeneous scenario
in which the value of SNR𝑛 is the same ∀𝑛 ∈ {1, 2, . . . , 𝑁}. Observe that (3.9) is a
transcendental equation for 𝛾. Therefore, it has to be solved numerically for any given
value of 𝑃FA. Observe the perfect agreement between our analytical results, (3.15) and
(3.19), and those in (3.10).

Now, to evaluate the efficiency of (3.19) we define 8 test cases, each with a



Chapter 3. Contribution II 58

Table 3.2 – Efficiency of (3.19) as compared to (3.10)

Case 𝜖 Terms Computation
Time for (3.10)

Computation
Time for (3.19)

Time
Saving

1 6.90 × 10−10 39 61.85 [𝜇𝑠] 4.01 [𝜇𝑠] 93.51 %
2 5.84 × 10−10 33 40.43 [𝜇𝑠] 3.24 [𝜇𝑠] 91.97 %
3 8.90 × 10−10 50 129.70 [𝜇𝑠] 5.88 [𝜇𝑠] 95.46 %
4 5.33 × 10−10 61 205.30 [𝜇𝑠] 8.58 [𝜇𝑠] 95.82 %
5 7.92 × 10−10 33 42.48 [𝜇𝑠] 3.25 [𝜇𝑠] 92.34 %
6 7.11 × 10−10 34 47.09 [𝜇𝑠] 3.23 [𝜇𝑠] 93.13 %
7 8.70 × 10−10 68 130.19 [𝜇𝑠] 9.24 [𝜇𝑠] 92.89 %
8 7.75 × 10−10 80 129.24 [𝜇𝑠] 11.64 [𝜇𝑠] 90.99 %

specific parameter setting and its corresponding 𝑃D, as shown in Table 3.1. With this at
hand, Table 3.2 illustrates the efficiency of (3.19) by showing the truncation error, the re-
quired number of terms, and the associated time saving to achieve the same accuracy goal
imposed to (3.10), i.e., around 10−10. The truncation error is expressed as 𝜖 = |𝑃D − 𝑃D|,
where 𝑃D is the probability of detection obtained via the numerical integration of (3.10).
Observe that across all cases no more than 80 terms were required. Moreover, the compu-
tation time dropped dramatically, above 90%. Such an impressive reduction can lead to
major savings in computational load if one wants to evaluate the detection performance
over an entire area or volume covered by the radar system.

3.7 Conclusions

We derived a closed-form exact expression and a fast convergent series for the
detection probability of non-fluctuating targets embedded in Gaussian noise. No knowl-
edge was assumed about the target amplitude and noise power, as it turns out to be
the case for most applications in practice. Numerical results corroborated the validity
and accuracy of our analytical expressions. Our series representation proved particularly
attractive, as it allows for remarkable savings in computational load and computation
time.
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New Findings on GLRT Radar Detection of
non-fluctuating Targets via Phased Arrays

Fernando Darío Almeida García, Marco Antonio Miguel Miranda,
and José Cândido Silveira Santos Filho

Abstract

This paper addresses the standard generalized likelihood ratio test (GLRT) detection prob-
lem of weak signals in background noise. In so doing, we consider a non-fluctuating target
embedded in complex white Gaussian noise (CWGN), in which the amplitude of the target
echo and the noise power are assumed to be unknown. Important works have analyzed the
performance for the referred scenario and proposed GLRT-based detectors. Such detectors
are projected at an early stage (i.e., prior to the formation of a post-beamforming scalar
waveform), thereby imposing high demands on hardware, processing, and data storage.
From a hardware perspective, most radar systems fail to meet these strong requirements.
In fact, due to hardware and computational constraints, most radars use a combination of
analog and digital beamformers (sums) before any estimation or further pre-processing.
The rationale behind this study is to derive a GLRT detector that meets the hardware
and system requirements. In this work, we design and analyze a more practical and easy-
to-implement GLRT detector, which is projected after the analog beamforming. The per-
formance of the proposed detector is analyzed and the probabilities of detection (PD) and
false alarm (PFA) are derived in closed form. An alternative fast convergent series for the
PD is also derived. This series proves to be very efficient and computationally tractable,
saving both computation time and computational load. Moreover, we show that in the low
signal-to-noise ratio (SNR) regime, the post-beamforming GLRT detector performs better
than both the classic pre-beamforming GLRT detector and the square-law detector. This
finding suggests that if the signals are weak, instead of processing the signals separately,
we first must to reinforce the overall signal and then assembling the system’s detection
statistic. We also showed that the PFA is independent of the number of antennas. This
property allows us to maintain a certain PFA for an arbitrary number of antennas. At
last, the SNR losses of all detectors are quantified.

4.1 Introduction

Before performing any task (i.e., searching, tracking or imaging), the radar
must decide whether the target of interest is present or absent in a certain range, angle or
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Doppler bin [1]. Unfortunately, the presence of unwanted signals such as thermal noise,
clutter, and jamming, ubiquitous in practice, often render this decision very complicated.
The optimal decision is achieved by applying the likelihood ratio test (LRT) [2]. This
decision is based on the Neyman-Pearson (NP) criterion, which maximizes the probability
of detection (PD) for a given probability of false alarm (PFA) [3]. The LRT provides an
optimal decision if the probability density functions (PDFs) of the received samples are
fully known. Of course, this requirement does not fit most practical problems. In view of
this, a more general decision rule arose to deal with these types of scenarios, the so-called
generalized likelihood ratio test (GLRT) [4]. In the GLRT, all unknown PDF parameters
are replaced by their maximum likelihood estimates (MLEs). This structure allows the
GLRT to work over a wide range of scenarios. Although, there is no optimality associated
with the GLRT, in practice, it appears to work quite well.

Important GLRT-based detectors were derived considering phased array radars,
non-fluctuating targets and, complex white Gaussian noise (CWGN) have been rigor-
ously analyzed in the literature (cf. [5, 6, 7, 8, 9] for more discussion on this). These
works assumed a partial or a complete lack of knowledge about the target and noise
statistics. More complex detectors that rely on the use of secondary data can be found
in [9, 10, 11, 12, 13, 14, 15]. In these works, secondary data was assumed to be signal-free
from the target components. That is, only noise is present. In particular, in [10], it was de-
rived the so-called Kelly’s detector, which considered that the primary and secondary data
vectors share the same unknown noise covariance matrix. In [13], the authors extended
the analysis by considering that the target amplitude follows a Gaussian distribution.

All referred works formulate the detection problem at an early stage (i.e., prior
to the formation of a post-beamforming scalar waveform), thereby imposing high demands
on hardware, processing and data storage. In fact, due to hardware and computational
constraints, most radars and mobile applications use a combination of analog and digi-
tal beamformers (sums) before any estimation or further pre-processing [16, 17, 18, 19].
Furthermore, since the use of GLRT involves a high degree of mathematical complexity,
theoretical performance analysis can be hampered in most situations. Indeed, this was the
case for the aforementioned studies in which their performance metrics – probability of
detection (PD) and probability of false alarm (PFA) – were computed through numerical
integration, estimated via Monte-Carlo simulations, expressed in integral-form, or require
iterative solutions. In this context, we also dedicate our efforts to easy the computation
of the performance metrics.

Scanning the technical literature, we realize that no study has been devoted
to the development of GLRT radar detectors using a post-beamforming approach. In this
paper, we design and evaluate a new GLRT-based detector which is projected after the
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analog beamforming operation. Moreover, we provide the analytical tools to properly de-
termine the performance of this detector. Specifically, we derive the PD and PFA in closed
form. An alternative fast convergent series for the PD is also derived. For the analysis,
we consider a non-fluctuating target embedded in CWGN, in which the amplitude of the
target echo and the noise power are assumed to be unknown. The use of secondary data is
not considered. From a mathematical point of view, one could envisage that our detector
will somehow provide poorer performance since we are reducing the detection problem
dimensionality by means of a sum operation (beamformer). In this paper, we claim that
this is not always the case if the signals are weak. In fact, we show that in the low-SNR
regime, the post-beamforming GLRT detector performs better than the classic GLRT
detector (called here as pre-beamforming GLRT detector) [7, Eq. (6.20)] and than the
square-law detector [20, Eq. (15.57)], widely used in non-coherent radars [21, 22, 23]. This
assertion suggest that, instead of processing the signals separately, it is better to adding
them up before building the system’s detection statistic. Other attractive features about
our detector will be discussed throughout this work.

The key contributions of this work may now be summarized as follows:

1. Firstly, we design and evaluate a new GLRT detector projected after the analog
beamforming operation. From the practical point of view, this detector meets the
hardware and systems requirements of most radar systems.

2. Secondly, we obtain closed-form expressions for the corresponding PD and PFA. In
particular, the PD is given in terms of the bivariate Fox H-function, for which we
also provide a portable and efficient MATHEMATICA routine.

3. Thirdly, we derive an alternative series representation for the PD, obtained by ex-
ploring the orthogonal selection of poles in the Cauchy’s residue theorem. This series
enjoys a low computational burden and can be quickly executed in any ordinary
desktop computer.1

4. Finally, we provide some insightful and concluding remarks on the GLRT-based
detection for non-fluctuating targets. To do so, we compare the performance of our
derived detector with the pre-beamforming GLRT detector.

In what follows, 𝑓(·)(·) denotes PDF; (·)𝑇 , transposition; |·|, modulus; Re [·],
real argument; Im [·], imaginary argument; ‖·‖, Euclidean norm; E [·], expectation; COV [·],
covariance; rank(·), rank of a matrix; and (·)−1, matrix inversion.
1 Section 4.6 illustrates the efficiency of this series and compares it with MATHEMATICA’s built-in

numerical integration.
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4.2 Receiver’s Front–End: Phased Array

In this work, we consider a linear phased array radar composed of 𝑁 anten-
nas equally separated in the azimuth direction, as shown in Fig. 4.1. The transmission
and reception processes are carried out as follows. A single antenna transmits a linear
frequency-modulated pulse, whereas all antennas receive the echo signals. Furthermore,
an amplification block and a phased shifter are installed after each antenna element, and
all outputs are added together (i.e., the analog beamforming operation is applied).

Thus, the in-phase and quadrature signals can be written in matrix form,
respectively, as

X ,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑋1,1 𝑋2,1 · · · 𝑋𝑁,1

𝑋1,2 𝑋2,2 · · · 𝑋𝑁,2
... ... . . . ...

𝑋1,𝑀 𝑋2,𝑀 · · · 𝑋𝑁,𝑀

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (4.1)

Y ,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑌1,1 𝑌2,1 · · · 𝑌𝑁,1

𝑌1,2 𝑌2,2 · · · 𝑌𝑁,2
... ... . . . ...

𝑌1,𝑀 𝑌2,𝑀 · · · 𝑌𝑁,𝑀

⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (4.2)

where 𝑋𝑛,𝑚 and 𝑌𝑛,𝑚 represent the in-phase and quadrature received signals, respectively.
In addition, 𝑚 ∈ {1, 2, . . . , 𝑀} is a discrete-time index, and 𝑛 ∈ {1, 2, . . . , 𝑁} is a spacial
index that denotes the association to the 𝑛-th antenna.

For simplicity and without loss of generality, we assume a unity gain and a
null phase shift for all antenna elements. In addition, we consider a collection of 𝑀 signal
samples for each of the 𝑁 antennas. Then, the overall received signal can be written, in
vector form, as

𝑅 = [𝑅1, 𝑅2, · · · , 𝑅𝑀 ]𝑇 , (4.3)

where
𝑅𝑚 =

𝑁∑︁
𝑛=1

(𝑋𝑛,𝑚 + 𝑗𝑌𝑛,𝑚) . (4.4)

Note that 𝑅 is a complex-valued random vector, in which each component is formed by
the sum of the received signals coming from all the antennas at a certain time.

As will be shown in Section 4.3, the fact of adding the target echoes will
drastically change the hardware design, detection statistic, and performance of the post-
beamforming GLRT detector compared to previous detectors (cf. [7, 9, 10, 12, 13]). Since
our detector is projected after the analog beamforming operation, one could argue that
its performance would be somehow suboptimum, as compared to the pre-beamforming
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Figure 4.1 – Top view of the phased array radar

GLRT detector. In this work, we show that this conclusion not always holds. Indeed, for
some cases the post-beamforming GLRT detector overcomes the pre-beamforming GLRT
detector. This assertion heavily relies on the SNR of the incoming signals.

4.3 Detection Design Via Post–Beamforming GLRT

In this section, we present the detection scheme for the post-beamforming
GLRT detector.

Herein, the presence of absence of the target is posed over the following binary
hypothesis test.2

4.3.1 Hypothesis Test

• Hypothesis ℋ0: target is absent. In this case, from the radar model described in the
previous section, each 𝑋𝑛,𝑚 and 𝑌𝑛,𝑚 are formed by mutually independent Gaussian
components with zero mean and unknown variance 𝜎2. (Due to the presence of
CWGN alone.)

• Hypothesis ℋ1: target is present. In this case, each 𝑋𝑛,𝑚 and 𝑌𝑛,𝑚 are formed by
mutually independent Gaussian components with unknown non-zero means and
unknown variance 𝜎2. (Due to the non-fluctuating target and noise.)

2 A binary hypothesis test refers to the choice that a radar makes between two hypotheses: signal plus
interference or only interference. This choice is made throughout all resolution cells [24].
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According to the stochastic model described in Section 4.2, the PDFs of 𝑅 under ℋ0 and
ℋ1 are given, respectively, by

f𝑅
(︁
𝑟|𝜎2; ℋ0

)︁
= 1

(2𝜋𝜎2𝑁)𝑀 exp
[︃
−
∑︀𝑀

𝑚=1 |𝑟𝑚|2

2𝜎2𝑁

]︃
(4.5)

f𝑅
(︁
𝑟|𝜎2; 𝜇𝑋 ; 𝜇𝑌 ; ℋ1

)︁
= 1

(2𝜋𝜎2𝑁)𝑀 exp
⎡⎣−

∑︀𝑀
𝑚=1

{︁
(Re [𝑟𝑚] − 𝜇𝑋)2 + (Im [𝑟𝑚] − 𝜇𝑌 )2

}︁
2𝜎2𝑁

⎤⎦
(4.6)

where 𝜇𝑋 = ∑︀𝑁
𝑛=1 𝜇𝑋,𝑛 and 𝜇𝑌 = ∑︀𝑁

𝑛=1 𝜇𝑌,𝑛 represent the total sum of target echoes
for the in-phase and quadrature components, respectively. Note that after the analog
beamforming operation, we no longer have access to the specific value of target echo
received by a particular antenna, which is what actually occurs in practice.

4.3.2 Detection Rule

The system’s detection statistic can be defined through GLRT as [7]

𝑓𝑅 (𝑟|𝜎̂2
1; 𝜇̂𝑋 ; 𝜇̂𝑌 ; ℋ1)

𝑓𝑅 (𝑟|𝜎̂2
0; ℋ0)

ℋ1

≷

ℋ0

𝑇, (4.7)

where 𝑇 is an arbitrary threshold and the ratio on the left-hand side of (4.7) is called the
generalized likelihood ratio. In addition, 𝜎̂2

0 is the MLE for 𝜎2, to be obtained from (4.5),
and 𝜎̂2

1, 𝜇̂𝑋 and 𝜇̂𝑌 are the MLEs for 𝜎2, 𝜇𝑋 and 𝜇𝑌 , respectively, to be obtained from (4.6).
Eq.(4.7) implies that the system will decide for ℋ1 whenever the generalized likelihood
ratio exceeds the threshold 𝑇 , and will decide for ℋ0 otherwise. Since the logarithmic
function is a monotonically increasing function, we can rewrite the GLRT as

ln
[︃

𝑓𝑅 (𝑟|𝜎̂2
1; 𝜇̂𝑋 ; 𝜇̂𝑌 ; ℋ1)

𝑓𝑅 (𝑟|𝜎̂2
0; ℋ0)

]︃ ℋ1

≷

ℋ0

ln [𝑇 ] . (4.8)

Note in (4.5) and (4.6) that all unknown parameters (𝜎2, 𝜇𝑋 and 𝜇𝑌 ) are scalars quanti-
ties. Hence, the corresponding MLEs can be obtained easily. For example, 𝜎̂2

0 can be found
by taking the natural logarithm of (4.5), and then taking the derivative with respect to
𝜎2, i.e.,

𝜕 ln
[︁
f𝑅 (𝑟|𝜎2; ℋ0)

]︁
𝜕𝜎2 = −𝑀

𝜎2 + 1
2𝑁𝜎4

𝑀∑︁
𝑚=1

|𝑟𝑚|2 . (4.9)

Then, we set (4.9) equal to zero and solve the equation for 𝜎2, which yields to

𝜎0
2 = 1

2𝑀𝑁

𝑀∑︁
𝑚=1

|𝑟𝑚|2 . (4.10)
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Using (4.6) and following the same approach as in (4.10), the MLEs for 𝜇𝑋 and 𝜇𝑌 can
be calculated, respectively, as

𝜇̂𝑋 = 1
𝑀

𝑀∑︁
𝑚=1

Re [𝑟𝑚] (4.11)

𝜇̂𝑌 = 1
𝑀

𝑀∑︁
𝑚=1

Im [𝑟𝑚] , (4.12)

whereas the MLE for 𝜎2 can be computed as follows:

𝜎1
2 = 1

2𝑁𝑀

𝑀∑︁
𝑚=1

{︁
(Re [𝑟𝑚] − 𝜇̂𝑋)2 + (Im [𝑟𝑚] − 𝜇̂𝑌 )2

}︁
. (4.13)

(For brevity, we have omitted the derivation steps.)

Substituting (4.10)–(4.13) in (4.8) and after simple simplifications, we have

𝑀 ln
[︃(︃

𝜎0
2

𝜎1
2

)︃]︃ ℋ1

≷

ℋ0

ln [𝑇 ] . (4.14)

Expanding (4.13) and after performing some minor manipulations, we can rewrite 𝜎1
2 as

𝜎1
2 = 1

2𝑀𝑁

𝑀∑︁
𝑚=1

{︁
𝜇̂2

𝑋 + 𝜇̂2
𝑌

}︁

+ 1
2𝑀𝑁

𝑀∑︁
𝑚=1

{︁
(Re [𝑟𝑚])2 + (Im [𝑟𝑚])2

}︁
⏟  ⏞  

𝜎0
2

+
(︃

𝜇̂𝑋

𝑁

)︃
1

𝑀

𝑀∑︁
𝑚=1

Re [𝑟𝑚]⏟  ⏞  
𝜇̂𝑋

+
(︃

𝜇̂𝑌

𝑁

)︃
1

𝑀

𝑀∑︁
𝑚=1

Im [𝑟𝑚]⏟  ⏞  
𝜇̂𝑌

(𝑎)= 𝜎0
2 − 1

2𝑁

(︁
𝜇̂2

𝑋 + 𝜇̂2
𝑌

)︁
, (4.15)

where in step (a) we have used (4.10), (4.11), and (4.12), along with some simplifications.

Isolating 𝜎̂2
0 from (4.15), we obtain

𝜎̂2
0 = 𝜎̂2

1 + 1
2𝑁

(︁
𝜇̂2

𝑋 + 𝜇̂2
𝑌

)︁
. (4.16)

Replacing (4.16) in (4.14), yields

𝑀 ln
[︃
1 + (𝜇̂2

𝑋 + 𝜇̂2
𝑌 )

2𝑁𝜎12

]︃ ℋ1

≷

ℋ0

ln [𝑇 ] . (4.17)
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Now, since 𝑀 and 𝑁 are a positive numbers, we obtain the same decision as in (4.17) by
simply comparing (𝜇̂2

𝑋 + 𝜇̂2
𝑌 ) /𝜎̂2

1 with a modified threshold, 𝛾′, that is,

𝜇̂2
𝑋 + 𝜇̂2

𝑌

𝜎1
2

ℋ1

≷

ℋ0

𝛾′. (4.18)

For convenience and without loss of generality, we define an equivalent decision rule as3

𝑍 , Ψ
(︃

𝜇̂2
𝑋 + 𝜇̂2

𝑌

𝜎1
2

)︃ ℋ1

≷

ℋ0

𝛾, (4.19)

where 𝑍 is the system’s detection statistic, Ψ = (𝑀 − 1)/2𝑁 is a positive constant, and
𝛾 is a new modified threshold.

Fig. 4.2 illustrates how the pre-beamforming GLRT, the post-beamforming
GLRT, and the square-law detectors are constructed. More specifically, Fig. 4.2-(a) depicts
the pre-beamforming GLRT detector architecture. In this case, all received signals are
processed separately to form the system’s detection statistic [7]. Certainly, this type of
processing is more difficult to implement due to hardware constraints.

Fig. 4.2-(b) illustrates the post-beamforming GLRT detector architecture. This
detector provides a less restrictive hardware implementation, as well as a simpler detection
statistic that results from adding the received signals. Finally, Fig. 4.2-(c) illustrates
the square-law detector architecture. Here, after the analog beamforming, the square
magnitude of the signal samples is taken and then they are added up together. It is
important to emphasize that in order to analytically calculate the performance metrics of
the square law detector, we do need the information about the noise power. That is, for
a given PFA, the detection threshold is given as a function of the noise power [20].

4.4 Detection Performance

In this section, we characterize and analyze the performance of the post-
beamforming GLRT detector. To do so, we start finding the PDFs of Z under ℋ0 and
ℋ1.
3 The constant Ψ was introduced in the decision rule because it allow us to model 𝑍 as a random

variable with known PDF, as will become apparent soon.
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(a) Pre-beamforming GLRT detector [7].
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(b) Post-beamforming GLRT detector.
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(c) Square-law detector [20].

Figure 4.2 – Detection Schemes.
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4.4.1 Detection Statistics

First, we rewrite (4.19) as follows:

𝑍 = (𝑀 − 1) (𝜇̂2
𝑋 + 𝜇̂2

𝑌 )
2𝑁𝜎1

2

(𝑎)= (𝑀 − 1)

, ℐ1⏞  ⏟  (︁
𝜇̂2

𝑋 + 𝜇̂2
𝑌

)︁
𝑀/𝑁𝜎2

2𝜎1
2𝑀/𝜎2⏟  ⏞  
, ℐ2

, (4.20)

where in step (a), without affecting the detection performance, we have multiplied the
left-hand side of 𝑍 by 𝑀𝜎2/𝑀𝜎2.

Note that, to fully characterize 𝑍, it is imperative to find the PDFs of ℐ1 and
ℐ2 under ℋ0 and ℋ1.

Substituting (4.11) and (4.12) in ℐ1, yields to

ℐ1 =
(︃

1√
𝑀𝑁𝜎

𝑀∑︁
𝑘=1

Re [𝑟𝑘]
)︃2

⏟  ⏞  
, 𝑈

+
(︃

1√
𝑀𝑁𝜎

𝑀∑︁
𝑘=1

Im [𝑟𝑘]
)︃2

⏟  ⏞  
, 𝑉

. (4.21)

Observe that 𝑈 is the square of a Gaussian random variable (RV) with mean
√

𝑀E [𝑋𝑙,𝑘] /𝜎
√

𝑁

and unit variance. In a similar way, 𝑉 is the square of a Gaussian RV with mean
√

𝑀E [𝑌𝑙,𝑘] /𝜎
√

𝑁 and unit variance. Therefore, depending on the hypothesis, ℐ1 can
match one of the following conditions:

1. Given ℋ0: ℐ1 follows a central chi-squared (CCS) distribution [25] with 𝜈1 = 2
degrees of freedom.

2. Given ℋ1: ℐ1 follows a noncentral chi-squared (NCCS) distribution [26] with non-
central parameter 𝜆1 = 𝑀 (𝜇2

𝑋 + 𝜇2
𝑌 ) /𝑁𝜎2 and 𝛼1 = 2 degrees of freedom.

Inserting (4.13) in ℐ2, we obtain

ℐ2 = 1
𝑁𝜎2

𝑀∑︁
𝑚=1

{︁
(Re [𝑟𝑚] − 𝜇̂𝑋)2 + (Im [𝑟𝑚] − 𝜇̂𝑌 )2

}︁
(4.22)

Here, the analysis is a bit more cumbersome; therefore, we establish the following two
lemmas:

Lemma 1 : ℐ2 matches the following conditions:

1. Given ℋ0: ℐ2 follows a CCS distribution with 𝜈2 = 2(𝑀 − 1) degrees of freedom.
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2. Given ℋ1: ℐ2 also follows a CCS distribution with 2(𝑀 − 1) degrees of freedom.
In this case, for convenience, we model ℐ2 by a NCCS distribution with noncentral
parameter 𝜆2 = 0 and 𝛼2 = 2(𝑀 − 1) degrees of freedom.

Proof : See Appendix B.1. �

Lemma 2 : ℐ1 and ℐ2 are mutually independent RVs.

Proof : See Appendix B.2. �

Then, using Lemmas 1 and 2, we can define ℐ1/ℐ2 as the ratio of either two
independent CCS RVs or two independent NCCS RVs, depending on the hypothesis. The
factor (𝑀 − 1) in (4.20) allows us to model 𝑍 by a RV with known PDF.

Given ℋ0, it can be shown that 𝑍 follows a central F-distribution [27] with
PDF given by

f𝑍 (𝑧|ℋ0) = (𝑀 − 1)𝑀−1(𝑀 + 𝑧 − 1)−𝑀

𝐵(1, 𝑀 − 1) , (4.23)

where 𝐵(·, ·) is the Beta function [28, Eq. (5.12.3)]. Using [28, Eq. (5.12.1)], we can
rewrite (4.23) in compact form as

f𝑍 (𝑧|ℋ0) =
(︂

𝑀 − 1
𝑀 + 𝑧 − 1

)︂𝑀

. (4.24)

For the case of ℋ1, 𝑍 can be modeled by a doubly noncentral F-distribution [29],
with PDF given by

f𝑍 (𝑧|ℋ1) = exp [−ϒ 𝑀 ]
(︂

𝑀 − 1
𝑀 + 𝑧 − 1

)︂𝑀

1𝐹1

(︃
𝑀 ; 1; ϒ 𝑧 𝑀

𝑀 + 𝑧 − 1

)︃
, (4.25)

where ϒ = (𝜇2
𝑋 + 𝜇2

𝑌 )/2𝑁𝜎2, and 1𝐹1 (·; ·; ·) is the Kummer confluent hypergeometric
function [28, Eq. (13.1.2)]. The equality ϒ = 𝑁 SNR𝑛 holds if SNR𝑛 = SNR𝑝 ∀ (𝑛, 𝑝), with
SNR𝑛 =

(︁
𝜇2

𝑋,𝑛 + 𝜇2
𝑌,𝑛

)︁
/2𝜎2 being the signal-to-noise ratio present at the 𝑛-th antenna.

The derivation of (4.25) is shown in Appendix B.3.

4.4.2 False Alarm and Detection Probabilities

It is well known that the performance of any radar system is governed by the
PFA and PD. These probabilities can be computed, respectively, as [24]

𝑃FA ,
∫︁ ∞

𝛾
f𝑍 (𝑧|ℋ0) d𝑧 (4.26)

𝑃D ,
∫︁ ∞

𝛾
f𝑍 (𝑧|ℋ1) d𝑧. (4.27)
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Replacing (4.24) in (4.26), yields

𝑃FA =
(︃

𝑀 − 1
𝛾 + 𝑀 − 1

)︃𝑀−1

. (4.28)

Now, isolating 𝛾 from (4.28) we can find a threshold so as to meet a desired PFA, i.e.,

𝛾 = 1 − 𝑀 + (𝑀 − 1) 𝑃FA
1/(1−𝑀). (4.29)

It can be noticed in (4.29) that we do not need the knowledge of the noise power nor the
number of antennas to set the detection threshold. That is, the detection threshold 𝛾 is
independent of both 𝜎2 and 𝑁 . This important feature will allow us to maintain a certain
PFA for an arbitrary number of antennas. More precisely, with objective of increasing the
PD, we can increase 𝑁 without worrying about the increase in the PFA.

On the other hand, after substituting (4.25) in (4.27), the PD can be obtained
in single-integral form as

𝑃D = exp [−ϒ 𝑀 ]
∫︁ ∞

𝛾

(︂
𝑀 − 1

𝑀 + 𝑧 − 1

)︂𝑀

1𝐹1

(︃
𝑀 ; 1; ϒ 𝑧 𝑀

𝑀 + 𝑧 − 1

)︃
d𝑧. (4.30)

Certainly, (4.30) can be evaluated by means of numerical integration. Nonetheless, to
further facilitate the computation of the PD, we provide alternative, faster, and more
tractable solutions. This is attained in the next section.

4.5 Alternative Expressions for the Probability of Detection

In this section, we provide both a closed-form solution and a fast convergent
series for the PD, To this end, we make use complex analysis and a thorough calculus of
residues.

4.5.1 Fox’s H-Function-Based Representation

Here, we obtain an alternative closed-form solution for (4.30), expressed in
terms of the Fox H-function.

To do so, we first perform some mathematical manipulations in (4.30), resulting
in

𝑃D =exp [−ϒ 𝑀 ] (𝑀 − 1)𝑀

Γ(𝑀)

∫︁ ∞

𝛾

(︂ 1
𝑀 + 𝑧 − 1

)︂𝑀

𝐺1,1
1,2

⎡⎣ 1 − 𝑀

0, 0

⃒⃒⃒⃒
⃒⃒− ϒ 𝑧 𝑀

𝑀 + 𝑧 − 1

⎤⎦ d𝑧,

(4.31)

where 𝐺𝑝,𝑞
𝑚,𝑛 [·] is the Meijer’s G-function [30, Eq. (8.2.1.1)].
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Figure 4.3 – Integration path for ℒs,1.

Now, using the contour integral representation of the Meijer’s G-function, we
can express (4.31) as follows:

𝑃D =exp [−ϒ 𝑀 ] (𝑀 − 1)𝑀

Γ(𝑀)

∫︁ ∞

𝛾

(︂ 1
𝑀 + 𝑧 − 1

)︂𝑀
(︃

1
2𝜋𝑗

)︃∮︁
ℒ**

s,1

Γ(𝑠1)Γ(𝑀 − 𝑠1)
Γ(1 − 𝑠1)

×
(︃

− ϒ 𝑧 𝑀

𝑀 + 𝑧 − 1

)︃−𝑠1

d𝑠1 d𝑧, (4.32)

in which ℒ**
s,1 is a closed complex contour that separates the poles of the gamma function

Γ(𝑠1) from the poles of Γ(𝑀 − 𝑠1). Since
∫︀∞

𝛾 |f𝑍 (𝑧|ℋ1)| d𝑧 < ∞, we can interchange the
order of integration[31], i.e.,

𝑃D =exp [−ϒ 𝑀 ] (𝑀 − 1)𝑀

Γ(𝑀)

(︃
1

2𝜋𝑗

)︃∮︁
ℒ**

s,1

Γ(𝑠1)Γ(𝑀 − 𝑠1) (−ϒ 𝑀)−𝑠1

Γ(1 − 𝑠1)

×
∫︁ ∞

𝛾

(︂ 1
𝑀 + 𝑧 − 1

)︂𝑀 (︂
𝑧

𝑀 + 𝑧 − 1

)︂−𝑠1

d𝑧 d𝑠1. (4.33)

Developing the inner real integral, we obtain

𝑃D =exp [−ϒ 𝑀 ] (𝑀 − 1)𝑀Γ(𝑀 − 1)
Γ(𝑀) 𝛾𝑀−1

(︃
1

2𝜋𝑗

)︃∮︁
ℒ*

s,1

Γ(𝑠1)Γ(𝑀 − 𝑠1) (−ϒ 𝑀)−𝑠1

Γ(1 − 𝑠1)

× 2𝐹1

(︃
𝑀 − 1, 𝑀 − 𝑠1; 𝑀 ; 1 − 𝑀

𝛾

)︃
d𝑠1, (4.34)

where 2𝐹1(𝑎, 𝑏; 𝑐; 𝑥) = 2𝐹1(𝑎, 𝑏; 𝑐; 𝑥)/Γ(𝑐) is the regularized Gauss hypergeometric func-
tion, and 2𝐹1(·, ·; ·; ·) is the Gauss hypergeometric function [28, Eq. (15.1.1)]. Note that
we have used a new complex contour, ℒ*

s,1. This is because the inner integration changed
the integration path in the complex plane. Here, ℒ*

s,1 is a closed contour that separates
the poles of Γ(𝑠1) from those of Γ(𝑀 − 𝑠1).
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Figure 4.4 – Integration path for ℒs,2.

Finally, replacing (4.29) in (4.34) and after using the complex integral repre-
sentation of the regularized Gauss hypergeometric function [32, Eq. (07.24.26.0004.01)],
we can express PD in closed form as

𝑃D = Φ H

⎡⎢⎣[Ω, −ϒ 𝑀 ] ; [0, 0, 𝑀 − 1, 𝑀 ] ,

⎛⎝ 1 0 −1 −1
0 1 0 −1

⎞⎠𝑇

; [𝑀, 1] ,

⎛⎝ −1 0
0 −1

⎞⎠ ; ℒs

⎤⎥⎦
(4.35)

where ℒs = ℒs1 × ℒs2 , and

Φ = Ω𝑀−1 exp [−ϒ 𝑀 ]
Γ(𝑀 − 1) (4.36)

Ω = 𝑀 − 1
1 − 𝑀 + (𝑀 − 1) 𝑃FA

1/(1−𝑀) . (4.37)

Observe that (4.35) has two new closed contours, ℒs,1 and ℒs,2. ℒs,1 is an adjusted contour
that appears due to the presence of the new gamma functions, whereas ℒs,2 is the contour
corresponding to the complex representation of the regularized Gauss hypergeometric
function. The integration paths for ℒs,1 and ℒs,2 are described in Section 4.6.

A general implementation for the multivariate Fox H-function is not yet avail-
able in mathematical packages such as MATHEMATICA, MATLAB, or MAPLE. Some
works have been done to alleviate this problem [33, 34, 35]. Specifically in [33], the Fox
H-function was implemented from one up to four variables. In this work, we provide an ac-
curate and portable implementation in MATHEMATICA for the bivariate Fox H-function.
The code used to compute (4.35) is presented in Appendix C.1. It is important to mention
that such implementation is specific for our system model. Moreover, an equivalent series
representation for (4.35) is also provided to facilitate the use of our results. This series
representation is presented in the subsequent subsection.
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4.5.2 Infinite-Series Representation

Here, we provide a series representation for (4.35). To achieve this, we exploit
the orthogonal selection of poles in Cauchy’s residue theorem.

First, let us consider the following suitable closed contours for (4.35): (i) ℒs,1 =
L0,1 + L−∞,1, and (ii) ℒs,2 = L0,2 + L−∞,2. Both contours are shown in Figs. 4.3 and 4.4,
where 𝜉1 ∈ R+ must be chosen so that all the poles of Γ(𝑠1) are separated from those of
Γ(𝑀 − 1 − 𝑠1) and Γ(𝑀 − 𝑠1 − 𝑠2), and 𝜉2 ∈ R+ must be chosen so that all the poles of
Γ(𝑠2) are separated from those of Γ(𝑀 − 𝑠1 − 𝑠2). Additionally, 𝜌1 and 𝜌2 are the radius
of the arcs L−∞,1 and L−∞,2, respectively.

It is easy to prove that any complex integration along the paths L−∞,1 and
L−∞,2 will be zero as 𝜌1 and 𝜌2 go to infinity, respectively. (𝜌1 and 𝜌2 tend to infinity since
the gamma functions Γ(𝑠1) and Γ(𝑠2) generate simple poles at all non-positive integers [28,
Eq. (5.2.1)].) Therefore, the final integration path for ℒs,1 starts at 𝜉1 − 𝑗∞ and goes to
𝜉1 + 𝑗∞, whereas the final integration path for ℒs,2 starts at 𝜉2 − 𝑗∞ and goes to 𝜉2 + 𝑗∞.

Now, we can rewrite (4.35) through the sum of residues as [36]

𝑃D = Φ
∞∑︁

𝑘=0

∞∑︁
𝑙=0

Res [Ξ (𝑠1, 𝑠2) ; 𝑠1 = −𝑘, 𝑠2 = −𝑙] , (4.38)

where Res [Ξ (𝑠1, 𝑠2) ; 𝑠1 − 𝑘, 𝑠2 = −𝑙] represents the residue of Ξ (𝑠1, 𝑠2) at the poles 𝑠1 =
−𝑘, 𝑠2 = −𝑙, and

Ξ (𝑠1, 𝑠2) =Γ(𝑠1)Γ(𝑠2)Γ(𝑀 − 𝑠1 − 1)Γ(−𝑠1 + 𝑀 − 𝑠2)Ω−𝑠1 (−ϒ 𝑀)−𝑠2

Γ(1 − 𝑠2)Γ(−(𝑠1 − 𝑀)) . (4.39)

is the integration kernel of (4.35).

Accordingly, after applying the residue operation [36, Eq. (16.3.5)], (4.38) re-
duces to

𝑃D =Φ
∞∑︁

𝑘=0

∞∑︁
𝑙=0

Γ(𝑘 + 𝑀 − 1)Γ(𝑘 + 𝑙 + 𝑀) (−Ω)𝑘 (ϒ 𝑀)𝑙

𝑘!Γ(𝑙 + 1)2Γ(𝑘 + 𝑀) . (4.40)

Finally, with the aid of [28, Eq. (15.2.1)] and after some mathematical manipulations, we
obtain

𝑃D = exp [−ϒ 𝑀 ] Ω𝑀−1
∞∑︁

𝑘=0

Γ(𝑘 + 𝑀) (ϒ 𝑀)𝑘
2𝐹1 (𝑀 − 1, 𝑘 + 𝑀 ; 𝑀 ; −Ω)
Γ(𝑘 + 1)2 . (4.41)

It is worth mentioning that (4.41) is also an original contribution of this work, proving to
be very efficient and computationally tractable, as will be shown in the next section.

Generally, when radar designers need to compute the PD over a certain volume
(i.e., range, azimuth and elevation), the calculation of the PD has to be performed for all
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Table 4.1 – Test cases.

Case 𝑃D Parameters 𝑃D Value
1 𝑀 = 50, 𝑃𝐹 𝐴 = 10−8, ϒ = −10 dB 0.106 %
2 𝑀 = 80, 𝑃𝐹 𝐴 = 10−8, ϒ = −10 dB 1.416 %
3 𝑀 = 100, 𝑃𝐹 𝐴 = 10−8, ϒ = −10 dB 4.423 %
4 𝑀 = 50, 𝑃𝐹 𝐴 = 10−8, ϒ = −5 dB 19.224 %
5 𝑀 = 50, 𝑃𝐹 𝐴 = 10−6, ϒ = −5 dB 52.886 %
6 𝑀 = 50, 𝑃𝐹 𝐴 = 10−4, ϒ = −5 dB 87.958 %
7 𝑀 = 50, 𝑃𝐹 𝐴 = 10−6, ϒ = −3 dB 92.089 %
8 𝑀 = 50, 𝑃𝐹 𝐴 = 10−6, ϒ = −2 dB 98.621 %
9 𝑀 = 50, 𝑃𝐹 𝐴 = 10−6, ϒ = −1 dB 99.902 %

the point scatterers within the entire coverage volume, thus increasing the computational
load and simulation time. Eq. (4.41) can be executed quickly on an ordinary desktop
computer, serving as a useful tool for radar designers.

Moreover, if 𝒯0 −1 terms are used in (4.41), we can define the truncation error
as

𝒯 = 1
Γ(𝑀)

∞∑︁
𝑘=𝑇0

Ω𝑀−1 exp [−𝑀ϒ] (𝑀ϒ)𝑘Γ(𝑘 + 𝑀) 2𝐹1(𝑀 − 1, 𝑘 + 𝑀 ; 𝑀 ; Ω)
Γ(𝑘 + 1)2 . (4.42)

Since the Gauss hypergeometric function in (19) is monotonically decreasing with respect
to 𝑘, 𝒯 can be bounded as

𝒯 ≤ 2𝐹1 (𝑀 − 1, 𝑀 + 𝑇0; 𝑀 ; Ω)
∞∑︁

𝑘=𝑇0

Ω𝑀−1 exp [−𝑀ϒ] (𝑀ϒ)𝑘Γ(𝑘 + 𝑀)
Γ(𝑘 + 1)2Γ(𝑀) . (4.43)

Since we add up strictly positive terms, we have
∞∑︁

𝑘=𝑇0

Ω𝑀−1 exp [−𝑀ϒ] (𝑀ϒ)𝑘Γ(𝑘 + 𝑀)
Γ(𝑘 + 1)2Γ(𝑀) ≤

∞∑︁
𝑘=0

Ω𝑀−1 exp [−𝑀ϒ] (𝑀ϒ)𝑘Γ(𝑘 + 𝑀)
Γ(𝑘 + 1)2Γ(𝑀)

(𝑎)= Ω𝑀−1𝐿𝑀−1(−𝑀ϒ), (4.44)

where in step (a), we have used [32, Eq. (05.02.02.0001.01)] and some minor simplifica-
tions. Then, from (4.43) and (4.44), (4.42) can be bounded as

𝒯 ≤ 𝐿𝑀−1(−𝑀ϒ) 2𝐹1 (𝑀 − 1, 𝑀 + 𝑇0; 𝑀 ; −Ω)
Ω1−𝑀

, (4.45)

where 𝐿(·)(·) is the Laguerre polynomial [32, Eq. (05.02.02.0001.01)].

4.6 Numerical Results and Discussions

In this section, we validate our derived expressions and discuss the representa-
tive results. To do so, we make use of the receiver operating characteristic (ROC) curves
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Figure 4.5 – PDF of 𝑍 under ℋ0 for different values of 𝑀 .
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Figure 4.6 – PDF of 𝑍 under ℋ1 for different values of 𝑀 .

and Monte-Carlo simulations.4 For comparison purposes, besides the pre-beamforming
GLRT and square-law detectors, we also include the (optimum) LRT detector [7] so as to
quantify the SNR losses.5

Figs. 4.5 and 4.6 show the PDF of 𝑍 (analytical and simulated) given the
4 The number of realizations was set to 1 × 107.
5 Herein, the SNR loss is defined as extra SNR required to achieved the same performance as the LRT

detector [7, Eq. (4.3)], for a given PD.
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Figure 4.7 – 𝑃D vs 𝑃FA with 𝑀 = 22, 𝑁 = 3, and different values of SNR𝑛
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Figure 4.8 – 𝑃D vs SNR𝑛 with 𝑀 = 15, 𝑃FA = 10−6 and different values of 𝑁 .

hypotheses ℋ0 and ℋ1, respectively. The distribution parameters have been selected to
show the broad range of shapes that the PDFs can exhibit. Observe the perfect match
between Monte-Carlo simulations and our derived expressions [refer to (4.24) and (4.25)].

Fig. 4.7 shows 𝑃D as a function of 𝑃FA (analytical and simulated) for different
values of SNR𝑛. Observe that for low SNR𝑛, the post-beamforming GLRT detector is su-
perior to both the pre-beamforming GLRT detector and the square-law detector. That is,
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Figure 4.9 – 𝑃D vs SNR𝑛 with 𝑁 = 11, 𝑃FA = 10−6 and different values of 𝑀 .
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Figure 4.10 – 𝑃D vs SNR𝑛 with 𝑀 = 10, 𝑁 = 15 and different values of 𝑃FA.

the weaker the signals, the better the performance of our proposed detector. For example,
given 𝑃FA = 10−4, the post-beamforming GLRT detector, the pre-beamforming GLRT
detector, and the square-law detector provide, respectively, the following probabilities of
detection: 0.53, 0.38 and 0.47 for SNR𝑛 = −7.9 dB; 0.78, 0.66 and 0.75 for SNR𝑛 = −6.5
dB; and finally, 0.94, 0.90 and 0.95 for SNR𝑛 = −5.1 dB. The following figures illustrate
the impact on the PD as the SNR is reduced.
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Table 4.2 – Efficiency of (4.41) as compared to (4.30).

Case Absolute
Error, 𝜖

Number
of terms

Computation
Time for
Eq. (4.30)

Computation
Time for
Eq. (4.41)

Reduction
Time

1 5.471 × 10−10 23 92.725 × 10−3 (s) 1.923 × 10−3 (s) 97.92 %
2 5.248 × 10−10 30 197.044 × 10−3 (s) 2.464 × 10−3 (s) 98.74 %
3 6.032 × 10−10 34 294.950 × 10−3 (s) 3.415 × 10−3 (s) 98.84 %
4 5.261 × 10−10 45 96.370 × 10−3 (s) 4.625 × 10−3 (s) 95.20 %
5 5.341 × 10−10 45 95.769 × 10−3 (s) 4.663 × 10−3 (s) 95.13 %
6 5.361 × 10−10 45 92.911 × 10−3 (s) 4.54 × 10−3 (s) 95.11 %
7 9.339 × 10−10 60 99.896 × 10−3 (s) 7.043 × 10−3 (s) 92.94 %
8 4.790 × 10−10 71 95.124 × 10−3 (s) 9.238 × 10−3 (s) 90.28 %
9 6.522 × 10−10 83 98.728 × 10−3 (s) 11.418 × 10−3 (s) 88.43 %

Fig. 4.8 shows 𝑃D as a function of SNR𝑛 (analytical and simulated) for different
values of 𝑁 . Note that all detectors improve as the number of antennas increases, requiring
a lower SNR for a certain PD. Also, note how the post-beamforming GLRT detector
overcomes the pre-beamforming GLRT detector and the square-law detector as the SNR
decreases. For example, given SNR𝑛 = −8 dB, the post-beamforming GLRT detector, the
pre-beamforming GLRT detector, and the square-law detector provide, respectively, the
following probabilities of detection: 0.55, 0.40 and 0.54 for 𝑁 = 10; 0.79, 0.64 and 0.75 for
𝑁 = 14; and finally, 0.94, 0.80 and 0.86 for 𝑁 = 18. Additionally, observe how the SNR
loss is reduced as 𝑁 increases. In particular, for a fixed 𝑃D = 0.8, the post-beamforming
GLRT detector is superior to both the pre-beamforming GLRT detector and the square-
law detector deliver, respectively, the following SNR losses: 3.8 dB, 4.2 dB and 2.8 dB for
𝑁 = 10; 2.9 dB, 3.6 dB and 3.1 dB for 𝑁 = 14; and finally, 2.8 dB, 3.9 dB and 3.5 dB
for 𝑁 = 18.

Fig. 4.9 shows 𝑃D as a function of SNR𝑛 (analytical and simulated) for different
values of 𝑀 . Observe that all detectors improve as the number of samples increases. This
occurs because we “average down” the noise power by increasing 𝑀 . Once again, the post-
beamforming GLRT detector performs better than the pre-beamforming GLRT detector
and the square-law detector in the low-SNR regime. More specifically, given SNR𝑛 = −8
dB, the post-beamforming GLRT detector, the pre-beamforming GLRT detector and the
square-law detector provide, respectively, the following probabilities of detection: 0.30,
0.21 and 0.35 for 𝑀 = 10; 0.53, 0.40 and 0.53 for 𝑀 = 14; and finally, 0.87, 0.73 and 0.82
for 𝑀 = 18. Moreover, observe how the SNR loss is reduced as 𝑁 increases. In particular,
for a fixed 𝑃D = 0.8, the post-beamforming GLRT detector, the pre-beamforming GLRT
detector and the square-law detector deliver, respectively, the following SNR losses: 3.6
dB, 3.4 dB and 3.2 dB for 𝑀 = 10; 3.4 dB, 3.5 dB and 3.1 dB for 𝑀 = 14; and finally,
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2.8 dB, 3.6 dB and 3.1 dB for 𝑀 = 18.

Fig. 4.10 shows 𝑃D as a function of SNR𝑛 (analytical and simulated) for differ-
ent values of 𝑃FA. Note that all detectors improve as 𝑃FA is increased. This fundamental
trade-off means that if the PFA is reduced, the PD decreases as well. Observe that for
low SNR, the superiority of our detector still remains. For example, given SNR𝑛 = −8
dB, the post-beamforming GLRT detector, the pre-beamforming GLRT detector and the
square-law detector provide, respectively, the following probabilities of detection: 0.93,
0.76 and 0.84 for 𝑃FA = 10−6; 0.80, 0.57 and 0.70 for 𝑃FA = 10−5; and finally, 0.55, 0.40
and 0.54 for 𝑃FA = 10−4. Additionally, observe how the SNR loss is reduced as 𝑁 in-
creases. In particular, for a fixed 𝑃D = 0.8, the post-beamforming GLRT detector, the
pre-beamforming GLRT detector and the square-law detector deliver, respectively, the
following SNR losses: 2.4 dB, 3.6 dB and 3.2 dB for 𝑃FA = 10−6; 2.6 dB, 3.4 dB and 3.0
dB for 𝑃FA = 10−5; and finally, 2.9 dB, 3.2 dB and 2.8 dB for 𝑃FA = 10−4.

An important remark is in order. The results presented herein show that if
the the received signals are weak, instead of processing the received signals separately,
as described in [7, Eq. (6.20)], it is better to sum up the signals and then construct the
system’s detection statistic. Intuitively, this means that if the signal received by each
antenna is defectively estimated (due to low target power or strong interference), then
the system will also deliver a faulty final estimate. Therefore, it is better to reinforce (i.e.,
applying the beamforming operation) the overall signal before any further pre-processing.
Moreover, the way we create the system’s detection statistic enables us to improve radar
detection as we increase the number of antennas while maintaining a fixed PFA.

Now, to evaluate the efficiency of (4.41) we define 9 test cases, each with a
specific parameter setting and its corresponding PD, as shown in Table 4.1. With this
at hand, Table 4.2 illustrates the efficiency of (4.41) by showing the absolute error, com-
putation time, required number of terms to guarantee a certain accuracy, and reduction
time [compared to (4.30)]. The absolute error can be expressed as

𝜖 = |𝑃D − 𝑃D|, (4.46)

where 𝑃D is the probability of detection obtained via MATHEMATICA’s built-in numer-
ical integration.6 Observe that for 9 different parameter settings, (4.41) converges rapidly
requiring between 23 and 83 terms to guarantee an accuracy of 10−10. Moreover, the
computation time dropped dramatically, thereby providing reduction times above 88%.
This impressive reduction can lead to major savings in computational load if one wants
to evaluate the detection performance over an entire area or volume covered by the radar
system.
6 Eq. (4.30) was evaluated by using the fastest MATHEMATICA’s integration method,

“GlobalAdaptive”, with an accuracy goal of 10−10.
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4.7 Conclusions

This paper proposed and analyzed a new GLRT phased array detector, which
is projected after the analog beamforming operation. For the analysis, a non-fluctuating
target embedded in CWGN was considered. From the practical point of view, this de-
tector fulfils the hardware and computational constraints of most radar systems. The
performance metrics – PD and PFA – were derived in closed form assuming a total lack
of knowledge about the target echo and noise statistics. Moreover, a novel fast convergent
series for the PD was also derived. This series representation proved to be very efficient and
computationally tractable, showing an outstanding accuracy and impressive reductions in
both computational load and computation time, compared to MATHEMATICA’s built-in
numerical integration. Numerical results showed that when the incoming signals are weak,
it is best to combine (sum) them before any estimation or further processing. Indeed, this
paper is conclusive in indicating that for low SNR, the post-beamforming GLRT detector
shows superior to the pre-beamforming GLRT detector and square-law detectors. Another
interesting feature about the post-beamforming GLRT detector demonstrates that for a
fixed PFA, the detection threshold is independent of the number of antennas, which will
allow us to maintain a certain PFA for an arbitrary number of antennas. The SNR losses
for the post-beamforming GLRT detector, the pre-beamforming GLRT detector, and the
square-law detector were also quantified.
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CA-CFAR Detection Performance in Homogeneous
Weibull Clutter

Fernando Darío Almeida García Darío, Andrea Carolina Flores Rodriguez,
Gustavo Fraidenraich, and José Cândido Silveira Santo Filho

Abstract

This work presents a novel and exact formulation for the probability of detection of a
cell-averaging, constant false-alarm rate (CA-CFAR) radar system operating in an homo-
geneous Weibull clutter environment. We consider a realistic scenario with both target
returns and clutter residues within the cell under test by the radar processing. In pass-
ing, we derive novel closed-form expressions for the probability density function and the
cumulative distribution function of the sum of an exponentially fluctuating target embed-
ded in Weibull clutter. The derived exact expressions are given in terms of both (i) the
bivariate Fox H-function, for which we provide a portable and efficient MATHEMATICA
code, and (ii) easily computable series representations. The validity of all expressions is
confirmed via Monte-Carlo simulation. The derived results are compared with the ideal-
ized Neyman-Pearson detector so as to quantify the CFAR losses, and they indicate that
even a small change in the shape parameter of the clutter distribution can significantly
affect the radar detection performance.

5.1 Introduction

It is well known that the performance of any radar system is governed by its
probabilities of detection (PD) and false alarm (PFA). A desirable property of a detector
is to maintain a constant PFA in the presence of homogeneous or heterogeneous envi-
ronments. A detector that possesses this property is called a constant false-alarm rate
(CFAR) detector. The CFAR detectors estimate the statistics of the interference from
radar measurements and adjust the decision threshold to maintain a constant false-alarm
rate [1]. Numerous detection techniques have been developed to work over different types
of environments, such as cell averaging CFAR (CA-CFAR), the smallest of CFAR [2], the
greatest of CFAR [3], order statistics CFAR (OS-CFAR) [4], generalized OS-CFAR [5],
variability index CFAR [6], and ordered data variability CFAR [7].

In this work, we focus on the homogeneous Weibull environment. Homogeneous
conditions exist when either of the following is true: (i) the interference in the leading and
lagging windows and also in the cell under test (CUT) is i.i.d.; (ii) the leading and lagging
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windows do not contain returns from other targets that bias the threshold. Rigorous per-
formance analyses of CFAR detectors operating in Weibull backgrounds have been carried
out in [8, 9, 10]. Recently, in [11], closed-form expressions were derived for the PD and
PFA of a CFAR detector operating over homogeneous and heterogeneous environments,
in which the clutter was modeled by a Weibull random variable, whereas the target was
assumed to be fluctuating and was modeled by an exponential random variable [1]. De-
spite these contributions, none of the aforementioned works has considered the presence
of clutter residues within the CUT, yet this is most likely in practice.

The effect of clutter interference within the CUT and throughout the entire
data window proves indeed significant and thus should not be ignored, specially when
it comes to Weibull clutter. This has been observed in practice through experimental
data [8, 9]. Therefore, realistic scenarios must consider such effect for an appropriate
radar design. On the other hand, due to the mathematical complexity that surrounds
the use of the statistical models for this type of scenario, closed-form expressions for
the corresponding PD are not available in the literature. Moreover, to calculate this new
PD it is necessary to know the sum statistics of the Weibull clutter and the exponential
target. Some works have analyzed the PD for exponential targets embedded in Weibull
backgrounds without applying the CFAR detection (cf. [12, 13, 14] for more discussion).
In these works, all calculations were performed by computational methods and, therefore,
no closed-form expressions were obtained. To the best of the authors’ knowledge, no
closed-form solutions exist for the probability density function (PDF) and cumulative
distribution function (CDF) of the sum of Weibull and exponential random variables.
Therefore, the PD of a CFAR detector for the referred type of homogeneous scenario
remains unknown.

Herein, motivated by the need to design more realistic CA-CFAR detectors
operating in more plausible homogeneous environments, we present a closed-form solution
for the PD of a CA-CFAR detector assuming the presence of both target returns and
clutter residues within the CUT. The main contributions of this work are listed below:

Exact and novel formulations for the PD of the aforementioned CA-CFAR detector,
as well as for the PDF and CDF of the sum of an Exponential target embedded
in Weibull-distributed clutter. To this end, we provide an original use for the Fox
H-function [15] in the field of radar systems.

a)

A portable implementation in MATHEMATICA for the bivariate Fox H-function
corresponding to our system model. The code is efficient and provides very accurate
results.

b)
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Finally, we provide fast-convergence series for all the results presented here. It is
worth noting that these series are also new in the literature.

c)

In what follows, 𝑓(·)(·) denotes probability density function; 𝐹(·)(·), cumulative
distribution function; E [·], expectation; Pr [·], probability; and (·)𝑇 , transposition.

5.2 System Model

We consider a Weibull-distributed clutter interference 𝑋 with a probability
density function (PDF) given by

f𝑋 (𝑥) =
⎧⎨⎩

𝜇
𝜆

(︁
𝑥
𝜆

)︁𝜇−1
exp

[︁
−
(︁

𝑥
𝜆

)︁𝜇]︁
, 𝑥 ≥ 0

0, otherwise,
(5.1)

where 𝜇 > 0 is the shape parameter and 𝜆 > 0 is the scale parameter. Also, we consider
a fluctuating target echo 𝑌 that follows an exponential PDF, given by

f𝑌 (𝑦) =
⎧⎨⎩ 𝛼 exp [−𝛼𝑦] , 𝑦 ≥ 0

0, otherwise,
(5.2)

in which 𝛼 > 0 represents the rate parameter. In order to assess the performance of
the CA-CFAR detector, we must consider the CUT both in presence and in absence of
a target. Let 𝑍 denote the received signal. Then, 𝑍 = 𝑋 if no target is present, and
𝑍 = 𝑋 + 𝑌 otherwise. In other words, the radar detection problem can be posed as the
following binary hypothesis test:

ℋ0 (target absent) : 𝑍 = 𝑋, 𝑧 ≥ 0 (5.3)

ℋ1 (target existent) : 𝑍 = 𝑋 + 𝑌, 𝑧 ≥ 0. (5.4)

Following a setup that is rather common in practice, we consider that 𝑍 ≥ 0 is provided
as the output of a square-law rectifier [1]1. In addition, we consider that each decision is
made based on a single received pulse, i.e., no pulse integration is applied. To the best
of the authors’ knowledge, no closed-form solution exists for the sum statistics presented
in (5.4). In this work, we solve this problem by deriving exact and closed-form expressions
for the PDF and CDF of (5.4). This is attained in the next section.
1 In practice, clutter and target echoes add to one another at the level of in-phase and quadrature

components. So the addition at the level of power, assumed in (5.4), is indeed an approximation, being
largely adopted in the literature [1]. More importantly, this approximation proves highly accurate in
scenarios when exponentially distributed targets (our case) are embedded in strong clutter.
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5.3 Sum Statistics

5.3.1 Probability Density Function

Since the target and clutter are independent random processes, we can express
the sum statistics defined in (5.4) as a convolution problem, so that [16]

f𝑍 (𝑧|ℋ1) =
∫︁ 𝑧

0
f𝑋 (𝜏) f𝑌 (𝑧 − 𝜏) d𝜏. (5.5)

Now, substituting (5.1) and (5.2) in (5.5), and after some manipulations, we obtain

f𝑍 (𝑧|ℋ1) = 𝜇𝛼

𝜆

∫︁ 𝑧

0
𝐺1,0

0,1

⎡⎣ −
0

⃒⃒⃒⃒
⃒⃒ (︂𝑧 − 𝜏

𝜆

)︂𝜇
⎤⎦𝐺1,0

0,1

⎡⎣ −
0

⃒⃒⃒⃒
⃒⃒𝛼𝜏

⎤⎦(︂𝑧 − 𝜏

𝜆

)︂−1+𝜇

d𝜏, (5.6)

where 𝐺𝑝,𝑞
𝑚,𝑛 [·] is the Meijer’s G-function [17, Eq. (8.2.1.1)].

Finally, by making use of [18, Eq. (6.2.8)] and after several algebraic manipu-
lations, a closed-form solution for (5.5) is obtained as

f𝑍 (𝑧|ℋ1) = 𝐶f𝑍 H [x; (𝛿, D) ; (𝛽f𝑍 , B) ; ℒs] , (5.7)

where 𝐶f𝑍 , 𝜇𝛼
(︁

𝑧
𝜆

)︁𝜇
, x =

[︁(︁
𝑧
𝜆

)︁𝜇
, 𝛼𝑧

]︁
, 𝛿 = [0, 0, 𝜇, 1], 𝛽f𝑍 = [1 + 𝜇], ℒs = ℒs1 × ℒs2 , and

D =
⎛⎝ 1 0 −𝜇 0

0 1 0 −1

⎞⎠𝑇

, B =
(︁

−𝜇 −1
)︁

. (5.8)

5.3.2 Cumulative Distribution Function

Using (5.6), and after changing the order of integration, we obtain a closed-
form expression for the CDF of (5.4) as

F𝑍 (𝑧|ℋ1) ,Pr [𝑍 ≤ 𝑧|ℋ1]

=
∫︁ 𝑧

0
f𝑍 (𝜈|ℋ1) d𝜈

=𝐶F𝑍
H [x; (𝛿, D) ; (𝛽F𝑍

, B) ; ℒs] , (5.9)

where 𝐶F𝑍
, 𝜇𝛼𝑧

(︁
𝑧
𝜆

)︁𝜇
, 𝛽F𝑍

= [2 + 𝜇], and the remaining parameters are the same as
in (5.7).

5.4 CA-CFAR Detection

Following the system model described in section 5.2, we now execute a thor-
ough performance analysis of the CA-CFAR detector, by deriving exact and novel solu-
tions for the PD. This is examined in detail in the following subsections.
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5.4.1 CA-CFAR Algorithm

The basic architecture of the CFAR algorithm is shown in Fig. 5.1. Observe
that the samples at the output of the rectifier are stored in a computer memory as a
one-dimensional vector. This vector is commonly referred to as the data window and is
composed of several thousand cells (also called range bins) [1]. However, this number can
vary significantly depending on the radar operation mode. The number of cells within the
data window depends strongly on the range resolution2 of the radar. The CFAR window
resides within the data window and is composed of leading and lagging reference windows,
guard cells (Gs), and the CUT [1]. It is worth noting that the leading and lagging reference
windows possess the same number of cells (cf. Fig. 5.1).

The CA-CFAR algorithm runs as follows:

1. First, the CA-CFAR estimates the unknown interference power from a collection of
samples, assumed to be i.i.d. To do so, the maximum likelihood estimation (MLE)
is applied over the leading and lagging reference windows.

2. Then, a CA-CFAR threshold 𝑇 is defined, formed by the product of the estimated
interference power and the CA-CFAR constant 𝜉— to be determined from Steps 3
and 4 as a function of 𝑛, 𝜇, and the average PFA.

3. Next, the algorithm computes the conditional probabilities of detection, 𝑃̇𝐷, and
false alarm, 𝑃̇𝐹 𝐴, in terms of the estimated interference power. This is performed
by comparing the statistics of the CUT under both hypotheses (ℋ0 and ℋ1) with
the CA-CFAR threshold 𝑇 .

4. Finally, the average probabilities of detection, 𝑃 𝐷 , and false alarm, 𝑃 𝐹 𝐴, are found
by removing the dependence of the interference statistics.

All these steps will be clarified in the next subsection.

5.4.2 CA-CFAR Performance Analysis

Let 𝑋 = {𝑋1, 𝑋2, · · · , 𝑋𝑛} be a sequence of i.i.d. Weibull random variables,
where 𝑛 is the total number of cells within the leading and lagging reference windows.
2 The range resolution is defined as the minimum distance in which a radar can resolve two targets over

a given range [1]. The smaller the distance, the better the resolution.
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Figure 5.1 – CFAR architecture.

Then, the joint PDF of 𝑋 is given by the product of the marginal PDFs, reducing to

𝑓𝑋 (𝑋) ,
𝑛∏︁

𝑖=1
𝑓𝑋𝑖

(𝑥𝑖)

=
(︂

𝜇

𝜆

)︂𝑛

exp
[︃
−

𝑛∑︁
𝑖=1

(︂
𝑥𝑖

𝜆

)︂𝜇
]︃

𝑛∏︁
𝑖=1

(︂
𝑥𝑖

𝜆

)︂𝜇−1
. (5.10)

The MLE for the unknown parameter 𝜆 given in (5.10) can be computed as [19]

𝜆̂𝜇̂ = 1
𝑛

𝑛∑︁
𝑖=1

𝑋 𝜇̂
𝑖 , (5.11)

where 𝜇̂ is the MLE for 𝜇, which can be found by solving the following equation [20]:
∑︀𝑛

𝑖=1 𝑋 𝜇̂
𝑖 ln (𝑋𝑖)∑︀𝑛

𝑖=1 𝑋 𝜇̂
𝑖

− 1
𝜇̂

− 1
𝑛

𝑛∑︁
𝑖=1

ln (𝑋𝑖) = 0. (5.12)

Note that (5.12) is transcendental and, as such, must be solved by numerical means. Al-
ternatively, a common, yet somewhat arbitrary practice in CA-CFAR design is to adopt
𝜇̂ = 1, specially when a large radar resolution cell3 is at play (e.g., in low-resolution
imaging radars). Following this practice, herein we adopt 𝜇̂ = 1. Note that this is but
an approximate receiver-design criterion, with the true shape parameter 𝜇 of the Weibull
clutter being still considered to be arbitrary in the performance analysis that follows. Un-
der this scenario, (5.11) becomes the normalized sum of independent exponential random
variables, each with the same rate parameter 1/𝜆. Hence, the PDF of 𝜆̂ can be written
as [16]

f𝜆̂(𝜆̂) =
𝑛𝜆−𝑛

(︁
𝜆̂𝑛
)︁𝑛−1

Γ(𝑛) exp
⎡⎣− 𝜆̂𝑛

𝜆

⎤⎦ . (5.13)

3 The ability of a radar system to resolve two targets over range, azimuth, and elevation defines its
resolution cell [1].
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For our purposes, it is convenient to express 𝑋 in terms of two independent normal
variables 𝐼𝑋 and 𝑄𝑋 , that is [21]

𝑋 =
(︁
𝐼2

𝑋 + 𝑄2
𝑋

)︁1/𝜇
, (5.14)

in which 𝐼𝑋 and 𝑄𝑋 are identically distributed according to 𝒩 (0, 𝜎2
𝑋).4 The scale pa-

rameter of the Weibull distribution is related to 𝜎2
𝑋 by 𝜆 = (2𝜎2

𝑋)1/𝜇. Therefore, the
interference power before the square-law rectifier can be written as [1]

E
[︁
|𝐼𝑋 + 𝑗𝑄𝑋 |2

]︁
= 2𝜎2

𝑋 = 𝜆𝜇. (5.15)

Following the same approach as in (5.14), we can write 𝑌 as

𝑌 = 𝐼2
𝑌 + 𝑄2

𝑌 , (5.16)

where 𝐼𝑌 and 𝑄𝑌 are identically distributed according to 𝒩 (0, 𝜎2
𝑌 ), and consequently, the

target power before detection can be computed as

E
[︁
|𝐼𝑌 + 𝑗𝑄𝑌 |2

]︁
= 2𝜎2

𝑌 = 𝛼−1. (5.17)

Now, we can define the signal-to-clutter ratio (SCR) as

SCR , E [|𝐼𝑌 + 𝑗𝑄𝑌 |2]
E [|𝐼𝑋 + 𝑗𝑄𝑋 |2]

= (𝛼𝜆𝜇)−1 . (5.18)

Using (5.15) and the design criterion 𝜇̂ = 1, we can express 𝑇 as follows:

𝑇 = 𝜆̂𝜉. (5.19)

Conditioned on 𝜆̂, 𝑃̇𝐹 𝐴 and 𝑃̇𝐷 can be computed by integrating (5.1) and (5.7) from 𝑇

to infinity [1], respectively. Hence, 𝑃̇𝐹 𝐴 can be written as

𝑃̇𝐹 𝐴 ,
∫︁ ∞

𝜆̂𝜉
f𝑍 (𝑧|ℋ0) d𝑧

= exp
⎡⎣−

⎛⎝ 𝜆̂𝜉

𝜆

⎞⎠𝜇⎤⎦ , (5.20)

and 𝑃̇𝐷 can be easily obtained by subtracting (5.9) from unity, with 𝑧 = 𝜆̂𝜉, i.e.,

𝑃̇𝐷 = 1 − 𝐶𝑃𝐷
H [x𝑃𝐷

; (𝛿, D) ; (𝛽F𝑍
, B) ; ℒs] , (5.21)

where 𝐶𝑃𝐷
, 𝜇𝛼𝜆̂𝜉

(︁
𝜆̂𝜉
𝜆

)︁𝜇
and x𝑃𝐷

=
[︂(︁

𝜆̂𝜉
𝜆

)︁𝜇
, 𝛼𝜆̂𝜉

]︂
. It remains to find 𝑃 𝐹 𝐴 and 𝑃 𝐷.

This is achieved by averaging (5.20) and (5.21) over all possible values of the estimated
4 𝒩 (𝑎, 𝑏) denotes a normal (Gaussian) distribution with mean 𝑎 and variance 𝑏.
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parameter 𝜆̂. Using (5.13) and (5.20), and after some algebraic manipulations, 𝑃 𝐹 𝐴 can
be calculated as

𝑃 𝐹 𝐴 ,
∫︁ ∞

0
𝑃̇𝐹 𝐴 f𝜆̂(𝜆̂) d𝑧

=
(︃(︃

𝜉

𝑛

)︃𝜇

+ 1
)︃−𝑛

. (5.22)

By isolating 𝜉 in (5.22), we obtain

𝜉 = 𝑛
(︂

𝑃 𝐹 𝐴
−1/𝑛 − 1

)︂1/𝜇

. (5.23)

Finally, using (5.13), (5.21), and (5.23), and after lengthy algebraic manipulations, 𝑃 𝐷

can be computed in closed-form as

𝑃 𝐷 ,
∫︁ ∞

0
𝑃̇𝐷 f𝜆̂(𝜆̂) d𝑧

= 1 − 𝐶𝑃 𝐷
H
[︁
x𝑃 𝐷

;
(︁
𝛿𝑃 𝐷

, D𝑃 𝐷

)︁
; (𝛽F𝑍

, B) ; ℒs
]︁

, (5.24)

where x𝑃 𝐷
=
[︃
𝑃 𝐹 𝐴

−1/𝑛 − 1, 𝛼𝜆
(︂

𝑃 𝐹 𝐴
−1/𝑛 − 1

)︂1/𝜇
]︃
, 𝛿𝑃 𝐷

= [0, 0, 𝜇, 1, 𝜇 + 𝑛 + 1], and

𝐶𝑃 𝐷
=

(︃
𝛼𝜆𝜇

(︂
𝑃 𝐹 𝐴

−1/𝑛 − 1
)︂1/𝜇+1

)︃
Γ(𝑛) , D𝑃 𝐷

=
⎛⎝ 1 0 −𝜇 0 −𝜇

0 1 0 −1 −1

⎞⎠𝑇

.

Eq. (5.24) is the main analytical contribution of this work.

5.5 Series Representations

The multivariate Fox H-function is not yet available in mathematical packages
such as MATHEMATICA, MATLAB, or MAPLE. Some works have been done to alleviate
this problem [22, 23]. Specifically, in [22] a Python implementation for the Fox H-function
was carried out, ranging from one up to four branches. Unfortunately, there is no general
implementation for the multivariate Fox H-function so far.

In this work, we provide an accurate and easy implementation in MATHE-
MATICA for the bivariate Fox H-function that fits our systemic model. The code used to
compute (5.7), (5.9), and (5.24) is presented in Appendix C.1. In addition, equivalent se-
ries representations are also provided next, in order to facilitate the use of our results. To
do so, an exhaustive calculus of residues was used to evaluate the derived Fox H-functions.
Once applied the sum of residues [24], and after several algebraic manipulations, (5.7),
(5.9), and (5.24) can be written, alternatively, as

f𝑍 (𝑧|ℋ1) = 𝜇𝛼 exp [−𝛼𝑧]
(−𝛼𝜆)𝜇

∞∑︁
𝑖=0

(−(−𝛼𝜆)𝜇)−𝑖 Γ(𝜇 + 𝑖𝜇, 0, −𝑧𝛼)
𝑖! (5.25)
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Figure 5.2 – Simulated and analytical PDF of 𝑍 under hypothesis ℋ1 for different values
of 𝜇, 𝜆, and 𝛼.

F𝑍 (𝑧|ℋ1) = − exp [−𝛼𝑧]
(−𝛼𝜆)𝜇

∞∑︁
𝑖=0

(−(−𝛼𝜆)𝜇)−𝑖 Γ(𝑖𝜇 + 𝜇 + 1, 0, −𝑧𝛼)
Γ(𝑖 + 2) (5.26)

𝑃 𝐷 =1 −
𝛼𝜆𝜇

(︂
𝑃 𝐹 𝐴

− 1
𝑛 − 1

)︂ 1
𝜇

+1

Γ(𝑛)

∞∑︁
𝑖=0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(︂

−
(︂

𝑃 𝐹 𝐴
− 1

𝑛 − 1
)︂)︂𝑖

Γ(𝑖𝜇 + 𝜇) Γ(𝑛 + 𝑖𝜇 + 𝜇 + 1)

𝑖! Γ(𝑖𝜇 + 𝜇 + 2)

× 2𝐹1

(︃
1, 𝑛 + 𝑖𝜇 + 𝜇 + 1; 𝑖𝜇 + 𝜇 + 2; −𝛼𝜆

(︂
𝑃 𝐹 𝐴

− 1
𝑛 − 1

)︂ 1
𝜇

)︃}︃
, (5.27)

where Γ(·, ·, ·) denotes the generalized incomplete gamma function [25, Eq. (8.2.3)], and
2𝐹1 (·, ·, ·, ·) is the Gauss hypergeometric function [25, Eq. (15.1.1)]. Eqs. (5.25), (5.26),
and (5.27) are original contributions of this work.

5.6 Numerical Results

Figs. 5.2 and 5.3 show the analytical (refer to (5.7), (5.9), (5.25) and (5.26))
and simulated (via Monte-Carlo simulation) PDF and CDF of 𝑍 given the hypothesis ℋ1.
The distribution parameters have been selected to show the broad range of shapes that
the PDF and CDF can exhibit. The series presented in (5.25)–(5.27) prove to be very
efficient, converging rapidly to attain an excellent accuracy. For example, the observed
number of terms needed to guarantee a precision of 10−12 in all the curves presented in
Figs. 5.2 and 5.3 varies between 20 and 55. For practical purposes, such a small number
of terms leads to a considerable reduction in computational time.
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Figure 5.3 – Simulated and analytical CDF of 𝑍 under hypothesis ℋ1 for different values
of 𝜇, 𝜆, and 𝛼.
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Figure 5.4 – ROC curves for the Neyman-Pearson and the investigated CA-CFAR detec-
tors, with 𝜇 = 1 and different values of 𝑃 𝐹 𝐴 and 𝑛.

Fig. 5.4 shows the analytical (refer to (5.24) and (5.27)) and simulated receiver
operating characteristic (ROC) curves for the investigated CA-CFAR detector. As a term
of comparison, the (idealized) Neyman-Pearson detector is also shown. Observe how the
required SCR increases as 𝑃 𝐹 𝐴 decreases, for any given values of 𝑛 and 𝑃 𝐷, as expected.
The increase in 𝑛 has also a positive effect on the performance of the CA-CFAR detector.
This occurs because the variance of the estimated interference power decreases with in-
creasing 𝑛. Fig. 5.4 also allows us to quantify the CFAR losses. More specifically, for fixed
values of 𝑃 𝐷 = 80% and 𝑛 = 35, the CFAR losses under a 𝑃 𝐹 𝐴 of 10−4, 10−6, and 10−8
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Figure 5.5 – 𝑃 𝐷 versus 𝑃 𝐹 𝐴 for 𝜆 = 10, 𝛼 = 0.1, 𝑛 = 55, and varying 𝜇.

are approximately 0.4, 0.7, and 1.1 dB, respectively; and for fixed values of 𝑃 𝐷 = 80%
and 𝑛 = 55, the CFAR losses under a 𝑃 𝐹 𝐴 of 10−4, 10−6, and 10−8 are approximately nil,
0.5, and 0.6 dB, respectively. Note that as 𝑛 → ∞ the CA-CFAR detector approaches the
performance of the Neyman-Pearson detector, as shown in Fig. 5.4 for 𝑃 𝐹 𝐴 = 10−4 and
𝑛 = 55.

Finally, Fig. 5.5 illustrates 𝑃 𝐷 vs. 𝑃 𝐹 𝐴 for different values of 𝜇. Note how the
radar performance deteriorates as 𝜇 increases, i.e., the higher the value of 𝜇, the smaller
the value of 𝑃 𝐷 achieved under a given target value of 𝑃 𝐹 𝐴.

5.7 Conclusions

This paper offers novel exact formulations for the probability of detection of a
CA-CFAR detector as well as closed-form expressions for the PDF and CDF of the sum
of an exponentially fluctuating target embedded in Weibull clutter. All the expressions
are given in terms of the Fox H-function and can be used for the theoretical study of
CA-CFAR detectors operating in homogeneous Weibull clutter. Series representations for
all the results presented here are also provided. It is important to emphasize that the
series given in (5.25)–(5.27) arise naturally from the sum of residues and are not unique,
i.e., other series expansions are possible.
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6 Contribution V

This chapter is a replica of the paper below:

• F. D. A. García, H. R. C. Mora, G. Fraidenraich and J. C. S. Santos Filho, "Square-
Law Detection of Exponential Targets in Weibull-Distributed Ground Clutter," to
appear in IEEE Geosci. Remote Sens. Lett., DOI:10.1109/LGRS.2020.3009304.
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Square-Law Detection of Exponential Targets in
Weibull-Distributed Ground Clutter

Fernando Darío Almeida García, Henry Ramiro Carvajal Mora, Gustavo Fraidenraich,
and José Cândido Silveira Santos Filho

Abstract

Modern radar systems use square-law detectors to search and track fluctuating targets
embedded in Weibull-distributed ground clutter. However, the theoretical performance
analysis of square-law detectors in the presence of Weibull clutter leads to cumbersome
mathematical formulations. Some studies have circumvented this problem by using ap-
proximations or mathematical artifacts to simplify calculations. In this work, we derive a
closed-form and exact expression for the probability of detection of a square-law detector
in the presence of exponential targets and Weibull-distributed ground clutter, given in
terms of the Fox H-function. Unlike previous studies, no approximations nor simplifying
assumptions are made throughout our analysis. Furthermore, we derive a fast convergent
series for the referred probability of detection by exploiting the orthogonal selection of
poles in Cauchy’s residue theorem. In passing, we also obtain closed-form solutions and
series representations for the probability density function and the cumulative distribution
function of the sum statistics that govern the output of a square-law detector. Numerical
results and Monte-Carlo simulations corroborate the validity of our expressions.

6.1 Introduction

The detection performance of any radar system appears as a trade-off between
its probability of detection (PD) and its probability of false alarm (PFA). Many modern
radar systems use square-law detectors to build decision-variable statistics, which ulti-
mately govern PD and PFA [1]. Therefore, it is of great interest to analyze the resulting
statistics for that type of detector. Unfortunately, the presence of unwanted signals such
as thermal noise, clutter, and jamming, ubiquitous in practice, often render the referred
analysis very complicated.

The radar performance can be significantly degraded in the presence of ground
clutter. Through experimental data, it has been observed that the ground-clutter statistics
are well modeled by the Weibull distribution [2, 3]. As a result, the Weibull distribution
has been widely used to assess the radar performance in the presence of ground clutter.
Regarding square-law detectors, approximations and simplifying assumptions have been
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used to alleviate the mathematical complexity of an exact analysis [4, 5, 6, 7, 8]. In [4, 5, 6],
for example, the authors considered the presence of exponential1 targets and Weibull
clutter. In those works, it was assumed that, since the clutter and target echoes add to
one another at the level of in-phase and quadrature components, the output of a square-
law detector can be approximated as a power sum of the clutter and target echoes. Such
approximation is accurate when the interference power is higher than the target power,
which holds true for most practical scenarios. Moreover, in [7, 8], the authors simplified
the performance analysis by assuming a particular value for the shape parameter of the
Weibull distribution. Those works also considered exponential targets.

To mitigate or partially remove the harmful effects of ground clutter, modern
radars use adaptive techniques to dynamically set the detection threshold above the in-
terference level. Such techniques seek to maintain a constant false-alarm rate (CFAR) by
estimating the interference power over a data window, also called CFAR window [1]. Some
works have analyzed the radar performance using square-law detectors, CFAR techniques,
exponential targets, and Weibull backgrounds [10, 11, 6]. In those analyses, the clutter
was assumed to be present only in the CFAR window but not within the cell under test
(CUT) [1]. Furthermore, the value of the Weibull shape parameter was fixed to unity,
which reduces to the exponential distribution. Of course, this is too strong a constraint
that most practical scenarios fail to meet [12].

Recently, the presence of clutter residues within the CUT was considered
in [13], for a cell-averaging CFAR radar system with Weibull interference and exponential
targets. In fact, as far as we know, [13] contains the only published such analysis for
clutter residues within the CUT. Closed-form expressions for PD and PFA were obtained
therein. As in [4, 5, 6], the analysis capitalized on a highly accurate approximation for the
output statistics of a square-law detector, as a power sum of the target echoes and the
clutter interference. Furthermore, and unlike previous works, in [13] the shape parameter
of the Weibull interference was allowed to have arbitrary values, thereby providing more
realistic detection estimates when dealing with ground-clutter environments.

To the best of the authors’ knowledge, no radar performance analysis has
been published so far using the exact statistics of a square-law detector when subject to
exponential targets and Weibull clutter interference. This lack is mainly due to the high
degree of mathematical complexity that surrounds the detection statistics under this type
of scenario. In this work, we derive a closed-form exact expression for PD (versus PFA)
in the referred scenario, written in terms of the Fox H-function. In addition, we derive
a fast convergent series for PD. In passing, we obtain closed-form solutions and series
1 An exponential target refers to a class of fluctuating targets introduced by Swerling [9]. In this case,

the target’s radar cross-section after an envelope detector follows an exponential distribution.
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representations for the probability density function (PDF) and the cumulative distribution
function (CDF) of the sum statistics that govern the output of a square-law detector. No
approximations nor simplifying assumptions are made throughout our analysis.

It is worth mentioning that the results presented herein can be readily used
to analyze the performance of any CFAR scheme operating over exponential targets and
Weibull clutter within the CUT. This can be done by comparing our derived statistics
against the adaptive threshold that results from estimating the interference power along
the CFAR window.

In what follows, 𝑓(·)(·) denotes PDF; F(·) (·), CDF; E [·], expectation; Pr [·],
probability; |·|, absolute value; ⌊·⌋, floor operation; and (·)𝑇 , transposition.

6.2 Problem Statement

In this work, we handle the radar detection problem in terms of the following
binary hypothesis test:

• Hypothesis ℋ0: Weibull clutter alone.

• Hypothesis ℋ1: exponential target plus Weibull clutter.

Depending on the hypothesis at hand, the output of a square-law detector can be written
as [11, 12, 14, 15]

ℋ0 : 𝑍 = 𝑊 2 (6.1)

ℋ1 : 𝑍 = (𝑋 + 𝑊 )2 + 𝑌 2, (6.2)

where 𝑊 is the Weibull-distributed ground clutter, with PDF given by

f𝑊 (𝑤) =
(︂

𝜇

𝜆

)︂(︂
𝑤

𝜆

)︂𝜇−1
exp

[︂
−
(︂

𝑤

𝜆

)︂𝜇]︂
, 𝑤 ≥ 0 (6.3)

in which 𝜇 > 0 is the shape parameter and 𝜆 > 0 is the scale parameter. Additionally, 𝑋

and 𝑌 are the in-phase and quadrature components of the target signal, with zero-mean
Gaussian PDFs

f𝑋 (𝑥) =
exp

(︁
− 𝑥2

2𝜎2

)︁
√

2𝜋𝜎
, −∞ ≤ 𝑥 ≤ ∞ (6.4)

f𝑌 (𝑦) =
exp

(︁
− 𝑦2

2𝜎2

)︁
√

2𝜋𝜎
, −∞ ≤ 𝑦 ≤ ∞ (6.5)

in which 𝜎2 is the target power per component. Note in (6.2) that, should there be
no clutter interference, the PDF of the decision variable 𝑍 would follow an exponential
distribution.
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To the best of the authors’ knowledge, no closed-form solutions exist for the
statistics of 𝑍 as presented in (6.2). Herein, we solve this problem by deriving closed-
form exact expressions for the PDF and CDF of 𝑍. This is attained in the next section.
Afterwards, as our primary aim, we obtain the corresponding PD for the investigated
hypothesis test. Finally, we derive fast convergent series for the PDF, CDF, and PD,
which alleviate computations.

6.3 Decision-Variable Statistics

We start by deriving the PDF and CDF of 𝑍 as in (6.2).

6.3.1 Probability Density Function

Let us define the following auxiliary random variables:

𝑅 ,𝑋 + 𝑊 (6.6)

𝑈 ,𝑅2 (6.7)

𝑉 ,𝑌 2. (6.8)

Since the target signal and the clutter interference are independent random
processes, we can express the sum statistics defined in (6.6) as a convolution [16], i.e.,

f𝑅 (𝑟) ,
∫︁ ∞

0
f𝑋 (𝑟 − 𝜏) f𝑊 (𝜏) d𝜏. (6.9)

Substituting (6.3) and (6.4) in (6.9), and after some algebraic manipulations, we obtain

f𝑅 (𝑟) =
𝜇 exp

(︁
− 𝑟2

2𝜎2

)︁
√

2𝜋𝜎2𝜆𝜇

∫︁ ∞

0
exp

(︃
− 𝜏 2

2𝜎2

)︃
𝐺1,0

0,1

⎡⎣ −
0

⃒⃒⃒⃒
⃒⃒− 𝜏𝑟

𝜎2

⎤⎦𝐺1,0
0,1

⎡⎣ −
0

⃒⃒⃒⃒
⃒⃒ (︂𝜏

𝜆

)︂𝜇
⎤⎦ d𝜏, (6.10)

where 𝐺𝑝,𝑞
𝑚,𝑛 [·] is the Meijer’s G-function [17, Eq. (8.2.1.1)]. After making use of [18, Eq.

(6.2.8)] and [19, Eq. (2.3)], followed by lengthy mathematical manipulations, a closed-form
solution for (6.9) is obtained as

f𝑅 (𝑟) =Ψf𝑅 H [x; (𝛿, D) ; (𝛽, B) ; ℒr] , (6.11)

where Ψf𝑅 = 𝜇
2𝜎2

(︁√
2𝜎
𝜆

)︁𝜇
exp

(︁
− 𝑟2

2𝜎2

)︁
, x =

[︁
−

√
2𝑟
𝜎 ,

(︁√
2𝜎
𝜆

)︁𝜇]︁
, 𝛿 =

[︀
0, 0, 𝜇

2
]︀
, 𝛽 is an empty vector,

B is an empty matrix, ℒr is an appropriate contour on the complex plane (see Table 6.1),
and D =

(︂
1 0 −1/2
0 1 −𝜇/2

)︂𝑇

.



Chapter 6. Contribution V 107

Table 6.1 – Integration paths for ℒr, ℒu and ℒz.

Contour Integration Paths

ℒr = ℒr,1 × ℒr,2

ℒr,1 is a contour that separates the poles of Γ(𝑠1) from those of
Γ
(︀

𝜇−𝜇𝑠2−𝑠1
2

)︀
. ℒr,2 is a contour that separates the poles of Γ(𝑠2)

from those of Γ
(︀

𝜇−𝜇𝑠2−𝑠1
2

)︀
.

ℒu = ℒu,1 × ℒu,2

ℒu,1 is a contour that separates the poles of Γ(𝑠1) from those of
Γ
(︀

𝜇−𝜇𝑠2−𝑠1
2

)︀
and Γ

(︀ 1−𝑠1
2
)︀
. ℒu,2 is a contour that separates the

poles of Γ(𝑠2) from those of Γ
(︀

𝜇−𝜇𝑠2−𝑠1
2

)︀
.

ℒz = ℒz,1 × ℒz,2 × ℒz,3

ℒz,1 is a contour that separates the poles of Γ(𝑠1) from those of
Γ
(︀

𝜇−𝜇𝑠2−𝑠1
2

)︀
, Γ
(︀ 1−𝑠1

2
)︀
, and Γ

(︀−𝑠1+2𝑠3+2
2

)︀
. ℒz,2 is a contour that

separates the poles of Γ(𝑠2) from those of Γ
(︀

𝜇−𝜇𝑠2−𝑠1
2

)︀
. ℒz,3 is a

contour that separates the poles of Γ(𝑠3) from those of
Γ
(︀−𝑠1+2𝑠3+2

2
)︀
.

Now, using (6.11) and [20, Eq. (1.112)], and after simplifications, we can com-
pute the PDF of (6.7) through a transformation of variables as [16]

f𝑈 (𝑢) ,
⃒⃒⃒⃒
⃒𝜕𝑟2

𝜕𝑟

⃒⃒⃒⃒
⃒
−1

f𝑅 (𝑟)
⃒⃒⃒⃒
⃒⃒
𝑟=+

√
𝑢

+
⃒⃒⃒⃒
⃒𝜕𝑟2

𝜕𝑟

⃒⃒⃒⃒
⃒
−1

f𝑅 (𝑟)
⃒⃒⃒⃒
⃒⃒
𝑟=−

√
𝑢

=Ψf𝑈

(︁
H
[︁
x+

f𝑈 ; (𝛿, D) ; (𝛽, B) ; ℒu
]︁

+ H
[︁
x−

f𝑈 ; (𝛿, D) ; (𝛽, B) ; ℒu
]︁)︁

, (6.12)

where Ψf𝑈 = 1
4𝜎

√︁
𝜇
2𝜋

(︁√
2𝜎
𝜆

)︁𝜇
exp

(︁
− 𝑢

2𝜎2

)︁
, x+

f𝑈 =
[︁√

2𝑢
𝜎 ,

(︁√
2𝜎
𝜆

)︁𝜇]︁
, x−

f𝑈 =
[︁

−
√

2𝑢
𝜎 ,

(︁√
2𝜎
𝜆

)︁𝜇]︁
, and

ℒu is an appropriate contour on the complex plane (see Table 6.1).

In a similar way, using (6.5) and after a simple transformation of variables,
the PDF of (6.8) can be written as

f𝑉 (𝑣) =
exp

(︁
− 𝑣

2𝜎2

)︁
√

2𝜋𝑣𝜎
. (6.13)

Finally, using (6.11), (6.12), (6.13), and [20, Eq. (1.86)], and taking into ac-
count that 𝑈 and 𝑉 are independent random variables, the PDF of (6.2) can be calculated
in closed form as

f𝑍 (𝑧|ℋ1) ,
∫︁ 𝑧

0
f𝑈 (𝑧 − 𝜏) f𝑉 (𝜏) d𝜏

=Ψf𝑍

(︁
H
[︁
x+

f𝑍 ; (𝛿f𝑍 , Df𝑍 ) ; (𝛽f𝑍 , Bf𝑍 ) ; ℒu
]︁

+ H
[︁
x−

f𝑍 ; (𝛿f𝑍 , Df𝑍 ) ; (𝛽f𝑍 , Bf𝑍 ) ; ℒu
]︁)︁

,

(6.14)

where x−
f𝑍 =

[︁
−

√
2𝑧

𝜎 ,
(︁√

2𝜎
𝜆

)︁𝜇]︁
, x+

f𝑍 =
[︁√

2𝑧
𝜎 ,

(︁√
2𝜎
𝜆

)︁𝜇]︁
, Ψf𝑍 = 𝜇

8𝜎2√
𝜋

(︁√
2𝜎
𝜆

)︁𝜇
exp

(︁
− 𝑧

2𝜎2

)︁
, 𝛿f𝑍 =

[︁
0, 0, 𝜇

2 , 1
2

]︁
, 𝛽f𝑍 = [1], Bf𝑍 =

(︁
−1 0

)︁
, and Df𝑍 =

⎛⎝ 1 0 −1/2 −1/2
0 1 −𝜇/2 0

⎞⎠𝑇

.

6.3.2 Cumulative Distribution Function

Using (6.14), [20, Eq. (1.62)], and [20, Eq. (1.86)], and after several mathe-
matical manipulations, we obtain a closed-form expression for the corresponding CDF
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of (6.2) as

F𝑍 (𝑧|ℋ1) ,
∫︁ 𝑧

0
f𝑍 (𝜈|ℋ1) d𝜈

=ΦF𝑍

(︁
H
[︁
x+

F𝑍,1
; (𝛿f𝑍 , Df𝑍 ) ;

(︁
𝛽+

F𝑍
, B+

F𝑍

)︁
; ℒu

]︁
+ H

[︁
x−

F𝑍,1
; (𝛿f𝑍 , Df𝑍 ) ;

(︁
𝛽+

F𝑍
, B+

F𝑍

)︁
; ℒu

]︁
− H

[︁
x+

F𝑍,2
; (𝛿F𝑍

, DF𝑍
) ;
(︁
𝛽−

F𝑍
, B−

F𝑍

)︁
; ℒz

]︁
− H

[︁
x−

F𝑍,2
; (𝛿F𝑍

, DF𝑍
) ;
(︁
𝛽−

F𝑍
, B−

F𝑍

)︁
; ℒz

]︁)︁
,

(6.15)

where ΦF𝑍
= 𝜇

4
√

𝜋

(︁√
2𝜎
𝜆

)︁𝜇
, x+

F𝑍,1
=
[︁
2,
(︁√

2𝜎
𝜆

)︁𝜇]︁
, x−

F𝑍,1
=
[︁
−2,

(︁√
2𝜎
𝜆

)︁𝜇]︁
, x+

F𝑍,2
=
[︁
2,
(︁√

2𝜎
𝜆

)︁𝜇
, 𝑧

2𝜎2

]︁
,

x−
F𝑍,2

=
[︁
−2,

(︁√
2𝜎
𝜆

)︁𝜇
, 𝑧

2𝜎2

]︁
, 𝛿F𝑍

=
[︁
0, 0, 𝜇

2 , 1
2 , 1, 0

]︁
, 𝛽+

F𝑍
is an empty vector, B+

F𝑍
is an empty

matrix, 𝛽−
F𝑍

= [1, 1], ℒz is an appropriate contour on the complex plane (see Table 6.1),

B−
F𝑍

=

⎛⎝ −1/2 0 0
0 0 1

⎞⎠, and DF𝑍
=

⎛⎜⎜⎜⎝
1 0 −1/2 −1/2 −1/2 0
0 1 −𝜇/2 0 0 0
0 0 0 0 1 1

⎞⎟⎟⎟⎠
𝑇

.

6.4 Probability of Detection

The PFA and PD can be computed as the probability that the decision variable
𝑍, defined respectively as in (6.1) and (6.2), falls above the decision threshold, say 𝛾, i.e.,

𝑃FA ,
∫︁ ∞

𝛾
f𝑍 (𝑧|ℋ0) d𝑧 (6.16)

𝑃D ,
∫︁ ∞

𝛾
f𝑍 (𝑧|ℋ1) d𝑧. (6.17)

After a simple transformation of variables, the PDF of (6.1) can be obtained from (6.3)
as

f𝑍 (𝑧|ℋ0) = 𝜇

2𝑧

(︃√
𝑧

𝜆

)︃𝜇

exp
[︃
−
(︃√

𝑧

𝜆

)︃𝜇]︃
, (6.18)

which, when replaced into (6.16), leads to

𝑃FA = exp
(︁
−𝛾𝜇/2𝜆−𝜇

)︁
. (6.19)

As we are looking for a trade-off expression between PD and PFA, we now isolate 𝛾 in
(6.19), yielding

𝛾 = [−𝜆𝜇 ln(𝑃FA)]2/𝜇 . (6.20)

Finally, using (6.15), (6.17), (6.20), [18, Eq. (6.2.8)], and [17, Eq. (8.2.1.1)], followed by
lengthy algebraic manipulations, we obtain PD in an exact closed form as

𝑃D = 1 − ΦF𝑍

(︁
H
[︁
x+

F𝑍,1
; (𝛿f𝑍 , Df𝑍 ) ;

(︁
𝛽+

F𝑍
, B+

F𝑍

)︁
; ℒu

]︁
+ H

[︁
x−

F𝑍,1
; (𝛿f𝑍 , Df𝑍 ) ;

(︁
𝛽+

F𝑍
, B+

F𝑍

)︁
; ℒu

]︁
− H

[︁
x+

𝑃D
; (𝛿F𝑍

, DF𝑍
) ;
(︁
𝛽−

F𝑍
, B−

F𝑍

)︁
; ℒz

]︁
− H

[︁
x−

𝑃D
; (𝛿F𝑍

, DF𝑍
) ;
(︁
𝛽−

F𝑍
, B−

F𝑍

)︁
; ℒz

]︁)︁
,

(6.21)

where x+
𝑃D

=
[︂
2,
(︁√

2𝜎
𝜆

)︁𝜇
, [−𝜆𝜇 ln(𝑃FA)]2/𝜇

2𝜎2

]︂
, and x−

𝑃D
=
[︂
−2,

(︁√
2𝜎
𝜆

)︁𝜇
, [−𝜆𝜇 ln(𝑃FA)]2/𝜇

2𝜎2

]︂
.
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6.5 Alternative Series Representations

In order to ease the computation of our results, we now derive series repre-
sentations for (6.14), (6.15), and (6.21). To do so, we exploit the orthogonal selection of
poles in Cauchy’s residue theorem [21]. Using the integration paths given in Table 6.1 and
after an exhaustive analysis of residues, we concluded that the convergence of the series
depends only on the shape parameter 𝜇 of the Weibull distribution, defined in (6.3). More
specifically, the derived series representations will be split into the following scenarios:
𝜇 < 2 and 𝜇 ≥ 2.

6.5.1 Probability Density Function

The series representation for (6.14) when 𝜇 < 2 and 𝜇 ≥ 2 can be respectively
expressed as

f𝑍 (𝑧|ℋ1; 𝜇 < 2) =
√

𝜋 exp
(︁
− 𝑧

2𝜎2

)︁
Ψf𝑍

𝜎2

∞∑︁
𝑙=0

(−1)𝑙
(︁√

2𝜎
𝜆

)︁𝑙𝜇
Γ
(︁

𝑙𝜇
2 + 𝜇

2

)︁
1𝐹1

(︁
𝑙𝜇
2 + 𝜇

2 ; 1; 𝑧
2𝜎2

)︁
𝑙!

(6.22)

f𝑍 (𝑧|ℋ1; 𝜇 ≥ 2) =
exp

(︁
− 𝑧

2𝜎2

)︁
4𝜎2

∞∑︁
𝑘=0

⎧⎪⎪⎨⎪⎪⎩
[︁
(−1)𝑘 + 1

]︁ (︁
−2𝜎2

𝑧

)︁⌊ 𝑘
2 ⌋ (︁− 2𝜎2

𝜆
√

𝑧

)︁−𝑘

Γ
(︁⌊︁

𝑘
2

⌋︁
+ 1

)︁
× Γ

(︃
𝑘

𝜇
+ 1

)︃
2𝐹2

(︃
1, 1 −

⌊︃
𝑘

2

⌋︃
; −

⌊︃
𝑘

2

⌋︃
+ 𝑘

2 , 1 −
⌊︃

𝑘

2

⌋︃
+ 𝑘

2 ; 𝑧

2𝜎2

)︃}︃
,

(6.23)

where 1𝐹1 (·; ·; ·) is the Kummer confluent hypergeometric function [22, Eq. (13.1.2)] and
2𝐹1(𝑎, 𝑏; 𝑐, 𝑑; 𝑥) = 2𝐹1(𝑎, 𝑏; 𝑐, 𝑑; 𝑥)/Γ(𝑐) is the regularized Gauss hypergeometric func-
tion [22, Eq. (15.1.1)].

6.5.2 Cumulative Distribution Function

The series representation for (6.15) when 𝜇 < 2 and 𝜇 ≥ 2 can be respectively
expressed as

F𝑍 (𝑧|ℋ1; 𝜇 < 2) =
√

𝜋𝑧ΦF𝑍

𝜎2

∞∑︁
𝑙=0

(−1)−𝑙
(︁√

2𝜎
𝜆

)︁𝑙𝜇
Γ
(︁

𝑙𝜇
2 + 𝜇

2

)︁
1𝐹1

(︁
− 𝑙𝜇

2 − 𝜇
2 + 1; 2; − 𝑧

2𝜎2

)︁
𝑙! (6.24)

F𝑍 (𝑧|ℋ1; 𝜇 ≥ 2) =2
√

𝜋 ΦF𝑍

𝜇
(︁√

2𝜎
𝜆

)︁𝜇

∞∑︁
𝑘=0

∞∑︁
𝑙=0

⎧⎪⎨⎪⎩
[︁
(−1)𝑘 + 1

]︁
(−1)𝑘+𝑙

(︁√
2𝜎
𝜆

)︁−𝑘−2𝑙
Γ
(︁

𝑘
𝜇 + 2𝑙

𝜇 + 1
)︁

𝑙!
[︁
Γ
(︁

𝑘
2 + 1

)︁]︁2
× Γ

(︂
𝑘

2 + 1, 0,
𝑧

2𝜎2

)︂}︂
, (6.25)

where Γ(·, ·, ·) denotes the generalized incomplete gamma function [23, Eq. (8.2.3)].
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Figure 6.1 – Simulated and analytical CDFs of 𝑍 under hypothesis ℋ1 and different values
of 𝜇 < 2, 𝜆, and 𝜎2.
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Figure 6.2 – Simulated and analytical CDFs of 𝑍 under hypothesis ℋ1 and different values
of 𝜇 ≥ 2, 𝜆, and 𝜎2.
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6.5.3 Probability of Detection

The series representation for (6.21) when 𝜇 < 2 and 𝜇 ≥ 2 can be respectively
expressed as

𝑃D𝜇<2 = 1 −
√

𝜋ΦF𝑍
[−𝜆𝜇 ln(𝑃FA)]2/𝜇

𝜎2

∞∑︁
𝑙=0

⎧⎪⎨⎪⎩
(−1)−𝑙

(︁√
2𝜎
𝜆

)︁𝑙𝜇

𝑙!

× 1𝐹1

⎛⎝− 𝑙𝜇

2 − 𝜇

2 + 1; 2; − [−𝜆𝜇 ln(𝑃FA)]2/𝜇

2𝜎2

⎞⎠⎫⎬⎭ (6.26)

𝑃D𝜇≥2 = 1 − 1
2

∞∑︁
𝑘=0

∞∑︁
𝑙=0

⎧⎪⎨⎪⎩
[︁
(−1)𝑘 + 1

]︁
(−1)−𝑘−𝑙

(︁√
2𝜎
𝜆

)︁−𝑘−2𝑙
Γ
(︁

𝑘+2𝑙+𝜇
𝜇

)︁
𝑙!
[︁
Γ
(︁

𝑘
2 + 1

)︁]︁2
× Γ

⎛⎝𝑘

2 + 1, 0,
[−𝜆𝜇 ln(𝑃FA)]2/𝜇

2𝜎2

⎞⎠⎫⎬⎭ . (6.27)

It is worth mentioning that (6.22)–(6.27) are also original contributions of this work,
proving to be highly efficient and computationally tractable, as illustrated in the next
section.

6.6 Sample Numerical Results

In this section, we validate our analytical results by means of Monte-Carlo
simulations.2 In addition, we compare our results with those in [13], which are approx-
imate, as explained in the Introduction. Here, (6.15) and (6.21) were computed using
MATHEMATICA’s built-in numerical integration.

Figs. 6.1 and 6.2 depict the analytical and simulated CDFs of 𝑍 under ℋ1, for
𝜇 < 2 and 𝜇 ≥ 2, respectively. The distribution parameters have been selected to show
the broad range of shapes that the CDFs can exhibit. Note the perfect match between
our analytical expressions and the simulation results.

Fig. 6.3 depicts 𝑃D as a function of 𝑃FA (analytical and simulated) for 𝜇 < 2. To
illustrate the validity of our expressions, we consider the following scenarios: (i) 𝜇 = 1.0,
𝜆 = 0.5, and 𝜎2 = 9.0; (ii) 𝜇 = 1.0, 𝜆 = 0.5, and 𝜎2 = 7.5; (iii) 𝜇 = 1.0, 𝜆 = 0.5,
and 𝜎2 = 6.5; and (iv) 𝜇 = 1.0, 𝜆 = 0.5, and 𝜎2 = 5.5. Once again, note the perfect
match between our analytical expressions and the simulation results. Also, note how
the approximation in [13] departs from the true performance as the target’s power (per
component) 𝜎2 is increased.
2 It is worth noting that the provided series converge quickly, requiring between 70 and 95 terms to

achieve an accuracy of 10−5. Besides, 107 system realizations were simulated for each sample scenario.
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Figure 6.3 – Simulated and analytical PDs for different values of 𝜇 < 2, 𝜆, and 𝜎2.
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Figure 6.4 – Simulated and analytical PDs for different values of 𝜇 ≥ 2, 𝜆, and 𝜎2.

Fig. 6.4 shows 𝑃D as a function of 𝑃FA (analytical and simulated) for 𝜇 ≥ 2.
Here, we consider the following scenarios: (i) 𝜇 = 2.2, 𝜆 = 1.2, and 𝜎2 = 10.3; (ii) 𝜇 = 2.2,
𝜆 = 1.2, and 𝜎2 = 7.29; (iii) 𝜇 = 2.2, 𝜆 = 1.2, and 𝜎2 = 4.84; and (iv) 𝜇 = 2.2, 𝜆 = 1.2, and
𝜎2 = 2.89. As before, note the perfect match between our analytical expressions and the
simulation results, and how the approximation in [13] departs from the true performance
as the target’s power (per component) 𝜎2 is increased.
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6.7 Conclusions

In this work, we derived a closed-form exact expression for the probability of
detection of a square-law radar receiver subject to an exponential target embedded in
Weibull clutter — a plausible scenario in modern radar systems. Our solution is given in
terms of the Fox H-function. Alternatively, we obtained a fast convergent series that can be
executed quickly on an ordinary desktop computer. Monte-Carlo simulations validated the
accuracy of our analytical expressions. Our exact approach avoided a common assumption
that the target has a small power as compared to the clutter, explored elsewhere as an
approximate solution.
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7 Contribution VI

This chapter is a replica of the paper below:

• F. D. A. García, A. S. Guerreiro, G. R. de Lima Tejerina, J. C. S. Santos Filho,
G. Fraidenraich, and M. D. Yacoub, “Doppler estimation for high-velocity targets
using subpulse processing and the Chinese remainder theorem”, IEEE Trans. Signal
Process., under review, 2021. This work was partially published in the Proceedigs
of the 53th IEEE Asilomar Conference on Signals, Systems, and Computers.
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Doppler Estimation for High-Velocity Targets
Using Subpulse Processing and the

Chinese Remainder Theorem

Fernando Darío Almeida García, André Saito Guerreiro, Gustavo Rodrigues de Lima
Tejerina, José Cândido S. Santos Filho, Gustavo Fraidenraich, and

Michel Daoud Yacoub

Abstract

In pulsed Doppler radars, the classic Chinese remainder theorem (CCRT) is a common
method to resolve Doppler ambiguities caused by fast-moving targets. Another issue con-
cerning high-velocity targets is related to the loss in the signal-to-noise ratio (SNR) after
performing range compression. In particular, this loss can be partially mitigated by the
use of subpulse processing (SP). Modern radars combine these techniques in order to
reliably unfold the target velocity. However, the presence of background noise may com-
promise the Doppler estimates. Hence, a rigorous statistical analysis is imperative. In this
work, we provide a comprehensive analysis on Doppler estimation. In particular, we derive
novel closed-form expressions for the probability of detection (PD) and probability of false
alarm (PFA). To this end, we consider the newly introduce SP along with the CCRT. A
comparison analysis between SP and the classic pulse processing (PP) technique is also
carried out. Numerical results and Monte-Carlo simulations corroborate the validity of
our expressions and show that the SP–plus–CCRT technique helps to greatly reduce the
PFA compared to previous studies, thereby improving radar detection.

7.1 Introduction

One important concern in modern pulsed radars is related to the Doppler
frequency estimation of fast-velocity targets. Due to the high target’s radial velocity,
ambiguous estimates are more likely to occur. More specifically, ambiguous estimates
appear whenever the target’s Doppler shift is greater than the pulse repetition frequency
(PRF) [1]. It seems obvious to think that increasing the PRF will overcome this problem.
However, if we are interested in detecting targets located at long distances, then the
PRF will be restricted to a maximum value. Therefore, the choice of PRF is a trade-off
between range and Doppler requirements [2]. Fortunately, there are some techniques that
can resolve ambiguities, although at the cost of extra measurement time and processing
load. These techniques make use of multiples PRFs [3, 4, 5, 6, 7]. The most known and
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used technique is the classic Chinese remainder theorem (CCRT). The CCRT is a fast and
accurate method to resolve the unambiguous Doppler frequency. This is accomplished by
solving a set of congruences, formed by the estimated measurements of each PRF [7, 8, 9].
Nevertheless, in this method, the number of PRFs will not be sufficient to resolve a certain
quantity of targets. In general, 𝐿 PRFs are required to successfully disambiguate 𝐿 − 1
targets. If the number of targets exceeds 𝐿−1, then ghosts can appear.1 Unless additional
data (e.g., tracking information) is available, the radar has no way of recognizing possible
false detections [4]. Care must be taken in the analysis and design since the number of
PRFs and the number of targets to be detected have a direct relationship.

Another issue concerning high-velocity targets is related to the signal-to-noise
ratio (SNR) loss. This occurs because the Doppler shift of fast-moving targets will provoke
a mismatch between the received signal and its replica [2]. Consequently, the SNR after
range compression may be drastically reduced.2 Some radar systems estimate and remove
the Doppler shift prior to applying range compression. Nonetheless, some residual or
uncompensated Doppler typically remains. This concern was partially alleviated in [11,
12]. Specifically, in [11], the authors proposed a subpulse processing (SP), which proved
to have a higher Doppler tolerance,3 increasing the ability to detect fast-moving targets.
The shortcomings of SP are computation time (critical for most radars), processing load,
and poor velocity resolution.

As stated before, the CCRT and SP have hardware and physical limitations
when it comes to estimating high target velocities. In practice, modern pulsed radars
take advantage of these two techniques so as to improve the system’s capability to ac-
curately detect the target’s true Doppler frequency. Since SP the CCRT are affected by
the presence of background noise, then a thorough statistical analysis involving these
two estimation techniques must be carried out. Recently in [14], the authors proposed
a novel expression for the probability to correctly estimate the unambiguous Doppler
frequency considering the CCRT and the common pulse processing (PP) technique [2].
However, to the best of our knowledge, there is no performance analysis considering the
SP–plus–CCRT technique.

The main objective of this research is to combine the statistical analysis con-
ducted in [14] along with the newly introduced SP and the CCRT. To do so, we adopt a
stochastic model that suits our Doppler estimation techniques. Then, we derive novel and
closed-form expressions for: i) the probability to correctly estimate the Doppler frequency,
1 Ghosts are false targets resulting from false coincidences of Doppler-ambiguous or range–ambiguous

data [4].
2 Range compression refers to the convolution operation between the received signal and the replica of

the transmitted signal [10].
3 Doppler tolerance refers to the degree of degradation in the compressed response due to uncompensated

Doppler [13].
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also called probability of detection (PD); and ii) the probability to erroneously estimate
the Doppler frequency, also called probability of false alarm (PFA).

In what follows, (𝑎)mod(𝑏) denotes the remainder of the euclidean division
of 𝑎 by 𝑏; |·|, absolute value; ⌊·⌋, floor operation; round(·), rounding operation; Pr [·],
probability; E(·), expectation; Var(·), variance; (·)*, complex conjugate; ⋂︀, intersection
of events; ⋃︀, union of events; 𝒩 (𝜇, 𝜎2) denotes a Gaussian distribution with mean 𝜇 and
variance 𝜎2; 𝒩𝑐(𝜇, 𝜎2) denotes a complex Gaussian distribution with mean 𝜇 and variance
𝜎2, and 𝑗 =

√
−1 is the imaginary unit.

7.2 Preliminaries

In this section, we present a brief introduction about the PP and SP techniques.
Latter, we describe the basis to understand the CCRT algorithm. Finally, we show how
the combined technique SP–plus–CCRT works in order to improve Doppler estimation.

7.2.1 Pulse Processing

PP is the common technique employed by the radar to estimate the target
velocity and improve the SNR. In this processing technique, the radar transmits a sequence
of 𝑀 pulses during a coherent processing interval (CPI) [15]. Then, range compression
is performed on each pulse to improve the radar’s range resolution. Finally, the discrete
Fourier transform (DFT) is applied along the slow-time samples to increase the SNR and
to estimate the target Doppler frequency [2]. These samples are collected at a rate equal
to the PRF. The maximum Doppler frequency shift that the radar manages to detect
using PP is Ψ𝑚𝑎𝑥 = ±PRF/2. If the target Doppler frequency, f𝑑, exceeds this value, then
the radar will deliver ambiguous Doppler measurements. The Doppler frequency shift will
be positive for closing targets and negative for receding targets. The target velocity, v𝑡,
and its corresponding Doppler shift are related by the following equation [16]:

f𝑑 = 2v𝑡f𝑅
c = 2v𝑡

𝜆
, (7.1)

where f𝑅 is the radar’s operation frequency, c is the speed of light, and 𝜆 is the radar
wavelength.

7.2.2 Subpulse Processing

SP improves Doppler tolerance by mitigating the loss in SNR caused by the
uncompensated Doppler shift of fast-moving targets [2, 11]. Moreover, SP is used to
overcome the problem of ambiguous Doppler measurements. The SP algorithm runs as
follows:
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1. First, the replica of the transmitted signal is divided into 𝑁 subpulses – unlike PP
that used the entire replica.

2. Latter, range compression is carried out between each subpulse and the received
signal (cf. [11, 12] for a detailed discussion on this). The use of shorter replicas
will enhance the system’s Doppler tolerance [10], increasing the detection capability
of fast-moving targets. Of course, this process leads to a reduction in the peak
amplitude of the sub-compression response (by a factor of 1/𝑁). Here, the slow-
time samples are collected at a rate of Φ = 𝑁/𝜏 , where 𝜏 is the pulse width. It is
important to emphasize that PP and SP are performed simultaneously, that is, for
each of the 𝑀 compressions, the radar carried out 𝑁 sub-compressions [12].

3. Finally, the slow-time samples are coherently integrated to estimate the target
Doppler frequency and to “restore” the peak amplitude of the sub-compression
response.

The number of subpulses can be chosen as high as needed, as long as it is taken into
consideration that each additional subpulse requires an extra range compression opera-
tion, increasing the computational load and computation time. The maximum Doppler
frequency shift that the radar can now manage to detect is Φ𝑚𝑎𝑥 = ±𝑁/2𝜏 [11]. Since
Φ𝑚𝑎𝑥 > Ψ𝑚𝑎𝑥, SP provides a higher frequency range of detection for fast-moving targets.

Computation time is critical for most radars and depends strongly on the
radar’s operation mode (e.g. tracking, searching or imaging), thereby limiting the number
of subpulses. Commonly, the number of subpulses is set between 5 and 10. However, this
small number yields to a poor discretization in the frequency domain and, consequently,
producing inaccurate estimates.

7.2.3 Classic Chinese Remainder Theorem

The use of multiples PRFs is a common approach to resolve range and Doppler
ambiguities [3, 8, 17, 4]. In this work, we only focus on solving Doppler ambiguities.
Consider for the moment a target with Doppler shift f𝑑 > Ψ𝑚𝑎𝑥. In this scenario, the
radar will detect the target with an apparent Doppler shift, f𝑑𝑎𝑝 , that satisfies

f𝑑 = f𝑑𝑎𝑝 + 𝑛PRF, (7.2)

where 𝑛 is some integer. It is convenience to express the target’s Doppler shift f𝑑 in terms
of its corresponding Doppler bin, 𝑏𝑑. Thus, (7.2) becomes

𝑏𝑑 = 𝑏𝑎𝑝 + 𝑛𝑀, (7.3)
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Figure 7.1 – Block diagram for Doppler estimation.

in which 𝑏𝑎𝑝 ∈ {0, 1, 2, . . . , 𝑀 − 1} is the apparent Doppler bin, defined as

𝑏𝑎𝑝 =
⌊︃⃒⃒⃒⃒
⃒ f𝑑𝑎𝑝

Δ𝐷

⃒⃒⃒⃒
⃒
⌋︃

, f𝑑𝑎𝑝 ≥ 0 (7.4)

𝑏𝑎𝑝 =𝑀 −
⌊︃⃒⃒⃒⃒
⃒ f𝑑𝑎𝑝

Δ𝐷

⃒⃒⃒⃒
⃒
⌋︃

, f𝑑𝑎𝑝 < 0 (7.5)

with Δ𝐷 = PRF/𝑀 being the Doppler bin spacing. Under this scenario, the radar is
incapable to detect the target’s true Doppler frequency.

Now, suppose that we have 𝐿 PRFs. Then, the unambiguous target’s Doppler
bin must satisfies the following congruences:

𝑏𝑑 ≡ 𝑏𝑎𝑝𝑖
+ 𝑛𝑖𝑀𝑖, 1 ≤ 𝑖 ≤ 𝐿 (7.6)

The CCRT states that if all PRFs are pairwisely coprimes, then the set of congruences
in (7.6) will have a unique solution given by [17, 4, 18]

𝑏𝑑 =
(︃

𝐿∑︁
𝑖=1

𝑏𝑎𝑝𝑖
𝛽𝑖

)︃
mod (Θ) , (7.7)

where Θ = ∏︀𝐿
𝑖=1 𝑀𝑖, 𝛽𝑖 = 𝑏𝑖Θ/PRF𝑖, and 𝑏𝑖 is the smaller integer which can be computed

by solving the following expression:(︃
𝑏𝑖Θ
𝑀𝑖

)︃
mod (𝑀𝑖) = 1. (7.8)

7.2.4 Doppler Estimation

Fig. 7.1 depicts the entire block diagram for Doppler estimation. First, the
received signal passes through two types of independent range compression blocks, one
for PP and one for SP. This process is performed in sequence for each pulse repetition
interval (PRI). The outputs of both blocks are combined and stored in memory to form a
datacube [2]. (The datacube’s data is organized by range, number of pulses, and number
of subpulses.) More datacubes are needed when using more than one PRF, as shown in
Fig. 7.1. Next, a 2D-DFT block is applied to each datacube to perform coherent inte-
gration. (The 2D-DFT block is referred to as a two-dimensional DFT applied along with
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pulses and subpulses.) Latter, the output of the 2D-DFT block is a matrix with the same
size containing the estimated Doppler shifts. This new matrix is referred to as Doppler
datacube. Finally, the CCRT is applied over the Doppler datacubes. This process will be
clarified in Section 7.5 by means of simulation.

Noise, jammer, and clutter are major concerns in all radar systems. In this
work, we consider the presence of additive complex white Gaussian noise (CWGN). Thus,
the Doppler spectrum of fast moving targets will be compromised due to the intrinsic
characteristics of noise. For example, a high noise power could mask small target re-
turns, degrading radar performance. Even if the target return is entirely deterministic,
the combined signal (target–plus–noise) is a random process and must be treated as such.
Therefore, we need to assess the statistics underlying Doppler analysis, but first, we need
to come up with a specific stochastic model that suits the requirements and design of our
radar’s estimation scheme. This is discussed in the next section.

7.3 System Model

In this section, we propose a stochastic model that fits our signal processing
schemes. In addition, we describe the premises (hypotheses) used for Doppler estimation.

According to Sections 7.2.1 and 7.2.2, the collected signals in the slow-time
domain corresponding to PP and SP can be expressed, respectively, as

𝑔1 [𝑚] =𝑠1 [𝑚] + 𝑤1 [𝑚]

=𝑎1 exp (𝑗2𝜋f𝑑𝑚/PRF) + 𝑤1 [𝑚] , 0 ≤ 𝑚 ≤ 𝑀 − 1 (7.9)

𝑔2 [𝑛] =𝑠2 [𝑛] + 𝑤2 [𝑛]

=𝑎2 exp (𝑗2𝜋f𝑑𝑛/Φ) + 𝑤2 [𝑛] , 0 ≤ 𝑛 ≤ 𝑁 − 1 (7.10)

where 𝑠1 [𝑚] and 𝑠2 [𝑛] are discrete complex sine signals4 originated by changes in the
target position; 𝑤1 [𝑚] and 𝑤2 [𝑛] are discrete additive complex Gaussian noises; and
finally, 𝑎1 and 𝑎2 are the amplitudes at the output of the matched filters. Depending
on the target velocity, the output amplitudes 𝑎1 and 𝑎2 maybe be greatly attenuated.
However, the attenuation in 𝑎2 is partially mitigated by the use of SP. In particular, it
follows that 𝑎2 > 𝑎1 for high-velocity targets [11]. Additionally, we define 2𝜎2

𝑡1 and 2𝜎2
𝑡2 as

the total mean powers – in the time domain – for 𝑤1 [𝑚] and 𝑤2 [𝑛], respectively. As seen
in practice, and due to the stationary characteristic of noise, we have that 𝜎2

𝑡1 = 𝜎2
𝑡2 [19].

However, we will remain using separate notations for 𝜎2
𝑡1 and 𝜎2

𝑡2 so as to distinguish the
4 In most systems, the radio frequency (RF) signal is mixed to baseband prior to compression, and

a coherent detector is used in the downconversion process to form in-phase (I) and quadrature (Q)
receive channels, thereby creating a complex baseband signal.
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noise power from PP and SP. Of course, these separate notations will not alter, in any
form, our performance analysis.

The SNR measured in the time domain considering PP and SP, can be ex-
pressed, respectively, as

SNR𝑡1 = |𝑎1|2

2𝜎2
𝑡1

(7.11)

SNR𝑡2 = |𝑎2/𝑁 |2

2𝜎2
𝑡2

. (7.12)

Observe in (7.12) that the fact of dividing the replica into 𝑁 subpulses causes a reduction
in the SNR by a factor of 1/𝑁2, as mentioned in Section 7.2.2.

The DFT is the primary operation to implement coherent integration. More
precisely, the DFT provides a mechanism to test multiple candidate frequencies to max-
imize the integration gain [2]. The corresponding DFTs for (7.9) and (7.10) are given,
respectively, by

𝐺1 [𝑘′] , F {𝑔1 [𝑚]}

=
𝑀−1∑︁
𝑚=0

𝑔1 [𝑚] exp (−𝑗2𝜋𝑘′𝑚/𝑀)

=𝑆1 [𝑘′] + 𝑊1 [𝑘′] , 0 ≤ 𝑘′ ≤ 𝑀 − 1 (7.13)

𝐺2 [𝑙′] , F {𝑔2 [𝑛]}

=
𝑁−1∑︁
𝑛=0

𝑔2 [𝑛] exp (−𝑗2𝜋𝑙′𝑛/𝑁)

=𝑆2 [𝑙′] + 𝑊2 [𝑙′] , 0 ≤ 𝑙′ ≤ 𝑁 − 1 (7.14)

The SNR measured in the frequency domain considering PP and SP, are given, respec-
tively, by [2, Eq. (17.37)]

SNR1 = |𝑀𝑎1|2

2𝜎2
1

(7.15)

SNR2 = |𝑎2|2

2𝜎2
2

, (7.16)

in which 𝜎2
1 = 𝑀𝜎2

𝑡1 and 𝜎2
2 = 𝑁𝜎2

𝑡1 are half of the noise powers – in the frequency domain
– for 𝑊1 [𝑘′] and 𝑊2 [𝑙′], respectively.

The Doppler estimates are based on the absolute values of 𝐺1 [𝑘′] and 𝐺2 [𝑙′].
That is, (7.13) and (7.14) will provide estimates for f𝑑, say f̂1 and f̂2, by searching 𝑘′ and
𝑙′, in which the absolute values of 𝐺1 [𝑘′] and 𝐺2 [𝑙′] are maximum. It is worth mentioning
that if Ψ𝑚𝑎𝑥 < f𝑑 and Φ𝑚𝑎𝑥 < f𝑑, then f̂1 and f̂2 will display ambiguous Doppler estimates.
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Now, considering 𝐿 PRFs (say, PRF1, . . . , PRF𝐿), we can define the absolute
values for 𝐺1 [𝑘′] and 𝐺2 [𝑙′] at the 𝑖-th PRF, respectively, as

𝐻1,𝑖 [𝑘′] ,|𝐺1,𝑖 [𝑘′] | 0 ≤ 𝑘′ ≤ 𝑀𝑖 − 1 (7.17)

𝐻2,𝑖 [𝑙′] ,|𝐺2,𝑖 [𝑙′] | 0 ≤ 𝑙′ ≤ 𝑁𝑖 − 1 (7.18)

where the subscript 𝑖 ∈ {1, . . . , 𝐿} denotes the association to the 𝑖-th PRF.

Herein, we assume that 𝐺1,𝑖 [𝑘′] is composed of 𝑀𝑖 −1 independent and identi-
cally distributed noise samples and one target–plus–noise sample, denoted as 𝒢1,𝑖. On the
other hand, 𝐺2,𝑖 [𝑙′] is composed of 𝑁𝑖 − 1 independent and identically distributed noise
samples and one combined sample, denoted as 𝒢2,𝑖. The target–plus–noise samples 𝒢1,𝑖

and 𝒢2,𝑖 can be modeled, respectively, by [20, Eq. (1)]

𝒢1,𝑖 =𝜎1,𝑖

(︁√︁
1 − 𝜆2

1,𝑖𝐴1,𝑖 + 𝜆1,𝑖𝐴0,𝑖

)︁
+ 𝑗𝜎1,𝑖

(︁√︁
1 − 𝜆2

1,𝑖𝐵1,𝑖 + 𝜆1,𝑖𝐵0,𝑖

)︁
(7.19)

𝒢2,𝑖 =𝜎2,𝑖

(︁√︁
1 − 𝜆2

2,𝑖𝐴2,𝑖 + 𝜆2,𝑖𝐴0,𝑖

)︁
+ 𝑗𝜎2,𝑖

(︁√︁
1 − 𝜆2

2,𝑖𝐵2,𝑖 + 𝜆2,𝑖𝐵0,𝑖

)︁
, (7.20)

where 𝐴𝑝,𝑖 and 𝐵𝑝,𝑖 (𝑝 = 1, 2) are mutually independent random variables (RVs) dis-
tributed as 𝒩 (0, 1

2), and 𝜆𝑝,𝑖, ∈ (0, 1]. Then, for any 𝑝 and 𝑞 (𝑞 = 1, 2), it follows
that E(𝐴𝑝,𝑖𝐵𝑞,𝑖) = 0 and E(𝐴𝑝,𝑖𝐴𝑞,𝑖) = E(𝐵𝑝,𝑖𝐵𝑞,𝑖) = 1

2𝛿𝑝𝑞. (𝛿𝑝𝑞 = 1 if 𝑝 = 𝑞, and
𝛿𝑝𝑞 = 0 otherwise.) In addition, 𝐴0,𝑖 and 𝐵0,𝑖 are mutually independent RVs distributed as
𝒩 (𝑚Re,𝑖,

1
2) and 𝒩 (𝑚Im,𝑖,

1
2), respectively. Thus, 𝒢1,𝑖 and 𝒢2,𝑖 are non-zero mean com-

plex Gaussian RVs with probability density functions (PDFs) given, respectively, by
𝒩𝑐(𝜆1,𝑖(𝑚Re,𝑖 + 𝑗𝑚Im,𝑖), 𝜎2

1,𝑖) and 𝒩𝑐(𝜆2,𝑖(𝑚Re,𝑖 + 𝑗𝑚Im,𝑖), 𝜎2
2,𝑖). The correlation coefficient

between any pair of (𝒢1,𝑖, 𝒢2,𝑖), can be calculated as [20, Eq. (2)]

𝜌𝑘𝑙,𝑖 ,
E(𝒢1,𝑖𝒢*

2,𝑖) − E(𝒢1,𝑖)E(𝒢*
2,𝑖)√︁

Var(𝒢1,𝑖)Var(𝒢2,𝑖)

=𝜆1,𝑖𝜆2,𝑖. (7.21)

This correlation exists because both PP and SP use the same received signal when
performing range compression [2]. Observe that the parameters 𝜆2

1,𝑖, 𝜆2
2,𝑖, 𝑚Re,𝑖 and

𝑚Im,𝑖 can be used to model the compressed responses |𝑀𝑖𝑎1,𝑖|2 and |𝑎2,𝑖|2. This can be
done by making the following substitutions: |𝑀𝑖𝑎1,𝑖|2 = 𝜆2

1,𝑖(𝑚2
Re,𝑖 + 𝑚2

Im) and |𝑎2,𝑖|2 =
𝜆2

2,𝑖(𝑚2
Re,𝑖 + 𝑚2

Im). On the other hand, 𝜆1,𝑖 and 𝜆2,𝑖 can be chosen to meet a desire corre-
lation coefficient.

By the above, it follows that 𝐻1,𝑖 [𝑘′] is composed of 𝑀𝑖−1 Rayleigh distributed
samples, denoted as 𝑋𝑘,𝑖 (𝑘 ∈ {1, 2, . . . , 𝑀𝑖 − 1}), and one Rice distributed sample, de-
noted as 𝑅1,𝑖. Similarly, 𝐻2,𝑖 [𝑙′] is composed of 𝑁𝑖 − 1 Rayleigh distributed samples,
denoted as 𝑌𝑙,𝑖 (𝑙 ∈ {1, 2, . . . , 𝑁𝑖 − 1}), and one Rice distributed sample, denoted as 𝑅2,𝑖.
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The PDFs of 𝑋𝑘,𝑖 and 𝑌𝑙,𝑖 are given, respectively, by

𝑓𝑋𝑘,𝑖
(𝑥𝑘,𝑖) =

𝑥𝑘,𝑖 exp
(︂

− 𝑥2
𝑘,𝑖

2𝜎2
𝑘,𝑖

)︂
𝜎𝑘,𝑖

(7.22)

𝑓𝑌𝑙,𝑖
(𝑦𝑙,𝑖) =

𝑦𝑙,𝑖 exp
(︂

− 𝑦2
𝑙,𝑖

2𝜎2
𝑙,𝑖

)︂
𝜎𝑙,𝑖

. (7.23)

Moreover, since 𝑅1,𝑖 and 𝑅2,𝑖 bear a certain degree of correlation, they are governed by a
bivariate Rician distribution, given by [20, 21]

f𝑅1,𝑖,𝑅2,𝑖
(𝑟1,𝑖, 𝑟2,𝑖|ℋ1) =

∫︁ ∞

0
exp (−𝑡𝜉𝑖) exp (−m𝑖) 𝐼0

(︁
2
√

m𝑖𝑡
)︁ 2∏︁

𝑝=1

𝑟𝑝,𝑖

Ω2
𝑝,𝑖

× exp
(︃

−
𝑟2

𝑝,𝑖

2Ω2
𝑝,𝑖

)︃
𝐼0

⎛⎝𝑟𝑝,𝑖

√︁
𝑡𝜎2

𝑝,𝑖𝜆
2
𝑝,𝑖

Ω2
𝑝,𝑖

⎞⎠ d𝑡, (7.24)

where 𝐼0(·) is the modified Bessel function of the first kind and order zero [22, Eq. (9.6.16)],
m𝑖 = 𝑚2

Re,𝑖 + 𝑚2
Im,𝑖, and

Ω2
𝑝,𝑖 = 𝜎2

𝑝,𝑖

(︃
1 − 𝜆2

𝑝,𝑖

2

)︃
(7.25a)

𝜉𝑖 = 1 +
2∑︁

𝑝=1

𝜎2
𝑝,𝑖𝜆

2
𝑝,𝑖

2Ω2
𝑝,𝑖

. (7.25b)

7.4 Doppler Analysis

In this section, we provide a comprehensive statistical analysis on Doppler
estimation. To do so, we derive the performance metrics for both SP and SP–plus–CCRT.

7.4.1 SP Analysis

First, let us define the following events:

𝒜𝑘,𝑖 = {𝑅1,𝑖 > 𝑋𝑘,𝑖} (7.26)

ℬ𝑙,𝑖 = {𝑅2,𝑖 > 𝑌𝑙,𝑖} (7.27)

𝒞𝑘,𝑖 = {𝑋𝑘,𝑖 > 𝑅1,𝑖} (7.28)

𝒟𝑙,𝑖 = {𝑌𝑙,𝑖 > 𝑅2,𝑖} . (7.29)

Proposition I. Let PD𝑖 be the probability of detection at the 𝑖-th PRF. Specifically, PD𝑖

is defined as the probability that 𝑅1,𝑖 is greater than 𝑋𝑘,𝑖 and, simultaneously, that 𝑅2,𝑖 is
greater than 𝑌𝑙,𝑖, i.e.,

PD𝑖 , Pr
⎡⎣⎛⎝𝑀𝑖−1⋂︁

𝑘=1
𝒜𝑘,𝑖

⎞⎠⋂︁⎛⎝𝑁𝑖−1⋂︁
𝑙=1

ℬ𝑙,𝑖

⎞⎠⎤⎦ . (7.30)
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Then, from (7.22)–(7.24), (7.30) can be expressed in closed form as

PD𝑖 =
𝑀𝑖−1∑︁
𝑘=0

𝑁𝑖−1∑︁
𝑙=0

⎛⎝ 𝑀𝑖 − 1
𝑘

⎞⎠⎛⎝ 𝑁𝑖 − 1
𝑙

⎞⎠ (−1)−𝑘−𝑙+𝑀𝑖+𝑁𝑖𝒱𝑖(𝑘, 𝑙)
𝒰𝑖(𝑘, 𝑙) exp

(︃
−m𝑖 + m𝑖

𝒰𝑖(𝑘, 𝑙)

)︃
,

(7.31)

wherein 𝒰𝑖(𝑘, 𝑙) and 𝒱𝑖(𝑘, 𝑙) are auxiliary functions defined, respectively, as

𝒰𝑖(𝑘, 𝑙) = 𝜉𝑖 −
𝜉𝑖𝜆

2
1,𝑖𝜎

4
1,𝑖

2Ω2
1,𝑖

(︁
Ω2

1,𝑖(𝑘 − 𝑀𝑖 + 1) − 𝜎2
1,𝑖

)︁ −
𝜉𝑖𝜆

2
2,𝑖𝜎

4
2,𝑖

2Ω2
2,𝑖

(︁
Ω2

2,𝑖(𝑙 − 𝑁𝑖 + 1) − 𝜎2
2,𝑖

)︁ (7.32a)

𝒱𝑖(𝑘, 𝑙) =
𝜎2

1,𝑖𝜎
2
2,𝑖(︁

Ω2
1,𝑖(−𝑘 + 𝑀𝑖 − 1) + 𝜎2

1,𝑖

)︁ (︁
Ω2

2,𝑖(−𝑙 + 𝑁𝑖 − 1) + 𝜎2
2,𝑖

)︁ . (7.32b)

Proof. See Appendix D.1. �

Corollary I. Let PFA𝑖 be the probability of false alarm at the 𝑖-th PRF. More precisely,
PFA𝑖 is defined as the probability that at least one of 𝑋𝑘,𝑖 is greater than 𝑅1,𝑖 and, simul-
taneously, that at least one of 𝑌𝑙,𝑖 is greater than 𝑅2,𝑖, i.e.,

PFA𝑖 , Pr
⎡⎣𝑀𝑖−1⋃︁

𝑘=1

𝑁𝑖−1⋃︁
𝑙=1

(︁
𝒞𝑘,𝑖

⋂︁
𝒟𝑙,𝑖

)︁⎤⎦ . (7.33)

Then, from (7.22)–(7.24), (7.33) can be written in closed form as

PFA𝑖 =(𝑀𝑖 − 1) (𝑁𝑖 − 1) 𝒬𝑖 (1, 1)
𝒫𝑖 (1, 1) exp

(︃
−m𝑖 + m𝑖

𝒫𝑖 (1, 1)

)︃
−
(︃

𝑀𝑖 − 1
2

)︃(︃
𝑁𝑖 − 1

2

)︃

× 𝒬𝑖 (2, 2)
𝒫𝑖 (2, 2) exp

(︃
−m𝑖 + m𝑖

𝒫𝑖 (2, 2)

)︃
+ · · · + (−1)𝑀𝑖−𝑁𝑖−1 𝒬𝑖 (𝑀𝑖 − 1, 𝑁𝑖 − 1)

𝒫𝑖 (𝑀𝑖 − 1, 𝑁𝑖 − 1)

× exp
(︃

−m𝑖 + m𝑖

𝒫𝑖 (𝑀𝑖 − 1, 𝑁𝑖 − 1)

)︃
(7.34)

where 𝒫𝑖 (𝑘, 𝑙) and 𝒬𝑖 (𝑘, 𝑙) are auxiliary functions defined, respectively, by

𝒫𝑖 (𝑘, 𝑙) = 𝜉𝑖 −
𝜆2

1,𝑖𝜎
4
1,𝑖

2Ω2
1,𝑖

(︁
𝑘 Ω2

1,𝑖 + 𝜎2
1,𝑖

)︁ −
𝜆2

2,𝑖𝜎
4
2,𝑖

2Ω2
2,𝑖

(︁
𝑙 Ω2

2,𝑖 + 𝜎2
2,𝑖

)︁ (7.35a)

𝒬𝑖 (𝑘, 𝑙) =
𝜎2

1,𝑖𝜎
2
2,𝑖(︁

𝑘 Ω2
1,𝑖 + 𝜎2

1,𝑖

)︁ (︁
𝑙 Ω2

2,𝑖 + 𝜎2
2,𝑖

)︁ . (7.35b)

Proof. See Appendix D.2. �

It is worth mentioning that (7.31) and (7.34) are novel and original contribu-
tions of this work, derived in closed form even though (7.24) is given in integral form.
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7.4.2 SP–Plus–CCRT Analysis

Similar to [14], we assume that each individual pulse on each sweep results in
an independent random value for the target returns.

Now, using (7.31) and taking into account the ℳ–of–𝐿 detection criterion,5

the probability of detection for the combined technique SP–plus–CCR can be calculated
as follows [23]

PDCCRT ,
𝐿∑︁

𝑙=ℳ

∑︁
ℰ∈ℱ𝑙

⎧⎨⎩
(︃∏︁

𝑖∈ℰ
PD𝑖

)︃⎛⎝∏︁
𝑗∈ℰ𝑐

(1 − PD𝑗)
⎞⎠⎫⎬⎭ , (7.36)

where ℱ𝑙 is the set of all subsets of 𝑙 integers that can be selected from {1, 2, . . . , 𝐿}, and ℰ𝑐

is the complement of ℰ . For example, if 𝑙 = 2 and 𝐿 = 3, then ℱ2 = {{1, 2} , {1, 3} , {2, 3}},
and ℰ𝑐 = {1, 2, . . . , 𝐿} ∖ℰ .

On the other hand, the probability of false alarm for the combined technique
SP–plus-CCRT can be calculated as [23]

PFACCRT ,
𝐿∑︁

𝑙=ℳ

∑︁
ℰ∈ℱ𝑙

⎧⎨⎩
(︃∏︁

𝑖∈ℰ
PFA𝑖

)︃⎛⎝∏︁
𝑗∈ℰ𝑐

(1 − PFA𝑗)
⎞⎠⎫⎬⎭ . (7.37)

For the case where ℳ = 𝐿, (7.36) and (7.37) reduce, respectively, to

PDCCRT =
𝐿∏︁

𝑖=1
PD𝑖 (7.38)

PFACCRT =
𝐿∏︁

𝑖=1
PFA𝑖. (7.39)

7.5 Numerical Results

In this section, we illustrate through Figs. 7.2 and 7.3 how the Doppler esti-
mation process is carried out. Latter, we validate our derived expressions by means of
Monte-Carlo simulations6. To do so, we make use of the following radar setup: PRF1 =
700 [Hz], PRF2 = 1100 [Hz], PRF3 = 1300 [Hz], PRF4 = 1700 [Hz], 𝐿 = ℳ = 4,
f𝑅 = 6 [GHz], 𝜏 = 25 [𝜇𝑠], 𝜆 = 0.05 [m], 𝑀1 = 11, 𝑀2 = 13, 𝑀3 = 17, 𝑀4 = 19, and
𝑁𝑖 = 8 ∀𝑖 ∈ {1, 2, 3, 4}. In addition, we consider a linear frequency-modulated pulse with
bandwidth 𝐵 = 2 [MHz].

Figs. 7.2 and 7.3 illustrate the output data after the 2D-DFT blocks. In this
simulation example, we placed a target at an initial range of 10 [Km], traveling with a
5 Instead of detecting a target on the basis of at least one detection in 𝐿 tries, system designers often

require that some number ℳ or more detections be required in 𝐿 tries before a target detection is
accepted [2].

6 The number of realizations in Monte-Carlo simulations was set to 106.
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Figure 7.2 – Velocity versus range: normalized output data using pulse information.

constant velocity of v𝑡 = 300 m/s in the opposite direction of the radar (i.e., the target is
receding).

Fig. 7.2 shows the normalized output data – Velocity vs Range – using only
pulse information. Observe that in all 4 scenarios, the target at 10 [Km] is unlikely to
be detected due to the high loss in SNR. On the other hand, Fig. 7.3 shows the normal-
ized output data – Velocity vs Range – using subpulse information. Fig. 7.4 shows the
normalized output data – Velocity vs Range – using SP. Observe that the loss in SNR is
partially mitigated by means of SP. Therefore, the target located at 10 [Km] can now be
easily be detect without further processing. At last, Fig. 7.4 shows the combined pulse
and subpulse information. Note in Fig. 7.4 that SP provides a better intuition about the
target location, but due to its poor discretization, it is not sufficient to determine the
exact velocity. Conversely, PP provides a better discretization but, unfortunately, its ve-
locity estimation is more likely to be ambiguous. Thus, by combining SP and the CCRT,
we provide the system a high capability to unfold the target’s true velocity.

Fig. 7.5 shows PD𝑖 versus SNR1 using different values of 𝑀𝑖. Note how radar
performance improves as 𝑀𝑖 increases, requiring a lower SNR for a given PD. This is
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Figure 7.3 – Velocity versus range: normalized output data using subpulse information.

because when increasing 𝑀𝑖, we are, in fact, increasing the compressed response of PP
by means of coherent integration. In particular, for a fixed SNR1 = 10 [dB], we obtain
the following probabilities of detection: PD1 = 0.66 for 𝑀1 = 7; PD2 = 0.78 for 𝑀2 = 11;
PD3 = 0.85 for 𝑀3 = 13; and PD4 = 0.93 for 𝑀4 = 17. Also, observe that for the high
and medium SNR regime, our derived expression matches perfectly the PD of [14, Eq.
(28)]. Nevertheless, there is a small difference in the PD for the low-SNR regime. This
occurs because if the compressed response of PP is less than the background noise, then
the intersection probability in (7.30) will be less than the probability of ⋂︀𝑀𝑖−1

𝑘=1 𝒜𝑘,𝑖 . For
example, given SNR1 = 4 [dB] and 𝑀1 = 7, we obtain PD1 = 0.15 with our proposed SP–
plus–CCRT technique, and PD1 = 0.18 with [14, Eq. (28)]. However, this small reduction
in the PD is compensated by a greater reduction in the PFA, as shall be seen next.

Fig. 7.6 shows PFA𝑖 versus SNR1 using different values for 𝑀𝑖. Observe how
PFA𝑖 decreases as 𝑀𝑖 increases. This occurs because as we increase 𝑀𝑖, the received
target echo becomes stronger compared to the noise background. For example, for a fixed
SNR1 = 5 [dB], we obtain the following probabilities of false alarm: PFA1 = 0.83 for
𝑀1 = 7; PFA2 = 0.77 for 𝑀2 = 11; PFA3 = 0.73 for 𝑀3 = 13; and PFA4 = 0.60 for
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Figure 7.4 – Combined subpulse and pulse information.
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Figure 7.5 – PD𝑖 vs SNR1 using 𝑁𝑖 = 8, 𝜆1,𝑖 = 0.5, 𝜆2,𝑖 = 0.99, and different values of 𝑀𝑖

(𝑖 ∈ {1, 2, 3, 4}).



Chapter 7. Contribution VI 131

○
○

○
○

○
○
○
○
○
○
○
○
○
○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

○
○

○
○

○
○
○
○
○
○
○
○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

○

○

○

○

○

○
○
○
○
○
○
○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

○

○

○

○

○

○
○
○
○
○
○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○

��= ����=�

��=�����=�

��=�����=�

��=�����=�

����������� ��� (����)

-- ���������� [��]

○ ���������

� � �� �� ��
���

���

���

���

���

���

���� [��]

�
�
�
�

Figure 7.6 – PMD𝑖 vs SNR1 using 𝑁𝑖 = 8, 𝜆1,𝑖 = 0.5, 𝜆2,𝑖 = 0.99, and different values of
𝑀𝑖 (𝑖 ∈ {1, 2, 3, 4}).
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Figure 7.7 – PDCCRT vs SNR1 using 𝑁𝑖 = 8, 𝜆1,𝑖 = 0.5, 𝜆2,𝑖 = 0.99, ℳ = 4, and different
values of 𝑀𝑖 (𝑖 ∈ {1, 2, 3, 4}).

𝑀4 = 17. More interesting, observe how PFA𝑖 decays rapidly compared to [14]. This
difference in PFA𝑖 is because intuitively SP acts as a backup detection process. That
is, since the compressed response of SP is greater of the PP response (for high-velocity
targets), then the probability in (7.33) is lower than the probability of

𝑀𝑖−1⋃︀
𝑘=1

𝒞𝑘,𝑖 . For
example, using the classic PP technique [14], we obtain the following probabilities of false
alarm: PFA1 = 0.96 for 𝑀1 = 7; PFA2 = 0.97 for 𝑀2 = 11; PFA3 = 0.98 for 𝑀3 = 13;
and PFA4 = 0.99 for 𝑀3 = 17.
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Figure 7.8 – PMDCCRT vs SNR1 using 𝑁𝑖 = 8, 𝜆1,𝑖 = 0.5, 𝜆2,𝑖 = 0.99, ℳ = 4, and
different values of 𝑀𝑖 (𝑖 ∈ {1, 2, 3, 4}).

Finally, Figs. 7.7 and 7.8 show PDCCRT and PFACCRT versus SNR1, respec-
tively. Observe in Fig. 7.7, the perfect agreement between (7.36) and [14, Eq. (29)]. Hence,
in this case, we have no advantage when using SP–plus–CCRT. On the other hand, ob-
serve in Fig. 7.8, the high difference in the PFA between of (7.37) and that in [14]. In
this case, the use of SP–plus–CCRT improves radar performance by considerably reduc-
ing the false alarms. For instance, for given SNR1 = 2 [dB], we obtain probabilities of
PFACCRT = 0.94 using PP–plus–CCRT, and PFACCRT = 0.54 using SP–plus–CCRT.

7.6 Conclusion

In this work, we provided a thorough statistical analysis on Doppler estimation
when both SP and the CCRT were employed. To do so, we derived novel and closed-form
expressions for the PD and PFA. Moreover, a comparison analysis between our proposed
SP–plus–CCRT technique and the classic PP–plus–CCRT was carried out. Numerical
results and Monte-Carlo simulations corroborated the validity of our expressions and
showed that the PFA when using SP–plus–CCRT technique was greatly reduced compared
to [14], thereby enhancing radar detection.
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8 Conclusions and Future Directions

This chapter highlights the main contributions of this dissertation and suggests
possible directions for future related works.

8.1 Concluding Remarks

In this dissertation, we tackled three main aspects in the field of radar systems:
(i) detection of distributed and point-like targets embedded in CWGN; (ii) radar perfor-
mance in the presence of Weibull-distributed ground clutter; and (iii) Doppler estimation
for high-velocity targets in background Gaussian noise.

In the first part of this dissertation (Chapters 2–4), we focused on the design
and evaluation of optimal and suboptimal detectors for both distributed and point-like
targets. For the case of distributed targets, we designed and analyzed an optimal detector
by making use of the LRT framework (i.e., assuming known distribution parameters).
Here, the decision on whether a distributed target is present or absent capitalized on the
degree of correlation between the signal samples collected by a linear phased-array radar.
For comparison purposes, a suboptimal detector using a regular phased-array approach
was also derived and analyzed. For the case of point-like targets, we assessed the standard
detection problem of weak signals in background noise and provided two important contri-
butions. First, we derived alternative representations for the PD of a phased array radar
operating with non-fluctuating targets embedded in CWGN. Second, we designed and an-
alyzed a new GLRT detector (i.e., under unknown distribution parameters). The detection
was carried out after a beamforming operation. This particular feature allows this detector
to enjoy lower demands on hardware, processing, and data storage than traditional GLRT
detectors. The PFA and PD were also obtained in closed form. A series representation
for the PD was also derived. It was shown that, in the low-SNR regime, the proposed
post-beamforming GLRT detector outperforms both the classic pre-beamforming GLRT
detector and the brute-force square-law detector. It was also shown that the PFA of the
post-beamforming GLRT detector is independent of the number of antennas, which allows
for tuning the PD while maintaining a fixed PFA.

In the second part of this dissertation (Chapters 5 and 6), we investigated the
radar performance over Weibull-distributed ground clutter. With this aim, we provided
highly accurate approximations and exact solutions for the PD and PFA of a square-law
detector operating in homogeneous Weibull clutter environments. In passing, we obtained
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the exact and approximate PDF and CDF of the sum statistics that govern the output
of a square-law detector. Besides, a complete CA-CFAR analysis was carried out by con-
sidering that the clutter residues and target returns lie within the CUT. All metrics were
obtained in terms of both closed-form solutions and series representations. The closed-
form solutions capitalized on the Fox H-function, whereas the series representations were
obtained by performing a thorough calculus of residues.

Finally, in the third part of this dissertation (Chapter 7), we provided a com-
plete statistical analysis for the Doppler estimation of high-velocity targets. To do so, we
made use of the combined technique CCRT–plus–SP. This technique intends to mitigate
the SNR loss caused by the mismatch between the received signal and its replica, as well as
to resolve Doppler ambiguities that appear whenever the target’s Doppler shift is greater
than the PRF. The PD and PFA were derived in closed form when the CCRT–plus–SP
scheme is applied. It was shown that the performance of the CCRT–plus–SP scheme is
superior to that of the classic PP scheme, rendering a remarkable reduction in the PFA.

Exhaustive numerical results and Monte-Carlo simulations were used to vali-
dated the analytical contributions in this dissertation.

8.2 Future Directions

Some possible directions for future related works are summarized next.

1. An immediate direction to be followed would be to carry out a comprehensive anal-
ysis for distributed target (e.g., clouds and precipitation) detection using our post-
beamforming GRLT-based approach.

2. Another direction would be to complete the post-beamforming GRLT-based de-
tection analysis carried out in Chapter 4 for some fluctuating target models, e.g.,
Swerling I and II.

3. A third direction would be to extend the CA-CFAR analysis carried out in Chapter 5
to other types of CFAR detectors, such as GOCA-CFAR and SOCA-CFAR. As done
in that chapter, one may consider the presence of clutter residues and target returns
within the CUT.

4. A last direction would be to perform a thorough statistical analysis as in Chapter 7,
but using instead the so-called Robust Chinese Remainder Theorem (RCRT), which
has a better response to small measurement errors.
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APPENDIX B – Supporting Material for
Chapter 4

B.1 Proof of Lemma 1

Let us define the following RV

ℐ3 ,
1

𝑁𝜎2

𝑀∑︁
𝑘=1

(Re [𝑟𝑘] − 𝜇𝑋)2 , (B.1)

where 𝜇𝑋 is the total sum of the target echoes for the in-phase components.

Rewriting (D.4), we have

ℐ3 =
𝑀∑︁

𝑘=1

(︃
Re [𝑟𝑘] − 𝜇𝑋√

𝑁𝜎

)︃2

. (B.2)

It can be noticed that ℐ3 is a sum of the squares of 𝑀 standard Gaussian (zero mean
and unit variance) RVs. Therefore, ℐ3 can be modeled by a CCS RV with 𝑀 degrees of
freedom.

Now, after performing some manipulations, we can rewrite (B.2) as

ℐ3 =
𝑀∑︁

𝑘=1

(︃
Re [𝑟𝑘] − 𝜇̂𝑋√

𝑁𝜎
+ 𝜇̂𝑋 − 𝜇𝑋√

𝑁𝜎

)︃2

(𝑎)=
𝑀∑︁

𝑘=1

(︃
Re [𝑟𝑘] − 𝜇̂𝑋√

𝑁𝜎

)︃2

+ 2
(︃

𝜇̂𝑋 − 𝜇𝑋√
𝑁𝜎

)︃

×
(︃∑︀𝑀

𝑘=1 Re [𝑟𝑘] − 𝑀𝜇̂𝑋√
𝑁𝜎

)︃
+

𝑀∑︁
𝑘=1

(︃
𝜇̂𝑋 − 𝜇𝑋√

𝑁𝜎

)︃2

(𝑏)=
𝑀∑︁

𝑘=1

(︃
Re [𝑟𝑘] − 𝜇̂𝑋√

𝑁𝜎

)︃2

⏟  ⏞  
, ℐ4

+
(︃

𝜇̂𝑋 − 𝜇𝑋√
𝑁𝜎/𝑀

)︃2

⏟  ⏞  
, ℐ5

, (B.3)

where in step (b) we use the fact that 𝑀𝜇̂𝑋 = ∑︀𝑀
𝑘=1 Re [𝑟𝑘] and, consequently, the second

term in step (a) vanishes. Observe that ℐ5 represents the square of a standard Gaussian
variable and, therefore, can be modeled by a CCS distribution with one degree of freedom.

Employing the additivity property of the CCS distribution [2] and taking into
account the distributions of ℐ3 and ℐ5, we can now describe ℐ4 by a CCS RV with 𝑀 − 1
degrees of freedom. Also, observe that ℐ4 is just the first term of (4.22).

Following the same approach, it can be prove that the second term in (4.22)
also follows a CCS distribution with 𝑀 − 1 degrees of freedom. Since ℐ2 is formed by
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the sum of two CCS RVs, then its distribution is governed by a CCS RV with 2(𝑀 − 1)
degrees of freedom, which completes the proof. It is worth mentioning that this result
remains true regardless of the hypothesis, because any value of 𝜇𝑋 or 𝜇𝑌 will not affect
the distribution of ℐ2.

B.2 Proof of Lemma 2

Let

𝑃1 = L
(︁
L𝑇 L

)︁−1
L𝑇 = 1

𝑀
L L𝑇 (B.4)

𝑃2 = I − 𝑃1 = I − 1
𝑀

L L𝑇 (B.5)

be symmetric and idempotent matrices such that rank (𝑃1) = L, rank (𝑃2) = 𝑀 − 1 and
𝑃1 + 𝑃2 = I, where I ∈ N𝑀×𝑀 represents the identity matrix and L = [1, 1, · · · , 1]𝑇 ∈ N𝑀

is the unitary vector. In addition, let

Re [𝑟] = [Re [𝑟1] , Re [𝑟2] , · · · , Re [𝑟𝑀 ]]𝑇 (B.6)

be a random vector with E [Re [𝑟]] = 𝜇𝑋L and COV [Re [𝑟]] = 𝑁𝜎2I. Then, the Cochran’s
Theorem [3] states that

𝜔1 =Re [𝑟]𝑇 𝑃1 Re [𝑟]
𝑁𝜎2 (B.7)

𝜔2 =Re [𝑟]𝑇 𝑃2 Re [𝑟]
𝑁𝜎2 (B.8)

are independently distributed.

Now, replacing (B.4) in (B.7), we have

𝜔1 = 1
𝑁𝜎2 Re [𝑟]𝑇

(︂ 1
𝑀

L L𝑇
)︂

Re [𝑟]

= 1
𝑀𝑁𝜎2 Re [𝑟]𝑇 L L𝑇 Re [𝑟]

= 1
𝑀𝑁𝜎2

(︃
𝑀∑︁

𝑘=1
Re [𝑟𝑘]

)︃2

. (B.9)

Similarly, inserting (B.5) in (B.8), we have

𝜔2
(𝑎)= 1

𝑁𝜎2 Re [𝑟]𝑇 𝑃 𝑇
2 𝑃2Re [𝑟]

= 1
𝑁𝜎2 ‖𝑃2Re [𝑟]‖2

(𝑏)= 1
𝑁𝜎2

⃦⃦⃦⃦(︂
I − 1

𝑀
L L𝑇

)︂
Re [𝑟]

⃦⃦⃦⃦2

(𝑐)= 1
𝑁𝜎2 ‖Re [𝑟] − L𝜇̂𝑋‖2

(𝑑)= 1
𝑁𝜎2

𝑀∑︁
𝑘=1

(Re [𝑟𝑘] − 𝜇̂𝑋)2 , (B.10)
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where in step (a), we have used the definition of idempotent and symmetric matrices [4],
in step (b), we have used (B.5), in step (c), we have employed (4.11), and in step (d), we
have used (B.6) and applied the Euclidean norm. Observe that 𝜔1 and 𝜔2 are the first
terms of (4.21) and (4.22), respectively. The same approach can also be applied to prove
the independence between the second terms. Finally, since Re [𝑟𝑘] and Im [𝑟𝑘] are also
independent statistics (cf. Section 4.3.1), then ℐ1 and ℐ2 are mutually independent RVs,
which completes the proof.

B.3 Derivation of (4.25)

To prove (4.25), we make use of the doubly noncentral F-distribution, defined
as [5]

f𝑍 (𝑧|ℋ1) =
∞∑︁

𝑘=0

∞∑︁
𝑙=0

𝑧−1 exp
[︁

−𝜆1−𝜆2
2

]︁ (︁
𝛼1𝑧

𝛼1𝑧+𝛼2

)︁ 𝛼1
2
(︁

𝛼2
𝛼1𝑧+𝛼2

)︁𝛼2
2
(︁

𝜆1𝛼1𝑧
2(𝛼1𝑧+𝛼2)

)︁𝑘 (︁
𝜆2𝛼2

2(𝛼1𝑧+𝛼2)

)︁𝑙

𝑘! 𝑙! 𝐵
(︁
𝑘 + 𝛼1

2 , 𝑙 + 𝛼2
2

)︁
(B.11)

Rearranging some terms, and after applying [6, Eq. (07.20.02.0001.01)], (B.11) simplifies
to

f𝑍 (𝑧|ℋ1) =𝑧−1 exp
[︃

−𝜆1 − 𝜆2

2

]︃ (︂
𝛼1𝑧

𝛼1𝑧 + 𝛼2

)︂𝛼1
2
(︂

𝛼2

𝛼1𝑧 + 𝛼2

)︂𝛼2
2

∞∑︁
𝑘=0

⎧⎨⎩
(︃

𝜆1𝛼1𝑧

2𝛼1𝑧 + 2𝛼2

)︃𝑘

×
1𝐹1

(︁
1
2 (2𝑘 + 𝛼1 + 𝛼2) ; 𝛼2

2 ; 𝛼2𝜆2
2(𝑧𝛼1+𝛼2)

)︁
𝑘! 𝐵

(︁
𝑘 + 𝛼1

2 , 𝛼2
2

)︁
⎫⎬⎭ . (B.12)

Now, replacing 𝛼1 = 2, 𝛼2 = 2(𝑀 − 1), 𝜆1 = 𝑀(𝜇2
𝑋 + 𝜇2

𝑌 )/𝑁𝜎2, and 𝜆2 = 0 (cf.
Section 4.4.1) in (B.12), and after applying [7, Eq. (15.2.1)], and [7, Eq. (5.12.1)], we
obtain

f𝑍 (𝑧|ℋ1) =
exp

[︂
−𝑀(𝜇2

𝑋+𝜇2
𝑌 )

2𝑁𝜎2

]︂
Γ(𝑀)

(︂
𝑀 − 1

𝑀 + 𝑧 − 1

)︂𝑀 ∞∑︁
𝑘=0

Γ(𝑘 + 𝑀)
Γ(𝑘 + 1)2

(︃
𝑀𝑧 (𝜇2

𝑋 + 𝜇2
𝑌 )

2𝑁𝜎2(𝑀 + 𝑧 − 1)

)︃𝑘

.

(B.13)

Finally, after using the definition of the Kummer confluent hypergeometric function [6, Eq.
(07.20.02.0001.01)], along with minor simplifications, we obtain (4.25), which completes
the derivation.
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APPENDIX C – Supporting Material for
Chapter 5

C.1 MATHEMATICA’S Implementation for the Bivariate
Fox H-function

ClearAll ["Global ‘*"]; Remove [s];

H[x_ , delta_ , D_ ,beta_ , B_]

:= Module [{UpP , LoP , Theta ,R1 , T1 , R2 , T2 , m, n},

L= Length [ Transpose [D]]; (*L represents the dimension of the

Fox ’s H- function *)

m= Length [D];(* Number of Gamma functions in the numerator *)

n= Length [B];(* Number of Gamma functions in the denominator *)

S=Table[ Subscript [s,i],{i,1,L}]; (*s is the

vector containing the number of branches , in our case s=[s_1 ,s_2]*)

UpP= Product [Gamma[delta [[1,j]]+ Sum[D[[j,k]]

S[[k]],{k,1, L}]], {j,1,m}];

LoP= Product [Gamma[beta [[1,j]]+ Sum[B[[j,k]]

S[[k]],{k,1,L}]] ,{j,1,n}];

Theta=UpP/LoP (* Theta computes Eq. (2) *);

W=50; (* Limit for the complex integration *)

T=Table[delta [[1,j]]+ Sum[D[[j,k]]

S[[k]],{k,1,L}]>0,{j,1,m}]; (* Generates a restriction table *)

R1= Reduce [ And@@Flatten [{T[[1]] ,T [[3]]}]];

(*R1 computes the real interval that separates the poles of

Gamma[s_1] from the poles of Gamma[M-1- s_1] and Gamma[M-s_1 -s_2]*)

T1=Mean [{ First@R1 , Last@R1 }];

R2= Reduce [ And@@Flatten [{T[[2]] ,T [[4]]}]];

(*R2 computes the real interval that separates the poles of

Gamma[s_2] from the poles of Gamma[M-s_1 -s_2]*)

T2=Mean [{ First@R2 , Last@R2 }];

kernel =Theta(x[[1 ,1]])^( -S [[1]])( x[[1 ,2]])^( -S [[2]])

/.{S[[1]] - >s1 ,S[[2]] - > s2}; (* Prepare the Kernel

for Mathematica ’s Integration *)

N [1/(2* Pi*I)^2 NIntegrate [kernel ,{s1 ,T1 -I W,T1+I W},

{s2 ,T2 -I W,T2+I W}] ,20]]
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APPENDIX D – Supporting Material for
Chapter 7

D.1 Proof of Proposition I

Applying [8, Eq. (5.48)] and using the fact that 𝑋𝑘,𝑖 and 𝑌𝑙,𝑖 are independent
RVs, (7.30) can be rewritten as follows:

PD𝑖 =
∫︁ ∞

0

∫︁ ∞

0

⎛⎝𝑀𝑖−1∏︁
𝑘=1

Pr [𝑋𝑘,𝑖 < 𝑟1,𝑖|𝑅1,𝑖 = 𝑟1,𝑖]
⎞⎠×

⎛⎝𝑁𝑖−1∏︁
𝑙=1

Pr [𝑌𝑙,𝑖 < 𝑟2,𝑖|𝑅2,𝑖 = 𝑟2,𝑖]
⎞⎠

× f𝑅1,𝑖,𝑅2,𝑖
(𝑟1,𝑖, 𝑟2,𝑖) d𝑟1,𝑖 d𝑟2,𝑖. (D.1)

Now, with the aid of [8, Eq. (4.11)] and taking into account that 𝑋𝑘,𝑖 and 𝑌𝑙,𝑖 are identically
distributed RVs, yields

PD𝑖 =
∫︁ ∞

0

∫︁ ∞

0

(︂∫︁ 𝑟1,𝑖

0
𝑓𝑋1,𝑖

(𝑥1,𝑖) d𝑥1,𝑖

)︂𝑀𝑖−1 (︂∫︁ 𝑟2,𝑖

0
𝑓𝑌1,𝑖

(𝑦1,𝑖) d𝑦1,𝑖

)︂𝑁𝑖−1

× f𝑅1,𝑖,𝑅2,𝑖
(𝑟1,𝑖, 𝑟2,𝑖) d𝑟1,𝑖 d𝑟2,𝑖. (D.2)

Replacing (7.22)–(7.24) in (D.2), we obtain

PD𝑖 =
∫︁ ∞

0

∫︁ ∞

0

⎛⎜⎜⎝∫︁ 𝑟1,𝑖

0

𝑥1,𝑖 exp
(︂

− 𝑥2
1,𝑖

2𝜎2
1,𝑖

)︂
𝜎1,𝑖

d𝑥1,𝑖

⎞⎟⎟⎠
𝑀𝑖−1

⏟  ⏞  
, ℐ1

⎛⎜⎜⎝∫︁ 𝑟2,𝑖

0

𝑦1,𝑖 exp
(︂

− 𝑦2
1,𝑖

2𝜎2
2,𝑖

)︂
𝜎2,𝑖

d𝑦1,𝑖

⎞⎟⎟⎠
𝑁𝑖−1

⏟  ⏞  
, ℐ2

×
∫︁ ∞

0
exp(−𝜉𝑖𝑡) exp (−m𝑖) 𝐼0

(︁
2
√

m𝑖𝑡
)︁ 2∏︁

𝑝=1

𝑟𝑝,𝑖

Ω2
𝑝,𝑖

exp
(︃

−
𝑟2

𝑝,𝑖

2Ω2
𝑝,𝑖

)︃

× 𝐼0

⎛⎝𝑟𝑝,𝑖

√︁
𝑡𝜎2

𝑝,𝑖𝜆
2
𝑝,𝑖

Ω2
𝑝,𝑖

⎞⎠ d𝑡 d𝑟1,𝑖 d𝑟2,𝑖. (D.3)

In order to solve (D.3), we must first evaluate ℐ1 and ℐ2. In particular, ℐ1 can be calculated
as follows:

ℐ1
(𝑎)=
(︃

1 − exp
(︃

−
𝑟2

1,𝑖

2𝜎2
1,𝑖

)︃)︃𝑀𝑖−1

(𝑏)=
𝑀𝑖−1∑︁
𝑘=0

⎛⎝ 𝑀𝑖 − 1
𝑘

⎞⎠(︃− exp
(︃

−
𝑟2

1,𝑖

2𝜎2
1,𝑖

)︃)︃𝑀𝑖−1−𝑘

, (D.4)

where in step (a), we have developed the inner integral; and in step (b), we have used the
binomial Theorem [8].
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Using a similar approach to that used in (D.4), ℐ2 can be calculated as

ℐ2 =
𝑁𝑖−1∑︁
𝑙=0

⎛⎝ 𝑁𝑖 − 1
𝑙

⎞⎠(︃− exp
(︃

−
𝑟2

2,𝑖

2𝜎2
2,𝑖

)︃)︃𝑁𝑖−1−𝑙

. (D.5)

Inserting (D.4) and (D.5) in (D.3), followed by changing the order of integration1 and
along with minor manipulations, we obtain

PD𝑖 =
𝑀𝑖−1∑︁
𝑘=0

𝑁𝑖−1∑︁
𝑙=0

1𝑘+𝑙

⎛⎝ 𝑀𝑖 − 1
𝑘

⎞⎠⎛⎝ 𝑁𝑖 − 1
𝑙

⎞⎠∫︁ ∞

0
exp(−𝜉𝑖𝑡) exp (−m𝑖) 𝐼0

(︁
2
√

m𝑖𝑡
)︁

×
∫︁ ∞

0

(︃
− exp

(︃
−

𝑟2
1,𝑖

2𝜎2
1,𝑖

)︃)︃𝑀𝑖−1−𝑘
𝑟1,𝑖

Ω2
1,𝑖

exp
(︃

−
𝑟2

1,𝑖

2Ω2
1,𝑖

)︃
𝐼0

⎛⎝𝑟1,𝑖

√︁
𝑡𝜎2

1,𝑖𝜆
2
1,𝑖

Ω2
1,𝑖

⎞⎠ d𝑟1,𝑖⏟  ⏞  
, ℐ3

×
∫︁ ∞

0

(︃
− exp

(︃
−

𝑟2
2,𝑖

2𝜎2
2,𝑖

)︃)︃𝑁𝑖−1−𝑙
𝑟2,𝑖

Ω2
2,𝑖

exp
(︃

−
𝑟2

2,𝑖

2Ω2
2,𝑖

)︃
𝐼0

⎛⎝𝑟2,𝑖

√︁
𝑡𝜎2

2,𝑖𝜆
2
2,𝑖

Ω2
2,𝑖

⎞⎠ d𝑟2,𝑖⏟  ⏞  
, ℐ4

d𝑡.

(D.6)

Now, it remains to find ℐ3 and ℐ4. More precisely, ℐ3 can be computed as

ℐ3
(𝑎)=
∫︁ ∞

0

(︃
− exp

(︃
−

𝑟2
1,𝑖

2𝜎2
1,𝑖

)︃)︃𝑀𝑖−1−𝑘
𝑟1,𝑖

Ω2
1,𝑖

exp
(︃

−
𝑟2

1,𝑖

2Ω2
1,𝑖

)︃ ∞∑︁
𝑞=0

(︂
𝑟1,𝑖

√
𝑡𝜆2

1,𝑖𝜎
2
1,𝑖

2Ω2
1,𝑖

)︂2𝑞

𝑞! Γ(𝑞 + 1) d𝑟1,𝑖

(𝑏)= (−1)−𝑘+𝑀𝑖+1

Ω2
1,𝑖

(︂
−𝑘+𝑀𝑖−1

𝜎2
1,𝑖

+ 1
Ω2

1,𝑖

)︂ ∞∑︁
𝑞=0

(︂
𝑡𝜆2

1,𝑖𝜎
4
1,𝑖

2Ω2
1,𝑖(Ω2

1,𝑖(−𝑘+𝑀𝑖−1)+𝜎2
1,𝑖)

)︂𝑞

𝑞!

(𝑐)= (−1)−𝑘+𝑀𝑖+1

Ω2
1,𝑖

(︂
−𝑘+𝑀𝑖−1

𝜎2
1,𝑖

+ 1
Ω2

1,𝑖

)︂ exp
⎛⎝ 𝑡𝜆2

1,𝑖𝜎
4
1,𝑖

2Ω2
1,𝑖

(︁
Ω2

1,𝑖(−𝑘 + 𝑀𝑖 − 1) + 𝜎2
1,𝑖

)︁
⎞⎠ , (D.7)

where in step (a), we have used the series representation of the modified Bessel function
of the first kind and order zero [6, Eq. (03.02.02.0001.01)]; in step (b), we have solved the
integral by first changing the order of integration; finally, in step (c), we have used [6, Eq.
(01.03.06.0002.01)] and performed some algebraic manipulations.

In like manner as in (D.7), ℐ4 can be computed as

ℐ4 = (−1)−𝑙+𝑁𝑖+1

Ω2
2,𝑖

(︂
−𝑙+𝑁𝑖−1

𝜎2
2,𝑖

+ 1
Ω2

2,𝑖

)︂ exp
⎛⎝ 𝑡𝜆2

2,𝑖𝜎
4
2,𝑖

2Ω2
2,𝑖

(︁
Ω2

2,𝑖(−𝑙 + 𝑁𝑖 − 1) + 𝜎2
2,𝑖

)︁
⎞⎠ . (D.8)

1 The change in the order of integration was performed without loss of generality since (7.22), (7.23)
and (7.24) are non-negative real functions [9].
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Now, replacing (D.7) and (D.8) in (D.6), we obtain

PD𝑖 =
𝑀𝑖−1∑︁
𝑘=0

𝑁𝑖−1∑︁
𝑙=0

⎛⎝ 𝑀𝑖 − 1
𝑘

⎞⎠⎛⎝ 𝑁𝑖 − 1
𝑙

⎞⎠ exp (−m𝑖)
(︃

𝜎2
1,𝑖(−1)−𝑘+𝑀𝑖+1

Ω2
1,𝑖(−𝑘 + 𝑀𝑖 − 1) + 𝜎2

1,𝑖

)︃

×
(︃

𝜎2
2,𝑖(−1)−𝑙+𝑁𝑖+1

Ω2
2,𝑖(−𝑙 + 𝑁𝑖 − 1) + 𝜎2

2,𝑖

)︃∫︁ ∞

0
exp(−𝜉𝑖𝑡)𝐼0

(︁
2
√

m𝑖𝑡
)︁

× exp
⎛⎝ 𝑡𝜆2

1,𝑖𝜎
4
1,𝑖

2Ω2
1,𝑖

(︁
Ω2

1,𝑖(−𝑘 + 𝑀𝑖 − 1) + 𝜎2
1,𝑖

)︁
⎞⎠

× exp
⎛⎝ 𝑡𝜆2

2,𝑖𝜎
4
2,𝑖

2Ω2
2,𝑖

(︁
Ω2

2,𝑖(−𝑙 + 𝑁𝑖 − 1) + 𝜎2
2,𝑖

)︁
⎞⎠ d𝑡. (D.9)

Finally, using the following identity [10, Eq. (1.11.2.4)]

∫︁ ∞

0
exp(𝑡𝑏)𝐼0(

√
𝑡𝑎) d𝑡 = −

exp
(︁
−𝑎2

4𝑏

)︁
𝑏

, (D.10)

and after performing some minor simplifications, we can express (D.9) in closed-form as
in (7.31), which completes the proof.

D.2 Proof of Corollary I

By making use of [8, Coroll. 6], we can express (7.33) as

PFA𝑖 =
𝑀𝑖−1∑︁
𝑘=1

𝑁𝑖−1∑︁
𝑙=1

Pr
[︁
𝒞𝑘,𝑖

⋂︁
𝒟𝑙,𝑖

]︁

−
𝑀𝑖−1∑︁
𝑘=1

𝑁𝑖−1∑︁
𝑙=1

𝑀𝑖−1∑︁
𝑝=2

𝑁𝑖−1∑︁
𝑞=2

𝑘<𝑝,𝑙<𝑞

Pr
[︁
𝒞𝑘,𝑖

⋂︁
𝒟𝑙,𝑖

⋂︁
𝒞𝑝,𝑖

⋂︁
𝒟𝑞,𝑖

]︁
+ · · ·

+ (−1)𝑀𝑖−𝑁𝑖−1Pr
[︁
𝒞1,𝑖

⋂︁
𝒟1,𝑖

⋂︁
. . .
⋂︁

𝒞𝑀𝑖−1,𝑖

⋂︁
𝒟𝑁𝑖−1,𝑖

]︁
. (D.11)

Now, we need to find the event probabilities. First, let us derive the last event probability
of (D.11), that is,

Pr
[︁
𝒞1,𝑖

⋂︁
𝒟1,𝑖

⋂︁
. . .
⋂︁

𝒞𝑀𝑖−1,𝑖

⋂︁
𝒟𝑁𝑖−1,𝑖

]︁
𝑎=
∫︁ ∞

0

∫︁ ∞

0

⎛⎝𝑀𝑖−1∏︁
𝑘=1

Pr [𝑋𝑘,𝑖 > 𝑟1,𝑖|𝑅1,𝑖 = 𝑟1,𝑖]
⎞⎠

×

⎛⎝𝑁𝑖−1∏︁
𝑙=1

Pr [𝑌𝑙,𝑖 > 𝑟2,𝑖|𝑅2,𝑖 = 𝑟2,𝑖]
⎞⎠ f𝑅1,𝑖,𝑅2,𝑖

(𝑟1,𝑖, 𝑟2,𝑖) d𝑟1,𝑖 d𝑟2,𝑖

𝑏=
∫︁ ∞

0

∫︁ ∞

0

(︃∫︁ ∞

𝑟1,𝑖

𝑓𝑋1,𝑖
(𝑥1,𝑖) d𝑥1,𝑖

)︃𝑀𝑖−1 (︃∫︁ ∞

𝑟2,𝑖

𝑓𝑌1,𝑖
(𝑦1,𝑖) d𝑦1,𝑖

)︃𝑁𝑖−1

× f𝑅1,𝑖,𝑅2,𝑖
(𝑟1,𝑖, 𝑟2,𝑖) d𝑟1,𝑖 d𝑟2,𝑖, (D.12)

where in step (a) we have used [8, Eq. (5.48)]; and in step (b) we have used [8, Eq. (4.11)]
along with the fact that 𝑋𝑘,𝑖 and 𝑌𝑙,𝑖 are identically distributed RVs.
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Replacing (7.22)–(7.24) in (D.12), yields

Pr
[︁
𝒞1,𝑖

⋂︁
𝒟1,𝑖

⋂︁
. . .
⋂︁

𝒞𝑀𝑖−1,𝑖

⋂︁
𝒟𝑁𝑖−1,𝑖

]︁
=
∫︁ ∞

0

∫︁ ∞

0

⎛⎜⎜⎝∫︁ ∞

𝑟1,𝑖

𝑥1,𝑖 exp
(︂

− 𝑥2
1,𝑖

2𝜎2
1,𝑖

)︂
𝜎1,𝑖

d𝑥1,𝑖

⎞⎟⎟⎠
𝑀𝑖−1

⏟  ⏞  
, ℐ5

×

⎛⎜⎜⎝∫︁ ∞

𝑟2,𝑖

𝑦1,𝑖 exp
(︂

− 𝑦2
1,𝑖

2𝜎2
2,𝑖

)︂
𝜎2,𝑖

d𝑦1,𝑖

⎞⎟⎟⎠
𝑁𝑖−1

⏟  ⏞  
, ℐ6

∫︁ ∞

0
exp(−𝜉𝑖𝑡) exp (−m𝑖) 𝐼0

(︁
2
√

m𝑖𝑡
)︁

×
2∏︁

𝑝=1

𝑟𝑝,𝑖

Ω2
𝑝,𝑖

exp
(︃

−
𝑟2

𝑝,𝑖

2Ω2
𝑝,𝑖

)︃
𝐼0

⎛⎝𝑟𝑝,𝑖

√︁
𝑡𝜎2

𝑝,𝑖𝜆
2
𝑝,𝑖

Ω2
𝑝,𝑖

⎞⎠ d𝑡 d𝑟1,𝑖 d𝑟2,𝑖. (D.13)

After some mathematical manipulations, ℐ5 and ℐ6 can be calculated, respectively, as

ℐ5 = exp
(︃

−
𝑟2

1,𝑖(𝑀𝑖 − 1)
2𝜎2

1,𝑖

)︃
(D.14)

ℐ6 = exp
(︃

−
𝑟2

2,𝑖(𝑁𝑖 − 1)
2𝜎2

2,𝑖

)︃
. (D.15)

Now, replacing (D.14) and (D.15) in (D.13), and after solving remaining three integrals
by applying the same procedure as in (D.9), we obtain

Pr
[︁
𝒞1,𝑖

⋂︁
𝒟1,𝑖

⋂︁
. . .
⋂︁

𝒞𝑀𝑖−1,𝑖

⋂︁
𝒟𝑁𝑖−1,𝑖

]︁
=𝒬𝑖 (𝑀𝑖 − 1, 𝑁𝑖 − 1)

𝒫𝑖 (𝑀𝑖 − 1, 𝑁𝑖 − 1)

× exp
(︂

−m𝑖 + m𝑖

𝒫𝑖 (𝑀𝑖 − 1, 𝑁𝑖 − 1)

)︂
, (D.16)

where 𝒫𝑖 (𝑘, 𝑙) and 𝒬𝑖 (𝑘, 𝑙) are auxiliary functions defined in (7.35), and the parameters
𝑘 ∈ {1, 2, . . . , 𝑀𝑖 − 1} and 𝑙 ∈ {1, 2, . . . , 𝑁𝑖 − 1} denote the number of events for 𝒞𝑘,𝑖 and
𝒟𝑙,𝑖, respectively. Thus, the remaining event probabilities in (D.11) can be easily obtained
by a proper choice of the parameters 𝑘 and 𝑙. For example, for 𝑘 = 1 and 𝑙 = 3, we obtain

Pr
[︁
𝒞1,𝑖

⋂︁
𝒟1,𝑖

⋂︁
𝒟2,𝑖

⋂︁
𝒟3,𝑖

]︁
= 𝒬𝑖 (1, 3)

𝒫𝑖 (1, 3) exp
(︃

−m𝑖 + m𝑖

𝒫𝑖 (1, 3)

)︃
, (D.17)

whereas for 𝑘 = 3 and 𝑙 = 2, we have

Pr
[︁
𝒞1,𝑖

⋂︁
𝒟1,𝑖

⋂︁
𝒞2,𝑖

⋂︁
𝒟2,𝑖

⋂︁
𝒞3,𝑖

]︁
= 𝒬𝑖 (3, 2)

𝒫𝑖 (3, 2) exp
(︃

−m𝑖 + m𝑖

𝒫𝑖 (3, 2)

)︃
. (D.18)

Later, with the aid of (D.16) and after some algebraic manipulations, we can rewrite
(D.11) as

PFA𝑖 =
(︃

𝑀𝑖 − 1
1

)︃(︃
𝑁𝑖 − 1

1

)︃
𝒬𝑖 (1, 1)
𝒫𝑖 (1, 1) exp

(︃
−m𝑖 + m𝑖

𝒫𝑖 (1, 1)

)︃
−
(︃

𝑀𝑖 − 1
2

)︃(︃
𝑁𝑖 − 1

2

)︃

× 𝒬𝑖 (2, 2)
𝒫𝑖 (2, 2) exp

(︃
−m𝑖 + m𝑖

𝒫𝑖 (2, 2)

)︃
+ · · · + (−1)𝑀𝑖−𝑁𝑖−1

(︃
𝑀𝑖 − 1
𝑀𝑖 − 1

)︃(︃
𝑁𝑖 − 1
𝑁𝑖 − 1

)︃

× 𝒬𝑖 (𝑀𝑖 − 1, 𝑁𝑖 − 1)
𝒫𝑖 (𝑀𝑖 − 1, 𝑁𝑖 − 1) exp

(︃
−m𝑖 + m𝑖

𝒫𝑖 (𝑀𝑖 − 1, 𝑁𝑖 − 1)

)︃
. (D.19)



APPENDIX D. Supporting Material for Chapter 7 153

Finally, and after minor simplifications, (D.19) reduces to (7.34), which completes the
proof.
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