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ABSTRACT 

Plasmodium vivax is the most prevalent, widespread and neglected human malaria 

parasite, currently placing billions of people at risk of infection, thus imposing major 

health and economic burdens. Worldwide, anti-malarial drug resistance emergence 

and severe clinical complications are of great concern. The mechanisms underlying 

the pathobiology of the neglected P. vivax are still little known. The lack of a reliable in 

vitro P. vivax long-term culture restricts its biology study in place and time, relegating 

researchers to work in malaria endemic field conditions, where successful omics 

applications are very challenging.  

The capacity of P. vivax to remodel host reticulocyte membrane and promote 

adhesivity has been demonstrated, which is an important mechanism for host immune 

evasion. Functional studies have already reported that adhesion of P. vivax infected 

red blood cells (PvIRBCs) to the host endothelial cells, although in considerably lower 

rates, is as strong and stable as the verified for P. falciparum infections. Also, it has 

been reported adhesion of normocytes to the PvIRBCs is strong and results in stable 

rosette formation, which shows higher rates in vivax compared to falciparum malaria. 

More recently, it was reported that there is a correlation between rosette formation and 

altered membrane deformability of PvIRBCs, where the rosette-forming PvIRBCs are 

significantly more stiff and rigid than their non-rosetting equals. Mature staged 

parasites (schizonts) show a higher capacity for adherence than other asexual parasite 

stages both in cytoadherence and rosetting. The lower proportion of schizonts 

observed on the peripheral blood circulation of patients suggests that parasites could 

be sequestered on the host vascular endothelium. Rosette-forming PvIRBCs may also 

be the cause for this lower rate of schizonts in the patients’ blood, contributing for 

parasite sequestration phenomena in the host microvasculature and/or spleen, and 

consequently, the rheopathological characteristics present in vivax malaria disease. 

Vivax malaria patient autopsies have shown accumulation of PvIRBCs in the lungs, 

spleen, liver and bone marrow. Additionally, it has been demonstrated that parasitemia 

underestimates total parasite biomass, which is greater in severe vivax malaria 

patients, and thus, capable of mediating systemic inflammatory pathology.  

In this study, we aimed to understand the molecular mechanisms behind 

adherence phenotypes by identifying proteins, especially parasitic ligands, which might 



be important in P. vivax adhesion capacity. Using RNA-seq coupled with parasite field 

sample enrichment, ex vivo maturation and cytoadherence assays, we have 

sequenced the whole transcriptome of parasite populations with distinct adhesive 

characteristics. Our expression profiles brings out the importance of membrane and 

membrane-associated proteins, with adhesin or adhesin-like properties, such as 

Plasmodium Interspersed repeats (PIR) and Plasmodium Helical Interspersed 

SubTelomeric (PHIST) proteins, which might pay a role in adherence phenotypes. 

Within those protein groups, we found a percentage of differentially expressed genes 

that traditionally are more expressed in sexual rather than asexual parasite stages, 

suggesting the relevance of rosette formation by P. vivax gametocytes. Importantly, 

we found host immune-related differentially expressed genes, of which several are 

associated with the human phagocytosis pathways. These data strongly suggest that 

rosetting can hamper leukocyte phagocytosis host immune response, as an effective 

mechanism of P. vivax immune evasion adaptation. Our results reflect the 

pathobiology of circulating Brazilian P. vivax populations, principally concerning its 

adhesive capacity as a possible source of the severe clinical manifestations reported. 

Furthermore, we hope that such achievements will further enable the investigations on 

the biology of P. vivax apicomplexan parasite, impacting considerably in vaccine and 

drug design, ultimately helping us achieve the future elimination of vivax malaria. 
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RESUMO 

Plasmodium vivax é o parasita causador malária humana mais prevalente, 

disseminado e negligenciado, colocando todos os anos bilhões de pessoas em risco 

de infecção, acarretando sérios problemas de saúde e econômicos. A emergência de 

resistência a antimaláricos e complicações clínicas graves são preocupantes. Pouco 

se sabe sobre os mecanismos envolvidos nas características patogénicas da biologia 

do negligenciado P. vivax. A impossibilidade de executar a cultura in vitro de isolados 

a longo prazo, limita os pesquisadores ao estudo da sua biologia no espaço e tempo, 

restringindo o trabalho experimental a áreas endêmicas de malária vivax, onde a 

execução bem-sucedida de aplicações ômicas é desafiadora. 

A capacidade de P. vivax remodelar a membrana dos reticulócitos do hospedeiro 

e promover a sua adesividade foi já demostrada, dendo um mecanismo importante de 

evasão ao sistema imunitário humano. Estudos funcionais têm reportado que a 

adesão de reticulócitos infectados por P. vivax (RTi-Pv) a células endoteliais do 

hospedeiro, apesar de em menor número, é forte e estável, como o verificado para 

eritrócitos infectados por P. falciparum. Também foi observado que a adesão de 

eritrócitos não infectados a RTi-Pv é forte e resulta na formação estável de rosetas, 

que apresenta uma maior taxa em malária vivax do que falciparum. Mais 

recentemente, foi publicado que existe uma correlação entre a formação de rosetas e 

a deformabilidade de RTi-Pv, na qual RTi-Pv que formam rosetas são 

significativamente mais rígidos. Estágios maduros de P. vivax (esquizontes) têm 

elevada capacidade de aderir relativa a outros estágios assexuais do parasita, em 

ambos fenótipos de citoadesão e roseteamento. A menor proporção de esquizontes 

na circulação sanguínea periférica de pacientes sugere que os parasitas podem 

sequestrar no endotélio vascular do hospedeiro. Os RTi-Pv que formam rosetas 

poderão ser a causa desta baixa taxa de esquizontes circulantes no sangue dos 

pacientes, contribuindo para o fenómeno de sequestro parasitário na microvasculatura 

e/ou baço do hospedeiro, e consequentemente contribuindo para características 

reopatológicas da malária vivax. Autópsias de pacientes com malária vivax mostraram 

a acumulação de RTi-Pv nos pulmões, baço, fígado e medula óssea. Ainda, foi 

demonstrado que a parasitemia subestima a biomassa total parasitária, que é elevada 



em malária vivax severa, portanto, capaz de mediar a inflamação sistémica da 

patologia. 

O objetivo deste estudo é a compreensão dos mecanismos moleculares 

envolvidos nos fenótipos adesivos, identificando proteínas, principalmente ligantes 

parasitários, que possam ser importantes na capacidade de aderência de P. vivax. 

Usando RNA-seq em conjunto com o enriquecimento, maturação ex vivo e ensaio 

funcional de adesão com amostras clínicas de P. vivax, foi sequenciado o 

transcriptoma de populações de parasitas com características adesivas distintas.   

Os nossos perfis de expressão mostram a importância de diferentes grupos de 

proteínas membranares ou associadas a membranas, com propriedades de adesinas, 

tais como proteínas Plasmodium Interspersed repeats (PIR) e Plasmodium Helical 

Interspersed SubTelomeric (PHIST), que podem ter um papel importante no fenótipo 

adesivo de P. vivax. Dentro deste grupo de proteínas diferencialmente expressas foi 

verificado que muitas são tradicionalmente produzidas por parasitas em fase sexuada, 

sugerindo a importância da formação de rosetas por gametócitos de P. vivax. 

Adicionalmente, análise do perfil de expressão gênica humano permitiu a identificação 

de genes diferencialmente expressos associados a vias de fagocitose. Estes dados 

sugerem fortemente que o fenótipo de roseteamento pode impedir a fagocitose do 

parasita por leucócitos como resposta do sistema imune humano à infeção. Os 

resultados obtidos refletem as características patogénicas de populações brasileiras 

circulantes de P. vivax, principalmente no que diz respeito à sua capacidade de 

aderência como principal fonte das manifestações clínicas severas reportadas. Para 

além disso, esperamos que estes dados abram ainda mais as investigações sobre a 

biologia deste parasita apicomplexo, ajudando no desenho de vacinas e na 

descoberta de novos antimaláricos, promovendo o sucesso na eliminação da malária 

vivax no futuro. 

 

 

Palavras-chave: malária, Plasmodium spp., P. vivax, fenótipo adesivo, transcriptoma  
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INTRODUCTION 
VIVAX MALARIA WORLD SCENARIO  

Plasmodium spp. belongs to a larger phylum of obligate intracellular parasites, the 

Apicomplexa, and is the causative agent of malaria. Worldwide, human malaria 

infections (Fig. 1) can be caused by five different Plasmodium species: P. falciparum, 

P. vivax, P. ovale, P. malariae, and P. knowlesi (Cowman et al. 2017). P. falciparum is 

by far the deadliest parasite, causing the most severe clinical outcomes. Therefore, it 

has received much attention in the past years. 

 

Figure 1. Status of 2017 malaria cases in countries assessed for malaria occurrence since 2000. 
All countries in the WHO European Region reported zero cases in 2016 and again in 2017. In 2017, 
both China and El Salvador reported zero cases. By definition, countries with zero malaria cases over 
at least the past 3 consecutive years are malaria free. Adapted from World Malaria Report 2018 (WHO 
2018). 

 

However, P. vivax is the most geographically spread human malaria parasite 

(WHO 2018, Gething et al. 2012), and recently, it has reemerged in regions formerly 

considered malaria free (Severini et al. 2004, Bitoh et al. 2011, Kim et al. 2009). P. 

vivax mortality and morbidity has been recently reassessed and are likely to have been 

significantly underestimated (Naing et al. 2014). Worldwide, about 2.85 billion people 

have been estimated to be in risk of being infected by P. vivax (Guerra et al. 2010, 

Gething et al. 2012, Price et al. 2007, Battle et al. 2012). This parasite is predominant 

in Central and Southeast Asia (Rahimi et al. 2014), Latin America (Guerra et al. 2010, 

Coura, Suarez-Mutis, and Ladeia-Andrade 2006, Ferreira and Castro 2016) and some 

African regions (Rosenberg 2007, Howes et al. 2015). Of those regions, like Central 
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and Southeast Asia, are densely populated, thus accentuating the social-economic 

burden caused by the disease (WHO 2018, Gething et al. 2012) (Fig. 2).  

 

Figure 2. 2017 estimated (million) cases of malaria by WHO region. The circles’ area reflects the 
percentage of the estimated number of malaria cases in each region. AFR: WHO African Region; AMR: 
WHO Region of the Americas; EMR: WHO Eastern Mediterranean Region; P. falciparum: Plasmodium 
falciparum; P. vivax: Plasmodium vivax; SEAR: WHO South-East Asia Region; WHO: World Health 
Organization; WPR: WHO Western Pacific Region. Adapted from World Malaria Report 2018 (WHO 
2018). 

 

The fact that human infecting Plasmodium spp is geographically widespread leads 

to infection occurrence in genetically distinct human populations. Clinic complications 

and heterogeneous resistance to antimalarial drugs observed are a direct result of 

different and diverse individual responses in a host-parasite relation in a context of P. 

vivax polyclonal infection (Guerra et al. 2010, Anstey et al. 2009). According to the 

WHO guidelines (WHO 2018), the first line of P. vivax chemotherapy is chloroquine 

(CQ) plus primaquine (PQ), the only approved drug targeting the latent parasite form. 

These drugs are extensively used in regions where resistance has not been verified, 

whereas in high transmission areas already presenting cases of drug resistance, an 

artemisinin based combination therapy (ACT) is recommended (WHO 2010). More 

recently, Tafenoquine (TAF), an analog of PQ, has been approved as an efficient 

single-dose treatment against vivax malaria relapse (Lacerda, Llanos-Cuentas et al. 

2019). 

In the last decade, an accentuated reduction of P. falciparum infection cases is 

occurring in falciparum and vivax malaria endemic areas (WHO 2018, Childs et al. 

2006), as a direct consequence of the global advances accomplished to control malaria 

falciparum transmission and, more recently, with important breakthroughs in the 

generation of an effective malaria vaccine (Arama and Troye-Blomberg 2014, Lorenz, 

Karanis, and Karanis 2014). However, there are recent reports of a marked increase 
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of P. vivax resistance to CQ (Suwanarusk et al. 2007, Suwanarusk et al. 2008), for 

which the mechanisms of action remain undisclosed (Price et al. 2014), leading to a 

more accurate observation of the particular pattern of P. vivax transmission (Rahimi et 

al. 2014, Snounou and White 2004, Genton et al. 2008, Tjitra et al. 2008). We urge for 

a new therapeutic line of antimalarials that targets vivax malaria patients and an 

effective multi-species malaria vaccine for such endemic areas. Unfortunately, P. vivax 

malaria remains neglected in most aspects (Baird 2007, Mendis et al. 2001, Mueller et 

al. 2009, Price et al. 2007, Carlton, Sina, and Adams 2011).  

The characteristics that permitted an easier control over P. falciparum infections 

allow studying and targeting P. vivax, which can make a difference in the future 

worldwide treatment and eradication of malaria. Following the decline of P. falciparum 

infections, P. vivax is now one of the dominant malaria species in several endemic 

regions (Gething et al. 2012, WHO 2018, Coura, Suarez-Mutis, and Ladeia-Andrade 

2006, Hussain et al. 2013), especially on the region of the Americas (Fig. 1, 2 and 3). 

Last epidemiology studies reported by WHO (WHO 2018) from Latin America region, 

estimates that 138 million people are at risk, where P. vivax is responsible for 75% of 

malaria infections, mainly concentrated on the Amazonian region, where nine different 

Anopheles spp. vectors (An. albimanus, An. albitarsis, An. aquasalis, An. braziliensis, 

An. darlingi, An. neivai, An. nuneztovari, An. pseudopunctipennis and An. 

punctimacula) help spreading the disease (Fig. 3). Around 22% of all cases have been 

registered in Brazil, where since 2010, the main agent of malaria infection is P. vivax 

(WHO 2018). 

 

Figure 3. Confirmed malaria cases 

per 1000 population in 2017 (WHO 

2018). 
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The direct transfer of P. falciparum control measures to P. vivax has turned out to 

be inadequate (Bockarie and Dagoro 2006, Luxemburger et al. 1994, Bousema and 

Drakeley 2011, Andrade et al. 2010, Baird 2010), a scenario that can be observed in 

some endemic regions (WHO 2018, Coura, Suarez-Mutis, and Ladeia-Andrade 2006). 

However, it is allowing the evaluation of P. vivax infection without P. falciparum 

influence on patients.  

Several clinical complications that were normally associated with P. falciparum 

infections have been reported for vivax malaria (Rahimi et al. 2014, Barcus et al. 2007, 

Genton et al. 2008, Kochar, Mahajan, et al. 2009, Kochar, Das, et al. 2009, Kochar et 

al. 2005, Alexandre et al. 2010, Siqueira et al. 2010, Fernandez-Becerra, Pinazo, et al. 

2009, Tjitra et al. 2008, Tan et al. 2008, Anstey et al. 2007, Anstey et al. 2002, Suratt 

and Parsons 2006, Poespoprodjo et al. 2008, McGready et al. 2004, Hutchinson and 

Lindsay 2006, Baird 2007, Erhart et al. 2004, Chung et al. 2008, Sharma et al. 1993, 

Saharan et al. 2009). More accurate and innovative diagnose tools are now able to 

give us a more accurate rates of P. vivax infections, mainly underreported in the past, 

which is challenging the pre-established view of P. vivax as a “benign” parasite (Mendis 

et al. 2001, Anstey et al. 2009, Mueller et al. 2009, Naing et al. 2014, Gething et al. 

2012, Baird 2007). Furthermore, a constant increase and spread of anti-malarial 

resistance remains of great concern (Tjitra et al. 2008, Baird 2004, de Santana Filho 

et al. 2007, Poespoprodjo et al. 2008, Suwanarusk et al. 2007, Russell et al. 2008, 

Price, Douglas, and Anstey 2009, Price et al. 2014).  

P. vivax is considered as an severe pathogen causing progressive anemia with 

repeated hemolysis (Collins, Jeffery, and Roberts 2003), and dyserythropoiesis 

(Wickramasinghe et al. 1989) episodes and other severe manifestations, showing a 

higher incidence in young children in endemic areas (Genton et al. 2008, Price et al. 

2007, Tjitra et al. 2008, Marsh et al. 1995, Williams et al. 1997). This implies the urgent 

need to gather a profound knowledge about its biology, in general, and particularly its 

immunopathological mechanisms.  

Nowadays, the available molecular tools (reviewed in (Escalante et al. 2015)) rise 

as a valuable option to better estimate the prevalence and incidence of vivax malaria, 

principally in low transmission (lower parasitemia) endemic regions and its dynamics 

in terms of differential contributions between host and vectors. Also, within the specific 

demographic and migration contexts of parasite populations (different patterns of gene 

flow observed under colonization of new areas and/or expansion) and infected 
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individuals, the efficacy of interventions on the infections (occurrence rates, 

complications and duration) can be carefully examined. Importantly, such tools can 

successfully distinguish cases of recrudescence, relapse and infection de novo and 

investigate the emergence of drug resistance. 

PLASMODIUM VIVAX: AN OVERVIEW 

The life cycle of Plasmodium spp. involves two different hosts: the definitive host 

or vector, which is the mosquito of the genus Anopheles, followed by a vertebrate 

intermediate host, such as a human (Fig. 4). As such, vivax malaria is a mosquito-

borne infectious disease caused by the transmission of P. vivax protozoan parasites 

present on the salivary glands of infected female Anopheles spp. mosquitoes during 

the blood meal (Kiszewski et al. 2004).  

In resume, upon entrance, the P. vivax sporozoites migrate to the liver where they 

either mature into an active schizont, going through several rounds of division, after 

which the resultant merozoites are released into the bloodstream, or developed into a 

latent form called hypnozoite (Krotoski 1985). The P. vivax erythrocytic cycle takes 

about 48 hours, where merozoites almost exclusively invade reticulocytes (RTs), 

altering some of their properties, in particular their deformability and enlargement 

(Suwanarusk et al. 2004), the formation of caveola-vesicle like complexes (CVC) and 

cytoplasmic cleft structures (Barnwell et al. 1990). Some parasites have the capacity 

of develop into round-shaped gametocytes, quite early after infection (Boyd 1937), 

which will be taken up by other Anopheles mosquitoes during the blood meal. Initiation 

of the sexual cycle occurs with the development of male and female gametocytes, 

subsequent fertilization, formation of motile ookinetes that migrate to the mosquito 

midgut epithelium and further differentiate into oocysts. Upon maturation, these 

oocysts release sporozoites, which travel and invade the salivary glands. This enables 

them to become injected into another host while the female mosquito feeds, 

perpetuating the complex P. vivax life cycle (Mueller et al. 2009) (Fig. 4). 
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Figure 4. Plasmodium vivax and Plasmodium falciparum life cycle comparison. (A) Anopheles 
blood meal infection; (B) Pre-erythrocytic stage infection; (C) Asexual erythrocytic stage; (D) Intra-
erythrocytic gametocyte development; (E) Mosquito Stage. Adapted from (Bourgard et al. 2018).  

P. vivax had an evolutionary path distinct from P. falciparum, being more closely 

related to P. cynomolgi, a sister taxon that infects Asian macaque monkeys, and to 

other malaria parasites all belonging to a clade that infects Old World monkeys, 

Southeast Asia apes and West African wild apes (Liu et al. 2014, Luo, Sullivan, and 

Carlton 2015, Duval et al. 2010). In fact, in a context of close interaction, P. cynomolgi 

can infect humans (Ta et al. 2014, Ramasamy 2014). Probably, as a consequence of 
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such a unique evolutionary path, P. vivax has several features (Baird 2007, Mueller et 

al. 2009, Gething et al. 2012) of which three key biological properties are the source 

of the differences seen between P. vivax and P. falciparum (Fig. 4): 

(1) Preference for invading RTs (Field 1956), increasing their deformability, size, 

fragility and permeability (Kitchen 1938, Suwanarusk et al. 2004, Handayani et al. 

2009, Desai 2014). The ligand PvRBP2 was identified as the responsible for the P. 

vivax preferential binding to reticulocytes (Galinski et al. 1992). Some researchers 

have hypothesized that deformability would allow P. vivax to evade the host immune 

system, by safe passage of infected RTs through the spleen (del Portillo et al. 2004, 

Handayani et al. 2009, Suwanarusk et al. 2004) and also, because all blood-stage 

forms of the parasite are observed in the peripheral blood circulation, it was believed 

that P. vivax did not need to cytoadhere. However, studies have shown that P. vivax 

has the capacity to cytoadhere (Carvalho et al. 2010, Lopes et al. 2014, Field 1956, 

Chotinavich 2003, Rogerson, Mwapasa, and Meshnick 2007, Siqueira, Alexandre et 

al. 2010, Lacerda, Fragoso et al. 2012, Machado Siqueira, Lopes Magalhaes et al. 

2012, Elizalde-Torrent, Val et al. 2018) and to form rosettes (Udomsanpetch et al. 

1995) and some biopsy data have shown P. vivax sequestered in the spleen and the 

lungs (del Portillo et al. 2004, Anstey et al. 2007). Moreover, RTs represent 1-2% of 

blood stream circulating erythrocytes, maintaining the characteristic low biomass 

parasitemia, which could be an adaptation to limit the occurrence of hyperparasitemias 

and the associated virulence, or the necessity of a specific environment for P. vivax to 

grow and multiply (Mueller et al. 2009). Further studies are needed to clarify all these 

aspects.  

(2) Earlier production of sexual stages during the infection (Boyd 1937) with a 

characteristic spherical shape seen in peripheral blood circulation, even before the 

beginning of clinical symptoms, which might function as a reservoir to promote 

successful transmission to the mosquitoes (Boyd 1937, Bousema and Drakeley 2011).  

(3) the formation of dormant hypnozoites, which remain in the liver in a latent state 

(Krotoski et al. 1982, Baird, Schwartz, and Hoffman 2007, White 2011). Upon 

reactivation, hypnozoites, which are not eliminated by the majority of approved 

antimalarials, can restart the erythrocytic cycle of infection, causing subsequent 

relapses weeks or months after the first infection (Battle et al. 2014) and the likely 

transmission of the sexual gametocytes (White 2011, Krotoski et al. 1982, Betuela et 

al. 2012, Orjuela-Sanchez et al. 2009).   
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The mechanisms and triggering factors underlying hypnozoite activation are still 

unknown (Mueller et al. 2009). Environmental and host stress might have a role, and 

some reactivation patterns seems to be connected with Anopheles spp. seasonal 

peaks (Hulden, Hulden, and Heliovaara 2008), maintaining a dynamic genetic pool, 

available to continue the transmission and propagation of the parasite (Mueller et al. 

2009, White et al. 2016, White 2011, Shanks and White 2013, Hulden and Hulden 

2011, White et al. 2014). PQ is the only drug available that can effectively kill 

hypnozoites, but unfortunately, complications have been reported for glucose-6-

phosphate dehydrogenase (G6PD) deficient patients (Beutler, Duparc, and Group 

2007), thus limiting its mass administration in endemic regions (Bowman et al. 2004). 

The lack of a reliable and reproducible in vitro system for long term culture of P. 

vivax and no easy access and use of monkey based studies with adapted strains of P. 

vivax (Beeson and Crabb 2007, Panichakul et al. 2007) has greatly restricted research 

in time and place and impose great limitations, both in the quantity and quality of 

functional assays performed in ex vivo short term cultures (Noulin et al. 2013). Thus, 

the P. vivax research community faces great hurdles to uncover the biology of this 

elusive parasite, posing huge hitches for control policies decision-making. 

PLASMODIUM VIVAX GENETIC DIVERSITY 

An important piece of evidence published by Orjuela-Sánchez, P. and 

collaborators (Orjuela-Sanchez et al. 2013), alerted the vivax malaria community to 

another level of complexity. A higher genetic diversity of P. vivax by microsatellite 

analysis was observed, in a context of infection polyclonality of Asian clinic isolates, 

compared to the same genetic diversity verified for P. falciparum Asian isolates at 

correspondent geographic locations (Orjuela-Sanchez et al. 2013). More recently, 

publications based on NGS methodologies support the high level of genetic diversity 

verified for this parasite (Luo, Sullivan, and Carlton 2015, Hupalo et al. 2016). 

PLASMODIUM VIVAX ADHESION PHENOTYPES  

Whereas some other aspects of Plasmodium spp. have been clarified, such as the 

core machinery driving invasion (reviewed in (Cowman et al. 2017)), the ligand-

receptor interactions between the parasite and the host erythrocyte remain 

unidentified, but we know them to show significant molecular heterogeneity and 

evolution. For instance, P. vivax infecting humans have similar diversity as the chimp 
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and gorilla P. vivax-like parasites, suggesting that the emergence of P. vivax in the 

human population was an ancient event, which have led to a change and optimization 

of the parasite ligands from their ape counterparts to the human P. vivax (Liu, Li et al. 

2014). The polymorphism of parasite ligands allows the parasite to colonize varied 

ecological niches in addition to evading the immune system. On the contrary, host 

erythrocyte variation can serve to curb the efficiency of Plasmodium invasion, a factor 

in limiting infections and pathogenesis. Little is known about these ligand-receptor 

interactions involved in the adhesive capacity of P. vivax (Bernabeu et al. 2012, 

Fernandez-Becerra, Yamamoto, et al. 2009) and its host cell tropism. 

 

Cytoadhesion 

In the 60’s, a “hiding” capacity of P. vivax was proposed, in which a 

disproportionally low level of mature blood stages (schizonts) relative to young stages 

(trophozoites) was found in peripheral circulation, indicating that maturation of these 

parasites could occur, but deep in the human microvasculature (Field 1963). In 2010, 

we were the first group to demonstrate that P. vivax-infected erythrocytes (Pv-iE) 

collected from patients with malaria were capable to adhere ex vivo to placental 

cryosections, to human lung endothelial cells (HLEC), and to Saimiri brain endothelial 

cells, in static and flow conditions (Carvalho et al. 2010). Although the number of Pv-

iE adhered in static conditions was 10 to 15 times lower than that of Pf-iE, the strength 

of interaction to the endothelium was similar for both parasite species (Carvalho et al. 

2010). Likewise, in assays using transfected Chinese hamster ovary cells (CHO), the 

ligation of Pv-iE to CHO expressing ICAM-1 was 2 times higher than to non-transfected 

cells or to CHO expressing CD36 (CHOCD36), suggesting ICAM-1 as a potential 

endothelium receptor for P. vivax. Also, Pv-iE were able to adhere to placental 

cryosections and the ligation to HLEC was inhibited by soluble chondroitin sulphate A 

(CSA), indicating the participation of this receptor (Carvalho et al. 2010). In a study, 

performed with 33 Asian-Pacific P. vivax isolates, adherence to immobilized CSA and 

Hyaluronic acid (HA) was shown, and previous incubation of all isolates with CSA and 

HA reversed parasite ligation, proving CSA involvement as an adhesion receptor in P. 

vivax (Chotivanich et al. 2012). Besides, we also confirmed the low frequency of 

circulating schizonts in peripheral circulation of patients infected with P. vivax (Lopes 

et al. 2014). Furthermore, we were able to demonstrate that P. vivax isolates matured 
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in vitro until the schizont stage have a higher adhesion capacity relative to the same 

isolates before maturation (Lopes et al. 2014). Thus, this data suggests that the low 

circulating schizont proportion seen in patients could be a consequence of parasite 

sequestration in another place (Lopes et al. 2014), which is related to parasite 

disappearance from the peripheral blood circulation. This sequestered P. vivax 

biomass is directly associated with poor clinical outcomes and disease severity (Barber 

et al. 2015). 

 

Rosetting 

A very important adhesive phenotype, associated with clinical complications in 

falciparum malaria is the capacity of Pf-iE rosette formation, characterized by the 

ligation of an infected erythrocyte to two or more healthy erythrocytes (Carlson et al. 

1990). Several studies have investigated an association between the ABO blood type 

and in the rosetting process suggesting an important role (Rowe et al. 2007, Barragan 

et al. 2000). In P. falciparum, some scientific publications indicate that patients with A 

or B blood type showed a greater rosette presence than O blood type patients, which 

points at an enhanced protection against the occurrence of severe malaria outcomes 

(Rowe et al. 2007, Barragan et al. 2000). Although these phenomena have already 

been quite well described and studied for P. falciparum, little is known about the 

formation of rosettes in P. vivax. The first report about Pv-iE rosettes (Udomsanpetch 

et al. 1995) was published more than 20 years ago, but until now, few scientific 

experiments have explored and described the P. vivax rosetting phenotype 

(Udomsanpetch et al. 1995, Chotivanich, Pukrittayakamee, et al. 1998, Chotivanich, 

Udomsangpetch, et al. 1998, Chotivanich et al. 2012, Russell et al. 2011). 

Furthermore, in contrast to P. falciparum, the relation between P. vivax rosetting, 

disease severity, parasitemia and blood type is unknown (Russell et al. 2011, 

Udomsanpetch et al. 1995, Chotivanich, Pukrittayakamee, et al. 1998).  

More recently, Russell, B. and colleagues have demonstrated that, to accomplish 

P. vivax field isolate enrichment in parasite, it is necessary to use trypsin to disrupt the 

present rosettes (Russell et al. 2011), suggesting the existence of parasitic ligands 

involved in the process of P. vivax rosette formation. During the last years rosette 

formation traits have been explored (Zhang et al. 2016, Lee et al. 2014), drawing 

already some conclusions: (1) both frequency and rate of rosetting in patient samples 
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is higher in vivax than in falciparum malaria, (2) which occurs as soon as 20 hours after 

reticulocyte invasion by P. vivax asexual and sexual stages (Lee et al. 2014), (3) host 

ABO blood group, reticulocyte amount and P. vivax parasitemia do not significantly 

correlate with enhanced or diminished P. vivax rosetting capacity.  

The rosette complex structure is based preferentially on mature erythrocytes 

(normocytes), where Glycophorin C receptor presence seems to have an important 

role (Lee et al. 2014). As it is known, Pv-iE have the rheological properties altered, 

principally in decrease of membrane elasticity, which enables them to avoid splenic 

clearance (Zhang et al. 2016). According to recent studies on deformability of Pv-iE, 

rosette-forming iE are distinctly more rigid than their non-rosetting counterparts, with 

long adhesion to normocytes, which suggests a high contribution of rosettes to the 

sequestration of schizonts Pv-iE in the host microvasculature and/or spleen (Zhang et 

al. 2016). 

Genetic background and adhesion phenotype  

The genetic basis and expression mechanisms of P. vivax adhesion phenotypes 

are almost completely unknown. The subtelomeric variant gene family of P. vivax, 

designated vir, was described 16 years ago (del Portillo et al. 2001), being 

characterized as having a structure and organization of extreme complexity. Initially, 

around 346 different genes where classified and grouped within this multigenic 

superfamily (del Portillo et al. 2001), subdivided in 12 distinct subfamilies (A to L), 

according to their sequence similarity and structure. Subsequently, a bioinformatic 

analysis study was published (Lopez et al. 2013), where all subtelomeric gene 

sequences were compared and examined considering their organization and structure 

characteristics, similar to those of vir genes (Lopez et al. 2013). In the end, this analysis 

revised the total number of vir genes to 314 (Lopez et al. 2013). It is estimated that vir 

genes represent 10 to 20% of P. vivax coding sequence (del Portillo et al. 2001). This 

great repertoire is expressed in P. vivax clinical isolates, in which different groups of 

subfamilies of vir genes can be transcribed simultaneously by each mature parasite 

(Fernandez-Becerra et al. 2005). Contrary to var genes from P. falciparum, which 

encode around 60 different PfEMP-1 proteins, only some vir genes (160 from 346) 

have motifs similar to those of exported proteins – “Plasmodium Export 

Element/Vacuolar Transport Signal (PEXEL/VTS)”. The PEXEL/VTS molecules are 

responsible for protein export to the erythrocyte surface and cytosol (Marti et al. 2004). 
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In contrast to PfEMP-1, VIR antigens are not clonally expressed (Fernandez-Becerra 

et al. 2005) and can be found in the interior of reticulocytes, thus indicating different 

functions and locations (Fernandez-Becerra et al. 2005). Considering its variant nature 

and presence in the erythrocyte membrane, the role for VIR antigens in Pv-iE adhesion 

to endothelial cells was evaluated. Polyclonal antibodies capable to recognize VIR 

recombinant proteins of two different families (VIRE4 and VIRE5) inhibited ex vivo 

adhesion of Pv-iE to HLEC (Marti et al. 2004). Moreover, supporting our findings (Marti 

et al. 2004), Bernabeu, M., et al. evaluated the role of VIR proteins in P. vivax 

cytoadherence (Bernabeu et al. 2012). In this work, they transfected P. falciparum 

strain 3D7 with several recombined VIR proteins and proved the involvement of VIR 

antigens in adhesion to ICAM-1 (Bernabeu et al. 2012). Based on the evidences 

described above, there is no doubt that P. vivax has adhesive capacity. Still, it is not 

clear that this ability makes part of a strategy to avoid destruction of Pv-iE in the spleen 

(del Portillo et al. 2004), like it has been foreseen to P. falciparum, and/or what is the 

relation between adhesion and the observed pathological clinical complications 

reported for vivax malaria. 

OMICS & MALARIA 

P. vivax NGS: reference genome and transcriptome 

The use of the reference genome P. vivax Salvador-1 (Sal-1) primate adapted 

strain (published 10 years ago (Carlton, Escalante, et al. 2008)) and the publication of 

recent WGS directly from P. vivax clinical isolates (Dharia et al. 2010, Chan et al. 2012, 

Menard et al. 2013, Neafsey et al. 2012, Luo, Sullivan, and Carlton 2015) has opened 

new possibilities for molecular biology studies (Feng et al. 2003, Forrester and Hall 

2014, Carlton, Adams, et al. 2008). Importantly, a new enhanced P. vivax reference 

genome P01 was recently published (Auburn et al. 2016), providing an outstanding 

improvement on the current reference genome (P. vivax Sal-1) and its annotation, 

essential for all future NGS data analysis and revaluation on the existing published 

data. This new P. vivax P01 reference genome covers, in an enhanced way, the 

parasite subtelomeric and centromeric regions, where a high percentage of vir genes 

are located. As stated by the authors, “an extensive repertoire of over 1200 

Plasmodium interspersed repeat (pir) genes were identified in PvP01 compared to 346 

in Salvador-I, suggesting a vital role in parasite survival or development” (Auburn et al. 
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2016). As previously reported and rephrasing Auburn et al., these variant genes might 

be involved in important molecular mechanisms for parasite survival and expansion, 

thus an enhanced reference sequence will help their identification. 

However, transcriptome studies aiming to understand the molecular mechanisms 

underlying several aspects of the pathogenesis of P. vivax, are still scarce (Zhu et al. 

2016, Westenberger et al. 2010, Bozdech et al. 2008, Boopathi et al. 2014, 2013). The 

data have provided a strong foundation for understanding P.  vivax transcription 

profiles, but each one lacks information. The Bozdech et al. microarray experiment 

does not have a complete genome coverage, where genes not present in the initial P. 

vivax Sal-1 reference genome annotation do not have a transcriptional profile. The 

Westenberger et al. microarray experiment covers additional unannotated P. vivax 

genome sections, however abundance comparisons during the asexual life cycle are 

missing. Whole Transcriptome Shotgun Sequencing (WTSS), also known as RNA-seq, 

has grown significantly as a powerful approach. It is enabling researchers to produce 

unbiased transcript abundancy data on the several stages of P. vivax parasites that is 

not limited to the specific probes used on a microarray chip. RNA-Seq also allows the 

definition of the boundaries of genes, such that it could uncover novel gene transcripts, 

alternative splicing events, validate and/or correct current gene models, and predict 5’ 

and 3’ untranslated regions. RNA-Seq therefore provides an opportunity to identify 

strain specific patterns of gene expression associated with parasite virulence and host-

pathogen interactions. Moreover, comparative transcriptome analysis between the 

deadly P. falciparum and P. vivax would be key to access the biological and clinical 

differences between this human malaria parasite species (Carlton, Adams, et al. 2008, 

Mueller et al. 2009), impacting considerably in vaccine and drug design. 

Methodological achievements on the capacity to isolate, enrich and mature ex vivo P. 

vivax clinical isolates (Russell et al. 2011, Udomsangpetch R 2001, Auburn et al. 2013) 

are opening new avenues for high-throughput transcriptome sequencing analyses. 

Still, the very low parasitemias (Guerra et al. 2010) and the multi-clonality of the strains 

observed in a single patient (Orjuela-Sanchez et al. 2013), hamper the development 

of a reliable methodologies for RNA isolation with an appropriate quantity and purity 

suitable for WTSS and its latter analysis and data mining. 
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 Transcriptomic approaches to host-pathogen interactions 

The clinical manifestations that characterize malaria disease are caused by the 

sexual blood stage parasites and its interaction with the human host occurring in the 

(micro) vasculature and adjoining organs, such as spleen (review in (Cunnington, 

Walther, and Riley 2013, Gazzinelli et al. 2014, Buffet et al. 2011)). Thus, many 

features of host-pathogen interactions can be explored and evaluated through 

analyses of whole peripheral blood samples from malaria patients (comprising 

lymphocytes and erythrocytes), as sources of both pathogen and host cells for 

application of transcriptomic analyses, either considering one (Daily et al. 2004, 

Griffiths et al. 2005) or several cell types from the same sample (Yamagishi et al. 

2014). These samples, even taking into account the low parasitemia verified in vivax 

malaria patients, can yield sufficient parasite RNA reads, allowing expression analysis 

when using the standard RNA-seq depth capacity (Adiconis et al. 2013, Haque et al. 

2017, Malone and Oliver 2011, Conesa et al. 2016, Hrdlickova, Toloue, and Tian 

2017). However, the lower the parasitemia, the more required is the depth of 

sequencing needed for meaningful biological results interpretation. 

One important factor for the determination of the pathogenesis of many infectious 

diseases, including malaria, is the pathogen load, which is harder to quantify as a 

stimulus that elicit a systemic host immune response, especially when the pathogen is 

spread through multiple tissues (Cunnington 2015). In this scenario, assessment of 

host-parasite interactions in blood of (vivax) malaria using transcriptomics offers an 

excellent opportunity for understanding the role systemic host-parasite interactions in 

general, even if not always straightforward (Westermann et al. 2016, Westermann, 

Gorski, and Vogel 2012). One drawback comes from the fact that total RNA isolated 

from the parasite may only encompass a small proportion of the total RNA isolated 

from a specimen. To tackle this issue, both cell sorting using genetic engineered 

fluorescent strains, the specific enrichment and capture in parasite transcripts at the 

time of RNA extraction, and ribosomal RNA (rRNA) depletion to maximize sequencing 

of mRNA can be used. In brief, successful transcriptomics is highly reliant on the 

pathogen, the RNA content per pathogen, the sample type, and the pathogen load. 

Several contributions have already been made that lead to the identification of host 

parasite interactions at cellular scale (extensively reviewed in (Lee et al. 2018)), 

including those related with regulation of invasion-associated effectors and virulence 
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genes by non-coding RNAs. There is the increased need to apply “dual RNA-seq” to 

in vivo infection experiments. Nevertheless, the present published studies report 

evidence that the parasite gene expression can vary within the host and can be driven 

by the host immune response. Particularly, eukaryotic pathogens, such as 

Plasmodium, contain a tightly packed and highly regulated transcriptome that allow 

their greater change in gene expression in response to their host.  
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AIMS 
 

 MAIN AIM 

The major purpose of this research project is to understand the molecular 

mechanisms behind distinct immunopathogenesis of P. vivax adherence (Fig. 1). 

Specifically, we aim to  

(i) identify and focus our study the role of parasitic ligands, during the 

process of rosette formation and  

(ii) Pv-iE cytoadhesion to host endothelial receptors, using the 

potential of transcriptomics approaches.  

The efforts of our research group concentrate in better understanding the 

expression patterns related to such pathogenicity characteristics of P. vivax malaria, 

in particular of adhesion phenotypic capacity, from Amazonian very low parasitemia 

clinical isolates, and thus go into the mysterious and mostly unknown biology of P. 

vivax apicomplexan parasite. 

 

Figure 1. Flowchart showing the main and specific objectives of this study aiming to understand 

the molecular mechanisms behind the P. vivax adherence phenotype. 
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SPECIFIC AIMS: METHODOLOGICAL OVERVIEW OF THE ACCOMPLISHED RESEARCH  

Having in mind this main goal, specific aims were accomplished in a stepwise 

manner, beginning by collection, characterization and WTSS (RNA-seq) of P. vivax 

samples, isolated from the clinic and enriched in adhesion phenotypes on the road to 

transcriptomics data analysis, differential gene expression (DE) profiling and data 

mining (Fig. 2, 3 and 4).  

• Plasmodium spp. RNA isolation method: standardization and validation 

(i) optimization of an RNA extraction method from a panel of P. falciparum serial 

diluted samples to determine limitations, accuracy and sensibility of the best protocols 

through NanoDrop® and quantitative real -time PCR; 

(ii) the best methods for RNA extraction tested before were applied to several P. 

vivax clinical samples presenting very low parasitemia and validated towards RNA 

integrity, purity, quality and quantity suitable for WTSS using both BioAnalyser® and 

quantitative real -time PCR; 
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Figure 2. Methodological overview of the experimental design (Step ❶) for the execution of P. vivax 
RNA-seq experiment. 

 

• P. vivax field work:  

(i) effective and reproducible harvest, enrichment and ex vivo maturation of P. 

vivax field isolates to perform several different assays and experimental protocols; 

(ii) standardization of an unbiased cryopreservation method by N2 flash freezing of 

assayed P. vivax field isolates for sequencing experiments;  

(iii) execution of ex vivo 48h culture and time-point preservation of Pv-iE for 

evaluation of temporal expression profile; 

(iv) metadata collection and analysis; 

• P. vivax adhesion assays: 

(i) Accomplishment of several rosetting assays for evaluation of its rosette 

formation capacity through several maturation stages of different P. vivax field isolates;  

(ii) optimization of a new protocol for cytoadhesion assessment and corresponding 

separation and recovery of Pv-iE populations with characteristically distinct ability to 

adhere to endothelial cells, constitutively expressing different human cell receptors; 

(iii) execution of several cytoadhesion assays to isolate, recover and quantitate the 

Pv-iE populations with different capacities to bind endothelial receptors (CHOICAM and 

CHO745); 

 

  
Figure 3. Protocol outlined for the several experimental steps previously designed and optimized for the 

execution of P. vivax RNA-seq experiment. Step ❷ – Sample preparation; Step ❸ – RNA Isolation; 

Step ❹ – Libraries preparation and Step ❺ – Sequence run. 



31 
 

 

• Whole Transcriptome Shotgun Sequencing (or RNA-seq): 

(i) RNA-seq experimental design (Fig. 2) in accordance with our goal for P. vivax 

whole transcriptome sequencing from phenotypically characterized isolates enriched 

for parasite populations with cytoadherence or rosette formation capacity (Fig. 2, Step 

1) from the malaria endemic region in the Amazons, where patients present a 

characteristic low parasitemia; 

(ii) RNA-seq accomplished experimental steps:  

a. Functional assays: isolation and stock of P. vivax parasite populations with 

adherence phenotypes well characterized through cytoadhesion and rosetting 

assays (Fig. 2 and Fig. 3, Step 2); 

b. Isolation and purification of P. vivax total RNA (Fig. 2 and Fig. 3, Step 3) from 

the samples previously assayed; 

c. Transcriptomic library preparation, with controlled cDNA synthesis, amplification 

and indexing for downstream sequencing (Fig. 2 and Fig. 3, Step 4); 

d. Sequencing of our libraries using Illumina® platform (Fig. 2 and Fig. 3, Step 5).  

  

Figure 4. Bioinformatics workflow for RNA-seq data analysis (https://rnaseq.uoregon.edu/#analysis). 

Left panel shows the current overview for transcriptomics data analysis pipeline (Anders et al. 2013) 
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and the right panel shows a more detailed bioinformatic methodology overview of P. vivax 

transcriptomics data analysis.  

(iii) RNA-seq data analysis (Fig. 2, Fig. 3, Step 6 and Fig. 4): the raw reads obtained 

were quality controlled and an overall evaluation of the sequencing run. Trimmed and 

quality accessed reads had the duplicates marked out, were aligned, indexed and 

mapped to the reference genomes of: 

a. H. sapiens, to analyze host immune response; 

b. P. falciparum IT and 3D7 for the two control samples; 

c. P. vivax reference genomes, Salvador-1 and P01. 

(iv) Read count of the P. vivax and H. sapiens aligned data for RPKM (Reads Per 

Kilobase Million), FPKM (Fragments Per Kilobase Million) determination, 

(v) Differential Gene Expression analysis (Fig. 4) and evaluation of the pool of gene 

with significant fold changes by sample or group of samples comparison; 

(vi) Data mining: exploration of gene ontology enrichment landscapes concerning 

biological processes, molecular function and cellular components. Functional and 

metabolic pathways enrichment and interaction network analysis and visualization 

(Fig. 4).  
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Overview 

In this review, we show the main achievements on P. vivax biology accomplished 

based on the published genome, transcriptome and proteome sequencing projects. In 

particular, 

(1) the genome-wide comparative studies showing evolutionary relationships 

between parasites of the same genus,  

(2) the broad genetic diversity landscape within the P. vivax populations reported 

as to understand specific selection pressures (environmental and host/vector related) 

acting presently on parasite populations,  

(3) the more recent expression profile datasets and regulation mechanisms 

emerging from sensitive high-throughput WTS (RNA-seq) of P. vivax in different 

stages, and  

(4) the attempts to identify parasite metabolic pathways and antigens as possible 

diagnosis biomarkers through mass spectrometry (MS) based proteomics analysis of 

parasites and human host profiling from vivax malaria patient samples.  

Also, we present the main challenges encountered, remaining gaps and possible 

research avenues being explored and developed by the vivax malaria community. 
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Overview 
 
Herein, we present a methodological outline to successfully perform RNA-seq from 

P. vivax field isolates with scarce parasitemia from the low transmission Amazonian 

endemic region, with distinct cytoadherence capacity. We were able to overcome 

limitations concerning contaminations from gDNA from the parasite and from the 

human host by combining enrichment and ex vivo maturation known methods with the 

finest ribonucleic acid isolation procedures to obtain P. vivax RNA suitable and 

proceed for low input library preparation, achieving an unbiased transcriptome 

sequencing, which allow us insights into the transcriptomic profiling of parasites 

adhesive phenotypes.  

We expect this work to promote further successful high-throughput sequencing 

application in future P. vivax transcriptomic analyses, particularly in malaria endemic 

regions. Such data will positively impact vivax research, improving knowledge of P. 

vivax biology and paving our way to malaria elimination. 
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Abstract 

Plasmodium vivax is one of the most world-threatening human malaria parasites, 

however knowledge regarding its biology remains elusive. The impossibility of a long-

term in vitro culture, the tricky host contaminations, and especially, the so characteristic 

low parasite burden, makes RNA isolation from multi-clonal isolates, a challenging 

task. So far, obtaining P. vivax  RNA in quantity and purity for the newest high 

throughput and sensible Whole Transcriptome Shotgun Sequencing technologies, 

especially after functional assays, are difficult to perform and furthermore analyze for 

biological significance. 

Herein, we present a methodological outline to successfully perform RNA-seq from 

P. vivax field isolates with scarce parasitemia from the low transmission Amazonian 

endemic region, with distinct cytoadherence capacity. We were able to overcome 

limitations concerning contaminations from DNA parasite itself and from the human 

host by combining enrichment and ex vivo maturation known methods with the finest 

ribonucleic acid isolation procedures to obtain P. vivax RNA suitable and proceed for 

low input library preparation, achieving an unbiased transcriptome sequencing, which 

allow us insights into the transcriptomic profiling of parasites adhesive phenotypes.  

We expect this work to promote further successful high-throughput sequencing 

application in future P. vivax transcriptomic analyses. Such data will positively impact 

vivax research, improving knowledge of P. vivax biology and paving our way to malaria 

elimination. 
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Introduction 

Plasmodium vivax is the most prevalent malaria parasite outside Sub-Saharan 

Africa, and the most geographically widespread type of malaria, placing millions of 

people at risk of infection, therefore imposing major health and economic burdens [1, 

2]. Infection occurs in genetically distinct populations with heterogeneous resistance to 

chloroquine, probably as a result of individual responses in a host-parasite relation [3-

6]. Severe clinical complications, although scarce[7], have been of great concern [7]. 

Nevertheless, the lack of a reliable and reproducible in vitro system for long term P. 

vivax culture [8], restricts the study of its biology to endemic referral hospitals.  

P. vivax Salvador-1 (Sal-1) primate adapted strain, sequenced 10 years ago [9], 

being currently used as reference genome, has opened new possibilities for molecular 

biology studies [10, 11]. Transcriptome studies aiming to understand the molecular 

mechanisms underlying several aspects of the pathogenesis of P. vivax, e.g. drug 

resistance, disease severity, the understanding of dormant liver-stage parasites 

(hypnozoites) are only now starting to be published by several research groups 

(reviewed in [12]). Most recently, publication of a new reference genome P. vivax P01 

with improved scaffold assembly, specially of subtelomeric, telomeric and centromeric 

regions [13], will lead to a significant alignment, mapping and analysis into meaningful 

insights into P. vivax biology of the genomic and transcriptomic data. Moreover, 

comparative transcriptome analysis between the deadly P. falciparum and P. vivax 

would be key to access the biological and clinical differences between this human 

malaria parasite species [9], impacting considerably in drug and vaccine design. The 

capacity to isolate, enrich and mature ex vivo P. vivax clinical isolates [14-16] open 

new avenues for high-throughput transcriptome sequencing analyses [17-19]. 

However, very low parasitemias [1] verified in several vivax malaria endemic regions 

and the infections multi-clonality observed in a single patient [20], hindered further 

progress into P. vivax transcriptomics, in particular, the application of  Whole 

Transcriptome Shotgun Sequencing (WTSS), also known as RNA-seq, as a powerful 

approach to identify strain specific patterns of gene expression associated with 

parasite virulence and host-pathogen interactions. 

In the 60’s, a “hidden” capacity of P. vivax was proposed, in that a disproportionally 

low level of mature blood stages (schizonts) relative to young stages (trophozoites) 

was found in peripheral circulation, indicating that maturation of these parasites could 
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occur, but deep in the human microvasculature [21]. In 2010, we demonstrate that P. 

vivax infected erythrocytes (Pv-iE) collected from patients with malaria were capable 

to adhere ex vivo to placental cryosections, to human lung endothelial cells (HLEC), 

and to Saimiri brain endothelial cells, in static and flow conditions [22]. Although the 

number of Pv-iE adhered in static conditions was 10 to 15 times lower than that of Pf-

iE, the strength of interaction to the endothelium was similar for both parasite species 

[22]. Likewise, in assays using transfected Chinese hamster ovary cells (CHO), the 

ligation of Pv-iE to CHO expressing ICAM-1 was 2 times higher than to non-transfected 

cells or to CHO expressing CD36 (CHOCD36), suggesting ICAM-1 as a potential 

endothelium receptor for P. vivax. Also, Pv-iE were able to adhere to placental 

cryosections and the ligation to HLEC was inhibited by soluble chondroitin sulphate A 

(CSA), indicating the participation of this receptor [22]. In a study, performed with 33 

Asian-Pacific P. vivax isolates, adherence to immobilized CSA and Hyaluronic acid 

(HA) was shown, and previous incubation of all isolates with CSA and HA reversed 

parasite ligation, proving CSA involvement as an adhesion receptor in P. vivax [23]. 

Besides that, we also confirmed the low frequency of circulating schizonts in peripheral 

circulation of patients infected with P. vivax [24]. Furthermore, we were able to 

demonstrate that P. vivax isolates matured in vitro until the schizont stage have a 

higher adhesion capacity relative to the same isolates before maturation [24]. Thus, 

this data suggests that the low circulating schizont proportion seen in patients could 

be a consequence of parasite sequestration in another place [24], which is related to 

parasite disappearance from the peripheral blood circulation. This sequestered P. 

vivax biomass is directly associated with poor clinical outcomes and disease severity 

[25].  

Taking in mind these difficulties, we developed a methodologic framework which 

would allow us successfully to achieve all steps from RNA isolation of a set of lower 

parasitemia P. vivax isolates from the Amazonian endemic region to an unbiased 

coverage WTSS, while studying the particular cytoadhesion phenotypic traits, further 

understanding the immuno-pathogenesis of this elusive parasite. Our expectation is 

that this work will help vivax malaria researchers to overcome some barriers to 

molecular biology in P. vivax. For instance, by promoting the generation of expression 

data from the world parasite populations, as well as, foster and improve the success 

rate of WTSS on clinical isolates in malaria endemic areas, consequently, instigate the 

investigations on the biology of P. vivax apicomplexan parasite.  
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Results 

RNA isolation methods and quality control assessment  

In the context of gene expression studies using transcriptome data, we tested 

several methods for RNA isolation in a panel of P. falciparum samples with a wide-

ranging parasite density (102 to 107), which intended to simulate the conditions of those 

found in field isolates of P. vivax. Eight RNA isolation approaches were tested, covering 

several conditions: from the well-known single-step method of RNA isolation by acid 

guanidinium thiocyanate-phenol-chloroform extraction and a TRIzol based RNA 

extraction protocol, to the user-friendly kits based on the acid guanidinium thiocyanate-

phenol-chloroform or TRIzol extraction, available on the market. To understand the 

transport options available for the isolates during the fieldwork, the influence on RNA 

of an initial sample preservation, frozen in a commercial stabilizer reagent or TRIzol 

was also evaluated (Figure 1). After completion of each RNA extraction, the sizing, 

quantity and quality of samples was estimated by using the known electrophoretic 

technology present in the BioAnalyser® platform (Supplemental Figure 1).  

Next, to identify and evaluate the limitations of downstream reactions applied to 

this set of isolated RNAs, we amplified three housekeeping genes by qPCR (Figure 2). 

Between the three chosen housekeeping genes, average Ct for the amplification of the 

DNA repair helicase gene was higher than the Gamma GCS and SER-tRNA ligase 

(Figure 2). Generally, high Ct mean values indicate less efficiency of amplification 

reactions for the target fragment, which difficult the analysis of amplification in case of 

poorer amount RNA samples. Therefore, we looked more carefully to the amplifications 

observed for the other two genes (Figure 2A and C). The detection of contamination in 

the samples with gDNA from the P. falciparum itself, originated from an inefficient 

separation of RNA from DNA during the extraction procedure, was possible through 

the amplification of reverse transcriptase negative (RT-) controls. As expected, it was 

observed an inversely proportional relation between the initial quantities of parasites 

from which the RNA was extracted relatively to the mean Ct value obtained, consistent 

through all extraction methods. To evaluate which methods was the best candidate for 

RNA isolation in very small amounts, we discarded some cases where amplification 

was not successful, or we could detect some gDNA contamination. For instance, Ct 

values very high and/or coincident between the samples and its correspondent RT- 

controls where discarded as not successfully amplified samples. Contamination cases 
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where observed when RT- controls presented Ct values lower or similar to those 

obtained for gDNA amplification. We could verify that in general, we were able to 

extract small amounts of RNA more efficiently by applying the user-friendly columns 

base kits, instead of performing other large scale, manual protocols. RNA samples 

extracted using the commercial kits from biological material previous preserved, 

showed more reproducibility between replicates (see error bars). This is an advantage 

considering the future application of this extraction protocol to P. vivax field isolates 

that need to be preserved for transportation before RNA extraction.  

Between all extraction procedures performed, the two most reliable combinations 

of preservation and extraction procedures, RNAlater®/RNeasy® Micro kit and TRI 

Reagent®/Direct-zolTM RNA MiniPrep, were chosen to extract RNA from P. vivax field 

isolates (Figure 3). After isolation, enrichment and short-term ex vivo maturation 

(Supplemental Figure 3), RNA from a set of samples with different number of parasites 

(103 to 106) was extracted. BioAnalyzer® quality controls are shown in Supplemental 

Figure 2. 

The RNA extracted from these filed isolates was then amplified by qPCR for the 

same three housekeeping genes (Figure 4). We observed that, although the results 

were similar for both kits, Ct values were higher when the sample was preserved in 

TRI Reagent® and then extracted using the Direct-zolTM RNA MiniPrep. This may be a 

consequence of contamination, with organic compounds, common in protocols that 

use TRIzol and other phenols to separate the RNA from DNA, which inhibit enzymatic 

reactions, and thus, waning the efficacy of reverse transcription and amplification 

reactions. Like for P. falciparum samples, in P. vivax samples the gDNA contamination 

from the parasite was limited and, most importantly, host contamination was reduced 

and did not interfere in the qPCR reactions (Figure 4). 

In the end, we determined that the RNeasy® Micro kit would be that most reliable 

to work with. However, instead of preserving the isolates in RNAlater® to transport the 

samples from one lab to another to continue with the sequencing set up, we opted for 

flash freezing in liquid nitrogen all our P. vivax isolates, prior to transport in controlled 

temperature. This decision considered two very important factors which could directly 

interfere greatly in our sequencing outputs. The use of preserving substances, like 

RNAlater®, is controversial. Not only we don’t have complete and exact information 

about the content of such patented solution, as also, some researchers have alerted 

for incompatibilities verified when reading samples in spectrophotometry equipment for 
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RNA control assessment, as for instance, on the golden standard BioAnalyser®. We 

did saw some inconsistency of RNA Integrity Number (RIN) values, both in P. 

falciparum and P. vivax RNAs (Supplemental Figures 1 and 2). Given our samples 

have little RNA and the algorithm-based RIN values are calculated based on three 

features, quantity, quality and purity, of the samples, we couldn´t clearly sort out the 

source. Furthermore, RNA-seq is a sensible technique, that anything could affect with 

the final readouts, including the presence of traces of RNAlater®. The presence of such 

compounds could interfere and hinder our analysis of P. vivax expression patterns. 

Evaluation of Brazilian P. vivax isolates adherence phenotype 

To investigate the cytoadhesion capacity of different populations of Pv-iE from 

Brazilian Amazonian endemic field, we collected a total of 8 vivax malaria patient 

samples (Supplementary Table 1). The 3 female and 5 male patients have on average 

29.8 years old and presented 500 to 104 Pv-iE per µL, counted on a thick smear by the 

specially trained microscopists from malaria diagnosis service at FMT-HVD. All 

samples were processed immediately after collection following the procedures for 

parasite isolation and enrichment to obtain parasitemias >50%, and thus, a total 

number of Pv-iE greater than 400,000 to enable us to proceed with cytoadhesion 

assays. Thin blood smears after Percoll 45% enrichment allowed us to choose isolates 

with a higher percentage of trophozoite to schizont staged parasites and control for 

host lymphocyte contamination. Each single Pv-iE isolate was assayed in duplicate 

against CHOICAM and CHO745 cell lines in one go. The complete count and estimations 

of the total number of Pv-iE adhered/non-adhered populations for each cytoadhesion 

assay are shown in Supplemental Table 2. For 4 of those isolates (92U15, 93U15, 

101U15 and 105U15), 4 different adherent/non-adherent populations of Pv-iE were 

collected for later transcriptome sequencing. The comparison between all 

cytoadhesion assays against CHOICAM and CHO745 cell lines reveled a non-significant 

difference (paired t test, 2-tailed p-value=0.0595) on Pv-iE adherence capacity (Figure 

5 A), even if Pv-iEs seem to adhere more to the CHO745 cell line, a confounding 

observation given our data shows a big variability between different isolates. When 

evaluating isolates for which we performed P. vivax transcriptomics (paired t test, 2-

tailed p-value=0.1103) (Figure 5 B), there is no significantly difference between 

adherence to the different CHO cell lines.  
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P. vivax low input cDNA synthesis, library preparation and sequencing   

In order to perform RNA-Seq, we followed a sequencing experimental design that 

we considered the most promising option, considering the particularities of P. vivax 

samples. RNA extractions of Pv-iE populations of adhered and non-adhered to 

CHO745/CHOICAM for 4 different isolates were done using the RNeasy® Micro kit and its 

quantity and quality evaluated using the Bioanalyzer® platform (Supplementary Table 

3). On average 21.201 pg/uL of RNA, ranging from 6.655 to 40.524 pg/uL, was 

obtained with an average 8.0 RIN (5.7-9.8). Given the low amounts of P. vivax RNA, 

we opted for the use of SMART® technology, which offers unparalleled sensitivity, 

unbiased amplification of cDNA transcripts from low input RNA samples (Supplemental 

Table 4), which is a tremendous advantage since the huge limitation imposed by low 

parasite burden in vivax malaria patients. Immediately after, the cDNA output was 

converted into sequencing templates suitable for cluster generation and high-

throughput sequencing resulting into a sequencing-ready library for the Illumina® 

platform (Supplemental Table 5).  

Whole Transcriptome Shotgun Sequencing data analysis 

We obtained a total number of 7,506,734 raw reads. On average 595,231 paired 

end reads (100 bp) (Supplemental Figure 6) per sample from the 13 sample libraries 

were successfully sequenced (Supplemental Table 6), with an average 47.2% GC 

content. FastQC of the total number of raw reads obtained from all our libraries reveled 

good sequence quality and the necessary trimming steps only excluded a minor 

fraction of reads (Supplementary Table 6), in general, repetitive, not accurately 

determined and Illumina® adaptors run through sequences. Using P. vivax P01 

reference genome, we were able to align and map on average half of the total number 

of trimmed reads obtained to annotated protein-coding genes (Table 2). Note that each 

sample is subdivided by 4 different assays, which reduce by a quarter the total number 

of reads available for downstream analysis. Sequences showing multiple or discordant 

alignments were excluded from the analysis. 

Differential expression profiles associated to P. vivax rosetting phenotype 

To proceed for RNA-seq of P. vivax iRBCs, we separate four groups of parasite 

population samples, with adhesion capacity to CHO745 (92U15-2, 93U15-21, 105U15-
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6 and 101U15-23) and CHOICAM (92U15-1, 105U15-5), and the correspondent non-

adhered samples to CHO745 (92U15-4, 93U15-22,105U15-8 and 101U15-24) and 

CHOICAM (92U15-3, 105U15-7 and 101U15-20). Through RNA-seq data analysis, we 

accessed the differential gene expression profiles between samples of these two 

groups and dissect by data mining, possible differences that tentatively might explain 

P. vivax adhesion phenotype during the progress of vivax malaria disease. Although 

expression profiles were similar between samples within the same capacity level for 

rosette formation, our P. vivax populations isolated from malaria patients showed some 

degree of transcriptome heterogeneity. In any of the different groups analyzed we were 

able to see significantly expressed genes, when considering data normalization (q-

values). However, a list of genes with significant p-values could be withdrawn and 

looked more carefully (Table 3). Especially considering the comparison group of 

parasites that adhered to CHOICAM versus CHO745, we observed a total of 52 genes. A 

portion of those genes (7) codify conserved Plasmodium spp. proteins of yet unknown 

function. These genes showed a strong (2.3>log2 Fold Change>3.4) absolute 

expression, which might suggest their involvement in molecular processes important 

for adhesion phenotype. Future functional characterization of these proteins should 

clarify this possibility. From the pool of the other genes, 5 genes has caught our 

attention: one PIR protein (PVP01_0950000), one Plasmodium exported protein of 

unknown function (PVP01_1201600), the down-expression in adhered samples of the 

putative translocation protein SEC62 (PVP01_1268900) and two proteins with 

repetitive domains, the heptatricopeptide repeat-containing protein (PVP01_1416100) 

and the putative WD repeat-containing protein (PVP01_0905300). Further 

investigations are needed in order to understand the biological meaning of this results.    

 Discussion 

P. vivax is one of the most widespread and world-threatening human malaria 

parasites, however researchers know little of its biology, principally in respect of the 

characteristics that distinguish it from the more known and studied closely related P. 

falciparum. Several factors have hampered P. vivax research, in special, the fact that 

it is still not possible to long-term culture it. Therefore, experiments involving P. vivax 

are restricted in time and place. Adding up, P. vivax infections characterize themselves 

by a log order lower parasitaemia, compared with those of P. falciparum. With low 

parasites available, very low amounts of ribonucleic acids are obtained during the 
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extraction process and substantial DNA/RNA contamination from the host, mainly from 

lymphocytes, is observed, which confounds data analysis and interpretation. Also 

important in such samples with reduced amount of RNA is DNA contamination from 

the parasite itself, which could lead to inaccurate gene expression level assessment. 

In the end, these technical hitches together with mapping short-read sequence data 

and attaining even coverage through the genome make sequencing Plasmodium 

parasites using high-throughput shotgun methodologies highly challenging. 

In an attempt to overcome these difficulties, we tested several methods for sample 

preservation combined with RNA isolation in a panel of P. falciparum samples that 

could mimic some of the most important conditions found when dealing with P. vivax 

field isolates. The low parasitemias verified in peripheral blood samples drawn from 

the patients were simulated by the set of variable parasites density samples. Also, the 

different parasite amounts helped us to identify and draw with some interval of 

confidence, the maximum and minimum limits of RNA isolation (Figure 3) and 

successful downstream molecular reactions (Figure 4). By using qPCR, it was possible 

to amplify three different Plasmodium spp. constitutively expressed genes of RNA 

extracted from an initial very small number of Pv-iE, such as 103. Although present in 

some samples, P. falciparum or P. vivax genomic DNA amplification was reduced, 

could be easily distinguishable and did not interfered with downstream analysis. While 

lymphocytes are completely absent from P. falciparum in vitro culture, CF11 filtration 

efficiently removes the lymphocytes from the sample, as previously tested by others 

[16], which are reflected in our reduced amplification of our control host gene (Figure 

6), not a limiting factor in qPCR reactions.   

We were able to overcome the limitation of DNA contamination from the parasite 

itself and host DNA/RNA contamination, while successfully amplifying RNA isolated 

from scarce parasitemia multi-clonal single patient field isolates. Furthermore, there’s 

no need for additional mRNA selection that could deplete even more our samples in 

RNA. Within cDNA synthesis, the presence of other RNA species, especially rRNA, 

act as an important source of mRNA sequencing corruption. So, for an RNA input, 

which was our case, not needing to execute RNA depletion techniques, is an important 

advantage when dealing with lower quantities of RNA. Also, ensuring that the final 

cDNA libraries contain the 5’ end of the mRNA and maintain a true representation of 

the original mRNA transcripts, were factors considered, that are critical for 

transcriptome sequencing and gene expression analysis. 
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Conclusion 

We hope that this methodology will help researchers to overcome the barriers to 

molecular biology in P. vivax by improving the success rate of WTSS on clinical isolates 

in malaria endemic areas and additionally opens further the investigations on the 

biology of P. vivax apicomplexan parasite. 

Methods 

Ethical Approval 

Informed consent was sought and granted from all patients attending the 

Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, 

Amazonas State, Brazil. All procedures, including protocols and consent forms, were 

approved by the Ethics Review Board of FMT-HVD (processes CAAE-0044.0.114.000-

11 and 54234216.0000.0005). 

 

Study Area, Subjects and Sample Collection 

Patient recruitment was implemented at FMT-FVD, a tertiary care center for 

infectious diseases in Manaus, Amazonas State, Brazil. Only adult patients were 

recruited. Exclusion criteria comprised severe malaria, patients under anti-malarial 

treatment, with P. falciparum malaria and/or P. falciparum and P. vivax mixed infections 

and pregnant women. After microscopic diagnosis of uncomplicated P. vivax malaria, 

determination of parasitaemia and before treatment was initiated, up to 8 mL of 

peripheral blood was collected in citrate-coated VacutainerTM tubes (Becton-

Dickinson). Complete information on patient profiles for P. vivax clinical isolates used 

in this work is on Supplementary Table 1. Then, patients were treated with Chloroquine 

and Primaquine according to the standard protocol recommended by the Brazilian 

Malaria Control Program. Subsequently, P. vivax mono-infection was confirmed by 

PCR analysis, as described elsewhere [26]. 

 

Parasite Isolation, Enrichment and ex vivo Maturation 

All samples were immediately processed to obtain enriched P. vivax infected 

erythrocytes (Pv-iEs). First, the plasma and buffy coat layer was removed after 

separation by centrifugation at 400 x g for 5 min at room temperature. Pellet was 

ressuspended in an equal volume of RPMI parasite medium and then performed CF11 
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column filtration (Sigma®) to deplete white blood cells (WBC) [14, 16, 27]. After, 

completed parasite enrichment was achieved by Percoll 45% gradient as previously 

described [22]. Thin blood smears were prepared and stained with Panótico Rápido 

(Laborclin®) kit, before, during and after ex vivo short culture to control the extent of 

parasite maturation.  

 

Chinese hamster ovary cells in vitro culture  

Two different lines of Chinese hamster ovary (CHO) cells, the CHO745 cell line 

depleted for known glycosaminoglycans [28-30] and CHOICAM transfected cell line, 

expressing constitutively the with  human intercellular adhesion molecule-1 (ICAM-1) 

[31, 32] were cultured following previous standardized methods using RPMI 1x 

(Sigma® #R4130) pH 6.8 with 10% Fetal Bovine Serum (FBS) and 40 mg/L 

Gentamycin media) and were periodically controlled for its receptor expression by flow 

cytometry (Gallios flow cytometer from Beckman-Coulter). We used primary antibody 

mouse anti-human CD54 (ICAM) (BD Cat. No. 559047) conjugate with chicken anti-

mouse IgG (H+L) Alexa Fluor®488 (Cat. No. A21200) to monitor ICAM-1 receptor 

expression on our CHOICAM cultures. A set of mouse anti-human primary antibodies to 

CD54 (ICAM), CD106 (VCAM) (BD Cat. No. 555645), CD36 (BD Cat. No. 555453), 

CD201 (EPCR) (BioLegend Cat. No 351902) and Chondroitin Sulfate (CSA) (BD Cat. 

No. 554275) were used to confirm the CHO745 cell line status as depleted for these 

receptors. Mycoplasma PCR detection were routinely performed to exclude it as a 

contaminant of our cell lines. 

 

Pv-iE cytoadhesion assays  

After parasite enrichment, the number of Pv-iE per mL was determined using a 

Neubauer chamber before the assay (Supplemental Figure 3). We used 4-wells Lab-

Tek previously prepared with a lane of confluent (>80%) and adhered (≥ 1,0 x 105) 

CHO cells, 2-wells for each CHOICAM and CHO745. Pv-iE (≥ 1,0 x 105) in RPMI 1x (pH 

6.8) with FBS medium were added to each Lab-Tek well and incubated for one hour 

at 37ºC. The Pv-iE that do not adhere to the CHO cells were carefully washed (3x) 

using the same media, collected by centrifugation at 3000 rpm, 20 min at room 

temperature and washed once with PBS 1x to clean from medium residues. Only on 

the duplicate well for each different CHO cell line under assay, we proceed with 

detachment of Pv-iE through 30 min incubation with RPMI 1x (pH 7.2) with FBS, 
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followed by 3x washes in 10 min intervals with the same media and making sure that 

the lane of CHO cells remained intact. Non-adhered Pv-iE were collected, washed with 

PBS 1x and pelleted down. All the pellets of adhered and non-adhered Pv-iE were 

immediately flash frozen in N2. Quantification of the number of adhered Pv-iE relative 

to the initial total number of Pv-iE used in each assay was done by microscopy, after 

remove the Lab-Tek well structure from the glass slide and staining with Panótico 

Rápido kit.  

 

P. falciparum in vitro cultures  

P. falciparum FCR3 strain [33] was cultured accordingly to standard procedures 

previously described [34]. 

 

RNA Extraction and Quality Control 

For RNA extraction of a set of P. falciparum culture dilutions (102 to 107), two 

different manual protocols and three different commercial kits were used (Figure 1). 

The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-

chloroform extraction [35, 36] was directly used upon sample assembly, without any 

prior conservation by freezing or by adding a preservation reagent. This protocol was 

followed exactly as explained by the authors [35, 36], with some scale adaptations for 

the lower density parasite samples. The reliable RNA preparation for Plasmodium 

falciparum [34] was performed as described, also with some scale adaptations 

concerning the samples with the smallest amount of parasites and including an initial 

step of sample preservation in TRIzol at -80ºC, for no longer than 48 hours. The three 

commercial kits RNeasy® Micro (Qiagen), RNeasy® Micro Plus (Qiagen) and Direct-

zolTM RNA MiniPrep (Zymo Research) were used for purification of total RNA as per 

the manufacturer’s protocol. For three sets of P. falciparum culture dilutions, the 

samples were preserved in RNAlater® RNA stabilization reagent (Qiagen) or TRI 

Reagent® (Zymo Research) before RNA extraction with each kit respectively. The total 

number of Pv-iEs from field isolates was determined before preservation in RNAlater® 

RNA stabilization reagent or TRI Reagent® at -80 ºC.RNA extraction was executed 

using the RNeasy® Micro kit (Qiagen) or Direct-zolTM RNA MiniPrep (Zymo Research) 

(Figure 2). All RNA samples were carefully preserved precipitated in a solution of one-

tenth volume of RNase-free 3M sodium acetate pH 5.2, 2.5 volumes of absolute 

ethanol and one volume of isopropanol, overnight at -20ºC and then stocked at -80ºC. 
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For RNA-seq, after Pv-iE quantification, the isolate was preserved by flash freezing the 

sample in liquid nitrogen. For RNA extraction, the RNeasy® Micro kit (Qiagen) was 

used according to the manufacturer instructions. Quality control was first accessed by 

running electrophoretically the extracted RNA samples in the Agilent 2100 Bioanalyzer 

instrument, using the Agilent RNA 6000 Pico Kit reagents and chips and analyzed on 

the 2100 Expert software, according to the ©Agilent Technologies recommendations. 

  

cDNA synthesis and Quantitative Real Time PCR 

The cDNA synthesis was carried out using 13.2µL of RNA sample for a total 

reaction volume of 20µL, using the High Capacity cDNA Reverse Transcription with 

RNase Inhibitor kit (Applied Biosystems®), with 10x RT buffer, 10x Random Primers, 

25x (100mM) dNTP Mix, RNase Inhibitor and MultiScribe Reverse Transcriptase 

(5U.µL-1), according to the manufacturer´s indications. A reverse transcriptase 

negative control (RT-) without the enzyme was performed for all different cDNA 

synthesis reactions. The cDNA synthesized from P. falciparum and P. vivax RNA 

extracted samples was used as template for the amplification of seryl tRNA synthetase 

(SER-tRNA S; PFIT_0715800 and PVX_1234480), gamma-glutamylcysteine 

synthetase (Gamma GCS; PFIT_0919000 and PVX_099360) and DNA repair helicase 

(DNA RH; PFIT_1409400 and PVX086025), three different Plasmodium spp. 

constitutively expressed genes. The following specific pairs of primers were used: Pf 

SER-tRNA S-Fw: GAGGAATTTTACGTGTTCATCAA; Pf SER-tRNA S-Rv: 

GATTACTTGTAGGAAAGAATCCTTC; Pv SER-tRNA S-Fw: 

AGGGATTGCTACGTGAGCACATT; Pv SER-tRNA S-Rv: 

GTTGCTGACTAGGTAGCCAGGCTTC; Pf Gamma GCS-Fw: 

TGCGAATATGGATGATGAAGG; Pf Gamma GCS-Rv: 

TAAGAGCAAGGAAAAGTGGT; Pv Gamma GCS-Fw: 

CAGCGACCTGGACGACGAGAA; Pv Gamma GCS-Rv: 

TTAGGGCTAAGAACAAAGGG; Pf DNA RH-Fw: GCCCTTTCTATGCTACGAGA; Pf 

DNA RH-Rv: TTTTCTAGTATGGTTAATGTAGCT; Pv DNA RH-Fw: 

GCCCCTTCTACGCCACGAGG; Pv DNA RH-Rv: 

TTGTCTAGCACAGTTAGTGTAGCT. To detect contamination in the P. vivax 

extracted RNA samples by human RNA and DNA, we also amplified the Toll-like 

receptor 9 (TLR9) gene with the specific primer pair, TLR9-F: 

ACGTTGGATGCAAAGGGCTGGCTGTTGTAG and TLR9-R: 
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ACGTTGGATGTCTACCACGAGCACTCATTC [16]. Power SYBR® Green PCR 

Master Mix (Applied Biosystems®) reagents were used to perform all qRT-PCR 

reactions in quadruplicate and run on the Applied Biosystems® 7500 Real-Time PCR 

System, following the company’s RT-PCR guidelines. In brief, individual reactions were 

set-up using 1µL of cDNA previously synthetized, 2x Power SYBR® Green PCR Master 

Mix, 500nM each primer and RNase/DNase-free water to a final volume of 10µL. The 

run protocol comprised the following cycling conditions: initial holding stage of 50ºC/20 

sec and 95ºC/10 min; 45x cycling stages of 95ºC/15 sec, 57ºC for P. falciparum primers 

pairs or 60ºC for P. vivax primers pairs/30 sec and 60ºC/1 min; and a 2x melting curve 

stage of 95ºC/15 sec and 60ºC/1 min. Applied Biosystems® 7500 Software v.2.0.6 was 

used for data analysis. 

 

Low Input cDNA synthesis and Library Preparation for Whole Transcriptome Shotgun 

Sequencing 

We used SMART-Seq V4 Ultra Low Input RNA kit for sequencing by the Clontech’s 

patented SMART® (Switching Mechanism at 5’ End of RNA Template) technology. 

cDNA quality, quantity and size range was evaluated through BioAnalyser platform 

from ©Agilent Technologies, Inc., using the Agilent High Sensitivity DNA Kit (cDNA, 5 

to 500 pg/µL within a size range of 50 to 7000 bp), as per manufacturer instructions. 

Prior to generating the final library for Illumina® sequencing, the Covaris AFA system 

was used for controlled cDNA shearing, resulting in DNA fragments between 200 and 

500 bp sizes. Instructions were followed as indicated in the SMART-Seq V4 Ultra Low 

Input RNA kit for sequencing user manual by Clontech Laboratories, Inc. A Takara Bio 

Company. cDNA output was then converted into sequencing templates suitable for 

cluster generation and high-throughput sequencing through the Low Input Library Prep 

v2 (Clontech Laboratories, Inc. A Takara Bio Company). Library quantification 

procedures using the Library Quantification kit (Clontech Laboratories, Inc. A Takara 

Bio Company) by the golden standard qPCR and Agilent's High Sensitivity DNA kit 

(Agilent Technologies, Inc.) were successfully completed before proceeding for the 

pool set-up (2 different pools of 12 samples differently indexed) at a final concentration 

of 2nM for direct sequencing. The library was sequenced on HiSeq 2500 sequencer 

on Rapid Run mode with the HiSeq Rapid Cluster Kit v2 (100x100) Paired End and 

HiSeq Rapid SBS Kit v2 (200 cycles) kit. The generated libraries were cluster amplified 

and sequenced on the Illumina platform using standard Illumina® reagents and 
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protocols for multiplexed libraries, by following their loading recommendations. The 

sequencing runs were performed on HiSeq 2500 sequencer on Rapid Run mode with 

the HiSeq Rapid Cluster Kit v2 (100x100) Paired End, HiSeq Rapid SBS Kit v2 (200 

cycles) and HiSeq® Rapid Duo cBot v2 Sample Loading kits from Illumina®, Inc.. 

 

Transcriptomic data analysis 

We used the EuPathDB-Galaxy free, interactive, web-based platform for our large-

scale data analysis (https://eupathdb.globusgenomics.org/) [37]. The RNA-seq raw 

reads were checked for quality by running Fast Quality Control (FastQC - 

https://www.bioinformatics.babraham.ac.uk/projectY/fastqc/). The reads were then 

subjected to trimming using the Trimmomatic [38] Galaxy tool (v. 0.36.5; 

http://www.usadellab.org/cms/index.php?page=trimmomatic) and aligned using 

TopHat2 [39] (Galaxy Tool Version SAMTOOLS: 1.2; BOWTIE2: 2.1.0; TOPHAT2: 

2.0.14), towards the P. vivax P01 PlasmoDB release 38 and the  Homo sapiens UCSC 

hg38 (RefSeq & Gencode gene annotations embedded on HostDB release 29)[40] 

reference genomes. FPKM estimation of reference genes with htseq-count [41] 

(Galaxy Tool v. HTSEQ: default; SAMTOOLS: 1.2; PICARD: 1.134) allowed the final 

analysis of differentially expressed genes through DESeq2 [42] Galaxy Tool (v. 

2.1.6.0). Differential gene expression between the different analysis groups was 

identified after a pairwise Wilcoxon test was used to compare the transcriptional 

profiles with the following cutoffs: p-value<0.05, q-value<0.5 and a log2 fold change > 

1.5. 
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Figures 

 

Figure 1. P. falciparum in vitro culture and total RNA isolation methods. RNA was extracted from a set 
of P. falciparum infected erythrocytes (Pf-iE) culture dilutions (102 to 107 in triplicate). The single-step 
method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction [35, 36] was 
directly used upon sample assembly. An initial step of sample preservation in TRIzol at -80ºC, for no 
longer than 48h, was executed accordingly to the reliable RNA preparation for Plasmodium falciparum 
protocol [34]. The RNeasy® Micro, RNeasy® Micro Plus and Direct-zolTM RNA MiniPrep kits were applied 
as per manufacturer’s protocol. Two sets of Pf-iE dilutions were preserved in RNAlater® stabilization 
reagent or TRI Reagent® at -80ºC, for no longer than 48h.  
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Figure 2. qPCR of P. falciparum total RNA samples. qPCR amplification of housekeeping genes seryl 
tRNA synthetase (A), DNA repair helicase (B) and gamma-glutamylcysteine synthetase (C), from the 
RNA samples of Pf-iE culture dilutions (102 in light gray to 107 in dark gray), extracted by each different 
method. Bars and error bars represent the mean Ct and standard deviations, respectively. Black square 
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marks represent mean Ct of RT- reactions, when amplification was observed before the last (45th) cycle 
stage. 

 

 

Figure 3. P. vivax isolation, short-term ex vivo maturation, enrichment and total RNA extraction. Blood 
samples were immediately processed. White blood cells were depleted by CF11 filtration [16]. The early 
blood staged parasites were ex vivo short-term cultured to allow maturation followed by Percoll gradient 
enrichment [14]. Total number of Pv-iEs was accessed before preservation in RNAlater® or TRI 
Reagent® at -80ºC. RNA extraction was executed using the RNeasy® Micro kit. 
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Figure 4. qPCR of P. vivax total RNA samples. qPCR amplification of housekeeping genes seryl tRNA 
synthetase (A and D), DNA repair helicase (B and E) and gamma-glutamylcysteine synthetase (C and 
F), from the RNA samples of Pv-iE field-isolates (103 in light gray to 106 in dark gray), preserved in 
RNAlater® or TRI Reagent® and extracted by RNeasy® Micro kit (A-C) or Direct-zolTM RNA MiniPrep (D-
F), respectively. Bars and error bars represent the mean Ct and standard deviations, respectively. Black 
square marks represent average Ct of RT- reactions, when amplification was observed before the last 
(45th) cycle stage. Blue diamond marks represent mean Ct amplification of human TLR9 gene for host 
contamination detection. 

 

 

Figure 5. Pv-iE adherence per well and per mm2 considering all cytoadhesion assays against CHO745 
and CHOICAM cell lines (A) (paired t test, 2-tailed p-value=0.0595) and only the isolates which the distinct 
adhered and non-adhered Pv-iE populations were transcriptome sequenced (B) (paired t test, 2-tailed 
p-value=0.1103).  
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Tables 

 

Table 1. Sample profiles for P. vivax clinical isolates 

Sample 
Code 

Initial smear 
stages (h) 

Pv-iE stages 
after Percoll 

(h) 

Parasitemia 
after 

Percoll (%) 

Total nº of 
erythrocytes 

/mL 

Total nº 
of Pv-
iE/mL 

Volume 
of Pv 

culture 
(µL/well) 

Total nº 
of Pv-
iE/well 

Cell lines 
/Adhesion 

assay 

Sample 
for 

RNA-seq 

92U15 trophozoites 
(11-15) and 

some schizonts 

trophozoites (11-
15) and some 

schizonts 

50,4% 7,10E+06 3,58E+06 250 8,95E+05 CHO745 
CHOICAM 

Y 

93U15 trophozoites 
(11-15) 

trophozoites (11-
15) 

94,0% 3,88E+06 3,65E+06 250 9,12E+05 CHO745 
CHOICAM 

Y 

96U15.1 trophozoites 
(15) 

trophozoites (15-
17) 

80,7% 7,24E+06 5,84E+06 250 1,46E+06 CHO745 
CHOICAM 

N 

101U15 rings (few), 
trophozoites 
(15-19) and 
schizonts 

trophozoites 
(mature >15) and 

schizonts 

54,0% 2,70E+06 1,46E+06 250 3,65E+05 CHO745 
CHOICAM 

Y 

102U15 trophozoites 
(young 11-15) 

trophozoites 
(young 11-15) 

98,2% 5,90E+07 5,80E+07 125 7,25E+06 CHO745 
CHOICAM 

N 

103U15 rings (9), 
trophozoites 
(11-15) and 
schizonts 

trophozoites 
(young 11-15) 

and gametocytes 

97,0% 1,74E+06 1,69E+06 130 2,19E+05 CHO745 
CHOICAM 

N 

104U15 some rings and 
trophozoites 

(young 11-15) 

(some) rings, 
trophozoites (11-

15) and 
gametocytes 

65,3% 2,81E+06 1,83E+06 250 4,59E+05 CHO745 
CHOICAM 

N 

105U15 rings (few), 
trophozoites 
(15-20) and 
schizonts 

trophozoites (15-
20) 

81,6% 5,20E+06 4,24E+06 250 1,06E+06 CHO745 
CHOICAM 

Y 
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Summary of sample information during parasite enrichment of clinical isolates and on cytoadhesion assays performed during field work at malaria vivax endemic 
area, adequate for RNA-seq downstream application. Y – Yes; N – No; All samples were preserved through N2 flash freezing after processing and during 
transportation. 

 
 

 

 

Table 2. Alignment and mapping summary report for P. vivax clinical isolates RNA sequenced. 
 

 Sample Code (RNA-seq ID) 

 92U15 (1) 92U15 (2) 92U15 (3) 92U15 (4) 93U15 (21) 93U15 (22) 105U15 (5) 

Left reads  
 

 
    

          Input      345888 1070871 1003388 219624 475794 214949 663014 

           Mapped (% of input)   2584 (0.7%) 54770 (5.1%) 9455 (0.9%) 18629 (8.5%) 5239 (1.1%) 18875 (8.8%) 89193 (13.5%) 

               Multiple alignments (% of mapped) 1504 (58.2%) 3019 (5.5%) 2594 (27.4%) 1455 (7.8%) 1118 (21.3%) 1108 (5.9%) 3460 (3.9%) 

               Multiple alignments (>20) 72 43 47 48 27 20 65 

Right reads        

          Input      345888 1070871 1003388 219624 475794 214949 663014 

           Mapped    3415 (1.0%) 55627 (5.2%) 11637 (1.2%) 19160 (8.7%) 6457 (1.4%) 19727 (9.2%) 91575 (13.8%) 

               Multiple alignments 2329 (68.2%) 4863 (8.7%) 4505 (38.7%) 1959 (10.2%) 2053 (31.8%) 2171 (11.0%) 5589 (6.1%) 

               Multiple alignments (>20) 72 43 47 49 27 20 68 

Overall read mapping rate 0.90% 5.20% 1.10% 8.60% 1.20% 9.00% 13.60% 

Aligned pairs 618 44480 4288 15033 2914 14723 76226 
               Multiple alignments  
(% of aligned pairs) 255 (41.3%) 815 (1.8%) 302 (7.0%) 352 (2.3%) 177 (6.1%) 279 (1.9%) 1263 (1.7%) 
               Discordant alignments  
(% of aligned pairs) 168 (27.2%) 501 (1.1%) 270 (6.3%) 199 (1.3%) 159 (5.5%) 215 (1.5%) 697 (0.9%) 

Concordant pair alignment rate 0.10% 4.10% 0.40% 6.80% 0.60% 6.70% 11.40% 
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 105U15 (6) 105U15 (7) 105U15 (8) 101U15 (20) 101U15 (23) 101U15 (24)  

Left reads 
 

      

          Input      670600 1288122 188117 226387 754181 475848  

           Mapped (% of input)   97757 (14.6%) 68891 (5.3%) 
21157 
(11.2%) 26956 (11.9%) 47834 (6.3%) 

51521 
(10.8%)  

               Multiple alignments (% of mapped) 4391 (4.5%) 4283 (6.2%) 1305 (6.2%) 1810 (6.7%) 2019 (4.2%) 2624 (5.1%)  

               Multiple alignments (>20) 58 71 33 55 38 57  

Right reads        

          Input      670600 1288122 188117 226387 754181 475848  

           Mapped    96131 (14.3%) 70237 (5.5%) 
21050 
(11.2%) 26585 (11.7%) 48540 (6.4%) 

51689 
(10.9%)  

               Multiple alignments 5524 (5.7%) 7053 (10.0%) 1727 (8.2%) 2256 (8.5%) 3527 (7.3%) 4078 (7.9%)  

               Multiple alignments (>20) 58 71 33 55 38 57  

Overall read mapping rate 14.50% 5.40% 11.20% 11.80% 6.40% 10.80%  

Aligned pairs 82207 54997 17065 21599 39428 41269  
               Multiple alignments  
(% of aligned pairs) 1332 (1.6%) 1111 (2.0%) 384 (2.3%) 676 (3.1%) 551 (1.4%) 769 (1.9%)  
               Discordant alignments  
(% of aligned pairs) 697 (0.8%) 744 (1.4%) 227 (1.3%) 393 (1.8%) 416 (1.1%) 580 (1.4%)  

Concordant pair alignment rate 12.20% 4.20% 9.00% 9.40% 5.20% 8.60%  

 

 

Table 3. Number of genes differentially expressed analyzed in several comparison groups 

DE Comparison groups Number of genes 
DE  

Adhered vs non-adhered 107 

Adhered vs non-adhered to CHOICAM 137 

Adhered vs non-adhered to CHO745 75 

        Adhered to CHOICAM vs adhered to CHO745 52 
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Summary of the number of genes verified to be differentially expressed (DE) (p-value<0.05) not considering further normalization of read counts against the 
total number of reads per sample. 

 

Table 4. List of differential expressed gene in the adhered to CHOICAM vs adhered to CHO745 comparison group 

Gene ID 
mean 
counts 

Log2Fold 
Change 

SD Wald stat p-value q-value 
Transcript 

Length 
Gene 
Symbol Product Description 

PVP01_0419200 2.249161 -3.234168928 1.443578 -2.24038 0.025066 0.998539 3120 RPN1 
26S proteasome regulatory subunit RPN1, 
putative 

PVP01_0612900 9.095748 -2.045834326 1.042515 -1.9624 0.049716 0.998539 1161 RPL3 60S ribosomal protein L3, putative 

PVP01_1252300 2.690943 -3.31818665 1.440708 -2.30316 0.02127 0.998539 1422 6PGD 

6-phosphogluconate dehydrogenase, 
decarboxylating, 
 putative 

PVP01_0530800 74.28897 -2.240479019 1.124194 -1.99296 0.046265 0.998539 1353 null alpha tubulin 2, putative 

PVP01_0313300 6.145463 -2.572203722 1.243332 -2.0688 0.038565 0.998539 1590 CDPK4 calcium-dependent protein kinase 4, putative 

PVP01_0408100 5.392482 2.256093649 1.132427 1.992264 0.046342 0.998539 1521 null 
conserved Plasmodium protein, unknown 
function 

PVP01_0506800 2.279292 -3.151362815 1.448797 -2.17516 0.029618 0.998539 4998 null 
conserved Plasmodium protein, unknown 
function 

PVP01_0933800 8.945893 2.468248713 1.150215 2.145902 0.031881 0.998539 90 null 
conserved Plasmodium protein, unknown 
function 

PVP01_1128400 2.84275 -3.422256378 1.422272 -2.40619 0.01612 0.998539 4200 null 
conserved Plasmodium protein, unknown 
function 

PVP01_1205300 2.251303 -3.21605919 1.437719 -2.23692 0.025292 0.998539 8064 null 
conserved Plasmodium protein, unknown 
function 

PVP01_1323500 3.311216 2.526861583 1.275671 1.98081 0.047613 0.998539 2340 null 
conserved Plasmodium protein, unknown 
function 

PVP01_1443200 2.39271 -2.981006304 1.470583 -2.02709 0.042653 0.998539 4914 null 
conserved Plasmodium protein, unknown 
function 

PVP01_0602200 5.299142 -3.063963135 1.208347 -2.53566 0.011223 0.998539 3291 null 
DNA polymerase delta catalytic subunit, 
putative 

PVP01_1310900 4.100622 -3.473190249 1.438152 -2.41504 0.015734 0.998539 2277 MCM5 
DNA replication licensing factor MCM5, 
putative 

PVP01_0114000 5.324549 -3.072061846 1.262611 -2.4331 0.01497 0.998539 2571 null DnaJ protein, putative 
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PVP01_1323000 9.373775 -2.417507984 1.222703 -1.97718 0.048021 0.998539 1833 null dynein intermediate chain, putative 

PVP01_0924600 2.719771 -3.26828004 1.446023 -2.26019 0.02381 0.998539 1404 ERO1 
endoplasmic reticulum oxidoreductin, 
putative 

PVP01_0909400 8.954836 -2.218764339 1.097648 -2.02138 0.04324 0.998539 1035 ERC 

endoplasmic reticulum-resident calcium 
binding protein,  
putative 

PVP01_0816000 19.21719 -2.728331165 1.19935 -2.27484 0.022915 0.998539 1341 ENO enolase, putative 

PVP01_0833800 6.276239 -2.724353955 1.167899 -2.3327 0.019664 0.998539 1968 null 

FAD-dependent glycerol-3-phosphate 
dehydrogenase,  
putative 

PVP01_1244000 47.80517 -2.084812785 0.963461 -2.16388 0.030474 0.998539 1014 GAPDH 
glyceraldehyde-3-phosphate 
dehydrogenase, putative 

PVP01_1420800 2.247696 -3.235434643 1.435285 -2.25421 0.024183 0.998539 3924 PRP2 golgi protein 1, putative 

PVP01_1416100 2.246649 -2.936955808 1.466663 -2.00248 0.045234 0.998539 2883 null 
heptatricopeptide repeat-containing protein, 
putative 

PVP01_0823800 6.368487 -2.694417238 1.159689 -2.3234 0.020158 0.998539 1125 PPase inorganic pyrophosphatase, putative 

PVP01_1022200 4.675448 -2.841341159 1.305358 -2.17668 0.029505 0.998539 1869 INO1 inositol-3-phosphate synthase, putative 

PVP01_1229400 4.985151 -2.924554163 1.282764 -2.27988 0.022615 0.998539 1005 null lactate dehydrogenase, putative 

PVP01_1229700 22.06872 -3.093375026 1.153024 -2.68284 0.0073 0.998539 951 LDH L-lactate dehydrogenase 

PVP01_0704800 3.729869 -3.459672135 1.436295 -2.40875 0.016007 0.998539 1482 null Maf-like protein, putative 

PVP01_1132100 2.52518 -2.915734306 1.480095 -1.96996 0.048842 0.998539 1194 TOM40 

mitochondrial import receptor subunit 
TOM40,  
putative 

PVP01_1256700 57.76185 5.453513457 1.344569 4.055958 4.99E-05 0.092369 2409 CPR 
NADPH--cytochrome P450 reductase, 
putative 

PVP01_1207600 2.927111 -3.289399089 1.447057 -2.27317 0.023016 0.998539 1251 NT1 nucleoside transporter 1 

PVP01_1303000 3.732117 -2.644459966 1.298276 -2.0369 0.04166 0.998539 1047 NAPL nucleosome assembly protein, putative 

PVP01_0929800 13.20492 -2.405356196 1.012372 -2.37596 0.017503 0.998539 1290 PV1 parasitophorous vacuolar protein 1, putative 

PVP01_0721000 10.5437 -2.95607265 1.121929 -2.63481 0.008418 0.998539 1251 PGK phosphoglycerate kinase, putative 

PVP01_0950000 2.286886 2.281440402 1.131166 2.016892 0.043707 0.998539 1389 null PIR protein 

PVP01_1201600 15.80213 -2.003063043 0.94768 -2.11365 0.034545 0.998539 897 null 
Plasmodium exported protein, unknown 
function 
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PVP01_0315800 6.720583 1.831032209 0.920029 1.990189 0.04657 0.998539 993 ESF2 pre-rRNA-processing protein ESF2, putative 

PVP01_0111900 3.485238 -3.611668991 1.417048 -2.54873 0.010812 0.998539 2061 null 
regulator of chromosome condensation, 
putative 

PVP01_0308900 3.910606 -2.770995611 1.233291 -2.24683 0.024651 0.998539 3426 RPA1 replication protein A1, large subunit, putative 

PVP01_1020200 8.949359 -3.138646877 1.164765 -2.69466 0.007046 0.998539 2196 
PSOP1
2 secreted ookinete protein, putative 

PVP01_0933000 2.418975 -3.102077405 1.460756 -2.12361 0.033703 0.998539 1632 null T-complex protein 1 subunit alpha, putative 

PVP01_1447600 2.915036 -3.469798639 1.423434 -2.43762 0.014784 0.998539 1635 CCT3 
T-complex protein 1 subunit gamma, 
putative 

PVP01_1140200 14.84691 -2.139734954 0.972114 -2.20112 0.027728 0.998539 1632 CCT6 T-complex protein 1 subunit zeta, putative 

PVP01_0722300 7.180133 -2.710393719 1.286114 -2.10743 0.03508 0.998539 1641 TRXR thioredoxin reductase, putative 

PVP01_0924800 4.174081 -2.72011548 1.311654 -2.07381 0.038097 0.998539 1137 null thioredoxin-like protein, putative 

PVP01_1268900 2.934532 -3.103016632 1.466193 -2.11638 0.034313 0.998539 1131 null translocation protein SEC62, putative 

PVP01_MIT00500 3.556286 3.153000571 1.314067 2.399422 0.016421 0.998539 207 null unspecified product 

PVP01_MIT01200 51.17361 3.425556543 1.197268 2.861144 0.004221 0.998539 196 null unspecified product 

PVP01_1412900 3.040085 -3.513129173 1.423222 -2.46843 0.013571 0.998539 1836 vapA 
V-type proton ATPase catalytic subunit A, 
putative 

PVP01_0113600 2.686498 -3.131490422 1.458399 -2.14721 0.031777 0.998539 2946 null V-type proton ATPase subunit a, putative 

PVP01_0305500 2.895724 -3.378843987 1.436515 -2.35211 0.018667 0.998539 1485 null V-type proton ATPase subunit B, putative 

PVP01_0905300 2.737354 -3.150100879 1.459302 -2.15863 0.030879 0.998539 1851 null WD repeat-containing protein, putative 
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Supplemental Figures and Tables 

 

 

Figure 1. P. falciparum total RNA sample analysis. Average RNA Integrity Number (RIN) for all 
RNA samples extracted by each method obtained on the ©Agilent Bioanalyzer platform. RNA with 
RIN  ≥ 6.0 is considered suitable for RNA-seq. 

 

 

Figure 2. P. vivax total RNA sample analysis. Average RNA Integrity Number (RIN) for all RNA 
samples preserved in RNAlater® and extracted by RNeasy® Micro kit, obtained on the ©Agilent 
Bioanalyzer platform. RNA with RIN  ≥ 6.0 is considered suitable for RNA-seq. 
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Figure 3. Methodologic scheme of cytoadhesion assays to determine the adherence capacity of 
distinct populations of Pv-iE from vivax malaria patient isolates. 

 

 

Figure 4. The insert length distribution boxplot summarizing the insert length distribution of 
paired-end reads of RNA sequenced libraries. 

 

 

 

 

 

 

 

 



67 
 

Table 1. Patient profiles for P. vivax clinical isolates 
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7/12/15 92U15 M 25 2+ 278 3.8 4.54 12.5 39.6 87.2 27.5 31.6 66 0.9 F2* 1,1 F3* 1,8 40.6 12.8 8.5 

7/12/15 93U15 M 44 2+ 331 3.4 4.43 11.8 39.4 88.9 26.6 29.9 45 F1* 0,5 F2* 0,6 2.3 41.6 12.8 9.3 

9/12/15 96U15 F 28 2+ 530 3.8 3.49 10.3 31.5 90.3 29.5 32.7 AG 58 1.1 0.4 2.3 42.5 13.6 9.3 

14/12/15 101U15 M 32 2+ 193 4.6 5.16 15 47.4 91.9 29.1 31.6 93 0.8 0.1 3.7 49.6 14.8 8 

15/12/15 102U15 F 23 2+ 200 6.4 4.69 11.6 38.1 81.2 24.7 30.4 AG 117 1 0.9 4.5 43.1 14.9 10 

15/12/15 103U15 M 24 2+ 270 WL* 3 4.77 13.4 41.9 87.8 28.1 32 AG 23 WL* 0,6 WL* 0,2 WL* 2,2 42.8 13.6  

15/12/15 104U15 F  25 2+ 287 WL* 7,9 4.37 12.2 39.9 91.3 27.9 30.6 AG 130 WL* 1,8 WL* 1,1 WL* 5 42.4 11.8 9.7 

15/12/15 105U15 M 38 2+ 250 6.9 5.38 15.1 48 89.2 28.1 31.5 AG 47 0.5 0.6 5.8 42.7 12.5 10.7 

Summary of patients and clinical isolates information after collection during field work at vivax malaria endemic area. Date: dd/mm/yy; M: Male; F: Female; 
*Parasitemia estimation and **initial counts of the number of Pv-iE per 200 leucocytes on the slide by thick smear made available by the specially trained 
microscopists from malaria diagnosis service from FMT-HVD. Two crosses (2+) equals to 2 to 20 parasites counted by microscope field and an average of 500 
to 104 parasites per µL. WBC: White Blood Cells; RBC: Red Blood Cells; HGB: hemoglobin; HCT: Hematocrit; MCV: Mean Corpuscular Volume; MCH: Mean 
Corpuscular Hemoglobin; MCHC: mean corpuscular hemoglobin concentration; PLT: Platelets; LYM: Lymphocytes; MXD: mixed cells; NEUT: Neutrophils; RDW: 
Red Cell Distribution Width SD: Standard Deviation and VC: Variance Coefficient; MPV: Mean Platelet Volume. For information on hemogram flags please see 
https://www.sysmex.co.za/fileadmin/media/f112/SEED/English/Sysmex_SEED_6_2013_Haematology_Results_Interferences__Flagging_and_Interpretation_-
_Part_II_EN.pdf.  
 

 

 

 

 

 

 

 

 



68 
 

Table 2. Cytoadhesion assays for P. vivax clinical isolates. 

Sample code - 

cell line assay 

Total nº of 

Pv-

iE/well*  

Nº 

lines 

Pv-iE 

counts** 

Pv-iE 

/nº 

lines 

Pv-iE 

/mm2 

Adhered 

Pv-iE 

/well 

Non-

adhered 

Pv-iE 

/well 

Total nº 

of Pv-iE 

/well 

Total nº 

of Pv-iE 

/mm2 

Adhered 

Pv-iE 

/well (%) 

Non-

adhered 

Pv-iE 

/well (%) 

Adhered 

Pv-iE 

/mm2 

Non-

adhered 

Pv-iE 

/mm2 

92U15-CHO745 8.95E+05 2 637 318.5 202.8 3.45E+04 8.61E+05 8.95E+05 5.26E+03 3.85 96.15 203 5062 

92U15-CHOICAM 8.95E+05 8 211 26.4 16.8 2.85E+03 8.92E+05 8.95E+05 5.26E+03 0.32 99.68 17 5248 

93U15-CHO745 9.12E+05 1 1195 1195.0 760.8 1.29E+05 7.83E+05 9.12E+05 5.36E+03 14.18 85.82 761 4604 

93U15-CHOICAM 9.12E+05 1 449 449.0 285.8 4.86E+04 8.63E+05 9.12E+05 5.36E+03 5.33 94.67 286 5079 

96U15-CHO745 1.46E+06 1 185 185.0 117.8 2.00E+04 1.44E+06 1.46E+06 8.59E+03 1.37 98.63 118 8470 

96U15-CHOICAM 1.46E+06 1 72 72.0 45.8 7.79E+03 1.45E+06 1.46E+06 8.59E+03 0.53 99.47 46 8542 

101U15-CHO745 3.65E+05 3 649 216.3 137.7 2.34E+04 3.42E+05 3.65E+05 2.15E+03 6.41 93.59 138 2009 

101U15-CHOICAM 3.65E+05 5 574 114.8 73.1 1.24E+04 3.53E+05 3.65E+05 2.15E+03 3.40 96.60 73 2074 

102U15-CHO745 7.25E+06 1 775 775.0 493.4 8.39E+04 7.17E+06 7.25E+06 4.26E+04 1.16 98.84 493 42154 

102U15-CHOICAM 7.25E+06 1 706 706.0 449.5 7.64E+04 7.17E+06 7.25E+06 4.26E+04 1.05 98.95 449 42198 

103U15-CHO745 2.19E+05 6 520 86.7 55.2 9.38E+03 2.10E+05 2.19E+05 1.29E+03 4.28 95.72 55 1233 

103U15-CHOICAM 2.19E+05 9 273 30.3 19.3 3.28E+03 2.16E+05 2.19E+05 1.29E+03 1.50 98.50 19 1269 

104U15-CHO745 4.59E+05 8 525 65.6 41.8 7.10E+03 4.52E+05 4.59E+05 2.70E+03 1.55 98.45 42 2658 

104U15-CHOICAM 4.59E+05 7 559 79.9 50.8 8.64E+03 4.50E+05 4.59E+05 2.70E+03 1.88 98.12 51 2649 

105U15-CHO745 1.06E+06 2 545 272.5 173.5 2.95E+04 1.03E+06 1.06E+06 6.24E+03 2.78 97.22 173 6062 

105U15-CHOICAM 1.06E+06 5 531 106.2 67.6 1.15E+04 1.05E+06 1.06E+06 6.24E+03 1.08 98.92 68 6168 

Data table with all parasite counts before and after each cytoadhesion assay. *Total nº of Pv-iE per well was estimated using a Neubauer chamber counts; **Pv-
iE were counted from duplicate experiment wells from the same Lab-Tek 4-well slide strained with Panótico Rápido kit. Calculation of the final number of adhered 
per mm2 and per well took into consideration the dimensions of well from a 4 Lab-Tek 4-well slide (width = 17 mm X h = 10 mm), where h corresponds to 50 
fields on the used microscope (diameter microscopic fields = 0.2mm). Area (A) of the microscopic fields = 3.1416 x 0.01 = 0,031416 mm2. A of each counted 
field line on the microscopic = 0,031416 x 50 = 1,5708 mm2; A = h x l = 10 x 17 mm = 170 mm2. 
 
 
 
 
 



69 
 

Table 3. Bioanalyzer measurements after RNA extraction with RNeasy® Micro kit. 

Sample Code 
Cytoadhesion assay description 

of Pv-iE collected samples 
RNA   
[pg/uL] 

RIN 

92U15 

adhered to CHO745 12.457 9.1 

non-adhered to CHO745 36.245 9.3 

adhered to CHOICAM 7.935 8.9 

non-adhered to CHOICAM 21.608 8.9 

93U15 
adhered to CHO745 12.437 N/A 

non-adhered to CHO745 17.819 9.3 

101U15 

adhered to CHO745 9.405 4.3 

non-adhered to CHO745 65.81 N/A 

adhered to CHOICAM 10.465 N/A 

non-adhered to CHOICAM 16.529 N/A 

105U15 

adhered to CHO745 6.655 9.8 

non-adhered to CHO745 26.412 N/A 

adhered to CHOICAM 12.533 6.8 

non-adhered to CHOICAM 40.524 5.7 

RIN: RNA Integrity Number; N/A: undetermined. 
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Table 4. Bioanalyzer quality and quantity controls after cDNA library generation and amplification.  

  SMART-Seq v4 Ultra Low Input RNA kit for Sequencing Shearing and library amplification 

Sample 

Code 

Cytoadhesion assay 

description of Pv-iE 

collected samples 

cDNA 
[pg/uL] 

cDNA 
[ng/uL] 

V to 

20ng 
(µL) 

Total 

cDNA 
[ng/75uL] 

VT to 

20ng/reaction 

from 75µL 

after shearing 
(µL) 

V 

Elution 

Buffer 
(µL) 

Total 

cDNA 
[ng/reaction] 

Nº of PCR 

cycles for  

Low Input 

Library 

amplification 

Fragment 

average 

size (bp) 

Molarity  
[pmol/L] 

92U15 

adhered to CHO745 40817.2 40.817 0.49 3061.290 3.7 6.3 20 6 358 9.07E+04 

non-adhered to CHO745 1036.28 1.036 19.30 77.721 12.0 - 0.156 11 333 1.83E+03 

adhered to CHOICAM 24790.7 24.791 0.81 1859.300 6.1 3.9 20 6 386 7.52E+02 

non-adhered to CHOICAM 72193.1 72.193 0.28 5414.482 2.1 7.9 20 6 369 6.50E+05 

93U15 
adhered to CHO745 26400.6 26.401 0.76 1980.044 5.7 4.3 20 6 388 4.50E+05 

non-adhered to CHO745 4153.18 4.153 4.82 311.489 12.0 - 0.66 8 259 4.23E+02 

101U15 

adhered to CHO745 290901 290.901 0.07 21817.556 0.5 9.5 20 6 364 1.71E+05 

non-adhered to CHO745 45498.6 45.499 0.44 3412.397 3.3 6.7 20 6 361 5.37E+04 

adhered to CHOICAM 2627.92 2.628 7.61 197.094 12.0 - 0.42 9 589 4.36E+03 

non-adhered to CHOICAM 65064 65.064 0.31 4879.796 2.3 7.7 20 6 376 3.04E+03 

105U15 

adhered to CHO745 48301.3 48.301 0.41 3622.595 3.1 6.9 20 6 322 2.34E+03 

non-adhered to CHO745 3329.65 3.330 6.01 249.724 12.0 - 0.533 8 452 6.21E+03 

adhered to CHOICAM 1213.14 1.213 16.49 90.986 12.0 - 0.194 10 334 2.95E+03 

non-adhered to CHOICAM 28025.7 28.026 0.71 2101.928 5.4 4.6 20 6 351 8.14E+04 

V: Volume; VT: Total Volume; bp: base pairs. 
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Table 5. Library quantification by qPCR and sample pool for HiSeq 2500 load and run.   

Sample 

Code 

Cytoadhesion assay 

description of Pv-iE 

collected samples 

Dilution 
Cq 

Mean 

Cq 

Error 

Mean 

[pM] 

Error  

[pM] 

Total  

[pM] 

Total  

[nM] 

*447bp 

from DNA 

fragments 

Library 

Concentration 

[nM] 

Dilution 

V at 

2nM 

(µL) 

V ddH2O (µL) 
VT/sample 

(7µL) 

92U15 

adhered to CHO745 1.00E-06 10.99 0.59 4.59E+00 2.07E+00 4.59E+06 4590.0 2.05E+09 5731.09 dil -3 5.73109 2.44 4.56 7.00 

non-adhered to CHO745 1.00E-04 15.88 0.33 1.34E-01 3.37E-02 1.34E+03 1.34 6.00E+05 1.80277 dil 0 1.80277 3.33 3.67 7.00 

adhered to CHOICAM 1.00E-03 15.14 0.97 2.58E-01 1.52E-01 2.58E+02 0.26 1.15E+05 0.29889 dil 0 0.29889 20.07 N/A 9.00 

non-adhered to CHOICAM 1.00E-07 15.97 0.08 1.26E-01 6.99E-03 1.26E+06 1.26E03 5.62E+08 1523.92 dil -2 15.2392 0.92 6.08 7.00 

93U15 
adhered to CHO745 1.00E-09 16.03 0.79 1.43E-01 6.84E-02 1.43E+08 1.42E05 6.37E+10 164284 dil -4 16.4284 0.85 6.15 7.00 

non-adhered to CHO745 1.00E-04 14.77 0.34 2.99E-01 7.21E-02 2.99E+03 2.99 1.34E+06 5.15862 dil 0 5.15862 2.71 4.29 7.00 

101U15 

adhered to CHO745 1.00E-09 11.79 0.43 2.66E+00 8.74E-01 2.66E+09 2.66E06 1.19E+12 3266538 dil -6 3.26654 4.29 2.71 7.00 

non-adhered to CHO745 1.00E-09 12.81 0.74 1.16E+00 5.44E-01 1.16E+09 1.16E06 5.19E+11 1436343 dil -5 14.3634 0.97 6.03 7.00 

adhered to CHOICAM 1.00E-04 20.52 0.07 5.75E-03 2.55E-04 5.75E+01 0.06 2.57E+04 0.04365 dil 0 0.04365 320.71 N/A N/A 

non-adhered to CHOICAM 1.00E-04 17.56 0.42 4.11E-02 1.07E-02 4.11E+02 0.41 1.84E+05 0.48873 dil 0 0.48873 28.65 N/A 9.00 

105U15 

adhered to CHO745 1.00E-04 14.89 0.85 3.03E-01 1.89E-01 3.03E+03 3.03 1.35E+06 4.20347 dil 0 4.20347 3.33 3.67 7.00 

non-adhered to CHO745 1.00E-05 14.80 0.60 3.06E-01 1.34E-01 3.06E+04 30.63 1.37E+07 30.2912 dil -1 3.02912 4.62 2.38 7.00 

adhered to CHOICAM 1.00E-04 11.73 0.88 3.03E+00 2.29E+00 3.03E+04 30.30 1.35E+07 40.5512 dil -1 4.05512 3.45 3.55 7.00 

non-adhered to CHOICAM 1.00E-06 11.42 0.22 3.22E+00 4.74E-01 3.22E+06 3220.0 1.44E+09 4100.68 dil -3 4.10068 3.41 3.59 7.00 

V: Volume; VT: Total Volume; bp: base pairs. 
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Table 6. Raw data (reads) description output from RNA-sequencing. 

Sample 
ID 

Lane Index 
Sample 

code 
Description File name 

Total 
Sequences 

(FastQ) 

Total nº of 
reads after 
trimming 

(%) 

Sequence 
length 

%GC 
Sample  

Ref 

1 1 ATCACG 

92U15 

adhered to 
CHOICAM 

1_S1_L001_R1_001.fastq.gz 
1_S1_L001_R2_001.fastq.gz 

348167 
348167 

345888 
345888 
(88.3%) 

101 
101 

48 
49 

P. vivax 
Sal-

1/P01 

2 1 CGATGT 
adhered to 
CHO745 

2_S2_L001_R1_001.fastq.gz 
2_S2_L001_R2_001.fastq.gz 

1082819 
1082819 

1070871 
1070871 
(98.9%) 

101 
101 

48 
48 

P. vivax 
Sal-

1/P01 

3 1 TTAGGC 
non-adhered 
to CHOICAM 

3_S3_L001_R1_001.fastq.gz 
3_S3_L001_R2_001.fastq.gz 

1021141 
1021141 

1003388 
1003388 
(98.3%) 

101 
101 

48 
48 

P. vivax 
Sal-

1/P01 

4 2 ATCACG 
non-adhered 
to CHO745 

4_S12_L001_R1_001.fastq.gz 
4_S12_L001_R2_001.fastq.gz 

223979 
223979 

219624 
219624 
(98.1%) 

101 
101 

49 
50 

P. vivax 
Sal-

1/P01 

21 1 CAGATC 

93U15 

adhered to 
CHO745 

21_S7_L001_R1_001.fastq.gz 
21_S7_L001_R2_001.fastq.gz 

481872 
481872 

475794 
475794 
(98.7%) 

101 
101 

49 
49 

P. vivax 
Sal-

1/P01 

22 1 TAGCTT 
non-adhered 
to CHO745 

22_S10_L001_R1_001.fastq.gz 
22_S10_L001_R2_001.fastq.gz 

225383 
225383 

214949 
214949 
(95.4%) 

101 
101 

43 
45 

P. vivax 
Sal-

1/P01 

5 2 CGATGT 

105U15 

adhered to 
CHOICAM 

5_S13_L001_R1_001.fastq.gz 
5_S13_L001_R2_001.fastq.gz 

683478 
683478 

663014 
663014 
(97.0%) 

101 
101 

43 
44 

P. vivax 
Sal-

1/P01 

6 1 TGACCA 
adhered to 
CHO745 

6_S4_L001_R1_001.fastq.gz 
6_S4_L001_R2_001.fastq.gz 

680245 
680245 

670600 
670600 
(98.6%) 

101 
101 

44 
45 

P. vivax 
Sal-

1/P01 

7 1 ACAGTG 
non-adhered 
to CHOICAM 

7_S5_L001_R1_001.fastq.gz 
7_S5_L001_R2_001.fastq.gz 

1312365 
1312365 

1288122 
1288122 
(98.2%) 

101 
101 

47 
47 

P. vivax 
Sal-

1/P01 

8 1 GGCTAC 
non-adhered 
to CHO745 

8_S11_L001_R1_001.fastq.gz 
8_S11_L001_R2_001.fastq.gz 

192240 
192240 

188117 
188117 
(97.9%) 

101 
101 

48 
49 

P. vivax 
Sal-

1/P01 
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20 1 GCCAAT 

101U15 

non-adhered 
to CHOICAM 

20_S6_L001_R1_001.fastq.gz 
20_S6_L001_R2_001.fastq.gz 

231269 
231269 

226387 
226387 
(97.9%) 

101 
101 

46 
47 

P. vivax 
Sal-

1/P01 

23 1 ACTTGA 
adhered to 
CHO745 

23_S8_L001_R1_001.fastq.gz 
23_S8_L001_R2_001.fastq.gz 

761780 
761780 

754181 
754181 
(99.0%) 

101 
101 

48 
49 

P. vivax 
Sal-

1/P01 

24 1 GATCAG 
non-adhered 
to CHO745 

24_S9_L001_R1_001.fastq.gz 
24_S9_L001_R2_001.fastq.gz 

493265 
493265 

475848 
475848 
(96.5%) 

101 
101 

47 
48 

P. vivax 
Sal-

1/P01 
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CHAPTER 3  
 

 

 

“Plasmodium vivax and Rosette Formation:  

what can transcriptomics tell us?” 
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Overview 

In this study, we aim to understand the molecular mechanisms responsible for rosette 

formation by identifying possible molecules, especially parasitic ligands, which might be 

important in P. vivax adhesion capacity. Using high-throughput RNA-seq technology 

coupled with parasite field sample enrichment, ex vivo maturation and rosetting assays, 

we have sequenced the whole transcriptome of parasite populations. Differential 

expression analysis presented here was accessed by comparison between rosette-

forming P. vivax samples against their non-forming counterpart.  

Taken together, our results point out to the importance of membrane and membrane-

associated proteins, whose sequence predict them to be adhesin or adhesin like, and thus 

important in rosetting phenotype. We expect the results to reflect this parasite 

pathobiology, principally concerning its adhesive capacity, possible the source of the 

severe clinical manifestations globally reported. 
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 Abstract 

The mechanisms underlying the pathobiology of the neglected P. vivax involved in 

the severe manifestations observed for vivax malaria patients worldwide are still little 

known. The ability of P. vivax to promote the host reticulocyte deformability has been 

demonstrated and might be the principle behind splenic clearance avoidance. Functional 

studies have already reported that adhesion of normocytes to the P. vivax infected red 

blood cells (PvIRBCs) is strong and results in stable rosette formation. Mature staged 

parasites (schizonts) were also reported presenting a higher capacity for rosetting than 

younger ones. More recently, it was shown that there is a correlation between rosette 

formation and altered membrane deformability of PvIRBCs, where the rosette-forming 

PvIRBCs are significantly more stiff and rigid than their non-rosetting equals. Thus, 

rosette-forming PvIRBCs may be the cause for the lower rates of schizonts peripheral 

circulation, contributing for parasite sequestration phenomena in the host 

microvasculature and/or spleen, and consequently, the rheopathological characteristics 

present in vivax malaria disease. In this study we aim to understand the molecular 

mechanisms responsible for rosette formation by identifying possible molecules, 

especially parasitic ligands, which might be important in P. vivax adhesion capacity. Using 

high-throughput RNA-seq technology coupled with parasite field sample enrichment, ex 

vivo maturation and rosetting assays, we have sequenced the whole transcriptome of 

parasite populations. Differential expression analysis presented here was accessed by 

comparison between rosette-forming P. vivax samples against their non-forming 

counterpart. Taken together, our results point out to the importance of membrane and 

membrane-associated proteins, whose sequence predict them to be adhesin or adhesin 

like, and thus important in rosetting phenotype. We expect the results to reflect this 

parasite pathobiology, principally concerning its adhesive capacity, possible the source of 

the severe clinical manifestations globally reported. 
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Introduction 

Plasmodium vivax is the most prevalent malaria parasite outside Sub-Saharan Africa 

and the most geographically widespread type of malaria, placing billions of people at risk 

of infection, thus imposing major health and economic burdens [1]. Infection occurs in 

genetically distinct populations with heterogeneous resistance to chloroquine [2-5]. 

Severe clinical complications, although scarce [6], have been of great concern [6] and 

could be directly associated to parasite adherence [7, 8]. 

One very important adhesive phenotype associated with clinical complications in 

falciparum malaria is the capacity of PfiRBCs rosette formation, characterized by the 

ligation of an infected erythrocyte to two or more healthy erythrocytes [9]. Several studies 

have investigated an association between the ABO blood type and the rosetting process 

suggesting an important role [10, 11]. In P. falciparum, some scientific publications 

indicate that patients with A blood type showed a greater rosette presence than O blood 

type patients, which points for an enhanced protection against the occurrence of severe 

malaria outcomes [10, 11].  

Although these phenomena have already been quite well described and studied for 

P. falciparum, little is known about the formation of rosettes in P. vivax or any other 

Plasmodium spp.. In falciparum malaria, the P. falciparum Erythrocyte Membrane Protein 

1 (PfEMP1) has been identified as the main protein responsible for rosette formation by 

biding to different healthy erythrocyte receptors, such as CD35, heparan sulfate and blood 

group antigens. However, orthologs in other species have yet to be identified. Other 

PfiRBCs surface proteins, such as RIFIN proteins, codified by a subtelomeric polymorphic 

multigene family [12], contribute to the parasite antigenic variability and can also be used 

as immune inhibitory receptors to achieve immune evasion [13].     

The first report about PviRBCs rosettes [14] was published more than 20 years ago, 

but until now, few scientific experiments have explored and described the P. vivax 

rosetting phenotype [14-18]. In contrast to P. falciparum, the relation between P. vivax 

rosetting, disease severity, parasitemia and blood type is unknown [14, 15, 18].  

Russell, B. and colleagues have demonstrated that, to accomplish P. vivax field 

isolate enrichment in parasite, it is necessary to use trypsin to disrupt the present rosettes 

[18], suggesting the existence of parasitic ligands involved in the process of P. vivax 
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rosette formation. During the last years and in cooperation with Russel, B and colleagues, 

we have explored rosette formation traits [19, 20], drawing already some conclusions. 

Both incidence and percentage of rosetting in patient samples is more common in vivax 

than in falciparum malaria, which occurs as soon as 20h after reticulocyte invasion by P. 

vivax asexual and sexual stages [20]. Some traits, such as host ABO blood group, 

reticulocyte amount and P. vivax parasitemia do not significantly correlate with enhanced 

or diminished P. vivax rosetting capacity. The rosette complex structure is based 

preferentially on mature erythrocytes (normocytes), where Glycophorin C receptor 

presence seems to have an important role [20]. As it is known, PviRBCs have the 

rheological properties altered, principally in decrease of membrane elasticity, which 

enables them to avoid splenic clearance [19]. According to recent studies on deformability 

of PviRBCs, rosette-forming iRBCs are distinctly more rigid than their non-rosetting 

counterparts, with long adhesion to normocytes, which suggests a high contribution of 

rosettes to the sequestration of schizonts PviRBCs in the host microvasculature and/or 

spleen [19]. 

Here, our efforts concentrate in better understanding the expression patterns that 

could suggest which parasite ligands or metabolic pathways might be involved in the 

reshape of normocytes cell membrane and properties that are related to P. vivax rosetting 

capacity. For that, we performed several rosetting assays on Amazonian low parasitemia 

clinical isolates, in order to separate two groups of parasite population samples, with and 

without rosetting capacity. From whole transcriptome sequencing data analysis, we 

accessed the differential gene expression profiles between these two groups of samples 

to dissect by data mining, possible differences that tentatively might explain P. vivax 

rosetting phenotype during the progress of vivax malaria disease.  

 

Results 

 

Evaluation of Brazilian P. vivax isolates rosetting phenotype 

To investigate the rosetting capacity of different populations of PviRBCs from 

Brazilian Amazonian endemic field, we collected a total of 26 vivax malaria patient 

samples (Supplementary Table 1). The patient pool was mainly constituted by male 
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individuals (2.25 F:M ratio) with an average 38.6 years old and presented a range of 500 

to 104 parasites per µL, counted on a thick smear by the specially trained microscopists 

from malaria diagnosis service at FMT-HVD (Supplementary Table 1). All samples were 

processed immediately after collection following the procedures for parasite isolation and 

enrichment to obtain parasitemias >50%, and thus, the greatest total number of PviRBCs 

to enable us to proceed with a total of 27 rosetting assays (Table 1). Taking into 

consideration the stage of maturation of P. vivax parasites predominant on the clinical 

isolates, 10 underwent ex vivo culture to allow maturation of the parasites from younger 

to more mature stages (in general trophozoites and schizonts) before proceeding for 

rosetting assays (Table 1). By subdividing our assays according to the predominant 

parasite stages used as young trophozoites (n=10), trophozoites (n=8) and schizonts 

(n=9) (Table 1), we observed a statistically significant enhanced capacity for rosetting 

formation of more mature PviRBCs compared with more young staged samples (ANOVA 

statistical test p-value=0.0004; Figure 1). 

 

P. vivax low input cDNA synthesis, library preparation and sequencing   

Considering the particularities of P. vivax samples, we followed an experimental 

design that allowed the transcriptome sequencing of a set of 8 PviRBCs pre-selected 

samples, that could reflect expression profiles characteristic of P. vivax rosetting 

phenotype. RNA extractions of PviRBC populations were done using the RNeasy® Micro 

kit and its quantity and quality evaluated using the Bioanalyzer® platform (Supplementary 

Table 2). On average 21.939 pg/uL of RNA, ranging from 4.925 to 65.531 pg/uL, was 

obtained with an average 8.0 RIN (6.3-9.8). Given the low amounts of P. vivax RNA, we 

opted for the use of SMART® technology, which offers unparalleled sensitivity, unbiased 

amplification of cDNA transcripts from low input RNA samples (Supplementary Table 2), 

which is a tremendous advantage since the huge limitation imposed by low parasite 

burden in vivax malaria patients. Immediately after, the cDNA output was converted into 

sequencing templates suitable for cluster generation and high-throughput sequencing 

resulting into a sequencing-ready library for the Illumina® platform (Supplemental Table 

3). Same procedures were performed for P. falciparum FCR3 S1.2 and S20 strains.  
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Whole Transcriptome Shotgun Sequencing data analysis 

We obtained a total number of 4,248,722 raw reads. On average 455,253 paired end 

reads (100 bp) (Supplemental Figure 1) per sample from the 8 sample libraries were 

successfully sequenced (Supplemental Table 4), with an average 46.4% GC content. 

FastQC of the total number of raw reads obtained from all our libraries reveled good 

sequence quality and the necessary trimming steps only excluded a minor fraction of 

reads (Supplementary Table 4), in general, repetitive, not accurately determined and 

Illumina® adaptors run through sequences. Using P. vivax P01 reference genome, we 

were able to align and map on average half of the total number of trimmed reads obtained 

to annotated protein-coding genes (Table 2). Sequences showing multiple or discordant 

alignments were excluded from the analysis. The same analysis pipeline was followed for 

the analysis of P. falciparum FCR3 S1.2 and S20 raw data, using P. falciparum IT and 

3D7 reference genomes (Table 3). 

 

Differential expression profiles associated to P. vivax rosetting phenotype 

To proceed for RNA-seq of P. vivax iRBCs, we separate two groups of parasite 

population samples, with high (9-29% rosetting rates; 62U15, 66U15.2, 69U15 and 

106U16) and low rosetting capacity (3-6% rosetting rates; 63U15, 65U15, 73U15 and 

109U15). Through RNA-seq data analysis, we accessed the differential gene expression 

profiles between samples of these two groups and dissect by data mining, possible 

differences that tentatively might explain P. vivax rosetting phenotype during the progress 

of vivax malaria disease. Although expression profiles were similar between samples 

within the same capacity level for rosette formation, our P. vivax populations isolated from 

malaria patients showed some degree of transcriptome heterogeneity. Nevertheless, 

analysis between the high (69U15 and 106U16) against the low (73U15 and 109U16) 

rosetting samples revealed a group of 94 differential expressed genes (q-value<0.05, 

Supplementary Table 5). A big portion of those genes (31) codify conserved Plasmodium 

spp. proteins of yet unknown function. With the exception of only two genes 

(PVP01_1231000 and PVP01_0944300) with negative log2 fold changes (Bozdech, Mok 

et al. 2008), all genes showed a high expression (1.8>log2 Fold Change>3.5) in our group 



82 
 

 

of high rosetting samples, which might suggest their involvement in molecular processes 

important for rosetting or the adhesion binding itself. Future functional characterization of 

these proteins should clarify this possibility. Numerous other genes (38) are enzyme-

coding proteins responsible for DNA/cremation organization packaging and assembly or 

other cell metabolic processes, including 5 upregulated kinases, some have/are being 

characterized (NEK3, MAPK2 and RKIP). Interestingly, we could identify an important 

group of 20 membrane or membrane-associated proteins (Table 4). Within this group, we 

found two 6-cystein proteins (P47 and P48/45), 2 LCCL (CCp2 and LAP5), one PH 

domain-containing protein and one WD-repeat domain-containing protein. Also 

upregulated were the PhL1 interacting proteins PIP2 and 3, the early transcribed 

membrane protein (ETRAMP), MSP7-like protein and 3 genes from CPW-WPC protein 

family. Only one gene described as a leucine-rich repeat protein showed a downregulated 

expression (Log2 Fold Change=2.5). Importantly, 4 glideosome-associated protein also 

appear to be highly expressed in our rosetting isolates. Curiously, our analysis was able 

to pick up the significant downregulated expression of the P. vivax macrophage migration 

inhibitory factor (MIF) gene.   

Among the upregulated genes, four were predicted to be adhesins or adhesin-like, 

as MSP7 and three CPW-WPC genes (Table 5).   

 

Discussion 

 

To have a better understanding of P. vivax expression patterns could be involved in 

rosetting capacity, we performed several rosetting assays on Amazonian low parasitemia 

clinical isolates. In accordance with previously published data [19], we could observe and 

confirm a proportional relation between PviRBCs maturation and its enhanced capacity to 

form rosettes, where young staged parasites showed a low percentage of rosetting (<6%) 

that progressively augments towards schizont parasites, which can rosette to a 50% rate 

or more (Figure 1). This result is indicative of the fact that P. vivax must be expressing 

proteins responsible for the reshape of normocytes cell membrane and properties, which 

might be directly involved in rosette formation.  
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Through RNA-seq of P. vivax iRBCs, we evaluated the differential gene expression 

profiles between two groups with different rosetting capacity (high against low) and 

identified expressed genes that could explain P. vivax rosetting during the progress of 

vivax malaria disease. Considering the confounding expression variability expected 

between different P. vivax clinical isolates, our analysis between the double sample high 

and low rosetting samples revealed a group of 94 differentially expressed genes.  

As anticipated, a large number of genes have not yet been characterized for their 

protein function, but the conservation of their sequence throughout Plasmodium spp. 

may be indicative of their importance on parasite rosetting phenotype. Furthermore, 

majority of this conserved Plasmodium showed high upregulated expression, 

suggesting their involvement in molecular processes important for erythrocyte 

binding. These proteins functional characterization should further elucidate this 

possibility.  

Within the group of differentially expressed enzymes, 3 upregulated kinases have 

caught our attention, since kinases are classic targets for discovery of new therapeutic 

drugs. NEK3 has been reported has essential for mitosis progression in P. berghei 

blood-stage development [21], MAPK2 seems to play an important role in stress 

response in Toxoplasma gonddi [22] and RKIP affects activity of another kinase, the 

calcium-dependent protein kinase 1 [23], which regulates several important 

Plasmodium spp. reliant on calcium metabolic processes. Studies on calcium 

homeostasis have reported that parasitized RBCs show an increased influx of calcium 

when compared to the decreased efflux of unparasitized RBCs. Calcium content has 

been localized in the Plasmodium spp. compartment. For the RBC invasion by the 

merozoite, extracellular calcium is needed, as well as the subsequently parasite 

development and maturation inside of the erythrocyte [24, 25]. 

P. vivax field isolates are often characterized by asynchronous populations of 

parasites in different stages of develop and/or maturation. Although our samples were 

chosen with the aim to access the transcriptomic profiles of trophozoites and/or early 

schizont parasites, we could also catch the expression of some interesting gametocyte 

membrane surface genes, reflecting the importance of the study of mechanisms of P. 

vivax transmission. Together with P48/45 surface protein [26], P47 is one of such proteins, 
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having been reported as requires for optimal fertilization in P. berghei and for mosquito 

immune evasion, showing a strong signature of natural selection and population structure 

in the P. falciparum and P. vivax genomes [27].    

Also, we verified differential expression of two LCCL lectin domain adhesive-like 

proteins (LAPs), a family of conserved six modular proteins, conserved through the 

apicomplexan genus, which are expressed in sexual stages of Plasmodium parasites and 

reported to be involved in the formation of protein complexes required for successful P. 

berghei sporogony [28, 29]. 

One of the most important aspects of erythrocyte infection by P. vivax is the dramatic 

morphogenesis of the erythrocyte membrane, driven by a network of microtubules (MT) 

sustained by the inner membrane complex (IMC). As expected, genes codifying the actin 

and tubulin backbone molecules of MTs were found to be upregulated in our rosetting 

samples, together with a group of MT motor enzymes, IMC proteins such as PhIL1 (PIP2 

and 3-)integrating proteins, which are critical in various processes such as signal 

transduction and intracellular and membrane trafficking [30, 31].  

Furthermore, we were able to catch the overexpression of an early-transcribed 

membrane protein (ETRAMP). ETRAMPs are important proteins present on the 

membrane of intracellular parasites of Plasmodium species, formed during erythrocyte 

invasion as an invagination of the iE cell surface during the asexual blood stage parasites. 

Recent studies showed that ETRAMPs have been localized on the intracellular 

membranes of immature schizont and at the apical organelles of newly formed P. vivax 

merozoites of mature schizont and have the capacity to elicit high antibody titers capable 

of recognizing parasites of vivax malaria patients [32].  

Together with other 3 expressed genes from CPW-WPC surface protein family, 

another important membrane protein found differentially expressed in our study was the 

P. vivax (MSP7)-like protein. Merozoite surface proteins belong to families of proteins 

often involved in complex Plasmodium invasion processes. Pf MSP7 interactions with host 

P-selectin receptors have been demonstrated [33], which in consequence block 

interactions between host P-selectin and leukocyte ligands and could underlie the 

mechanism for the known immunomodulatory effects of both MSP7 and P-selectin in 

malaria infection models. Although  msp7 in P. vivax has not yet been functionally 
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characterized, there is evidence this protein is under selection and thus, being functionally 

important in P. vivax [34]. 

In addition, 4 glideosome-associated proteins are observed to be differentially 

expressed in our high rosetting parasites. The capacity to bind, reorient and invade new 

host cells is mainly powered by the “glideosome” proteins [35]. The glideosome is a 

macromolecular complex comprising proteins with adhesive properties. These proteins 

are released apically on the parasite membrane and translocated to the opposite pole of 

the parasite through the actomyosin system anchored in the IMC. 

Finally, we have detected the expression of macrophage migration inhibitory factor 

(MIF) gene, one of the first cytokines described, which has a broad range of pro-

inflammatory properties. It has been reported that expressed PfMIF protein localizes to 

the Maurer’s cleft during asexual blood stage parasites. PfMIF in vitro treatment of human 

monocytes inhibited their random migration and reduced the surface expression of toll like 

receptor (TLR) 2, TLR4 and CD86, indicating that its release potentially modulates the 

host monocytes functions during Plasmodium acute infection [36]. In accordance with this 

data, our analysis performed in isolates from non-severe vivax malaria patients reported 

a significant downregulated expression of the P. vivax mif gene in parasite populations 

showing rosetting phenotypes. 

 

Conclusion 

 

Taken together, these results point out to the importance of membrane and 

membrane associate proteins in rosetting phenotype. Functional assays might further 

clarify of these proteins allow the parasites to adhere to the surface of host cells, such as 

health erythrocytes, maintaining them anchored in order to create the characteristic 

rosette of surrounding erythrocytes, which enable the parasite to evade from the host 

immune system.  
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Methods 

 

Ethical Approval 

Informed consent was sought and granted from all patients attending the Fundação 

de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Amazonas State, 

Brazil. All procedures, including protocols and consent forms, were approved by the Ethics 

Review Board of FMT-HVD (process CAAE-0044.0.114.000-11 and 

54234216.0000.0005). 

 

Study Area, Subjects and Sample Collection 

Adult patients were recruited at FMT-FVD Manaus, Amazonas State, Brazil, a tertiary 

care centre for infectious diseases following a pipeline of microscopic diagnosis of 

uncomplicated P. vivax malaria and determination of parasitaemia, after which the 

patients are treated with Chloroquine and Primaquine according to the standard protocol 

recommended by the Brazilian Malaria Control Program. Before initiation of treatment, up 

to 8 mL of peripheral blood was collected from each patient in citrate-coated VacutainerTM 

tubes (Becton-Dickinson). Severe malaria, patients under anti-malarial treatment, with P. 

falciparum malaria and/or P. falciparum and P. vivax mixed infections, and pregnant 

women were excluded from this study. P. vivax mono-infection was confirmed by PCR 

analysis, as described elsewhere [37]. 

 

Parasite Isolation, Enrichment and ex vivo Maturation 

To obtain enriched P. vivax infected erythrocytes (PviRBCs), samples were 

immediately processed. Plasma and buffy coat layer were removed after centrifugation at 

400 x g for 5 min at room temperature. The pellet was ressuspended in an equal volume 

of RPMI parasite medium and then performed CF11 column filtration (Sigma) to deplete 

white blood cells [18, 38, 39], followed by parasite enrichment through Percoll 45% 

gradient protocol as previously described [40]. Depending on the stage of parasite 

maturation, the early blood staged parasites were cultured for 18-22 hours to allow them 

to mature to late trophozoites and/or schizonts [18, 41]. Thin blood smears were prepared 
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and stained with Panótico Rápido (Laborclin®) kit, before, during and after ex vivo short 

culture to control the extent of parasite maturation.  

 

Rosetting rates assessment 

Twenty μL of PvRBCs at 2.5-5% parasitemia and 2.5-5% hematocrit were incubated 

for 40 min at 37°C in rosetting media (McCoy’s 5A medium supplemented with 20% of 

patient autologous plasma). Triplicate aliquots of each sample were stained with 45 μg/ml 

of acridine orange and examined by direct light and fluorescence microscopy (Nikon 

Eclipse 50i, filter 96311 B-2E/C). Rosetting rates were access by counting 200 Pv-iRBCs 

in triplicate. As our criteria, the rosette complex was defined by the binding of two or more 

uninfected erythrocytes to an Pv-iE. 

 

P. falciparum in vitro cultures  

The Brazilian field isolate S20 (resistant to artemisinin) and P. falciparum FCR3 S1.2 

[42] strains were cultured according to standard procedures previously described [43] and 

the last was enriched up to ≥ 80% of rosetting. For both strains, about 106 PfiRBCs were 

isolated for RNA extraction and downstream transcriptomic sequencing. 

 

RNA Extraction and Quality Control 

After PviRBCs quantification, the isolate was preserved by flash freezing the sample 

in liquid nitrogen. RNA extractions were accomplished by using the RNeasy® Micro kit 

(Qiagen) according to the manufacturer instructions. Before attempting RNA-seq, quality 

control was done by running electrophoretically the extracted RNA samples in the Agilent 

2100 Bioanalyzer instrument using the Agilent RNA 6000 Pico Kit reagents and chips and 

analyzed on the 2100 Expert software, according to the ©Agilent Technologies 

recommendations. 

 

Low Input cDNA synthesis and Library Preparation for Whole Transcriptome Shotgun 

Sequencing 

SMART-Seq V4 Ultra Low Input RNA kit was used for cDNA libraries generation. 

cDNA quality, quantity and size range were evaluated through BioAnalyser using the 
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Agilent High Sensitivity DNA Kit (cDNA, 5 to 500 pg/µL within a size range of 50 to 7000 

bp), as per manufacturer instructions. Covaris AFA system was used for controlled cDNA 

shearing, resulting in DNA fragments between 200 and 500 bp sizes. Instructions were 

followed as indicated in the SMART-Seq V4 Ultra Low Input RNA kit for sequencing user 

manual by Clontech Laboratories, Inc. A Takara Bio Company. cDNA output was then 

converted into sequencing templates suitable for cluster generation and high-throughput 

sequencing through the Low Input Library Prep v2 (Clontech Laboratories, Inc. A Takara 

Bio Company). Library quantification procedures using the Library Quantification kit 

(Clontech Laboratories, Inc. A Takara Bio Company) by the golden standard qPCR and 

Agilent's High Sensitivity DNA kit were successfully completed before proceeding for the 

pool set-up) at a final concentration of 2nM for direct sequencing. The generated libraries 

were cluster amplified and sequenced on the Illumina® platform using standard Illumina® 

reagents and protocols for multiplexed libraries by following their loading 

recommendations. Sequencing runs were performed on HiSeq 2500 sequencer on Rapid 

Run mode with the HiSeq Rapid Cluster Kit v2 (100x100) Paired End, HiSeq Rapid SBS 

Kit v2 (200 cycles) and HiSeq® Rapid Duo cBot v2 Sample Loading kits from Illumina®, 

Inc..  

 

Raw reads Alignment and Mapping 

Our data was analysed using the EuPathDB-Galaxy hub 

(https://eupathdb.globusgenomics.org/) free, interactive, web-based platform for large-

scale data analysis by assembling a new workflow adapted for our RNA-seq experimental 

design on Galaxy platform [44] and using the PlasmoDB [45] pre-loaded P. vivax 

reference genome [46]. In summary, raw reads were checked for quality by running Fast 

Quality Control (Galaxy Tool Version FASTQC: 0.11.3; 

https://www.bioinformatics.babraham.ac.uk/projectY/fastqc/), a java quality control tool for 

high throughput sequencing data. Illumina® adaptors were trimmed through Trimmomatic 

(Galaxy Tool Version 0.36.5) on our Illumina® paired-end data [47], and read alignment 

and mapping was performed with TopHat2 [48] (Galaxy Tool Version SAMTOOLS: 1.2; 

BOWTIE2: 2.1.0; TOPHAT2: 2.0.14), towards the Plasmodium vivax P01 reference 

genome from PlasmoDB release 38 known transcripts and splice junctions. FPKM 

https://eupathdb.globusgenomics.org/
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estimation by count of the number of aligned reads matching the annotated reference 

genes was executed with htseq-count [49] (Galaxy Tool v. HTSEQ: default; SAMTOOLS: 

1.2; PICARD: 1.134) . Final differential gene expression was performed with DESeq2 [50] 

Galaxy Tool (v. 2.1.6.0). Differential gene expression between the different analysis 

groups was identified after a pairwise Wilcoxon test was used to compare the 

transcriptional profiles with the following cutoffs: p-value<0.05, q-value<0.5 and a log2 fold 

change > 1.5 (Supplementary Figure 2). 

 

Differential expression profiles, Gene Ontology enrichment, Metabolic Pathways and 

MAAP analysis 

From the final list of genes computed, we selected those that could be informative 

about the host expression differences between high against low rosetting P. vivax 

infecting populations, focusing on the relative presence or absence within the sample 

comparison. For that, we considered the total pool of genes with a p-value < 0.05 and a 

q-value 0 – 1.0 and performed Gene Ontology enrichment on PlasmoDB (release 40) [45] 

to find all GO terms associated to biological processes, cellular components and 

molecular functions (genes computed and curated for a p-value cutoff of 0.05. towards P. 

vivax reference). By using REViGO [51], a web server to remove redundant terms, we 

visualized in semantic similarity-based scatterplots, interactive graphs and tag clouds, the 

relevant GO terms. We also searched for Metabolic Pathways based on PlasmoDB link 

using KEGG (https://www.genome.jp/kegg/) and MetaCyc (https://metacyc.org/) pathway 

resources (p-value cutoff of 0.05. towards P. vivax reference). The Malarial Adhesins and 

Adhesin-like proteins predictor (MAAP) was used to score the group of differentially 

expressed membrane proteins regarding its adhesin sequence and structure. 
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Figures and Tables 

 

 

Figure 1. Pv-iE isolate rosetting rates, normalized against the sample’s total parasitemia, represented on 
whiskers plots as percentages of rosette formation (%) according to the most prevalent parasite stages into 
3 groups, young trophozoites (white; n=10), trophozoites (light grey; n=8) and schizonts (grey; n=9). 
Nonparametric one-ways ANOVA (Kruskal-Wallis) statistical test gave statistical significance (p-
value<0.0001) between the 3 PviRBCs staged groups. Unpaired t test with Welch’s correction 2-tails 
between young trophozoites - trophozoites (***p-value=0.0001), trophozoites – schizonts (*p-value=0.0206) 
and young trophozoites – schizonts (**p-value=0.0075) groups. 
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Figure 2. Pie chart showing the 94 differentially expressed genes grouped by protein function in glideosome 
associated proteins (4 genes; yellow), membrane associated proteins (20 genes; red), kinase enzymes (5 
genes; green), conserved Plasmodium spp. proteins of unknown function (31 genes; grey) and other (34 
genes; blue).   
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Table 1. Sample profiles for P. vivax clinical isolates 

Sample 
Code 

Pv-iE/200 
leucocytes* 

Initial 
smear 
stages 

(h) 

ex vivo 
culture 

/maturatio
n time (h) 

Smear after 
ex vivo 
culture 
and/or 

Percoll 45% 

Parasitemia 
after Percoll 

(%) 

Rosetting (%) 

All 
rosetting 
assays 

Young 
Trophozoite

s 

Trophozoite
s 

Schizont
s 

59U15.1 438 

trophozoites 
(15-22) and 
schizonts 

(≥22) 

N 

trophozoites 
(15-22) and 
schizonts 

(≥22) 

87.50% 56.88   56.88 

61U15 185 

trophozoites 
(>20) and 

some 
schizonts 

(≥22) 

N 
schizonts 

(≥22) 
75.80% 44.49   44.49 

62U15 335 
trophozoites 

(15-20) 
N 

trophozoites 
(15-20) 

96.60% 9.37  9.37  

63U15 400 
young 

trophozoites 
(11-13) 

N 
young 

trophozoites 
(11-13) 

84.40% 5.91 5.91   

65U15 428 
trophozoites 
young (12-

15) 
N 

trophozoites 
(12-15) 

84.40% 5.91 5.91   

66U15.1 340 

rings (5) 
and some 
schizonts 

(≥22) 

Y/16h 
young 

trophozoites 
(13-18) 

97.30% 4.67 4.67   

66U15.2 340 
rings (5) 

and some 
schizonts 

Y/16h 

trophozoites 
(15-20) and 

some 
schizontes 

(≥22) 

97.00% 20.08   20.08 

67U17 42 
young 

trophozoites 
(11-12) 

Y/16h 
trophozoites 

(18-20) 
50.00% 6.00  6.00  

68U15 250 
trophozoites 
(15-22) and 

some 
N 

trophozoites 
(15-22) and 

some 
88.50% 8.76  8.76  
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schizonts 
(≥22) 

schizonts 
(≥22) 

69U15 430 
schizonts 
(21-26) 

N 
schizonts 
(21-26) 

98.90% 24.13   24.13 

70U15 135 
schizonts 

(≥22) 
N 

schizonts 
(22-26) 

80.00% 12.00   12.00 

71U15 210 rings (5-7) Y/16h 
trophozoites 

(15-20) 
74.50% 8.20  8.20  

72U15.1 1050 

rings (4-5), 
trophozoites 

(15) and 
schizonts 

Y/16h 
young 

trophozoites 
34.70% 1.49 1.49   

72U15.2 1050 

rings (4-5) 
and  

trophozoites 
(15) 

N 
young 

trophozoites 
(11-15) 

56.70% 1.70 1.70   

73U15 ND 

rings (4-6) 
and few 
mature 

trophozoites
/schizonts 

N 
trophozoites 

(11-17) 
83.20% 4.66 4.66   

76U15 270 
young 

trophozoites 
(11-15) 

N 
young 

trophozoites 
(11-15) 

53.30% 5.86  5.86  

78U15.1 326 

rings (few), 
mature 

trophozoites 
(15-22) and 
schizonts  

(≥22) 

N 

trophozoites 
(15-21) and 
schizonts 

(≥22) 

93.00% 13.02   13.02 

82U15.2 430 

mature 
trophozoites 

and 
schizonts  

(≥15) 

Y/16h 

mature 
trophozoites 

and 
schizonts  

(≥15) 

64.20% 10.27   10.27 

84U15.1 210 

trophozoites 
(11-15) and 

some 
schizonts 

Y/1h 
young 

trophozoites 
(11-15) 

96.40% 2.89 2.89   
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84U15.2 210 

trophozoites 
(11-15) and 

some 
schizonts 

Y/5h 
trophozoites 

(>15) 
96.40% 6.75  6.75  

87U15 220 

trophozoites 
young (11-

15) and 
(some) 

schizonts 

N 
trophozoites 

(15-22 
56.80% 9.09  9.09  

94U15 230 

rings and 
young 

trophozoites 
(11-13) 

Y/18h 
trophozoites 

(11-15) 
67.10% 4.03 4.03   

95U15 120 

young 
trophozoites 
young (11-

15) 

N 
young 

trophozoites 
(11-15) 

62.80% 4.84 4.84   

98U15.1 370 

trophozoites 
(11-15) and 

some 
schizonts 

N 
mature 

trophozoites 
(≥15) 

67.70% 6.77  6.77  

98U15.2 370 
trophozoites 
(11-15) and 
schizonts 

Y/17h 
schizonts 

(≥22) 
99.00% 16.83   16.83 

106U16 230 
mature 

trophozoites 
(15-22) 

N 

mature 
trophozoites 
(15-22) and 
schizonts 

(≥22) 

42.20% 12.66   12.66 

109U16 480 
rings, young 
trophozoites 

( 11-15) 
N 

young 
trophozoites 

(11-15) 
50.00% 3.00 3.00   

Summary of sample information during parasite enrichment and ex vivo maturation of clinical isolates and on rosetting assays performed during field 
work at malaria vivax endemic area, adequate for RNA-seq downstream application. Y – Yes; N – No; ND – Not Determined; All samples were 
preserved through N2 flash freezing after processing and during transportation. RNA sequenced samples are indicated in light grey. 
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Table 2. Alignment and mapping summary report for P. vivax clinical isolates RNA sequenced. 

 Sample Code   

 62U15 66U15 69U15 73U15 106U16 109U16 63U15 65U15 

Left reads 
        

          Input      546571 393248 436832 457871 726393 244626 550489 218478 

           Mapped (% of input)   
278618 
(51.0%) 

185087 
(47.1%) 

220515 
(50.5%) 

268217 
(58.6%) 

241490 
(33.2%) 

153683 
(62.8%) 

331462 
(60.2%) 

127874 
(58.5%) 

               Multiple alignments (% 
of mapped) 

7705 
(2.8%) 

2873 
(1.6%) 

4044 
(1.8%) 

4963 
(1.9%) 

4997 
(2.1%) 

2479 
(1.6%) 

6071 
(1.8%) 

3103 
(2.4%) 

               Multiple alignments 
(>20) 

89 15 27 30 55 17 32 20 

Right reads 
        

          Input      546571 393248 436832 457871 726393 244626 550489 218478 

           Mapped    
277677 
(50.8%) 

184911 
(47.0%) 

219709 
(50.3%) 

267472 
(58.4%) 

241068 
(33.2%) 

153046 
(62.6%) 

330121 
(60.0%) 

127278 
(58.3%) 

               Multiple alignments 
8896 
(3.2%) 

3363 
(1.8%) 

4561 
(2.1%) 

5608 
(2.1%) 

6237 
(2.6%) 

2776 
(1.8%) 

6813 
(2.1%) 

3376 
(2.7%) 

               Multiple alignments 
(>20) 

90 15 27 30 57 17 31 20 

Overall read mapping rate 50.90% 47,0% 50.40% 58.50% 33.20% 62.70% 60.10% 58.40% 

         

Aligned pairs 232635 169102 198574 241964 210760 139372 301369 114319 

               Multiple alignments  
(% of aligned pairs) 

5007 
(2.2%) 

2021 
(1.2%) 

2864 
(1.4%) 

3680 
(1.5%) 

2816 
(1.3%) 

1955 
(1.4%) 

4825 
(1.6%) 

2259 
(2.0%) 

               Discordant alignments  
(% of aligned pairs) 

7591 
(3.3%) 

1297 
(0.8%) 

3479 
(1.8%) 

3272 
(1.4%) 

3360 
(1.6%) 

2646 
(1.9%) 

4114 
(1.4%) 

1374 
(1.2%) 

Concordant pair alignment 
rate 

41.20% 42.70% 44.70% 52.10% 28.60% 55.90% 54.00% 51.70% 

Data table summarizing the alignment and mapping results against the P. vivax P01 reference genome obtained using TopHat2 on our raw data 

(reads) for P. vivax clinical isolates RNA sequenced. Both pair of reads (left and right) we mapped, checked for multiple alignments and concordance 

of pair alignment.  
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Table 3. Alignment and mapping summary report for P. falciparum FCR3 S1.2 and S20 parasite cultures RNA sequenced. 

P. falciparum Reference Genome Pf IT Pf 3D7 

P. falciparum cultures  Pf FCR3 S1.2 Pf S20 Pf FCR3 S1.2 Pf S20 

Left reads     

          Input      537931 379684 537931 379684 

           Mapped (% of input)   299290 (55.6%) 216060 (56.9%) 291552 (54.2%) 222644 (58.6%) 

               Multiple alignments (% of mapped) 33175 (11.1%) 13834 (6.4%) 53244 (18.3%) 19376 (8.7%) 

               Multiple alignments (>20) 237 71 326 161 

Right reads     

          Input      537931 379684 537931 379684 

           Mapped    301231 (56.0%) 215955 (56.9%) 293297 (54.5%) 222754 (58.7%) 

               Multiple alignments 35211 (11.7%) 13229 (6.1%) 54969 (18.7%) 18833 (8.5%) 

               Multiple alignments (>20) 239 69 328 160 

Overall read mapping rate 55.80% 56.90% 54.40% 58.70% 

 
    

Aligned pairs 270875 197266 261576 206532 

               Multiple alignments (% of aligned pairs) 27722 (10.2%) 11210 (5.7%) 46279 (17.7%) 16871 (8.2%) 

               Discordant alignments (% of aligned pairs) 7248 (2.7%) 3454 (1.8%) 3588 (1.4%) 2483 (1.2%) 

Concordant pair alignment rate 49.00% 51.00% 48.00% 53.70% 

Data table summarizing the alignment and mapping results against the P. falciparum IT and 3D7 reference genomes obtained using TopHat2 on our 

raw data (reads) for P. falciparum FCR3 S1.2 and S20 cultures that were sequenced. Both pair of reads (left and right) we mapped, checked for 

multiple alignments and concordance of pair alignment.  
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Table 4. List of differentially expressed genes codifying membrane and glideosome associated proteins.   

Gene ID 
mean 
counts 

Log2 
Fold 
Change 

SD 
Wald 
stat 

p-value q-value 
Transcript 
Length 

Gene 
Symbol 

Product Description 

PVP01_0616000 112.7691 3.297695 0.641278 5.142383 2.71E-07 0.000241 711 P28 ookinete surface protein P28, putative 

PVP01_0616100 252.2767 2.822779 0.57479 4.910976 9.06E-07 0.000268 660 P25 ookinete surface protein P25 

PVP01_0702600 121.3386 2.292091 0.602623 3.803521 0.000143 0.008636 915 PH PH domain-containing protein, putative 

PVP01_0705200 23.38039 -2.54479 0.816246 -3.11768 0.001823 0.031738 1245 LRR9 leucine-rich repeat protein 

PVP01_0734800 47.52981 2.437732 0.688854 3.538825 0.000402 0.012534 564 ETRAMP early transcribed membrane protein 

PVP01_0820000 38.75789 2.309619 0.774088 2.983663 0.002848 0.040146 1683  CPW-WPC family protein 

PVP01_0904300 29.44514 2.21377 0.753047 2.93975 0.003285 0.040824 1758  CPW-WPC family protein 

PVP01_0905300 25.05779 3.023211 0.852766 3.545184 0.000392 0.012534 1851  WD repeat-containing protein, putative 

PVP01_0942600 54.05728 2.203111 0.6829 3.226109 0.001255 0.025799 1551 IMC1b inner membrane complex protein 1b, putative 

PVP01_1020200 34.351 2.280086 0.741552 3.074748 0.002107 0.034015 2196 PSOP12 secreted ookinete protein, putative 

PVP01_1020200 110.9312 2.230126 0.629647 3.541867 0.000397 0.012534     

PVP01_1137600 38.75146 2.054745 0.70281 2.923613 0.00346 0.041519 2187 BTP1 basal complex transmembrane protein 1, putative 

PVP01_1208000 150.0577 2.3366 0.582524 4.011162 6.04E-05 0.004127 1302 P47 6-cysteine protein 

PVP01_1208100 82.41245 2.148073 0.731291 2.937372 0.00331 0.040824 1353 P48/45 6-cysteine protein 

PVP01_1219900 50.53231 2.237958 0.753953 2.9683 0.002995 0.04029 1236  MSP7-like protein 

PVP01_1223200 72.71893 1.911415 0.654919 2.918551 0.003517 0.041637 1446  CPW-WPC family protein 

PVP01_1251100 39.43236 3.389008 0.742545 4.564045 5.02E-06 0.000743 4824 CCp2 LCCL domain-containing protein 

PVP01_1251100 152.1176 2.738815 0.64522 4.244776 2.19E-05 0.002159    

PVP01_1255400 54.03757 2.419967 0.728522 3.32175 0.000895 0.020904 2625 LAP5 LCCL domain-containing protein, putative 

PVP01_1318300 93.48751 2.420415 0.721748 3.353546 0.000798 0.019148 1053 PIP2 PhIL1 interacting protein PIP2, putative 

PVP01_1318600 100.5654 2.447863 0.675563 3.623441 0.000291 0.010756 807 PIP3 PhIL1 interacting protein PIP3, putative 

PVP01_1439700 61.58366 1.950321 0.64478 3.024786 0.002488 0.036824 1692 IMC1h inner membrane complex protein 1h, putative 
           

PVP01_0716400 214.8741 2.048356 0.550386 3.721671 0.000198 0.008784 1188 GAP50 glideosome-associated protein 50, putative 

PVP01_0532000 21.49608 2.492458 0.804617 3.097695 0.00195 0.033305 1116 GAPM2 
glideosome associated protein with multiple 
membrane spans 2, putative 

PVP01_1018200 75.41593 1.939599 0.627571 3.090644 0.001997 0.033463 1395 GAP40 glideosome-associated protein 40, putative 
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PVP01_1230900 16.81091 2.446957 0.874358 2.798575 0.005133 0.049011 912 GAPM1 
glideosome associated protein with multiple  
membrane spans 1, putative 

 

Table 5. MAAP analysis 

Gene ID Product description MAAP score 

PVP01_1219900 merozoite surface protein 7 (MSP7), putative 0.734 

PVP01_1223200 CPW-WPC family protein, putative 0.766 

PVP01_0820000 CPW-WPC family protein, putative 0.797 

PVP01_0904300 CPW-WPC family protein, putative 1.132 

Scores were calculated using the Malarial Adhesins and Adhesin-like Proteins predictor 
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Supplemental Material 

 

Figure 1. The insert length distribution boxplot summarizing the insert length distribution of paired-end reads 
of RNA sequenced libraries. 
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Figure 2. DESeq2 report analysis. Plots of dispersion estimates against the mean of normalized counts for 
complete (A) and filtered (B) data, showing the dispersion estimate for each gene as obtained by considering 
the information from each gene separately (black dots), the fitted estimates showing the dispersions' 
dependence on the mean (red line), the final dispersion estimates shrunk from the gene-wise estimates 
towards the fitted estimates (blue dots) and genes which have high gene-wise dispersion estimates and are 
hence labelled dispersion outliers and not shrunk toward the fitted trend line. The significantly differentially 
expressed genes (highlighted in red) are shown in MA scatter plots for both complete (C) and filtered (B) 
data. 
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Table 1. Patient profiles for P. vivax clinical isolates 
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23/11/15 59U15 M 41 2+ 448 5.9 5.07 14.1 45.8 90.3 27.8 30.8 43 0.6 0.5 4.8 48.7 13.8 11.1 

24/11/15 61U15 F 42 2+ 185 3.8 4.66 13 42.4 91 27.9 30.7 132 F1*1.1 F2*0.7 2 45.4 12.9 9.6 

25/11/15 62U15 F 32 2+ 335 5.5 4.04 11 34.6 85.6 27.2 31.8 42 1.2 0.5 3.8 43.3 13.8 10.4 

25/11/15 63U15 F 36 2+ 400 3.6 4.82 12.7 41.7 86.5 26.3 30.5 79 1.1 0.6 1.9 44.9 13.5 10 

24/11/15 64U15 M 46 2+ 365 4.4 4.27 12.1 38.2 89.5 28.3 31.7 68 0.5 0.5 3.2 45 13.3 9 

25/11/15 65U15 M 49 2+ 428 4.7 4.6 13 41.7 90.7 28.3 31.2 95 1.9 0.4 2.7 49 13.7 9.8 

25/11/15 66U15 M 45 3+ 340 11.2 5.17 14 45 87.8 27.1 30.8 260 0.6 1.2 9.4 44.7 13.1 6.8 

26/11/15 67U15 F 36 1+ 42 1.6 3.97 10.7 36.9 92.9 27 29 122 0.6 0.3 0.7 52.6 14.6 9.4 

26/11/15 68U15 M ND 2+ 250 6.2 4.13 11.3 36.6 88.6 27.4 30.9 81 0.7 0.3 5.2 45.5 14 10.5 

27/11/15 69U15 M 56 2+ 430 3 4.39 13.3 42.2 96.1 30.3 31.5 43 0.3 0.1 2.6 48.6 13.1 8.7 

26/11/15 70U15 F 25 2+ 135 2.3 5.49 15.5 49.8 90.7 28.2 31.1 67 0.6 0.2 1.5 46.8 13.7 8.5 

27/11/15 71U15 M 36 2+ 210 3.3 4.95 13 42.8 86.5 26.3 30.4 42 0.5 0.5 2.3 46.5 13.8 8.9 

27/11/15 72U15 F 36 3+ 1050 3.6 4.17 8 29 69.5 19.2 27.6 35 F1* 0.6 
F2* 

0.5 
2.5 41.8 16.8 ND 

28/11/15 73U15 M 23 3+ ND ND ND 3.3 3.76 9.9 33 87.8 26.3 30 39 0.4 0.2 2.7 77.3 

30/11/15 76U15 M 24 2+ 270 ND ND 5.1 4.97 12.1 40.2 80.9 24.3 30.1 131 F1*1.3 F2*0.7 3.1 42.7 

1/12/15 78U15 M 26 3+ 326 6.7 4.58 11.5 37.9 82.8 25.1 30.3 AG 76 1.2 0.3 5.2 47.1 15.4 9.4 

2/12/15 82U15 M 26 2+ 430 8.1 4.97 13.9 45.9 92.4 28 30.3 
AG 

196 
1.5 0.7 5.9 50.7 14.2 8.6 

2/12/15 84U15 M 48 2+ 210 
WL* 

6.1 
5.1 14.1 44.7 87.6 27.6 31.5 AG 67 WL* 1.9 

WL* 

0.5 

WL* 

3.7 
43.8 13.4 10.2 

3/12/15 87U15 M 29 2+ 220 
WL* 

4 
5.48 15.7 48.3 88.1 28.6 32.5 

AG- 

36 
WL* 0.5 WL* 1 

WL* 

2.5 
45.1 13.8 ND 

7/12/15 94U15 F 43 2+ 230 4.8 3.87 10.6 32.9 85 27.4 32.2 PL* 11 1 0.1 3.7 43.9 14.9 ND 

9/12/15 95U15 M 59 2+ 120 5 5.08 13.9 42.6 83.9 27.4 32.6 AG 83 0.9 0.2 3.9 46.7 16.7 8.8 

9/12/15 96U15 F 28 2+ 530 3.8 3.49 10.3 31.5 90.3 29.5 32.7 AG 58 1.1 0.4 2.3 42.5 13.6 9.3 

9/12/15 97U15 M 26 2+ 170 3.2 4.68 13.3  41.8 89.3 28.4 31.8 101 1 0.3 1.9 40.1 13 9.6 
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9/12/15 98U15 M 47 2+ 370 5.7 4.99 13.9 44.3 88.8 27.9 31.4 116 ND ND ND 46.3 13.8 9.2 

11/1/16 106U16 M 57 2+ 230 7.3 5.09 14.2 46.3 91 27.9 30.7 94 0.7 0.6 6 44.4 12.4 10.8 

12/1/16 109U16 M 50 2+ 480 1.3 4.64 11.7 39.7 85.6 25.6 29.5 47 0.3 0 1 50.2 16.1 7.5 

Summary of patients and clinical isolates information after collection during field work at vivax malaria endemic area. Date: dd/mm/yy; M: Male; F: 
Female; ND – Not Determined; *Parasitemia estimation and **initial counts of the number of Pv-iE per 200 leucocytes on the slide by thick smear 
made available by the specially trained microscopists from malaria diagnosis service from FMT-HVD. Two crosses (2+) equals to 2 to 20 parasites 
counted by microscope field and an average of 500 to 104 parasites per µL. WBC: White Blood Cells; RBC: Red Blood Cells; HGB: hemoglobin; 
HCT: Hematocrit; MCV: Mean Corpuscular Volume; MCH: Mean Corpuscular Hemoglobin; MCHC: mean corpuscular hemoglobin concentration; 
PLT: Platelets; LYM: Lymphocytes; MXD: mixed cells; NEUT: Neutrophils; RDW: Red Cell Distribution Width SD: Standard Deviation and VC: 
Variance Coefficient; MPV: Mean Platelet Volume. For information on hemogram flags please see 
https://www.sysmex.co.za/fileadmin/media/f112/SEED/English/Sysmex_SEED_6_2013_Haematology_Results_Interferences__Flagging_and_Inte
rpretation_-_Part_II_EN.pdf. 
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Table 2. Bioanalyzer measurements after RNA extraction with RNeasy® Micro kit and quality and quantity controls after 

cDNA library generation and amplification. 

Sample 

Code 

RNA 

[pg/uL

] 

RIN 
cDNA 

[pg/uL] 

cDNA 

[ng/uL] 

V to 

20ng 

(µL) 

Total cDNA 

[ng/75uL] 

VT to 

20ng/reaction 

from 75µL after 

shearing (µL) 

V 

Elution 

Buffer 
(µL) 

Total cDNA 
[ng/reaction] 

Nº of PCR 

cycles for Low 

Input Library 

amplification 

Fragment 

average 

size (bp) 

Molarity 
[pmol/L] 

62U15 65.531 8.4 2149.92 2.150 9.30 161.244 12.0 - 0.344 9 376 4.52E+04 

63U15 8.914 9.8 124671 124.671 0.16 9350.300 1.2 8.8 20 6 366 1.97E+05 

65U15 21.499 9.7 53184.4 53.184 0.38 3988.827 2.8 7.2 20 6 416 1.51E+05 

66U15.2 522 N/A 46864.8 46.865 0.43 3514.859 3.2 6.8 20 6 356 1.01E+05 

69U15 13.529 6.6 137982 137.982 0.14 10348.684 1.1 8.9 20 6 396 1.85E+05 

73U15 4.925 7.4 249417 249.417 0.08 18706.261 0.6 9.4 20 6 310 5.69E+04 

106U16 17.234 6.3 10061.3 10.061 1.99 754.595 12.0 - 1.609 6 369 7.98E+05 

109U16 1.87 N/A 413707 413.707 0.05 31028.009 0.4 9.6 20 6 393 8.56E+04 

Pf FCR3 

S1.2 
3.264 N/A 246122 246.122 0.08 18459.169 0.6 9.4 20 6 378 8.87E+04 

Pf S20 1.164 N/A 2566.13 2.566 7.79 192.460 12.0 - 0.41 9 351 4.19E+04 

P. falciparum FCR3 S1.2 strain (~106 Pf-iE) enriched for >80% rosetting formation and the Brazilian P. falciparum S20 field isolate (~106 Pf-iE) 

resistant to Artemisinin with no rosette formation were used as positive and negative controls for rosetting phenotype. RIN: RNA Integrity Number; 

N/A: undetermined; V: Volume; VT: Total Volume; bp: base pairs. 
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Table 3. Library quantification by qPCR and sample pool for Illumina® HiSeq 2500 load and run.   

Sample 

Code 
Dilution 

Cq 

Mean 

Cq 

Error 

Mean 
[pM] 

Error 
[pM] 

Total 
[pM] 

Total 

[nM] 

*447bp 

from DNA 

fragments 

Library 

Concentration 
[nM] 

Dilution 

V at 

2nM 

(µL) 

V 

ddH2O 
(µL) 

62U15 1.00E-06 11.6 0.63 3.03E+00 1.48E+00 3.03E+06 3030.00 1.35E+09 3602.154 dil -3 3.6021543 3.89 3.11 

63U15 1.00E-09 13.39 0.58 8.79E-01 2.97E-01 8.79E+08 878500.00 3.93E+11 1072922 dil -5 10.729221 1.30 5.70 

65U15 1.00E-09 13.83 0.77 6.72E-01 3.24E-01 6.72E+08 672100.00 3.00E+11 722184.4 dil -5 7.2218438 1.94 5.06 

66U15.2 1.00E-09 14.25 0.84 5.29E-01 3.66E-01 5.29E+08 528800.00 2.36E+11 663970.8 dil -5 6.6397079 2.11 4.89 

69U15 1.00E-09 15.13 0.75 2.73E-01 1.74E-01 2.73E+08 272800.00 1.22E+11 307933.3 dil -5 3.0793333 4.55 2.45 

73U15 1.00E-09 12.55 1.40 2.09E+00 1.88E+00 2.09E+09 2090000.00 9.34E+11 3013645 dil -6 3.0136452 4.65 2.35 

106U16 1.00E-10 17.23 0.23 5.40E-02 8.57E-03 5.40E+08 540000.00 2.41E+11 654146.3 dil -5 6.5414634 2.14 4.86 

109U16 1.00E-09 14.44 0.33 4.03E-01 9.00E-02 4.03E+08 403000.00 1.80E+11 458374 dil -5 4.5837405 3.05 3.95 

Pf FCR3 

S1.2 
1.00E-09 18.12 2.45 7.05E-02 8.30E-02 7.05E+07 70450.00 3.15E+10 83309.92 dil-4 8.3309921 1.68 5.32 

Pf S20 1.00E-07 13.20 0.90 1.09E+00 5.77E-01 1.09E+07 10900.00 4.87E+09 13881.2 dil-3 13.881197 1.01 5.99 

P. falciparum FCR3 S1.2 strain (~106 Pf-iE) enriched for >80% rosetting formation and the Brazilian P. falciparum S20 field isolate (~106 Pf-iE) 

resistant to Artemisinin with no rosette formation were used as positive and negative controls for rosetting phenotype. RIN: RNA Integrity Number; 

N/A: undetermined; V: Volume; VT/sample = 7.0µL; bp: base pairs. 
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Table 4. Raw data (reads) description output from RNA-sequencing. 

Sample 
ID 

Lane Index 
Sample 
Code 

Filename 
Total 
Sequences 
(FastQ) 

Total nº 
of reads 
after 
trimming 
(%) 

Sequence 
length 

%GC 
Sample 
Ref 

9 2 TTAGGC 62U15 
9_S14_L001_R1_001.fastq.gz 
9_S15_L001_R2_001.fastq.gz 

567222 
567222 

 
546571 
546571 
(96.4%) 

101 
101 

42 
43 

P. vivax Sal-
1/P01 

10 2 GCCAAT 66U15.2 
10_S17_L001_R1_001.fastq.gz 
10_S17_L001_R2_001.fastq.gz 

396869 
396869 

 
393248 
393248 
(99.1%) 

101 
101 

49 
49 

P. vivax Sal-
1/P01 

11 2 CAGATC 69U15 
11_S18_L001_R1_001.fastq.gz 
11_S18_L001_R2_001.fastq.gz 

444674 
444674 

 
436832 
436832 
(93.8%) 

101 
101 

46 
47 

P. vivax Sal-
1/P01 

12 2 ACTTGA 73U15 
12_S19_L001_R1_001.fastq.gz 
12_S19_L001_R2_001.fastq.gz 

465530 
465530 

 
457871 
457871 
(98,4%) 

101 
101 

45 
46 

P. vivax Sal-
1/P01 

13 2 ACAGTG 106U16 
13_S16_L001_R1_001.fastq.gz 
13_S16_L001_R2_001.fastq.gz 

741000 
741000 

 
726393 
726393 
(98.0%) 

101 
101 

49 
49 

P. vivax Sal-
1/P01 

14 2 GATCAG 109U16 
14_S20_L001_R1_001.fastq.gz 
14_S20_L001_R2_001.fastq.gz 

247006 
247006 

 
244626 
244626 
(99.0%) 

101 
101 

46 
46 

P. vivax Sal-
1/P01 

15 2 TAGCTT 63U15 
15_S21_L001_R1_001.fastq.gz 
15_S21_L001_R2_001.fastq.gz 

556333 
556333 

 
550489 
550489 
(98.9%) 

101 
101 

47 
47 

P. vivax Sal-
1/P01 

16 2 GGCTAC 65U15 
17_S23_L001_R1_001.fastq.gz 
17_S23_L001_R2_001.fastq.gz 

223390 
223390 

 
218478 
218478 
(97.8%) 

101 
101 

45 
46 

P. vivax Sal-
1/P01 
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17 1 CTTGTA 
Pf FCR3 
S1.2 

16_S22_L001_R1_001.fastq.gz 
16_S22_L001_R2_001.fastq.gz 

553823 
553823 

 
537931 
537931 
(97.1%) 

101 
101 

29 
30 

P. falciparum 
IT/3D7 

18 2 TGACCA Pf S20 
18_S15_L001_R1_001.fastq.gz 
18_S15_L001_R2_001.fastq.gz 

383309 
383309 

 
379684 
379684 
(99.1%) 

101 
101 

30 
30 

P. falciparum 
IT/3D7 
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Tabela 5. Complete diferencial gene expression list 

Gene ID 
mean 
counts 

Log2 
Fold 
Change 

SD Wald stat p-value q-value 
Transcript 
Length 

Gene 
Symbol 

Product Description 

PVP01_0616000 112.7691 3.297695 0.641278 5.142383 2.71E-07 0.000241 711 P28 
ookinete surface protein P28, 
putative 

PVP01_0616100 252.2767 2.822779 0.57479 4.910976 9.06E-07 0.000268 660 P25 ookinete surface protein P25 

PVP01_0702600 121.3386 2.292091 0.602623 3.803521 0.000143 0.008636 915 PH 
PH domain-containing protein, 
putative 

PVP01_0705200 23.38039 -2.54479 0.816246 -3.11768 0.001823 0.031738 1245 LRR9 leucine-rich repeat protein 

PVP01_0734800 47.52981 2.437732 0.688854 3.538825 0.000402 0.012534 564 ETRAMP early transcribed membrane protein 

PVP01_0820000 38.75789 2.309619 0.774088 2.983663 0.002848 0.040146 1683  CPW-WPC family protein 

PVP01_0904300 29.44514 2.21377 0.753047 2.93975 0.003285 0.040824 1758  CPW-WPC family protein 

PVP01_0905300 25.05779 3.023211 0.852766 3.545184 0.000392 0.012534 1851  WD repeat-containing protein, 
putative 

PVP01_0942600 54.05728 2.203111 0.6829 3.226109 0.001255 0.025799 1551 IMC1b 
inner membrane complex protein 1b, 
putative 

PVP01_1020200 34.351 2.280086 0.741552 3.074748 0.002107 0.034015 2196 PSOP12 secreted ookinete protein, putative 

PVP01_1020200 110.9312 2.230126 0.629647 3.541867 0.000397 0.012534     

PVP01_1137600 38.75146 2.054745 0.70281 2.923613 0.00346 0.041519 2187 BTP1 
basal complex transmembrane 
protein 1, putative 

PVP01_1208000 150.0577 2.3366 0.582524 4.011162 6.04E-05 0.004127 1302 P47 6-cysteine protein 

PVP01_1208100 82.41245 2.148073 0.731291 2.937372 0.00331 0.040824 1353 P48/45 6-cysteine protein 

PVP01_1219900 50.53231 2.237958 0.753953 2.9683 0.002995 0.04029 1236  MSP7-like protein 

PVP01_1223200 72.71893 1.911415 0.654919 2.918551 0.003517 0.041637 1446  CPW-WPC family protein 

PVP01_1251100 39.43236 3.389008 0.742545 4.564045 5.02E-06 0.000743 4824 CCp2 LCCL domain-containing protein 

PVP01_1251100 152.1176 2.738815 0.64522 4.244776 2.19E-05 0.002159    

PVP01_1255400 54.03757 2.419967 0.728522 3.32175 0.000895 0.020904 2625 LAP5 
LCCL domain-containing protein, 
putative 

PVP01_1318300 93.48751 2.420415 0.721748 3.353546 0.000798 0.019148 1053 PIP2 
PhIL1 interacting protein PIP2, 
putative 

PVP01_1318600 100.5654 2.447863 0.675563 3.623441 0.000291 0.010756 807 PIP3 
PhIL1 interacting protein PIP3, 
putative 

PVP01_1439700 61.58366 1.950321 0.64478 3.024786 0.002488 0.036824 1692 IMC1h 
inner membrane complex protein 1h, 
putative 
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PVP01_0716400 214.8741 2.048356 0.550386 3.721671 0.000198 0.008784 1188 GAP50 
glideosome-associated protein 50, 
putative 

PVP01_0532000 21.49608 2.492458 0.804617 3.097695 0.00195 0.033305 1116 GAPM2 
glideosome associated protein with 
multiple membrane spans 2, 
putative 

PVP01_1018200 75.41593 1.939599 0.627571 3.090644 0.001997 0.033463 1395 GAP40 
glideosome-associated protein 40, 
putative 

PVP01_1230900 16.81091 2.446957 0.874358 2.798575 0.005133 0.049011 912 GAPM1 
glideosome associated protein with 
multiple membrane spans 1, 
putative 

          

PVP01_1463200 79.29981 2.152384 0.609051 3.533994 0.000409 0.012534 1131 ACT1 actin, putative 

PVP01_0215500 23.68609 2.847756 0.826299 3.4464 0.000568 0.016274 294  dynein light chain, putative 

PVP01_05190000 16.75521 3.047203 1.005411 3.030802 0.002439 0.03671     

PVP01_0607900 20.39195 2.373058 0.807591 2.938439 0.003299 0.040824 1035  phospholipid scramblase, putative 

PVP01_0517400 94.53938 1.716136 0.589713 2.910122 0.003613 0.041873 300 HMGB2 
high mobility group protein B2, 
putative 

PVP01_0530800 30.68695 2.303592 0.800011 2.87945 0.003984 0.044779 1353  alpha tubulin 2, putative 

PVP01_0530800 609.8787 2.261229 0.664683 3.401966 0.000669 0.018246     

PVP01_1270600 19.23439 2.578164 0.912845 2.824316 0.004738 0.047275 1521  tubulin epsilon chain, putative 
           

PVP01_0905800 1007.859 2.19129 0.495873 4.419055 9.91E-06 0.001258 312 H4 histone H4, putative 

PVP01_0905900 383.0346 2.000833 0.526814 3.797986 0.000146 0.008636 357 H2B histone 2B, putative 

PVP01_0106900 26.27094 3.098066 0.834422 3.712829 0.000205 0.008784 2628 MSH2-2 
DNA mismatch repair protein MSH2, 
putative 

PVP01_0716900 34.89807 2.374967 0.719649 3.300174 0.000966 0.021451 2270 TR telomerase RNA 

PVP01_0315400 39.4368 -2.30529 0.72849 -3.16447 0.001554 0.029354 411 RPS10 40S ribosomal protein S10, putative 

PVP01_1231500 108.8071 -1.99161 0.637346 -3.12484 0.001779 0.031595 573  60S ribosomal protein L6, putative 

PVP01_0312600 54.89049 -2.03154 0.665866 -3.05097 0.002281 0.035506 984 EIF3I 
eukaryotic translation initiation factor 
3 subunit I, putative 

PVP01_1225200 61.51756 1.953305 0.667764 2.925142 0.003443 0.041519 1602  chromatin assembly factor 1 P55 
subunit, putative 

PVP01_1114900 33.45494 -2.17093 0.75858 -2.86184 0.004212 0.046375 1332  elongation factor 1-alpha, putative 

PVP01_1334600 119.6808 -1.71801 0.612209 -2.80625 0.005012 0.048722 660  60S ribosomal protein L10, putative 
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PVP01_0108700 142.2223 -1.69775 0.574609 -2.95462 0.003131 0.040824 2247 HSP90 heat shock protein 90, putative 

PVP01_0816000 188.2958 -1.54743 0.547881 -2.82438 0.004737 0.047275 1341 ENO enolase, putative 

PVP01_0614700 86.80803 -2.24092 0.677097 -3.3096 0.000934 0.021273 1092 ADA adenosine deaminase, putative 

PVP01_1013000 82.33313 -2.04289 0.72857 -2.80397 0.005048 0.048722 1434 SAHH adenosylhomocysteinase, putative 

PVP01_1253500 22.46193 3.016197 0.810966 3.719266 0.0002 0.008784 3543 NNT NAD(P) transhydrogenase, putative 

PVP01_1312300 202.3929 2.277458 0.761236 2.991789 0.002773 0.039723 2547  ribonucleoside-diphosphate 
reductase large subunit, putative 

PVP01_1448300 92.65471 1.814316 0.643397 2.819903 0.004804 0.047398 1098 TLAP1 
thioredoxin-like associated protein 
1, putative 

PVP01_1408700 25.86374 -2.26161 0.795743 -2.84214 0.004481 0.046726 1329  FHA domain-containing protein, 
putative 

PVP01_1229400 42.25079 2.535802 0.775752 3.268829 0.00108 0.022833 1005  lactate dehydrogenase, putative 

PVP01_1229400 113.716 3.525322 0.71681 4.918068 8.74E-07 0.000268    

PVP01_1229400 227.9158 2.525019 0.688415 3.667872 0.000245 0.009872    

PVP01_0917100 43.27545 2.088327 0.666576 3.132919 0.001731 0.031595 1356 FT2 folate transporter 2, putative 

PVP01_1412100 476.0866 2.592285 0.698835 3.709436 0.000208 0.008784 1488  meiosis-specific nuclear structural 
protein 1, putative 

PVP01_1452800 28.53532 2.508619 0.746829 3.359026 0.000782 0.019148 3297 ULG8 
upregulated in late gametocytes 
ULG8, putative 

PVP01_1467200 147.4798 2.422746 0.643959 3.762265 0.000168 0.008784 7743 G377 
osmiophilic body protein G377, 
putative 

PVP01_0833800 42.01345 1.951736 0.703105 2.775881 0.005505 0.050142 1968  FAD-dependent glycerol-3-
phosphate dehydrogenase, putative 

PVP01_0315200 42.39439 1.91849 0.698976 2.744717 0.006056 0.052214 1302 CDC50A 
LEM3/CDC50 family protein, 
putative 

PVP01_0904800 17.00196 2.513344 0.905969 2.774206 0.005534 0.050142 1854  phenylalanine--tRNA ligase beta 
subunit, putative 

PVP01_1220500 26.03336 -2.09938 0.762184 -2.75442 0.00588 0.051187 1569  chaperone binding protein, putative 

PVP01_1447500 39.41054 -2.55487 0.775925 -3.29268 0.000992 0.021494 351 MIF 
macrophage migration inhibitory 
factor, putative 

          

PVP01_1300900 121.6468 3.121743 0.770805 4.049976 5.12E-05 0.004127 891 NEK3 NIMA related kinase 3, putative 

PVP01_0914700 49.36319 2.704811 0.795931 3.3983 0.000678 0.018246 1728 MAPK2 
mitogen-activated protein kinase 2, 
putative 

PVP01_0724800 19.61031 2.877202 0.893319 3.220799 0.001278 0.025799 2853  protein kinase, putative 
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PVP01_1441300 20.65536 2.601104 0.831047 3.129912 0.001749 0.031595 1323  cAMP-dependent protein kinase 
regulatory subunit, putative 

PVP01_1438100 15.34182 2.419945 0.866682 2.792195 0.005235 0.049212 576 RKIP raf kinase inhibitor, putative 
          

PVP01_0317200 34.32217 2.092318 0.735009 2.846656 0.004418 0.046706 2226  conserved Plasmodium protein, 
unknown function 

PVP01_0414700 25.24296 2.59296 0.909784 2.850084 0.004371 0.046706 6750  conserved Plasmodium protein, 
unknown function 

PVP01_0419500 29.54548 2.378209 0.771529 3.082464 0.002053 0.03376 1998  conserved Plasmodium protein, 
unknown function 

PVP01_0505700 50.85069 2.298813 0.832034 2.762883 0.005729 0.050750 3135  conserved protein, unknown 
function 

PVP01_0508600 78.83837 2.299477 0.610533 3.766344 0.000166 0.008784 897  conserved Plasmodium protein, 
unknown function 

PVP01_0526400 80.26688 2.483304 0.605028 4.104448 4.05E-05 0.003599 960  conserved Plasmodium protein, 
unknown function 

PVP01_0526400 33.02295 2.480573 0.733532 3.381683 0.00072 0.018816     

PVP01_0530400 18.53342 3.184352 0.891261 3.572862 0.000353 0.012534 225  conserved Plasmodium protein, 
unknown function 

PVP01_0723600 24.91472 2.416044 0.790179 3.057592 0.002231 0.035381 1278  conserved Plasmodium protein, 
unknown function 

PVP01_0816200 17.60976 2.696404 0.885229 3.045996 0.002319 0.035506 717  conserved Plasmodium protein, 
unknown function 

PVP01_0822100 89.50047 2.552484 0.635803 4.014585 5.96E-05 0.004127 651  conserved Plasmodium protein, 
unknown function 

PVP01_0913300 36.88973 -2.39957 0.842584 -2.84788 0.004401 0.046706 879  conserved protein, unknown 
function 

PVP01_0932300 79.43851 1.801584 0.60573 2.974236 0.002937 0.04029 777  conserved Plasmodium protein, 
unknown function 

PVP01_1018500 28.87016 2.119632 0.746608 2.839015 0.004525 0.046726 1815  conserved Plasmodium protein, 
unknown function 

PVP01_1020900 84.8206 1.823611 0.644594 2.829083 0.004668 0.047275 816  conserved Plasmodium protein, 
unknown function 

PVP01_1136600 47.4886 1.96798 0.677522 2.904675 0.003676 0.041873 366  conserved Plasmodium protein, 
unknown function 

PVP01_1140300 94.8669 2.238768 0.612655 3.654209 0.000258 0.00996 1368  conserved Plasmodium protein, 
unknown function 

PVP01_1145000 38.62408 2.451921 0.844171 2.904533 0.003678 0.041873 1128  conserved Plasmodium protein, 
unknown function 
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PVP01_1216000 51.19263 2.365249 0.746088 3.170202 0.001523 0.029354 1977  conserved Plasmodium protein, 
unknown function 

PVP01_1231000 19.8116 -2.29708 0.823219 -2.79037 0.005265 0.049212 1305  conserved Plasmodium protein, 
unknown function 

PVP01_1326800 32.84243 2.296351 0.720483 3.187235 0.001436 0.028345 936  conserved Plasmodium protein, 
unknown function 

PVP01_1335900 33.41938 2.354546 0.823133 2.860468 0.00423 0.046375 1323  conserved Plasmodium protein, 
unknown function 

PVP01_1344600 60.71377 3.015201 0.697504 4.322843 1.54E-05 0.00171 399  conserved Plasmodium protein, 
unknown function 

PVP01_1344600 32.80864 2.457339 0.815522 3.013208 0.002585 0.037631     

PVP01_1345600 91.62995 2.908091 0.612192 4.750293 2.03E-06 0.000361 1077  conserved Plasmodium protein, 
unknown function 

PVP01_1421800 40.48658 2.190182 0.793415 2.760449 0.005772 0.050750 1137  conserved Plasmodium protein, 
unknown function 

PVP01_1424300 16.24633 2.592357 0.881688 2.940218 0.00328 0.040824 4605  conserved Plasmodium protein, 
unknown function 

PVP01_1433600 19.57315 2.389032 0.80832 2.955552 0.003121 0.040824 330  conserved Plasmodium protein, 
unknown function 

PVP01_1433600 47.38325 2.258372 0.669807 3.371676 0.000747 0.018956     

PVP01_1457500 75.18845 1.843871 0.620267 2.972708 0.002952 0.04029 576  conserved Plasmodium protein, 
unknown function 

PVP01_1465500 72.66478 3.514997 0.737318 4.767275 1.87E-06 0.000361 888  conserved Plasmodium protein, 
unknown function 

PVP01_1467500 136.6578 2.080068 0.597305 3.482423 0.000497 0.014708 1950  conserved Plasmodium protein, 
unknown function 

PVP01_0944300 42.06959 2.084861 0.75081 2.776818 0.005489 0.050142 975  conserved Plasmodium protein, 
unknown function 

PVP01_1218300 19.48892 2.456623 0.887304 2.768639 0.005629 0.050491 1137  conserved Plasmodium protein, 
unknown function 
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Overview 

Here, the present study used a range of ex vivo approaches to dissect the role 

of rosetting in vivax malaria. P. vivax rosetting rates were enhanced by autologous 

plasma and total immunoglobulin M levels correlated with rosetting frequency. 

Moreover, rosetting was also correlated with parasitemia, IL-6 and IL-10 in infected 

patients. Transcriptomic analysis of peripheral leukocytes from P. vivax-infected 

patients with low or moderated rosetting frequency allowed identification of 

differentially expressed actin-related and immunoglobulin genes, known to be 

associated with the human host phagocytosis pathway. In addition, a smaller 

phagocytic index was found for the high rosetting group, and phagocytosis functional 

assays demonstrated that rosetting integrity interfered with the phagocytic index. 

Collectively, these results showed that rosette formation plays a role in host immune 

response by hampering leukocyte phagocytosis. Thus, these findings suggested that 

rosetting is a novel and effective P. vivax immune evasion adaptation.  

 

Important Note: To comply with scientific journal publication rules to which we have 

submitted this work, the draft version presented here only contains results and 

discussion of RNA-seq data analysis, my main contribution for the preparation of this 

manuscript within this thesis project. 
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Abstract 

Plasmodium vivax is the most prevalent cause of malaria outside of Africa. 

Although P. vivax pathogenesis is poorly understood, it is known that infected 

reticulocytes cytoadhere readily to noninfected normocytes, forming rosettes. Despite 

the high prevalence of P. vivax rosetting, the biological purpose of this phenomenon is 

unknown. Here, the present study used a range of ex vivo approaches to dissect the 

role of rosetting in vivax malaria. P. vivax rosetting rates were enhanced by autologous 

plasma and total immunoglobulin M levels correlated with rosetting frequency. 

Moreover, rosetting was also correlated with parasitemia, IL-6 and IL-10 in infected 

patients. Transcriptomic analysis of peripheral leukocytes from P. vivax-infected 

patients with low or moderated rosetting frequency allowed identification of 

differentially expressed actin-related and immunoglobulin genes, known to be 

associated with the human host phagocytosis pathway. In addition, a smaller 

phagocytic index was found for the high rosetting group, and phagocytosis functional 

assays demonstrated that rosetting integrity interfered with the phagocytic index. 

Collectively, these results showed that rosette formation plays a role in host immune 

response by hampering leukocyte phagocytosis. Thus, these findings suggested that 

rosetting is a novel and effective P. vivax immune evasion adaptation.  

 

Keywords: malaria, rosetting, P. vivax, immune evasion, phagocytosis 

 

Author Summary: The role of Plasmodium vivax rosettes was investigated using 

several ex vivo experiments. Higher rosetting parasites were less phagocyted by THP-

1 cells, suggesting that this mechanism can protect the parasite from the host immune 

system. 

 

Introduction 

 (…) 
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Results 

 (…) 

Differential gene expression in peripheral blood mononuclear cells from P. vivax 

infection and its relationship with rosetting  

Considering differences in cytokine levels between high and low rosetting 

isolates, transcriptome analysis was performed on peripheral leukocytes from P. vivax 

infected patients (Table 1A) with very low or moderate rosetting. Eight genes that 

showed a log2 fold change higher than 1.5 were identified (Table 1B). Three out of 

eight genes were in the Fc gamma receptor (FCGR)-dependent phagocytosis 

pathway. Interestingly, immunoglobulin kappa constant (IGKC) and immunoglobulin 

heavy constant gamma 1 (IGHG1) were upregulated and actin-related protein 2/3 

complex subunit 2 (ARPC2) was downregulated in individuals with moderate rosetting 

compared to patients with low rosetting.  

 

Table 1 – RNAseq analysis of PBMCs from patients infected with P. vivax. 

A. Summarized metadata description of patients infected with P. vivax analyzed by RNAseq. B. Graph 

of log2 fold change of a selected pool of genes from PBMC of P. vivax infected patients between 

moderate and low rosetting isolates data analysis. Gene lists using p-value<0.05, q-value<0.5 and 

log2(fold change)>1.5 cut-offs obtained from RNAseq differential gene expression analysis. 

A. 

Group 
Analysis 

Sample 
Code 

Rosette 
formation  

(%) 

Moderate 
rosetting 

106U16 30.0% 

69U15 24.4% 

Very Low 
rosetting 

109U16 6.0% 

73U15 5.6% 
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B. 

Gene ID 
Gene 
name 

Gene description Gene locus 

Nº of counted reads Log2 

(Fold 
Chan
ge) 

 

Very low 
rosetting 

Moderate 
rosetting 

q-value 

ENSG00000100325.14 ASCC2 
Activating Signal 

Cointegrator 1 Complex 
Subunit 2 

chr22:29788607-29838304 1422.06 111.412 -3.67 0.01 

ENSG00000163466.15 ARPC2 
Actin Related Protein 2/3 

Complex Subunit 2 
chr2:218217093-218254356 1134.05 274.937 -2.04 0.09 

ENSG00000196998.16 WDR45 WD Repeat Domain 45 chrX:49071155-49101170 482.955 123.784 -1.96 0.05 

ENSG00000166710.17 B2M Beta-2-Microglobulin chr15:44711476-44718877 3709.93 12757.5 1.78 0.23 

ENSG00000105701.15 FKBP8 FK506 Binding Protein 8 chr19:18531612-18544077 164.806 569.29 1.79 0.17 

ENSG00000211592.7 IGKC 
Immunoglobulin Kappa 

Constant 
chr2:88811185-89245596 2195.89 9705.52 2.14 0.29 

ENSG00000211896.7 IGHG1 
Immunoglobulin Heavy 

Constant Gamma 1 
chr14:105664632-106538344 336.287 2065.88 2.62 0.20 

ENSG00000124098.9 FAM210B 
Family with Sequence 

Similarity 210 Member B 
chr20:56358914-56368663 65.2525 411.436 2.66 0.22 
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 (…) 

Discussion 

 (…) 

The host transcriptomic profile directly compared patient isolates with low versus 

moderate rosetting, which were quantified immediately after blood sample collection, 

when most parasites were young [1]. Because rosetting is mostly formed by mature 

parasites, this constituted an experimental limitation of the present study. Additionally, a 

low quantity of host sample input effectively transcribed resulted in few statistically 

significant pools of differentially expressed genes. Nevertheless, three out of eight genes 

showing more than 1.5-fold change in expression were found, and their functions were 

relevant in the Fc gamma phagocytic pathway. The present transcriptome findings, 

supported by our results showing that plasma from patients with high rosetting levels 

inhibit the phagocytic capacity of THP-1 cells, support the idea that P. vivax rosettes 

strongly inhibit the phagocytosis pathway.  

(…) 

Taken together, these data indicated that vivax malaria rosetting is an evasion 

mechanism that allows the parasite to escape from the host immune system (Figure 6), 

and this generates more questions regarding this common phenotype. The fact that 

rosetting is a frequent feature in P. vivax late stages and that the high prevalence of 

rosettes may indicate that this phenotype is an important advantage for the parasite by 

conferring significant protection from the host immune system. Therefore, the 

understanding of P. vivax rosettes may help the scientific community to develop new 

strategies for malaria control.  

 

Material and Methods 

 

Ethical Approval 

Informed consent was granted from all patients attending the Fundação de Medicina 

Tropical Dr. Heitor Vieira Dourado (FMT-HVD; Manaus, Amazonas State, Brazil). All 
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procedures, including protocols and consent forms, were approved by the Ethics Review 

Board of FMT-HVD (process CAAE-0044.0.114.000-11). 

 

Blood sample collection  

Blood samples were obtained from malaria patients presenting at the clinic of the 

Hospital de Medicina Tropical Heitor Vieira Dourado (Manaus, Amazonas State, Brazil). 

Prior to sample collection, patients granted informed consent. Blood samples were 

collected using BD Vacutainer® tubes with sodium citrate anticoagulant. A thin blood 

smear was prepared from each sample to determine species of malaria parasites 

involved, parasitemia and the predominant erythrocytic stage of the parasite. Blood cell 

count was performed immediately after blood collection using a Sysmex KX21N (Sysmex 

Corporation-Roche, Japan). After collection of peripheral blood, patients received 

treatment following national guidelines with chloroquine plus primaquine.  

 

Parasite isolation and enrichment 

Once microscopic diagnosis of uncomplicated vivax malaria was made and before 

the treatment was initiated, 8 mL of blood was collected into citrate-coated Vacutainer® 

tubes (BD). Blood was immediately processed to obtain enriched Pv-iEs. Immediately 

after collection, the RBCs containing trophozoites and schizonts were separated from the 

younger forms on a 45% PercollTM (GE Healthcare) gradient as previously described [2]. 

 

Rosetting Assay 

IEs (20 µL) at 2.5-5% parasitemia and 2.5-5% hematocrit were incubated for 40 min 

at 37°C in rosetting medium (McCoy’s 5A medium supplemented with 20% of autologous 

plasma). Duplicated samples were stained with 45 µg/ml acridine orange and examined 

by direct light and fluorescence microscopy (Nikon Eclipse 50i, filter 96311 B-2E/C). 

Rosetting was assessed by counting 200 IEs, in duplicate. A rosette was determined by 

the binding of two or more uninfected erythrocytes to an IE. To assess the involvement of 
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plasma factors in the rosette formation, the plasma in rosetting medium was substituted 

for 0,5% of Albumax II. For heat-inactivated plasma, samples were heat inactivated for 30 

min at 56C.  

(…) 

RNAseq of Peripheral Blood Mononuclear Cells (PBMCs) 

mRNA from PBMCs isolated from total blood of patients infected with P. vivax with 

high (n=2) or low (n=2) rosetting was analyzed by RNAseq. For this specific approach, 

moderate rosetting isolates were considered as 20% rosettes, and low rosetting isolates 

were considered as less than 10% rosettes. RNA extractions were performed a RNeasy® 

Micro Kit (Qiagen) according to the manufacturer’s instructions. Before conducting WTSS, 

RNA quality was accessed using an Agilent 2100 Bioanalyzer as well as Agilent RNA 

6000 Pico Kit reagents and chips, and it was analyzed using 2100 Expert software 

according to the recommendations of Agilent Technologies. A SMART-Seq V4 Ultra Low 

Input RNA Kit was used for sequencing via Clontech’s patented Switching Mechanism at 

5’ End of RNA Template (SMART®) technology. cDNA quality, quantity and size range 

were evaluated using the BioAnalyzer platform from Agilent Technologies, Inc. using the 

Agilent High Sensitivity DNA Kit (cDNA, 5 to 500 pg/µL within a size range of 50 to 7000 

bp) following the manufacturer’s instructions. Prior to generating the final library for 

Illumina® sequencing, the Covaris AFA system was used for controlled cDNA shearing. 

cDNA output was then converted into sequencing templates suitable for cluster generation 

and high-throughput sequencing through the Low Input Library Prep v2 (Clontech 

Laboratories, Inc.; Takara Bio Company). Library quantification procedures were 

performed by qPCR using the Library Quantification Kit (Clontech Laboratories, Inc.; 

Takara Bio Company) and Agilent's High Sensitivity DNA Kit (Agilent Technologies, Inc.), 

and they were successfully completed before proceeding to the pool setup at a final 

concentration of 2 nM for direct sequencing. The library was sequenced on a HiSeq 2500 

sequencer on Rapid Run mode with the HiSeq Rapid Cluster Kit v2 (100x100) Paired End 

and HiSeq Rapid SBS Kit v2 (200 cycles). The generated libraries were cluster amplified 

and sequenced on the Illumina® platform using standard Illumina® reagents and protocols 

for multiplexed libraries following the manufacturer’s loading recommendations. On 
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average, approximately 474.553 paired end reads were obtained per sample from the 4 

sample libraries sequenced. The RNAseq raw reads were checked for quality by running 

Fast Quality Control (FastQC - 

https://www.bioinformatics.babraham.ac.uk/projectY/fastqc/). The reads were then 

subjected to a RNAseq alignment v1.1.1 workflow from BaseSpace platform for cloud-

based genomics analysis and storage, and they were integrated with Illumina® 

sequencers. This workflow allowed trimming of Illumina® adaptors, read mapping using 

TopHat 2 (Bowtie 2) aligner towards the Homo sapiens UCSC hg38 (RefSeq & Gencode 

gene annotations)[3], and FPKM estimation of reference genes and transcripts using 

Cufflinks 2. Final assembly and analysis of differentially expressed reference transcripts 

were performed with Cuffdiff 2 within the Cufflinks Assembly & DE pipeline v2.1.0. 

Differential gene expression between moderate and low rosetting groups was identified 

after a pairwise Wilcoxon test was used to compare the transcriptional profiles with the 

following cutoffs: p-value<0.05, q-value<0.5 and a log2 fold change > 1.5.   

 (…) 
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Figure captions 

 

Figure 1- Features of Plasmodium vivax rosettes.  
Figure 2 - Peripheral parasitemia, hematocrit and platelet levels of patients.  
Figure 3 – The correlation of total immunoglobulin and naturally acquired antibodies to merozoite 
proteins relationship with rosetting.  
Figure 4 – Cytokine profile of vivax malaria patients and its correlation with rosetting.  
Figure 5- Non-rosetting parasites are more likely to be phagocytosed by THP-1 cells.  
Figure 6 – Rosetting model in vivax malaria. Proposed model of rosetting role in vivax malaria. 
 

Supporting information captions  

 
SI Fig 1 – Rosetting frequency. 
SI Fig 2 – Rosetting frequency and acquired immune response to MSP-1 and AMA-1.  
SI Fig 3 – Correlation of rosetting and other parameters.  
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Overview 

 
 MicroRNAs (miRNAs), a class of small non-coding regulatory RNAs, have been 

detected in a variety of organisms ranging from ancient unicellular eukaryotes to 

mammals. They have been associated with numerous molecular mechanisms involving 

developmental, physiological and pathological changes of cells and tissues. Despite the 

fact that miRNA-silencing mechanisms appear to be absent in some Apicomplexan 

species, an increasing number of studies have reported a role for miRNAs in host-parasite 

interactions, which we summarized in this review. Host miRNA expression can change 

following parasite infection and the consequences can lead, for instance, to parasite 

clearance. In this context, the immune system signaling appears to have a crucial role. 
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DISCUSSION 
 

Sequencing the P. vivax transcriptome is a significant challenge. From experimental 

design, beginning with blood sample collection of vivax malaria patients under ethical 

consent, processing samples keeping enrichment in mind, both in quantity and adhesion 

phenotypes, to finally sequencing and obtaining a useful amount of raw data. To increase 

in value the sequencing aspect of this project, an extensive literature review on P. vivax 

“omics” field and applications was published last year (Chapter 1,(Bourgard et al. 2018)), 

gathering the state of the art information on Plasmodium spp. biology and host-parasite 

interactions. This review particularly focused on key discoveries already achieved in the 

P. vivax sequencing field, and the developments, hurdles, and limitations currently faced 

by the research community, as well as future perspectives on vivax malaria research 

(Chapter 1,(Bourgard et al. 2018)).  

The characteristically low parasitemia of Brazilian vivax malaria patients and the 

impossibility of long-term in vitro culture (Noulin et al. 2013) defies all the lower thresholds 

of workable methodologies currently, available (Chapter 1,(Bourgard et al. 2018)). All kits 

were chosen and tested (when possible) for parasitemias as low as 103 parasites, with 

the objective to optimize the whole processes from collection until extraction of RNA to 

guarantee successful downstream application of RNA-seq (Chapter 2). The true 

bottlenecks were sample ex vivo maturation, which are historically low (Noulin et al. 2013). 

The parasitemia greatly impacts quality and purity of the isolated RNA for sequencing (on 

the order of nano to picograms). Only samples with a viable number of cytoadhesion and 

rosetting enriched phenotypes will provide good quality and purity of RNA. 

As an example, although several short-term ex vivo maturation time-lapse 

experiments were performed successfully, attempts to extract RNA from those samples 

failed. The bulk part of the sample was made up mainly by healthy erythrocytes, which 

formed a biological mass too large to extract total RNA from the relatively few parasites 

present. Overcoming this problem required a complete set of Percoll gradients, which do 

not exist previously. It required considerable time and effort to establish and optimize this 

protocol. With adherence phenotypic assessment as my priority, I did not follow this 
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experimental path. Such experiments would have been important to determine a “safe 

window” of parasite maturation, in which the P. vivax produce and exports parasitic ligand 

proteins to the surface membrane of the erythrocyte, allowing its reshaping and promoting 

the capacity of adhesion. This is the basis for both cytoadhesion and rosetting 

phenotypes. On the other hand, a maturation timing in which we still could pick up the 

transcription profiles of the unknown genes that codify the target parasitic ligands. 

However, at the time, three different studies had sequenced the whole-transcriptome of 

P. vivax isolates through all erythrocytic stages (Zhu et al. 2016, Bozdech et al. 2008, 

Westenberger et al. 2010), which in combination with our most recent published data on 

cytoadhesion (Lopes et al. 2014) and rosetting (Zhang et al. 2016) phenotypes, gave us 

insights in the optimal parasite stages to investigate.  

On one hand, rosetting assays have been well described and established (Aims Fig. 

3. Step 3, personal information shared by Albrecht, L., (Zhang et al. 2016),(Lee et al. 

2014) Chapter 3 and 4), and excluding the small aliquot necessary for rosetting rates 

count, the bulk of the parasites present in the sample could be preserved for RNA 

isolation. This gave us the opportunity to gather a bigger pool of data to reflect the 

rosetting phenotypic characteristics present on the currently circulating P. vivax 

populations of the Amazonian endemic area (Chapter 3). 

On the other hand, optimization of cytoadhesion assays was required with the 

objective to recover a proportion of parasites that have adhered to a layer of different CHO 

cells (Chapter 2). The detachment of the adhered parasites was achieved by altering 

incubation times followed by careful slide washes with higher pH media than that used 

during the adhesion assay itself and assuring that the lane of CHO cells remained intact 

(Fig. 3, Step 2). Duplicate assays were performed to allow the counting of adhered 

parasites by staining. Only with the duplicate well for each different CHO cell line under 

assay did we detach and recover the parasites. Since we wanted to evaluate the 

adherence capacity of P. vivax populations against CHO cells expressing constitutively 

different endothelial receptors, known to be involved in P. falciparum binding, a control 

with CHO745 cells had to be done accordingly. In summary, all samples were processed 

immediately after collection following the procedures for parasite isolation and enrichment 

to obtain parasitemias at least greater than 50%. Thus, a total minimum number of Pv-iE 
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greater than 400,000 to enable us to proceed with cytoadhesion assays. Given these 

restrictions, both the low rates of successful ex vivo maturation along with the inability to 

evaluate the cytoadhesion capacity of the parasites against more than two CHO cells lines 

at the time, fewer assays provided samples that could be further sequenced (Chapter 2).  

Low-input kits and single-cell kits for library generation are the only ones available to 

tackle such difficult samples. By first-hand experience, the majority of technology and 

reagents applied here are set up for mammalian cell lineages, thus several criteria had to 

be considered when choosing the kits for RNA-seq. These decisions included between 

low input or single-cell kits to non-human cell lines, mRNA versus total RNA (specially the 

appeal for an ncRNA setup), depletion of rRNA vs mRNA cDNA targeted synthesis, cDNA 

shearing, size of read amplification, paired- or non-paired-end, stranded or un-stranded 

protocol, index management of all samples, and others. 

We were able to sequence the whole transcriptome of P. vivax from clinical isolates 

enriched in adhesion phenotypes from the Brazilian Amazon malaria endemic region. A 

sufficient quantity of data (~2.8M raw reads) was generated using the Illumina® NGS 

platform (Aims Fig. 3.; view Chapters 2 to 4). In general, although the total number of 

reads obtained was satisfactory for this experiment (~2.8M reads), we verified that the 

level of clustering on the flowcell (~1.6M reads on lane 1 and ~1.2M reads on lane 2) 

executed on cBot was lower than average, possibly because we were dealing with low 

input sample sizes. In our case, clustering on cBot was performed before and 

independently of the sequencing run on the HiSeq 2500. As we were cautious to not reach 

both upper and lower thresholds for accurate clustering we chose the libraries pooled 

samples as we better judged, given the fact that each combination of machines (cBot and 

sequencer) has an optimum concentration sample input to load on cBot. Based on an 

approximate calculation within the big range recommended by Illumina® (8 to 16 µM) and 

previous experience, we loaded our pooled libraries at an average concentration of 12µM. 

We now know that in case of library resequencing, we should load as much as 14-15µM 

of our pooled sample (still within the maximum range recommended by Illumina®), if we 

follow the same experimental setup. 

Nevertheless, the amplification of each library was successful, generating reads of 

outstanding quality (view Chapters 2 to 4), exceptions being made for one cDNA library 
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that failed amplification before we attempted sequencing. As estimated according to the 

concentration of PhiX DNA control loaded for the experimental procedure, about 18% of 

our reads were automatically excluded from our data. The per-base sequence quality and 

quality scores (QS≥30) were good and GC content agreed with the expected for P. vivax 

or P. falciparum control samples. Reads with N content were low, the sequence length 

distribution was 100% 100bp for all samples (1bp is added by the sequencer as to 

sequence 100bp for each pair-ended reads – R1 and R2), and sequence duplication levels 

were also low, although accounting for some overrepresented sequences detected as 

primers/adaptors sequencing-through. We could satisfactorily conclude that sequencing 

itself by the HiSeq 2500 sequencer after cBot clustering went smooth. Even though we 

were careful in measuring and pooling together each library at the same concentration, 

samples coming from cytoadhesion assays had fewer parasites (note that from one 

patient, the sample was divided into amongst four assays), less RNA and thus, less 

sequencing power and fewer reads obtained. By the nature of rosetting assays, the 

sample wasn’t subdivided and thus, more enriched in parasites, RNA and in final number 

of reads obtained for the parasite. RNA from P. falciparum strains was isolated from ~106 

parasites to a level that was expected for P. vivax sample isolates and not unbalance too 

much the final pool of libraries. 

The RNA-seq data analysis process (Aims Fig. 4) that follows can be technically 

daunting and difficult to interpret. We must keep in mind that P. vivax reference genomes 

are yet to be fully annotated and the few RNA-seq studies published (review on Chapter 

1 (Bourgard et al. 2018)) have already shown transcriptome species-specific properties, 

sometimes difficult to detect, analyse and interpret using the current bioinformatic tools. 

To overcome this challenge, I learned and developed several bioinformatic skills: 

UNIX/LINUX command line, R environment (R studio) and the execution in R of several 

packages of NGS data analysis in Java, Pearl and Python languages. User friendly 

platforms such as the BaseSpace from Illumina® and the EuPathDB-Galaxy online 

workflows were tailored and used in a complementary way. For instance, all the 

applications for read count and differential gene expression analysis offered on 

BaseSpace platform do not yet support other genomes than human and a selected few 

othe model organisms. Furthermore, the available Bowtie Aligner (BWA aligner) at the 
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BaseSpace platform used previously to align our samples (consisting of FASTQ files) 

using the BWA-MEM aligner to the P. vivax reference genomes (both P. vivax P01 or Sal-

1, created from imported FASTA files using FASTA Upload App), do not have enough 

power to properly align our P. vivax raw reads. In parallel with application of all 

bioinformatic basics and programing language skills necessary to perform the next steps 

of analysis into a UNIX/LINUX command line and R environment, I invested into exploring 

other platforms for Plasmodium spp. data analysis. The EuPathDB-Galaxy hub 

(https://eupathdb.globusgenomics.org/) offered by Globus Genomics, is a free, 

interactive, web-based platform for large-scale data analysis that joins all the best 

characteristics of EuPath database (https://eupathdb.org/eupathdb/), specially from 

PlasmoDB (http://plasmodb.org/plasmo/) and HostDB (http://hostdb.org/hostdb/), into the 

well-known Galaxy platform. Galaxy hub (https://usegalaxy.org/) allows NGS data 

analysis in interactive workflows that can be easily customized or newly created from the 

several applications pre-loaded on the online platform or in UNIX/LINUX command line, 

manageable by a bioinformatician without the need for in-deep informatic programming 

skills. Combined with all EuPathDB pre-loaded reference genomes, the availability of 

some pre-configured workflows and the possibility of visualization of the results in 

GBrowse, EuPathDB-Galaxy was extremely useful for delving in into our P. vivax RNA-

seq data. 

The first step into NGS data analysis is the quality assessment of the raw reads 

obtained directly from the sequencer. For that, Fast Quality Control (FastQC - 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/), java software package was 

executed in UNIX/LINUX command line or accessed through FastQC BaseSpace App or 

EuPathDB-Galaxy hub. FastQC is a quality control tool for high throughput sequence 

data, which generates a HTML report for further evaluation. It provides a modular set of 

analyses which were used to have a quick impression of whether our data had any 

obvious problems of which we should be aware, before doing any further analysis. Quality 

control analysis did not reveal any serious problems with the data we obtained, other than 

some readthrough of Illumina® adaptors, with all our samples having passed the test.  

After sequence quality control check, the reads were “trimmed” (cut or excluded) 

successively considering some important criteria. Low quality reads (e.g. reads with n’ N 
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bases) were immediately excluded. Good quality reads were trimmed for primer content, 

by aligning our obtained raw reads with the specific sequences primers from the kit used 

to synthesize the libraries. Next, the Illumina® adaptor sequences present in our raw 

reads, originated from sequence read-through the adaptors were filtered out. Afterwards, 

the long-A/T sequences derived from mRNA poly-A tails, for which our sample preparation 

was enriched given the fact that we synthesized libraries selective for mRNA, were cut. 

The trimming process was performed using Trimmomatic (at EuPathDB-Galaxy hub) or 

the Fast Quality Tool kit (App from BaseSpace based on TagCleaner and Trimmomatic 

software packs). The trimming process involved the manipulation of FASTQ files, 

including adapter trimming, quality trimming, length filtering, format conversions and 

down-sampling. From the statistical summary after trimming (view Chapters 2 to 4), we 

could observe a difference on the percentage of reads obtained to the different samples, 

which match accordingly with each sample quantity of initial RNA and consequently the 

amount of each library for sequencing. Overall, a good quality was verified and only a 

minimal number of sequences (always < 10%) were excluded during this process, 

demonstrating that the entire process from RNA extraction until sequencing at the 

Illumina® platform was successful (view Chapters 2 to 4). 

The following step is the alignment of these quality accessed reads to the genomes 

and/or transcriptomes of reference, a procedure in which duplicated reads, singletons and 

other secondary aligned sequences and sequences with multiple and/or pairwise 

discordant alignment were filtered out. The alignment process was altogether applied to 

the respective reference genomes and transcriptomes. Reference transcriptomes, even if 

more specific and accurate are tremendously biased by the amount of available, or in our 

case, the lack of information deposited on the databanks, greatly restricting our 

downstream analysis. We chose to use reference genomes that gave more coverage and 

confidence to straighten the differential expression analysis ahead.  

Considering our experimental data, read alignment of our P. vivax samples was 

performed to P. vivax  Sal-1(Carlton, Adams, et al. 2008) reference genome and our reads 

for P. falciparum S20 and FCR3 S1.2 control samples were aligned to the P. falciparum 

IT and 3D7 reference genomes from PlasmoDB(Bahl et al. 2003). Meanwhile, a new 

enhanced P. vivax reference genome P01 was published (Auburn et al. 2016), to which 
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we had access latter on PlasmoDB 

(http://plasmodb.org/plasmo/showXmlDataContent.do?name=XmlQuestions.News#plas

modb02_17_release). Given this fact, efforts were focused into aligning these data to this 

new P. vivax P01 reference genome, which betters covers the parasite subtelomeric 

regions, where a high percentage of the variant genes (vir) are located. As previously 

reported, these variant genes might be involved in the molecular mechanisms of parasite 

survival and expansion, thus an enhanced assembly reference genome, which also is 

better annotated, helped identify them in our transcriptome data. By using TopHat2 

(Bowtie aligner) (https://ccb.jhu.edu/software/tophat/index.shtml) our reads were aligned 

and mapped against the P. vivax P01 reference genome, ranging from 33.2% to 62.7% 

of overall read mapping rates of our samples. Additionally, the mapping results were also 

analysed to identify splice junctions between exons, as well as insertions and deletions. 

In parallel, alignment of our trimmed reads was also performed against H. sapiens 

reference genome (sequence data was imported from the NCBI SRA using the SRA 

Import App) to understand the possible level of host contamination. As expected, some 

level of human host contamination was present, which greatly varies from sample to 

sample, ranging from 2.6% to 38.7%. Note that, even a minimal contamination with 

lymphocytes, which express more RNA than a parasite (~1000x), has serious 

repercussions in sequence data output. The bioinformatic tool used to perform this task 

was Bowtie Aligner (BWT Aligner) at BaseSpace. This application aligns samples 

(consisting of FASTQ files) using the BWA-MEM aligner to a reference genome, including 

a custom reference genome created from imported FASTA files. The aligner comprises 

the Burrow-Wheeler Aligner (BWA, https://github.com/lh3/bwa) for pairwise alignment (as 

proper tool for our sequencing method), SAMtools (http://www.htslib.org/) for BAM file 

conversion to SAM and Picard (http://broadinstitute.github.io/picard/) to mark duplicates, 

index the files and map them to the reference genome.  

Following the data analysis pipeline, the aligned data independent on which reference 

genome was used, was subjected to a read count for RPKM (Reads Per Kilobase Million), 

FPKM (Fragments Per Kilobase Million) determination and data normalization by 

executing the Python code pack HTSeq (http://htseq.readthedocs.io/en/release_0.9.1/), 

and finally, differential expression analysis followed with application of the DEseq pack 

http://trace.ncbi.nlm.nih.gov/Traces/sra/?run=SRR1552314
https://basespace.illumina.com/apps/625625/SRA-Import
https://basespace.illumina.com/apps/625625/SRA-Import
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(http://bioconductor.org/packages/release/bioc/html/DESeq.html) in an R (Bioconductor) 

environment utilizing the experimental design and biological replicated sequenced. 

Overall, several alternative RNA-Seq data analysis workflows at EuPathDB-Galaxy 

and Illumina® BaseSpace online platforms were intensively applied for our P. vivax and 

H. sapiens reads. We executed a total of 6 different pre-configured EuPathDB-Galaxy 

workflows for Illumina® paired-end RNA-seq analysis of our P. vivax aligned raw data. 

From this preliminary analysis, we have narrowed down the 4 choices of data analysis 

pipelines (Fig. 1) to single best and more efficient workflow for our RNA-seq data (Fig 1. 

Workflow 3).  

 

 
Figure 1. EuPathDB-Galaxy bioinformatics workflows for RNA-seq data analysis tested. 

 

In summary, our RNA-seq raw reads were checked for quality by running Fast Quality 

Control (FastQC). This workflow allowed the trimming of Illumina® adaptors. Read 

mapping using Trimmomatic and alignment was done using TopHat2 towards the 

Plasmodium spp. deposited on PlasmoDB. HTseq-cont allowed FPKM estimation of 

reference genes and transcripts and differential expression of reference transcripts was 

performed with DESeq2 (Fig. 1, Workflow 3). 

One of the interesting points of this RNA-Seq data was analyzing the reads which 

aligned for H. sapiens reference genome. Although the experiment was designed and 

executed to have as little human host RNA contaminant possible, there is always a small 

percentage of lymphocytes carrying as much as 10x much RNA per lymphocyte compared 

to a single Pv-iE that were picked up and sequenced. The generally better-established 
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platforms for human data analysis allowed considerably faster progress in RNA-seq data 

analysis, enabling us to obtain gene differential expression results from the few 

percentages of reads aligning with the human genome reference. By using the user-

friendly interface application BaseSpace online platform from Illumina® 

(https://www.illumina.com/products/by-type/informatics-products/basespace-sequence-

hub.html), we explored several different workflows (Fig. 2), evaluating at each step whose 

option was giving better outputs and general results until we reach the conclusion that the 

workflow using RNA-Seq Alignment using Tophat2 aligner, coupled with Cufflinks 

Assembly and Differential Expression was the most appropriate. 

 

Figure 2. BaseSpace Illumina® sequencing hub bioinformatics workflows for RNA-seq data analysis. 

 

In summary, our RNA-seq raw reads were checked for quality by running Fast Quality 

Control (FastQC) and subsequently were run through RNA-seq Alignment application 

from BaseSpace platform for cloud-based genomics analysis and storage, integrated by 

Illumina® sequencers. This workflow allowed trimming of Illumina® adaptors, read 

mapping using TopHat2 (Bowtie 2) aligner towards the Homo sapiens UCSC hg38 

(RefSeq & Gencode gene annotations) (Speir et al. 2016, Rosenbloom et al. 2015), FPKM 

estimation of reference genes and transcripts using Cufflinks2. Final assembly and 

differential expression of reference transcripts was performed with Cuffdiff2 within the 

Cufflinks assembly & DE pipeline (Fig 2., Workflow 3). 
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For all the several group lists of differential expressed genes, we have analysed Gene 

Ontology (GO) Enrichment on PlasmoDB (release 37) (Aurrecoechea et al. 2009) to find 

all GO terms associated to biological processes, cellular components and molecular 

functions (genes computed and curated for a p-value cutoff of 0.05. towards the reference 

genomes). Additionally, by using REViGO (Supek et al. 2011), a web server to remove 

redundant terms, we were able to visualize in semantic similarity-based scatterplots, 

interactive graphs and tag clouds, the relevant GO terms. Also, were performed searches 

for Metabolic Pathways Enrichment based on PlasmoDB linked with the well-known 

KEGG (https://www.genome.jp/kegg/) and MetaCyc (https://metacyc.org/) pathway 

resources (p-value cutoff of 0.05) were performed. 

It is important to stress that Illumina® sequencing technology is based on the 

generation of short-sized reads. This characteristic does bring the possibility to whole 

sequence species at higher rates in an easy, fast and less expensive way. However, this 

short-reads output data also comes at a great cost when taking into consideration the 

capacity of the currently available software algorithms to perform alignment and mapping 

tasks, which greatly impact the following read count and differential expression steps. Raw 

short-sized reads increase the processing difficulty when their sequence is not sufficiently 

specific to the organism in question (in this case P. vivax or P. falciparum). For instance, 

reads correspondent to highly repetitive sequences or with low sequence complexity will 

easily align with whichever genome/transcriptome we input into the system, especially 

when reference genomes are still precariously assembled incomplete annotation. 

Although extensive progress has been made during the last couple of years to have well 

annotated P. falciparum and P. vivax reference genomes, the aligned and mapped data 

shown here were based on the well annotated protein-coding transcripts and 

corresponding alternatively spliced variants.  

  Considering the still “under construction” reference genome, the fact that P. vivax a 

have highly repetitive genome particularly on centromeric, telomeric and subtelomeric 

chromosome regions and the fact that a fair number of reads weren’t aligned and mapped 

accordingly, we will subject them to a de novo assembly protocol. The most used de novo 

assemblers are Velvet/Oases (http://www.ebi.ac.uk/~zerbino/velvet/ and 

http://www.ebi.ac.uk/~zerbino/oases/) and Trinity (trinityrnaseq.sourceforge.net). 

http://trinityrnaseq.sourceforge.net/
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Velvet/Oases together use a sophisticated set of algorithms that construct de Bruijn 

graphs and correct for errors and repeats based on information given by paired-end reads 

(our case). Post-processing of Velvet assemblies, performed by Oases, can be done by 

defining different k-mer sizes and contig coverage in order to explore and generate a final 

merged assembly result from all k-mer lengths to reflect a consensus across multiple 

assemblies and overcome the transcriptome inherently non-uniformity coverage. Trinity 

produces a transcriptome assembly through three steps, which correspond to discrete 

modules named "Inchworm", "Chrysalis", and "Butterfly". Inchworm builds initial contigs 

by finding paths through k-mer graphs, each contig assembly seeded by k-mers in order 

of k-mer abundance. Chrysalis groups these contigs together given sufficient k-mer 

overlap and builds de Bruijn graphs for these groups, in which the overlaps are nodes and 

the k-mers connecting edges. Butterfly simplifies the graphs when possible, then 

reconciles the graphs with original reads (or read pairs) to output individual contigs 

representative of unique splice variants and paralogous transcripts. In general terms, de 

novo assembly is used when there is no availability of a reference genome or when the 

one available is not well annotated, is incomplete or, as it can be our case, does not mirror 

the actual parasite population sequence circulating right now. We do know that the P. 

vivax Sal-1 (Carlton, Escalante, et al. 2008) genome reference was adapted to primates, 

since it was first isolated in the 70’s, and P. vivax P01 (Auburn et al. 2016) was assembled 

from 3 clinical Asian isolates. These tools can help to explore the remaining fraction of 

reads into new transcripts and splice variants, contributing to ameliorate the P. vivax 

reference genome. 

To proceed for RNA-seq of P. vivax iRBCs, we separate four groups of parasite 

population samples, with adhesion capacity to CHO745 (92U15-2, 93U15-21, 105U15-6 

and 101U15-23) and CHOICAM (92U15-1, 105U15-5), and the correspondent non-adhered 

samples to CHO745 (92U15-4, 93U15-22,105U15-8 and 101U15-24) and CHOICAM 

(92U15-3, 105U15-7 and 101U15-20) (Chapter 2). Through RNA-seq data analysis, we 

accessed the differential gene expression profiles between samples of these two groups 

and dissect by data mining, possible differences that tentatively might explain P. vivax 

adhesion phenotype during the progress of vivax malaria disease. Although expression 

profiles were similar between samples within the same capacity level for rosette formation, 
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our P. vivax populations isolated from malaria patients showed some degree of 

transcriptome heterogeneity. In any of the different groups analyzed we were able to see 

significantly expressed genes, when considering data normalization (q-values). However, 

a list of genes with significant p-values could be withdrawn and looked more carefully 

(Chapter 2, Table 3). Especially considering the comparison group of parasites that 

adhered to CHOICAM versus CHO745, we observed a total of 52 genes. A portion of those 

genes (7) codify conserved Plasmodium spp. proteins of yet unknown function. These 

genes showed a strong (2.3>log2 Fold Change>3.4) absolute expression, which might 

suggest their involvement in molecular processes important for adhesion phenotype. 

Future functional characterization of these proteins should clarify this possibility. From the 

pool of the other genes, 5 genes has caught our attention: one PIR protein 

(PVP01_0950000), one Plasmodium exported protein of unknown function 

(PVP01_1201600), the down-expression in adhered samples of the putative translocation 

protein SEC62 (PVP01_1268900) and two proteins with repetitive domains, the 

heptatricopeptide repeat-containing protein (PVP01_1416100) and the putative WD 

repeat-containing protein (PVP01_0905300). Further investigations are needed in order 

to understand the biological meaning of this results. 

To have a better understanding if P. vivax expression patterns could be functionally 

related to rosetting capacity, we performed several rosetting assays on Amazonian low 

parasitemia clinical isolates. In accordance with previously published data (Zhang et al. 

2016), we could observe and confirm a proportional relation between PviRBCs maturation 

and its enhanced capacity to form rosettes, where young staged parasites showed a low 

percentage of rosetting (<6%) that progressively augments towards schizont parasites, 

which can rosette at a rate of 50% rate or more (Chapter 3, Fig. 1). This result is indicative 

of the fact that P. vivax must be expressing proteins responsible for the reshaping of cell 

membrane of normocytes, which might be directly involved in rosette formation. 

Through RNA-seq of P. vivax iRBCs, we evaluated the differential gene expression 

profiles between two groups of samples with different (high against low) rosetting capacity 

and identified expressed genes that tentatively can explain P. vivax rosetting phenotype 

during the progression of vivax malaria disease. Considering the confounding expression 
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variability expected between different P. vivax clinical isolates, our analysis between the 

double sample high and low rosetting samples revealed a group of 94 differentially 

expressed genes (Chapter 3, Table 4).  

As anticipated, a large number of genes have not yet been characterized for their 

protein function, but the conservation of their sequence throughout Plasmodium spp. 

may be indicative of their importance to the parasite rosetting phenotype. 

Furthermore, the majority of these conserved Plasmodium genes showed highly 

upregulated expression, suggesting their involvement in molecular processes 

important for erythrocyte binding. These proteins functional characterization should 

further elucidate this possibility.  

Within the group of differentially expressed enzymes, three upregulated kinases 

have caught our attention, since kinases are classic targets for discovery of new 

therapeutic drugs. NEK3 has been reported has essential for mitosis progression in 

P. berghei blood-stage development (Tewari et al. 2010), MAPK2 seems to play an 

important role in stress response in Toxoplasma gondii (Huang et al. 2011), and RKIP 

affects the activity of another kinase, the calcium-dependent protein kinase 1 

(Kugelstadt et al. 2007) which regulates several important Plasmodium spp. reliant on 

calcium metabolic processes. Studies on calcium homeostasis have reported that 

parasitized RBCs show an increased influx of calcium when compared to the 

decreased efflux of unparasitized RBCs. Calcium content has been localized in the 

Plasmodium spp. compartment. For the RBC invasion by the merozoite, extracellular 

calcium is needed, as well as the subsequently parasite development and maturation 

inside of the erythrocyte (Krishna and Squire-Pollard 1990, Leida, Mahoney, and 

Eaton 1981). 

P. vivax field isolates are often characterized by asynchronous populations of 

parasites in different stages of development and/or maturation. Although our samples 

were chosen with the aim to access the transcriptomic profiles of trophozoites and/or early 

schizont parasites, we could also observe the expression of some interesting gametocyte 

membrane surface genes, reflecting the importance of the study of mechanisms of P. 

vivax transmission. Together with P48/45 surface protein (van Dijk et al. 2001), P47 is one 

such protein, reported as required for optimal fertilization in P. berghei and for mosquito 
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immune evasion. This showed a strong signature of natural selection and population 

structure in the P. falciparum and P. vivax genomes (Molina-Cruz, Canepa, and Barillas-

Mury 2017).    

Also, we verified differential expression of two LCCL lectin domain adhesive-like 

proteins (LAPs), a family of conserved  six modular proteins, conserved through the 

apicomplexan genus, which are expressed in sexual stages of Plasmodium parasites and 

reported to be involved in the formation of protein complexes required for successful P. 

berghei sporogony (Tremp et al. 2017, Pradel et al. 2004). 

One of the most important aspects of erythrocyte infection by P. vivax is the dramatic 

morphogenesis of the erythrocyte membrane, driven by a network of microtubules (MT) 

sustained by the inner membrane complex (IMC). As expected, genes encoding the actin 

and tubulin backbone molecules of MTs were found to be upregulated in our rosetting 

samples, together with a group of MT motor enzymes, IMC proteins such as PhIL1 (PIP2 

and 3-)integrating proteins, which are critical in various processes such as signal 

transduction and intracellular and membrane trafficking (Parkyn Schneider et al. 2017, 

Ebrahimzadeh, Mukherjee, and Richard 2018).  

Furthermore, we were able to catch the overexpression of an early-transcribed 

membrane protein (ETRAMP). ETRAMPs are important proteins present on the 

membrane of intracellular parasites, such as  Plasmodium species, formed during 

erythrocyte invasion as an invagination of the iE cell surface during the asexual blood 

stage parasites. Recent studies showed that ETRAMPs have been localized on the 

intracellular membranes of immature schizont and at the apical organelles of newly formed 

P. vivax merozoites of mature schizont and have the capacity to elicit high antibody titers 

capable of recognizing parasites of vivax malaria patients (Cheng et al. 2015).  

Together with two other proteins from CPW-WPC surface protein family, another 

important membrane protein found differentially expressed in our study was the P. vivax 

(MSP7)-like protein. Merozoite surface proteins belong to families of proteins often 

involved in complex Plasmodium invasion processes. Pf MSP7 interactions with host P-

lectin receptors have been previously demonstrated (Perrin, Bartholdson, and Wright 

2015), which consequently block interactions between host P-selection and leukocyte 

ligands and could underlie the mechanism for the known immunomodulatory effects of 
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both MSP7 and P-selectin in malaria infection models. Although MSP7 in P. vivax has not 

yet been functionally characterized, there is evidence this protein is under selection, and 

thus functionally important in P. vivax (Castillo, Andreina Pacheco, and Escalante 2017). 

In addition, 4 glideosome-associated proteins are observed to be differentially expressed 

in our high rosetting parasites. The capacity to bind, reorient and invade new host cells is 

mainly powered by the “glideosome” proteins (Keeley and Soldati 2004). The glideosome 

is a macromolecular complex comprising proteins with adhesive properties. These 

proteins are released apically on the parasite membrane and translocated to the opposite 

pole of the parasite through the actomyosin system anchored in the IMC, 

Finally, we detected the expression of the macrophage migration inhibitory factor 

(MIF) gene, one of the first cytokines described, which has a broad range of pro-

inflammatory properties. It has been reported that expressed PfMIF protein localizes to 

the Maurer’s cleft during asexual blood stage parasites. PfMIF in vitro treatment of human 

monocytes inhibited their random migration and reduced the surface expression of toll like 

receptor (TLR) 2, TLR4 and CD86, indicating that its release potentially modulates the 

host monocytes functions during Plasmodium acute infection (Cordery et al. 2007). In 

accordance with this data, our analysis performed in isolates from non-severe vivax 

malaria patients reported a significantly downregulated expression of the P. vivax mif gene 

in parasite populations showing rosetting phenotypes. 

Together, these results point out to the importance of membrane and membrane 

associate proteins in rosetting phenotype. Functional assays might further clarify that 

these proteins allow the parasites to adhere to the surface of host cells, such as health 

erythrocytes, maintaining them anchored in order to create the characteristic rosette of 

surrounding erythrocytes, which enable the parasite to evade from the host immune 

system.  

Considering differences in cytokine levels observed between moderate and low 

rosetting isolates, differential gene expression from the few reads of human peripheral 

blood mononuclear cells sequenced was performed. Our aim was to evaluate possible 

relationships between leukocytes expression profiling from P. vivax infected patients 

(Chapter 4, Table 1A) with a rosetting phenotype. Identified were eight genes that showed 

a log2 fold change higher than 1.5 (Chapter 4, Table 1B). Three out of eight genes were 
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in the Fc gamma receptor (FCGR)-dependent phagocytosis pathway. Remarkably, 

immunoglobulin kappa constant (IGKC) and immunoglobulin heavy constant gamma 1 

(IGHG1) were upregulated and actin-related protein 2/3 complex subunit 2 (ARPC2) was 

downregulated in individuals with moderate rosetting compared to patients with low 

rosetting. The host transcriptomic profile directly compared patient isolates with low 

versus moderate rosetting, which were quantified immediately after blood sample 

collection, when most parasites were still young trophozoites (Lopes et al. 2014). Because 

rosetting is mostly formed by mature parasites (schizonts), this constituted an 

experimental limitation of this study. Additionally, even with the high quality of sequenced 

reads obtained in our RNA-seq, the low quantity of host sample input effectively 

transcribed resulted in few statistically significant pools of differentially expressed genes. 

Nevertheless, three out of eight genes showing more than 1.5-fold change in expression 

have relevant functions in the Fc gamma phagocytic pathway, demonstrating the 

importance of this and other future RNA-seq projects tailored to catch host and parasite 

transcriptomes with regards to its interactions during vivax malaria disease progression. 

The present transcriptome findings, supported by our results showing that plasma 

from patients with high rosetting levels inhibit the phagocytic capacity of THP-1 cells, 

support the idea that P. vivax rosettes strongly inhibit the phagocytosis pathway. Because 

transcriptional analysis indicated that a phagocytosis pathway may be affected by 

rosetting, functional assays were conducted to investigate the role of this adhesive 

phenomenon. As rosetting is dependent on plasma factors, the capacity of plasma from 

individuals with different rates of rosetting to facilitate or inhibit phagocytosis to some 

extent was investigated. The ability of P. vivax isolates to form rosettes at different 

degrees and phagocytose was inversely correlated with rosetting levels. The most likely 

explanation for this observation is that the noninfected erythrocytes in the rosette 

formation shielded the iE from antibodies and provided a physical barrier to restrict contact 

with phagocytes and other effector cells of the immune system. However, additional 

studies are needed to search for plasma factors that can inhibit the phagocytosing 

capacity of macrophages. 

Taken together, these data indicated that vivax malaria rosetting is an evasion 

mechanism that allows the parasite to shield itself from the host immune system (Chapter 
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4, Fig. 6), and this generates more questions regarding this common phenotype. The fact 

that rosetting is a frequent feature in P. vivax late stages and that the high prevalence of 

rosettes may indicate that this phenotype is an important advantage for the parasite by 

conferring significant protection from the host immune system. An understanding of P. 

vivax rosettes may help the scientific community to develop new strategies for malaria 

control.  

Although the P. vivax RNA-seq project described here only targets protein-coding 

transcripts, it is known that Plasmodium spp. express a relatively high amount of non-

coding RNAs (ncRNAs) (Zhu et al. 2016), which have important, albeit unknown, 

regulatory functions. One important class of small ncRNAs are the microRNAs (miRNAs), 

which have been detected in a variety of organisms ranging from ancient unicellular 

protozoans to mammals. miRNAs have been associated with numerous molecular 

mechanisms, such as those involved in developmental, physiological and pathological 

changes of cells and tissues. Even though miRNA-silencing mechanisms appear to be 

absent in a number of protozoan parasites, including Plasmodium spp., an increasing 

number of studies have reported a role for miRNAs in host-parasite interactions. Host 

miRNA expression can change following parasite infection and the consequences can 

lead, for instance, to parasite clearance. In this context, the immune system signaling 

appears to play a crucial role. As such, future research avenues should focus on the 

sequencing, identification and functional study of the different ncRNAs through parasite 

infection and host-parasite interactions during disease progress (Chapter 5, (Judice et al. 

2016)). For instance, further miRNA research may (i) uncover new biomarkers related with 

disease progression, (ii) determine miRNA target genes that can clarify the miRNAs role 

in the pathogenesis and finally (iii) aid in the discovery of new therapeutic targets. 
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CONCLUSION 
 

Recent observations of increasingly severe vivax malaria cases are rising awareness 

of the fact that P. vivax is one of most important, widespread and neglected human malaria 

parasites. It is responsible for millions of malaria cases per year, thus having a worldwide 

strong social impact. Unfortunately, little is known concerning this parasite biology and the 

molecular mechanisms involved in vivax malaria immuno-pathogenicity.  

Transcriptomes of P. vivax clinical isolates are not routinely explored, and at the time 

of this writing, few published RNA-Seq datasets exist (Chapter 1, (Bourgard et al. 2018)). 

Our study aims to benefit the scientific community in several ways. Firstly, the study 

provides a guide for processing P. vivax clinical isolates from collection in the field through 

Illumina® library construction (Chapter 2). Secondly, it provides publicly available 

transcriptome sequencing datasets for P. vivax clinical isolates, which will be used for the 

improvement of reference gene models, such as 5’ and 3’ untranslated regions, novel 

gene transcripts, and alternative splicing events. Finally, the transcriptomes will inform our 

understanding of P. vivax invasion and host evasion mechanisms by identifying genes 

that are up-regulated in mature parasites and enabling inter-isolate comparisons of 

expression patterns, including the evaluation of multi-gene families known to be important 

for erythrocyte rheopathological properties.  

Particularly, we believe that the experiments performed by us, calling upon the new 

technological tools currently available, and further bioinformatically analysed (Chapter 1, 

(Bourgard et al. 2018) and 5, (Judice et al. 2016)), will allow the mapping of the potential 

factors behind P. vivax cytoadhesion (Chapter 2) and rosette formation (Chapter 3) and 

identify the parasitic ligands, human host endothelial receptors and, most importantly, the 

pathways involved in these host-pathogen interactions (Chapters 2 and 4). Such 

knowledge could be of paramount importance for the development of vaccine (Annex 1, 

(Bittencourt et al. 2018)) and chemotherapeutic strategies (Annex 2) by identifying new 

molecular targets. Our expectation is that such knowledge of the vast biology of P. vivax 

(Chapter 5, (Judice et al. 2016)) will open new avenues on the development of more 

efficacious treatments for vivax malaria patients in the near future. 
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SCIENTIFIC IMPACT 
 

As above mentioned on this brief introduction, both in the “omics” data generation field 

and new platforms for drug screening, there are outstanding technological achievements 

to aid the P. vivax research community in drug and vaccine discovery by getting a better 

knowledge of the parasite biology. Most importantly, data integration in Plasmodium spp. 

made available on databases such as PlasmoDB (Bahl et al. 2003), can aid us into 

understanding host-parasite interactions, by using the powerful bioinformatic tools and/or 

following very well thought-through in silico workflows and/or pipelines for data analysis. 

Today, such methodological approaches certainly open further the investigations on the 

biology of the P. vivax apicomplexan parasite, to succeed on the now recognized vivax 

malaria burden, and thus, steadily walk to accomplish the set agenda of malaria 

eradication. 
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Overview 

The genetic diversity of malaria antigens often results in allele variant-specific 

immunity, imposing a great challenge to vaccine development. Rhoptry Neck Protein 2 

(PvRON2) is a blood-stage antigen that plays a key role during the erythrocyte invasion 

of Plasmodium vivax. This study investigates the genetic diversity of PvRON2 and the 

naturally acquired immune response to P. vivax isolates. 

Here, the genetic diversity of PvRON21828–2080 and the naturally acquired humoral 

immune response against PvRON21828–2080 in infected and non-infected individuals from 

a vivax malaria endemic area in Brazil was reported. The diversity analysis of 

PvRON21828–2080 revealed that the protein is conserved in isolates in Brazil and worldwide. 

A total of 18 (19%) patients had IgG antibodies to PvRON21828–2080. Additionally, the 

analysis of the antibody response in individuals who were not acutely infected with 

malaria, but had been infected with malaria in the past indicated that 32 patients (33%) 

exhibited an IgG immune response against PvRON2. 

PvRON2 was conserved among the studied isolates. The presence of naturally 

acquired antibodies to this protein in the absence of the disease suggests that PvRON2 

induces a long-term antibody response. These results indicate that PvRON2 is a potential 

malaria vaccine candidate. 
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Introduction 

 

Currently, while it has been recognized that P. vivax infection can cause severe 

clinical complications [1], the availability of novel therapies (e.g. antimalarials) remains 

limited. Most importantly, resistance has been identified against all available 

antiplasmodial drugs, from the long-used chloroquine to the more recently instituted 

artemisinin and antifolate agents, such as pyrimethamine. Presently, effective control 

policies for decision-making are hampered and the recent increase of malaria in some 

endemic areas of the world is of great concern, seriously threating the prospects for 

malaria elimination in the near future [2]. 

Methods to combat malaria using small molecules have been impeded by complex 

and quick antigen variant switch and development of resistance. According to the WHO 

guidelines [2-4], the first line of P. vivax chemotherapy is chloroquine (CQ) plus 

primaquine (PQ), the only approved drug targeting the latent parasite form (hypnozoite) 

[5]. Recent efforts have resulted in the global approval of Tafenoquine (TAF), a drug 

analog of PQ developed by GlaxoSmithKline. Today, TAF is a better alternative 

antimalarial than PQ, especially because while it targets P. vivax hypnozoites and asexual 

stages like PQ, it has a considerably shorter course of treatment and lower dosage. It has 

been hypothesized that TAF may exert its effect by inhibiting hematin polymerization and 

inducing mitochondrial dysfunction leading to the apoptotic-like death of the organism. 

However, the mechanism of action of both TAF and PQ drugs are not well characterized 

at this time. Further, the restrictions concerning immunosuppressed and glucose-6-

phosphate dehydrogenase (G6PD) deficient patients apply for both PQ and TAF [6], 

leaving no current therapies available for this patient population.  

In high transmission areas presenting cases of drug resistance, an artemisinin based 

combination therapy (ACT) is recommended [3, 7]. The constant increase and spread of 

anti-malarial drug resistance of P. vivax remains of great concern [8-15], pointing to the 

need for augmented efforts in new drug discovery. Given the fact that in many parts of the 

world, after P. falciparum transmission rates have decreased abruptly, P. vivax becomes 

the predominant species, causing persistent infections with high morbidity. Therefore, 

there is a great need for novel experimental approaches targeting this parasite. 
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For thousands of years, natural products from autochthonous flora have been used to 

treat and alleviate malaria symptoms, not only in traditional medicine settings, but later as 

lead compound sources for new drug investigation. Some examples of these are 

artemisinins, quinine atovaquone, clindamycin, erythromycin, azithromycin, tetracyclines, 

doxycycline, and others [16]. The majority of natural products were based on several 

existing small molecules or pharmacophores. Nevertheless, several natural compounds 

have neither their active components nor their origin identified, and their efficacy has not 

yet been systematically studied. As a result, this source of potential leads discovery is 

almost completely neglected.  

The complex life cycle of P. vivax parasite, the impossibility of cultivating them in vitro, 

and their vast genetic diversity pose great obstacles to efficiently discovering antimalarial 

drug candidates. To aid the malaria research community in this context, genome-wide 

drug sensitivity screens of yeast mutants (chemogenomic profiling [17-19]) have been 

successfully used to identify the key molecular targets of several frontline antimalarial 

drugs, such as quinine [20] and artemisinin [21]. Saccharomyces cerevisiae is a model 

organism used for its genetic malleability, high degree of genetic and cellular process 

conservation with human cells, and forgiving growth conditions requirements. S. 

cerevisiae can be engineered to express heterologous proteins, providing a well-

characterized platform for automated screens, due to its fast grow rate at low costs. 

Chemogenomics screening also provides evidence of possible off-target effects [22], 

allowing the prediction of potential side effects (e.g., cytotoxicity).  

Heterologous expression of in silico triaged molecular targets [23] in yeast offers 

expedient experimental access for evaluation of those parasite proteins, otherwise 

practically impossible in an in vitro functional assay, performed for all parasite-stage forms 

found in the human host. Yeast strains expressing heterologous parasite (e.g. plasmodial) 

drug transporters have been constructed [24], providing the opportunity to specifically test 

for species-specific uptake or efflux propensity for particular drug candidates. Thus, yeast 

has great potential as an in vitro system and experimental platform for drug candidate 

screening in P. vivax [25, 26], combining high versatility by virtue of a very large molecular 

genetics toolbox with ease of cultivation and amenability to robotized high-throughput, 

high-density, technologies [27].  
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Bilsland et al. 2013 [26] developed a novel drug-screening method based on 

bioengineering of the model organism yeast S. cerevisiae, which enable us the 

identification of compounds that selectively inhibits parasite molecular target and not their 

human counterpart. This system can be robotized and used in automated high-throughput 

screens to identify anti-parasitic compounds, while eliminating the ones having potential 

side effects (e.g. cytotoxicity) [27]. Bilsland and colleagues successfully engineered S. 

cerevisiae strains deleted for one essential gene (as examples, dhfr, nmt and pgk genes) 

and functionally complemented by the heterologous expression of the orthologous gene 

from parasite and human origin [25]. In this system, the major drug-export pump in S. 

cerevisiae, codified by the pdr5 gene, was also deleted to sensitize the yeast to a larger 

range of chemicals. According to this method, the addition of chemical compounds to the 

culture medium can allow the discovery of potential drugs by monitoring over-time the 

growth of those strains. If a specific compound inhibits the parasite target protein function, 

the genetically engineered yeast functionally complemented by the parasite orthologous 

protein will not be able to grow. Furthermore, the growth of the yeast functionally 

complemented by the human orthologue would reveal if that compound has little or no 

effect on the human protein, thus ruling out cytotoxicity. The growth of the initial yeast 

strain expressing its own essential gene, could help us to discriminate for such 

compounds if they are cytotoxic for the yeast system. The researchers proved the viability 

of this high-throughput assays by identifying compounds from The Malaria Box 

assortment inhibiting each one of the selected targets tested but failing to inhibit the 

corresponding human counterpart. The “hit compounds” found against yeast strains 

encoding P. falciparum, P. vivax, Schistosoma mansoni, Tripanosoma brucei, T. cruzi or 

Leishmania major proteins were then validated by demonstrating their effectiveness in 

vivo [25]. More recently, this methodological approach was also applied to identify novel 

compounds active against Brugia malayi [28]. We grounded our work on findings from 

Bilsland et al. and continued to extend her efforts in order to create a platform for drug 

discovery against the P. vivax human malaria parasite. 
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Aim 

 

Worldwide, there is the urgent need for novel drugs against malaria to defeat this 

devastating disease with its severe social and economic burdens and impacts on 

individual welfare. As we push to discover new P. vivax molecular targets to develop novel 

drugs, this prospective collaborative project was initiated with the purpose of pathways 

and specific intracellular drug targets identification, using yeast-based drug screen 

methods [25-27] (Fig. 1). This yeast-based robust anti-parasitic drug-screening method 

allow high-throughput drug screens for the selection of compounds specifically targeting 

parasites and not their host counterpart (“hits”) from in silico prediction pool of known pre-

selected P. vivax molecular targets. Prospective compounds discovered are then 

evaluated in vitro (P. falciparum) and in vivo (P. berghei) for their bioactivity. Since the 

most likely molecular targets are known, we expect to reveal the compounds biological 

mode of action. Furthermore, interesting compounds might be further re-design and 

synthesize for improved bioactive selective properties (Fig. 1.). 

 

Figure 1. Scheme depicting the methodological overview of the collaborative project on a chemical-

genomic profiling approach for drug target discovery in P. vivax.  

 

Methodology overview and Accomplished Aims 

 

To initiate this challenge, I have performed the following experimental steps: 

(i) In silico selection of 13 P. vivax molecular targets, fulfilling three main criteria:  

• gene orthology between P. vivax, S. cerevisiae, (acting as a surrogate for 

expressing antiparasitic targets), H. sapiens (for drug selectivity determination),  P. 
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falciparum and P. berghei (for downstream in vitro and in vivo validation); 

• gene essentiality in S. cerevisiae. Gives efficient selection for complementation of 

the yeast loss-of-function mutation by the heterologous P. vivax and H. sapiens genes; 

• no paralogs within all 3 Plasmodium spp. (P. vivax, P. falciparum and P. berghei), 

S. cerevisiae and human to avoid functional redundancy. 

(ii) Functional expression of P. vivax molecular targets and their human orthologs in 

S. cerevisiae surrogate system (Fig. 2): 

• all coding sequences from P. vivax and H. sapiens gene targets were 

resynthesized by GeneArt® Optomizer for suitable and efficient expression in yeast model 

organism; 

• the synthetic constructs were sub-cloned into a yeast expression plasmid 

(pCM188); 

• S. cerevisiae BY4743 (diploid background) strains containing a heterozygous 

deletion on the candidate gene targets (BY4743 gene∆/GENE) were heterologous deleted 

for pdr5 gene, which codifies a major pleiotropic drug pump; 

• plasmid constructs pCMHs/PvGENE were transformed into the BY4743 

gene∆/GENE::pdr5∆/PDR5 strains, lacking the major pleiotropic efflux drug pump PDR5; 

• S. cerevisiae BY4743 gene∆/GENE::pdr5∆/PDR5 pCMHs/PvGENE strains were 

sporulated, tetrads dissected for haploids selection with the desired heterologous gene 

expression for drug screens; 

• S. cerevisiae BY4741 (haploid mate-type a background) strains containing the pdr5 

gene deletion (BY4741 pdr5∆) were transformed with plasmid constructs pCMHs/PvGENE; 

• S. cerevisiae BY4741 pdr5∆ pCMHs/PvGENE strains were deleted for the essential 

gene target (gene∆) of interest. 
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Figure 2. Methodological overview of functional expression of P. vivax molecular targets and their human 

orthologs in S. cerevisiae surrogate system. 

 

(iii) Synthetic Compound Library Screens: 

• Using protein structure modeling and virtual ligand screening, prospective 

compounds against 3 different Plasmodium spp. targets have been identified from 

synthetic compound libraries; 

• Compounds selectively inhibiting the P. vivax orthologue over the human one 

were/are being identified from available libraries, using our target-based yeast system.  

Important note: Since this is a prospective project, all researchers involved decided 

to not disclose any information relative to the identification of the P. vivax molecular targets 

and/or compound hits IDs or codes. 

   

Results 

 

In silico selection of P. vivax molecular targets 

Using bioinformatic tools and databases [23] (Table 1), I performed an in silico screen 

under a restricted set of criteria, from an initial ~5631 P. vivax genes to the final 30 

candidate gene targets, from which 13 candidate genes were selected to start this project 

(Fig. 2). The three most key points in this in silico gene selection were: 
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(i) gene orthology between P. vivax, our organism of interest; P. falciparum and P. 

berghei for downstream in vitro and in vivo validation steps using CRISPR/Cas9 knockout 

and editing tools. S. cerevisiae that acts as a surrogate for expressing anti-parasitic 

targets, and H. sapiens for drug selectivity determination;  

(ii) gene essentiality in S. cerevisiae, so that expressing genes from P. vivax and 

human orthologs complement yeast loss-of function mutations; 

(iii) gene paralogy identification within the P. vivax, P. falciparum, P. berghei, S. 

cerevisiae and H. sapiens genes to avoid functional redundancy.  

Table 1. Principal databases and omics resources for the in silico selection of eleven P. 
vivax molecular targets. 

Database Database Search Goal Webpage 

Inparanoid 
Orthology search between P. 
vivax, S. cerevisiae, P. berghei, 
P. falciparum and H. sapiens 

http://inparanoid.sbc.su.se/cgi-
bin/index.cgi 

Yeast Mine 

Search and retrieve S. 
cerevisiae data with YeastMine, 
populated by SGD and powered 
by InterMine 

http://yeastmine.yeastgenome.org 

/yeastmine/begin.do 

DIOPT - DRSC 
Integrative Ortholog 
Prediction Tool  

Confirmation of best orthology 
between S. cerevisiae and H. 
sapiens genes (and vice-versa) 

http://www.flyrnai.org 

/cgi-bin/DRSC_orthologs.pl 

Saccharomyces Genome 
Database (SGD) 

Comprehensive integrated 
biological information for the 
budding yeast Saccharomyces 
cerevisiae 

http://www.yeastgenome.org/ 

Yeast-Human Functional 
Complementation Data 
(SGD) 

Search for human orthologs 
proven to functionally 
complement S. cerevisiae genes 

http://www.yeastgenome.org/yeast-
human-functional-complementation-
data-now-in-sgd 

Yeast Genome Database 
(YGD) 

Search and download protein 
sequence FASTA files from S. 
cerevisiae 

http://downloads.yeastgenome.org 

/sequence/S288C_reference/orf_protein/ 

PlasmoDB 

Plasmodium spp. database: 
searches of orthology, paralogy 
and data (DNA, RNA and protein) 
download 

http://plasmodb.org/plasmo/ 

Ensemble 

Search for P. vivax – H. sapiens 
and S. cerevisiae – H. sapiens 
paralogy using emceed BLAST 
tool from NCBI 

http://www.ensembl.org 

/Multi/Tools/Blast?db=core 
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Duplicated Genes 
Database 

Search for H. sapiens paralogs http://dgd.genouest.org/ 

UNIPROT 
Download H. sapiens protein 
sequences from Ensemble 
Protein Ref IDs 

http://www.uniprot.org/ 

NCBI BLAST 
Protein blast too used to blast 
between P. vivax and P. 
falciparum proteins 

https://blast.ncbi.nlm.nih.gov 

/Blast.cgi 

Gene Ontology (GO) 
Consortium 

GO terms for biological 
processes, molecular function, 
cellular compartments, pathways 
and protein classes in P. 
falciparum, S. cerevisiae 

http://geneontology.org 

Open Targets 
Search on drugs developed or in 
development for the 
correspondent human orthologs 

https://www.opentargets.org/ 

The TDR Targets 
Database 

A chemo-genomics resource for 
neglected tropical diseases 

http://tdrtargets.org/ 

eMolecules Compound database https://www.emolecules.com/ 

 

Functional expression of P. vivax molecular targets and their human orthologs in S. 

cerevisiae surrogate system 

The set of 13 P. vivax molecular targets and their human orthologues are being 

expressed in S. cerevisiae to assess the degree of functional complementation of the 

yeast orthologues [25]. In this study, we selected two yeast strains with the same genetic 

background based on their genotype: BY4743 and BY4741, a diploid and a haploid strain, 

respectively. These strains come from an extensive library denominated Yeast Genome 

Deletion Project (http://www-

sequence.stanford.edu/group/yeast_deletion_project/deletions3.html), and have been 

engineered to minimize the homology to the marker genes in commonly used vectors and 

to reduce plasmid integration events [29]. Besides, heterozygous deletion mutants for 

each of the selected essential genes are available for the diploid yeast strain. Both 

BY4743 and BY4741 were used to generate the final haploid strains functionally 

complemented with the P. vivax and human orthologs. The heterologous expression of 

the ortholog genes is done through a yeast expression plasmid (pCM188, ATCC® 
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87660™) under a tetracycline-controlled transcription activator (TetOFF promoter under 

doxycycline (DOX) presence)[30], to control its expression levels inside the functionally 

complemented strains. 

All the 17 coding sequences from P. vivax and H. sapiens were designed and 

resynthesized by GeneArt® Optimizer (https://www.thermofisher.com/se/en/home/life-

science/cloning/gene-synthesis/geneart-gene-synthesis/geneoptimizer.html) for suitable 

subsequent sub-cloning and efficient expression in S. cerevisiae. From the synthetic 

constructs, delivered in pMA-TPv/HsGENE (AmpR marker) plasmids, 15 were successfully 

sub-cloned into a yeast expression plasmid (pCM188 ordered from Euroscarf - Europen 

Saccharomyces cerevisiae Archive for Functional Analysis, www.euroscarf.de) obtaining 

pCMHs/PvGENE constructs.  

S. cerevisiae BY4743 (diploid background) strains containing a heterozygous deletion 

on the candidate gene targets (BY4743 gene∆/GENE) were heterologously deleted for 

pdr5 gene, which codifies a major pleiotropic drug pump. The 15 plasmid constructs 

pCMHs/PvGENE are being transformed into the BY4743 gene∆/GENE::pdr5∆/PDR5 

strains, lacking the major pleiotropic efflux drug pump PDR5. In alternative, S. cerevisiae 

BY4741 (haploid mate-type A background) strains containing the pdr5 gene deletion 

(BY4741 pdr5∆) are being transformed with the plasmid constructs pCMHs/PvGENE. At this 

stage, sporulation of heterozygous diploid strains and tetrad dissection, and/or yeast 

orthologous gene deletion for haploid selection resulted in heterologous expression of 6 

chosen P. vivax and human molecular targets. 

Furthermore, we used S. cerevisiae Thermosensitive (TS) strains from Charlie 

Boone’s collection to assay the functional complementation ability of our P. vivax and 

human ortholog genes by transformation with plasmid constructs pCMHs/PvGENE followed 

by temperature tests. Thermosensitive mutants are sensible to high temperature, which 

leads to a truncated protein unable to accomplish its functions. This loss of function leads 

to a loss of growth at specific temperature points. The expression of a heterologous 

protein functionally complementing the truncated mutant protein will allow the 

thermosensitive yeast mutant to grow beyond its thermosensitive temperature. The use 

of this technique, when TS strains are available, has revealed important for the exclusion 

of genes (P. vivax or human) that cannot functionally complement on our yeast surrogate 
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system. For one of our chosen P. vivax molecular targets, this has proven to be the case, 

and will not be further perused, but other for other molecular targets, TS strains allowed 

the confirmation of functional complementation (Fig. 2). 

 

 

 
Figure 2. Functional complementation assay in thermosensitive yeast mutants. Thermosensitive strains 
GENEx-TS and GENEx-34 lose their ability to grow at 37°C. The thermosensitive mutants expressing H. 
sapiens or P. vivax GENEx protein can grow at 37°C. H. sapiens and P. vivax GENEx protein can 
functionally complement the yeast GENEx ortholog. 

  

In silico P. vivax and their human ortholog proteins structural modelling and 

database virtual screen against compound libraries 

In order to narrow down the available choices of compounds to use on our drug 

screen, our collaborators under supervision of Prof. Dr. Leif Eriksson modeled the protein 

structure of both parasite (P. vivax, P. falciparum and P. berghei) and human molecular 

targets using ClustalW as a measure of sequence similarity (conserved and polymorphic 

regions) through multiple protein sequence alignment and the YASARA-Homology 

modeler (http://www.yasara.org/homologymodeling.htm) and made predictions for active 

and/or biding site identification using MOE 

(http://cbm.msoe.edu/scienceOlympiad/designEnvironment/practice.html). This protein 

models were then used to screen against the compounds from three big libraries of 

interest, The Pathogen Box (https://www.pathogenbox.org/), FDA-approved 

(https://www.accessdata.fda.gov/scripts/cder/daf/), Maybridge 

(https://www.maybridge.com/portal/alias__Rainbow/lang__en/tabID__146/DesktopDefa

ult.aspx) and ZincDB (http://zinc.docking.org/), in order to find compounds predicted to 

dock and bind to our molecular targets with enough strength to decide the preferred 

GENEx-TS at 22°C 
 
 
 
 

GENEx-TS at 37°C 

GENEx-TS + pCM188Hs-GENEx at 37°C 

GENEx-TS + pCM188 Pv-GENEx at 37°C 

GENEx-34 at 22°C 
 
 
 
 

GENEx-34 at 37°C 

GENEx-34 + pCM188Hs-GENEx at 37°C 

GENEx-34 + pCM188 Pv-GENEx at 37°C 
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compound choices to initiate our drug screens (evaluation performed individually to each 

species through docking scores and for compounds binding more than one parasite 

species and/or human target by MASC scores). Both ClustalW and Schrödinger/Glide 

computational protein modelers were used. Finally, inverse docking was performed as to 

measure the potential selectivity of each compound towards each four protein targets (P. 

vivax, P. falciparum, P. berghei and H. sapiens). 

With this data, I further selected the compounds towards each molecular target in 

three different groups concerning their overlap in docking/binding capacity. One group 

had compounds predicted to dock/bind to at least two parasite proteins, the second group 

had compounds docking/binding to one or more parasite proteins and human ortholog 

and the last group of compounds was selected from those having the highest docking 

scores against the P. vivax protein. We have already performed drug screens with 

compounds from The Pathogen Box library towards yeast strains expressing 3 molecular 

targets. Given the availability of constructed strains for another 3 targets, we are planning 

to proceed with the screens towards those. 

Synthetic compound library screens 

To create the best conditions for high sensitivity drug screening experiments in 

yeast strains expressing the P. vivax and human ortholog molecular targets, we use 

doxycycline (DOX, analogue of tetracycline) to control the expression of the genes 

under the control of TetO2 promoter of the pCM188 constructed plasmids. To 

determine the appropriate DOX concentration to control each gene expression, we 

performed calibration plate and BioScreen assays (more accurate and sensitive 

method that will be after used for the actual drug screen) with a gradient of 

concentrations ranging from 0.01 to 30 mg/L (0.01, 0.05, 0.5, 1, 5, 10, 20 and 30 mg/L 

of  DOX). These results gave us the optimal DOX concentration to perform drug 

screening experiments for each gene target expression, i.e. the optimal DOX 

concentration at which there is enough molecular target expression to allow yeast 

strain survival (given the fact that all molecular targets chosen are essential genes), 

but at such lower lever that could enable us to see the slightest effect that a drug might 

have, even when the compound concentrations used are restricted. 
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Upon choosing the best conditions for each strain (medium and DOX 

concentration), we proceeded towards the drug screen experiments using the 

BioScreen platform (http://www.growthcurvesusa.com/description.html). All strains 

were pre-cultured for 3 days in 5mL of media (YPD or YNB-ura) at 30ºC and at 200 

rpms. For each yeast culture the O.D. was measured and diluted to a final O.D. of 2.0. 

Honey comb plates were filled in with 300 to 400µL of appropriate media (YPD or YNB-

ura or YNB + DOX) and 10µL of the different yeast strain cultures. For the initial 

screens, a 10µM compound concentration was used. The experiments were 

performed in triplicate for the yeast strains heterologous expressing the P. vivax and 

H. sapiens genes, as well as a BY4741 strain containing the empty pCM188 vector as 

a positive control. Since the compounds used were dissolved in DMSO and to exclude 

and normalize data towards eventual DMSO toxic effects over cell growth rates, we 

run growth curves of this strains growing solely in media (YPD or YNB-ura or YNB) 

with the appropriate DOX concentration for each strain and 10µM DMSO. Negative 

technical controls (wells with the experiment set of medias used) were performed in 

all plates to exclude contaminations. The runs at the BioScreen O.D. plate readers 

were executed for a total of 3 days at 30ºC, continuously shaking on low amplitude 

and slow speed, stopping at 20 minute intervals for O. D. read after 10 minutes using 

the 420-580nm wave length filter. By the end of each experiment, data was saved in 

csv format for further analysis. 

For analyzing yeast growth data, we use the software PRECOG 

(http://precog.lundberg.gu.se/). PRECOG automatically estimates the three main growth 

parameters, lag time, growth rate and yield, and was designed to take care of dataset 

problems. For example, BioScreen errant readings often caused by gas bubbles in the 

wells, misread O.D. values, and extreme datapoints. PRECOG gives growth curves a 

smoother and more realistic appearance, by using algorithms to compensate 

underestimations of cell density at higher O.D. reads and adjust the growth curves so that 

they better represent the cell density over time. All statistics are calculated based on the 

average of our triplicate data. 
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Chemical screens for novel antiplasmodial agents are currently being performed on 

the set of 6 P. vivax molecular targets and their human orthologues, expressed in S. 

cerevisiae by functional complementation. 

 

Figure 2. Graphs showing the results for the 4 compound hits found against one P. vivax molecular target. 

** p-value < 0.005; *** p-value < 0.0001.  

 

From the Pathogen Box library, we have already found 4 promising compounds, 

selectively inhibiting the yeast strain expressing one of the P. vivax molecular targets (Fig. 

2). Importantly, all 4 compounds show no relevant cytotoxic effects towards the yeast 

strain heterologous expressing the human gene, they also have no significant effects on 

yeast control strains (Fig. 2).  

Discussion 

We believe this high-throughput target-based approach is a powerful method to find 

high efficacy anti-parasitic lead molecules and has already given proofs with the discovery 

of 4 compound hits against one molecular target showing very strong selectivity and low 

human cytotoxicity (Fig. 2). These and further compound hits are being further tested for 

accurate IC50 determination on our yeast system.  

Some drawbacks must be overcome related to our target-based yeast screen method. 

From all experimental tasks yet performed, sporulation of S. cerevisiae BY4743 

gene∆/GENE::pdr5∆/PDR5 pCMHs/PvGENE strains are, as expected, very inefficient. 

Tetrads dissection for haploids selection with the desired heterologous gene expression 

for the drug screens is time consuming and has a very low success rate. Further 
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optimization and other sporulation protocols have been attempted. To overcome this 

problem, we immediately started a similar approach, but this time using the S. cerevisiae 

BY4741 pdr5∆ pCMHs/PvGENE haploid strain, in which we deleted the essential gene 

target (gene∆) of interest. From this alternative only, we were able to obtain half of the 6 

different strains, needed for drug screen experimentation. 

In parallel, we acquired recently a new yeast background yeast strains (Y13363 and 

Y13118),  which might make the construction of functional complemented strains faster 

and easier and enhance the screen capacity of this platform (Y13363: MATalpha  his3∆1  

leu2∆0  met15∆0  ura3∆0  pdr1::natMX  pdr3::Klura3 snq2::KI.LEU2 and Y13118 (with 

SGA reporters): MATalpha  his3∆1  leu2∆0  met15∆0  ura3∆0  pdr1::natMX  pdr3::Klura3 

snq2::KI.LEU2 can::STEpr-Sp_his5  lyp1∆). These strains were genetically engineered 

with SGA reporters for haploid selection on sporulation protocols when mated with an S. 

cerevisiae BY4743 gene∆/GENE and the 3 major efflux pump genes or precursors (pdr1, 

pdr3 and snq2) deleted, sensitizing further the strain to drug uptake and ameliorating the 

efficiency of the system for drug effects identification. Another future option includes the 

enhancement of all surrogate yeast systems using new CRISPR/Cas9 techniques to both 

create a more sensitized yeast strain, where multiple export pumps can be deleted, and 

the deletion of the yeast gene of interest would be easily done in a one-step switch. This 

could be done together with insertion and expression of the Plasmodium spp. or human 

counterpart genes in the S. cerevisiae genome under TetOFF regulable yeast expression 

system. 

On the other hand, TS strains, when available, were a valuable tool that aided us to 

understand the capacity of each P. vivax and human genes to functionally complement 

the S. cerevisiae ortholog, and thus, the possibility of generating the correspondent work 

strains.  

The use of protein structure modeling and virtual ligand screening allowed the 

identification of prospective compounds against 3 different Plasmodium spp. targets from 

synthetic compound libraries. This bioinformatic screening step narrows down the list of 

compounds to be tested on our experimental screens, by selecting those based on the 

strength of binding (docking scores) towards the structural protein features of each 

Plasmodium spp. and human molecular targets. Following this in silico approach, 
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compounds predicted to selectively inhibit the P. vivax orthologue (over the human 

counterpart) are being identified from extensive libraries of synthetic molecules. 

Importantly, in vitro, in vivo and ex vivo assays for compound efficacy validation are 

ongoing, especially the test of candidate bioactive molecules against (drug-resistant) P. 

falciparum, P. berghei and P. vivax strains. 

  

Concluding Remarks and Future Prospects 

 

The yeast model under development will surely provide a target-based drug screen 

platform able to identify molecules selective for the yeast heterologous expressing P. vivax 

molecular target and enhance parasite selectivity. Most importantly, it will give us further 

information on the molecular mechanisms of drug targeting to avoid the so dangerous 

acquisition of parasite resistance. Also, the use of chemical genomics technology in yeast 

can help us to reveal the biological mode-of-action of natural antiplasmodial compounds. 

Molecular target-compound in vitro assays will be done to evaluate the interaction 

between the P. vivax target protein and the candidate bioactive molecules through thermal 

shift and enzymatic activity assays. Within this collaborative project, we wish to do 

compound redesign and synthesis, for those hit compounds showing a selective effect 

against P. vivax. Modelling and structure–activity relationship (SAR) studies to explore the 

relationship between the chemical structure of a molecule and its biological activity will 

also be applicable in these cases. Finally, the best hits should be assayed, and our P. 

vivax molecular targets validated using the powerful and new CRISPR/Cas9 knockout and 

editing tools, both through in vitro in P. falciparum and/or in vivo in P. berghei assays. 

Automated high-throughput screens can be performed to identify new anti-parasitic 

compounds and allow a cheaper and faster drug development against Malaria, which also 

could be extended to other neglected tropical diseases [27]. This endeavor will help to 

develop novel antiplasmodial agents targeting the proteins expressed in P. vivax life cycle 

stages which are otherwise difficult to access. 
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Research collaborations 

 

This work enforces the already existent international collaboration between Brazilian, 

Swedish and Cambodia research groups managed by the Principal Investigators Prof. Dr. 

Per Sunnerhagen, Prof. Dr. Elizabeth Bilsland, Prof. Dr. Fabio T. M. Costa, Prof. Dr. 

Morten Grotli and Prof. Dr. Benoit Witkowski, within the ongoing research grants entitled 

“Superior bioactive molecules against Plasmodium vivax and Plasmodium falciparum 

through genetic screening in yeast” and  “Combatting antimicrobial resistance by novel 

antimalarial molecules against Plasmodium vivax and P. falciparum from South America 

and South-East Asia”. Other collaboration opportunities are currently being explored, 

principally those that can bring us further support for high throughput robotic systems for 

the screen, libraries of compounds, CRISPR/Cas9 technology learning and/or 

establishment and, most importantly, scientific result cooperation for P. vivax drug 

discovery breakthroughs. 
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