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Abstract

This dissertation aims to study some techniques for handling large scale datasets
to extract representative information from the use of mathematical programming. The
structural patterns of data provide pieces of information that can be used to classify
and cluster them through the optimal solution of specific optimization problems. The
techniques used could be confronted with machine learning approaches to supply new
numerical possibilities of resolution. Computational tests conducted on two case stud-
ies with real data (practical experiments) validate this research. The analyzes are done
for the well-known database on the identification of breast cancer tumors, which either
have a malignant or have a benign diagnosis, and also for a bovine animal database
containing physical and breed characteristics of each animal but with unknown pat-
terns. A binary classification based on a goal programming formulation is suggested
for the first case study. In the study conducted on the characteristics of bovine animals,
the interest is to identify patterns among the different animals by grouping them from
the solutions of an integer linear optimization model. The computational results are
studied from a set of descriptive statistical procedures to validate this research.

Keywords:Clusterization,classification,mathematical programming,machine learning



Resumo

Esta dissertação tem como objetivo estudar algumas abordagens de manipulação
de bancos de dados em larga escala com o objetivo de extrair informações represen-
tativas a partir do uso de programação matemática. Os padrões estruturais dos dados
fornecem informações que podem ser usadas para classificá-los e agrupá-los por meio
da solução ótima de problemas específicos de otimização. As técnicas utilizadas po-
dem ser confrontadas com abordagens de aprendizado de máquina para fornecer novas
possibilidades numéricas de resolução. Testes computacionais conduzidos em dois
estudos de caso (dados oriundos de experimentos práticos) validam esta pesquisa. As
análises são conduzidas sobre um conjunto de dados relacionados com a identificação
de tumores de câncer de mama, com diagnóstico maligno ou benigno, e um banco de
dados de animais bovinos que fornecem características físicas e de raça de cada an-
imal, porém sem um padrão previamente conhecido. Uma classificação binária com
base em um modelo matemático de programação de metas é usado para o primeiro
estudo de caso. No estudo conduzido sobre as características dos animais bovinos,
o interesse é identificar padrões entre os diversos animais ao agrupá-los por meio da
análise das soluções de um modelo de otimização linear com variáveis inteiras. Os
resultados computacionais são estudados a partir de um conjunto de procedimentos
estatístico descritivo para validar o estudo proposto.

Palavras-chaves: Clusterização, classificação, programação matemática, aprendizado
de máquina
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Introduction

As technology advances, it becomes easier to capture and save different human activities such

as buying a product, renting a movie, or going to the cinema. The use of social media or smart

devices (smartphones, tablets, personal computers, and others) allows corporations to investigate

the general characteristics of users and establish their consumption profiles. The information vol-

ume converts to data that are stored in large databases, usually used by companies to understand

their customers’ preferences. Thus new products/goods and services are adjusted and offered for

costumers according to these preferences.

With the purpose of understanding and extracting relevant information from data, machine

learning techniques have arisen in the last decades as a powerful tool for this purpose. Alpaydin

(2010) explains that machine learning seeks to understand patterns from data that can be helpful to

made future predictions of them. In this case, it considers that the past data is similar to future data.

Practical problems in various branches of study, such as engineering, manufacturing, management,

science, and medicine, have successfully applied machine learning. We note, for example, in

engineering design, material behaviour, medical diagnosis, among other applications.

Furthermore, regression analysis, support vector machine, neural networks, k-means clustering

and perceptron are some examples of well-known algorithms that fit well with these mentioned

applications. Note that the existing machine learning techniques are not just to learn from the data.

They also need to be able to adapt to data, i.e., to change with the data environment in the sense

that it is learning via a context-aware approach to construct a system that is smart enough.
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Additionally, looking for patterns in data to try to separate them into different groups by using,

for example, similarity or dissimilarity rule is a common problem solved through the classification

and clustering approaches. The first approach is a supervised method where the aim is to learn

from labeled data such that it can predict for new data what group to which it belongs. The second

approach is an unsupervised method that works with unlabeled data. It finds the best number of

groups such that data points inside of a specific group (similarity) are more similar than data points

outside of this group (dissimilarity). These two approaches arise in the context of optimization

problems.

Machine learning is a growing field fundamentally based on artificial intelligence that has an

enormous number of applications in connection with optimization methods. Although machine

learning seeks to learn from data, Song et al. (2019) affirm that it is a successful method only

through an algorithm that is specifically designed by experts when selecting parameters that are

more appropriate for a specific goal. Then, to decrease human intervention, optimization tech-

niques are being used, for example, by Carrizosa & Romero Morales (2013), Pedro Duarte Silva

(2017), and Song et al. (2019) to tackle these configuration issues of the machine learning algo-

rithms. The methods in the machine learning area aim to learn knowledge from data or experience.

At the same time, the techniques from the optimization problems search for the best option or

solution to a given problem.

The central aspect of this research is to study some ways to tackle large scale databases for

which the structural patterns of data could be classified or clustered via the optimal solution of

specific optimization problems. Chapter 1 provides the preliminary concepts and definitions to be

used throughout the text. The preliminaries cover basic concepts of mathematical programming

and present a specific goal programming model that could be applied for a binary classification

problem. It indicates certain connections between machine learning and optimization problems

and reports an important dimension reduction technique. Chapter 2 gives a brief overview of clas-

sification and clustering techniques. The overview includes the classification methods named as

perceptron and support vector machine, and the popular clustering methods named k-means and

hierarchical methods. The methodology used appears in Chapter 3. It describes a goal program-

ming model to binary classification and an application of integer mathematical programming for a

clustering problem with an emphasis on large-scale databases. Chapter 4 presents numerical exper-

15

15

Rectangle

Rectangle



iments for classification and clustering in two case studies: the so-called database on breast cancer

tumors, which either have a malignant or have a benign diagnosis, and a bovine animal database

containing a set of features with no defined pattern respectively. The former is to perform a binary

classification based on a goal programming model, and the latter is to search for the patterns in

data to cluster them through a specific integer mathematical programming model using a sparse

reduction method. Finally, Chapter 5 provides the conclusions obtained from this research with

indications for further related works.
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CHAPTER 1

Preliminaries

This chapter provides preliminary concepts and definitions used throughout the research. It

covers the most basic concepts of optimization, mathematical programming, goal programming,

and machine learning. Moreover, it indicates peculiar connections between machine learning and

optimization problems and, finally, presents a way of reducing the dimension of data.

1.1 Optimization

Optimization is a large area of study within pure and applied mathematics that, in short, seeks

to obtain the best possible solution of a particular mathematical problem. It deals with a specific

objective to be minimized or maximized by considering a series of limitations and satisfying a set

of constraints. Progressing studies in optimization took place during World War II when the British

military faced diverse difficulties with allocating their resources (such as fighter airplanes, radars,

and submarines) to perform several activities. In these times of challenges, a group of mathematics

developed a methodology that achieved the best result of a linear programming problem, at the

moment that emerges the concept of Operation Research (OR).

Rao (2009) explained (see Table 1.1) that the methodologies for OR split up into three groups:

mathematical programming or optimization techniques, stochastic process techniques, and statisti-

cal methods. Note in the first column of Table 1.1 that the expressions optimization and mathemat-

17
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Mathematical
programming or
optimization techniques

Stochastic process
techniques

Statistical methods

Calculus methods Statistical decision theory Regression analysis
Calculus of variations Markov processes Cluster analysis,

pattern recognition
Nonlinear programming Queueing theory Design of experiments
Geometric programming Renewal theory Discriminate analysis

(factor analysis)
Quadratic programming Simulation methods
Linear programming Reliability theory
Dynamic programming
Integer programming
Stochastic programming
Separable programming
Multiobjective programming
Multi-criteria decision analysis
Network methods: CPM and PERT
Game theory

Table 1.1: Methods of operations research. Adapt from Rao (2009)

ical programming sound to have the same meaning. This dissertation deals with the concepts and

applications of the mathematical programming methodology for binary classification and cluster-

ing analysis, as detailed in Chapters 2 and 3.

1.2 Mathematical programming

Mathematical programming (MP) and modeling are the keys to the solution methods in OR.

It can be applied in a variety of areas: business and industry (K. Brian Haley B.Sc. 1967), mili-

tary (Fox & Burks 2019), public-sectors (Kose & Karabay 2016), among others. Likewise, some

applications in engineering have been made as in production, civil, chemical, mechanical, or

aerospace engineering. All those studies intend to achieve the best result of an objective that is

limited by using a certain quantity of resources. In overall terms, according to Ozan (1986), MP

is the mathematical representation to obtain the best distribution of scarce resources through pro-

gramming.

The aim in MP is to find the optimal value of an objective function, satisfying a set of con-

straints that represents limited resources and explains the nature of the problem. For the decision-

maker, MP is the most attractive approach for aiding to deal with quantifiable variables by search-
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ing relationships among them that are not readily perceivable. The optimization problems are

structured depending on the existence of constraints (unconstrained and constrained optimiza-

tion). Luenberger & Ye (2015) stated a constrained optimization problem as follows.

Minimize f (x) (1.1)

subject to hi(x) = 0, i = 1, . . . ,m, (1.2)

g j(x)≤ 0, j = 1, . . . ,r, (1.3)

x ∈ Rn, (1.4)

where f (x) is the objective function, x = (x1, . . . ,xn)
T is an n-dimensional vector with unknown

values, and f , hi, and g j are real-valued functions of the variable x, for i= 1, . . . ,m, and j = 1, . . . ,r.

Constraints (1.2) and (1.3) are called of equality and inequalities constraints, respectively; and

S = {x ∈Rn | hi(x) = 0, g j(x)≤ 0, i = 1, . . . ,m, j = 1, . . . ,r} denotes the set of feasible solutions.

Some common assumptions are used on this problem, as smooth and continuous functions and the

n-dimensional space is to be a well-connected region.

The literature provides different paths of classifying mathematical programming problems.

For example, Rao (2009) considers the following eight aspects. The existence of constraints (con-

strained and unconstrained problems). The nature of the design variables (static and dynamic

variables). The physical structure (optimal control and nonoptimal control). The core of the equa-

tions (linear and nonlinear functions). The permissible values of the design variables (integer and

continuous variables). The essence of the variables (deterministic and stochastic variables). The

separability of the functions (separable and nonseparable functions). The number of objective

functions (scalar and multiobjective problems).

Nevertheless, the approaches studied in this dissertation are based on linear programming,

which takes place through the following standard mathematical formulation.

Minimize f (x) =
n

∑
j=1

c jx j (1.5)

subject to
n

∑
j=1

ai jx j = bi, i = 1, . . . ,m, (1.6)

x j ≥ 0, j = 1, . . . ,n, (1.7)

where the parameters ai j,bi and c j are known, and even though this formulation only comes up
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with equality constraints, the variation for inequality case could be made. If ∑
n
j=1 ai jx j ≥ bi or

∑
n
j=1 ai jx j ≤ bi appears in the set constraints, then a slack variable yi ≥ 0 is removed or added

from each ∑
n
j=1 ai jx j, respectively.

1.3 Goal programming

The goal programming methodology is an excellent tool to deal with conflicting objectives (Jones

& Tamiz 2010). The essence of goal programming (GP) is the minimization of unwanted deviation

variables, where they need to work together in the form of an achievement function. The purpose

is to minimize the achievement function and thus ensure that the solution found is “as close as

possible” to the set of desired goals. Mathematical programming and multiple criteria decision

making have provided the basis for enhancing the studies of goal programming that started from

the works of Charnes et al. (1955), Lee (1972), and Ignizio (1976, 1982, 1985).

Charnes et al. (1955) applied GP for an executive compensation problem. Then, GP was seen

as a derivative of linear programming model until 1961 when Charnes & Cooper (1957) made

first formal statements, making it one of the most popular techniques in the field of multi-criteria

decision making (MCDM) in those years. However, the GP approach was not complete until 1980,

when the following list of considerations was suggested to avoid basic errors:

• Pareto-inefficient solutions must be included;

• Redundancy obtained when a high number of priority levels are used;

• Apply a weight sensitivity analysis;

• Direct comparison of incommensurable goals;

• The preferences of the decision-maker(s) have a bad representation.

A more definitive and structure literature in this field was developed by Romero (1991), Tamiz &

Jones (1997), and Ignizio (2004).

In short, a goal programming model has six principal elements: decision-maker, decision vari-

ables, criterion, objective, goal, and deviation variables. Jones & Tamiz (2010) explained that a

decision-maker is a person, organization, or stakeholder whose decision or objective of the problem

belongs to and is described by decision variables to know how a decision is going to be taken. Also,
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the criterion defined by the objective measures the goodness of any solution to a decision problem

that has a different scale direction (minimize or maximize). Finally, a goal is a numeric level (also

called target level) for which the decision-maker wants to get, and the deviation variables control

the difference (positive or negative) between this level and the achieved optimal solution.

A general format for a GP model is stated as follows.

Minimize z = h(n, p) (1.8)

subject to fq(x)+nq− pq = bq, q = 1, . . . ,Q, (1.9)

x ∈ F, (1.10)

nq, pq ≥ 0, q = 1, . . . ,Q, (1.11)

where (1.9) expresses the quantity of goals (q = 1, . . . ,Q) the decision maker wants to achieve;

there are n decision variables x = (x1, . . . ,xn)
T ; fq(x) is the value at the solution x to be achieved

for each goal; nq and pq are negative and positive deviation variables for each goal, respectively;

n = (n1, . . . ,nQ)
T and p = (p1, . . . , pQ)

T ; bq is a numeric level that limits each goal; F represents

the set of hard linear constrains in (1.10); sign restrictions for deviation variables is stated in (1.11);

and the objective function z = h(n, p) to be minimized in (1.8) can be a linear or nonlinear function

for the deviation variables n and p. To ensure that the solution is the closest to get the desired goal

values, Jones & Tamiz (2010) describe three variants of model: lexicographic goal programming

(LGP), weighted goal programming (WGP), and Tchebychev goal programming (THGP).

Priority levels characterize the LGP, where each level contains an achievement function hl(n, p)

on the deviation variables to be minimized according to a predetermined ordering (Silva & Marins

2015): first h1; second h2; and so on, up to the last hL. Lee (1972) presented a mathematical

formulation for LGP, for which the objective function (1.8) is replaced with Lex Min z, where

z = [h1(n, p),h2(n, p), . . . ,hL(n, p)], and hl(n, p) has the priority level l = 1, . . . ,L to be minimized

as in the following standard structure.

Lex Minimize z = [h1(n, p),h2(n, p), . . . ,hL(n, p)] (1.12)

subject to fq(x)+nq− pq = bq, q = 1, . . . ,Q, (1.13)

x ∈ F, (1.14)

nq, pq ≥ 0, q = 1, . . . ,Q. (1.15)
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If each hl(n, p) is linear and separable then it can be state as hl(n, p) =
Q
∑

q=1

(
ul

qnq
kq

+
vl

q pq
kq

)
,

where the preferential weights ul
q and vl

q are associated to the variables np and pq, respectively,

in the l-th priority level. The weight models the preference corresponding to its deviation vari-

able, and the parameter kq is a normalizing factor for each deviation variable, which for Jones &

Tamiz (2010) is to standardize the contribution that each deviation variable gives to the objective

function. Three types of normalization could be applied: percentage, zero-one, and Euclidean nor-

malization. Some applications for the LGP variant have been studied. McGregor & Dent (1993)

used the LGP model to evaluate the trade-offs between economic, environmental, and energy fac-

tors by developing forest energy plantations in Eastern Ontario, Canada. And Nha et al. (2013)

utilized a version of LGP, lexicographic dynamic goal programming (LDGP), for implementing

time series in a pharmaceutical case of the study, where the optimal solution provides the optimal

drug configuration.

Note that sometimes the goals are measured by different units. The WGP variant allows eval-

uating the compromise among the deviation variables by using normalized weights in the achieve-

ment function. The decision-maker informs the importance of each goal to obtain a related optimal

solution (Tamiz et al. 1995). Jones & Tamiz (2010) presented a mathematical formulation for WGP

that is used when there is a direct comparison among the relative importance of goals, for which

h(n, p) =
Q
∑

q=1

(
uqnq

kq
+

vq pq
kq

)
, uq and vq are the assigned weights for the negative and positive devi-

ation from the target value bq, respectively, and the parameter kq is a normalizing factor for each

deviation variable. Note that the WGP variant allows an equilibrium between all unwanted devia-

tion variables. Assuming linearity of the achievement function, WGP can be represented from the

following formulation.

Minimize
Q

∑
q=1

(
uqnq

kq
+

vq pq

kq

)
(1.16)

subject to fq(x)+nq− pq = bq, q = 1, . . . ,Q, (1.17)

x ∈ F, (1.18)

nq, pq ≥ 0, q = 1, . . . ,Q. (1.19)

Recent applications for the WGP variant appear in the literature. Zografidou et al. (2016) used

the WGP variant to found the optimal design of a Greek renewable energy production network
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considering social, environmental, and economic criteria. Moreover, Jayaraman et al. (2017) de-

veloped a mathematical formulation to determine the optimal allocation across various industrial

sectors by taking into consideration four goals: economic development, electricity consumption,

greenhouse emissions, and the total number of employees.

Flavell et al. (1976) introduced the THGP variant that uses the Tchebychev metric (L∞) to mea-

sure distances, i.e., the maximal normalized weighted deviation from amongst the set of unwanted

deviation variables is minimized. For this reason, it is sometimes referred to as goal programming

Min-Max, and the decision-maker is seeking the balance of the achievement function. Unlike the

LGP model, instead of establishing a priority preference level, it looks for a balance between all the

desire goals values. If λ≥ 0 is the maximal normalized weighted deviation from the targets, THGP

can be represented by using z = λ with the addition of the following constraints uqnq
kq

+
vq pq

kq
≤ λ,

q = 1, . . . ,Q, to the previous model, according to the following formulation.

Minimize z = λ (1.20)

subject to
(

uqnq

kq
+

vq pq

kq

)
≤ λ, q = 1, . . . ,Q, (1.21)

fq(x)+nq− pq = bq, q = 1, . . . ,Q, (1.22)

x ∈ F, (1.23)

nq, pq ≥ 0, q = 1, . . . ,Q. (1.24)

The literature presents practical applications for the THGP variant. For example, Ignizio (2004)

used a linear zero-one THGP model to obtain the optimal allocation of maintenance technicians in

a factory to optimize the average factory cycle time. And Ghufran et al. (2015) described a THGP

variant for the stratified double sampling problem, for which it finds the approximate optimal

solution when strata weights are unknown, and non-response is present.

Additionally, in order to encompass the variants LGP, WGP, and THGP into a unique model,

Romero (2001) proposed the extended goal programming (EGP) that facilitates to address many

ways to minimize the unwanted deviation variables. EGP merges the previous models and pro-

vides a useful structure for including different metrics in the achievement function. It can be

used to model different problems due to its ability to combine the various underlying philoso-

phies of satisfying (from LGP), optimizing (from WGP), and balancing (from THGP) in a mul-

tiobjective environment (Jones & Tamiz 2010). Using a different notation from Romero (2001)
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and Jones & Tamiz (2010), if λ` ≥ 0 is the maximal normalized weighted deviation from the tar-

gets, EGP has the objective function Lex Min z= [h1(n, p),h2(n, p), . . . ,hL(n, p)], where h`(n, p)=

α`λ`+(1−α`){∑Q
i=1(

u`qnq
kq

+
v`q pq

kq
)}, h`(n, p) has the priority level ` = 1, . . . ,L to be minimized,

and the constraints
u`qnq

kq
+

v`q pq
kq
≤ λ`, ` = 1, . . . ,L, i = 1, . . . ,Q, are added to the model (1.12)–

(1.15). EGP has been improved to address the most diverse practical applications. García et al.

(2010) compared WGP, THGP, and EGP models in the ranking of companies. In the forestry

sector, Giménez et al. (2013) presented a model for achieving the consensus decision on a forest

management problem. In people management, De Andres et al. (2010) described a EGP model

for evaluating performance. There are other variants for goal programming. For example, Uría

et al. (2002) proposed the meta goal programming, Chang (2008) presented the multiple-choice

goal programming, and Tiwari et al. (1987) studied the fuzzy goal programming. The latter deals

with different levels of uncertainty.

1.4 Machine learning

Machine Learning (ML) is a multidisciplinary field that draws on the results from artificial in-

telligence, probability and statistics, computational complexity theory, control theory, philosophy,

among others (Mitchell 1997). In the literature, ML may present different definitions according to

the diversity of application fields. For this research, we explore an overview of optimization mod-

els with ML by using experiences or example data whose patterns are taken as an input to learn

from and optimize. Hence, it leads to predictions if the model is predictive, extract knowledge if it

is a descriptive one, or it does both.

There are different areas where machine learning is applied. In finance, to predict the credit risk

of clients in a bank (Baesens et al. 2003), fraud detection or to investing in the stock market (Gavr-

ishchaka & Banerjee 2006). In medicine, ML is used for medical diagnosis, and in science to

manage big databases in physics, astronomy, and biology. According to Simeone (2017), ma-

chine learning approaches can be classified into three groups: supervised learning, unsupervised

learning, and reinforcement learning.

Supervised learning works with previously known information (the input data). It seeks an

association rule that learns the relationship among the input data, whose output interpretation is

already known, to predict the expected answer (the output data) of new data. The classification
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algorithms and regression techniques typically produce this associative learning (Shobha & Ran-

gaswamy 2018).

Classification algorithms predict discrete responses with input data that can be categorized,

tagged, or separated into groups or classes. For example, when mails are directed to a specific

mailbox, a classification algorithm is applied to distinguish if an email is genuine or spam (Shafigh

& Sourati 2016). Some well-known applications appear for bank credit risk (Pandey et al. 2017),

speech recognition (Koolagudi et al. 2018), and medical imaging (Giger 2018). Alternatively, re-

gression techniques predict continuous responses by achieving an association rule between two or

more variables, for which a linear equation should fit the observed data. For example, a supermar-

ket collected data from costumers’ most preferred dates to buy groceries, and a regression finds

a relationship between the two following variables: how much a customer buys and when it does

it (Larivière & Van den Poel 2005).

Unsupervised learning operates with input data whose labels or answers are unknown, and

sometimes they are also used for preliminary data exploration. In this case, the aim is to find

some patterns on the input data, see how often they occur, and learn what generally happens or

not. Moreover, this type of learning finds the structure of data and the relationship between their

variables, often with the help of visual analytic tools.

The k-means clustering, hierarchical clustering, and principal component analysis (PCA) are

the most popular unsupervised algorithms. The first two seek to group similar samples according

to which variables the data are molded. PCA allows making a dimension reduction by combining

the variables to the most representative ones. Several applications have been studied via unsuper-

vised learning. Kakushadze & Yu (2017) used a k-means clustering algorithm to group types of

cancers. Qureshi & Ahamad (2018) proposed a clustering method using k-means based on image

segmentation with neutrosophic logic. Liu & Ge (2018) applied a hierarchical clustering based

on randomly weighting forests to classify complex industrial processes. And Wei et al. (2019)

studied several hierarchical divisive clustering for categorical data.

In reinforcement learning, an agent learns by interacting with the environment which generates

a certain state. Then, the result of this action is a reward that defines if we are closer to the

goal or if the agent should take another action (to interact again with the environment) in order

to maximize the total reward (Alpaydin 2010). Typical practical applications of reinforcement
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learning including video games (Sethy et al. 2015), robotics (Martínez-Tenor et al. 2018), and

traffic-signal control (Aragon-Gómez & Clempner 2020).

1.5 Connection between optimization and machine learning

Machine learning (ML) and optimization (OP) techniques belong to different areas, and accord-

ing to Song et al. (2019), they both are based fundamentally on artificial intelligence. Moreover,

they also interact with each other and with themselves to overcome their limitations by working

together. Figure 1.1 shows the two types of cooperation between ML and OP. Machine learning

for optimization (Interaction 1) and optimization for machine learning (Interaction 2).

Figure 1.1: Interactions between machine learning and optimization. Adapt from Song et al. (2019)

Machine Learning for Optimization, as illustrated by Interaction 1, involves procedures that

incorporate machine learning techniques into optimization, extracting patterns in data and trans-

forming them into information to set parameters and components of the optimization algorithm.

Machine learning techniques increase the process and performance of optimization algorithms.

They help the speed-up of search processes and improve the quality of solutions. According to

Song et al. (2019), there are three types of procedures that machine learning can improve opti-

mization. It improves metaheuristic, algorithm selection, and enhance hyper-heuristics.

Optimization for Machine Learning (Interaction 2) involves approaches that incorporate opti-

mization techniques into machine learning to overcome some design errors in machine learning

algorithms since it must need some expert intervention to choose and set parameter values. Opti-

mization improves the machine learning algorithm by decreasing human participation, and it can be

incorporated into any process step of a machine learning algorithm. Song et al. (2019) highlighted

the following procedures: data preprocessing, algorithm selection, hyper-parameter tuning, and

model training.
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Before applying any machine learning algorithm, data preprocessing transforms the raw data

into just the best representative of them, considering data cleaning, dimensionality reduction, and

instance reduction. Algorithm selection involves choosing the best machine learning algorithm that

best fits the problem.

Gambella et al. (2020) also writes about the interaction between machine learning and opti-

mization into three types: machine learning applied to management science problems, machine

learning to solve optimization problems, and machine learning problems formulated as optimiza-

tion problems. The first interaction incorporates machine learning data predictions into manage-

ment science for making optimal decision making (Kraus et al. 2020); the second interaction uses

machine learning techniques to solve, for example, hard optimization problems or to complement

existing approaches of combinatorial optimization problems (Bottou et al. 2016). Finally, the third

interaction is when machine learning problems are defined as optimization problems and which

objectives are, for example, optimizing the training error, the measure of fit, or cross-entropy.

Thereby, Interaction 1 of Song et al. (2019) is similar to the second interaction from Gambella

et al. (2020) called machine learning to solve optimization problems, and Interaction 2 (Song et al.

2019) has its alike with the third interaction of Gambella et al. (2020) named as machine learning

problems formulated as optimization problems.

1.6 Dimensionality reduction

Dimensionality reduction techniques of data are another class of predictor transformations.

These methods reduce the data by generating a smaller set of predictors that seek to capture a

majority of the information in the original variables (Kuhn & Johnson 2013). Note that these

methods are helpful when modeling a considerable number of variables. Therefore, a reasonable

fidelity of the original data must be provided from fewer variables.

Reduction techniques enable data exploratory analyses by reducing the complexity of the

dataset but approximately preserving essential properties, such as retaining the distances between

cases or subjects. If they can reduce the complexity to a few dimensions, then it is possible to plot

the data and explore its intrinsic properties (Dinov 2018). The most data reduction techniques have

the new predictors as functions of the original predictors. Then, all the original predictors are still

needed to create representative variables. This class of methods is often called signal extraction or
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feature extraction techniques.

Thus, several dimensionality reduction techniques have been proposed to handle large databases

derived from well-known classical methods. Linear discriminant analysis (LDA) and principal

component analysis (PCA) are classical linear techniques to reduce the data. The former works

with the feature selection from a d-dimension database and selects a k-dimension feature (k < d)

that gives the most information. The latter finds a new set of attributes of k-dimension generated

by combining the original features from a d-dimension database (Alpaydin 2010). For example,

canonical correlation analysis (CCA) and independent component analysis (ICA) are linear tech-

niques derived from PCA. Moreover, nonlinear dimensionality reduction methods have also been

developed, for example, Kernel PCA (Alpaydin 2010). The next section presents more details

about the recognized PCA method.

1.6.1 Principal component analysis method

PCA method is an unsupervised method used in a big database to find a lower dimension by

reducing the number of features while keeping as much information as possible. A new set of

features is created as a combination of the original ones without require information about the

classes. It is commonly used for data visualization, anomaly detection, lossy data compression,

and feature extraction.

An algorithm for PCA method is usually defined as the projection of the data onto a suitable

lower-dimensional feature subspace (Watt et al. 2016), while it maximizes the variance of the pro-

jected data. Another interpretation is that the PCA method seeks a projection that minimizes the

square error between the projected data and the original data. Next, we describe these two inter-

pretations of the PCA method.

Maximum projected data variance approach

Let {x(1), . . . ,x(m)} be a given set of data points, where x(i) ∈Rn. An algorithm that maximizes

the variance of the projected data points seeks typically to determine a new and reduced subspace

of k-dimension (k� m) to project each x(i) onto it while maximizing its variation relative to the

average value of points (Zaki & Meira Jr. 2014). In advance, the data points must be pre-processing

to make each feature contributes similarly. Thus the data are standardized to have the median equal
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to zero.

First, a projection onto one-dimension space (k = 1) is done in the unitary direction u. As

‖u‖ = 1, the length of the projection of x(i) along u is uT x(i). PCA looks for a direction u that

maximizes the variance of data points that can be seen as the following optimization problem.

Considering centered data, so it has a mean µ equal to zero and, if it is not, subtract the mean of

each feature from the data points to make µ = 0.

Maximize
1
m

m

∑
i=1

(
uT x(i)

)2
(1.25)

subject to ‖u‖= 1. (1.26)

The expression in the objective function (1.25) gives the following relation for the variance:

σ
2
u =

1
m

m

∑
i=1

(
uT x(i)

)T (
uT x(i)

)
= uT

[
1
m

m

∑
i=1

x(i)x(i)
T
]
u.

Thus, Σ ≡ 1
m

m

∑
i=1

x(i)x(i)
T

is the covariance matrix of the data, and the previous expression is

reformulated as follows.

σ
2
u = uT

Σ u. (1.27)

Using the expression in (1.27) the optimization problem is redefined as follows.

Maximize uT
Σ u (1.28)

subject to uTu= 1. (1.29)

The previous optimization problem can be solved via the Lagrangian multiplier approach, in-

cluding the multiplier ρ in the constraint and replacing the objective function to obtain the follow-

ing unconstrained maximization problem.

Maximize
u

J(u) = uT Σ u−ρ
(
uTu−1

)
(1.30)

Setting the derivative of J(u) from (1.30) with respect to u equal to zero, we obtain

Σu= ρu. (1.31)
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Note that ρ is an eigenvalue of the covariance matrix Σ for the associated eigenvector u. Fur-

thermore, taking the dot product with u on both sides of (1.31) yields uT Σ u= uT ρu. From (1.27)

and (1.29), we then have σ2
u = ρ. Therefore, to maximize the projected variance σ2

u, a direction

u= u1 (first principal component) must be chosen that is equal to the eigenvector with the largest

eigenvalue ρ = λ1 of the covariance matrix Σ.

For the second principal component, it must be determined another direction ν that also max-

imizes the projected variance of data points and has magnitude ‖ν‖2 = νT ν = 1 but is orthogonal

to u1. For the direction ν, we have the following optimization problem.

Maximize ν
T

Σν

subject to ν
T

ν = 1,

ν
Tu1 = 0.

Lagrange multipliers are also applied to obtain the unconstrained maximization problem

Maximize
ν

J(ν) = νT Σν−ρ(νT ν−1)−φ(νTu1−0). (1.32)

Taking the derivative of J(ν) from (1.32) with respect to ν, and setting it equal to zero, gives

2Σν− 2ρν− φu1 = 0. The operation (2Σν− 2ρν− φu1)
Tu1 = 0 implies to 2νT Σu1− φ = 0. As

Σu1 = λ1u1, then φ = 2λ1νTu1 = 0. Thus, we have 2Σν−2ρν = 0, and Σν = ρν.

This result means that ν is another eigenvector of Σ associated with the eigenvalue ρ. Also, to

maximize the projected variance, a second principal component ν = u2 must be found, which is

also an eigenvector of Σ but associated to the second largest eigenvalue ρ = λ2.

The illustration of the two principal components u and ν appears in Figure 1.2 as a two-

dimensional subspace spanned by the orthonormal vectors u and ν.

In summary, the principal components of a m-dimension database provide k basis vectors for a

k-dimension subspace. The k vectors also are the ones that maximize the variance of the projected

data, and they are formed by the eigenvectors u1,u2, . . . ,uk of the covariance matrix Σ (positive

semi-definite) that have the respective eigenvalues λ1,λ2, . . . ,λk. The eigenvalues must all be non-

negative, and we can thus sort them in decreasing order as follows.

λ1 ≥ λ2 ≥ ·· ·λk ≥ λk+1 . . .≥ λm ≥ 0 (1.33)

30

30

Rectangle



Figure 1.2: Principal components for two-dimensional subspace

We then select the k largest eigenvalues and their corresponding eigenvectors to form the best k-

dimensional approximation. In order to find how many dimensions will be useful for a reasonable

estimate, the following criterion explained in Zaki & Meira Jr. (2014) for choosing k defines a

function f (k) as the fraction of the total variance captured by the first k principal components from

the original m-dimension dataset.

f (k) =
λ1 +λ2 + . . .+λk

λ1 +λ2 + . . .+λm
=

∑
k
i=1 λi

∑
m
i=1 λi

(1.34)

Given a certain desired variance threshold θ and starting from the first principal component,

the function f (k) iterates on adding additional components, and stops at the smallest value k, for

which f (k) ≥ θ, is reached. Note that we select the fewest number of dimensions such that the

subspace spanned by these k vectors captures at least θ fraction of the total variance. For standard

practices, θ is usually set to 0.9 or higher.

Minimum squared error approach

An alternative formulation of PCA is based on projection error minimization. The minimum

squared error approach (MSE) looks for an orthogonal projection that minimizes the overall pro-

jection error. Using the notation of Bishop (2006), let {xn} be a dataset of observations where

n = 1, . . . ,N, and xn is a Euclidean variable with dimensionality D, and consider a complete or-

thonormal set of D-dimensional basis vectors {ui}where i = 1, . . . ,D that satisfy uT
i u j = δi j. Thus,
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each data point can be represented exactly by a linear combination of the basis vectors.

xn =
D

∑
i=1

ρniui, (1.35)

where the coefficients ρni will be different for different data points. For each data point xn, this

simply corresponds to a rotation of the coordinate system to a new system defined by the {ui},

and the original D components {xn1, . . . ,xnD} are replaced by an equivalent set {ρn1, . . . ,ρnD}.

Considering the orthonormality property of set {ui}, we obtain ρn j = xT
n u j, and each xn can be

express as

xn =
D

∑
i=1

(xT
n ui)ui (1.36)

However, the objective here is to approximate this data point using a representation involving

a restricted number M� D of variables corresponding to a projection onto a lower-dimensional

subspace. The M-dimensional linear subspace can be represented by the first M of the basis vectors

{u1,u2, . . . ,uM}, and we approximate each data point xn by

x̃n =
M

∑
i=1

zniui +
D

∑
i=M+1

biui, (1.37)

where the set {zni} depends on the particular data point, wheres the set {bi} is constant that is the

same for all data points. The main goal is to minimize the squared distance between each original

data point xn and its approximation x̃n, averaged over the data set. Thus, the following function J

is also defined as distortion error must be minimized.

J =
1
N

N

∑
n=1
||xn− x̃n||2. (1.38)

If (1.37) is replaced into (1.38), it is easy to find zni from the partial derivate of J with respect

to zni and equal to zero, and making use of orthonormality conditions, we obtain zn j = xT
n u j, j =

1, . . . ,M. Similarly, setting the derivative of J with respect to bi to zero, which it leads to b j = x̄T u j,

j = M + 1, . . . ,D. Now, if we substitute for zni and bi, and make use of the expansion (1.35), the
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approximation error only plays a role in dimension M+1, . . . ,D as follows.

xn− x̃n =
D

∑
i=M+1

((xn− x̄T )ui)ui (1.39)

The displacement vector from xn to x̃n lies in the space orthogonal to the principal subspace,

which is a linear combination of {ui} for i = M + 1, . . . ,D. It can be said that the minimum

error (1.38) is given by the orthogonal projection of xn onto the principal subspace spanned by

{ui}. Therefore, we obtain an expression for the distortion measure J as a function purely of the

{ui} in the form

J =
1
N

N

∑
n=1

D

∑
i=M+1

(xT
n ui− x̄T ui)

2 =
D

∑
i=M+1

uT
i Σui. (1.40)

There remains the task of minimizing J with respect to the {ui}, which must be a constrained

minimization to avoid vacuous ui = 0. The constraints arise from the orthonormality conditions,

and the solution is expressed concerning the eigenvector expansion of the covariance matrix. For

the case of a two-dimensional data space D = 2 and a one-dimensional principal subspace M = 1,

to choose a basis vector u1 the following formulation is made

Minimize J = uT
1 Σu1

subject to uT
1 u1 = 1.

Figure 1.3 illustrates a representation in a two-dimensional data space that reduces to one-

dimension principal subspace.

The latter model can be reformulated by using the following Lagrangian multiplier approach

Minimize J = uT
1 Σu1 +λ(1−uT

1 u1), (1.41)

which is solved by making the partial derivate with respect to u1 equal to zero, to obtain Σu1 = λu1.

The general solution to the minimization of J for arbitrary D and arbitrary M� D is obtained by

choosing the {ui} to be eigenvectors of the covariance matrix given by

Σui = λui (1.42)
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Figure 1.3: PCA for two-dimension data space and MSE approach. (Bishop 2006)

where i, . . . ,D, and as usual the eigenvectors {ui} are chosen to be orthonormal. The corresponding

value of the distortion measure is then given in terms of the eigenvalues of the data covariance

matrix Σ as follows.

J =
D

∑
i=M+1

λi. (1.43)

This last equation represents the sum of the eigenvalues of those eigenvectors that are orthog-

onal to the principal subspace (Bishop 2006). Therefore, the minimization of J requires to choose

the M eigenvectors as the principle subspace that are associated with the M largest eigenvalues.

In order to calculate the size of M, we use the following ratio between the fraction of the mean

square size of error and the mean square size of data whose the output is the smaller possible value

mean square size of error
mean square size of data

=
∑

D
i=M+1 λi

∑
D
i=1 λi

. (1.44)
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CHAPTER 2

Summary of classification and clustering

This chapter gives a brief overview of some classification and clustering approaches, where

we explain how a linear classifier works, and describe the perceptron algorithm and support vector

machine). Moreover, to outline the clustering technique, we present a description of two well-

known methods, the k-means and hierarchical clustering.

2.1 Classification

The classification aims to assign an unknown pattern to one of many classes that are considered

to be known (Theodoridis 2015). For example, banks predict the risk associated with a loan that

relates to the probability of a customer not pay their credit (Pandey et al. 2017). Using the bank’s

record past data, and after a previous selection of features related to the costumer’s attributes, an

association between them and their associated class of risk will be found. This connection allows

preventing when a future customer applies, so the bank will know if they are suitable or not to

receive a loan.

Other applications have been made with classification systems: face recognition (Shailaja &

Anuradha 2016), to classify if an image contains or not a face; in medicine, specifically to detect if

a tumor could be benign or malign (Wolberg & Mangasarian 1989); and in recognition of letter to

identify the authorship of a given text (Frey & Slate 1991). Usually, the classifier’s output is often
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a discrete value; however, it is also common to see continuous variables as to made probability

prediction.

As a supervised learning method, a classifier has two consecutive steps: firstly, a training step

builds the model from a prediction function; secondly, a classification step sets the model according

to its accuracy rate. In advance of the procedure steps, a data treatment process should be done by

selecting the best combination of features from an enormous collection. A statistic analysis does

this process to choose the most representative features for each class. If the amount of features is

large, a dimension reduction method can be applied to reduce features by picking a subset of the

most representative ones or by creating a set with new features that represent the original data but

with a reduced dimension.

The training step attempts to “train” the model by using a training set composed of a vector

x = (x1,x2, . . . ,xn)
T as an input data, whose output (or class label) is already known. For example,

take a set of pair {(xi,yi)}n
i=1 where yi is the output variable denoting the class related to the input

data xi. According to Theodoridis (2015), the vector y declares the class labels whose entries

belong to the discrete set {1, . . . ,M}, when one has a M-class classification task. M = 2 indicates

a binary classification (illustrated in Figure 2.1 for a linear case), and M > 2 states a multiclass

classification. To obtain y for each x, a function f is determined where y = f (x), which can be

represented by a classification rule, a decision tree, or a mathematical equation. The function f

aims to learn how to separate the data classes.

Figure 2.1: Classification model with two output labels. Adapt from Alpaydin (2010)

The classification step operates from a new set of data named test set. The function f is used to

predict the class label of a new vector x, whose output class label is known, and with the obtained
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result, it can measure the classifier accuracy rate. This rate represents the percentage of output

class labels that the model classifies correctly. If it is not considered acceptable, the model must

be adjusted by returning to the training step, and then the model is tested again. When the model

has a fair accuracy rate, it is ready to be used in a new set of data whose output does not know.

Watt et al. (2016) highlighted some practical applications in this field. The detection of faces

from images for organizational purposes (object detection). Sentimental analysis that learns and

identifies customer’s feelings, either positive or negative. And the classification as a diagnostic

tool in medicine, which is growing in detecting cancer diagnoses by taking DNA characteristics as

features.

2.1.1 Perceptron algorithm

An example of a linear classifier is the perceptron algorithm proposed by Rosenblatt (1961),

which seeks to find a hyperplane that separates two types of classes. This algorithm works with

linearly separable databases because it will work or iterate until it finds a perfect solution, i.e.,

a hyperplane that divides both classes. Let x be a n-dimensional input vector; the perceptron

algorithm looks for a linear combination that gives the output class for each instance, denoted by

y and stated as

y =
n

∑
i=1

wixi +w0, (2.1)

where the weight wi determines the contribution of each xi to the perceptron output y, and w0 is

generally modeled as the weight coming from an extra bias unit (x0 = 1). The equation (2.1) is

also expressed as y = wT x+w0, where the output will take value y =+1 if the instances belong to

one class on one side of the hyperplane, or take value y = −1 if the instances belong to the other

class, i.e., lie to the other side of the hyperplane.

The learning process for a perceptron algorithm begins with the vector w formed of random

weights that uses the previous equation to see if the instance is correctly classified. If it is not, the

following expression modifies the vector w.

∆wi = ηdxi, (2.2)

37

37

Rectangle



where η is the learning rate that measures how fast the algorithm converges, d is the difference

between the target output and the generated output, and xi is the current instance being evaluated.

Then, the new value of w is as follows.

wi = wi +∆wi, (2.3)

which only will be affected if the instance is not correctly classified. After all the instances go

through this process, the algorithm iterates until no instance are miss classified, so the final vector

w defines the correct hyperplane that divides both classes. It is important to note that the final

result depends on the initial values of w and η.

One way of implementing the separation hyperplane is using perceptron as a neural network,

specifically a single-layer network that works only for linear cases. However, multiple-layer per-

ceptrons can be implemented for nonlinear cases with several applications in areas such as hand-

writing recognition, image recognition, pattern classification, among others.

2.1.2 Support vector machine

Support vector machine (SVM) is a discriminant-based method proposed by Cortes & Vapnik

(1995) and linear classifier that aims to find an optimal hyperplane that separates the feature vectors

in an n-dimensional space. Although several hyperplanes can separate the data, the SVM procedure

looks for the optimal hyperplane, which does not only classify the training set correctly but also

generalizes for unseen data.

Let D ≡ {(x1,y1),(x2,y2),(x3,y3), . . . ,(xn,yn)} be a classification dataset containing n points

xi ∈ Rd , where {xi} is a set of training observations with associated class labels yi. The separate

decision bound for two-class problems can be defined as follows.

h(x) = wT x+b = 0, (2.4)

where w = (w1, . . . ,wd)
T is a weight vector in d-dimensional space, d is the number of features

or attributes, and b is a scalar named the bias. For two-class problems, yi could take one of two
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values in {−1,+1}, where yi =+1 if xi ∈C1 and yi =−1 if xi ∈C2.

wT xi +b≥+1 for yi =+1

wT xi +b≤−1 for yi =−1
(2.5)

The two inequalities from (2.5) can be written as

yi(wT xi +b)≥+1, ∀i. (2.6)

As to the perceptron algorithm, the optimal solution (separate hyperplane) depends on the

initial values of w and b. Therefore if there exist multiple solutions, the smallest generalization

error helps to choose one. For SVM, to deal with this, the concept of margin is proposed as the

shortest distance from the separating hyperplane to any of the samples. So for each point xi, it can

be said that the distance to the hyperplane h(x) is

δi =
yih(x)
||w||

=
yi(wT xi +b)
||w||

(2.7)

And the set of points with minimum distance solve the following problem.

Minimize
xi

yi(wT xi +b)
||w||

. (2.8)

The set of samples x∗ that reaches the previous condition contains the support vectors, and for a

Figure 2.2: Support vector machine for two classes of data. Adapt from Zaki & Meira Jr. (2014)
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better generalization, the optimal hyperplane is the one that maximizes the margin given by

δ
∗ =

y∗i (w
T x∗i +b)
||w||

, (2.9)

where y∗ is the class label for x∗; the numerator y∗(wT x∗i +b) is the absolute distance from support

vector to the hyperplane; and the denominator ||w|| is the relative distance in terms of w. Therefore,

the distance in (2.9) also can be express as 1
||w|| and to maximize the margin, it is formulate as

follows.

Maximize
1
‖w‖

subject to yi(wT xi +b)≥ 1, ∀xi ∈ D.

Figure 2.2 illustrates the distance between any point to the separator hyperplane is
1
‖w‖

for

both sides. However, instead of maximize the margin 1
||w|| , an equivalent reformulation can be

done to minimize ‖w‖. Moreover, for a mathematic convenient, the following is an equivalent

minimization formulation.

Maximize
w,b

‖w‖2

2

subject to yi(wT xi +b)≥ 1, ∀xi ∈ D.

This quadratic problem could be solved by standard optimization algorithms, however, it is

easier to solve if it does not depend on the dimension d, and instead on the number of samples n.

According to Karush-Khun-Tucker conditions, the Lagrange multipliers αi are applied to obtain

the following model.

Minimize L =
1
2
‖w‖2−

n

∑
i=1

αi
(
yi(wT xi +b)−1

)
. (2.10)

To minimize L, it has to be done with respect w and b, and it also should be maximized with

respect αi. Then, the weight vector w is expressed as w = ∑
n
i=1 αiyixi, i.e., is a linear combination

of the data points, with the Lagrange multipliers αiyi, serving as coefficients (Zaki & Meira Jr.

2014). Also, it is known that ∑
n
i=1 αiyi must be zero. With these expressions, a dual Lagrange
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optimization problem is built as follows.

Maximize
α

Ldual =
n

∑
i=1

αi−
1
2

n

∑
i=1

n

∑
j=1

αiα jyiy jxT
i x j (2.11)

subject to
n

∑
i=1

αiyi = 0, (2.12)

αi ≥ 0, ∀xi ∈ D. (2.13)

Then, the dual Lagrange problem depends on n (the number of samples) and not on d (the

dimension of inputs). Once the values of αi are obtained for i = 1, . . . ,n, thus w and b also could

be found. Vector w is obtained as a linear combination of the support vectors with its αi when it is

bigger than zero, and to compute b, it can be done as the average of bi = yi−wT xi values for all

the support vectors.

Finally, the SVM classifier works with the optimal hyperplane h(x) = wT x+ b, and given a

new point called p, its class can be predicted as follows.

ŷ = sign{wT p+b}, (2.14)

where sign{.} is a function that predicts the class of ŷ ∈ {−1,+1}, considering +1 belongs to

the class group that is above the hyperplane and -1 belongs to the class group that is under the

hyperplane.

The previous approach uses SVM to classify data that is linearly separable. However, this case

is an ideal one, as most of the data is non-linear separable. An alternative approach is to map the

original data into a higher dimensional space using a nonlinear mapping φ and subsequent that,

search for a linear separating hyperplane in the new space (Han et al. 2011).

Then, the original database D ≡ {(x1,y1),(x2,y2),(x3,y3), . . . ,(xn,yn)} receives a non-linear

transformation which generates a new database in a higher-dimensional space:

Dφ ≡ {(φ(x1),y1),(φ(x2),y2),(φ(x3),y3), . . . ,(φ(xn),yn)}

After applying this transformation, the dual Lagrangian in (2.11) depends only on the dot product

between two vectors in the new space:
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Maximize
α

Ldual =
n

∑
i=1

αi−
1
2

n

∑
i=1

n

∑
j=1

αiα jyiy jφ(xi)
T

φ(x j) (2.15)

subject to
n

∑
i=1

αiyi = 0, (2.16)

αi ≥ 0, ∀xi ∈ D. (2.17)

To solve this, instead of computing the dot product in the transformed database, a mathematical

equivalent is to apply a kernel function, K(xi,x j), in the original database (Bishop 2006) define by:

K(xi,x j) = φ(xi)
T

φ(x j) (2.18)

This avoids the mapping in a new space and instead, all the calculations are made in the original

space using the correct kernel function K(xi,x j), for example the polynomial kernel, the Gaussian

kernel, the sigmoid kernel, among others. However, as supervised learning knows the label of data,

unsupervised learning or clustering seeks to classify the data without knowing the types of classes

or how many.

2.2 Clustering

The clustering goal is to partition an unlabeled dataset into homogeneous groups or clusters,

considering just the information obtained solely from the data. Because it works with no class to

be predicted, clustering belongs to the unsupervised learning techniques with applications in data

mining (Berkhin 2006), pattern classification (Sah et al. 2018), image segmentation (Dhanachandra

& Chanu 2017), among others.

Each cluster is composed of observations that are similar between each of them (similarity) but

different from the ones in other groups (dissimilarity). The criteria used differ in the knowledge of

the data being studied (James et al. 2014). However, the similarity is usually expressed in terms of

the sum of squares via Euclidean distance between the samples and its cluster centroid.

For a dataset D which is conformed of {x1, . . . ,xn} points in a d-dimensional space (D =

{xi}n
i=1) in a number of groups given by k clusters desired denoted as C = {C1, . . . ,Ck}. Usually, to

estimate the quality of a cluster and its representation for all points inside one, the mean or centroid
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µi is calculated for each Ci. Denoted as µi =
1
ni

∑
xi∈Ci

x j, where the number of points in cluster Ci is

denoted by ni = |Ci|. Then, the similarity for each Ci (considering euclidean distance) is

Similarity(Ci) =
k

∑
i=i

∑
x j∈Ci

||x j−µi||2. (2.19)

To find the best arrangement of partition the n points into k clusters, an optimization problem

could be made that generates every possible partition and assign a score to each one so the best will

be chosen. According to Zaki & Meira Jr. (2014), the following Stirling numbers of the second

kind gives the exact number of how to made each partitioning.

S(n,k) =
1
k!

k

∑
t=0

(−1)t
(

k
t

)
(k− t)n. (2.20)

However, to compute this technique, it turns exhaustive as it is not possible to reach all possible

clusterings. To deal with this issue, different approaches have been proposed where the two most

popular are k-means clustering and hierarchical clustering.

2.2.1 K-means clustering

In k-means clustering (Lloyd 1982), a data set is partitioned in k distinct non-overlapping clus-

ters, which are specified in advance, where each observation is assigned to exactly one of the

clusters. Moreover, the clustering seeks to find the best k clusters while minimizing the distance

of each point to its cluster centroid.

Given a dataset D = {xi}n
i=1 and a k define number of clusters, its clustering is denoted as

C = {C1, . . . ,Ck}. The algorithm’s goodness and quality is measured by the within-cluster variation

that seeks to be small as possible (James et al. 2014). W (Ci) is the defined score to measure how

the observations differ one to another in their respective cluster.

Minimize
C1,...,Ck

k

∑
i=1

W (Ci). (2.21)

Thus, (2.21) minimize the total sum of the variations between observations in each cluster after the

data get partitioned in k clusters. One approach to calculate the variation within-cluster, is the sum

43

43

Rectangle



squared errors (SSE), defined as follows:

W (Ck) = SSE (Ck) = ∑
x j∈Ci

‖x j−µi‖2. (2.22)

It initializes by generate random k points as clusters centers. Then, each point x j ∈ D is assigned

to the closest mean, which induces a clustering, with each cluster Ci comprising points that are

closer to µi than other cluster mean. From equations (2.21) and (2.22), the optimization problem

for k-means clustering is built as follows.

Minimize
C1,...,Ck

k

∑
i=1

∑
x j∈Ci

‖x j−µi‖2. (2.23)

Then, each cluster center Ci is update where new values of variation within-cluster (SSE) is

computed iteratively until reaching a fixed point (where the cluster center do not change between

iterations) or local minima.

However, to solve this problem, the algorithm finds all the kn ways to partition n observations

into k clusters but for an n and k bigger it is almost impossible. To made it easier, an alternative

approach is proposed which founds a local optimum instead of the globally optimum clustering.

Consider the binary variable y ji:

y ji =


0, if data point j belong to cluster i;

1, otherwise.
(2.24)

The k-means clustering is formulated as a mixed interger nonlinear program (Gambella et al. 2020):

Minimize
n

∑
j=1

k

∑
i=1

y ji‖x j−µi‖2 (2.25)

subject to
k

∑
i=1

y ji = 1, j = 1, . . . ,n, (2.26)

n

∑
j=1

y ji ≤ 1, i = 1, . . . ,k, (2.27)

where the objective function (2.25) minimize the sum of the distance between all data points j and

the center of their cluster i, considering the decision variable yi j. The constraint (2.26) ensures that

each point j is assigned only to one cluster i; and the constraint (2.27) ensures that each cluster i

have at least one point. As the problem have a nonlinear and nonconvex objective function with
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discrete constraints, a linearized formulation by adding big-M constraints is obtained:

Minimize
n

∑
j=1

k

∑
i=1

d ji (2.28)

subject to
k

∑
i=1

y ji = 1, j = 1, . . . ,n; (2.29)

d ji ≥ ‖x j−µi‖−M(1− y ji) j = 1, . . . ,n, i = 1, . . . ,k; (2.30)
n

∑
j=1

y ji ≤ 1, i = 1, . . . ,k; (2.31)

d ji ≥ 0, j = 1, . . . ,n, i = 1, . . . ,k. (2.32)

Here, the variable d ji represent the distance (in this case, euclidean distance) between each point

j and the center of their cluster i. The new constraint (2.30) state the upper bound of di j forms a

reasonalble tight value for M. Here, di j = 0 only happens when i is not assigned to the cluster k,

i.e. assuring that di j ≥ 0.

Therefore, the clustering process can be summarize in two steps: i) after specify the number of

k cluster desired, each observation is assign to a Ci cluster, and ii) update each centroids, reassign

the observations and iterates until reached a fixed point or local minima.

Furthermore, the algorithms iterations may have two different ways to reach an optimal result

or a stop criteria. The first, an optimal value is reached when the centroids from one iteration to

another no longer changes; and the second, define an ε value, where ∑‖µ(t)i − µ(t−1)
i ‖2 ≤ ε is the

stopping criteria, for ε≥ 0 and t represent the current iteration.

It is important to remember that the change in result for k-means is because the initial values

of centroids have a random nature (this is the reason to get a local rather than global optimum).

Hence it is recommended that the algorithm should be run several times to select the best solution

i.e., the one with lowest SSE value.

2.2.2 Hierarchical clustering

Despite k-means clustering, hierarchical clustering does not require to establish a fixed number

k clusters and it can be shown in a tree-based representation called “dendogram”. This algorithm

seeks to create groups between observations that are more similar to each other than others in
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different groups. The most popular similarity measure is Euclidean distance, which is calculate as

d(xr,xs) =
d

∑
j=1
|xr

j− xs
j|. (2.33)

This algorithm approached how the dendrogram built: agglomerative or divisive. The former

makes it from the bottom to the top, where each observation is a single cluster that starts to fusing

between the more similar ones until there is a single cluster. The latter, works in the opposite

way, it begins with a single cluster which divided until each observation is its cluster. A basic

dendrogram is shown in Figure 2.3.

Figure 2.3: Dendrogram illustrating a hierarchical clustering. Adapt from Alpaydin (2010)

To construct the dendrogram, first it establishes the type of similarity between each pair of ob-

servations, for example, Euclidean distance is the most popular. Then, an iteration process begins

by building the bottom of the dendrogram (if it is an agglomerative type) and each observation its

is own cluster, so it begins with n clusters. After, the two more similar observations, fused in a new

cluster so there will be n−1 clusters. For the next iteration, another two similar clusters fused, so

now there are n−2 clusters; the following iterations continue until there exists one single cluster

and the dendrogram is complete.

This similarity between clusters is based on the notion of linkage among observations. Three

most common types are: single, complete and average. The single linkage used the smallest

distance between all the combination of possible pair of observations or clusters.

d(Gi,G j) = Minimize
xr∈Gi, xs∈G j

d(xr,xs) (2.34)
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The complete linkage is the opposite as the single linkage because it take the largest distance.

d(Gi,G j) = Maximize
xr∈Gi, xs∈G j

d(xr,xs) (2.35)

For the average linkage, the distance which is used takes the average between all the pairs.

Each dendogram could have 2n−1 possible re orderings, and to interpreted it in order to know

how many clusters are the best, an horizontal cut in the dendogram is done control by the height

of it in the vertical axis.
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CHAPTER 3

Methodology

This chapter presents the methodology and the particular models used in this research to clas-

sify and cluster databases. It describes three variants of a classification model based on goal pro-

gramming technique, and a clustering model based on integer mathematical programming for a

defined/certain number of clusters.

3.1 Classification method based on goal programming

We use a binary classification model based on goal programming (GP) proposed by Jones et al.

(2007), which is characterized by distance metrics and preference modeling techniques. Further-

more, it allows defining weights and parameters as well as the modeler has the option to vary the

weight and parameter values, then the probability of obtaining correct classification in each level

increases and is more accurate.

Let A and B be two groups with n1 and n2 observations, respectively. For each observation i, let

x(a)i j and x(b)i j be associated scores with an attribute j, j = 1, . . . ,m, of group A and B, respectively.

Jones et al. (2007) presented from these definitions the following classification basic model.
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Minimize z =
n1

∑
i=1

(
n(a)i

)
+

n2

∑
i=1

(
p(b)i

)
(3.1)

subject to
m

∑
j=1

x(a)i j w j +n(a)i − p(a)i = w0, i = 1, . . . ,n1, (3.2)

m

∑
j=1

x(b)i j w j +n(b)i − p(b)i = w0, i = 1, . . . ,n2, (3.3)

m

∑
j=1

w j = 1, (3.4)

−α≤ w j ≤ α, j = 1, . . . ,m, (3.5)

where (w1, . . . ,wm)
T is the weight vector in m-dimensional space, and the discriminant line w0 is

defined by the following linear combination.

w0 = w1y1 +w2y2 + . . .+wmym (3.6)

Moreover, y = (y1, . . . ,ym)
T gives the coordinates of a generic observation, and α is a user param-

eter defined so as to be significantly larger than the largest absolute value of the x vector (Jones

et al. 2007).

Figure 3.1: Illustration of a solution for the classification basic GP model

The basic model, represented in Figure 3.1, is made up of one objective function and four set

of constrains. The first set of constraints (3.2) came from the equation
m
∑
j=1

x(a)i j w j ≥ w0, which

represents all the data points which belong to group A should fall into the positive side of the

discriminant line w0 (blue points in Figure 3.1). Otherwise, the second set of constraints (3.3)
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came from the equation
m
∑
j=1

x(b)i j w j ≤ w0, and it represents the observations that belong to group B,

and should fall into the negative side of w0 (red points in Figure 3.1). Both (3.2) and (3.3) have

negative (n(a)i , n(b)i ) and positive (p(a)i , p(b)i ) deviational variables that lead to the most accurate

classification. For this, the objective function (3.1) seeks to minimize the deviational variables: the

negative one n(a)i for group A and the positive one p(b)i for group B. Another both constrains are

added for computational convenience only: (3.4) forces the sum of decision variables (except w0)

be equal to 1, and (3.5) states that each w j will be between −α and α.

The model (3.1)–(3.5) tries to minimize the sum of distances between each observation and

the separation hyperplane represented by the deviational variables n(a)i and p(b)i . All three models

presented in this section are based on Manhattan distance. However, it will lead to pull of some

errors, as several observations could fall exactly into the discriminant line or deviational positive

or negative variables may keep value of zero.

In order to avoid those errors, the next model was proposed.

Minimize z =
n1

∑
i=1

(
n(a)i

)
+

n2

∑
i=1

(
p(b)i

)
(3.7)

subject to
m

∑
j=1

x(a)i j w j +n(a)i − p(a)i = w0 +β, i = 1, . . . ,n1, (3.8)

m

∑
j=1

x(b)i j w j +n(b)i − p(b)i = w0−β, i = 1, . . . ,n2, (3.9)

m

∑
j=1

w j = 1, (3.10)

−α≤ w j ≤ α, j = 1, . . . ,m. (3.11)

A new division zone with size 2β is created which is added to constrains (3.8) and (3.9); β is a

parameter defined by the modeler. Figure 3.2 represents two parallel lines to w0 (one to the left

and the other to the right) with a division size of β so that five classification levels are declared as:

“definitive A”, “probable A”, “unclassified”, “probable B”, “definitive B”. Depending on β value,

the probability of erring to classify each observation decreases since they are more likely to join

the “probable” group. However, it also increases the probability of any observation relay in this

class when it does not belong here.

As the penalization of non-achievement deviational variables is just a standard one in the pre-

vious model; another variation was proposed with a non-standard preference function (Jones &
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Figure 3.2: Illustration of a solution for the classification GP model with standard preference
functions

Tamiz 1995). It establishes penalty weights and discontinuous penalties (Jones et al. 2007) that

allows the modeler has more control in the classification probability (Figure 3.3).

Minimize z =Wa

n1

∑
i=1

(
u1ni1

(a)+u2n(a)i2 +u3n(a)i3

)
+Wb

n2

∑
i=1

(
v1 pi1

(b)+ v2 p(b)i2 + v3 p(p)
i3

)
(3.12)

subject to
m

∑
j=1

x(a)i j w j +n(a)i1 − p(a)i1 = w0−β, i = 1, . . . ,n1, (3.13)

m

∑
j=1

x(a)i j w j +n(a)i2 − p(a)i2 = w0, i = 1, . . . ,n1, (3.14)

m

∑
j=1

x(a)i j w j +n(a)i3 − p(a)i3 = w0 +β, i = 1, . . . ,n1, (3.15)

m

∑
j=1

x(b)i j w j +n(b)i1 − p(b)i1 = w0−β, i = 1, . . . ,n2, (3.16)

m

∑
j=1

x(b)i j w j +n(b)i2 − p(b)i2 = w0, i = 1, . . . ,n2, (3.17)

m

∑
j=1

x(b)i j x j +n(b)i3 − p(b)i3 = w0 +β, i = 1, . . . ,n2, (3.18)

m

∑
j=1

w j = 1, (3.19)

−α≤ w j ≤ α, j = 1, . . . ,m, (3.20)

where Wa and Wb are weights assigned for each class such that the assigned value will tell how

important is to classified correctly one group respect another; further, it is also useful to give equal

weight in the case of n1� n2. For example, if the decision-maker wants to give major importance
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to classify group A than B, then Wa > Wb. Moreover, interior weight vectors u and v are related

with the miss-classified penalty according to the associated levels: w0 +β, w0, and w0−β.

Figure 3.3: Illustration of a solution for the classification GP model with non-standard preference
functions

The earlier model has a similar structure to the other two previously seen; however, new con-

strains are created for both groups: (3.13), (3.14), and (3.15) are related to the observations of

group A; and (3.16), (3.17), and (3.18) are associated to data points on group B. Also, new nega-

tive (n(a)ik , n(b)ik ) and positive (p(a)ik , p(b)ik ) desviation variables are created, where k is related to the

three objectives.

The objective function (3.12) seeks to minimize the sum of deviational variables, which are

related to their respective internal weights and also the preferential class preference. Figure 3.3

shows that: v1 and u3 represent the penalization of miss-classification for “A defined as B” and “B

defined as A” respectively; also, v2 and u2 represent the penalization of miss classified “A as prob-

ably B” and “B as probably A”, respectively; finally, u1 and v3 are associated to the classification

of “A defined as A” and “B defined as B”, respectively.

The model (3.12)–(3.20) allows the modeler to establish his preferences concerning miss-

classification weights. This choice improves the accuracy level after comparing the rates of cor-

rectly label objects as the previous models do not consider the difference amount of objects in each

class or the importance of classifying one group from the other.

Observe that even though these models are based on Manhattan distance, Jones et al. (2007)

also proposed an extension to distance metrics other than Manhattan. The following equation (3.21)

represents the objective function for a generalized distance metric.
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Minimize z =

[
W ρ

a

n1

∑
i=1

[
u1n(a)i1 +u2n(a)i2 +u3n(a)i3

]ρ

+W ρ

b

n2

∑
i=1

[
v1 p(b)i1 + v2 p(b)i2 + v3 p(b)i3

]ρ

]1/ρ

,

(3.21)

where ρ takes values in [1,∞). For the previously explained models, ρ takes value 1 in the objective

function, i.e., the models are based on Manhattan distance and may give little sensitivity to outliers

in the dataset. For ρ = 2, each model is based on Euclidean distance, and for ρ = ∞, each model is

based on Chebychev distance. Jones et al. (2007) explained that the solution would vary depending

on the value ρ in [1,∞), but if ρ is lesser than 1, then the model will take a non-convex structure,

being harder to solve.

3.2 Clustering method based on integer programming

A clusterization model based on integer mathematical programming to solve the k-means clus-

tering problem was proposed by Gnagi & Baumann (2017). In the proposed model, the input is

a set of observations with size n and d attributes, and the modeler fixes the number of clusters.

The following model assigns each object to a particular cluster center by minimizing the distances

among objects.

Minimize z =
n

∑
i=1

n

∑
j=1

δi jzi j (3.22)

subject to
n

∑
i=1

zi j = 1, j = 1, . . . ,n, (3.23)

n

∑
j=1

zi j ≤ nyi, i = 1, . . . ,n, (3.24)

n

∑
i=1

yi = k, (3.25)

yi,zi j ∈ {0,1}, i = 1, . . . ,n, j = 1, . . . ,n, (3.26)

where δi j represents the similarity between the objects i and j, and k is the number of clusters. The

similarity δi j can be calculated using the generalized distance-metric, i.e., by using the distance

metric parameter ρ, for 1 ≤ ρ < ∞. The binary variable zi j represents the decision to choose

the object i as a cluster center of the object j, and the binary variable yi represents the decision to
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select the object i as a cluster center. Here, the objective function (3.22) seeks to minimize the total

distance between the objects and each cluster center, considering three sets of constraints: (3.23)

guarantees that each object is only assigned to one cluster center; (3.24) assures that at most n

objects are assigned to each center cluster i; and (3.25) ensures that just k objects are selected as

cluster centers.

Gnagi & Baumann (2017) illustrated in Figure 3.4 the optimal solution of the model (3.22)–

(3.26) for an example containing 30 objects and 2 attributes.

Figure 3.4: Data and optimal solution for n = 30 and d = 2 (Gnagi & Baumann 2017)

Note in Figure 3.4 that the modeler assumed three “natural” clusters. This example’s objective

function took value 37.1, which represents the total sum of Euclidean distances (ρ = 2) from all

points belongs to an individual cluster to the center of this cluster (in red points). This solution had

perfect accuracy by coinciding with the original label group, i.e., the number of clusters k = 3 fits

the original groups.

However, since this model is object-oriented, the number of variables and constraints increases

as the size of the data does, so it also spend more running time to obtain an optimal solution. To

overcome this issue, an scaling approach of the previous model is proposed by Gnagi & Baumann

(2017), which seeks a set of representatives that play correctly the original objects to decrease the

number of variables and constrains.

Gnagi & Baumann (2017) uses a methodology based on sparse-reduced computation. It begins

with the standardization of the data, which means that the set of features has average equal to zero

and standard deviation equal to one. Then, a dimension reduction of the data set is made by using
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Principal Component Analysis (PCA). The following step is to divide into ranges the values of the

new features into intervals of equal length so that each object will belong to a single block. Finally,

a single representative object from all non-empty blocks is computed as the center of gravity of the

corresponded objects in the original dimensional space, i.e., before the reduced dimension.

Figure 3.5: Optimal solution graphic with the reduced data (Gnagi & Baumann 2017)

The scale methodology seeks to use a clustering model based on the representatives to find a

cluster center for the representatives and then transferred it on to the original objects. Applying

this concept to the previous example, Figure 3.5 shows the scaling approach; and since the original

data is in a small dimension (d = 2) non-projection to a smaller one is needed. The number of

intervals of equal length is set as g = 4, for which the partition of the space is calculated as gp

grid blocks. In this case, the number of grids is 42 = 16, with a length of 2. After mapping the

30 original objects, from each non-empty grid block, a representative is chosen. Then, q = 8 is

represented by a cross maker in Figure 3.5. Those representatives were used to solve the following

scaling formulation.

Minimize z =
q

∑
r=1

q

∑
l=1

ρrlzrl (3.27)

subject to
q

∑
r=1

zrl = 1, l = 1, . . . ,q, (3.28)

q

∑
l=1

zrl ≤ qyr, r = 1, . . . ,q, (3.29)

q

∑
r=1

yr = k, (3.30)

yr,zrl ∈ {0,1}, r = 1, . . . ,q, l = 1, . . . ,q, (3.31)
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where ρrl is the distance between the representative r and l, and both zrl and yr are binary variables,

where zrl represents the decision to choose an object r as cluster center of object l, and yr represents

which object r is design as cluster center.

As the model remains with the same structure as the model (3.22)–(3.26), the objective function

and constraints seek the same goal but in a different dimension. Likewise, in Figure 3.5 the cluster

center for the representatives is represented as red cross makers, and it attaches a perfect clustering

accuracy after transferred the cluster representative on to the original objects. The number of

variables and constraints greatly decreases when the scale approach to the clustering model based

on integer mathematical programming is applied. Moreover, this scale model (3.27)–(3.31) used

less running time and the solution reaches the same level of accuracy or even improved the ones

obtained from the object oriented model (3.22)–(3.26).
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CHAPTER 4

Numerical experiments

This chapter presents the computational experiments for the classification and clustering meth-

ods previously explained. Additionally, it gives a series of illustrations, tables, and statistics sum-

marizing the collected results. The set of numerical examples includes two case studies. In the

first case, the well-know database “Breast Cancer Wisconsin (BCW)” contains 569 observations

with 30 features that characterize malignant and benign breast cancer tumors. A new database

was selected in the second case, which corresponds to 526 bovine animals with their respective

characteristics.

The mathematical models and routines were coded in Julia language using IBM ILOG CPLEX

12.9 as the solver. The tests were executed on a computer with an Intel Core i7-6500 processor,

7.89GB of RAM, and a Windows operating system.

4.1 Numerical experiments for classification

This section analyzes different tests in order to establish the best way to choose the parameter

values for the three classification models based on the goal programming technique described in

Section 3.1. Hence, the obtained parameters were used for setting the classification models applied

on the first database BCW.
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4.1.1 Setting the parameters

The user parameters α and β that appear in the models described in Section 3.1 are essential

components to build the classification models based on goal programming. In particular, see α

in (3.5) and β in (3.8). This subsection presents preliminary numerical tests for setting the parame-

ters α and β. Two simple examples of Freed & Glover (1981, 1986) provide the data for these tests.

The data listed in Tables 4.2 and 4.5, respectively. Two classes of inputs form each preliminary

numerical example, and each class contains two features and five observations, making it easier to

represent graphically.

To facilitate the presentation of tests, we label the three goal programming models studied

in Section 3.1. GP1 is the goal programming model (3.1)–(3.5) without the parameter β. GP2

is the model (3.7)–(3.11) that adds the parameter β. Finally, GP3 is the model (3.12)–(3.20) that

considers all preference weights. The two numerical examples were used to solve the three models.

We handled four tests concerning the variable vector w = (w1, . . . ,wm)
T , more specifically, the

range for w j. Table 4.1 outlines each one of these tests. In Test A, the range for w j is [0,1]. In Test

B, a normalization of w states as |w j| ≤ 1, referring to research of Nakayama & Kagaku (1998) on

classification problem for Support Vector Machine based in goal programming. In Test C, w j is a

free variable. And in Test D, we consider the normalization of w described by Jones et al. (2007),

where |w j| ≤ α and α takes a value significantly larger, for example, the largest absolute value

among the input data.

Freed & Glover (1981) used the data of Table 4.2 to study different approaches for the discrim-

inant problem via goal programming technique. In short, they consist of finding a discriminant

hyperplane that entirely separates the input classes. Note that in this example, since we have two

Test Description

A 0≤ w j ≤ 1

B |w j| ≤ 1 and constraint ∑
n
j=1 w j = 1 is deleted

C w j is a free variable

D α is the largest input in absolute value

Table 4.1: Test scenarios and their respective description
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Class 1

x1 x2
1 1
2 2
3 1
3 3
6 3

Class 2

x1 x2
4 1
5 2
7 2
8 4
9 1

Table 4.2: Data used in Figures 4.1 and 4.2

features x1 and x2, then the hyperplane is a linear function. Figure 4.1 illustrates the data belong

to Class 1 and Class 2 by red and blue points, respectively.

Tables 4.3, 4.4, 4.6, 4.7, 4.10, and 4.11 summarize the numerical outputs of Tests A, B, C,

and D concerning to used models. The results are shown for the objective function (OF), weight

vector components w = (w0,w1,w2)
T , the error in classification Class 1 (error_c1), the error in

classification Class 2 (error_c2), the false positive rate (FP), and the true positive rate (TP).

Table 4.3 gives the outputs of tests realized by GP1 model. In test A, the OF achieves the value

4, which does not indicate a perfect classification; error_c1 and error_c2 confirm the presence of

observations from each class wrongly classify. Furthermore, since w1 took value equal to zero, the

classification line is a horizontal line (see Figure 4.2(a)). In test B, OF, w0, w1, and w2 took values

equal to zero, which evidence, for these conditions, that the model does not have a hyperplane

that divides both classes (see Figure 4.2(b)). Furthermore, the quantity of observations wrongly

classified is zero because it does not occur any classification.

Distinctly test A and B, the tests C and D achieve the same results Freed & Glover (1981),

where w0 =−2, w1 =−1.49, and w2 = 2.49 bring together a perfect division line for both classes

Figure 4.1: Data set used by Freed & Glover (1981)
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Test

A B C D

OF 4 0 0 0
w0 2 0 -2 -2
w1 0 0 -1.49 -1.49
w2 1 0 2.49 2.49

error_c1 1 0 0 0
error_c2 2 0 0 0

FP 0.33 0 0 0
TP 0.75 1 1 1

Table 4.3: Results from the GP1 model illustrated in Figure 4.2

with a minimal value for OF. Figure 4.2(c) and 4.2(d) illustrate both solutions graphically.

(a) Test A (b) Test B

(c) Test C (d) Test D

Figure 4.2: GP1 model results considering four tests from data set of Freed & Glover (1981)

As previously observed, the GP1 model considers only the parameter α in its structure; thus

GP2 model introduces the parameter β in the constraints (3.8)–(3.9) creating two parallel division

lines. Table 4.4 shows the results of applying GP2 model in the same four tests seen above consid-

ering β = 0.1. In Test B, the results of Table 4.3 differ from Table 4.4 significantly, where is found

a hyperplane that correctly separates both classes. Moreover, the graphic results for four tests have

shown that another two joined parallel lines establish the five levels of classification explained in

Chapter 3.

From the graphics in Figure 4.3, just one scenario does not generate a classification line with
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Test

A B C D

OF 4.06 0 0 0
w0 2.01 -0.07 -2.03 -2.03
w1 0 -0.04 -1.51 -1.51
w2 1 0.06 2.51 2.51

error_c1 1 0 0 0
error_c2 3 0 0 0

FP 0.43 0 0 0
TP 0.67 1 1 1

Table 4.4: Results from the GP2 model illustrated in Figure 4.3

(a) Test A (b) Test B

(c) Test C (d) Test D

Figure 4.3: GP2 model results considering four tests from data set of Freed & Glover (1981)

a slope, which is the case of Test A as it still is a horizontal line. Although all other tests have a

precise classification, it is necessary to evaluate the performance when β changes of values. For

this purpose, four additional scenarios were applied considering β= 0.5,1,2,5. For each β, a curve

ROC is given, which evaluates the performance between False Positive and True Positive rates. If

a perfect classification exists, then TP=1 and FP=0, and only a curve with TP greater than 0.5 (the

orange diagonal line in Figure 4.4) could be considered as acceptable classifier.

Figure 4.4 exhibits the ROC curves for the four different values of β in Test B, C, and D. In

Test B three curves are in the acceptable zone determined by the orange diagonal line with TP=0.5.

If β = 0.5, the model has a perfect classification with TP=1 and FP=0. The following yellow curve
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(a) ROC curve for Test B (b) ROC curve for Test C

(c) ROC curve for Test D

Figure 4.4: ROC curves for Tests B,C, and D

with TP=0.66 represents the scenario β = 1. Moreover, if β = 2 the blue curve is not a perfect

classification and has TP=0.6. Although the last two scenarios do not make a perfect classification,

they are considered suitable classifiers. However, if β = 5, the green curve with TP=0.2 takes place

under the orange diagonal line that certifies that the model for this scenario is no longer considered

a good classifier. This is also observed from the values of variables na and pb since they have taken

positive values, then those points are miss classified.

Test C and D have a similar performance at the moment of changing β since both achieve

a stable TP and FP above the orange line when β is higher than 1. This results correspond to

which observations were miss classified, being only two from Class 1 and one from Class 2, that

corresponds to the ones closer to the division line (Figure 4.3(c) - 4.3(d)). GP1 and GP2 performed

better in Test C and D as they all attained the same optimal solution presented in the research

of Freed & Glover (1981). Furthermore, we notice that GP2 has optimal solution when β is higher

than 1, so we establish a relationship between the data, and β must correspond to the data variance,

in this case of 1.43.
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Class 1

x1 x2
-1 3
-1 4
1 3
4 9
2 7

Class 2

x1 x2
0 0.25
2 3
-4 -9
3 4
-1 -3

Table 4.5: Data used in Figures 4.5 and 4.6

To validate the previous analysis, another set of data is used to solve the GP1 and GP2 model. Freed

& Glover (1986) uses the data in Table 4.5 to resolve certain difficulties founded in his previous

research (Freed & Glover 1981) by including an appropriate normalization. Note that the data

belong to Class 1 and Class 2 are represented by red and blue points respectively in Figure 4.5.

Figure 4.5: Data set used by Freed & Glover (1986)

The same four tests were used in this experiment, and its results of model GP1 are given in

Table 4.6. Similarly, than the previous data set, Test A is not a reliable classifier as its objective

function (OF) does not attain the minimum, even though just one observation is miss classified.

Freed & Glover (1986) disclose in his research that the optimum solution would be when w0 = 5,

w1 = 2, and w2 = 4 which comparing to Table 4.6, only Test C and D achieve these values. Despite

that Test B finds a vector w that makes a perfect separation line in Figure 4.6(b) is convenient to

come with a definitive decision after seeing the results of the model GP2 including the value β.

Similarly to the first analysis using the previous data set, the behavior of model GP2 is evaluated

according to the variation of β. In Table 4.7, the results for β = 0.1 are displayed and confirm that

Test A is not suitable for our model because it does not achieve a perfect classification. Figure

4.7 illustrates the graphic representations for the four tests. Additionally, no bigger changes were

detected in Test B, C, and D compared to Table 4.6, therefore the analysis of impact changing of β
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Test

A B C D

OF 1 0 0 0
w0 3 0.12 5 5
w1 0 -1 -1 -1
w2 1 0.46 2 2

error_c1 1 0 0 0
error_c2 0 0 0 0

FP 0 0 0 0
TP 0.83 1 1 1

Table 4.6: Results from the GP1 model illustrated in Figure 4.6

helps to choose which scenario performs better.

Figure 4.8 illustrates the ROC curves for Test B and D and shows the impact on the classifi-

cation power according to the variation of β. Conversely, Test C does not present a ROC curve

as its performance did not change in any β and it maintains classifying correctly. Again, Test B

has an acceptable level of classification for β = 0.5,1,2 because those three curves are above the

diagonal orange line that divides the two regions of acceptance in the graphic. However, when

β = 5, the model reaches TP=0.43 that makes the classifier weaker as it misclassifies two and four

observation points from Classes 1 and 2, respectively. ROC curve for Test D presents a different

performance from the previous data set. For the first three scenarios, the model found a perfect

classification line, but when β change to 5, its FP value decreases to 0.166. This variation only

made one miss classification related to an observation of Class 1 that is closer to the division line

(Figure 4.7(d)); however, the ROC curve still is above the orange division line, so the classifier is

adequate.

Test

A B C D

OF 1.8 0 0 0
w0 3.2 0.33 5.03 5.03
w1 0 -1 -1.02 -1.02
w2 1 0.51 2.02 2.02

error_c1 1 0 0 0
error_c2 2 0 0 0

FP 0.33 0 0 0
TP 0.75 1 1 1

Table 4.7: Results from the GP2 model illustrated in Figure 4.7
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(a) Test A (b) Test B

(c) Test C (d) Test D

Figure 4.6: GP1 model results considering four tests from data set of Freed & Glover (1986)

Finally, we can find a relationship between the variation of the data and the value of β. As

analyzed previously, we have chosen to vary β to identify an approximate value for which the

model starts to lose its classification power. Note that the addition of parameter β on the goal

programming model improves the model’s accuracy rate. Thus, we evaluated the growth of β and

compared it with the standard deviation of data. This last data set has the standard deviation equal

to 2.81, which coincides with the larger value β that the model started the incorrect classification,

i.e., after analyzing GP1 and GP2 models, the best two scenarios for both models are Test C and D

for which β is no bigger than the standard deviation of data set.

Therefore, to analyze the GP3 model, we only consider those statements but with a further

overview of establishing the preference weights. GP3 model is characterized by using penalty

weights applied to the objective function. As detailed in Chapter 3, Jones et al. (2007) introduced

two-class of weights, Wa and Wb are preference weights for the objective function, and the inter-

nal weights u and v penalize each incorrect classification in addition to the associated boundary.

Table 4.9 presents the six internal weights with its corresponding penalization of unclassified one

observation defined as or probably to a class that does not belong.

Indeed, increasing any weight value has its pros and cons. For example, the weights u1,v3, u2,

65

65

Rectangle



(a) Test A (b) Test B

(c) Test C (d) Test D

Figure 4.7: GP2 model results considering four tests from data set of Freed & Glover (1986)

and v2 may improve the correct classification; however, it also may reduce the power classification

and, if u2 or v2 are too large, the model can classify an observation “A defined as B”, i.e., an

observation from Class A becomes of Class B. Moreover, the weights u3 and v1 enlarge the number

of observations that are correctly classified, i.e., “A defined as A”, and “B defined as B”; but does

not reduce the unclassified observations of type “A defined as B” or “A as probably B”. Table 4.8

highlights the additional pros and cons for the GP3 model.

weight type of error Pros Cons

u1 A defined as B

Lower level of miss classification
Reduce the power of classification

u2 B defined asA

u3 A as probably B Increase power of
classification A defined as Bv1 B as probably A

v2 A defined as A Increase power of classification
A defined as A, and B defined as B

Do not reduce miss classification of
A defined as B and A as probably Bv3 B defined as B

Table 4.8: Description of penalty internal weights for the GP3 model

The preference weights Wa and Wb indicate the importance of each class to be classified. For

both examples, Database 1 (DB1) of Freed & Glover (1981) and Database 2 (DB2) of Freed &

Glover (1986), we select Class 2 as the priority class and we use Wa := WC1 = 0.3 and Wb :=

WC2 = 0.7. Moreover, to give the most accurate values for the internal weights u and v, we use the
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(a) ROC curve for Test B (b) ROC curve for Test D

Figure 4.8: ROC curves for Tests B, and D

Ranking Sum (RS) and Sum Reciprocal (SR) methods described in Danielson & Ekenberg (2017).

From a ranking known in advance that selects from the more to the less priority error in a correct

classification (each internal weight is following a priority level according to a type of error), RS

and SR calculate each internal weight as presented in Table 4.9. The RS and SR methods use the

equations (4.1) and (4.2), respectively, to obtain each internal weight from a known ranking and

by normalizing via the sum of the ranking in (4.1), and via an additive combination of Sum and

Reciprocal (Stillwell et al. 1981) weight functions in (4.2).

wRS
i =

N +1− i

∑
N
j=1 (N +1− j)

(4.1)

wSR
i =

1
i +

N+1−i
N

∑
N
j=1 (

1
j +

N+1− j
N )

, (4.2)

where N is the amount of internal weights, i = 1, . . . ,N, and it is assumed that w1 > w2 > .. . > wN ,

for which ∑wi = 1 and wi ≥ 0. Note that the chosen ranking in Table 4.9 considers Class 2 (C2)

as a priority in classifying over Class 1 (C1).

weight type of error ranking RS SR

u1 C1 defined as C2 3 0.190 0.190
u2 C1 as probably C2 1 0.286 0.334
u3 C1 defined as C1 5 0.095 0.074
v1 C2 defined as C1 6 0.048 0.018
v2 C2 as probably C1 2 0.238 0.253
v3 C2 defined as C2 4 0.143 0.131

Table 4.9: Penalty internal weights obtained via RS and SR methods
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We applied both sets of weights to datasets DB1 and DB2 in the two best scenarios found pre-

viously: Test C and D. However, no difference between the results from Tests C and D were found

in either RS or SR weights. Figure 4.9 displays a graphic representation of DB1 (Figure 4.9(a)) and

DB2 (Figure 4.9(b)); thus is clear that the principal division responds to the classification priority

as the distance between observations from Class 2 and the division line is bigger than Class 1.

Test

C D

OF 0.18 0.18
w0 -8.15 -8.15
w1 -3.86 -3.86
w2 4.86 4.86

err_c1 1 1
err_c2 0 0

FP 0.17 0.17
TP 1 1

Table 4.10: Results from the GP3 model
illustrated in Figure 4.9(a)

Test

C D

OF 0 0
w0 13.43 13.43
w1 -6.62 -6.62
w2 7.62 7.62

err_c1 0 0
err_c2 0 0

FP 0 0
TP 1 1

Table 4.11: Results from the GP3 model
illustrated in Figure 4.9(b)

(a) Test C and D for DB1 (b) Test C and D for DB2

Figure 4.9: GP3 model results considering two tests from data sets DB1 and DB2, and SR or RS
methods

The conclusion is that the parameter analysis for GP1 and GP2 models lead to validate that

either Test C or Test D gives the same results considering β equal or lower than the data set

variation. Moreover, the weights structure of the GP3 model explained with two types of weighting

for internal weights do not present a significant difference in results; it is suggested by Danielson

& Ekenberg (2014) to use the SR method as it is more robust than the RS method. The following

section is oriented to apply the configured parameters and weights into a larger breast cancer tumor

68

68

Rectangle



database, where the three models would try to classify if a tumor mass is benign or malign.

4.1.2 Case of study: Breast Cancer

In this subsection, we use the parameters α and β previously configured to study the well-

known database of breast cancer tumors that diagnoses if a breast mass is benign or malign, con-

sidering a set of thirty characteristics.

In 2018, according to Wild et al. (2020), cancer was categorized as the first or second cause of

premature death (from 30 to 69 years), and six types of cancer are the most common: lung cancer,

breast cancer, colorectal cancer, prostate cancer, stomach cancer, and cervical cancer. For women,

breast cancer is the most common, with 2.1 million cases and a mortality rate of 627 000 in 2018.

Since breast cancer has a significant impact on women’s health, several studies have been made,

like prediction models for breast cancer risk. Shawky et al. (2017) used the mammographic density

(MD) for a breast cancer prediction model that delimits who will most benefit from chemopreven-

tion or other prevention efforts. Mavaddat et al. (2015) implemented a breast cancer risk model

for women considering the cancer family history from a polygenic risk score (PRS). A most recent

study made by Zhang et al. (2018) joined MD, PRS, and postmenopausal endogenous hormone lev-

els to improve existing prediction models. The overview made by Cintolo-Gonzalez et al. (2017)

discussed existing models for breast cancer risk that use hormonal and environmental factors fo-

cusing on hereditary risk. The problem involves diagnosing breast masses as benign or malignant

by using computer software called Xcyt, which is an image analysis program that estimates the

probability of the malignancy of a breast lump or mass. The process begins by taking a sample

directly from the breast lump or mass with a small needle called fine needle aspirate (FNA). The

Figure 4.10: Image of a malignant breast with nuclei cells analyzed with Xcyt. (Mangasarian et al.
1970)
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radius_mean texture_mean perimeter_mean area_mean smoothness_mean

mean 14.13 19.29 91.97 654.89 0.10
std 3.52 4.30 24.30 351.91 0.01
min 6.98 9.71 43.79 143.50 0.05
25% 11.70 16.17 75.17 420.30 0.09
50% 13.37 18.84 86.24 551.10 0.10
75% 15.78 21.80 104.10 782.70 0.11
max 28.11 39.28 188.50 2501.00 0.16

Table 4.12: Descriptive statistic of the BCW database for 5 features

fluid is then analyzed in a microscope, so the constituent cells’ nuclei are highlighting, and an

image is taken of those cells’ nuclei. Xcyt is used to fit a curve around the boundaries of the nuclei

cells, which are between 10 and 40 per image, as in Figure 4.10; moreover, ten features are com-

puted for each nucleus: area, radius, perimeter, symmetry, number and size of concavities, fractal

dimension (boundary), compactness, smoothness, and texture. Finally, calculate the mean value,

extreme value (large or worst), and standard error of each nucleus characteristic that, in total, gives

thirty features.

compactness
mean

concavity
mean

concave points
mean

symmetry
mean

fractal dimension
mean

mean 0.10 0.09 0.05 0.18 0.06
std 0.05 0.08 0.04 0.03 0.01
min 0.02 0.00 0.00 0.11 0.05
25% 0.06 0.03 0.02 0.16 0.06
50% 0.09 0.06 0.03 0.18 0.06
75% 0.13 0.13 0.07 0.20 0.07
max 0.35 0.43 0.20 0.30 0.10

radius se texture se perimeter se area se smoothness se

mean 0.41 1.22 2.87 40.34 0.01
std 0.28 0.55 2.02 45.49 0.00
min 0.11 0.36 0.76 6.80 0.00
25% 0.23 0.83 1.61 17.85 0.01
50% 0.32 1.11 2.29 24.53 0.01
75% 0.48 1.47 3.36 45.19 0.01
max 2.87 4.89 21.98 542.20 0.03

compactness se concavity se concave points se symmetry se fractal dimension
se

mean 0.025 0.032 0.012 0.021 0.004
std 0.018 0.030 0.006 0.008 0.003
min 0.002 0.000 0.000 0.008 0.001
25% 0.013 0.015 0.008 0.015 0.002
50% 0.020 0.026 0.011 0.019 0.003
75% 0.032 0.042 0.015 0.023 0.005
max 0.135 0.396 0.053 0.079 0.030

Table 4.13: Descriptive statistic of the BCW database for 15 features

All these 30 features are in the breast cancer Wisconsin (diagnosis) database published by Wol-
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radius worst texture worst perimeter worst area worst smoothness worst

mean 16.27 25.68 107.26 880.58 0.13
std 4.83 6.15 33.60 569.36 0.02
min 7.93 12.02 50.41 185.20 0.07
25% 13.01 21.08 84.11 515.30 0.12
50% 14.97 25.41 97.66 686.50 0.13
75% 18.79 29.72 125.40 1084.00 0.15
max 36.04 49.54 251.20 4254.00 0.22

compactness
worst

concavity
worst

concave points
worst

symmetry
worst

fractal dimension
worst

mean 0.25 0.27 0.11 0.29 0.08
std 0.16 0.21 0.07 0.06 0.02
min 0.03 0.00 0.00 0.16 0.06
25% 0.15 0.11 0.06 0.25 0.07
50% 0.21 0.23 0.10 0.28 0.08
75% 0.34 0.38 0.16 0.32 0.09
max 1.06 1.25 0.29 0.66 0.21

Table 4.14: Descriptive statistic of the BCW database for 10 features

berg & Mangasarian (1989), which performed the previous analysis in 569 patients. The actual

diagnostic outcome is known: 357 benign and 212 malignant breast tumor cases. Table 4.12 only

presents the first five features with its mean, standard deviation (std), minimum (min) and max-

imum value (max), and the first, second, and third quartile (25%, 50%, and 75%). The set of

supplementary tables presented in Tables 4.13 and 4.14 help understand the distribution of data in

the database to execute the classification correctly. For example, variables with a high standard

deviation indicate the data points are extensively spread around the central point (mean). This

observation helps the class model as it is better to apply it in an outspread area. Conversely, low

standard deviation leads to data points be closer to the center point, as it is appreciated in Table 4.13

and Table 4.14 for the following variables: concavity mean, and concave points mean.

Also, a pairwise plot is made to look up for a possible relationship between the features. In Fig-

ure 4.11, for the first five features (the mean values of radius, texture, perimeter, area, smoothness,

compactness, and concavity), three linear relationships were found that suggest a possible corre-

lation between them too. Those associations (with their correlation value) are the mean values of:

radius with area (0.99), radius with perimeter (0.99), and area with perimeter (1).

A correlation heatmap presented in Figure 4.12 confirms that some features had high correla-

tion between them. For example, the correlation between radius mean and area mean is 0.99, and

it takes a darker color as it is closer to 1. Thus, the correlation heatmaps in Figures 4.13, 4.14,
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Figure 4.11: Pairwise plot of the BCW database

and 4.15 can be read just by seeing how the color intensity change to a more darker one.

The correlation between variables were: from Figure 4.13 perimeter mean and area mean,

radius mean and perimeter mean, area mean and radius mean; from Figure 4.14 radius se and

perimeter se, radius se and area se, and perimeter se and area se; and from Figure 4.15 perimeter

worst and radius worst, radius worst and area worst, and perimeter worst and area worst.

The binary classification model based on goal programming was used: a basic Model 1 called

as GP1 formulated by (3.1)–(3.5); a second Model 2 named as GP2 which considers a division

zone of 2β formulated by (3.7)–(3.11) and a third Model 3 called GP3 that considers penalization

via internal weights following the structure formulated by (3.12)–(3.20). As the database has a

higher number of benign than malign cases, the preference weights are used to compensate this

difference by setting Wa = 0.9 and Wb = 0.3. Table 4.15 shows the rank of importance of each

internal weight and its corresponding values after applying the Sum Reciprocal (RS) method.

These three models were tested in the two test scenarios (Tests C and D) presented in the

previous section and considering that β in GP2 and GP3 must be no higher than the database

variation. A general view of how the classification algorithm works is described in Algorithm 1.

The database was divided into two sets, the training and test sets. The former is composed of

80% of the data, and the latter has 20% of the remaining data. A K-fold cross-validation is used to

prevent an overfitting model by partitioning the training set into k subsets, and it uses k−1 to train
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Figure 4.12: Correlation heatmap of the BCW database for 7 features

weight type of error ranking RS

u1 Benign defined as Malign 5 0.074
u2 Benign as probably Malign 6 0.018
u3 Benign defined as Benign 2 0.253
v1 Malign defined as Malign 3 0.190
v2 Malign as probably Benign 4 0.131
v3 Malign defined as Benign 1 0.334

Table 4.15: Penalty internal weights obtained via RS method for the GP3 model

and the remaining k subsets to validate. Moreover, a confusion matrix (Table 4.16) was built to

validate each developed model. It is composed of four variables: True positive (TP), True negative

(TN), False negative (FN), and False positive (FP).

We have the following for this database: true positive (TP) relates to the benign cases which

were correctly classified; false negative (FN) express the benign tumors classified as malign; false

positive (FP) is the number of malign cases which were predicted as benign; and True negative

(TN) represents the malignant tumors correctly classified. Each one of the four variables calcu-

lates the following ratios: the accuracy rate measures how correctly a model classified each group;

the error rate or incorrect classification rate represents the fraction of error; the sensitivity and

specificity rate are the portion of recognize for benign and malign classes respectively; the preci-

sion and recall rate measure the exactness and the completeness of the model respectively.
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Figure 4.13: Correlation heatmap of the BCW database for 9 features

Since k = 10 on the K-fold cross-validation, then the model evaluates nine different subsets

as a training set. Figure 4.16 shows the average value of accuracy and error rate for each model,

where the former is the blue curve, and the latter is the orange curve. The accuracy levels are

higher, and the error rate levels are lower, indicating the model can find a hyperplane that classifies

correctly. However, this cannot be taken as a performance measure because it only considers the

training phase.

Figure 4.17 displays both curves of average accuracy and error rate for all k validation subsets.

Similarly to Figure 4.16, it has higher and lower values for accuracy and error rate, respectively,

indicating that each model does not have overfitting. Moreover, the accuracy level performance

increases from GP1 to GP2, but it decreases on GP3; the error rate converges with the accuracy

level as it decreases from GP1 to GP2, but it increases on GP3.

After proving no overfitting exist in all models, we used the 20% remaining of data to test

each model, including 114 observations. A comparative chart of accuracy level in the training,

validation, and test phases is displayed in Figure 4.18, where all models reach acceptable accuracy

levels that are higher than 0.93. Additionally, Table 4.17 presents six indicators to analyze the

performance of the GP1, GP2, and GP3 models when Test C or Test D are applied. Next, we

summarize the obtained results for each indicator of measure.

74

74

Rectangle



Figure 4.14: Correlation heatmap of BCW database for other 9 features

Accuracy Level:

The GP2 model achieves the highest values of 0.95, proving that a division zone of beta helps

to find a hyperplane separating both classes. Alternatively, the GP3 model achieves the lowest of

0.85 in Test D that is maybe related to the range of the weights limited by α, making the model

more restricted. Moreover, GP1 also has higher accuracy levels but is not correct to assume that

the classifier is better than another without observing other indicators.

Error Rate:

GP1 applied to Test C, and GP2 applied to Tests C and D obtained the lowest error rates, which

is reasonable since both models have the highest accuracy level. However, GP3 has the highest

error rates that correspond to its lower accuracy level explained above. Although it cannot be

detailed in which class was most unclassified, in general, the classification of both classes has a

lower level of error rate.

Sensitivity and Specificity:

These indicators are rates that represent the portion of recognizing benign (sensitivity) and

malignant (specificity) tumors, i.e., the number of observations correctly classified concerning

their class. Thereby, the highest value of sensitivity was obtained by GP3 applied to Test D that

indicates all the benign cases were correctly classified but comparing to the specificity rate, it is

clear that a class of benign tumors were unclassified too. It would then be most accurate to look

75

75

Rectangle



Figure 4.15: Correlation heatmap of the BCW database for 5 features

together at sensitivity and specificity to analyze each model’s performance.

As the main goal is to make a precise classification for both types of tumors, the GP2 model

achieved the highest sensitivity and specificity rates, indicating that the proportion of exact classi-

fication with the original labels for benign and malign tumors is higher. Although the GP1 model

also has an accurate performance, its specificity rates are not promising, and the same situation

occurs with the GP3 model.

Precision and Recall:

If the accuracy rate is closer to 1, each observation of a specific class was correctly classified.

However, indexes as precision and recall disclose what is the proportion of, in this case, benign

tumors being identified correctly concerning the predicted results and the original labels in the test

database, respectively. Therefore, it is ideal to seek models with higher values for precision and

recall but with a higher accuracy rate. It is the case of the GP2 and GP3 models applied to Test C,

for which the proportion of benign tumors concerning the predicted results and the original labels

of class also has higher accuracy rates.
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Algorithm 1: Classification algorithm based on goal programming
input : D ∈ Rn×m (set of n data points with m attributes to be classified)

β (half size of division zone)
α (computational parameter)
MaxTime (maximum time for iteration)

output: w = {w0,w1, . . . ,wn} (set of weights)

1 Separate D in two parts: training and test
2 for i = 1, . . . ,n do
3 for j = 1, . . . ,m do
4 if (xi j) belong to class 1 (C1) then
5 Build constraint xi jwi +nC1

i − pC1
i = w0 +β

6 else
7 Build constraint xi jwi +nC2

i − pC2
i = w0−β

8 end
9 end

10 end
11 Optimize according to minimize nC1

i + pC2
i

12 return vector w

Previous experimental results by including dimensional reduction method

In the correlation heatmap presented before, we note that some features have higher correla-

tions, indicating that the complete information in the thirty features could be express by a lower

number of features. A dimension reduction method, the PCA method, was applied to select the

principal components (lower number of features). Figure 4.19 illustrates how the variance de-

creases as the number of components increases.

Notably, when the number of components achieves 4, the projected data variance attains one of

its lowest values and still has the database’s principal information. The three GP1, GP2, and GP3

models were applied (also with Tests C and D) to this reduced database with 569 observations with

four parameters. Therefore, the database is divided into two parts: 80% for training and validation

by applying the K-folds cross-validation, and the 20% remaining for testing. Figure 4.20 illustrates

the results of each model in the training phase, where the blue curve is the accuracy rate, and the

orange curve is the error rate.

Predicted class
Benign Malign

Benign True positive (TP) False negative (FN)
Actual
class

Malign False positive (FP) True negative (TN)

Table 4.16: Confusion matrix for the BCW database
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Figure 4.16: Average accuracy level and error rate for the training set

Figure 4.17: Average accuracy level and error rate for the validation set

Similar to the analysis seen previously, the accuracy rates achieve higher values since they are

from the training phase, but it is clear that they are not as much as those obtained with the complete

database. The GP1 and GP2 models still present the highest values, and the GP3 model the lowest

that also relates to their error rate performance. However, it is more important to validate if the

model does not have overfitting. Thus, the accuracy level and error rate in the k validation subsets

are displayed in Figure 4.21.

The variation in respect to the results seen before differs in the accuracy levels and error rates

for each model. The accuracy levels are higher and error rates are lower when it is only considered

four parameters. This observation could indicate that no overfitting was found, and the classifi-

cation improves from GP1 to GP2, but it decreases at a fewer level on GP3. However, to make

a final conclusion is better to apply three classification models in a new set of data, i.e., the 20%
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Figure 4.18: Comparative graphic of accuracy level among the training, validation and test sets

GP 1 GP 2 GP3

Test C Test D Test C Test D Test C Test D

Accuracy 0.93 0.95 0.95 0.95 0.93 0.85
Error Rate 0.07 0.05 0.05 0.05 0.07 0.15
Sensitivity 0.95 0.97 0.97 0.93 0.96 1.00
Specificity 0.90 0.91 0.91 0.98 0.89 0.63
Precision 0.95 0.94 0.94 0.98 0.93 0.80

Recall 0.95 0.97 0.97 0.93 0.96 1.00

Table 4.17: Indicator performance per model

remaining of the original database.

A comparison chart of accuracy level between the training, validation, and test subsets is dis-

played in Figure 4.22. It is clear that during the K-folds cross-validation, the accuracy level perfor-

mance between the training and validation was improved during the testing phase. However, the

accuracy level for each model decreased. This situation happened when the training and validation

sets were not representative enough to make the model learns from the data and finds a hyperplane

that separates both classes. Table 4.17 presents six indicators to analyze the performance of GP1,

GP2, and GP3 for Tests C and D. Next, we summarize the obtained results for each indicator of

measure.

Accuracy Level:

The highest accuracy levels came from the GP2 model applied to Test D and GP3 model to

both Tests. Although the GP1 and GP2 models’ results are not as high as the previous analysis
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Figure 4.19: Projected data variance versus number of principal components for the PCA method

GP 1 GP 2 GP3

Test C Test D Test C Test D Test C Test D

Accuracy 0.84 0.84 0.84 0.87 0.85 0.85
Error Rate 0.16 0.16 0.16 0.13 0.15 0.15
Sensitivity 0.84 0.84 0.84 0.84 0.90 0.90
Specificity 0.85 0.85 0.85 0.91 0.78 0.78
Precision 0.89 0.89 0.89 0.93 0.86 0.86

Recall 0.84 0.84 0.84 0.84 0.90 0.90

Table 4.18: Indicator performance per model obtained from principal components

considering all data, all models achieved an accurate classification but including some unclassified

observations.

Error Rate:

In contrast to the accuracy level results presented above, the error rate for the GP2 model in

Test D is lower than the GP3 model. Notably, the values are higher than in Table 4.17, since less in-

formation is available after the dimension reduction, some observations are not classified correctly.

However, it is not honest to speculate with this indicator how many observations from a class of tu-

mors are unclassified than another since originally exists a meaningful difference between benign

and malign tumor cases.

Sensitivity and Specificity:

Sensitivity in GP3 achieves the highest values confirming correct classification for a proportion
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Figure 4.20: Average accuracy level and error rate for the training set obtained from principal
components

Figure 4.21: Average accuracy level and error rate for the validation set obtained from principal
components

of 0.90 of benign tumors. Nevertheless, the specificity level in GP3 was the lowest as it only

accurately classifies the 0.78 of malign tumors whose classification was accurate. The results may

relate to the weighting method since it only made a ranking of importance but not defines how

relevant is one penalization from another.

Precision and Recall:

Precision and recall values also decrease concerning the previous indicators. The high precision

value was from the GP2 model for Test C, saying that the rate of benign cases accurately classifies

to all the predicted observations is 0.93. However, comparing it with recall, only the 0.84 of

benign instances were correctly classified, making the model less accurate due to a particular class

of observations that are considered malignant when they are not. This same analysis leads us to
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Figure 4.22: Comparative graphic of accuracy level for the training, validation, and test sets ob-
tained from principal components

prefer a model whose precision and recall have acceptable values since it could be dangerous to

classify a benign tumor as malign. The best performance was from the GP3 model as it returns a

precision of 0.86 on classifying the predicted benign tumors and correctly labeling 0.90 of them.

4.2 Numerical tests for clustering

This section analyzes different tests for the distance measures for the clustering model based

on integer mathematical programming. Section 3.2 describes this model. We use two databases of

bovine animals for a farming company. The first one has 102 observations, and the second has 526

observations for which we consider a sparse reduction of data.

4.2.1 Setting the parameters

The integer clustering model (3.22)–(3.26) of Section 3.2 is related to the k-means clustering

problem, which uses object assignation with its respective cluster center through minimization

of distances between objects. This subsection presents preliminary numerical tests for setting

the type of distance that better adjust to bovine animals’ data in a farming company. Since the

model presents an objective function attempting to minimize the sum of the distance between each

object i and its assigned cluster center j, it is essential to analyze which type of distance gets

better consistency in each cluster. Euclidean (ρ = 2), Manhattan (ρ = 1), and Chebyshev (ρ = ∞)
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distances are the chosen metrics to evaluate the studied clustering model.

The parameter analysis works with 102 observations from bovine animals with four character-

istics: Breed type, ECC, Frame, and Weight. The first has two types of breed cattle called: CA and

NEL; the second is a body condition score (BCS or ECC as its initials in Portuguese) that describes

the nutritional value through visual validation and has a scale from 1 to 9; the third is a numerical

skeletal description called “Frame” which has a range from 1 to 9; and the fourth measures the

total weight of each beef in Kg. Data points are plot in Figure 4.23, considering just the last three

features. And given that only one feature is qualitative, the following Table 4.19 has the statistical

description of the last three features that includes: mean, standard deviation (std), minimum value

(min), percentile values (25%, 50%, and 75%), and maximum value (max).

Figure 4.23: Three-dimensional plot of the bovine animal database

ECC Frame Weight

mean 5.21 5.92 307.96
std 0.61 0.91 28.93
min 4 4 253
25% 5 6 290
50% 5 6 307.5
75% 5.5 6.75 324.75
max 6.5 7.5 423

Table 4.19: Descriptive statistic of the bovine animal database with 102 observations

From the standard deviation score, data points are more disperse with respect to the Weight

characteristic than the other features; and the first, second and third quartile (25%, 50%, and 75%)

does not have a huge difference for ECC and Frame features, unlike the Weight score. To find pos-

sible relations between features, Figure 4.24 shown a pairwise plot for both breed categories. Here,
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it indicates that neither feature has any linear relationship with the others so that no correlation may

exist.

Figure 4.24: Pairwise plot of bovine animal database

Figure 4.25: Correlation heatmap of the bovine animal database with 102 observations

A correlation heatmap in Figure 4.25 shows that while the color gets more obscure, a higher

the correlation magnitude exists between two features. Moreover, since the maximum value of

correlation is 0.37 between ECC and Weight, no correlation exists between the variables.

The previous statistical analysis allows understanding if some variables are highly correlated

that may influence badly in models’ development. However, as is seen in Figures 4.24 and 4.25,

each feature gives independent information, thus the model presented in (3.22)–(3.26) can be used
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correctly changing the number of clusters k. In this subsection, the impact of changing k from

2 to 10 is analyzed in three different types of distances. The applied algorithm follows in the

pseudocode described in Algorithm 2.

Algorithm 2: Clustering algorithm based on mathematical programming
input : D = {x1, . . . ,xn} (set of data points to be clustered)

k (number of clusters)
MaxTime (maximum time for iteration)

output: C = {c1, . . . ,ck} (set of cluster centers)
Label of points assign to one cluster ck

1 Standardize D with mean = 0 and standard deviation = 1
2 Compute chosen distance between each point of D called δi j
3 while MaxTime do
4 for i = 1, . . . ,n do
5 for j = 1, . . . ,n do
6 calculate ∑

n
i=1 ∑

n
j=1 δi jzi j

7 if ∑
n
i=1 zi j = 1 and ∑

n
j=1 zi j ≤ nyi and ∑

n
i=1 yi = k then

8 Find optimal minimum
9 end

10 end
11 end
12 end
13 return vector C = {c1, . . . ,ck}

We run the clustering model for each Euclidean, Manhattan, and Chebyshev distance metrics

and varying the number of clusters in the solution from parameter k. Furthermore, three evaluation

scores, Silhouettes (SH), Davies Bouldin (DB), and Calinski-Harabasz (CH), are used together

to evaluate if exists an optimal value for the parameter k. The SH score evaluates the clustering

model’s quality since it calculates how well each observation belongs to its respective cluster,

comparing it to the other clusters. The DB score seeks the model with lower separation within the

cluster and a higher distance between other clusters. The CH score, or the variance ratio criteria,

measures how large the distances are within the cluster and the proximity of intra-cluster distances.

Figure 4.26 displays the three graphics of Silhouette, Davies Bouldin, and Calinski-Harabasz score

for the clustering model using Euclidean distance.

The SH score in Figure 4.26(a) represents the mean value between all the SH measures for each

observation i. This metric has a range between -1 and 1. If the score is closer to -1, it suggests that

the observations do not rely well upon its cluster. Otherwise, if the score is closer to 1, it indicates

the cluster model can group the observations with higher similarity. Using the Euclidean distance,

three points reached the highest values. However, it can only be considered the second higher SH

score, i.e., when k = 6.
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(a) Silhouette score (b) Davies Bouldin score

(c) Calinski-Harabasz score

Figure 4.26: Evaluation scores for the Euclidean distance metric

The DB score represents the variance of points in its respective cluster and how far are the

clusters relative to each other. Although this measure does not have a range of values, the lower

the score is, the better is the clusters. This measure complements the SH score to choose the

number of k clusters. Figure 4.26(b) has two inflection points. The first when k is between 6 and 7

and the second when k is equal to 9.

Furthermore, the CH score represents the dispersion between the k clusters and the inter-cluster

dispersion for all k clusters. When the clusters are more dense and well separated, then the score

is higher. Figure 4.26(c) shows the results of the CH score for k different clusters, and the largest

value is equal to k = 6. Therefore, the three scores coincide in the optimal number of clusters using

the Euclidean distance, i.e., for k = 6.

Similarly to the previous analysis, the results obtained from the clustering model in (3.22)–

(3.26) using the Manhattan distance are presented for k different clusters in Figure 4.27. The SH

score in Figure 4.27(a) suggests the clusters achieve higher similarity when its score is at k = 7.

Otherwise, the DB score in Figure 4.27(b) has two inflection points: when k is between 5 and
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(a) Silhouette score (b) Davies Bouldin score

(c) Calinski-Harabasz score

Figure 4.27: Evaluation scores for the Manhattan distance metric

6, and when k = 9. Finally, the CH score in Figure 4.27(c) displays two solutions for when the

clusters are more dense and well separated. The first at k = 6, and the second at k = 9. Since no

coincidence exists between the three scores under the optimal number of clusters, the Manhattan

distance does not is an adequate distance metric for the bovine animal database.

The last distance metric called Chebyshev displays its results for k clusters in Figure 4.28. The

SH score indicates that when k = 7, the clustering model arranges the observations with higher

similarity in 7 clusters. Furthermore, the DB score also coincides with the SH score since the low-

est value presented in Figure 4.28(b) is achieved when k = 7. Therefore, the model also assembles

clusters that better separate between each other. The last CH score achieves its higher values when

k is between 7 and 9. Thus, in this range, the model can make clusters with higher density and well

separated.

To conclude, the model (3.22)–(3.26) used three types of distance, Euclidean, Manhattan, and

Chebyshev for different values of k. Moreover, the Silhouette, Davies Bouldin, and Calinski-

Harabasz scores measure the model performance to find the ideal value of k, i.e., the number of

clusters. Thus, given the bovine animal clustering data structure, the euclidean distance gives the
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(a) Silhouette score (b) Davies Bouldin score

(c) Calinski-Harabasz score

Figure 4.28: Evaluation scores for the Chebyshev distance metric

same value of k in the three evaluation scores SH, DB, and CH. Since the clustering model based

on integer mathematical programming is object-oriented, the number of variables and constraints

increases according to the database’s growing. This relation causes the model to spend more

time to obtain an optimal solution. The next subsection analyzes another bovine animal database

containing 526 observations, for which we before applied a sparse dimension reduction of data.

4.2.2 Case of study: Bovine animals database

This subsection studies a new database of bovine animals containing 526 observations for a

farming company whose objective is to obtain groups of their animals with the most homogeneous

characteristics per cluster. Thus, we use the previous distance parameter setting in the model

(3.27)–(3.31) presented in Section 3.2 with a sparse dimension reduction. the database three char-

acteristics: ECC, Frame, and Weight. The first is a body condition score (BCS or ECC as its initials

in Portuguese) that describes the nutritional value through visual validation and is a scale from 1 to

9. The third is a numerical skeletal description called Frame, which has a range from 1 to 9. And
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Figure 4.29: Three-dimensional plot of the bovine animal database

the fourth measure the total weight of each beef in Kg.

Figure 4.29 shows a three dimensional representation of the database characteristics. ECC

suggests the relative fatness of the cow’s body composition, for which the value 1 associates with

a thin body and the value 9 with an extreme fatness body. This score is an excellent indicator of

the nutritional status in beef cows (Eversole et al. 2005), which will lead to establishing a new

nutrition plan for each cow or group of cows to achieved optimal values. The ECC score is based

on six key areas for evaluation: backbone, tail head, pins, hooks, ribs, and brisket (Figure 4.30(a))

Similarly, Frame score describes the skeletal size of the cattle (McDonald 1982) based on the

hip height (Figure 4.30(b)), were 1 is the smallest, and 9 represents the largest cow size. As our

problem is to group the cattle by similarity, this score will indicate which one has an optimal weight

(a) Visual areas used to determine ECC in beef
cows (Eversole et al. 2005)

(b) Proper position for correctly hip height measure (Ever-
sole et al. 2005)

Figure 4.30: Specific references of a cattle to localize the ECC and Frame scores
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to be a slaughter. Prediction of the animal maturity also can be made by seeking an optimal weight

that matches the Frame value considering that this score usually does not change in time.

ECC Frame Weight

mean 4.74 5.46 327.41
std 0.89 1.13 66.61
min 2 2 205
25% 4 5 285
50% 5 6 311.5
75% 5 6 344
max 8 8 566

Table 4.20: Descriptive statistics of bovine animal database with 526 observations

Table 4.20 presents the statistical description of the three features which includes: mean, stan-

dard deviation (std), minimum value (min), percentile values (25%, 50%, and 75%), and maximum

value (max). From the standard deviation score, data points are more disperse with respect to the

Weight characteristic than the other features; and the first, second and third quartile (25%, 50%,

and 75%) does not have a huge difference for ECC and frame features, unlike the Weight score

A correlation heatmap in Figure 4.31 illustrates that while the color gets more obscure, a higher

correlation magnitude exists between two features. Moreover, since the maximum value of corre-

lation is equal to 0.4 between ECC and frame, no correlation exists between the variables.

Figure 4.31: Correlation heatmap of the bovine animal database with 526 observations

The previous statistical analysis looked for a presumed linear relationship between the char-

acteristics that could impact the algorithm development. Although each feature is independent,
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SH DB CH time(s)

Test 1 0.308 0.997 65.844 69.86
Test 2 0.293 1.045 106.346 194.67
Test 3 0.305 1.059 134.845 300.90

Table 4.21: Evaluation scores and running times

the size of the database does not allow to apply the model directly since it is computational more

expensive. Gnagi & Baumann (2017) presented a scaling approach to reduce the database size by

identifying a set of representatives instead of the original objects. First, the 526 observations are

standardized with a mean equal to zero and a standard deviation equal to one. Then, the range

of each p feature (ECC, Frame, and Weight) is subdivided into g intervals of equal length. Thus

the p-dimensional space has a partition of gp blocks. Each observation is assigned to a single

block based on its p feature values, and the number of non-empty blocks is denoted as q. Finally,

it selects a single representative observation for each q block, calculating the gravity center of

corresponding observations within each block.

The model (3.27)–(3.31) is set up with the set of representatives to find the cluster centers, and

later the same clustering membership is passed to the original observations. The cluster assignation

now depends on the number of g divisions since if the number of representatives increases, each

cluster has more similar observations. However, it also enlarges the time spend to solve the model.

Three scenarios for g = 10,20,30 called Test 1, Test 2, and Test 3, respectively, evaluate the

clustering model performance with different values of k. Figure 4.32 illustrates the graphic results

for Test 1 in the Silhouette (SH), David Bounie (DB), and Calinski Harabasz (CH) scores.

Figure 4.32(a) shows that at k = 4, the model assembles clusters with more similar observa-

tions. Similarly, the DB score has its lowest values for k between 4 and 5; hence the observations

per cluster have low variance. The CH score also reaches its highest value at k = 4 (Figure 4.32(c))

when clusters are more dense and well separated. The results analysis for Tests 2 and 3 also co-

incides with k = 4 as the optimal number of clusters. However, the three scenarios differ in the

number of the representative points and the time spent to solve the clustering model. Table 4.21

summarizes the three evaluation scores and the time (in seconds) to solve the model with k = 4 for

Test 1, 2, and 3.

The time spent on solving the clustering model increase from Test 1 to Test 2 because the

number of subdivisions g also increasing from 10 to 30. The SH score reflects how similar are the

91

91

Rectangle



(a) Silhouette score (b) Davies Bouldin score

(c) Calinski-Harabasz score

Figure 4.32: Evaluation score for the Euclidean distance metric in Test 1

points inside every k cluster as it gets closer to 1. From Test 1 to 3, the SH score improves since the

number of representatives increases, and more observations are assigned to its respective cluster

center. On the other hand, the DB score does not reduce its value, but the difference between Test

1, 2, or 3 scores is not as large as to be concerned. Lastly, when k = 4, the CH score expresses that

each cluster is denser while being well separated from the others.

Test 1 Test 2 Test 3

ECC Frame Weight ECC Frame Weight ECC Frame Weight

C1 4.05 4.08 282.42 4.02 3.96 277.54 3.97 3.85 271.69
C2 4.65 6.35 307.41 4.64 6.15 306.35 4.64 6.13 309.16
C3 4.83 6.05 441.38 4.83 6.12 442.25 4.77 6.04 449.34
C4 5.72 5.17 311.80 5.84 5.16 317.47 5.84 5.13 317.77

Table 4.22: Average ECC, Frame and Weight in each cluster

Table 4.22 summarizes the average values of each characteristic (ECC, Frame, and Weight) in

all 4 clusters for the three tests. The clusters (C1, C2, C3, and C4) have a similar value per feature

in Test 1, 2, and 3. It explains that the number of subdivisions g does not have a strong influence
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on the clusters’ structure, and it only differs on the amount of time the model spends finding an

optimal solution.

This application aims to improve the farming company’s sales by using a suitable number of

clusters to split the animals into similar groups. Therefore, it is easier to identify which group

holds the best characteristics to be sold first at a better price. According to Eversole et al. (2005),

the optimal ECC value is when it ranges between 5 and 7 because the cattle cow has an excellent

overall appearance. When ECC is lower than 5, the cow loses more muscle tone since less fat is

available to supply energy to sustain vital bodily functions (Gadberry 2012).

From the results in Table 4.22, clusters C1, C2, and C3 have lower values than 5, being C1

the lowest. In C1, ECC ranges between 3.97 and 4.05, implying some cows inside the cluster

need a change in their nutrition plan to reach the ideal amount of fat at the moment of slaughter.

Otherwise, clusters C2 and C3 do not attain the optimal measure, then is suggested to wait for

the cow to gain more fat to improve its ECC. McDonald (1982) indicates that to be considered

as a potential market sell, the range of weight cattle should have is related to its Frame value

(Table 4.23). However, unlike the ECC score, a larger Frame score does not represent a better cow,

but it links to how long the cow will achieve maturity.

Frame Weight (Kg)

1-2 150 - 180
3-5 200 - 350
6-9 350 - 450

Table 4.23: Optimal cattle weight according to the Frame score

Analyzing the optimal cattle weight and frame to the clusters results in Table 4.22, we identify

that for cluster C2 its average frame value between 6.13 and 6.35 does not achieve the minimum

weight of 350 Kg. Therefore, the cattle in this cluster will take more time to gain weight to get

their corresponding maturity. However, this can be accelerated by changing the nutrition plan, or

the cattle’s purpose can be altered, for example, to use it for reproduction.
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CHAPTER 5

Final remarks and some clues for future researches

5.1 Conclusions

This research examined mathematical optimization models that are useful to an enormous num-

ber of computer science applications, and jointly with machine learning are two growing fields of

artificial intelligence. Each studied model has a machine learning background, and they are tech-

niques well-known in this area of knowledge. Moreover, the recent mathematical programs and

optimization techniques for machine learning have started considerable growth, such that both

approaches are performed to improve each other.

The classification model based on goal programming seeks to find a hyperplane that separates

two classes of data. It uses the margin concept, introduced for the Support Vector Machine, as the

smallest distance between the separating hyperplane and any observation. The clustering model

based on integer mathematical programming is a different overview of the k-means clustering

problem. It groups the most similar observations into a fixed number of clusters by assigning an

inner specific object as a cluster center for a particular set of objects. The objective is to minimize

the distance between the cluster center and its designated objects.

Both the classification and the clustering models depend on a suitable parameter setting to

achieve the correct optimal solution. Preliminary numerical experiments for both models helped

understand their behavior according to the data and setting the parameters. For example, in classi-
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fication models, we conducted tests for the GP1, GP2, and GP3 models for setting the parameters β

and α related to the data variance. Thus, we evaluated the influence of the distance metrics used in

the clustering model while minimizing the ratio between the cluster center and its assigned objects.

Moreover, if the database’s information increases, both models need more time to achieve an

optimal solution. Thus, it is essential to implement dimension reduction methods to reduce the

number of features or observations. For the classification model, the PCA dimension reduction

method found the principal components that decrease the original features while keeping as most

information as possible. Similarly, for the clustering model, a technique based on sparse-reduced

computation identified the representative points to decrease the number of original observations.

Thus the centers of the clusters are the same for the reduced and original data.

In this dissertation, we addressed a case study for classifying cancer breast tumors between

benign and malign that uses three classification models based on goal programming on a database

containing 569 observations with thirty features. Additionally, we performed a case study on

bovine animals the obtains the optimal number of clusters using a database containing 526 objects

with three characteristics. The following subsection summarizes the results obtained from both

case studies.

5.2 Summary of the obtained results

The case studies lead to obtaining accurate results that were validated with different metric

indicators. The first case involved classifying the database Breast Cancer Wisconsin (569 obser-

vations and 30 features) with two breast cancer labels, where we used non-standard preferences

for penalizing incorrect classification. The second case involved clustering a bovine database (526

observations and four features), where we used different distance metrics to obtain similar groups

of animals.

The classification models used in the breast cancer tumor problem achieved higher accuracy

rates and lower error rates considering both the original database and the reduced database from the

principal component analysis method. The success in this case study confirms that the structure

of data follows the numerical results from setting the parameters α and β made in Section 4.1.

However, by adding the preferences and internal weights in the GP3 model does not improve the

classification. Therefore, the weighting method may not be very accurate since we only rank the
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criteria but do not give a scale of importance.

The results of a clustering model for the bovine database allow seeking the best assignation

of objects into k clusters. Since the objective function is a based-distance metric that minimizes

the distance between each observation and its cluster center, the numerical experiments showed

that Euclidean distance fits the used database. Nevertheless, it is computationally more expensive,

for the 526 observations, to solve the model since it is object-oriented. Thus, we applied a sparse

reduction method that selects the representative objects within the original database to solve the

clustering model using only these representative objects. Note that the representative objects save

the information of cluster memberships related to the 526 original observations.

5.3 Future researches

This dissertation aimed to use optimization models to achieve solutions in classification and

clustering approaches. We observed that these studied models together with recent optimizations

methods could successfully assist to improve machine learning techniques for classification and

clustering.

We note that there are still points of improvement to be discussed in future researches. For

example, in the classification model named GP3, the internal penalty weights did not improve the

accuracy level when classifying breast cancer tumors. This weakness may be due to the ranking

weights method used, which only considers the order of importance among them but not how im-

portant each weight is compared to each other. For future research, we plan to seek new assignment

criteria methodologies to make the classification more accurate.

Although the practical applications with both studied models achieve outstanding results, they

only apply to linear problems. Therefore, it would be interesting to analyze and compare other

machine learning techniques with mathematical programming approaches to solve nonlinear prob-

lems such as neural networks.
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