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Resumo
O cólon humano é propício ao desenvolvimento de câncer devido à possibilidade de
ocorrerem mutações na intensa atividade de renovação celular que consiste em um alto
número de divisões celulares por dia, localizadas em pequenas cavidades chamadas de
criptas. O epitélio do cólon é formado por milhões de criptas e é conhecido que mutações no
processo de proliferação (dentro das criptas) podem conduzir à carcinogênese. A dinâmica
de células colônicas pode ser modelada usando multiescalas (FIGUEIREDO et al., 2013).
Em particular, nós podemos usar uma cripta de referência como um domínio microescala,
que é periodicamente distribuído em um domínio macroescala, onde este é associado a
uma porção do epitélio do cólon. O modelo final resulta em um sistema de EDPs acoplado
formado por um problema elítico e um outro parabólico nos quais as variáveis são a
densidade de células proliferativas e a pressão celular exercida.

Apresentamos o processo de homogenização desse sistema de equações supondo a existência
de uma expansão assintótica da solução e das demais funções que compõem o problema,
veja (CIORANESCU; DONATO, 1999). Aplicamos um método de resolução multiescala
baseado em elementos finitos (HMM-FEM) para aproximar a solução homogenizada
encontrado em alguns trabalhos como (ABDULLE, 2009; ABDULLE, 2012; ABDULLE;
HUBER, 2014). No cenário onde o problema é acoplado e não linear, a implementação
de métodos se torna mais robusta computacionalmente, portanto optamos por resolver
primeiro o problema elítico e depois o parabólico como uma forma de amenizar essa
complexidade.

Em uma única escala, estudamos estabilidade e convergência de um esquema supraconver-
gente baseado em diferenças finitas centradas para malhas não uniformes que é equivalente
à um esquema baseado em elementos finitos. Em um cenário mais simplificado, estudamos
convergência e estabilidade do método apresentado. Já para um caso mais geral provamos,
para s “ 1, 2, ordem Ophsq de convergência para a solução e gradiente se a solução exata
está em H1`s

pΩq, veja (FERREIRA; BARBEIRO; GRIGORIEFF, 2005). Para o problema
homogenizado, apresentamos uma estratégia supraconvergente que permite aproximar a
solução do problema homogenizado acoplado, onde numericamente obtemos uma ordem
de convergência quadrática Por fim, apresentamos um método para resolver problemas
multiescala usando dos bons resultados de convergência discutidos acima. Esse modelo é
baseado em um problema microescala que posteriormente será usado para construir uma
solução macroescala para o sistema homogenizado. Os primeiros indícios de convergência
surgem dos resultados numéricos obtidos.

Palavras-chave: Método multiescala. ACF. Câncer colorretal. Simulação numérica.



Abstract
The human colon is prone to develop a cancer due to its cell renovation that consists in a
large number of cell divisions per day located in small cavities of the colon epithelium,
called crypts. The colon epithelium is filled by millions of crypts, and it is known that
mutations in the cell proliferation process (inside the crypts) can lead to the carcinogenesis.
Colonic cell proliferation can be modeled by using multiscales (FIGUEIREDO et al., 2013).
In particular, we can use a reference crypt, as a microscale domain, that is periodically
distributed in a macroscale domain that is a portion of the colon epithelium. The final
model results in a coupled system formed by an elliptic and parabolic equations whose
unknowns are the proliferative cell density and the exerted cell pressure.

We present a homogenization for the final PDE model where it is supposed to exist
a asymptotic expansion for the exact solution of the problem , see (CIORANESCU;
DONATO, 1999). We apply a multiscale method based on finite elements (HMM-FEM)
to approximate the homogenized solution as in (ABDULLE, 2009; ABDULLE, 2012;
ABDULLE; HUBER, 2014). The coupling and the non-linearity of the system implies a
more complex implementation and increase the computational effort, thus we first solve
the elliptic problem and then the parabolic one to make it easier. As we can see later, that
strategy does not affect the convergence rates.

Furthermore, in a single scale, we study a supraconvergent method based on centered
finite difference to nonuniform mesh which is equivalent to a fully discrete linear finite
element method. Firstly we study convergence and stability of a simpler model and then
we prove for s “ 1, 2 order Ophsq convergence of solution and gradient if the exact solution
is in H1`s

pΩq, see (FERREIRA; BARBEIRO; GRIGORIEFF, 2005). Numerical results
illustrate the methods above. For the multiscale problem, we present a supraconvergent
scheme which provides approximations to the coupled system with quadratic convergence
rate. This is done by solving the homogenized problem with the supraconvergent method
discussed before. Our last contribution is a multiscale model in development which can
be useful to solve multiscale problems with the good convergence rates discussed above.
That model is based on solving a microscale problem that will be used to construct a
macroscale solution for the homogenized system. Numerical results for this model suggest
a supraconvergence.

Keywords: Multiscale method. ACF. Colorectal cancer. Numerical simulation.
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1 Introduction

1.1 Motivation
Colorectal cancer (CRC) is one of the most common cancer in the world and

is considered a real public health problem, with over 1.4 million new cases diagnosed
each year. Despite improvements in screening for early diagnosis, CRC is responsible for
about 700 000 deaths in 2012 (FERLAY et al., 2013). In Brazil, according to estimates of
incidence for 2018 from the National Cancer Institute (INCA), 17.380 new cases of cancer
of colon and rectum are expected in men and 18.980 in women (INCA, 2018). For 2020,
20540 new cases of colorectal cancer are expected for men and 20470 for women.

In UNICAMP, a CRC screening and prevention program was implemented
in 2011 in the Zeferino Vaz Campus. The Program is based on guidance lectures, pro-
viding occult blood testing, colonoscopy and surgery when necessary and monitoring of
participants. Until February 2017, 22.582 fecal occult blood tests have been made, where
about 1.187 people had a positive result (abnormal) and were then recommended for a
colonoscopy. 624 polyps (pre-malignant lesions) were found and removed over five years
(GARDENAL, 2017; COY, 2013).

There are several risk factors that may increase the chance of a individual
developing CRC (SOCIETY, 2018a), such as:

• Family history: People with a first-degree relative who has been diagnosed with CRC
are in increased risk. The risk is even higher if that relative was diagnosed with
cancer when they were younger than 45.

• Age: Although a person can develop CRC at any age, it is much more common after
age 50.

• Lifestyle: A sedentary lifestyle, obesity, lack of exercises, alcohol and smoking are
greatly linked with that disease.

An early colon screening can prevent cancer and it is recommended at age
50. One of the several methods for CRC screening is the colonoscopy, that provides a
direct visualization of the colonic mucosa and often the terminal ileum. Colonoscopy
examination allows early identification of lesions, signs and symptoms, and allows biopsies
to be performed. In (MENDES et al., 2018), they present some indicators and findings for
the exam in patients aged ą 50 years who underwent colonoscopy (n “ 1.614 exams):
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Table 1 – Main indicators

Indications
%

Intestinal bleeding 26.5%
Neoplasia screening 20.7%
Abdominal pain 10.2%
Obstipation 8.2%
History of polyp 7.9%

Table 2 – Main findings

Resuls
%

Diverticular disease 38.9%
Polyps 38.8%
Normal 23.2%
Angioectasia 4.6%
Neoplasia 4.3%

Source: (MENDES et al., 2018)

We can verify from Table 1 and Table 2 that colonoscopy is an important exam
for the diagnosis of various colorectal diseases including the first stages of CRC. In general
the current treatment options for CRC are surgery, chemotherapy, and biological therapies
(SOCIETY, 2018b). Radiotherapy is not commonly used to treat, although it can be used
after surgery to destroy any residual cancer cells.

The Colorectal Cancer is caused by the abnormal growth of epithelial cells
which form the lining of colon or rectum. More precisely, the genetic mutations occur
inside small cavities, called crypts, located in the colon epithelium. CRC usually begins
as a small growth called a polyp which are a protuberance in the intestinal lumen that
originates from the mucosa containing dysplastic cells being likely to progress to cancer
and it is believed that the precursors of CRC are aberrant crypt foci (ACF) which are
clusters of crypts in the colon epithelium, containing cells with a deviant behavior with
respect to the normal ones (FIGUEIREDO et al., 2013; LEEUWEN et al., 2006).

The motivation of this thesis is to model and simulate accurately the abnormal
cell dynamics in the colon. We propose a cell dynamics model for describing the evolution
of abnormal colonic cells in a single crypt and use the periodic crypt distribution in the
colon to model such dynamics in the whole colon. The high computational cost of a
such numerical method applied in the colon suggested us to implement cheap multiscale
methods such as HMM-FEM and and a supraconvergent multiscale method.

In the next section, we present some cell dynamics models related to this work.

1.2 Review of relevant mathematical models for cell dynamics in a
colonic crypt

There are many different approaches to modeling cell proliferation and move-
ment such as continuum and cell-based models. According to (MURRAY et al., 2011),
continuum models are generally fairly simple, where effects as proliferation, death and other
few parameters can be incorporated by introducing a source term into the appropriate
mass balance equation. On the other hand, cell-based models are less suited to modeling
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cell growth, however they have the ability to track individual cells and are better suited
for small number of cells.

We treat in this thesis continuum models for cell dynamics in the colonic crypts
based on partial differential equation. A list of models of this type are presented and
discussed in this section, where we put on evidence their characteristics and differences
also with respect our proposed model (2.4) in Chapter 2.

1.2.1 Continuum models for tumor growth based on two families of cells

King and Franks (KING; FRANKS, 2004) have presented a simple class of
models that predicts certain keys stages in the tumor growth. The conservation laws for
two types has the following form
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Bn1

Bt
`∇ ¨ pn1vq “ ∇ ¨ pDn1∇n1q `Kn1,

Bn2

Bt
`∇ ¨ pn2vq “ ∇ ¨ pDn2∇n2q ` kn2,

n1 ` n2 “ 1,

(1.1)

where n1, n2 are respectively the volume fraction of malignant or abnormal cell type and
of normal cell type. Cell proliferation and death are modeled by the mitotic rates k,K.
Proliferation is associated to positive rates and Death to negative rates. The relation
n1` n2 “ 1 is called overall density condition that assures that no void is allowed between
cells. The cell velocity v can be obtained by summing the first two equations in (1.1)

∇ ¨ v “ ∇ ¨ pDn1∇n1 `Dn2∇n2q `Kn1 ` kn2. (1.2)

During the tissue growth, elastic effects can be typically neglected and the
tissue treated as a fluid. A Darcy constitutive relation has been often adopted in modeling
tumor growth, though apparently often more for mathematical simplicity than for physical
reasons. We can supplement (1.1) by the constitutive law

v “ ´
κ

µ
∇p. (1.3)

where v is the velocity of cells, p is the cell-cell adhesion pressure, µ the viscosity of cells
and κ is the motility coefficient. Following the model of King and Franks, in (WALTER,
2009) the mass conservation equations are given by
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(1.4)
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where %1, %2 are respectively the volume fractions of normal and mutant cell populations,
V̂1, V̂2 are the cell velocities and K1, K2 their net proliferation rates. They suppose that
the source terms decrease linearly with distance from the base of the crypt as follows:

KipXq “ kip1´ Λi
Y

h
q, i “ 1, 2. (1.5)

where the positive constants ki are the maximum rate at which the cells of type i proliferate.
The crypt is modeled by a 2D surface of a cylinder with height h and radius βh, as show
in Figure 1.

Figure 1 – Sketch of the two-dimensional model for two epithelial cell populations growing
on the surface of a cylindrical crypt, height h and radius βh. The volume
fractions of each population are separated by the boundary Y “ CpX,T q with
normal NpX,T q.

Source: (WALTER, 2009)

Here they consider two cell populations which differ in their proliferation rates
and viscosities to develop a continuum model that describes the movement of cells inside
a cylindrical crypt. In our model we suppose that families of cells have the same diffusion,
that means that have the same behavior in what concern their interaction with other cells.
The two families of cells that we consider in or model differ then only for the proliferation
rate, as those presented in the next paragraph.
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1.2.2 Abnormal cell dynamics

In (FIGUEIREDO et al., 2013) is presented the following elliptic-parabolic
coupled model

$

&

%

BC

Bt
“ ∇ ¨ p∇pCq `∇ ¨ pD2∇Cq ` βCp1´ Cq,

´∆p “ ∇ ¨ ppD2 ´D1q∇Cq ` αp1´ Cq,
(1.6)

where D1, D2 are diffusion coefficients, C denotes the cells abnormal density, p is the
pressure generated by cell-cell adhesion. The proliferative activity is present in the lower
two thirds of the crypt of height h, and the activity is larger at the bottom of crypt
and decreases upwards towards the orifice of crypt. They define the proliferative rate
coefficients α, β as a decreasing function with respect to the height of crypt, thus

αpx3q “
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ταpx3 ´
2h
3 q

2 if x3 ď
2h
3

0 elsewhere,
βpx3q “
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&

%

τβpx3 ´
2h
3 q

2
` γβ if x3 ď

2h
3

γβ elsewhere.
(1.7)

where τα is larger than τβ to guarantee that α is larger than β. In (1.7) γβ is the positive
rate of proliferation for the abnormal cells over the two thirds of the crypt, where normal
cells cannot proliferate. A large γβ characterize cells that very abnormal.

Their multiscale problem is presented in a two dimensional colonic region that
is formed by a periodic distribution of a crypt domain. That crypt is represented by a
cylinder in R3 closed at the bottom and opened at the top. After making a projection of
the 3D crypt in a plane and obtaining then a 2D model for crypt, where it is periodically
distributed. In this way, they obtain a coupled elliptic-parabolic model in a domain Ω Ă R2,
which describes the dynamics in space and time of the normal and abnormal cells in the
colon.

In (FIGUEIREDO et al., 2016) is considered two population of cells as in
(KING; FRANKS, 2004). Based on tumor growth, their model is presented by the following
elliptic-parabolic coupled model

$
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%

BC

Bt
“ ∇ ¨ p∇pCq `∇ ¨ pDC∇Cq ` β C,

´∆p “ ∇ ¨
`

pDC ´DNq∇C
˘

` pβ ´ γqC ` γ,
(1.8)

where C is the density of abnormal cells, and N is the density of normal cells satisfying
the equation

BN

Bt
“ ∇p∇pNq `∇ ¨ pDN∇Nq ` γN, (1.9)

with N`C “ 1. The second equation in (1.8) is obtained summing the parabolic equations
associated to N and C. DC , DN the diffusion coefficients of abnormal and normal cells,
respectively. β is the proliferative rate of abnormal cells and γ is the proliferative rate of
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normal cells defined as follows

γpx3q “
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3 q

2
` γβ if x3 ď
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3

γβ elsewhere.
(1.10)

Here, they represent a region of the colon epithelium by an heterogeneous
domain, obtained by the periodic distribution of a rescaled crypt εP , where εP is a regular
flat hexagon with edge size εa. Thus, with that structure they were able to define a 2D
heterogeneous periodic model, where the unknown is the pair cell density Cε and the
pressure pε. A homogenization technique could be applied to that model considering a
sequence indexed by ε, where the objective is to find the limit pC0, p0

q of the sequence
pairs tpCε, pεquεą0. The homogenized model associated to multiscale problem based on
(1.8) is the system
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q

´ĆAijm
B2p0

BxiBxj
“ pĄβm´ ĂγmqC0

` Ăγm
(1.11)

where m is the solution of a cell problem ´
B2pAijmq

ByiByj
“ 0 in P , and Aij define the

planification of the crypt. This is a macroscopic model that represents the evolution of
ACF at the surface of colon, by using the information of the cell dynamics in the crypts.

Other continuum models can consider other families of cells as differentiated
and semi-differentiated as presented in the next paragraph and used along in our model,
see chapter (2).

1.2.3 Aberrant colonic crypt morphogenesis

In (FIGUEIREDO et al., 2011) was proposed a hybrid convection-diffusion-
shape model for simulating and implemented a method to simulate and predict what
has been validated medically, with respect to some aberrant colonic crypt morphogenesis.
The model demonstrates crypt fission, in which a single crypt starts dividing into two
crypts, when there is an increase of proliferative cells. The problem is modeled by a
transport/mass conservation model to describe the dynamics of different types of cells
inside a colonic crypt. Using the volume conservation N1 ` N2 “ 1 where Ni are the
densities of proliferative and apoptotic cells, the final model is given by
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(1.12)
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where ∆t is a fixed time step used to solve numerically the problem, N is the proliferative
cell density and p an internal pressure.

The problem is composed of three parts: the coupled parabolic and elliptic
equations, involving the unknowns N and p, and the equation describing the evolution the
spatial domain Ωc. The main purpose of that work was to simulate colonic crypt folding, by
means of partial differential equations, more exactly, by using a convection-diffusion-shape
model. They used a 2D version of the problem since the histological medical exams are
sections of the colon from the mucosa surface until the bottom of the crypts. The set Ωc

stands for the 2D-geometry of the crypt (U-shape) where Γ1 is its upper boundary, Γ2 and
Γ3 are respectively, the outer and inner boundaries.

In comparison, this problem considers the same class of cells of this last work
but as we will see later, we avoid that kind of boundary conditions considering a manifold
PDE model of that problem.

Figure 2 – Shape of the colonic crypt at different times:t = 0, 1, 2, 5, and 10 respectively.

Source: (FIGUEIREDO et al., 2011)

Others models for describing the crypt morphogenesis are based on elastic or
viscoelastic relations between colonic cells and epithelial tissue. See (FIGUEIREDO et al.,
2019) and references of other models therein.

1.3 Aims and objectives of the thesis
The aim of this work is to describe numerically the dynamics of cancer cells

in the colon by means of accurate multiscale methods. In order to perform a numerical
analysis of the proposed methods we aim to obtain errors estimates and prove stability
and convergence of the proposed methods.
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The specific objectives of this work are:

• To prove convergence and stability of the cell proliferation problem in a single scale
using a method based on finite differences;

• To study numerically the solutions of the multiscale cell proliferation problem
provided by HMM-FEM method;

• To present the numerical properties of a supraconvergent finite different method
applied to multiscale problems.

1.4 Preliminary results
Our first step in the development of this work was use a more realistic sur-

face than the one proposed in (FIGUEIREDO et al., 2013; FIGUEIREDO et al., 2016;
FIGUEIREDO et al., 2019) to approximate the crypt’s shape, thus we were able to rewrite
the main equations in a divergence form which makes the numerical analysis easier. Using
the HMM framework, we analyses a suitable homogenized problem and we obtain the
numerical convergence of the HMM-FEM numerical solution to the homogenized solution.
To prove analytically the convergence and stability in a single scale we use a non uniform
space discretization by using finite difference method which we proved the equivalency to
a weighted finite elements method. The methods used provide some good error estimates
to our problem as we’ll see later. At the end of this work we prove convergence and
stability to functions in H1`s. All the presented implementations in this work were built
in (MATLAB, 2018a).

1.5 Overview
The rest of this manuscript is organized as follows. Chapter 2 presents the

biological information of the colon tissue and how it is related with the colorectal cancer
and presents a mathematical model in a single crypt. In Chapter 3, we introduce multiscale
problems and homogenization. In Chapter 4, we present the HMM method as a framework
to designing multiscale methods. In Chapter 5 we present a finite difference method in a
non uniform mesh and analyze it numerically, studying its stability and convergence. In
Chapter 6, we study a more robust method which provides convergence and stability to
H1`s solutions. Finally, in Chapter 7 our purpose is to present a new multiscale scheme
that uses the microscale information to solve the homogenized problem and to build then
an approximation for the multiscale solution.
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2 Mathematical model

The colon (see Figure 3) is a part of the digestive tract located between the
small intestine and the rectum. Its principal functions are the absorption of water, minerals,
nutrients, and to serve as a storage area for the waste material. Because of its biological
nature, the colon has a high level of cellular regeneration and which exposes it to many
agents of a physical, chemical, and biological nature, which increases the possibility of
developing pathologies, including cancer.

Colorectal cancer is located in the colon or in the rectum digestive tract. It
requires years and several genetic mutations of the colonic cells to appear. These mutations
lead changes in the cell proliferative behavior and result in a significant deformation of
the colorectal crypts.

In the following Section 2.1 we provide some biological information useful to
define the mathematical model for the proliferative cells dynamics. In Section 2.2 we model
mathematically the geometry domain of a crypt and then also the cell dynamics in a such
domain by using a system of partial differential equations.

2.1 Biological background
In the following sections we discuss some biological information which allow us

to model the crypt’s shape 2.1.2 and the proliferative rates.

2.1.1 Colon structure

The anatomical regions of the colon are illustrated in Figure 3. The large
intestine is the penultimate stage in the digestive tract, weights only 0.22 kg and is
approximately 1.5m long and the diameter varies along its length, the average diameter is
around 6´ 8cm (COLLINS, 2016). It extends from the terminal ileum to the anus. The
colon is divided into five parts: cecum, ascending colon (measures 12´ 20cm in length),
middle or transverse colon (ranging between 40 and 50cm), descending colon (measures
10´ 15cm in length), and the sigmoid colon.
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Figure 3 – Colon anatomy

Source: (COLLINS, 2016); Copyright Springer.

The main function of its muscularis externa is to move matter along the large
intestine through peristaltic contractions which allows to absorb water and any remaining
absorbable nutrients from food. Inside the musculature externa there is the submucosa,
which contains vessels that provides the main blood supply for the colon.

2.1.2 Crypts

The epithelial layer of the human colon mucosa is made up of a single sheet of
columnar epithelial cells, which form finger-like invaginations called crypts as represented
in Figure 4(a). The crypts have epithelial cells that contain digestive enzymes that digest
specific foods while they are being absorbed through the epithelium. Thus the colonic
crypts are the end absorption functional unit of the intestine. The epithelial cells cover all
the colon including the crypts, see Figure 4(b). It is estimated that there are approximately
107 crypts in an adult human colon, each crypt containing 1000-4000 epithelial cells. The
crypts are about 433µm in length and approximately 31µm in diameter (MICHOR et al.,
2005).

The epithelial cells are generated at the crypt base and migrate along the crypt
axis towards the top orifice. This migration is due to a cell-cell adhesion pressure generated
by the cell proliferation. As the cells migrate to the crypt top they differentiate, becomes
less proliferative, and when reaching the luminal surface they perform their absorption
function and then they are shed into the lumen.
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(a) (b)

Figure 4 – Distribution and shape of crypys. (4(a) can be found in (FIGUEIREDO et al.,
2016) and 4(b) in UWA Blue Histology. Copyright Lutz Slomianka 1998-2009.)

2.1.3 Stem cells

The large intestine and the colon are continuously renewed, in fact billions
of cells are lost and created therein on a daily basis. It is widely accepted that cells
replacement and production is achieved by stem cells found at the base of crypt. The stem
cells are defined as a small population of relatively undifferentiated cells that maintain
their size when they divide. The progeny of stem cells (called transit cells) are located
above the stem cells along the crypt axis. These transit cells have generate each of the
epithelial cells found in colorectal crypts: Colonocytes, the primary absorptive cell; goblet
cells, the mucin secreting cell; enteroendocrine cells, the hormone-producing population;
and secreting Paneth cells. An average human colonic crypt contains 2000 cells and is
believed to have approximately 19 stem cells (KHALEK; GALLICANO; MISHRA, 2010),
but this amount can change depending on the crypt location. In the scientific literature it
is believed that transit cells undergo 4-6 cell divisions, proliferating less and differentiating
as they move upward the crypt. At the top of the crypt there are fully differentiated cells
that cannot proliferate anymore.
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Figure 5 – Stem cells and its mutations

Source: (ANDERSON et al., 2011)

In Figure 5, we have the scheme of a colorectal crypt. Stem cells, at the
base(red), proliferate to produce transit cells(pink) and differentiate into differentiated
cells(blue). A single transforming mutation in a somatic intestinal stem cell could rise to a
CSC (cancer stem cell).

2.1.4 Aberrant Crypt Foci (ACF) and development of adenomas

ACF are focal lesions composed of several enlarged crypts, which are specifically
induced by colon carcinogenesis. In Figure 6 we note two ACFs characterized by crypts
evidenced by a blue ethylene dye. It is believed that ACF is the earliest expression of
this colon carcinogenesis and are the precursors of adenomas. In colon, the adenoma-
carcinoma sequence is widely regarded as the main pathway leading to the development of
malignancy. Cancer is a multistage process that requires the accumulation of several genetic
mutations, each of them alter successively the tissue’s normal behavior causing deregulated
differentiation and uncontrolled proliferation. A series of pathological alterations are
involved in the ACF up to the formation of malignant tumors.

Analysis of colon adenomas has shown that there is an upward expansion
of the proliferative compartment towards the surface of crypt in adenomas. Over time
the adenoma may accumulate more mutations in critical genes, resulting in malignant
transformation to an adenocarcinoma with invasion into the submucosa of the colon.
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Figure 6 – ACF pictured in a colonoscopy image. The dark blue regions are clusters of
deformed and enlarged crypts, called ACF, in the colon epithelium, that appear
in the first stage of colon carcinogenesis

Source: (FIGUEIREDO et al., 2016)

2.2 Mathematical model of the crypt geometry, cell proliferation
and dynamics in the colonic crypts

From the above literature we are able to model the parameters to build a
problem that describe the cell dynamics.

2.2.1 Crypt geometry

As already mentioned the average dimensions of a human colonic crypt are 433
µm from the bottom to the top, and 31µm for the diameter of the top orifice excluding the
epithelium (FIGUEIREDO et al., 2016). Since the crypt is our main domain of interest,
we choose a surface that approximate its geometry. A single crypt can be represented as
the two-dimensional surface Γ generated by the graph of the function f : r0, 1s2 Ñ Γ, with

fpy1, y2q “ h
`

1´ e´
´

Rpy1,y2q
σ

¯2
˘

, (2.1)

where Rpy1, y2q “
`

y1´
1
2
˘2
`
`

y2´
1
2
˘2 and h is the surface height and sigma describe the

width of the crypt, that is permit to respect that the height is fourteen times the crypt
orifice diameter, see Figure 7.
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Figure 7 – A single crypt represented as a two-dimensional surface in R3.

2.2.2 3D periodic domain

There are millions of crypts in the human colon epithelium. Based on images
provided by colonoscopy, we can see that crypts are almost periodically distributed in
the colon, see Figure 6. Therefore to solve and simulate the mathematical problem of
cell dynamics in the colon we write our problem in a three-dimensional domain with
repeated crypts represented as a surface, see Figure 8, that will represent the external
colon epithelium in three dimensions.

Figure 8 – This figure show how the crypts are periodically distributed in our modeled
colon epithelium in three dimensions.

On a such three dimension domain with repeated crypts we will study our
multiscale PDE problem in Chapter 3. Before analyzing a such problem we need to
define the source terms in the next subsection and present the model in a single crypt in
subsection 2.2.4. Then we will rewrite the PDE problem in the two-dimensional manifold,
see Section A.1, obtaining a two-dimensional multiscale problem in Section 2.3.



Chapter 2. Mathematical model 31

2.2.3 Source terms

Our mathematical model consider only two types of colonic cells: fully differen-
tiated with density N and semi-differentiated cells (also called proliferative or transit cells)
with density C. Cells have a proliferative rate that depends on the cell location in the
crypt. According to (DRASDO; LOEFFLER, 2001), the proliferative activity is presented
in the lower two thirds of the crypt and thus we suppose that the proliferation rate of
semi-differentiated cells βC decrease quadratically with distance from the base to the two
thirds of the crypt heights as follows:

βCpx, y, zq “

$
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’

&

’

’

%

τ

ˆ

1´ z

2h{3

˙2

if z ă 2h
3

0 if 2h
3 ď z ď h.

(2.2)

where τ is a positive constant representing the maximum rate at which the cells of type C
proliferate.

We also suppose that the rate of transformation (or differentiation) of prolifer-
ative semi-differentiated cells C proliferate into fully differentiated cells N is modeled by

αCpx, y, zq “

$

’

’

&

’

’

%

0 if z ă 2h
3

τ

ˆ

1´ z

2h{3

˙2

if 2h
3 ď z ď h.

(2.3)

Furthermore, we assume that the cells verify the overall density hypothesis
N ` C “ 1. This is equivalent to suppose that no free-space (no void hypothesis) exists.

2.2.4 3D final model

Let Γ Ă R3 be the surface that models a single crypt, t the time variable
belonging to the interval r0, T s with T ą 0 fixed and Npx, y, z, tq and Cpx, y, z, tq are
respectively the fully differentiated cells and the semi-differentiated cells densities, at each
point px, y, zq of Γ and at time t. Then, based on models of tumor growth, described by
systems of Partial Differential Equations (PDEs) and relying on transport/diffusion/reac-
tion models, we reproduce the following system of PDEs for representing the dynamics of
these populations of colonic cells in Γˆ p0, T s:

$

’

’

’

’

’

&

’

’

’

’

’

%

BN

Bt
`∇Γ ¨ pvNNq “ ∇Γ ¨ pDN∇ΓNq ` βCC

BC

Bt
`∇Γ ¨ pvCCq “ ∇Γ ¨ pDC∇ΓCq ` αCC ´ βCC

N ` C “ 1.

(2.4)
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We have assumed that (2.4) has Dirichlet boundary conditions with initial
conditions Np¨, 0q “ N0, Cp¨, 0q “ C0. Here DN , DC are the diffusion coefficients of fully
and semi-differentiated cells, respectively, βC is the rate of change of proliferative cells C
into fully differentiated N and αC is the proliferation rate of cells C. The convective velocity
of the normal and abnormal cells are denoted by vN and vC , respectively. We suppose also
that the two populations of cells have the same convective velocity vN “ vC “ v, which is
defined by v “ ´∇Γp, where p is the cell-cell adhesion pressure and that DC “ DN “ D.

Then, by assuming the first two equations in (2.4) and using the overall density
hypothesis N ` C “ 1 we obtain the following elliptic-parabolic coupled model whose
unknown is the pair pC, pq:

$

’

’

&

’

’

%

BC

Bt
“ ∇Γ ¨ p∇ΓpCq `∇Γ ¨ pD∇ΓCq ` αC in Γˆ p0, T s

´∆Γp “ βC in Γˆ p0, T s
C “ p “ 0 on BΓˆ p0, T s,

(2.5)

where α “ αC ´ βC and β “ αC . Note that

αpx, y, zq “

$

’

’

&

’

’

%

´τ

ˆ

1´ z

2h{3

˙2

if z ď 2h
3

τ

ˆ

1´ z

2h{3

˙2

if 2h
3 ď z ď h.

(2.6)

The operator ∆Γ is the so called Laplace-Beltrami operator, which is a generalization to
non-flat Riemannian manifolds. The Laplacian operator appears in differential equations
describing various physical phenomena, such as heat diffusion, wave propagation, etc.

2.2.5 Differential model in local coordinates

Let Γ Ă R3 be a surface that models a single crypt and a chart tY, ϕu, see
Appendix A.1. We can rewrite the system (2.5) in local coordinates py1, y2q as the following
problem

$

’

’

’

&

’

’

’

%

|g|
BC̄

Bt
“ ∇ ¨ pA∇p̄C̄q `∇ ¨ pD̄A∇C̄q ` |g|ᾱC̄ in Y ˆ p0, T s

´∇ ¨ pA∇p̄q “ |g|β̄C̄ in Y ˆ p0, T s
C̄ “ p̄ “ 0 on BY ˆ p0, T s,

(2.7)

where |g| “
a

det g, A “ pgq´1
a

det g and g is the metric induced by R3. Now, the
unknown functions pC̄, p̄q are defined in Y ˆ p0, T s, where C̄ “ C ˝ ϕ and p̄ “ p ˝ ϕ. For
more details see A.1.

System (2.7) provided with initial condition of C admits a unique solution.
This can be proved using the same proof used in (FIGUEIREDO et al., 2016).
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2.2.6 Properties of g and A

The quadratic form Ip on TpΓ, the tangent plane of Γ at p (see appendix A.1),
is called the first fundamental form of the regular surface Γ Ă R3 at p P Γ. Therefore,
the first fundamental form is merely the expression of how the surface Γ inherits the
natural inner product of R3 . Geometrically the first fundamental form allows us to make
measurements on the surface.

We shall now express the first fundamental form in the basis tϕy1 , ϕy2u associ-
ated to ϕpy1, y2q at p. Since a tangent vector w P TpΓ is a tangent vector to a parameterized
curve αpsq “ ϕpupsq, vpsqq, s P p´ε, εq, with p “ αp0q “ ϕpu0, v0q, we obtain

Ippα
1
p0qq “ xα1p0q, α1p0qyp

“ xϕy1u
1
` ϕy2v

1, ϕy1u
1
` ϕy2v

1
yp

“ Epu1q2 ` 2Fu1v1 `Gpv1q2,

where the values of the functions involved are computed for s “ 0, and

Epy1, y2q “ xϕy1 , ϕy1yp (2.8)

F py1, y2q “ xϕy1 , ϕy2yp (2.9)

Gpy1, y2q “ xϕy2 , ϕy2yp. (2.10)

By letting p run in the coordinate neighborhood corresponding to ϕpy1, y2q we
obtain functions Epy1, y2q, F py1, y2q, Gpy1, y2q which are differentiable in that neighbor-
hood.

Then, the symmetric positive definite matrix g is defined as

g “

«

Epy1, y2q F py1, y2q

F py1, y2q Gpy1, y2q

ff

. (2.11)

In the case of Γ is obtained by a graph of function f , therefore

g “

«

1` pfy1q
2 fy1fy2

fy1fy2 1` pfy2q
2

ff

. (2.12)

Then, the functions that depend of g in (2.7) are

|g| “
b

1` pfy1q
2 ` pfy2q

2 ě 1 @py1, y2q P Y, (2.13)

and

A “ g´1
a

det g “

»

—

—

–

1` pfy2q
2

a

1` pfy1q
2 ` pfy2q

2
´

fy1fy2
a

1` pfy1q
2 ` pfy2q

2

´
fy1fy2

a

1` pfy1q
2 ` pfy2q

2

1` pfy1q
2

a

1` pfy1q
2 ` pfy2q

2

fi

ffi

ffi

fl

. (2.14)
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We can check easily that the eigenvalues of A are

λ “
1

a

1` pfy1q
2 ` pfy2q

2
, Λ “ 1` pfy1q

2 ` pfy2q
2

a

1` pfy1q
2 ` pfy2q

2
, (2.15)

since det g “ 1` pfy1q
2
` pfy2q

2, and so

0 ă λ ď 1,Λ ě 1 @px, yq P Y. (2.16)

Note that A is also a SPD matrix.

2.2.7 2D periodic domain

To get a problem for describing the abnormal cell dynamics in the colon
epithelium, that has scales as those depicted in Figure 6, we represent the colon as
rectangle Ω Ă R2 with a periodically repeated planified crypt structure Ωε

c below, where
Ωε
c is a square domain (that can be thought as shifted Y , see next paragraph) representing

a single crypt with side size ε and center c

Figure 9 – 2D domain

Source: produced by the author.

We can do it easily defining the problem (2.5) in Γˆp0, T s, where Γ is a surface
obtained by a graph of function as before with ϕpy1, y2q “ py1, y2, fpy1, y2qq) parameterized
in Ωε

c and distributing the problem periodically in Ω.

2.2.8 Periodic distribution

In what follows Y “ r0, 1s2. Let Γ be a surface defined previously and con-
sider a linear transformation Tc that takes Ωε

c to Y given by Tcpx1, x2q “
`1

2 ,
1
2
˘

`

`x1 ´ c1

ε
,
x2 ´ c2

ε

˘

“
`

y1, y2
˘

, where c “ pc1, c2q is the center of Ωε
c. The domain Y will be

used as a domain of reference (this is because we refer Γ as a reference crypt ). In Y , the
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function β̄ (local coordinates) is defined as

β̄py1, y2q “

$

’

&

’

%

τ
`

1´ fpy1, y2q

2h{3
˘2 if fpy1, y2q ď

2h
3

0 otherwise.
(2.17)

In Ωε
c the function β̄ε is defined as

β̄εpx1, x2q “

$

’

&

’

%

τ
`

1´ f εpx1, x2q

2hε{3
˘2 if f εpx1, x2q ď

2hε
3

0 otherwise,
(2.18)

where h, hε “ εh are the crypt heights (reference and micro levels), respectively. Using the

linear transformation Tc and taking f εpx1, x2q “ hε
`

1´ e´
´

Rεpx1,x2q
σε

¯2
˘

, where Rε
px1, x2q “

px1´ c1q
2
`px2´ c2q

2 (similarly to fpy1, y2q, with σ “ σε{ε) we can check easily that holds

β̄εpx1, x2q “ τ
`

1´ f εpx1, x2q

2hε{3
˘2

“ τ
`

1´ fpy1, y2q

2h{3
˘2

“ β̄py1, y2q,

with the suitable change of coordinates. Look that the same holds to ᾱε, where

ᾱεpx1, x2q “

$

’

’

&

’

’

%

´τ
`

1´ f εpx1, x2q

2hε{3
˘2 if f εpx1, x2q ď

2hε
3

τ
`

1´ f εpx1, x2q

2hε{3
˘2 otherwise.

(2.19)

Now, let g be the metric of Γ induced by R3 (similarly to gε). We can check that
Bf εpx1, x2q

Bx1
“

4px1 ´ c1qpf
εpx1, x2q ´ hεqR

εpx1, x2q

σ2
ε

.

That leads us to

gε1,1px1, x2q “ 1`
ˆ

Bf εpx1, x2q

Bx1

˙2

“ 1`
ˆ

4px1 ´ c1qpf
εpx1, x2q ´ hεqR

εpx1, x2q

σ2
ε

˙2

“ 1`

¨

˚

˝

4py1 ´
1
2qpfpy1, y2q ´ hqRpy1, y2q

σ2

˛

‹

‚

2

“ g1,1py1, y2q.

since f εpx1, x2q “ fpy1, y2qε, R
ε
px1, x2q “ Rpy1, y2qε

2, σε “ σε. From this, we conclude that
Aεpx1, x2q “ Apy1, y2q and |g|εpx1, x2q “ |g|py1, y2q with the suitable change of coordinates.
Now, we are able to distribute Ωε

c periodically in Ω using the definitions

Aεpx1, x2q “ Apy1, y2q, β̄εpx1, x2q “ β̄py1, y2q, ᾱεpx1, x2q “ ᾱpy1, y2q, (2.20)

where py1, y2q “
`1

2 ,
1
2
˘

`
`x1 ´ c1

ε
,
x2 ´ c2

ε

˘

.
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2.3 Multiscale modeling
It is clear that cell interactions occur in a scale smaller than the observed one,

and so we can model this problem using two scales: the macroscale describes the region
(mensurable in decimeters) of the colon where the evolution of ACF (Aberrant Crypt Foci)
is taking place, whilst the microscale describes the region (mensurable in micrometers)
occupied by a single crypt. Pressure and density are computed at the macroscale level
with the coefficients responsible for diffusion and proliferation defined at the microscale.

The multiscale problem is defined as
$

’

’

’

’

’

&

’

’

’

’

’

%

|g|ε
BC̄ε

Bt
“ ∇ ¨ pAε∇p̄εC̄ε

q `∇ ¨ pD̄εAε∇C̄ε
q ` |g|εᾱεC̄ε in Ωˆ p0, T s

´∇ ¨ pAε∇p̄εq “ |g|εβ̄εC̄ε in Ωˆ p0, T s
C̄ε
“ p̄ε “ 0 on BΩˆ p0, T s

C̄ε
p¨, 0q “ C̄ε

0
(2.21)

where |g|ε “
a

det gε,Aε “ pgεq´1
a

det gε, β̄ε and ᾱε are defined in Ω by periodicity.
Then the unknown functions pC̄ε, p̄εq are defined in Ωˆ p0, T s. Note that Aε, gε, ᾱε and
β̄ε depend only of the microscale, that is

f εpx1, x2q “

$

&

%

f
`x1

ε
,
x2

ε

˘

if x
ε
is in Y

by periodicity elsewhere.
(2.22)

By periodicity we mean that if px1

ε
,
x2

ε

˘

R Y then f εpx1, x2q “ fpy1, y2q where

py1, y2q is the unique point such that py1, y2q “ p
x1

ε
,
x2

ε
q ` εk for some k P Z2.

Note that exists a unique solution for the homogenized system, the proof can
be found in (FIGUEIREDO et al., 2016).
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3 Multiscale problems and homogenization

Consider a domain Ω where the quantity u , that can be a cell-cell pressure
in our case, satisfies a diffusion problem with diffusion tensor K “ Kpxq. For simplicity,
we assume that the domain is isotropic, which means that K is a scalar. Suppose that
f represents a source term for u and u is null on the surface BΩ. Then u “ upxq at the
point x P Ω satisfies the following boundary value problem with homogeneous Dirichlet
conditions

$

&

%

´∇ ¨ pK∇upxqq “ f, inΩ,

u “ 0, on BΩ.
(3.1)

This is a classic elliptic boundary value problem and it is well known that if f
is sufficiently smooth, it admits a unique solution u which is twice differentiable and solves
system (3.1) at any point x P Ω. If now we consider a heterogeneous or composite material
Ω, then K takes different values in each component of the composite material. Hence, K is
now a function, which is discontinuous in Ω, since it jumps over the surfaces that separate
the components. Suppose that the heterogeneities are very small with respect to the size
of Ω and that they are periodically distributed. This is a realistic assumption for a large
class of applications that can be modeled with a domain that is periodically distributed.

The periodic domain is supposed to be characterized by a dimension ε (CIO-
RANESCU; DONATO, 1999; MURAT; TARTAR, 1997). Then the coefficient K depends
on ε and the problem (3.1) can be written as

$

’

&

’

%

Find uε P H1
0 pΩq such that

n
ÿ

i“1

ż

Ω
KεpxqBu

ε

Bxi

Bv

Bxi
dx “

ż

Ω
fv dx, @v P H1

0 pΩq
(3.2)

A natural way to introduce the periodicity of Kε in (3.2) is to suppose that it
has the form

Kε “ K
`x

ε

˘

, (3.3)

where pKi,jqi,j“1...n is a given periodic matrix function of period Y . This means that we
are given a reference period Y , in which the reference heterogeneities are periodically
distributed. Observe that two scales characterize the model problem (3.2), the macroscopic
scale x and the microscopic one x

ε
, describing the micro-oscillations in Y . Observe that

the pointwise knowledge of the characteristic of the material does not provide in a simple
way any information on its global behavior and that making the heterogeneities smaller
and smaller means that we “homogenize” the mixture (from the mathematical point of
view this means that ε tends to zero).
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Many natural questions arise:

• Does the temperature uε converge to some limit function u0?

• Does u0 solve some limit boundary value problem?

• is u0 a good approximation of uε? Which is the rate of convergence?

We are going to answer some of these questions in the next sections. For more
details see (CIORANESCU; DONATO, 1999).

3.1 Introduction to homogenization
The aim of this Chapter is to present the key issues of the mathematical theory

of homogenization applied to our model. Generally speaking, in a composite material the
heterogeneities are small compared to its global dimension. From the macroscopic point of
view, the composite looks like a “homogeneous” material. The aim of “homogenization” is
precisely to give the macroscopic properties of the composite by taking into account the
properties of the microscopic composite.

Here well follow very closely the book (CIORANESCU; DONATO, 1999). The
purpose of homogenization theory is to study the limit of uε as ε Ñ 0. In particular
it is desirable to identify the equation satisfied by uε in the limit. In next sections we
will discuss that, under appropriate assumptions on Kpx

ε
q, fpxq, and Ω, the homogenized

equation is
$

&

%

´∇ ¨ pK0∇u0
q “ f in Ω,

u0
“ 0 on BΩ

(3.4)

and K0 is called the homogenized tensor (revisit the well-known theory (CIORANESCU;
DONATO, 1999)).

3.2 Homogenization of elliptic equations: some results
In this section we present some important results that will be used in this work.

Consider the elliptic problem
$

&

%

´∇ ¨ pKε∇uεq “ f in Ω,

uε “ 0 on BΩ.
(3.5)

The following classic result is valid (CIORANESCU; DONATO, 1999)
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Theorem 1. Let f P H´1
pΩq a function in the dual space of H1

0 pΩq and uε be solution
of (3.5) where Kε is a Y-periodic matrix that satisfies Kεpxq “ Kpx

ε
q and the differential

operator of (3.5) is coercive. Then
$

&

%

iq uε á u0weakly in H1
0 pΩq

iiq Kε∇uε á K0∇u0weakly in L2
pΩq

(3.6)

where u0 is the unique solution in H1
0 pΩq of the homogenized problem (3.4). The matrix

K0 is constant and coercive.

Corollary 1. If Kε is symmetric then K0 is symmetric.

Besides that, the classical homogenization theory (JIKOV et al., 1994) provide
us: DC ą 0, @ε ą 0 such that

}uε ´ u0
}L2pΩq ď Cε. (3.7)

As mentioned before, we consider multiscale problems with two scales: the
variable x describe the “macroscopic” scale, while x{ε describes the “microscopic” one.
Indeed, if x P Ω, by the definition of Y , there exists k P Zn such that x{ε “ py ` klq with
y P Y and where kl “ pk1l1, . . . , knlnq. Here, x gives the position of a point in the domain
Ω whereas y gives its position in the reference cell Y .

Studying the limit function u0 suggests to write down uε using a asymptotic
expansion of the form

uεpxq “ u0`x,
x

ε

˘

` εu1`x,
x

ε

˘

` ε2u2`x,
x

ε

˘

` . . . (3.8)

with ujpx, yq for j “ 1, 2, . . . , such that
$

&

%

ujpx, yq is defined for x P Ω and y P Y

ujpx, ¨q is Y ´ periodic
(3.9)

where upx, ¨q Y-periodic means that function u “ upx, yq is periodic with respect the
second variable y and has Y as the periodic domain. Let ψpx, yq be a function on the
two x, y variables in Rn, we denote by ψεpxq the associated multiscale function such that
ψεpxq “ ψpx,

x

ε
q. Its derivatives satisfies

Bψε

Bxi
pxq “

1
ε

Bψ

Byi

`

x,
x

ε

˘

`
Bψ

Bxi

`

x,
x

ε

˘

. (3.10)

Consequently, defining the operator Kε “ ´

n
ÿ

i,j“1

B

Bxi

`

Kεi,j
B

Bxj

˘

, one can write Kεψ
ε as

follows:
Kεψ

ε
“
`

pε´2K0 ` ε
´1K1 `K2qψ

˘ `

x,
x

ε

˘

(3.11)
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where
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

K0 “ ´

n
ÿ

i,j“1

B

Byi

`

Ki,jpyq
B

Byj

˘

K1 “ ´

n
ÿ

i,j“1

B

Bxi

`

Ki,jpyq
B

Byj

˘

´

n
ÿ

i,j“1

B

Byi

`

Ki,jpyq
B

Bxj

˘

K2 “ ´

n
ÿ

i,j“1

B

Bxi

`

Ki,jpyq
B

Bxj

˘

.

(3.12)

Equalizing the ε power terms, we have to solve the following infinite system of
equations:

$

&

%

K0u
0
“ 0 in Y

u0 Y ´ periodic,
(3.13)

$

&

%

K0u
1
“ ´K1u

0 in Y

u1 Y ´ periodic,
(3.14)

$

&

%

K0u
2
“ f ´K1u

1
´K2u

0 in Y

u2 Y ´ periodic,
(3.15)

and for s ě 1
$

&

%

K0u
s`2

“ ´K1u
s`1
´K2u

s in Y

us`2 Y ´ periodic.
(3.16)

with uj P H2
pΩˆ Y q.

Let us now solve successively systems (3.13)-(3.15). Let WperpY q the quotient
space associated to the relation u „ v, see B.3.

We consider the variational formulation of (3.13) as follows
$

&

%

Find 9u0 PWperpY q such that

KY p 9u0, 9vq “ 0, @ 9v PWperpY q
(3.17)

where @ 9u, 9v P WperpY q@u P 9u, v P 9v and KY p 9u, 9vq “
ż

Y

K∇u∇vdy. For the Lax-Milgram

Theorem (see appendix) 9u “ 90 is the unique solution of (3.17). This implies that the
solution u0 of (3.17) is independent of y, so that

u0
px, yq “ u0

pxq,

then u0
P H2

pΩq.
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Consider now equation (3.14), since u0
pxq not depends on y, (3.14) can be

written as
$

’

’

&

’

’

%

K0u
1
“

n
ÿ

i,j“1

BKi,j
Byi

Bu0

Bxj
in Y

u1 Y ´ periodic.

(3.18)

Its variational formulation is
$

’

’

’

&

’

’

’

%

Find 9u1 PWperpY q such that

KY p 9u1, 9vq “ xF, 9vypWperq1,Wper

@ 9v PWperpY q,

(3.19)

where F is defined by

xF, 9ψypWperq1,Wper “

n
ÿ

i,j“1

Bu0

Bxj

ż

Y

Ki,j
Bψ

Byi
dy. @ψ P 9ψ, 9ψ PWperpY q. (3.20)

Observe that if ψ1, ψ2 P 9ψ then
Bψ1

Byi
“
Bψ2

Byi
(3.21)

and so
xF, ψ1yH11

per,H
1
per
“ xF, ψ2yH11

per,H
1
per
. (3.22)

This defines F as an element of W 1
perpY q.

The linearity of K0 together with the fact that Bu0
{Bxj is independent of y,

suggests to write 9u1 solution of (3.19) in the following form:

9u1px, yq “ ´
n
ÿ

j“1
9χjpyq

B 9u0

Bxj
pxq, in WperpY q (3.23)

where 9χ satisfies
$

’

&

’

%

K0 9χj “
n
ÿ

i“1

BKi,j
Byi

in Y

9χj Y ´ periodic,

(3.24)

for j “ 1, 2, . . . , n. It is easy to see that from Lax-Milgram theorem there is a unique
solution 9χ PWperpY q of this problem. Moreover, we can choose a representative element
of 9χj. Hence, there is a unique χj P 9χj, such that

$

’

&

’

%

KY pχj, ψq “
n
ÿ

i

ż

Y

Ki,jpyq
Bψ

Byi
dy

@ψ P Wper,0pY q,

(3.25)

where
Wper,0pY q “ tv P H

1
perpY q;

ż

Y

v dy “ 0u. (3.26)
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On the other hand, from (3.23) we see that any solution u1
px, yq P 9u1 of (3.14) has the

form
u1
px, yq “ ´

n
ÿ

j“1
χjpyq

Bu0

Bxj
` ũ1pxq, (3.27)

where ũ1 is independent of y, i.e.

ũ1pxq P 90 in WperpY q. (3.28)

Now we use (3.15) to obtain the form of u2
px, yq. Since

f ´K1u
1
´K2u

0
“ f `

n
ÿ

i,j“1

B

Byi

`

Ki,jpyq
Bu1

Bxj

˘

`

n
ÿ

i,j“1

B

Bxi

`

Ki,jpyq
`Bu1

Byj
`
Bu0

Bxj

˘˘

. (3.29)

We have that, the variational formulation of (3.15) is
$

’

’

’

&

’

’

’

%

Find 9u2 PWperpY q such that

KY p 9u2, 9vq “ xF1, 9vypWperq1,pWperq

@ 9v PWperpY q,

(3.30)

where F1 is defined by

xF1, 9ψypWperq1,pWperq “

ż

Y

fψ dy ´
n
ÿ

i,j“1

ż

Y

Ki,jpyq
Bu1

Bxj

Bψ

Byi
(3.31)

`

n
ÿ

i,j“1

ż

Y

B

Bxi

`

Ki,jpyq
`Bu1

Byj
`
Bu0

Bxj

˘˘

ψ dy, (3.32)

@ψ P 9ψ, 9ψ PWperpY q.

We use now the following Lemma (PERSSON et al., 1993) to prove the existence
of solution of (3.15).

Lemma 1. Let ζpyq P L2
pΩq e Y -periodic. For the boundary value problem

K0ψ “ ζpyq on Y, (3.33)

where ψpyq is Y -periodic. There exists a solution ψ if and only if xζy “ 0, where x¨y denote
the average over Y .

Using this result, (3.15) has a solution if xF1, 90y “ 0. Note that (3.33) guarantee
also that xF1, 9ψy is unique. Now (3.15) can be written as

´

n
ÿ

i,j“1

ż

Y

B

Bxi

`

Ki,jpyq
`Bu1

Byj
`
Bu0

Bxj

˘˘

dy “

ż

Y

f dy. (3.34)

Replacing (3.34), and since f “ fpxq, we find that u0 has to satisfy

´

n
ÿ

i,j“1

ż

Y

B

Bxi

`

Ki,jpyq
`

´

n
ÿ

k“1

Bχk
Byj

Bu0

Bxk
`
Bu0

Bxj

˘˘

dy “ |Y |f, (3.35)
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or equivalently

´

n
ÿ

i,k“1

`

ż

Y

`

Ki,kpyq ´
n
ÿ

j“1
Ki,jpyq

Bχk
Byj

˘

dy
˘ B2u0

BxiBxk
“ |Y |f. (3.36)

Consequently, (3.36) is nothing else than

´

n
ÿ

i,j“1

B

Bxi

`

K0
i,k

Bu0

Bxk

˘

“ f in Ω, (3.37)

where u0
P H2 and

K0
i,k “

1
|Y |

ż

Y

`

Ki,k ´
n
ÿ

j“1
Ki,j

Bχk
Byj

˘

dy, @i, k “ 1, . . . , n. (3.38)

The existence and uniqueness of u0
P H1

0 pΩq solution of variational form of (3.37) in the
weak form follows from Lax-Milgram theorem.

3.3 Homogenization of parabolic equations: some results (PERS-
SON et al., 1993)

In this section we consider the following sequence of parabolic problems:
$

&

%

ρε
Buε

Bt
`Kεu

ε
“ f ε, uεp0q “ g,

uε P L2
p0, T ;H1

0 pΩqq,
(3.39)

where Ω is an open bounded subset of Rn and where class tKεu of operators has the form

Kε “ ´

n
ÿ

i,j“1

B

Bxi

`

Kεi,jpxq
B

Bxj

˘

. (3.40)

We assume that the functions Kεpxq “ Ki,jpx{εq are mensurable and satisfy
the coercivity and boundedness assumptions. Further, ρεpxq “ ρpx{εq is assumed to be
positive and to belong to L8pΩq and f ε are assumed to belong to L2

p0, T ;L2
pΩqq, T ą 0,

and g0 is assumed to belong to L2
pΩq. The main result is that the sequence uε of solutions

of (3.39) converges weakly in L2
p0, T ;H1

0 pΩqq to the solution u0 of the following problem,
homogenization problem associated to (3.39)

$

&

%

xρy
Bu0

Bt
`Ku0

“ f, u0
p0q “ g,

u P L2
p0, T ;H1

0 pΩqq,
(3.41)

as ε tends to zero, where x¨y is the average over Y and the operator K is of the form

K “ ´

n
ÿ

i,j“1

B

Bxi

`

K0
i,j

B

Bxj

˘

. (3.42)
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The coefficients K0
i,j in (3.42) are defined as (3.38).

The parabolic differential operators P ε and P are defined by

Pε “
`

ρε
B

Bt
`Kε

˘

(3.43)

and
P “

`

xρy
B

Bt
`K

˘

. (3.44)

Consider the problems (3.41) and (3.39). We say that the sequence tPεu G-
converges to P as εÑ 0 if

uε Ñ u0 in L2
p0, T ;H1

0 pΩqq weakly, (3.45)

and
Kεi,j

Buε

Bxj
Ñ K0

i,j

Bu0

Bxj
in L2

p0, T ; pL2
pΩqqnq weakly, (3.46)

whenever
f ε Ñ f in L2

p0, T ;L2
pΩqq weakly. (3.47)

Theorem 2. Consider the problems (3.41) and (3.39). If Kεi,j is Y -periodic and symmetric,
if ρε is Y -periodic and uniformly bounded and if f ε Ñ f in L2

p0, T ;L2
pΩqq weakly as

εÑ 0, then, P ε G-converges to P .

For more details see (PERSSON et al., 1993).

3.4 Homogenization of our multiscale colonic cell problem (2.21)

The main benefit of the homogenization is that it permits to describe, with
a simpler model, a very complex, periodic, and multiscale problem, providing numerical
solutions which can be easily computed. We describe in the following the homogenization
for the elliptic and parabolic equations (2.21). We use in the next sections the notation
Cε, pε instead of C̄ε, p̄ε.

3.4.1 Elliptic equation

Firstly, let is begin by homogenizing the elliptic equation using similar steps
of that discussed in Section 3.2. In what follows, we consider the Einstein notation. The
elliptic equation is

´
B

Bxi

`

Aεij
Bpε

Bxj

˘

“ |g|εβεCε
” f ε. (3.48)

and where fpx, yq “ |gpyq|βpyqCpx, yq with f εpxq “ fpx,
x

ε
q. We suppose that exists an

asymptotic expansion for pε and f ε as function of ε. Then, pεpxq “ p0
pxq ` εp1

px, yq `
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ε2p2
px, yq ` . . . with each pi and its derivatives Y´periodic with respect to y and and

f ε “ f 0
` εf 1

` ε2f 2
` . . . . Therefore we have

Bpε

Bxi
“
`Bp0

Bxi
`
Bp1

Byi

˘

` ε
`Bp1

Bxi
`
Bp2

Byi

˘

` ε2`Bp
2

Bxi
`
Bp3

Byi

˘

. . . (3.49)

and then let hεi :“ Aεij
Bpε

Bxj
. From (3.49)

hεi “ h0
i px, yq ` εh

1
i px, yq ` ε

2 . . . “ Aijpyq
Bpε

Bxj
, (3.50)

where
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

h0
i px, yq “ Ai,jpyq

`Bp0

Bxj
`
Bp1

Byj

˘

h1
i px, yq “ Ai,jpyq

`Bp1

Bxj
`
Bp2

Byj

˘

hlipx, yq “ Ai,jpyq
` Bpl

Bxj
`
Bpl`1

Byj

˘

. (3.51)

We have in particular that each hlipx, yq is Y´periodic with respect y. Since in general
B

Bxi
ψ
`

x,
x

ε

˘

“
Bψ

Bxi
`

1
ε

Bψ

Byj
, we can rewrite equation (3.48) in the form

`

´
B

Bxi
´

1
ε

B

Byi

˘`

h0
i ` εh

1
i ` . . .

˘

“ f εpxq. (3.52)

Note that since |g|εβεCε has not ε powers with negative exponents we have equalizing the
ε powers in (3.49). Which allow us to get the following powered ε equations:

• The ε´1 equation:

´
Bh0

i

Byi
px, yq “ 0 ðñ

B

Byi

`

Ai,jpyq
`Bp0

Bxj
`
Bp1

Byj

˘

px, yq
˘

“ 0. (3.53)

• The ε0 equation:

´
`Bh0

i

Bxi
`
Bh1

i

Byi

˘

px, yq “ f 0
px, yq (3.54)

where f 0
px, yq “ |gpyq|βpyqC0

pxq.

By applying the operator x¨y to (3.54), we have @x P Ω

´x
Bh0

i

Bxi
y ´ x

Bh1
i

Byi
y “ xf 0

y. (3.55)

On the other hand, by using the divergence theorem we have

´x
Bh1

i

Byi
pxqy “ ´

1
|Y |

ż

Y

Bh1
i

Byi
px, yq dy “ ´

1
|Y |

ż

BY

ηih
1
i px, sq ds (3.56)
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where η “ ηi is i ´ th component of the the outer unit normal on the boundary BY of
Y . But since h1

i px, yq is Y´periodic in y, then the integral on two opposite faces of BY
takes opposite values because hpx, yq (resp. ηpyq) takes the same (resp. opposite) values in

homologous points. Thus using (3.56) we conclude that ´xBh
1
i

Byi
pxqy “ 0 and using (3.55)

we get

´x
Bh0

i

Bxi
y “ xf 0

y. (3.57)

The next step is to obtain a relation between xh0
y and p0. We write the local

equation (3.53) (for a fixed x) in the form

´
B

Byi

`

Aijpyq
Bp1

Byj
px, yq

˘

“
Bp0

Bxj
pxq
BAij
Byi

pyq (3.58)

and we consider it as an equation in y with the unknown p1
px, yq. Here x is just a parameter

and the equation may be regarded as a problem depending on the variable y only. Therefore
it suffices to consider the cell problem

´
B

Byi
pAijpyq

Bχk
Byj

pyqq “ ´
BAik
Byi

pyq (3.59)

Now, assuming that a solution χkpyq of (3.59) is given, for k “ 1, 2, . . . , n. By
using the linearity, we conclude that the function

p1
px, yq “ ´

ÿ

k

Bp0

Bxk
pxqχkpyq ` cpxq.

is the weak solution of (3.58). Thus we have

h0
i px, yq “ Aijpyq

`Bp0

Bxj
pxq `

Bp1

Byj
px, yq

˘

“ Aijpyq
`Bp0

Bxj
`
ÿ

k

Bp0

Bxk

Bχk
Byj

px, yq
˘

(3.60)

“
ÿ

k

`

Aikpyq ´
ÿ

j

Aij
Bχk
Byj

pyq
˘ Bp0

Bxk
pxq (3.61)

and by (3.57) we obtain the homogenized equation associated to (3.48)

´
B

Bxi

`

A0
ik

Bp0

Bxk
pxq

˘

“ xf 0
y, (3.62)

where
A0
ik :“ xAik ´

ÿ

j

Aij
Bχk
Byj

y (3.63)

are the homogenized coefficients.
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3.4.2 Parabolic equation

In what follows we suppose that the diffusion matrix Dε is not singular and
constant. A similar analysis can be obtained when D “ Dpyq varies only at the microscale.

|g|ε
BCε

Bt
´Dε B

Bxi

`

Aεij
BCε

Bxj

˘

´Aεij
BCε

Bxi

Bpε

Bxj
´ Cε

|g|εpαε ´ βεCε
q “ 0 (3.64)

Defining hεi “ Aεij
BCε

Bxj
, we consider the expansions hεi “ h0

i px, y, tq ` εh1
i px, y, tq ` ε2 . . .

and Cε
px, tq “ C0

px, tq `
8
ÿ

i

εiCi
px, y, tq. Note that hki with k “ 0, 1, 2, . . . have a similar

definition of those defined in (3.51) with p replaced by C.

Since p0
“ p0

px, tq and C0
“ C0

px, tq the expression Aεij
BCε

Bxi

Bpε

Bxj
has not ε´2

terms. Using an similar analysis of that implemented in the previous section, the ε´1

equation is associated

´D
B

Byi

`

Aijpyq
`BC0

Bxj
px, tq `

BC1

Byj
px, y, tq

˘˘

“ 0. (3.65)

Note that since D is a non singular matrix independent on x the equation
(3.65) yields to

B

Byi

`

Aijpyq
`BC0

Bxj
px, tq `

BC1

Byj
px, y, tq

˘˘

“ 0. (3.66)

Using the Y´periodicity of A and its symmetry, we have that the ε0 equation
is

|gpyq|
BC0

Bt
´D

`Bh0
i

Bxi
`
Bh1

i

Byi

˘

´Aij
`Bp0

Bxi
`
Bp1

Byi

˘`BC0

Bxj
`
BC1

Byj

˘

´C0
|gpyq|pαpyq´βpyqCq “ 0.

(3.67)

As before by applying the mean operator x¨y to the Y´periodic function
Bh1

i px, yq

Byi
we have

x
Bh1

i

Byi
y “ 0

and then applying the mean operator to (3.67) we obtain for each x P Ω

x|g|y
BC0

Bt
´D

`

x
Bh0

i

Bxi

˘

y ´ xAij
`Bp0

Bxi
`
Bp1

Byi

˘`BC0

Bxj
`
BC1

Byj

˘

y ´C0
x|g|pα ´ βC0

qy “ 0. (3.68)

As in the previous section, using the ε´1 equation (3.66) we get

C1
px, y, tq “ ´

ÿ

k

BC0

Bxk
χkpyq ` c1px, tq.
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where χk is the same solutions of (3.59) obtained before. Substituting C1
px, yq into h0

i

h0
i “ Aij

`BC0

Bxj
`
BC1

Byj

˘

“ Aijpyq
`BC0

Bxj
´
BC0

Bxk

Bχk
Byj

pyq
˘

(3.69)

“
`

Aikpyq ´
ÿ

j

Aij
Bχk
Byj

pyq
˘BC0

Bxk
px, tq (3.70)

and then applying the mean operator x¨y to h0
i we have

xh0
i y “ A0

ik

BC0

Bxk
(3.71)

where A0
ik is defined in (3.63). We observe that since h0

i “ Aij
`BC0

Bxj

BC1

Byj

˘

Aij
`Bp0

Bxi
`
Bp1

Byi

˘`BC0

Bxj
`
BC1

Byj

˘

“ h0
i

`Bp0

Bxi
`
Bp1

Byi

˘

“ h0
i

`Bp0

Bxi

˘

` h0
i

`Bp1

Byi

˘

(3.72)

and then by applying the average operator x¨y,

xAij
`Bp0

Bxi
`
Bp1

Byi

˘`BC0

Bxj
`
BC1

Byj

˘

y “ xh0
i y
Bp0

Bxi
` xh0

i

Bp1

Byi
y “ A0

ik

Bp0

Bxi

BC0

Bxk
(3.73)

where we used the relation (3.71) and that xh0
i

Bp1

Byi
y “ 0. This is true since using the

divergence theorem and (3.66) we obtain

xh0
i

Bp1

Byi
y “ ´

1
|Y |

ż

Y

B

Byi

`

Aij
`BC0

Bxj
`
BC1

Byj

˘˘

p1
px, yqdy “ 0. (3.74)

Therefore using (3.73), (3.68), (3.57) and (3.62) the homogenization of (2.21) is
$

&

%

x|g|y
BC0

Bt
“ D∇ ¨ pA0∇C0

q `∇p0
¨A0∇C0

` C0
x|g|pα ´ βC0

qy

´∇ ¨ pA0∇p0
q “ x|g|βyC0.

(3.75)

We can obtain this homogenized system starting also with the parabolic equation
without developing in series its derivatives as done in (3.64). Consider

|g|εpxq
BCε

Bt
´D

B

Bxi

`

Aεij
BCε

Bxj

˘

´
B

Bxi

`

Aεij
Bpε

Bxj
Cε

˘

´ Cε
|g|εαε “ 0, (3.76)

since B

Bx
ψpx,

x

ε
q “

Bψ

Bx
px, yq `

1
ε

B

By
ψpx, yq we obtain

B

Bxi

`

Aεij
Bpε

Bxj
Cε

˘

“
B

Bxi

`

Aijpyq
``Bp0

Bxj
`
Bp1

Byj

˘

` ε
`Bp1

Bxj
`
Bp2

Byj

˘

` ε2
¨ ¨ ¨

˘

p
ÿ

i“0
εiCi

q
˘

`
1
ε

B

Byi

`

Aijpyq
``Bp0

Bxj
`
Bp1

Byj

˘

` εp
Bp1

Bxj
`
Bp2

Byj
q ` ε2

¨ ¨ ¨
˘

p
ÿ

i“0
εiCi

q
˘

.
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Then the ε´1 equation becomes

´D
B

Byi

`

Aijpyqp
BC0

Bxj
`
BC1

Byj
q
˘

´
B

Byi

`

Aij
`Bp0

Bxj
`
Bp1

Byj

˘

C0˘
“ 0,

but from (3.53) we get

´D
B

Byi

`

Aijpyqp
BC0

Bxj
`
BC1

Byj
q
˘

“ 0. (3.77)

Look that this is the same ε´1 equation obtained before in (3.65). The ε0 equation is

|gpyq|
BC0

Bt
´D

`Bh0
i

Bxi
`
Bh1

i

Byi

˘

´
B

Bxi

`

Aij
`Bp0

Bxj
`
Bp1

Byj

˘

C0˘

´
B

Byi

`

Aij
``Bp1

Bxj
`
Bp2

Byj

˘

C0
` p
Bp0

Bxj
`
Bp1

Byj
qC1˘˘

´ C0
|gpyq|αpyq

“ 0.

Look that for the Y -periodicity
ż

Y

B

Byi

`

Aij
``Bp1

Bxj
`
Bp2

Byj

˘

C0
` p
Bp0

Bxj
`
Bp1

Byj
qC1˘˘ dy “ 0

and then applying the average operator and using the equation (3.77) we get a sim-

ilar expression to C1
px, y, tq “ ´

ÿ

k

BC0

Bxk
χk ` c1px, tq. Now, using also p1

px, y, tq “

´
ÿ

k

Bp0

Bxk
χk ` c2px, tq we obtain the following homogenized system

$

&

%

x|g|y
BC0

Bt
´D∇ ¨ pA0∇C0

q ´∇ ¨ pA0∇p0C0
q ´ C0

x|g|αy “ 0

´∇ ¨ pA0∇p0
q “ x|g|βyC0

(3.78)

which is equivalent to (3.75).
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4 Heterogeneous Multiscale Method(HMM)

The main purpose of this Chapter together with Chapter 3 is to provide
an approximation of the original multiscale problem. In Chapter 3 we saw that the
homogenization provide us a strategy to represent at the macro level the behavior of a
multiscale problem making the heterogeneities smaller and smaller. The HMM method
is a framework to design multiscale methods for a wide variety of applications. The aim
of HMM is to study the macroscopic behavior of a problem for which the macroscale
model is only partially known whereas the microscale model is completely known. The
first natural idea could be to solve the microscale problem in the whole domain, but this
will require a huge computational effort since the mesh needs elements with dimension
smaller than ε. HMM uses instead a efficient numerical method at the macroscale, as if the
macroscale model is completely known, and then solves numerically some microproblems
in the regions where the macroscale information is missed.

After a brief description of the HMM method in Section 4.1, we discuss the
HMM-FEM method to solve a generic elliptic Laplace equation in Section 4.2. Here we also
present some known convergence results of this method to approximate the homogenized
solution of parabolic or elliptic multiscale equations. This result is used also to give
estimates of the approximation error between HMM-FEM solution and the theoretical
multiscale solution of parabolic and elliptic equations. Then in Section 4.3 we describe our
HMM-FEM method to solve the coupled elliptic-parabolic multiscale equations in 2.21.
We plot at the end of this Section one test results of the implemented HMM-FEM. During
the implementation of HMM-FEM we can compute, as described in Subsection 4.3.1 an
approximation of the homogenized tensor A0. This is useful to approximate A0 that is
computationally complex to be obtained and thus we can solve the homogenized problem
3.78 with a such approximated homogenized tensor by a simple FEM method based on
Backward Euler in time and piecewise linear finite element basis on space. Thus in Section
4.4 we measure the error in L2 and H1 norm between the HMM-FEM numerical solution
and the homogenized numerical solution. We compare then such results with the expected
norm presented in Section 4.2.

4.1 The HMM framework
We consider a microscale model, written as

fpu, bq “ 0 (4.1)
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where u is the state variable and b is the set of auxiliary conditions, such as initial and
boundary conditions for the problem. We are not interested in the microscopic details of u,
but rather the macroscopic state of the system which we denote by U , where U satisfies
some abstract macroscopic equation:

F pU,Dq “ 0. (4.2)

where D is the missing macroscale data. The goal of HMM is to compute U using the
abstract form of F and the microscale model (4.1). A such unknown U is obtained with
the HMM method in two steps:

• Selection of a macroscopic solver even though the macroscopic model is not completely
available.

• Estimation of the missing macroscale data D using the microscale model.

In the following section we discuss a particular HMM based on finite elements
method for solving an elliptic equation. Later we present a HMM-FEM method for solving
our multiscale elliptic-parabolic problem.

4.2 Review of HMM-FEM method
Consider

´∇pAεpxq∇uεpxqq “ fpxq, x P Ω Ă R2. (4.3)

Here ε is a small parameter that represents explicitly the multiscale nature of the matrix
Aεpxq. The HMM-FEM method (ENGQUIST et al., 2007) permits to solve multiscale PDE
problems at the macroscale level avoiding the theoretical problems of the homogenization.
In this section we present the HMM-FEM that is a HMM method based on finite elements,
We discuss its deduction and numerical implementation.

4.2.1 The macro solver and the needed data

We use a finite element approach to solve at macroscale the multiscale problem
(4.3). We denote by XH the macroscopic finite element space which can be standard
piecewise linear functions over some triangularization TH where H denotes the element
size. The data needed is the stiffness matrix on TH : S “ pSijq, where

Sij “

ż

Ω
∇φipxqTAHpxq∇φj dx. (4.4)

Here AHpxq is the missing effective conductivity tensor at scale H that describes the
behavior of the multiscale tensor Aεpxq at the macroscale level and tφipxqu are the
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basis functions for XH . We can evaluate Sij simply by numerical quadrature: let fij “
∇φipxqTAHpxq∇φjpxq, then

Sij “

ż

Ω
fijpxq dx “

ÿ

KPTH

ż

K

fijpxq dx »
ÿ

KPTH

|K|
L
ÿ

l“1
ωlfijpxlq, (4.5)

where txlul“1,...,L and tωlul“1,...,L are, respectively, the quadrature points and weights of
the integration quadrature formula used to approximate the integral in the macro element
K. Here |K| is the volume of element K. In this analysis we use quadrilateral or triangle
elements with, respectively, L “ 4 and L “ 3 quadrature points. We suppose also to use
the same quadrature formula for each element K. Our problem reduces to approximate
the values tAHpxlqu, that can be done by solving locally the original microscale problem
around each quadrature point xl.

Let Iδpxlq, also denoted by Iδl , the cube of edge δ and barycenter xl, and
consider a microfunction φε such that

´∇ ¨ pAεpxq∇φεpxqq “ 0, x P Iδl . (4.6)

The local microscale problem (4.6) is constrained by the local macroscopic
state through the generic constraint:

1
|Iδl |

ż

Iδpxlq

∇φε dx “ G (4.7)

for some fixed constant vector G (ENGQUIST et al., 2007). In section 4.3 we will present a
specific constraint in our multiscale problem to define the associated microscale problems.
Two natural boundary conditions for the microscale problem are the periodic boundary
condition and the Dirichlet boundary condition which the above condition is satisfied.

• Dirichlet: In this case, Dirichlet boundary condition is used for problem (4.6):

φεpxq “ Gx, on BIδ. (4.8)

• Periodic: The problem (4.6) is subjected to:

φεpxq ´Gx is periodic with period Iδ. (4.9)

Thus in this case we can define the effective conductivity tensor at xl by the relation

xAε∇φεyIδ “ AHpxlqx∇φεyIδ , (4.10)

where xvyIδ “
1
|Iδ|

ż

Iδ

vpxq dx. The main objective of the HHM-FEM is to link efficiently

the microscale behavior of φε with AHpxlq, under the assumption that AHpxq is practically
constant around xl for a small δ, and that the average gradient of φε is fixed independently
of the element and of the quadrature point considered.

In summary, the overall algorithm in Ω Ă R2 consists in the following steps:
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• Determine for φε1, φε2 by using the constraint x∇φεi yIδ “ ei.

• Obtain the approximate values of AHpxlq by using (4.10).

• Assemble the effective stiffness matrix A (4.5).

• Solve the macroscale finite element equation using the effective stiffness matrix A
(4.5).

This overall procedure is called herein HMM-FEM method (ENGQUIST et al.,
2007), that stays for Finite Element Heterogeneous Multiscale Method. The homogenization
theory allows us to define the effective (homogenized) conductivity tensor, by considering
the infinite volume limit (εÑ 0) of the solution of the microscale problem subject to the
constraint that average gradient remains fixed. When the microstructure is periodic, the
infinite volume problem reduces to a periodic problem.

Since the homogenization is another technique to describe the multiscale
problem averaging the micro-behavior at the macro scale level, it is natural to consider
the HMM-FEM solution as a approximation of the homogenized problem. In (ABDULLE,
2009), HMM-FEM is used to solve an elliptic equation as (4.3). They choose piecewise
linear macro and micro FE spaces and periodic coupling to provide the following a prior
convergence rates (δ “ ε)

}u0
´ uHMM

}H1pΩq ď C
`

H `
`h

ε

˘2˘
, }u0

´ uHMM
}L2pΩq ď C

`

H2
`
`h

ε

˘2˘
. (4.11)

For the following parabolic equation
$

’

&

’

%

Btu
ε
px, tq “ ∇pAεpx,∇uεpx, tqqq ` fpxq in Ωˆ p0, T q

uεpx, tq “ 0 on BΩˆ p0, T q
uεpx, 0q “ gpxq in Ω,

(4.12)

under some refinements strategies, one can get the following error estimates

max1ďnďN}u
0
p¨, tnq ´ u

HMM
ptnq}L2pΩq ď C

`

∆t`H2
`
`h

ε

˘˘

, (4.13)

`

N
ÿ

n“1
∆t}∇u0

p¨, tnq ´∇uHMM
ptnq}

2
L2pΩq

˘1{2
ď C

`

∆t`H `
`h

ε

˘˘

. (4.14)

For more details see (ABDULLE; HUBER, 2014).

4.3 HMM-FEM applied to our problem
Let consider our differential problem defined in single crypt Γ Ă R3

$

&

%

BC

Bt
´∇Γ ¨ p∇ΓpCq ´∇Γ ¨ pD∇ΓCq ´ αC “ 0

´∆Γp “ βC
(4.15)
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in Γ ˆ p0, T s, with the parametrization ϕ : Y Ñ Γ, as described in Chapter 2. We can
rewrite the system (4.15) in local coordinates py1, y2q P Y as follows

$

&

%

|g|
BC

Bt
“ ∇ ¨ pA∇pCq `∇ ¨ pDA∇Cq ` |g|αC

´∇ ¨ pA∇pq “ |g|βC.
(4.16)

If we accept this choice of variables in Y , we should change px, yq with py1, y2q also in
2.2.5. The variational problem associated with (4.16) is the following: Find C, p P H1

0 pΩq
such that
$

’

’

’

’

&

’

’

’

’

%

ż

Y

|g|
BC

Bt
v dy “ ´

ż

Y

Cp∇pqTA∇v dy ´D
ż

Y

p∇CqTA∇v dy `
ż

Y

|g|αCv dy

ż

Y

p∇pqTA∇v dy “

ż

Y

|g|βCv dy,

(4.17)
where v P H1

0 pΩq, A “ pgq´1
a

detpgq and |g| “
a

detpgq as described in 2.2.5. Note that
we are using the column notation for the vectors, for instance ∇v “ pBv

Bx
,
Bv

By
q.

Let ε be the microscale dimension of the crypt in colon. The two dimensional
multiscale problem (4.17) is modeled in a rectangular domain Ω formed by a periodic
distribution of planified crypts Γ as shown in the figure 9. In order to define a problem in
Ω we consider the multiscale periodic coefficients Aε, αε, βε defined in Ω in the following
way: @x P Ω

Aεpxq “ Apx
ε
q with Apyq “

$

&

%

A if y P Y

by periodicity elsewhere.

Similar definitions are valid for αε and βε. Then we can rewrite the variational
problem (4.17) in Ω as follows
$

’

’

’

’

’

&

’

’

’

’

’

%

ż

Ω
|gε|
BCε

Bt
v dx “ ´

ż

Ω
Cε
p∇pεqTAεp∇vq dx´D

ż

Ω
p∇Cε

q
TAε∇v dx

`

ż

Ω
|gε|αεCεv dx

ż

Ω
p∇pεqTAε∇v dx “

ż

Ω
|gε|βεCv dx.

(4.18)

In the following, we analyze separately the above equations. First, we consider
the parabolic equation (4.18)1. The finite element discretization used is standard. Let TH
be a partition of Ω in simplicial or quadrilateral elements K. For this partition we define
the finite dimensional subspace V p

“ V p
pΩ, THq of H1

0 pΩq by

V p
pΩ, THq “ tvH P H1

0 pΩq : uH |K P Rp
pKq, @K P THu,
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where Rp
pKq is the space of polynomials defined in K with largest degree p. The solution

of the discretized problem reads: Find CH
ptq P V p

pΩ, THq such that
ż

Ω
|gε|
BCH

Bt
vH dx`Bε

pCH
ptq, vHq “ 0 @vH P V p

pΩε, THq, (4.19)

where

Bε
pCH , vHq “

ż

Ω
CH
p∇pεqTAε∇vH `Dp∇CH

q
TAεp∇vHq ´ |gε|αεCHvH dx. (4.20)

We proceed with our HMM-FEM method by rewriting the bilinear term (4.20),
such that it will depend on some microfunctions vh whose averaging resemble the vH

macroscale functions in V p. For vH , wH P V p
pΩ, THq we define

B̂pvH , wHq “ B̂1pv
H , wHq ` B̂2pv

H , wHq ` B̂3pv
H , wHq (4.21)

where

B̂1pv
H , wHq “

ÿ

KPTH

L
ÿ

l“1

ωKl
|KδKl

|

ż

Kδl

pvhKl∇p
ε
q
TAε∇whKl dx (4.22)

B̂2pv
H , wHq “

ÿ

KPTH

L
ÿ

l“1

ωKl
|KδKl

|

ż

Kδl

Dp∇vhKlq
TAε∇whKl dx (4.23)

B̂3pv
H , wHq “ ´

ÿ

KPTH

L
ÿ

l“1

ωKl
|KδKl

|

ż

Kδl

|gε|αεvhKlw
h
Kl
dx, (4.24)

where vhKl , w
h
Kl

are appropriated microfunctions defined on sampling domains Kδl (written
as Kl) and the factor |Kδl | gives the appropriated weight for the contribution of the integral
defined onKδl instead ofK. Note that B̂pvH , wHq is an approximation to Bε

pvH , whq, this is
because we used a quadrature formula with weight wKl associated to the quadrature points
xl in the macroelement K to approximate the integral in K. Then we find appropriate
microfunctions vhKl , w

h
Kl

defined only in the sampling domains Iδl (that resemble the
macrofunctions vH , wH in Iδl) that verifies B̂K “ B̂1,K ` B̂2,K ` B̂3,K . Sometimes we write
Kl and Il instead of Kδl and Iδl .

For each macroelement K we compute the sum contribution in (4.22)-(4.24)
by computing the microfunctions vhKl , w

h
Kl

obtained by solving microfunctions on sampling
domains Kδl , l “ 1, . . . ,L. The microproblems read as follows: find vhKl such that pvhKl ´
vHlin,Klq P S

1
perpKδl , Thq and

ż

Il

vhl p∇ε
pq
TAε∇zhdx`

ż

Il

Dp∇vhl qTAε∇zhdx´
ż

Il

|gε|αεvhl z
hdx “ 0 @zh P SqpKδl , Thq,

(4.25)
where

vHlin,Klpxq “ vHpxKδl q ` px´ xKδl q∇v
H
pxKδl q
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is a linearization in Iδl of the macrofunction vH at the integration quadrature point xKδl
and

S1
pKδl , Thq “ tzh P H1

pKδlq; zh|T P Rq
pT q, T P Th,

ż

Kδl

zhpxqdx “ 0u. (4.26)

S1
perpKδl , Thq “ tv P S1

pKδl , Thq; v periodic in Kδluq. (4.27)

In what follows we denote by

• tϕHmuMmac
m“1 the basis of the macro FE space V 1

pΩ, THq, where Mmac is the number of
discretization points in the macrodomain Ω.

• tφhm,Klu
Mmic
m“1 the basis of micro FE space S1

pKδl , Thq, where Mmic is the number of
discretization points in Kδl .

Following a standard assembly process for the macro form (4.21) we compute
the contribution B̂K in B̂ associated to the macroelement K by the contribution of the
microfunctions. We use the macro basis functions with non-zero support in K denoted
by ϕHi , i “ 1, . . . , µK , and determine B̂K based on contribution computed in sampling
domains as follows:

B̂K “ B̂Kpϕ
H
i , ϕ

H
j q

µK
i,j“1 “

3
ÿ

m“1
B̂m,Kpϕ

H
i , ϕ

H
j q

µK
i,j“1 (4.28)

“

L
ÿ

l“1

ωKl
|Kδl |

p

ż

Kl

ϕhKl,i∇pA∇ϕ
h
Kl,j

`∇ϕhKl,iA∇ϕ
h
Kl,j

´ |g|αϕhKl,iϕ
h
Kl,j
q
µk
i,j“1(4.29)

“

L
ÿ

l“1

ωKl
|Kδl |

pAT
Kl
pB1mic,Kl `B2mic,Kl `B3mic,KlqAKlq. (4.30)

Then, for each sampling domain Kδl Ă K and considering the associated linearized macro
basis function ϕHlin,Kl,i we write instead of (4.25) the minimization problem (ABDULLE;
NONNENMACHER, 2009)

ϕhKl,i “ arg min
ż

Iδl

∇whp∇pεqTAεpxq∇wh `Dp∇whqTAεpxqp∇whqT ´ |gε|αεwhwhdx

(4.31)
over all function wh P S1

pKδl , Thq such that wh ´ ϕHlin,Kl,i P S
1
per, where ϕHlin,Kl,ipxq “

ϕHi pxδlq ` px´ xδlq ¨∇ϕHi pxδlq.

To compute (4.31) we expand ϕHlin,Kl,i in the basis of S1
pKδl , Thq

ϕHlin,Kδl ,i
“

Mmic
ÿ

m“1
βi,mφ

h
Kδl ,m

(4.32)

and the above minimization problem leads, by introducing Lagrange multipliers λ, to a
saddle point problem given in linear form by

pB1mic,Kl `B2mic,Kl `B3mic,KlqαKδl ,i `M
Tλ “ 0, (4.33)

MpαKδl ,i ´ βKδl ,iq “ 0, (4.34)
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where βKδl ,i “ tβi,mu
Mmic
m“1 and αi,Kδl “ tηi,mu

Mmic
m“1 are associated to the solution and M is

the matrix of the constraints detailed below. We then have

ϕhKδl ,i
“

Mmic
ÿ

m“1
αmφ

h
Kδl ,m

. (4.35)

The matrix pB1mic,Kl `B2mic,Kl `B3mic,Kl q has coefficients

pB1mic,Kl `B2mic,Kl `B3mic,Klqmn “

ż

Kδl

φhKδl ,m
p∇pεqTAε∇φhKδl ,n

` p∇φhKδl ,mq
TAε∇φhKδl ,n

´ αε|gε|φhKδl ,m
φhKδl ,n

.

In order to write M we observe that if pϕh ´ ϕHlinq P S1
perpKδ, Thq we have

1.
ż

Kδ

pϕh ´ ϕHlinq dx “ 0,

2. pϕh´ϕHlinqppq “ pϕh´ϕHlinqpp1q, for all L couples pp, p1q of boundary nodes on opposite
edges avoiding redundant couples at the corner.

In this situation, the matrix M has the form

M “

˜

b1 . . . bMmic

M̃

¸

, (4.36)

where the first row corresponds to the condition 1 and the LˆMmic matrix M̃ corresponds
to the condition 2.

The problem (4.33),(4.34) is solved for each function ϕHlin,i,Kδl
, i “ 1, . . . , µK .

This is done for each quadrature node of the macroelement and we obtain

B̂K “

L
ÿ

l“1

ωKl
|Kδl |

pA T
Kl
pB1mic,Kl `B2mic,Kl `B3mic,KlqAKlq. (4.37)

with AKl “ pαl,1, . . . , αl,µK q
T . Using the simple backward Euler method in time we have

the following weak form of the parabolic multiscale equation
ż

Ω
|gε|CH

ptnqv
H dx`∆tB̂pCH

ptnq, p
H , vHq “

ż

Ω
CH
ptn´1qv

H
|gε| dx. (4.38)

The mass matrix is given by

M̄i,j “

ż

Ω
ϕHi ϕ

H
j |g

ε
| dx. (4.39)

We can calculate that integral for the K element as

ż

K

ϕHi ϕ
H
j |g

ε
| dx « |gεpxKbq|

ż

K

ϕHi ϕ
H
j dx, (4.40)
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where xKb is the barycenter of K. Since |gεpxKbq| need to be computed, we can approximate
on the microdomain around xKb during the integration process. The sampling of |gεpxKbq|
can be done in the following way

|gεpxKbq| :“ |R|
ÿ

RPIh

|gpxKb , yRq|, (4.41)

where Ih is an axiparallel mesh of the unit cell Y with congruent rectangles R of size h
and yR is the barycenter of the rectangle R.

Thus using HMM-FEM discussed in this section we can solve the parabolic
equation (4.17)1 by using the following linear system

pM̄ `∆tB̂qCH
ptnq “ M̄CH

ptn´1q. (4.42)

where B̂ is the stiffness matrix B̂ “ pB̂pϕHi , ϕHj qqij“1,...,Mmac and here for abuse of notation
we denoted by CH

ptnq the vector with components CH
pxi, t

n
q for i “ 1, . . . ,Mmac where

xi are the nodes in the mesh TH .

A similar methodology can be used for solving the elliptic equation using the
HMM-FEM (ABDULLE; NONNENMACHER, 2009).

B̂2p
H
ptnq “ bpCH

ptn´1qq. (4.43)

where the matrix B̂2 is obtained as before from the operator

B̂2pv
H , wHq “

ÿ

KPTH

L
ÿ

l“1

ωKl
|Kδl |

ż

Kδl

p∇vhKlqA
ε
p∇whKlq

T dx (4.44)

and b a suitable operator for the right-hand side. That contribution can be calculated for
the element K as

bK “

ż

K

fϕHi dx « fpxKbq

ż

K

ϕHi dx, (4.45)

where xKb P K is an integration point located at the barycenter of K.

4.3.1 Approximating A0

For numerical purposes, we need to find a way to approximate the homogenized
tensor since is not too easy to calculate it analytically. We use rectangular simple domains
of edge δ “ ε.

4.3.1.1 Case Aεpxq “ Apx, x
ε
q

During the implementation of HMM-FEM method, with Aεpxq “ Apx, x
ε
q, we

compute for each quadrature point xl (l “ 1, . . . , 4) in the macroelement K the matrix

pMh
xl
qi,j“1,2 “

1
|Iδl |

ż

Iδl

Apxl, yq∇ϕhi∇ϕhj dy (4.46)
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that can vary in each element K for each l “ 1, . . . , 4. Iδl is a simple domain along the
point xl of edge ε.

We have used previously the microfunctions tϕhi u in Kδl associated to the nodal
macro basis tϕHi u of the rectangular element K and to the quadrature point xl, that satisfy

ϕhj pxq “ ϕHj,linlpxq ` ε
ÿ

i“1,2
χi,hpxl,

x

ε
q
BϕHj,linl
Bxi

pxq (4.47)

where ϕHj,linlpxq “ ϕHj pxlq`px´xlq∇ϕHj pxlq and χi,h are solution of the cell problem whose
variational form in S1

perpY q is:
ż

Y

∇χi,hApx, yq∇v dy “ ´
ż

Y

pApx, yqeiqT ¨∇vpyqdy, @v P S1
perpY q. (4.48)

The following property is valid, see (ABDULLE, 2009),

pMh
xl
qi,j“1,2 “ A0,h

pxlq∇ϕHi pxlq∇ϕHj pxlq, (4.49)

with A0,h
pxlq that is an approximation of A0

pxlq defined as follows

A0,h
pxlq “

1
|Iδl |

ż

Iδl

Apxl, yqpI `∇yχpxl, yqq dy (4.50)

In the following we give an easy way to build A0,h that is based on (4.49). Let
consider ϕ̄i the nodal basis defined in the reference element K̄ “ r0, 1s2, where

ϕ̄1px1, x2q “ p1´ x1qp1´ x2q,

ϕ̄2px1, x2q “ p1´ x2qx1,

ϕ̄3px1, x2q “ x1x2,

ϕ̄4px1, x2q “ p1´ x1qx2.

We have that ϕipxq “ ϕ̄i˝Φ´1
pxq where Φ : K̄ Ñ K is the linear transformation

between K̄ and K, that satisfies

Φpxq “ v1ϕ̄1pxq ` v2ϕ̄2pxq ` v3ϕ̄3pxq ` v4ϕ̄4pxq, @x P K̄

where vi, i “ 1 . . . r are the vertices of K.

Moreover we have

∇ϕipxq “ JTΦ´1pxq∇ϕ̄ipΦ´1
pxqq.

Note that the following relation is also valid Jφ´1pxq “ pJφpφ
´1
pxqqq´1

”

J´1
φ pΦ´1

pxqq. Therefore from (4.49) we have

pMh
xl
qij “ ξTi J

´1
Φ A0,h

pxlqJ
´T
Φ ξj (4.51)
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and so
Mh

xl
“ ξTJ´1

Φ A0,h
pxlqJ

´T
Φ ξ (4.52)

where ξ “ p∇ϕ̄1px̄lq,∇ϕ̄2px̄lqq, (or equivalently ξi ” ∇ϕ̄ipx̄lq) and thus ξT “ Jϕ̄px̄lq that
is the Jacobian of ϕ̄ “ pϕ̄1, ϕ̄2q in the l ´ th node x̄l of the reference element K̄. Thus we
get

Mh
xl
“ Jϕ̄J

´1
φ A0,h

pxlqJ
´T
φ JTϕ̄ “ B´1A0,h

pxlqB
´T (4.53)

with B “ Jφpx̄lqJ
´1
ϕ̄ px̄lq.

Using (4.53) we have finally the relation that link A0,h with the already com-
puted mass matrix

A0,h
pxlq “ BMh

xl
BT (4.54)

4.3.1.2 Case Aεpxq “ Apx
ε
q with elements K of same dimension

When A depends only on the microscale as in our case we have A “ Apx
ε
q and

then Mh
xl

represented in (4.49) or equivalently in (4.53) is constant with respect K, but
depends on m “ 1, . . . , 4 and so it can be represented as Mh

xl
and satisfies

Mh
xl
“

1
|Iδl |

ż

Iδl

Apyq∇ϕhi∇ϕhj dy “ A0,h∇ϕHi pxlq ¨∇ϕHj pxlq (4.55)

with
A0,h

pxlq “
1
|Iδl |

ż

|Iδl |

ApyqpI `∇yχ
h
p
x

ε
qqdy (4.56)

that is independent of m and K, then it is an approximation of A0
pxlq. We note that in

(4.56) χh “ pχj,hqj“1,2 is the vector of the solution of cell problem (independent of m and
K) in S1

perpY q:
ż

Y

∇χj,hApyq∇v dy “ ´
ż

Y

pApyqejqT ¨∇vpyq dy, @v P S1
perpY q.

Following the same step as in the previous subsection (see (4.50)-(4.53)-(4.54))
we get

A0,h
pxlq “ BMh

xl
Bt (4.57)

with B “ Jφpx̄lqJ
´1
ϕ̄ px̄lq.

4.4 HMM-FEM approach for multiscale solution
After developing the HMM framework to our problem. In this simulation we

fix H “
1
48 , T “ 0.1,∆t “ 0.01, δ “ ε “ 1e´ 06, h

δ
“

1
5 which provides the results shown

in Figure 10
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(a) (b) (c)

(d) (e) (f)

Figure 10 – Numerical solutions of the multiscale problem.

In the top and bottom row we have numerical solutions of the pressure and
density at the times t “ 0.01, t “ 0.04 and t “ 0.1 from left to right.

4.4.1 Numerical convergence of HMM-FEM to homogenized solution

Example 1. In this example, we use the method described in Chapter 5 to get an approxi-
mation of the homogenized solution p0, C0 to homogenized problem. We are able to compare
numerically the HMM-FEM solution with this homogenized solution. To approximate the
parameters, present in the homogenized problem and listed below, we use a integration
numerical method of high order to not have large errors.

A0
“

«

1.012724469451771 0.000000000000033
0.000000000000011 1.012724469451337

ff

, D “ 1,

x|g|βy “ 0.013424520172113,

x|g|αy “ 0.008393086150538,

x|g|y “ 9.527732571537580.

In this simulation we fix an uniform mesh h “ k “
1
96 , T “ 0.1, ∆t “ 0.01.

following figures shows the plot of the obtained homogenized solution.
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(a) (b) (c)

(d) (e) (f)

Figure 11 – From top to bottom we have numerical solutions to homogenized problem at
the times t “ 0.01, t “ 0.04 and t “ 0.1.

To compute the HMM-FEM errors into approximating the homogenized solu-
tion, we first calculate a fine numerical solution of the homogenized problem using the
final system of equations (4.12) and the approximation of the homogenized tensor using
HMM described before. Then we solved that system using finite difference (Example 1).

Table 3 – Errors and rate of convergence of the HMM method

H }eHp }L2 }eHp }H1 RateH1 }eHC }L2 }eHC }H1 RateH1

1{3 9.7270e-03 9.7360e-03 - 1.1662e-01 3.5464e-01 -
1{6 1.4584e-03 3.6590e-03 1.41 4.6964e-02 2.18010e-01 0.70
1{12 4.5137e-04 1.8348e-03 0.99 7.4453e-03 1.1500e-01 0.92
1{24 3.9449e-04 8.8498e-04 1.05 3.7053e-03 5.1204e-02 1.16

That table show us a second order of convergence for pressure and density in
L2 discrete norm and first order of convergence in H1 discrete norm, where eHp and eHC are
the errors between the HMM approximation and a fine finite difference approximation
(}eHp } and }eHC } are defined using the discrete norms provided by the next Chapter). Note
that these errors are very familiar with (4.11) and (4.14). There are some analytical results
that provide convergence rates to simpler elliptic and parabolic problems as (ABDULLE,
2009), (ABDULLE, 2012) , (ABDULLE; HUBER, 2014), but there are not works that
deal with multiscale coupled problems. For a while in this Chapter we applied the HMM
framework to our system and searched for some convergence indicators. Our next step in



Chapter 4. Heterogeneous Multiscale Method(HMM) 63

a future work is to prove analytically this convergence of HMM-FEM numerical solutions
to the homogenized solution.

(a) (b)

Figure 12 – Convergence rates for HMM approximation (Pressure).

(a) (b)

Figure 13 – Convergence rates for HMM approximation (Density).
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5 Supraconvergent FDM for the crypt cell dy-
namics on non uniform meshes

In this Chapter we present a numerical scheme for the cell proliferation problem
inside the colonic crypt represented mathematically by the elliptic-parabolic system (2.7)
that depends on the cell-cell adhesion ppx, y, tq and proliferative cell density Cpx, y, tq.

$

’

’

’

’

’

&

’

’

’

’

’

%

|g|
BC

Bt
“ ∇ ¨ pA∇pCq `∇ ¨ pDA∇Cq ` |g|αC, in S ˆ p0, T s

´∇ ¨ pA∇pq “ |g|βC, in S ˆ p0, T s
C “ p “ 0 on BS ˆ p0, T s
Cp¨, 0q “ C0 in S.

(5.1)

We solve (5.1) by using a semi-discretization method. The proposed numerical
scheme scheme is based on finite differences on nonuniform meshes that provide good
convergence and stability properties, which are proved in the following paragraphs. The
method has a second order convergence using a discrete norm in L2

pr0, T s, H1
0 pSqq norm for

the density and second order for the pressure using a discrete norm in L8pr0, T s, H1
0 pSqq

norm. A such order is not expected since the truncation error decays with second order in L8.
For this reason the proposed finite difference method, which is equivalent (see next Chapter)
to a finite element method, is supraconvergent (see Appendix B.6). The proof of this
supraconvergence is described in the followings Sections in details. A such supraconvergence
is here proved to be valid for solutions C, p that belongs in L8pr0, T s, C4

pSqq. In what
follow we solve a semidiscrete problem, with a space discretization using appropriated
operators and then the semidiscrete problem is solved by Backward Euler.

5.1 Preliminary results

Let H “ tphi, kjq P R2
|hi, kj ą 0, i, j “ 1, . . . N,M ;

N
ÿ

i“1
hi “

M
ÿ

j“1
kj “ 1}, we

denote by Hmax the maximum step size in the two directions: Hmax “ max
phi,kjqPH

thi, kju. We

suppose that exists C ą 0 such that Hmax{Hmin ď C. Let phi, kjq P H, we define by SH
the discrete mesh in S “ p0, 1q2, as follows

SH “ tpxi, yjq
N,M
i,j“0|pxi, yjq “ pxi´1 ` hi, yj´1 ` kjq P S, i, j “ 1 . . . , N,M, px0, y0q “ p0, 0qu.

We introduce also the following sets

BSH “ tpxi, yjq, i “ 0, N ; j “ 0, . . . ,MuYtpxi, yjq, i “ 0, . . . , N ; j “ 0,Mu, SH “ SH{BSH .
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Let WH,0,WH be the following sets of grid functions

WH,0 “ tvH : SH Ñ R, vH “ 0 in BSHu,

WH “ tvH : SH Ñ Ru.

In the following we denote by vHi,j the value vHpxi, yjq. We denote also ∇´H “
pD´x, D´yq that is ∇´HvHi,j “ pD´xvHi,j, D´yvHi,jq where

D´xv
H
i,j “

vHi,j ´ v
H
i´1,j

xi ´ xi´1
(5.2)

and
D´yv

H
i,j “

vHi,j ´ v
H
i,j´1

yj ´ yj´1
. (5.3)

In WH,0 we introduce the following inner product

pvH , wHqH “
N´1,M´1

ÿ

i,j“1
hi` 1

2
kj` 1

2
vHi,jw

H
i,j,

for vH , wH P WH,0 and by } ¨ }H we denote the associated induced norm in WH,0. In
WH ˆWH we also use the scalar product

pÝÑv H ,ÝÑwH
qH,´ “ pvH,1, wH,1qh,´ ` pv

H,2, wH,2qk,´ (5.4)

where

pvH,1, wH,1qh,´ “

N,M´1
ÿ

i,j“1
hikj` 1

2
vH,1i,j w

H,1
i,j (5.5)

pvH,2, wH,2qk,´ “

N´1,M
ÿ

i,j“1
hi` 1

2
kjv

H,2
i,j w

H,2
i,j (5.6)

ÝÑv H “ pvH,1, vH,2q,ÝÑwH
“ pwH,1, wH,2q P WH ˆWH , and the induced semi-norm

}ÝÑv H}H,´ “

b

pÝÑv H ,ÝÑv HqH,´.

The centered operator ∇c “ pδx, δyq, uses

δxv
H
i,j “

vHi`1,j ´ v
H
i´1,j

hi ` hi`1
, δyv

H
i,j “

vHi,j`1 ´ v
H
i,j´1

kj ` kj`1
.

We consider also the operator DH “ pδh, δkq defined by

δhv
H
i,j “

hi`1δ
p1{2q
x vHi´1{2,j ` hiδ

p1{2q
x vHi`1{2,j

hi`1 ` hi
, (5.7)

δkv
H
i,j “

kj`1δ
p1{2q
y vHi,j´1{2 ` kjδ

p1{2q
y vHi,j`1{2

kj`1 ` kj
. (5.8)

where δp1{2qx vHi´1{2,j “ D´xv
H
i,j, that is δp1{2q is a centered operator of half step. Finally

by MH “ pMx,Myq we denote the average operator, where Mxpv
H
qi,j “

1
2pv

H
i,j ` vHi´1,jq

(respectively for My).
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Proposition 1. For all vH , wH P WH,0 and a : SH Ñ R, A : SH Ñ R2ˆ2 bounded we have

}Mxv
H
}h,´ ď }vH}H , (5.9)

´pδp1{2qx papx,yqδp1{2qx vHq, wHqH “ papMxpxq,yqD´xvH , D´xwHqh,´, (5.10)

´pδxv
H , wHqH “ pvH , δxw

H
qH , (5.11)

´pδxv
H , wHqH “ pMxpv

H
q, D´xw

H
qh,´, (5.12)

´pδxv
H , δyv

H
qH ď }∇´HvH}2H,´, (5.13)

}ADHv
H
}

2
H ď M}A}28}∇´HvH}2H,´. (5.14)

where x “ txiui“1,...,N ,y “ tyjuj“1,...,M , with pxi, yjq P S and Hmax

Hmin

ď C.

Proof. For (5.11) we have

´pδxv
H , wHqH “ ´

N´1,M´1
ÿ

i,j“1
hi` 1

2
kj` 1

2

pvi`1,j ´ vi´1,jq

hi ` hi`1
wi,j (5.15)

“ ´
1
2

N´1,M´1
ÿ

i,j“1
kj` 1

2
pvi`1,jwi,j ´ vi´1,jwi,jq (5.16)

“ ´
1
2

N,M´1
ÿ

i“2,j“1
kj` 1

2
vi,jwi´1,j `

1
2

N´2,M´1
ÿ

i“0,j“1
kj` 1

2
vi,jwi`1,j (5.17)

“ pvH , δxw
H
qH (5.18)

using vN,j “ wN,j “ 0 and v0,j “ wN,j “ 0.

For (5.12), continuing from (5.16) we add and subtract
N´1,M´1

ÿ

i,j“1
kj` 1

2
vi´1,jwi´,j we get

´pδxv
H , wHqH “ ´

1
2

N,M´1
ÿ

i,j“1
kj` 1

2
pvi,j ` vi´1,jqwi´1,j (5.19)

`
1
2

N,M´1
ÿ

i,j“1
kj` 1

2
pvi´1,jwi´1,j ` vi´1,jwi,jq (5.20)

“ pMxpv
H
q, D´xw

H
qh,´ (5.21)

using vN,j “ wN,j “ 0.

For (5.13) we use that for ε ą 0

δxvi,jδyvi,j ď
pδxvi,jq

2

4ε2 ` ε2
pδyvi,jq

2, (5.22)

then we use ε “ 1
?

2
.
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For (5.14) is enough to show that }DHv
H
}

2
H ď C}∇Hv

H
}

2
H,´ where

}DHv
H
}

2
H “

N´1,M´1
ÿ

i,j“1
hi` 1

2
kj` 1

2

`

pδhvi,jq
2
` pδkvi,jq

2˘. (5.23)

We have that DMpCq ą 0 such that

pδhvi,jq
2
“

h2
i pD´xvi`1,jq

2

ph2
i ` h

2
i`1q

`
hihi`1D´xvi,jD´xvi`1,j

ph2
i ` h

2
i`1q

`
h2
i`1pD´xvi,jq

2

ph2
i ` h

2
i`1q

(5.24)

ď MpCq
`

pD´xvi,jq
2
` pD´xvi`1,jq

2˘ (5.25)

since Hmax

Hmin

ď C. It’s useful to note that hipvi,hq2 ď Chkpvi,jq
2 for any i, k.

In order to approximate the solution of the elliptic equation in (5.1) we use
the elliptic operator

LApf
H
q “ δp1{2qx pA11δp1{2qx pfHqq ` δxpA21δypf

H
qq (5.26)

` δypA12δxpf
H
qq ` δp1{2qy pA22δp1{2qy pfHqq, (5.27)

associated to the matrix function A : r0, 1s2 Ñ R2ˆ2. The truncation error of this operator
is then TLA “ LApRHfq ´∇pA∇fq where RHf is the restriction of f in SH . It satisfies
the following proposition

Proposition 2. Let f P C4
pSq and TLA “ LApRHfq ´ ∇pA∇fq where RHf is the

restriction of f in SH

TLApxi, yjq “ phi`1 ´ hiqrpxi, yj, tq ` pkj`1 ´ kjqspxi, yj, tq `OpH
2
maxq, (5.28)

where functions rpx, yq, spx, yq depend on the derivatives of A and f up to order 3. Fur-
thermore, TLA satisfies, for each ζ ą 0, @vH P WH,0

pTLA , v
H
qH ď

M

ζ2 H
4
max ` ζ

2
p}∇´HvH}2H,´ ` 3}vH}2Hq, (5.29)

where M is independent of hi, kj.

Proof. It is possible to prove (5.28), then we have

pTLA , v
H
qH “

N´1,M´1
ÿ

i,j“1
hi` 1

2
kj` 1

2
phi`1 ´ hiqrpxi, yj, tqv

H
i,j

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

first term

`

N´1,M´1
ÿ

i,j“1
hi` 1

2
kj` 1

2
pkj`1 ´ kjqspxi, yj, tqv

H
i,j

loooooooooooooooooooooooooomoooooooooooooooooooooooooon

second term

`pOpH2
maxq, v

H
qH .
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Using that v0,j “ vN,j “ 0, the first term satisfies

1
2

N´1,M´1
ÿ

i,j“1
kj` 1

2
ph2

i`1 ´ h
2
i qrpxi, yj, tqv

H
i,j

“
1
2

N,M´1
ÿ

i,j“1
kj` 1

2
h2
i prpxi´1, yj, tqv

H
i´1,j ´ rpxi, yj, tqv

H
i,jq

“ ´
1
2

N,M´1
ÿ

i,j“1
kj` 1

2
h3
i rpxi´1, yj, tqD´xpv

H
i,jq ´

1
2

N,M´1
ÿ

i,j“1
kj` 1

2
h2
i p

ż xi

xi´1

Br

Bx
px, y, tq dxqvHi,j

ď
}r}8H

2
max

2

N,M´1
ÿ

i,j“1
kj` 1

2
hi|D´xpv

H
i,jq| `

}
Br

Bx
}8H

2
max

2

N,M´1
ÿ

i,j“1
kj` 1

2
hi|v

H
i,j|

ď
M1H

4
max

4ζ2 ` ζ2
p}D´xv

H
}

2
h,´ ` }v

H
}

2
Hq,

with M1 “ max
#

}r}28
4 ,

›

›

›

›

Br

Bx

›

›

›

›

2

8

+

. Analogously we have an upper bound for the second

term : M2H
4
max

4ζ2 ` ζ2
p}D´yv

H
}

2
k,´ ` }v

H
}

2
Hq, where M2 “ max

#

}s}28
4 ,

›

›

›

›

Bs

By

›

›

›

›

2

8

+

then since

pOpH2
maxq, v

H
qH ď

M3H
4
max

4ζ2 `ζ2
}vH}2H we have the thesis (5.29) using M “

1
4pM1`M2`

M3q.

Analogously we can prove the following proposition

Proposition 3. Let f P L8pr0, T s, C4
pSqq, g P L8pr0, T s, C3

pSqq. The discrete operator
∇cpADHpRHfqRHgq approximates ∇ppA∇fqgq with a truncation error T∇c that satisfies,
for all ζ ą 0

pT∇c , v
H
qH ď

M

ζ2 H
4
max ` 4ζ2

p}∇´HvH}2H,´ ` 2}vH}2Hq, (5.30)

where M is independent of hi, kj.

Proposition 4 (Discrete Poincaré Inequality). For all vH P WH,0 we have

}vH}H ď C}∇´HvH}H,´,

where C depends on SH and is independent of hi, kj.

In the following we consider the simplified system
$

&

%

´∇ ¨ pA∇pq “ αC.
BC

Bt
“ ´∇ ¨ pvCq `∇ ¨ pDA∇Cq ` βC,

(5.31)

where v “ ´A∇p and D is a diffusion coefficient defined in S. Note that (5.31) can derive
from (5.1) by using α “ |g|β and β “ |g|α. Note also that since |g| not depends on t
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and we are discretizing only the derivatives on space in the PDE system, by a method of
lines, we can continue to use BC

Bt
instead of |g|BC

Bt
in this Chapter that not change the

significance of the following results.

By pHptq and CH
ptq we represent the semi-discrete approximation for ppx, y, tq

and Cpx, y, tq defined by the following coupled problem
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

´LApp
H
q “ αCH , in SH ˆ r0, T s,

BCH

Bt
´∇c ¨ pADHp

HCH
q “ LBpC

H
q ` βCH , in SH ˆ p0, T s,

pH “ CH
“ 0, on BSH ,

CH
p0q “ CH

0 in SH .

(5.32)

where B “ DA and LAp¨q, LBp¨q are defined as in (5.26).

5.2 Convergence analysis and stability
To simplify the notation in the next paragraph we write vH instead of vHptq

when it is possible. Let ppH , CH
q, pp̃H , C̃H

q two solutions of (5.32) with different initial
conditions for the parabolic problem. We prove that the stability of the method implemented
in (5.32) with respect to the norm } ¨ }H requires the boundness of }CH

}8 and }DHp
H
}8,

as it will be shown. Whereas the convergence analysis of (5.32) requires only the boundness
of }DHp

H
}8, and since it will be proved that convergence implies stability, then it is

sufficient that }DHp
H
}8 is uniformly bounded to have both stability and convergence.

Moreover in our demonstration for the convergence of the elliptic problem we requires that
matrix A satisfies min

ij
tA11

ij ,A22
ij u ą }A12

}8 ` }A21
}8.

Let vH “ pH ´ p̃H , wH “ CH
´ C̃H

P WH,0, using the linearity of the operators
defined above, it can be shown that vH , wH are solutions of the problem
$

’

’

’

’

’

&

’

’

’

’

’

%

´LApv
H
q “ αwH in SH ˆ r0, T s

BwH

Bt
“ ∇c ¨ pApCHDHp

H
´ C̃HDH p̃

H
qq ` LBpw

H
q ` βwH in SH ˆ p0, T s,

vH “ wH “ 0 on BSH ,
wHp0q “ wH0 .

(5.33)

5.2.1 Stability for the elliptic equation (5.32)1

Multiplying (5.33)1 by vH “ pH ´ p̃H , it can be shown, using the relations
(5.12) and (5.13) of Proposition 1, the next estimate: for all ζ ą 0

a0}∇´HvH}2H,´ ` ppA12
`A21

qδxv
H , δyv

H
qH ď

}α}28}w
H}2H

4ζ2 ` ζ2
}vH}2H . (5.34)
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where ζ ą 0 and a0 “ min
 

A11,A22(. Taking b0 “ }A12
}8 ` }A21

}8 we get from (5.34),
and using Propositions 1p5q

pa0 ´ b0 ´ Cζ
2
q}∇´HvH}2H,´ ď

}α}28}w
H}2H

4ζ2 .

Then we have the following stability result for the pressure: if pa0´ b0´Cζ
2
q ą 0, DM ą 0,

which is independent of H and t, such that

}∇´HvH}2H,´ ďM}wH}2H . (5.35)

where M “
}α}28

4ζ2pa0 ´ b0 ´ Cζ2q
. Note that the stability result (5.35) for the pressure is

obtained when min
 

A11,A22(
ą }A12

}8 ` }A21
}8.

5.2.2 Stability for the parabolic equation (5.32)2

Multiplying the parabolic equation (5.33)2 by wH “ CH
´ C̃H , we get

1
2
B}wH}2H
Bt

`pa0´b0q}∇´HwH}2H,´ ď p∇c ¨pApCHDHp
H
´C̃HDH p̃

H
qq, wHqH`}β}8}w

H
}

2
H .

(5.36)
where a0 “ mintB11,B22

u, b0 “ }B12
}8 ` }B21

}8.

Firstly we have from Proposition (1)p4q, that

p∇c ¨ pApCHDHp
H
´ C̃HDH p̃

H
qq, wHqH “ ´pMHpACHDHp

H
q,∇´HwHqH,´

` pMHpC̃
HDH p̃

H
q,∇´HwHqH,´

“ pMxpη
1,HCH

´ η̃1,HC̃Hq, D´xw
H
qh,´

` pMypη
2,HCH

´ η̃2,HC̃Hq, D´xw
H
qk,´,

where ηH “ ´ADHp
H , η̃H “ ´ADH p̃

H . Using Proposition (1)p1q we have

pMxpη
1,HCH

´ η̃1,HC̃Hq, δp1{2qx wHqh,´ ď }η1,HCH
´ η̃1,HC̃H}H}D´xw

H
}h,´

ď
2}CH}28}η

1,H ´ η̃1,H}2H ` 2}η̃H}28}wH}2H
4ζ2

` ζ2
}D´xw

H
}

2
h,´.

Then

pMHpApCHDHp
H
´ C̃HDH p̃

H
qq,∇´HwHqH,´ ď

2}CH}28}ADHv
H}2H`

4ζ2 (5.37)

`
2}ADH p̃

H}28}w
H}2H

4ζ2 (5.38)

` ζ2
}∇´HwH}2H,´, (5.39)
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for some ζ ą 0. Using Proposition 1, the pressure stability result (5.35) and (5.37)- (5.39),
we get

pMHpApCHDHp
H
´ C̃HDH p̃

H
qq,∇´HwHqH,´ ď

pM1}C
H}28 `M2}DH p̃

H}28q}w
H}2H

4ζ2

` ζ2
}∇´HwH}2H,´,

To conclude the stability we need to suppose that the numerical solutions are
uniformly bounded that is }CH

}8 and }DHp
H
}8 are uniformly bounded with respect to

H. Calling M3 “ pa0 ´ b0 ´ ζ2
q,M4ptq “

pM1ptq}C
Hptq}28 `M2ptq}DH p̃

Hptq}28q

4ζ2 ` }β}8

we have from (5.36)

1
2
B}wHptq}2H

Bt
`M3}∇´HwH}2H,´ ďM4ptq}w

H
}

2
H . (5.40)

Consequently using the Gronwall lemma we have

}wHptq}2H `

ż t

0
}∇´HwHpsq}2H,´ ds ď

1
mint1, 2M3u

}wHp0q}2HeK
şt
0
yM4psq ds (5.41)

where {M4psq “
M4psq

mint1, 2M3u
.

5.2.3 Convergence

In the following we analyze the behavior of the pressure error eHp “ RHp´ p
H

and density error eHC “ RHC ´ C
H , where p, C are the solutions of the density-pressure

problem (5.31) and pH , CH of (5.32). Let Tp, TC be the truncation errors induced by the
spatial discretization for elliptic and parabolic equations in (5.32) respectively. These
errors are related by the system
$

’

’

&

’

’

%

´LApe
H
p q “ αeHC ` Tp in SH ˆ r0, T s

BeHC
Bt

“
`

∇c ¨ pA∇pC ´ADHp
HCH

q
˘

` LBpe
H
C q ` βe

H
C ` TC in SH ˆ p0, T s,

eHp “ eHC “ 0 on BSH .
(5.42)

Theorem 3. For p P L8pr0, T s, C3
pSqq and C P L8pr0, T s, C0

pSqqq, we have the following
convergence results for the pressure elliptic problem in the norm } ¨ }H

}∇´HeHp ptq}2H,´ ďM}eHC ptq}
2
H `OpH

4
maxq, (5.43)

where M is independent of H and t.

Proof. From (5.42) we easily obtain, for ζ ą 0, using a demonstration similar to that done
to get the stability result (5.35) for the pressure

pa0 ´ b0q}∇´HeHp }2H,´ ď
}α}28
4ζ2 }eC}

2
H ` ζ

2
}ep}

2
H ` pTp, epqH . (5.44)
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where a0 “ mintA11,A22
u, b0 “ }A12

}8 ` }A21
}8.

Using the Propositions 2 and 4 with vH “ eHp , we get

pa0 ´ b0q}∇´HeHp }2H,´ ď
}α}28
4ζ2 }e

H
C }

2
H ` 4ζ2

}eHp }
2
H `

M

ζ2 H
4
max ` ζ

2
}∇´HeHp }2H,´. (5.45)

Supposing that pa0 ´ b0 ´ ζ
2
p1` 4Cqq ą 0 we prove the theorem.

Proposition 5. Suppose that }∇´HeHp }2H,´ ď MH4
max, p P C0

pSq and Hmax

Hmin

ď MpSq,

then }DHp
H
}8 is bounded.

Proof. Since }∇´HeHp }2H,´ ďMH4
max then }∇Hp

H
}8 is bounded. We have that

pδhp
H
i,jq

2
“

`hi`1δ
1{2
x pHi,j ` hiδ

1{2
x pHi`1,j

hi`1 ` hi

˘2 (5.46)

ď
MpSq2

4 }D´xp
H
}

2
8. (5.47)

Theorem 4. For C P L2
pr0, T s, C4

pSqq X L8pr0, T s, C3
pSqq X C1

pr0, T s, C0
pSqq. Let

}DHp
H
}8 uniformly bounded with respect to H, then we have the convergence for density

parabolic problem, that is

}eHC ptq}
2
H `

ż t

0
}∇´HeHC psq}2H,´ ds ďMpH4

max ` }e
H
C p0q}2Hq. (5.48)

where M is independent of h and k.

Proof. We can get this result using a similar demonstration of that used to get the result
(5.41). In this demonstration we use wH “ RHC ´ CH , and we are always supposing that
the restriction of the solution is uniformly bounded by }C}8.

Corollary 2. The elliptic pressure problem and the parabolic density problem are conver-
gent if and only if }DHp

H
}8 is bounded.

Corollary 3. For the density-pressure numerical problem (5.33) convergence implies
stability.

Proof. Convergence for the density problem implies that }CH
}8 is bounded and for the

Theorem 5.43 also implies convergence for the pressure problem. Such convergence for
Proposition (5) implies that }DHp

H
}8 is bounded. Then from the uniform bounding of

}CH
}8 and }DHp

H
}8 we obtain the stability of the density pressure problem (5.34).
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5.3 Numerical results
We measure the errors of the numerical solution pH , CH of (5.33) with respect

the solution p, C of (5.31) by using the following norms:

}eC}H “ max
n“1,...,NT

g

f

f

e}eHC ptnq}
2
H `

n
ÿ

j“1
∆t}∇´HeHC ptjq}2H,´. (5.49)

}ep}H “ max
n“0,...,M

}eHp ptnq}H . (5.50)

Here we consider the time interval [0,T] with constant time steps ∆t “ T {NT .

We proved in the Section 5.2 that using these different norms for measuring
the pressure and density approximation error of the method the approximations pH and
CH converges to p and C with a second order when p, C are in L2

pr0, T s, C4
pSqq as one

can see in Examples 2 and 3. In this section we prove numerically that this second order
is obtained in the example 4 when we use solutions p, C in L2

pr0, T s, C4
pSqq. However

in example 3 we prove that this order is obtained also for functions in L2
pr0, T s, C3

pSqq.
This have motivated us to further examine in Chapter 6 the numerical method where we
proved that a such second order of convergence is valid also for functions less regular that
are in fact in L2

pr0, T s, H3
pSqq.

The non uniform mesh is built using a small and random perturbation of an
uniform one. For some purposes we always impose the condition Hmax

Hmin

ď C. To avoid the
non linearity of the problem, we decouple the system by solving firstly the elliptic equation
and then the parabolic one. The final semi discrete problem is solved using backward Euler
in time and the rate of convergence is computed using the following expression.

Ratei “

log
ˆ

}ei}H
}ei}H̃

˙

log
ˆ

Hmax

H̃max

˙ , (5.51)

for i “ p, C.

Example 2. We start by considering a regular C4
pSq solution of (5.31)

ppx, y, tq “ Cpx, y, tq “ e´tsenpπxqsenpπyq,

defined in r0, 1s2 ˆ p0, T s, with T “ 0.1 and ∆t “ 1e´ 04.

Apx, yq “

«

4` senpπyq2 ´senpπxqsenpπyq
´senpπxqsenpπyq 4` senpπxq2

ff

, D “
1

8π2 ,
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Table 4 – Numerical errors and convergence rates for Example 2

Hmax }ep}H Ratep }eC}H RateC
2.503216e-01 1.706188e-01 - 3.505003e-01 -
1.252408e-01 3.605839e-02 2.244438 7.620294e-02 2.203528
8.342393e-02 1.541813e-02 2.091040 3.357726e-02 2.017093
6.255882e-02 8.574553e-03 2.038528 1.906057e-02 1.967243
5.023403e-02 5.469237e-03 2.049362 1.224774e-02 2.015729
4.204243e-02 3.793964e-03 2.054495 8.511195e-03 2.044562

Example 3. We consider the following solution that is in C3
pSq

ppx, y, tq “

$

&

%

e8´t
ppx´

1
10qpx´

9
10qpy ´

1
10qpy ´

9
10qq

4 if 1
10 ď x, y ď

9
10

0 otherwise.
(5.52)

Cpx, y, tq “ e´tsenpπxqsenpπyq, (5.53)

with T “ 0.1 and ∆t “ 1e´ 04.

Apx, yq “

«

1` senpπyq2 ´senpπxqsenpπyq
´senpπxqsenpπyq 1` senpπxq2

ff

, D “
1

2π2

Table 5 – Numerical errors and convergence rates for Example 3

Hmax }ep}H Ratep }eC}H RateC
8.340501e-02 4.244955e-04 - 1.855296e-03 -
7.699766e-02 3.614419e-04 2.011679 1.590796e-03 1.924220
7.149196e-02 3.127291e-04 1.951262 1.381933e-03 1.897174
6.673173e-02 2.732260e-04 1.959786 1.209120e-03 1.938781
6.254805e-02 2.412143e-04 1.924663 1.069797e-03 1.890848
5.900608e-02 2.144615e-04 2.016581 9.522958e-04 1.995874
5.560734e-02 1.909160e-04 1.960324 8.492288e-04 1.930827
5.280920e-02 1.713778e-04 2.091092 7.651417e-04 2.019521

In the next example we are solving the cell dynamics problem in a single scale,
basically, we choose S “ Y . In the last Chapter, we do something similar but with other
boundary conditions and other purposes.

Example 4. We consider the problem of cell proliferation in a colonic crypt described by
the system (5.1) with initial condition for the cell density

C0px, yq “
xypx´ 1qpy ´ 1q

p0.5q4 e
´

¨

˝

Rpx, yq

0.03

˛

‚

2

, px, yq P r0, 1s2 (5.54)
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see figure 14 for its graph in three dimension depicted on the crypt Γ with h “ 7 and
σ “ 0.03.

(a) (b)

Figure 14 – Initial density distribution C0 defined in (5.54) on the crypt Γ graph of the
function f defined in (5.55). Three dimensional plot of the initial density
C0px, yq in the points px, y, fpx, yqq. Two dimensional plot of C0px, yq with
px, yq P r0, 1s2.

In this example we use D “ 1 and functions Aξ “ ξA (ξ “ 4.17451 ¨103),|g|,α,β
(τ “ 2.22627 ¨ 10´3) and with the crypt geometry defined as described previously in Chapter
2 with

h “ 7, σ “ 0.03, fpx, yq “ hp1´e´p
Rpx,yq
σ q

2

q, Rpx, yq “ px´1{2q2`py´1{2q2, (5.55)

where A, |g| are given respectively in (2.14),(2.13) and α, β are those given in (2.3) and
(2.2).

For T “ 1 we solve (5.1) in p0, 1q2 ˆ p0, T s2 by the Backward Euler method
with time step ∆t “ 1e ´ 01 applied to the initial value problem (5.32). The accuracy
results applying the IVP (5.32) to this example on non uniform meshes are given in Table
6, where a fine solution of (5.1) associated to Hmax “ 1{480 “ 2.2083 ¨ 10´3 is used as
exact solution.
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Table 6 – Numerical errors and convergence rates in Example 4

Hmax }ep}H Ratep }eC}H RateC
1.6667e-02 3.9386e-07 - 1.9956 -
1.2500e-02 3.5188e-07 0.3917 9.7944e-01 0.7047
1.0000e-02 3.1160e-07 0.5449 8.0811e-01 0.8617
8.3333e-03 2.7443e-07 0.6967 6.7472e-01 0.9895
7.1429e-03 2.4080e-07 0.8480 5.6788e-01 1.1182
6.2500e-03 2.1062e-07 1.0026 4.8177e-01 1.2320
5.5556e-03 1.8370e-07 1.1610 4.0992e-01 1.3708
5.0000 e-03 1.5975e-07 1.3263 3.4983e-01 1.5042
4.5455e-03 1.3846e-07 1.5004 2.9876e-01 1.6560
4.1667e-03 1.1956e-07 1.6870 2.5521e-01 1.8107
3.8462e-03 1.0268e-07 1.9010 2.1686e-01 2.0341
3.5714e-03 8.7652e-08 2.1355 1.8369e-01 2.2401

Since the density and pressure depends only on their distance with respect the
bottom of the crypt that is respect the point px, y, 0q “ p0.5, 0.5, 0q we can analyze only
one direction along this point ot analyze the evolution of the pressure and density along
the time interval r0, T s. In figures 15-16 we plot the value measure for the cell density and
pressure along the line y “ 0.5. We observe that the cell density of transit cells diffuse
away from the bottom of the crypt filling slowly the above regions along the crypt walls.

Figure 15 – Pressure in the points located in the line y “ 0.5 during the numerical
simulation in the time interval r0, 1s. Plots are referred to the times t “
0, 0.1, 0.5, 1.
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Figure 16 – Pressure in the points located in the line y “ 0.5 during the numerical
simulation in the time interval r0, 1s. Plots are referred to the times t “
0, 0.1, 0.5, 1.

We note a decreasing of pressure at the bottom and of its gradient along the
crypt axis, this yield to a significant decrease of the velocity, as you can see in figure
17, where the maximum is always obtained along the line y “ 0.5 for x “ 0.6773 that
corresponds to the crypt quote z “ 2

3h.

Figure 17 – Euclidean Norm for the velocity }v} “ ξ}∇p} in the points located in the line
y “ 0.5 during the numerical simulation in the time interval r0, 1s. Plots are
referred to the times t “ 0, 0.1, 0.5, 1.
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6 An equivalent FEM with second order ac-
curacy for solutions in L8pr0, T s, H3

pSqq

In the previous Chapter we have seen that the finite difference method (5.32) on
nonuniform meshes converges with order two using a discrete norm in L2

pr0, T s, H1
0 pSqqq

for the density and second order in the L8pr0, T sH1
0 pSq discrete norm for the pressure.

Since we were using centered schemes a such order was unexpected, thus we called the
method as supraconvergent. The convergence theorem seen in the previous Chapter
guarantees a such convergence order when the solutions p, C belong to L8pr0, T s, C4

0pSqq.
However in the Example 3 of previous Chapter we have seen numerically that a such
convergence order is reached in a case when p, C belong to L8pr0, T s, C3

0pSqq. We will
prove in this Chapter that for any C, p in L8pr0, T s, H3

0 pSqq the finite difference method
have order 2 using the same norms. This Chapter is an application of the method presented
in (FERREIRA; GRIGORIEFF, 2006) for a two-dimensional coupled elliptic-parabolic
problems. See also (FERREIRA; PINTO, 2013; FERREIRA; NO; OLIVEIRA, 2013;
FERREIRA; BARBEIRO; GRIGORIEFF, 2005).

6.1 Approximating the variational problem
We will work with the usual Sobolev spaces W r

q pSq for r P N Y t0u where
S “ p0, 1q2 and q P r2,8s with semi-norms, respectively, given by

|v|W r
q pSq

“
`

ÿ

|α|“r

}Dαv}q
LqpSq

˘1{q
, }v}W r

q pSq
“
`

r
ÿ

j“0
|v|q

W j
q pSq

˘1{q
,

with the usual interpretation in case q “ 8 and } ¨ }LqpSq denoting the usual norm in the
Sobolev space LqpSq. We often write Hr

pSq in place of W r
2 pSq and denote by } ¨ }r for its

norm. By p¨, ¨q0 we denote the standard inner product on L2
pSq and we use the notation

H1
0 pSq “ tv P H

1
pSq; v “ 0 on BSu.

We now write down the variational formulation of (5.1) in H1
0 using the L2

inner product. Let S Ă R2 be a simple polygonal domain (in this case S “ r0, 1s2). The
variational formulation of our problem is: find p, C P H1

0 pSq such that
$

&

%

aApp, vq “ pαC, vq0, for v P H1
0 pSq

pCt, wq0 ` bzpC,wq “ ´aDApC,wq ` pβC,wq0, for w P H1
0 pSq,

(6.1)

where z “ ´A∇p, the diffusion coefficient D ą 0 is supposed to be constant, and
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aBp¨, ¨q, bzp¨, ¨q are defined by

aApv, wq “ pA11vx, wxq0 ` pA21vx, wyq0 ` pA12vy, wxq0 ` pA22vy, wyq0, (6.2)

bzpv, wq “ ppzq1v, wxq0 ` ppzq2v, wyq0, (6.3)

for v, w P H1
pSq. pzq1 and pzq2 are respectively the first and the second component

The discretization of (6.2)-(6.3) is obtained in the following way. As done in
Chapter 5 let h “ phiqZ and k “ pkjqZ be two sequences of mesh sizes. We define by SH
the discrete mesh in S “ r0, 1s2,

SH “ tpxi, yjq
N,M
i,j“0|pxi, yjq “ pxi´1 ` hi, yj´1 ` kjq, px0, y0q “ p0, 0qu.

We introduce the following sets

BSH “ tpxi, yjq, i “ 0, N ; j “ 0, . . . ,MuYtpxi, yjq, i “ 0, . . . , N ; j “ 0,Mu, SH “ SH{BSH .

By WH we denote the space of grid functions on SH and by WH,0 the subspace
of grid functions vanishing on BSH . For convenience, we assume that functions in WH

are also defined outside of SH with function values equal to zero. For pxi, yjq P SH let
˝i,j :“ pxi´1{2, xi`1{2q ˆ pyj´1{2, yj`1{2q X S and ωi,j “ | ˝i,j |, the measure of ˝i,j.

In WH we introduce the following inner product

pvH , wHqH :“
ÿ

pxi,yjqPSH

ωi,jvi,jwi,j, for vH , wH P WH

that defines an inner product in WH where vH “ tviju and wH “ twiju.

In this Chapter we apply the following method that approximate the variational
formulation of the cell dynamics problem (5.33) in the space WH,0 using the scalar product
p¨, ¨qH . The benefit of the method (6.4) is that it is written as a finite element method and
this provide use numerical properties that allow to prove that the method is second order
accurate also for solutions in L2

pr0, T s, H3
pSqq.

The discrete problem has the form: find pH , CH , P WH such that

aA,Hpp
H , vHq “ pαCH , vHqH ,

pBtC
H , wHqH “ ´bzH ,HpC

H , wHq ´ aDA,HpC
H , wHq ` pβCH , wHqH ,

(6.4)

for vH , wH P WH,0, where zH “ ´ADHp
H , where DH “ pδh, δkq with δh, δk are the operator

defined below and pH “ CH
“ 0 on BSH .

Let TH be a triangularization of S using the set SH as vertices. By PHv
H

we denote the continuous piecewise linear interpolation of vH with respect to TH . The
aA,Hp¨, ¨q, bzH ,Hp¨, ¨q are defined as follows

aA,H “ a` b` c (6.5)

bzH ,H “ d (6.6)
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where a, b, c, d are defined bellow. These terms derives from the terms in the variational
problem (6.1) that are rewritten in an equivalent formulation using the piecewise linear
interpolation of grid functions in WH .

Let 4 P TH with a π

2 angle, we define A11
4,x to be the value of the coefficient

A11 in the midpoint of the side of 4 parallel to the x´axis. Then let

apvH , wHq :“
ÿ

4PTH

A11
4,x

ż

4
pPHv

H
qxpPHw̄

H
qx dx dy. (6.7)

Similarly, with A22
4,y, denoting the value of A22 in the midpoint of the side of 4 parallel

to the y´axis,

cpvH , wHq :“
ÿ

4PTH

A22
4,y

ż

4
pPHv

H
qypPHw̄

H
qy dx dy. (6.8)

For the discretization of the mixed derivatives, we consider two special triangu-
larizations of S, which we call T p1qH and T p2qH that have as vertices all the grid points xij of
SH . They are obtained from the disjoint decomposition

SH “ S
p1q
H Y S

p2q
H ,

where the sum i` j of the indices of the points pxi, yjq in S
p1q
H and Sp2qH is even and odd,

respectively. T p1qH ( and T p2qH ) has triangles with angle π{2, each triangle has two vertices in
S
p1q
H (respectively in Sp2qH ) and the third is that associated to the π{2 angle. For a triangle
4 in a triangularization, denote by px4, y4q the vertex of 4 associated with the angle
π{2 of 4. We define the value of A12 and pzHqsvH in the points ∆, x and ∆, y as follows

A12
4,x “ A12

4,y :“ A12
px4, y4q, ppzHqsv

H
q4,x “ ppzHqsv

H
q4,y :“ ppzHqsvHqpx4, y4q, s “ 1, 2.

We use

bpvH , wHq :“ 1
2
`

bp1qpvH , wHq ` bp2qpvH , wHq
˘

, (6.9)

dpvH , wHq :“ 1
2
`

dp1qpvH , wHq ` dp2qpvH , wHq
˘

, (6.10)

for vH , wH P WH,0, where

bplqpvH , wHq :“
ÿ

4PT plqH

ż

4

“

A21
4,xpP

plq
H vHqxpP

plq
H w̄Hqy `A12

4,ypP
plq
H vHqypP

plq
H w̄Hqx

‰

dx dy

“: bplqxy ` b
plq
yx,

dplqpvH , wHq :“ ´
ÿ

4PT plqH

“

ppzHq1v
H
q4,x

ż

4
pP

plq
H w̄Hqx dx dy

` ppzHq2v
H
q4,y

ż

4
pP

plq
H w̄Hqy dx dy

‰

,

“: dplqx ` d
plq
y ,
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where zH “ ´ADHp
H , l “ 1, 2 and P plqH is the picewise linear interpolant operator. The

operator DH “ pδh, δkq will be defined later.

The method (6.4) can be seen as a finite element method with standard
piecewise linear basis in TH . This method is similar to the finite difference method in the
non uniform grid ΩH defined in the previous Chapter (5.32). For its formulation we use
the following centered finite difference operators

δp1{2qx vi,j “
vi`1{2,j ´ vi´1{2,j

xi`1{2 ´ xi´1{2
, δp1{2qx vi`1{2,j “

vi`1,j ´ vi,j
xi`1 ´ xi

, (6.11)

δxvi,j “
vi`1,j ´ vi´1,j

xi`1 ´ xi´1
, (6.12)

δhvi,j “
hiδ

p1{2q
x vi`1{2,j ` hi`1δ

p1{2q
x vi´1{2,j

hi ` hi`1
, (6.13)

in the x´direction and also correspondingly we get the defined quantities in y´direction.
By Mx we denote the average operator, where Mxpv

H
qi,j “

1
2pvi,j ` vi´1,jq (respectively

for My).

In the following we use the discrete operator

LBpu
H
q :“ ´δp1{2qx pB11δp1{2qx puHqq ´ δxpB12δypu

H
qq ´ δypB21δxpu

H
qq ´ δp1{2qy pB22δp1{2qy puHqq.

(6.14)

Proposition 6. For all vH P WH , w
H
P WH,0 and a : r0, 1s2 Ñ R we have

´pδp1{2qx paδp1{2qx vHq, wHqH “
ÿ

pxi,yjqPSH

hikj`1{2apxi´1{2, yjqδ
p1{2q
x vi´1{2,jδ

p1{2q
x w̄i´1{2,j

´pδxv
H , wHqH “

ÿ

pxi,yjqPSH

hikj`1{2Mxpv
H
qi,jδ

p1{2q
x w̄i´1{2,j.

Proof. This proposition presents the same results (5.11) and (5.12) that are here rewritten
using an explicit expression in order to help in the proof of the next proposition.

Proposition 7. Let aA,H and the operator LA be defined by (6.5) and (7.5), respectively.
We have

aA,Hpv
H , wHq “ pLApv

H
q, wHqH , for vH P WH , w

H
P WH,0.

Proof. Consider the following triangles in TH
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i´1,j

i´1,j`1 i,j`1

i,j´1i´1,j´1

i,j

Figure 18 – Triangles representation

Triangles of different colors are in different triangularization, then fixing the
segment from pxi´1, yjq to pxi, yjq we have since wH P WH,0

A11
41,x

ż

41

pPHv
H
qxpPHw̄

H
qx dx dy `A11

42,x

ż

42

pPHv
H
qxpPHw̄

H
qx dx dy “

hikj`1{2A11
i´1{2,jδ

p1{2q
x vi´1{2,jδ

p1{2q
x w̄i´1{2,j.

The same holds to 41,42. Then using Proposition 6 for any triangularization

apvH , wHq :“
ÿ

4PTH

A11
4,x

ż

4
pPHv

H
qxpPHw̄

H
qx dx dy

“

N,M´1
ÿ

i,j“1
hikj`1{2A11

i´1{2,jδ
p1{2q
x vi´1{2,jδ

p1{2q
x w̄i´1{2,j

“ ´

N´1,M´1
ÿ

i,j“1
hi`1{2kj`1{2δ

p1{2q
x pA11δp1{2qx pvqqi,jw̄i,j

“ p´δp1{2qx pA11δp1{2qx pvHqq, wHqH .

Now, considering both triangularizations, we have using Proposition 6

1
2
`

A12
41,y

ż

41

pP
p1q
H vHqypP

p1q
H wHqx dx dy `A12

42,y

ż

42

pP
p1q
H vHqypP

p1q
H wHqx dx dy

` A12
41,y

ż

41

pP
p2q
H vHqypP

p2q
H wHqx dx dy `A12

42,y

ż

42

pP
p2q
H vHqypP

p2q
H wHqx dx dy

˘

“
1
2
`hikj`1

2 A12
i´1,jδ

p1{2q
y vi´1,j`1{2δ

p1{2q
x w̄i´1{2,j `

hikj
2 A

12
i´1,jδ

p1{2q
y vi´1,j´1{2δ

p1{2q
x w̄i´1{2,j

`
hikj`1

2 A12
i,jδ

p1{2q
y vi,j`1{2δ

p1{2q
x w̄i´1{2,j `

hikj
2 A

12
i,jδ

p1{2q
y vi,j´1{2δ

p1{2q
x w̄i´1{2,j

˘

.
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Then

1
2pb

p1q
yx ` b

p2q
yx qpv

H , wHq “
1
2

2
ÿ

l“1

ÿ

∆PT l
H

A12
∆y

ż

∆
pP

plq
H vHqypP

plq
H wHqx dx dy

“
1
4

N,M´1
ÿ

i,j“1

`

hiA12
i,jpkj`1δ

p1{2q
y vi,j`1{2 ` kjδ

p1{2q
y vi,j´1{2qδ

p1{2q
x w̄i´1{2,j

` hiA12
i´1,jpkj`1δ

p1{2q
y vi´1,j`1{2 ` kjδ

p1{2q
y vi´1,j´1{2qδ

p1{2q
x w̄i´1{2,j

˘

“
1
2

N,M´1
ÿ

i,j“1
hikj`1{2

`

A12
i,jδyvi,j `A12

i´1,jδyvi´1,j
˘

δp1{2qx w̄i´1{2,j

“

N,M´1
ÿ

i,j“1
hikj`1{2MxpA12δyvqi,jδ

p1{2q
x w̄i´1{2,j

“ ´

N´1,M´1
ÿ

i,j“1
hi`1{2kj`1{2δxpA12δypvqqi,jw̄i,j

“ ´pδxpA12δypv
H
qq, wHqH .

Proposition 8. The operator bzH ,H defined in (6.6) satisfies the following equality

bzH ,Hpv
H , wHq “ pδxppzHq1v

H
q ` δyppzHq2v

H
q, wHqH , for vH P WH , w

H
P WH,0.

Proof. Consider the term d and the two triangularizations T p1qH , T p2qH we have for all
i “ 1, . . . , N and j “ 1, . . . ,M ´ 1

1
2
`

ppzHq1v
H
q41,x

ż

41

pP
p1q
H wHqx dx dy ` ppzHq1v

H
q42,x

ż

42

pP
p1q
H wHqx dx dy

` ppzHq1v
H
q41,x

ż

41

pP
p2q
H wHqx dx dy ` ppzHq1v

H
q42,x

ż

42

pP
p2q
H wHqx dx dy

˘

“
1
2
`hikj`1

2 ppzHq1v
H
qi´1,jδ

p1{2q
x w̄i´1{2,j `

hikj
2 ppzHq1v

H
qi´1,jδ

p1{2q
x w̄i´1{2,j

`
hikj`1

2 ppzHq1v
H
qi,jδ

p1{2q
x w̄i´1{2,j `

hikj
2 ppzHq1v

H
qi,jδ

p1{2q
x w̄i´1{2,j

˘

.

Then

1
2pd

p1q
x ` dp2qx qpv

H , wHq “ ´

N,M´1
ÿ

i,j“1

`

hikj`1{2MxppzHq1v
H
qi,jδ

p1{2q
x w̄i´1{2,j

“

N´1,M´1
ÿ

i,j“1
hi`1{2kj`1{2δxppzHq1v

H
qi,jw̄i,j

“ pδxppzHq1v
H
q, wHqH .

Thus we have the thesis 1
2pd

p1q
y ` dp2qy q “ pδyppzHq2v

H
q, wHqH .
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6.2 Estimating the method error
In this section we estimate the errors between the discretized operator used

in the numerical method (6.4) with respect the corresponding integrals appearing in
the variational formulation of the elliptic-parabolic problem (6.1). Such estimates are of
second order of consistency for functions u in H3

pSq as it is proved in this section. Then
following the same theorems done in Section 5.2 it can be proved that this finite element
method is a superconvergent method in the context of finite elements methods theory. Our
method will result in fact to be of second order of convergence for the pressure using the
norm L8pr0, T s, H1

pSqq and second order of convergence for the density using the norm
C1
pr0, T s, H1

pSqq.

Lemma 2. Let u P H3
pSq and the coefficient A11

P W 2
8pSq. Then the part

τ
paq
H pvHq :“ apRHu, v

H
q ´

ÿ

pxi,yjqPSH

ż

˝ij

p´A11uxqx dx dyv̄ij. (6.15)

satisfies the following estimate

|τ
paq
H pvHq| ď C

`

ÿ

4PTH

pdiam4q4}ux}2H2p4q
˘1{2
}PHv

H
}1, @v

H
P WH,0.

where diam4 is the diameter of the triangle 4 P TH , where TH is a regular triangulation
of S as that represented in blue or green in Figure 18 with triangles with a angle of π{2.

Proof. Let consider the interval Ij :“ pyj´1{2, yj`1{2q and define ˜̋i,j “ pxi´1, xiqˆ Ij . Using
the definition of a, we get

τ
paq
H pvHq “

ÿ

i,j

˜

|Ij|pA11δp1{2qx uqi´1{2,j ´

ż

Ij

pA11uxqpxi´1{2, yq dy

¸

∆xv̄i,j. (6.16)

Adding and subtracting pA11uxqpxi´1{2, yjq, we obtain

τ
paq
H pvHq “

ÿ

i,j

|Ij|
`

pA11δp1{2qx uqi´1{2,j ´ pA11uxqpxi´1{2, yjq
˘

∆xv̄i,j

`
ÿ

i,j

`

|Ij|pA11uxqpxi´1{2, yjq ´

ż

Ij

pA11uxqpxi´1{2, yq dy
˘

∆xv̄i,j

“ τ
pa,1
H pvHq ` τ

pa,2q
H pvHq.

We rewrite the first term τ
pa,1q
H pvHq as follows τ pa,1qH pvHq “

N,M´1
ÿ

i“1,j“1
|Ij|Fijpuq∆xv̄i,j where

Fi,jpuq “
`

A11δp1{2qx u
˘

i´1{2,j ´ pA
11uxqpxi´1{2, yjq

“ A11
pxi´1{2, yjq

` 1
hi

ż xi

xi´1

uxpx, yjq dx´ uxpxi´1{2, yjq
˘

.
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as a linear bounded functional in the function ux P H2
p˜̋i,jq that vanishes for the functions

1, x and y, see Remark 1. The Bramble-Hilbert lemma furnishes the bound

|F puq| ď Csup
˜̋i,j
|A11

px, yq|
` 1
hi|Ij|

ż

˜̋i,j
h4
i |uxxx|

2
` h2

i |Ij|
2
|uxxy|

2
` h2

i |Ij|
2
|uxyx|

2

` |Ij|
4
|uxyy|

2˘1{2

ď Csup
˜̋i,j
|A11

px, yq|phi|Ij|q
´1{2`h2

i ` |Ij|
2˘
|ux|H2p˜̋i,jq.

and we obtain
ˇ

ˇ

ÿ

i,j

|Ij|
`

A11δp1{2qx u´A11ux
˘

pxi´1{2, yjq∆xv̄i,j
ˇ

ˇ ď C
`

ÿ

4PTH

pdiam∆q4|ux|2H2p4q
˘1{2
}PHv

H
}1.

(6.17)
Note that since DC ą 0 such that hi

kj
ď C then |Ij|2 “ p

kj
2 `

kj`1

2 q
2
ď k2

j ` k2
j`1. Using

the previous equation and Cauchy Schwartz, we can estimate τ pa,1qH as follows

|τ
pa,1q
H | ď Cp

ÿ

∆PTH

pdiam∆q4|ux|2H2∆q
1{2
}PHv

H
}H1pSq. (6.18)

Remark 1. Define the operator

λpgq :“
ż 1

0
gpξ, ηq dξ ´ gp

1
2 , ηq, (6.19)

which vanishes for 1, ξ and η. From Bramble-Hilbert lemma

|λpgq| ď C}gp2q}L2pp0,1q2q.

Now we estimate the term τ
pa,2q
H puq

ÿ

i,j

`

|Ij|pA11uxqpxi´1{2, yjq ´

ż

Ij

pA11uxqpxi´1{2, yq dy
˘

∆xv̄i,j

“
ÿ

i,j

`kj`1

2 pA11uxqpxi´1{2, yjq ´

ż yj`1{2

yj

pA11uxqpxi´1{2, yq dy
˘

∆xv̄i,j

`
ÿ

i,j

`kj
2 pA

11uxqpxi´1{2, yjq ´

ż yj

yj´1{2

pA11uxqpxi´1{2, yq dy
˘

∆xv̄i,j

“
ÿ

i,j

T
p1q
i,j`1∆xv̄ij ` T

p2q
i,j ∆xv̄ij

where

T
p1q
i,j`1 “

kj`1

2 pA11uxqpxi´1{2, yjq ´

ż yj`1{2

yj

pA11uxqpxi´1{2, yq dy, (6.20)

T
p2q
i,j “

kj
2 pA

11uxqpxi´1{2, yjq ´

ż yj

yj´1{2

pA11uxqpxi´1{2, yq dy. (6.21)
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Since vH P WH,0 we have

τa,2H “
ÿ

i,j

`

T
p1q
ij q∆xv̄i,j´1 `

`

T
p2q
ij

˘

∆xv̄i,j

“
1
2
`

ÿ

i,j

`

T
p2q
ij ` T

p1q
ij qp∆xv̄i,j `∆xv̄i,j´1q `

`

T
p2q
ij ´ T

p1q
ij

˘

p∆xv̄i,j ´∆xv̄i,j´1q
˘

:“ Q1 `Q2.

We start estimating Q1. Consider

F puq “
kj
2
`

pA11uxqpxi´1{2, yjq`pA11uxqpxi´1{2, yj´1q
˘

´

ż yj

yj´1

pA11uxqpxi´1{2, yq dy. (6.22)

The Bramble-Hilbert lemma furnishes, see Remark 2

|F puq| ď C
`kj
hi

˘1{2
ph2

i ` k
2
j q|A11ux|H2pˆ̋i,jq ď C

`kj
hi

˘1{2
ph2

i ` k
2
j q}ux}H2pˆ̋i,jq, (6.23)

where ˆ̋i,j “ pxi´1, xiq ˆ pyj´1, yjq and we took A11
P W 2

8pSq.

Remark 2. Define the operator

λpgq :“ 1
2pgp

1
2 , 0q ` gp

1
2 , 1qq ´

ż 1

0
gp

1
2 , ηq dη, (6.24)

which vanishes for 1, ξ and η. From Bramble-Hilbert lemma

|λpgq| ď C}gp2q}L2pp0,1q2q. (6.25)

Then

|F puq| ď Ckj
` 1
hikj

˘1{2
ph2

i ` k
2
j q|A11ux|H2pˆ̋i,jq ď C

`kj
hi

˘1{2
ph2

i ` k
2
j q}ux}H2pˆ̋i,jq. (6.26)

Then it follows that

|Q1| ď C
`

ÿ

4PTH

pdiam4q4}ux}2H2p4q
˘1{2
}PHv

H
}1. (6.27)

We are now going to estimate Q2. A summation by parts with respect to i
leads to the representation

Q2 “
1
2
ÿ

i,j

`

T
p2q
i,j ´ T

p2q
i`1,j ´ T

p1q
i,j ` T

p1q
i`1,j

˘

∆yv̄i,j. (6.28)
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since ∆xvi,j´∆xvi,j´1 “ pvi,j´ vi´1,jq´ pvi,j´1´ vi´1,j´1q “ ∆yvi,j´∆yvi´1,j . Using (6.20)
and (6.21) it is seen that

T
p1q
i`1,j ´ T

p1q
i,j ` T

p2q
i,j ´ T

p2q
i`1,j

“
kj
2

ż xi`1{2

xi´1{2

˜

pA11uxqxpx, yj´1q ´

ż yj´1{2

yj´1

pA11uxqxpx, yq dy

¸

dx

´
kj
2

ż xi`1{2

xi´1{2

˜

pA11uxqxpx, yjq ´

ż yj

yj´1{2

pA11uxqxpx, yq dy

¸

dx

“

ż xi`1{2

xi´1{2

`

ż yj

yj´1{2

pA11uxqxpx, yq dy ´

ż yj´1{2

yj´1

pA11uxqxpx, yq dy

`
kj
2 pA

11uxqxpx, yj´1q ´
kj
2 pA

11uxqxpx, yjq
˘

dx.

We obtain for almost all x P pxi´1{2, xi`1{2q

ˇ

ˇ

˜

ż yj

yj´1{2

´

ż yj´1{2

yj´1

¸

pA11uxqx dy ´

ˆ

kj
2 pA

11uxqxpx, yjq ´
kj
2 pA

11uxqxpx, yj´1q

˙

ˇ

ˇ

ď Ck
3{2
j

`

ż yj

yj´1

|pA11uxqxypx, yq|
2 dy

˘1{2
.

This last estimate can be proved using the following remark

Remark 3. Taking

F puq “

˜

ż yj

yj´1{2

´

ż yj´1{2

yj´1

¸

pA11uxqx dy ´

ˆ

kj
2 pA

11uxqxpx, yjq ´
kj
2 pA

11uxqxpx, yj´1q

˙

.

(6.29)
Define the operator

λpgq :“
`

ż 1

1{2
´

ż 1{2

0

˘

gpξq dξ ´
1
2pgp1q ´ gp0qq, (6.30)

which vanishes for 1. From Bramble-Hilbert lemma

|λpgq| ď C}gp1q}L2pp0,1qq.

Then
|F puq| ď Ck

3{2
j }pA11uxqxypx, yq}L2ppyj´1,yjqq. (6.31)

After integrating with respect to x and an application of Cauchy-Schwartz’s
inequality for integrals

|T
p1q
i`1,j ´ T

p1q
i,j ` T

p2q
i,j ´ T

p2q
i`1,j| ď Ck

3{2
j

`

h
1{2
i }ux}H2p˜̋i,jq ` h

1{2
i`1}ux}H2p˜̋i`1,jq

˘

follows. Then Q2 satisfies the same bound as Q1.
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Lemma 3. Let u P H3
pSq and the coefficient A12

“ A21
P W 2

8. Then the part

τ
pbq
H pv

H
q :“ bpRHu, v

H
q ´

ÿ

i,j

ż

˝ij

p´A12uyqx ` p´A21uxqy dx dyv̄ij, (6.32)

satisfies the estimate

|τ
pbq
H pv

H
q| ď C

`

ÿ

4PTH

pdiam4q4}u}2H3p4q
˘1{2
}PHv

H
}1, (6.33)

for vH P WH,0.

Proof. We estimate only the error of the discretization of pA12uyqx. Analogously we get
the estimate for the error associated to pA21uxqy. Our strategy is to rewrite the integral
term coming from the variational form

b̃yx “ ´
ÿ

i,j

ż

˝i,j

pA12uyqx dx dyv̄i,j (6.34)

and its approximation byxpRHu, v
H
q :“ 1

2pb
p1q
yx pRHu, v

H
q ` bp2qyx pRHu, v

H
q in a similar way

in function of the elementary displacements ∆xvi,j∆yvi,j. By a partial integration of a
summation by part we obtain

b̃yx “
ÿ

i,j

ż

˝i,j

p´A12uyqx dx dyv̄i,j “
ÿ

i,j

ż

Ij

pA12uyqpxi´1{2, yq dy∆xv̄i,j. (6.35)

Next we want to evaluate (a similar expression is valid also for bxy)

byxpRHu, v
H
q :“ 1

2pb
p1q
yx pRHu, v

H
q ` bp2qyx pRHu, v

H
qq “ ´pδxpA12δyRHuq, v

H
qH ,

for vH P WH,0.

It is easy to see that

byxpRHu, v
H
q “ ´

ÿ

i,j

hi`1{2kj`1{2δxpA12δyRHuqi,j v̄i,j

“
1
2
ÿ

i,j

kj`1{2
`

pA12δyRHuqi´1,j ´ pA12δyRHuqi`1,j
˘

v̄i,j

“
1
4
ÿ

i,j

`

A12
i´1,jpui´1,j`1 ´ ui´1,j´1q

´ A12
i`1,jpui`1,j`1 ´ ui`1,j´1q

˘

v̄i,j

“
1
4
ÿ

i,j

`

A12
i´1,jpkj`1δyp1{2qui´1,j`1 ` kjδyp1{2qui´1,jq

´ A12
i`1,jpkj`1δ

p1{2q
y ui`1,j`1 ` kjδ

p1{2q
y ui`1,jq

˘

v̄i,j

byxpRHu, v
H
q “

1
4
ÿ

i,j

`

kjpA12
i,jδ

p1{2q
y ui,j´1{2 `A12

i´1,jδ
p1{2q
y ui´1,j´1{2q

` kj`1pA12
i,jδ

p1{2q
y ui,j`1{2 `A12

i´1,jδ
p1{2q
y ui´1,j`1{2q

˘

∆xv̄i,j.
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We can rewrite it using

kjpA12
i,j´1{2δ

p1{2q
y ui,j´1{2 `A12

i´1,jδ
p1{2q
y ui´1,j´1{2q “ 2MxpA12

i,j

ż yj

yj´1

uypxi, yq dyq

kj`1pA12
i,jδ

p1{2q
´y ui,j`1{2 `A12

i´1,jδ
p1{2q
y ui´1,j`1{2q “ 2MxpA12

i,j

ż yj`1

yj

uypxi, yq dyq.

Then summing and subtracting

1
4
ÿ

i,j

MxpA12
i,j

ż yj

yj´1

uydyq∆xvi,j´1 `
1
4
ÿ

i,j

MxpA12
i,j´1

ż yj

yj´1

uydyq∆xvi,j (6.36)

and using after the relation we can write byxpRHu, v
H
q as follows

byxpRHu, v
H
q “

1
2
ÿ

i,j

`

MxpA12
i,j

ż yj

yj´1

uypxi, yq dyq

` MxpA12
i,j

ż yj`1

yj

uypxi, yq dyq
˘

∆xv̄i,j

“
1
4
`

ÿ

i,j

MxpA12
i,j

ż yj

yj´1

uypxi, yq dy

` A12
i,j´1

ż yj

yj´1

uypxi, yq dyqp∆xv̄i,j `∆xv̄i,j´1q

`
ÿ

i,j

`

MxpA12
i,j

ż yj

yj´1

uypxi, yq dy

´ A12
i,j´1

ż yj

yj´1

uypxi, yq dy
˘

p∆xv̄i,j ´∆xv̄i,j´1q
˘

“
1
4
`

ÿ

i,j

MxpA12
i,j

ż yj

yj´1

uypxi, yq dy

` A12
i,j´1

ż yj

yj´1

uypxi, yq dyqp∆xv̄i,j `∆xv̄i,j´1q

`
1
2
ÿ

i,j

`

pA12
i´1,j ´A12

i´1,j´1q

ż yj

yj´1

uypxi´1, yq dy

´ pA12
i`1,j ´A12

i`1,j´1q

ż yj

yj´1

uypxi`1, yq dy
˘

∆yv̄i,j
˘

:“
ÿ

i,j

B
p1q
i,j p∆xv̄i,j `∆xv̄i,j´1q `

ÿ

i,j

B
p2q
i,j ∆yv̄i,j,

since

∆xv̄i,j ´∆xv̄i,j´1 “ pv̄i,j ´ v̄i´1,jq ´ pv̄i,j´1 ´ v̄i´1,j´1q “ ∆yv̄i,j ´∆yv̄i´1,j.
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Now we obtain a similar expression for b̃yx by using (6.14), decomposing the integrals

b̃yx “
ÿ

i,j

ż

Ij

pA12uyqpxi´1{2, yq dy∆xv̄i,j

“
1
2
`

ÿ

i,j

ż yj

yj´1

pA12uyqpxi´1{2, yq dyp∆xv̄i,j `∆xv̄i,j´1q

` p

ż yj

yj´1{2

´

ż yj´1{2

yj´1

qpA12uyqpxi´1{2, yq dyp∆xv̄i,j ´∆xv̄i,j´1q
˘

“
1
2
`

ÿ

i,j

ż yj

yj´1

pA12uyqpxi´1{2, yq dyp∆xv̄i,j `∆xv̄i,j´1q

`
ÿ

i,j

p

ż yj

yj´1{2

´

ż yj´1{2

yj´1

qppA12uyqpxi´1{2, yq ´ pA12uyqpxi`1{2, yqq dy
˘

p∆yv̄i,jq

:“
ÿ

i,j

S
p1q
i,j p∆xv̄i,j `∆xv̄i,j´1q `

ÿ

i,j

S
p2q
i,j ∆yv̄i,j.

Now we begin with estimating the corresponding quantities starting with
B
p1q
i,j ´ S

p1q
i,j . First we concentrate on Bp1qi,j alone

A12
i,juypxi, yq `A12

i´1,juypxi´1, yq (6.37)

An application of Bramble-Hilbert lemma and taking A12
P W 2

8pSq into account yields
that uniformly for y P pyj, yj´1q

|A12
i,juypxi, yq`A12

i´1,juypxi´1, yq´2A12
i´1{2,juypxi´1{2, yq| ď Ch

3{2
i |A12

p¨, yquyp¨, yq|H2pxi´1,xiq.

(6.38)

Remark 4. In order to get (6.38) we consider the functional λpgq “ gp1q ´ gp0q ´ 2gp12q
that vanishes for 1 and ξ. Thus using g̃pξq :“ A12

pxi´1 ` ξhi, yquypxi´1 ` ξhi, yq for the
Bramble Hilbert Lemma |λpg̃q| ď }g̃p2q}L2p0,1q and thus we obtain (6.38).

Integration of the last inequality over pyj´1, yjq provides an additional factor
k

1{2
j and we end up with

|

ż yj

yj´1

`

A12
i,juypxi, yq `A12

i´1,juypxi´1, yq ´ 2A12
i´1{2,juypxi´1{2, yq

˘

dy|

ď Ck
1{2
j h

3{2
i }A12

pxi´1{2, yjquypxi´1{2, yq}H2pˆ̋i,jq ď Cph2
i ` k

2
j q}uy}H2pˆ̋i,jq

(the same holds for j ´ 1 in place of j). The last inequality is obtained using that

2kjh
3
2
i “ p

kj
hi
q

1
2h2

i ` p
hi
kj
q

1
2k2

j ď h2
i ` k

2
j . (6.39)

Remark 5. Define

A12
i,juypxi, yq `A12

i´1,juypxi´1, yq “ Fjpxi, yq ` Fjpxi´1, yq, (6.40)
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where Fjpx, yq :“ A12
px, yjquypx, yq. The following operator

λpgq “ gp1q ` gp0q ´ 2gp12q, (6.41)

vanishes for 1 and ξ, then we get easily (6.38).

Now we estimate the two terms added
1
4
`

A12
i´1{2,j

ż yj

yj´1

uypxi´1{2, yq dy `A12
i´1{2,j´1

ż yj

yj´1

uypxi´1{2, yq dy
˘

. (6.42)

as before we have

|A12
i´1{2,j`A12

i´1{2,j´1´2A12
i´1{2,j´1{2

˘

ż yj

yj´1

uypxi´1{2, yq dy| ď Ck2
j p
kj
hi
q
1{2
}uy}H1pˆ̋i,jq (6.43)

Now, adding and subtracting kjpA12uyqi´1{2,j´1{2, we get from Bramble-Hilbert
lemma

|A12
i´1{2,j´1{2

`

ż yj

yj´1

uypxi´1{2, yq dy ´ kjpuyqpxi´1{2, yj´1{2q
˘

| ď Cph2
i ` k

2
j q
`kj
hi

˘1{2
|uy|H2pˆ̋i,jq

(6.44)

Next we consider Sp1qi,j and derive the following estimate:

|
`

ż yj

yj´1

pA12uyqpxi´1{2, yq dy ´ kjpA12uyqi´1{2,j´1{2
˘

| ď Cph2
i ` k

2
j q
`kj
hi

˘1{2
|A12uy|H2pˆ̋i,jq

ď Cph2
i ` k

2
j q
`kj
hi

˘1{2
}uy}H2pˆ̋i,jq.

Combining this bounds, it follows that

ˇ

ˇ

ÿ

i,j

pB
p1q
i,j ´ S

p1q
i,j qp∆xv̄i,j `∆xv̄i,j´1q

ˇ

ˇ ď
ÿ

i,j

ph2
i ` k

2
j q

ˆ

kj
hi

˙
1
2

}uy}H2pˆ̋ijqp∆xvi,j `∆xvi,j´1q

ď C
`

ÿ

4PTH

pdiam4q4}uy}2H2p4q
˘1{2
}PHv

H
}1.

We are now going to estimate Bp2qi,j and Sp2qi,j . Starting from the of Sp2qi,j , we obtain with the
aid of Bramble-Hilbert lemma

|S
p2q
i,j | “

1
2 |p

ż yj

yj´1{2

´

ż yj´1{2

yj´1

qppA12uyqpxi´1{2, yq ´ pA12uyqpxi`1{2, yqq dy|

ď
1
2 |
ż xi`1{2

xi´1{2

p

ż yj

yj´1{2

´

ż yj´1{2

yj´1

qpA12uyqxpx, yq dy dx|

ď C
`

phi`1 ` kjqphi`1kjq
1
2 |pA12uyqx|H1pˆ̋i`1,jq ` phi ` kjqphikjq

1
2 |pA12uyqx|H1pˆ̋i,jq

˘

.

We use |pA12uyqx|1 ď C}uy}2 and derive
ˇ

ˇ

ÿ

i,j

S
p2q
i,j ∆yv̄i,j

ˇ

ˇ ď C
`

ÿ

4PTH

pdiam4q4}uy}2H2p4q
˘1{2
}PHv

H
}1. (6.45)
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Recalling the definition of Bp2qi,j

|B
p2q
i,j | “

1
8
ˇ

ˇ

ż xi`1

xi´1

ż yj

yj´1

rpA12
px, yjq ´A12

px, yj´1qquypx, yqsx dy dx
ˇ

ˇ

ď C

ż xi`1

xi´1

ż yj

yj´1

kj}A12
}2,8p|uypx, yq| ` |uyxpx, yq|q dy dx

ď Ckjphikjq
1{2
}uy}H1pˆ̋i,jq ` kjphi`1kjq

1{2
}uy}H1pˆ̋i`1,jq.

It follows that
ˇ

ˇ

ÿ

i,j

B
p2q
i,j ∆yv̄i,j

ˇ

ˇ ď C
`

ÿ

4PTH

pdiam4q4}uy}2H1p4q
˘1{2
}PHv

H
}1. (6.46)

Then we have

|
ÿ

ij

pB
p2q
ij ´ S

p2q
ij q∆yvi,j ď Cp

ÿ

∆PTH

ppdiam∆q4}uy}2H2p∆qq
1
2 }PHv

H
}1 (6.47)

and thus this lemma is proved.

Lemma 4. Let u P H3
pSq, pxu, pyu P H2

pSq and the coefficients Aij P W 2
8, for i, j “ 1, 2.

Then

τ
pdq
H pvHq :“ dpRHu, v

H
q ´

ÿ

i,j

ż

˝i,j

´ppA∇pq1uqx ´ ppA∇pq2uqy dx dyv̄i,j, (6.48)

satisfies the estimate

|τ
pdq
H pvHq| ď C

`

ÿ

4PTH

pdiam4q4p}pxu}2H2p4q ` }pyu}
2
H2p4qq

˘1{2
}PHv

H
}1, (6.49)

for vH P WH,0.

Proof. We concentrate on estimating the error of the discretization ppA∇pq1uqx “ ppA11px`

A12pyquqx. By a partial integration of a summation by parts we obtain

d̃x “
ÿ

i,j

ż

˝i,j

p´pA∇pq1uqx dx dyv̄i,j “
ÿ

i,j

ż

Ij

ppA∇pq1uqpxi´1{2, yq dy∆xv̄i,j

Next we want to evaluate

dxpRHu, v
H
q :“ 1

2
`

dp1qx pRHu, v
H
q ` dp2qx pRHu, v

H
q
˘

“ ´pδxppADHpq1RHuq, v
H
qH , for vH P WH,0.

It is easy to see that

dxpRHu, v
H
q “ ´

ÿ

i,j

hi`1{2kj`1{2δ
p1{2q
x ppADHpq1RHuqi,j v̄i,j

“
ÿ

i,j

kj`1{2MxppADHpq1RHuqi,j∆xv̄i,j

“
ÿ

i,j

kj`1{2MxppA11δhp`A12δkpqRHuqi,j∆xv̄i,j,
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then

dxpRHu, v
H
q ´ d̃xpRHu, v

H
q “

ÿ

i,j

`

|Ij|MxppA11δhp`A12δkpqRHuqi,j

´

ż

Ij

ppA∇pq1uqpxi´1{2, yq dy
˘

∆xv̄i,j

:“ B1 `B2.

Starting with B1 ( B2 is equivalent), we have

B1 “
ÿ

i,j

`

|Ij|MxpA11δhpRHuqi,j ´

ż

Ij

ppA11pxRHuqpxi´1{2, yq dy
˘

∆xv̄i,j (6.50)

Adding and subtracting |Ij|pA11pxRHuqpxi´1{2, yjq, we get

B1 “
ÿ

i,j

|Ij|
`

MxpA11δhpRHuqi,j ´ pA11pxRHuqpxi´1{2, yjq
˘

∆xv̄i,j

`
ÿ

i,j

`

|Ij|pA11pxRHuqpxi´1{2, yjq ´

ż

Ij

ppA11pxRHuqpxi´1{2, yq dy
˘

∆xv̄i,j

The quantity
ÿ

i,j

`

|Ij|pA11pxRHuqpxi´1{2, yjq ´

ż

Ij

ppA11pxRHuqpxi´1{2, yq dy
˘

∆xv̄i,j,

as before, can be divided in Q1 `Q2, where we can estimate Q1 with the aid of

F puq “
kj
2
`

ppA11∇pq1uqpxi´1{2, yjq ` ppA11∇pq1uqpxi´1{2, yj´1q
˘

´

ż yj

yj´1

ppA11∇pq1uqpxi´1{2, yq dy,

then from Bramble-Hilbert we get

|F puq| ď C
`kj
hi

˘1{2
ph2

i ` k
2
j q|A11pxu|H2pˆ̋i,jq, (6.51)

(Q2 has a similar bound). Now we need to bound the quantity
ÿ

i,j

|Ij|
`

MxpA11δhpuqi,j ´ pA11pxuqpxi´1{2, yjq
˘

∆xv̄i,j. (6.52)

It is easy to see that

|MxpA11pxuqi,j ´ pA11pxuqpxi´1{2, yjq| ď C
h2
i ` |Ij|

2

phi|Ij|q1{2
|A11pxu|H2p˜̋i,jq,

then the remain quantity is
ÿ

i,j

|Ij|
`

MxpA11δhpuqi,j ´MxpA11pxuqi,j
˘

∆xv̄i,j,
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which can be bounded by

|MxpA11δhpuqi,j ´MxpA11pxuqi,j| ď C
`phi´1 ` hiq

2 ` |Ij|
2

`

hi´1{2|Ij|
˘1{2 |A11pxu|H2p˝i´1,jq

`
phi`1 ` hiq

2 ` |Ij|
2

`

hi`1{2|Ij|
˘1{2 |A11pxu|H2p˝i,jq

˘

.

Remark 6. The 1D the operator

λpgq “
ξi
ξi`1

`

gp1q ´ gp ξi
ξi ` ξi`1

q
˘

`
ξi`1

ξi

`

gp
ξi

ξi ` ξi`1
´ gp0qq

˘

´ gξp
ξi

ξi ` ξi`1
q,

vanishes for g “ 1, ξ and g “ ξ2. Then, from Bramble-Hilbert lemma

|δhgi ´ gxpxiq| ď C|g|H3pp0,1qq.

We can also rewrite λ as

λpgξq “
ξi
ξi`1

`

ż 1

ξi
ξi`ξi`1

gξ dξ
˘

`
ξi`1

ξi

`

ż

ξi
ξi`ξi`1

0
gξ dξ

˘

´ gξp
ξi

ξi ` ξi`1
q,

which vanishes for gξ “ 1 and gξ “ ξ, then

|δhgi ´ gxpxiq| ď C|gξ|H2pp0,1qq. (6.53)

Lemma 5. Let u P H3
pSq and the coefficient γ P W 2

8, for i, j “ 1, 2. Then the part

τ
puq
H pvHq :“ pRHpγuq, v

H
qH ´

ÿ

i,j

ż

˝i,j

γupx, yq dx dyv̄i,j, (6.54)

satisfies the estimate

|τ
puq
H pvHq| ď C

`

ÿ

4PTH

pdiam4q4}u}2H2p4q
˘1{2
}PHv

H
}1, (6.55)

for vH P WH,0.

Proof. We know that

τ
puq
H pvHq “

ÿ

i,j

`

hi`1{2kj`1{2pγuqi,j ´

ż

˝i,j

γupx, yq dx dy
˘

v̄i,j

“
ÿ

i,j

`hi
2 kj`1{2pγuqi,j v̄i,j `

hi
2 kj`1{2pγuqi´1,j v̄i´1,j

˘

´
ÿ

i,j

`

ż

Ij

ż xi

xi´1{2

γupx, yq dx dyv̄i,j `

ż

Ij

ż xi´1{2

xi´1

γupx, yq dx dyv̄i´1,j
˘

“
ÿ

i,j

`

hikj`1{2Mxpγuqi,j v̄i,j ´
hi
2 kj`1{2pγuqi´1,j∆xv̄i,j

˘

´
ÿ

i,j

`

ż

Ij

ż xi

xi´1

γupx, yq dx dyv̄i,j ´

ż

Ij

ż xi´1{2

xi´1

γupx, yq dx dy∆xv̄i,j
˘

“:
ÿ

i,j

S1
i,j v̄i,j `

ÿ

i,j

S2
i,j∆xv̄i,j
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With the aid of Bramble-Hilbert lemma, we can bound S1
i,j using

|Mxpγuqi,j ´
1
hi

ż xi

xi´1

γupx, yq dx| ď Ch
3{2
i

`

ż xi

xi´1

|pγuqxx|
2 dx

˘1{2
.

Integrating over Ij we get

|S1
i,j| ď C

ż

Ij

hih
3{2
i

`

ż xi

xi´1

|pγuqxx|
2 dx

˘1{2
ď Cphi|Ij|q

1{2h2
i }u}H2p˜̋i,jq,

then
|
ÿ

i,j

S1
i,j v̄i,j| ď C

`

ÿ

4PTH

pdiam4q4}u}2H2p4q
˘1{2
}PHv

H
}0. (6.56)

Using Bramble-Hilbert again we have

|pγuqi´1,j ´
2
hi

ż xi´1{2

xi´1

γupx, yq dx| ď Ch
1{2
i

`

ż xi

xi´1

|pγuqx|
2 dx

˘1{2
.

Integrating over Ij we get

|S2
i,j| ď C

ż

Ij

hih
1{2
i

`

ż xi

xi´1

|pγuqx|
2 dx

˘1{2
ď Cphi|Ij|q

1{2hi}u}H1p˜̋i,jq,

then
|
ÿ

i,j

S2
i,j∆v̄i,j| ď C

`

ÿ

4PTH

pdiam4q4}u}2H1p4q
˘1{2
}PHv

H
}1. (6.57)

6.3 Numerical results
In this section we prove numerically that the method is convergent with second

order when C, p stays in H3
pSq using many examples.

We consider a uniform discretization in time of r0, T s with NT time steps of
width ∆t “ T {NT . Then for each tn “ n∆t with n “ 1, . . . , NT we measure the numerical
errors eHC ptnq “ RHCptnq ´ C

H
ptnq , eHp ptnq “ RHpptnq ´ p

H
ptnq of the numerical method

(6.4) by using the following norms defined by the mesh H:

We illustrate the behavior of the errors

}eC}H “ max
n“1,...,NT

g

f

f

e}eHC ptnq}
2
H `

n
ÿ

j“1
∆t}∇´HeHC ptjq}2H,´. (6.58)

}∇ep}H “ max
n“1,...,NT

b

}eHp ptnq}
2
H ` }∇´HeHp ptjq}2H,´. (6.59)

}ep}H “ max
n“0,...,NT

}eHp ptnq}H . (6.60)
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The rate of convergence is numerically obtained by the formula

Rate “

log
ˆ

} ¨ }H

} ¨ }H̃

˙

log
ˆ

Hmax

H̃max

˙ . (6.61)

Let

ψpx, y, tq “ 4etsenpxyqpx´ 1qpy ´ 1qp|2y ´ 1|p1`σq ` |2x´ 1|p1`σqq (6.62)

defined in S ˆ p0, T s “ r0, 1s2 ˆ p0, T s we observe that

• If σ ą 1.5 then ψ P H3
pSq;

• If 1.5 ě σ ą 0.5pσ ‰ 1q then ψ P H2
pSq;

To illustrate the convergence rate we introduce functions f1, f2 in (5.31), such
that, the exact solution of problem (5.31) is given by

ppx, y, tq “ Cpx, y, tq “ ψpx, y, tq. (6.63)

In this first example, the exact solution matches with the assumption p, C P H3, then the
OpH2

maxq rate of convergence is expected.

Example 5. Let

A “

«

1` senpπyq2 ´senpπxqsenpπyq
´senpπxqsenpπyq 1` senpπxq2

ff

, α “ 1, β “ ´1, σ “ 1.6, (6.64)

with initial condition Cpx, y, 0q “ ppx, y, 0q “ 0 .

Note that we obtain, as expected, a second order of convergence in all the
considered norms.

Table 7 – Numerical approximation p, C(T “ 0.01, dt “ 5e´ 04) Example 5

H }ep}H Rate }∇ep}H Rate }eC}H Rate

5.0025e-02 8.7543e-04 - 4.6994e-03 - 3.1635e-04 -
4.1687e-02 6.0893e-04 1.9910 3.2763e-03 1.9785 2.2130e-04 1.9598
3.5762e-02 4.4755e-04 2.0085 2.4114e-03 1.9991 1.6335e-04 1.9805
3.1266e-02 3.4263e-04 1.9882 1.8478e-03 1.9815 1.2550e-04 1.9620
2.7798e-02 2.7085e-04 1.9998 1.4618e-03 1.9932 9.9370e-05 1.9856
2.5012e-02 2.1941e-04 1.9948 1.1849e-03 1.9892 8.0618e-05 1.9807
2.2750e-02 1.8137e-04 2.0083 9.7989e-04 2.0035 6.6701e-05 1.9990

In the next example we analyses what happen with the problem (5.31)when
the solution are in H2 and not in H3
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Example 6. Let

A “

«

1` senpπyq2 ´senpπxqsenpπyq
´senpπxqsenpπyq 1` senpπxq2

ff

, α “ 1, β “ ´1, σ “ 0.51. (6.65)

We obtain the errors and rate of convergence given in Table 8

Table 8 – Numerical approximation p, C(T “ 0.01, dt “ 5e´ 04) Example 6

H }ep}H Rate }∇ep}H Rate }eC}H Rate

2.7793e-02 1.7721e-04 - 1.9498e-03 - 2.1546e-04 -
2.5047e-02 1.4403e-04 1.9928 1.7161e-03 1.2275 1.9190e-04 1.1132
2.2772e-02 1.1915e-04 1.9914 1.5312e-03 1.1971 1.7293e-04 1.0929
2.0931e-02 1.0033e-04 2.0393 1.3840e-03 1.1993 1.5752e-04 1.1074
1.9290e-02 8.5821e-05 1.9128 1.2643e-03 1.1073 1.4475e-04 1.0349
1.7920e-02 7.4013e-05 2.0102 1.1609e-03 1.1592 1.3366e-04 1.0825
1.6687e-02 6.4466e-05 1.9365 1.0745e-03 1.0841 1.2430e-04 1.0186
1.5671e-02 5.6740e-05 2.0320 1.0004e-03 1.1374 1.1616e-04 1.0778

We observe that only the convergence rate associated to the L2 norm }ep}H

continue to be of second order as expected for finite element method with linear piecewise
basis, instead in other norms we lost the second order and we obtain the first order.
The method is then not superconvergent for functions that not belong in H3. This is
confirming that this class of functions is the largest possible space that permit to have a
superconvergent method for our problem.

The next one give us an indication of convergence of OpHs
q if p, C P H1`s with

s P p1{2, 2s. One can see that it is achieved in (FERREIRA; BARBEIRO; GRIGORIEFF,
2005). Decreasing σ we show the convergence rate decay for p,C belonging in a less regular
space.

Example 7. In this case p, C are not in H2
pSq.

A “

«

1` senpπyq2 ´senpπxqsenpπyq
´senpπxqsenpπyq 1` senpπxq2

ff

, α “ 1, β “ ´1, σ “ 0.3. (6.66)

Table 9 – Numerical approximation p, C(T “ 0.01, dt “ 5e´ 04) Example 7

H }ep}H Rate }∇ep}H Rate }eC}H Rate

2.5107e-02 1.3781e-04 - 2.2619e-03 - 2.7196e-04 -
2.2739e-02 1.1414e-04 1.9020 2.0521e-03 0.9828 2.4841e-04 0.9143
2.0843e-02 9.6692e-05 1.9062 1.8876e-03 0.9599 2.2947e-04 0.9115
1.9240e-02 8.2606e-05 1.9671 1.7446e-03 0.9841 2.1301e-04 0.9297
1.7910e-02 7.1992e-05 1.9204 1.6298e-03 0.9501 1.9944e-04 0.9190
1.6675e-02 6.2461e-05 1.9870 1.5227e-03 0.9511 1.8697e-04 0.9032
1.5650e-02 5.5360e-05 1.9029 1.4341e-03 0.9456 1.7641e-04 0.9167
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These error estimates allow us to conclude that the method studied leads to
OpHs

q for the pressure and density as expected for s P p1{2, 2s.
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7 Supraconvergent multiscale scheme

The main idea of this Chapter is to show how we can use the supraconvergent
finite difference method of Chapter 5 (or equivalently the finite element method of Chapter
6) to get an approximation for the homogenized solution of system (3.78) and also for the
multiscale solution of the systems (2.21). The method is here presented only for solving
the problems (3.78) and (2.21) in a one dimensional domain. However a simple method
extension can be implemented to solve also two-dimensional multiscale and homogenized
problems. The proposed scheme is based on approximating the homogenized solution
obtained by supposing that the solutions C, p satisfies an asymptotic expansion in the micro
dimension ε. Basically, we solve the microproblem (3.24) to provide an approximation at
the macro-scale with mesh sizes Hi for the homogenized tensor and then we obtain with
the method of Chapter 5 the approximated homogenized solution u0,H and then through
a reconstructed u0,H

` εu1,H we can approximate the multiscale solution. Here u0,H is the
numerical homogenized solution and u1,H approximates the spatial derivatives of u0,H and
depends on the cell microproblem in the periodically distributed domain Y . One can see
more details about homogenization in Chapter 3 and Appendix B.4.

The homogenization for multiscale systems as (2.21) has been discussed in
Chapter 3 and further details on the homogenization of PDE systems are presented in
Appendix B.4. In fact despite we proved in Chapter 6 a second order using a norm
in L2

pr0, T s, H1
pSqq when Dirichlet conditions were used here we prove that when we

use micro cell problems with a Y -periodic conditions the discussed process to build the
homogenized numerical solution and multiscale solution is also a second order method
using a macroscale norm in L2

pr0, T s, H1
pSqq and a microscale norm in L2

pr0, T s, H1
pSqq.

The second order in L2
pr0, T s, H1

pSqq proved for single-scale problems in Chap-
ter 5 and 6 is thus conserved also for solving multiscale problems (2.21) with proposed
multiscale strategy proposed in this Chapter.

7.1 Cell problem
The periodicity of the micro-problem in the multiscale problem is a good feature

for numerical multiscale methods since we can solve the microproblem once in a reference
domain Y and then its solution can be replicated periodically in the macroscale domain Ω.
In this section we approximate the solution χ in the reference domain Y “ r0, 1s of the
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cell problem that is
$

’

’

’

’

&

’

’

’

’

%

´
B

By

`

KpyqBχ
By

˘

“ ´
BK
By
pyq in Y

χpyq Y -periodic,

xχy “ 0.

(7.1)

We remember that a function v is called Y´periodic if and only if

vpy ` k|Y |q “ vpyq @y P Y @k P Z. (7.2)

Let h “ phiqi“0,...,N`1 with h0 “ hN`1 be the sequence nonuniform mesh sizes
with a maximum hmax “ maxthi|i “ 0, . . . , Nu . We define by Y h the discrete mesh in
Y “ r0, 1s,

Ȳh “
 

tyiu
N
i“0|yi “ yi´1 ` hi, y0 “ 0, yN “ 1

(

As before, we introduce the following sets

BYh “ tyi, i “ 0, Nu, Yh “ Y h{BYh.

By W h
perpY q we denote the space of Y -periodic grid functions vh on Y h and

W h
per,0pY q the subspace of Y -periodic grid functions with “zero mean” . For yi P Y h let

Ii :“ pyi´1{2, yi`1{2q X Y and |Ii| “ hi`1{2 “
hi ` hi`1

2 .

In W h
perpY q we introduce the inner products

pvh, whqh :“
ÿ

yiPY h

|Ii|viwi

pvh, whqh,´ :“
N
ÿ

i“1
hiviwi

and the associated norms }vh}h “
a

pvh, vhqh and }vh}h,´ “
b

pvh, vhqh,´

The discrete problem has the form: find χh P W h
per,0 such that

aK,hpχ
h, vhq “ ´pp

BK
By
qh, v

h
qh. (7.3)

for vh P W h
per,0pY q and aK,hpv

h, whq “ ´pδp1{2qy pKδp1{2qy vhq, whqh (see Chapter 6 and 7.1.1).

7.1.1 The finite difference scheme

The discretized variational problem (7.3) is equivalent to a standard FDM
for (7.1) on a nonuniform grid, which we will derive in this section. To formulate, as in
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Chapter 5, the finite difference method in nonuniform meshes we use the following finite
difference operators

δp1{2qy vi “
vi`1{2 ´ vi´1{2

yi`1{2 ´ yi´1{2
, δp1{2qy vi`1{2 “ D´yvi “

vi`1 ´ vi
yi`1 ´ yi

. (7.4)

Then denoted by

LKpu
h
q :“ ´δp1{2qy pKδp1{2qy puhqq (7.5)

the finite difference method used to solve the cell problem (7.1) is find χh P W h
per,0 such

that:
LKpχ

h
q “

ˆ

BK
By

˙

h

(7.6)

where
ˆ

BK
By

˙

h

“

"

1
|Ii|

ż

Ii

BK
By

*

i

is a local approximation for BK
By

on the nodes yi.

7.1.2 Equivalent FE method for the cell problem 7.1

As in Chapter 6 we are able to show here the equivalence of the FD scheme

to a FE method. Let Th “
N
ď

i“1
4i a partition of Y using the set Ȳh as extremes of each

subinterval 4. We define by K4,y the value of K in the midpoint of 4. Note that we use
this notations in order to be easy to extend the problem in two dimensions.

We define the following discrete operator : @vh, wh P W h
perpY q

apvh, whq “
ÿ

4PTh

K4,y

ż

4
pPhv

h
qypPhw

h
qy dy. (7.7)

Thus we can get an approximation of the solution χ of the cell problem through the
variational problem: find χh P W h

per,0 such that

apχh, vhq “ ´pp
BK
By
qh, v

h
qh@v

h
P W h

per,0 (7.8)

The next proposition show the equivalence of (7.6) and (7.8)

Proposition 9. For all vh, wh P W h
perpY q and Kpyq Y ´ periodic, we have

´pδp1{2qy pKδp1{2qy vhq, whqh “

N
ÿ

i“1
hiKi´1{2δ

p1{2q
y vi´1{2δ

p1{2q
y wi´1{2. (7.9)
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Proof. Since KN`1{2δ
p1{2q
y vN`1{2wN “ K1{2δ

p1{2q
y v1w0 for periodicity we have

´pδp1{2qy pKδp1{2qy vhq, whqh “ ´

N
ÿ

i“1
|Ii|δ

p1{2q
y pKδp1{2qy vqiwi (7.10)

“ ´

N
ÿ

i“1
pKi`1{2δ

p1{2q
y vi`1{2 ´Ki´1{2δ

p1{2q
y vi´1{2qwi (7.11)

“

N
ÿ

i“1
hiKi´1{2δ

p1{2q
y vi´1{2δ

p1{2q
y wi´1{2. (7.12)

Now we can prove using Proposition 6 and Lemma 2 in Chapter 6 that the
finite difference method (7.6) is of second order of consistency, that is its truncation error
decays of order two. In order to help the reader we rewrite in the following the Lemma 2
of Chapter 6 for our cell problem in one dimension.

Lemma 6. Let u P H3
perpY q and the coefficient K P W 2,8

per pY q. Then the part

τ
paq
h pvhq :“ apRhu, v

h
q ´

ÿ

yiPYh

ż

Ii

p´Kuyqy dyvi. (7.13)

satisfies the estimate

|τ
paq
h pvhq| ď C

`

ÿ

4PTh

pdiam4q4}uy}2H2p4q
˘

}Phv
h
}1, for vh P W h

per,0pY q,

where Rh is the restriction operator.

7.2 Approximating the homogenized coefficient
By meanY p¨q we denote a discrete mean operator in W h

perpY q that approximate
the arithmetic mean over Y defined by

xvy “
1
|Y |

ż

Y

v dy, (7.14)

for instance, we use Midpoint rule to construct meanY p¨q.

Proposition 10. For all vh P W h
perpY q we have

}vh ´meanY pv
h
q}h ď C}∇´yvh}h,´,

where C depends on Y h.
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Proof. Firstly,

vi “

i
ÿ

j“1
pvj ´ vj´1q ` v0 “

i
ÿ

j“1
phi∇´yvjq ` v0,

meanY pv
h
q “

1
|Y |

N
ÿ

i“1
|Ii|vi “

1
|Y |

N
ÿ

i“1
|Ii|p

i
ÿ

j“1
phi∇´yvjq ` v0q

“
1
|Y |

N
ÿ

i“1
|Ii|

`

i
ÿ

j“1
hj∇´yvjq

˘

` v0

then using that @a, b P R pa` bq2 ď a2
` b2 and that @aj P R p

i
ÿ

j“1
ajq

2
ď i

i
ÿ

j“1
a2
j

}vh ´meanY pv
h
q}

2
h “

N
ÿ

i“1
|Ii|pvi ´meanY pv

h
qq

2

“

N
ÿ

i“1
|Ii|p

i
ÿ

j“1
hj∇´yvj ´

1
|Y |

N
ÿ

k“1
|Ik|p

k
ÿ

l“1
hl∇´yvhpykqqq2

ď 2
`

N
ÿ

i“1
|Ii|pihmax

i
ÿ

j“1
hjp∇´yvjq2 `

N

|Y |2

N
ÿ

k“1
|Ik|

2kp
k
ÿ

l“1
h2
l p∇´yvkq2q

˘

ď 2CpY q
`

}D´yv
h
}

2
h,´ ` }D´yv

h
}

2
h,´

˘

ď CpY q}∇´yvh}2h,´

Corollary 4. The Poincaré inequality holds for vh P W h
perpY q if v0 “ 0 or meanY pvhq “ 0.

We can use the approximated solution χh of the cell problem solution χ,
obtained by the finite difference method 7.6 with meanY pχhq “ 0 that is such that

$

’

’

’

’

&

’

’

’

’

%

´LKpχ
h
q “ ´

`BK
By

˘

h
in Y h

χh is Y ´ periodic

meanY pχ
h
q “ 0.

(7.15)

to build an approximation of the homogenized coefficient

q “
1
|Y |

ż

Y

pK ´KBχ
By
dyq. (7.16)

The approximated homogenized coefficient qh used is given by

qh “ meanY pRhK ´RhK∇´yχhq. (7.17)

Note that the right hand-side of (7.15) is not available in general, but it can be replaced
by the discrete derivative of K without loss of convergence.
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Proposition 11. qh approximates the homogenized coefficient with a second order consis-
tency, that is

|q ´ qh| ď Ch2
max.

Proof. Since for hypothesis hN`1 :“ h1 then for the Y´periodicity of K ´KBχ
By

we have
that its integral in ryN , yN`1{2s is equal to that in ry0, y1{2s. Thus we obtain

q “
1
|Y |

ż

Y

pK ´KBχ
By
q dy “

1
|Y |

N
ÿ

i“1

ż

Ii

pK ´KBχ
By
q dy. (7.18)

From Bramble-Hilbert Lemma

|

N
ÿ

i“1

ż

Ii

pf dy ´ |Ii|fiq| ď C
`

ÿ

4PTH

pdiam4q4}f}2H2p4q
˘1{2

, (7.19)

then if χ P H3
perpY q

|q ´ qh| ď |meanY pRhKp
Bχ

By
´∇´yχhqq| ` Ch2

max (7.20)

ď }K}8|meanY pRh
Bχ

By
´∇´yRhχ`∇´yRhχ´∇´yχhq| ` Ch2

max. (7.21)

From Bramble-Hilbert Lemma

|

N
ÿ

i“1
|Ii|p

Bχpyiq

By
´∇´yχiq| ď C

`

ÿ

4PTH

pdiam4q4}χ}2H2p4q
˘

1
2 , (7.22)

then we obtain

|q ´ qh| ď }K}8|meanY p∇´yRhχ´∇´yχhq| ` Ch2
max (7.23)

ď Ch2
max, (7.24)

where C depends on K and χ.

We verify now with two examples that effectively our approximated homogenized
coefficient is second order accurate.

Example 8. Taking
Kpyq “ 1

2` cosp2πyq ,

we have that q “ 1
2 .

Using formula (7.17) we build varying the non uniform mesh the value qh that
has shown in the Table 10 it converges to q with order two when hmax tends to zero.
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Table 10 – Numerical approximation for homogenized coefficient

hmax qh |q ´ qh| Rate

2.5051e-01 5.243247e-01 2.4325e-02 -
1.2514e-01 5.058797e-01 5.8797e-03 2.0460
6.2555e-02 5.014967e-01 1.4967e-03 1.9732
3.1278e-02 5.003722e-01 3.7217e-04 2.0078
1.5640e-02 5.000931e-01 9.3094e-05 1.9994
7.8200e-03 5.000235e-01 2.3523e-05 1.9846
3.9596e-03 5.000060e-01 5.9780e-06 2.0129
1.9551e-03 5.000015e-01 1.4860e-06 1.9725
9.7754e-04 5.000004e-01 3.6813e-07 2.0131
4.8877e-04 5.000001e-01 9.8083e-08 1.9081
2.4438e-04 5.000000e-01 2.3477e-08 2.0628
1.2219e-04 5.000000e-01 5.6048e-09 2.0665

Example 9. Taking
Kpyq “ 2` |2x´ 1|2.1

2` cosp2πyq ,

we have that q “ 1.1930597352384201837.

The associates numerical results are shown in Table 11, showing a gain a second
order of convergence of qh to the homogenized coefficient q.

Table 11 – Numerical approximation for homogenized coefficient

hmax qh |q ´ qh| Rate

2.5017e-01 1.244211e+00 5.1151e-02 -
1.2510e-01 1.205424e+00 1.2364e-02 2.0491
6.2565e-02 1.196208e+00 3.1479e-03 1.9743
3.1314e-02 1.193846e+00 7.8638e-04 2.0040
1.5640e-02 1.193257e+00 1.9708e-04 1.9933
7.8202e-03 1.193108e+00 4.8481e-05 2.0234
3.9440e-03 1.193072e+00 1.2534e-05 1.9761
1.9955e-03 1.193063e+00 3.1958e-06 2.0060
9.7754e-04 1.193060e+00 7.5597e-07 2.0201
4.9948e-04 1.193060e+00 1.8905e-07 2.0641
2.6163e-04 1.193060e+00 4.9999e-08 2.0569
1.2219e-04 1.193060e+00 1.0459e-08 2.0550
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7.3 Approximating the solution of multiscale elliptic problems
In this section we propose a numerical method to approximate the solution of

the multiscale one dimensional elliptic equation
$

&

%

´
B

Bx

ˆ

KεBu
ε

Bx

˙

“ f ε in Ω

u|Ω “ 0
(7.25)

associated to a multiscale tensor (coefficient) Kε and multiscale function f ε. This equation
is a simpler case of the multiscale pressure equation analyzed and determined in Chapter
3 in a two dimensional colon domain.

An important feature of the proposed multiscale method is to approximate uε

starting by approximating the solution u0 of the associated homogenized problem
$

&

%

´
B

Bx

ˆ

q
Bu0

Bx

˙

“

ż

Y

f 0
px, yq dy in Ω

u0
|Ω “ 0

(7.26)

with the homogenized coefficient q “ 1
|Y |

ż

Y

pK ´ KBχ
By
dyq given in the previous section

7.2.

The approximation u0,H of u0 is obtained by the high order method finite
difference method

#

Lqhu0,H
“ meanY pf

0
q in ΩH

u0,H
|BΩH “ 0

, (7.27)

where as usual
Lqhpu0,H

q “ ´δ1{2
x pqhδp1{2qx u0,H

q, (7.28)

f 0 is the ε0 component of the asymptotic expansion of f ε and qh is the approximated
homogenization coefficient given by (7.16).

In (7.27) ΩH is a one dimensional mesh in Ω Ă R that is given by the macroscale
non uniform mesh sizes H “ tHiui“1,...,M with a maximum mesh size Hmax that is given

Ω̄H “ txi P Ω|xi “ xi´1 `Hi, i “ 1, . . . ,Mu,

BΩH “ tx0, xMu, ΩH “ Ω̄H{BΩH .

Proposition 12. Let e0,H
“ RHu

0
´ u0,H with u0 , u0,H solution of (7.26) and (7.27)

respectively then the following convergence result is valid

}∇´xe0,H
}

2
H,´ ď CpH4

max ` h
4
maxq, (7.29)

since |q ´ qh| ď Ch2
max and |xf 0

y ´meanY pf
0
q| ď Ch2

max.
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Proof. We have that u0,H verifies the following equation

Lqhu0,H
“ meanY pf

0
q. (7.30)

Furthermore RHu
0 verifies the same equation with addition of an OpH2

maxq term

LqRHu
0
“ xf 0

y `OpH2
maxq. (7.31)

Subtracting both (7.30) and (7.31) and multiplying by e0,H we get

p´δ1{2
x pqδp1{2qx RHu

0
q ` δ1{2

x pqhδp1{2qx u0,H
q, e0,H

qH “ pOph2
maxq `OpH

2
maxq, e

0,H
qH ,

pqD´xRHu
0
´ qhD´xu

0,H , D´xe
0,H
qH “

pqhD´xe
0,H
` pq ´ qhqD´xRHu

0, D´xe
0,H
qH “

then using that qh is constant with respect to H and the discrete Poincaré inequality

qh}∇´xe0,H
}

2
H,´ ď ppqh ´ qqD´xRHu

0, D´xe
0,H
qH `Oph

4
maxq `OpH

4
maxq

` C}∇´xe0,H
}

2
H,´

ď Oph4
maxq}∇´xu0

}
2
H,´ ` }∇´xe0,H

}
2
H,´

` Oph4
maxq `OpH

4
maxq ` C}∇´xe0,H

}
2
H,´

We obtain that if pqh ´ Cq ą 0,

}∇´xe0,H
}

2
H,´ ď Cph4

max `H
4
maxq (7.32)

In the next example, we test numerically the validity of the convergence result
in Proposition 12.

Example 10. Using the parameters

Kpyq “ 1
2` cosp2πyq , f

ε
px, yq “ cosp2πxq,

and solving the numerical homogenized associated problem (7.27) we get the numerical
results of Table 12.

In Table 12 we note a second order of convergence with respect H. This is
obtained since we used a sufficient small micro-scale mesh size h.
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Table 12 – Numerical errors

Hmax }eH0 }H Rate }∇´xeH0 }H,´ Rate

2.5032e-01 8.3717e-03 - 4.7358e-02 -
1.2517e-01 1.9029e-03 2.1375e+00 1.1651e-02 2.0233e+00
6.2562e-02 4.6355e-04 2.0364e+00 2.8940e-03 2.0083e+00
3.1278e-02 1.1531e-04 2.0069e+00 7.2339e-04 1.9999e+00
1.5639e-02 2.8768e-05 2.0031e+00 1.8069e-04 2.0013e+00
7.8774e-03 7.1965e-06 2.0205e+00 4.5213e-05 2.0201e+00
3.9200e-03 1.7974e-06 1.9877e+00 1.1294e-05 1.9876e+00
1.9551e-03 4.4842e-07 1.9958e+00 2.8176e-06 1.9957e+00
1.0005e-03 1.1119e-07 2.0815e+00 6.9865e-07 2.0815e+00
4.9633e-04 2.7121e-08 2.0128e+00 1.7041e-07 2.0128e+00

Numerical error in approximating on nonuniform meshes the homogenized solution of
(7.26) by using the method (7.27) varying in Hmax and fixing h “ 5e´ 03.

In the next Table 13 we do the opposite in the sense that we fix H and vary
hmax.

Table 13 – Numerical errors

hmax }eH0 }H Rate }∇´xeH0 }H,´ Rate

2.5014e-01 1.6683e-03 - 1.0483e-02 -
1.2512e-01 4.1596e-04 2.0051e+00 2.6136e-03 2.0051e+00
6.2557e-02 1.0618e-04 1.9698e+00 6.6719e-04 1.9698e+00
3.1281e-02 2.6624e-05 1.9960e+00 1.6729e-04 1.9960e+00
1.5641e-02 6.6140e-06 2.0092e+00 4.1557e-05 2.0092e+00
7.8829e-03 1.6900e-06 1.9914e+00 1.0619e-05 1.9914e+00
3.9101e-03 4.2508e-07 1.9686e+00 2.6709e-06 1.9686e+00
1.9551e-03 1.0575e-07 2.0070e+00 6.6448e-07 2.0070e+00
9.8381e-04 2.5197e-08 2.0886e+00 1.5832e-07 2.0886e+00
4.8877e-04 5.6460e-09 2.1383e+00 3.5475e-08 2.1383e+00

Numerical error in approximating on nonuniform meshes the homogenized solution of
(7.26) by using the method (7.27) varying in hmax and fixing H “ 1e´ 04.

Now, we are able to construct an approximation for the multiscale solution
by distributing the domain of reference Y periodically in Ω. The numerical multiscale
solution is built by using the following formula

uHε “ u0,H
´ εχH∇´xu0,H , (7.33)

where χH is the macroscale function obtained by linear interpolating χh in the ΩH nodes.
This interpolation is obtained after by distributing periodically Y in ΩH . Note that a
such multiscale numerical solution approximate the first two terms of the ε asymptotic
expansion of uε “ u0

` εu1
` . . ..
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One can find a post-processing scheme similar to (7.33) in (ABDULLE, 2009)
that satisfies the following error estimate

}uε ´ up,ε}H̄1pΩq ď CpH `
h

ε
`
?
εq. (7.34)

In (ABDULLE, 2009) they use the numerical homogenized solution provided by the
HMM-FEM method in place og u0,H . That is done by extending the small scale solution
locally on the macro element K.

We assert that our multiscale approximation (7.33) satisfies

}∇´xeHε }H,´ ď CpH2
` h2

` ε` f1pH, h, εqq

}eHε }H ď CpH2
` h2

` ε2
` f2pH, h, εqq

(7.35)

where eHε “ RHu
ε
´ uHε . Despite we are not able to prove the convergence result in (7.35),

we can obtain numerically a second order for H and h and a first order for ε on non
uniform meshes as shown un the next Examples.

Example 11. Taking in (7.25)

Kpyq “ 1
2` cosp2πyq , f

ε
“ senp2πxq, (7.36)

we obtain, varying ε and h, the approximation errors shown in Tables 14 and 15, respec-
tively.

As we can see, in Table 14 and associated plots we have a first order of
convergence in the } ¨ }H,´ norm with respect to ε.

Table 14 – Convergence rate for ε(H “ h “ 1e´ 04)

ε }eHε }H Rate }∇´xeHε }H,´ Rate

2.0000e-01 5.3816e-04 - 1.5916e-02 -
1.6667e-01 3.6685e-04 2.10 1.3263e-02 1.00
1.2500e-01 2.0259e-04 2.06 9.9472e-03 1.00
8.3333e-02 8.8875e-05 2.03 6.6315e-03 0.99
5.0000e-02 3.1782e-05 2.01 3.9789e-03 0.99
2.7778e-02 9.7844e-06 2.00 2.2106e-03 0.99
1.4706e-02 2.7405e-06 2.00 1.1704e-03 0.99
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Figure 19 – Convergence for ε.

In the next we choose a quite large ε to see how it affects the errors. Note that
in Table and Figure 15 the error in } ¨ }H,´ norm decreases up to reach a lower limit. We
think that this happens due to presence of a term f1 in (7.35) that depends on ε,H and h.

Table 15 – Convergence rate for h(H “ 1e´ 04, ε “ 1e´ 03)

hmax }eHε }H Rate }∇´xeHε }H,´ Rate

2.5021e-01 1.67150e-03 - 2.2469e-02 -
1.2512e-01 4.19674e-04 1.99 5.6681e-03 1.98
6.2560e-02 1.05793e-04 1.98 1.2000e-03 2.23
3.1280e-02 2.67972e-05 1.98 3.5142e-04 1.77
1.5640e-02 6.70333e-06 1.99 1.3087e-04 1.42
7.8384e-03 1.66984e-06 2.01 8.5213e-05 0.62
3.9156e-03 4.07688e-07 2.03 8.2261e-05 0.05
1.9667e-03 1.00208e-07 2.03 8.2035e-05 0.00
9.7753e-04 2.84471e-08 1.80 8.2048e-05 -0.00
4.8877e-04 1.43107e-08 0.99 8.2047e-05 0.00

Figure 20 – Convergence rate for h.
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In the following example we can analyze the influence of the magnitude of ε in
the convergence analysis varying the macroscale mesh size H. A similar analysis can be
done varying h.

Example 12. Taking in (7.25)

Kpyq “ 1
2` cosp2πyq , f

ε
“ ex ` cos2

p2πxq, ε “ 0.05, 0.01 and 0.001, (7.37)

we obtain the numerical errors shown in the next Tables 16, 17 and 18.

Firstly for ε “ 0.05 we have

Figure 21 – From left to right we can see the behavior of the errors for ε “ 0.05.

Table 16 – Convergence rate for H(h “ 1e´ 04, ε “ 0.05)

Hmax }eHε }H Rate }∇´xeHε }H,´ Rate

2.0138e-01 9.8645e-02 - 8.0082e-01 -
7.9540e-02 1.2352e-02 2.2366e+00 1.1302e-01 2.1078e+00
4.8022e-02 4.6284e-03 1.9453e+00 4.2921e-02 1.9188e+00
3.4798e-02 2.6877e-03 1.6874e+00 3.0623e-02 1.0482e+00
2.7675e-02 1.8237e-03 1.6933e+00 3.2657e-02 -2.8082e-01

... ... ... ... ...
1.3202e-03 6.3838e-04 6.0425e-03 4.9943e-02 -1.0861e-03
1.3081e-03 6.3827e-04 5.3403e-04 4.9945e-02 -3.8638e-05
1.2737e-03 6.3823e-04 2.0257e-03 4.9946e-02 -5.9153e-04
1.2610e-03 6.3818e-04 7.7969e-03 4.9947e-02 -2.5189e-03

For ε “ 0.01 we have
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Figure 22 – From left to right we can see the behavior of the errors for ε “ 1e´ 2.

Table 17 – Convergence rate for H(h “ 1e´ 04, ε “ 0.01)

Hmax }eHε }H Rate }∇´xeHε }H,´ Rate

2.0162e-01 1.0184e-01 - 8.0216e-01 -
7.8452e-02 1.1012e-02 2.3568e+00 1.0927e-01 2.1120e+00
4.7961e-02 4.0982e-03 2.0085e+00 4.2582e-02 1.9150e+00
3.4819e-02 2.1854e-03 1.9634e+00 2.2266e-02 2.0248e+00
2.7260e-02 1.3671e-03 1.9168e+00 1.3731e-02 1.9748e+00

... ... ... ... ...
1.3639e-03 2.7532e-05 -3.6428e-02 9.7231e-03 2.8402e-02
1.5003e-03 2.7465e-05 -2.5288e-02 9.7283e-03 5.6779e-03
1.3486e-03 2.7430e-05 1.2086e-02 9.7331e-03 -4.5617e-03
1.3870e-03 2.7372e-05 -7.5536e-02 9.7403e-03 2.6541e-02
1.2610e-03 2.7331e-05 1.5773e-02 9.7420e-03 -1.8105e-03

Then, for ε “ 0.001

Figure 23 – From left to right we can see the behavior of the errors for ε “ 1e´ 3.
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Table 18 – Convergence rate for H(h “ 1e´ 04, ε “ 1e´ 3)

Hmax }eHε }H Rate }∇´xeHε }H,´ Rate

2.0199e-01 1.0138e-01 - 8.0507e-01 -
7.8301e-02 1.1523e-02 2.2946e+00 1.1159e-01 2.0852e+00
4.9199e-02 4.2003e-03 2.1718e+00 4.2433e-02 2.0808e+00
3.5164e-02 2.1173e-03 2.0396e+00 2.1825e-02 1.9796e+00
2.7264e-02 1.3388e-03 1.8013e+00 1.3721e-02 1.8238e+00

... ... ... ... ...
1.3202e-03 3.2941e-06 1.3806e+00 2.0274e-04 1.7373e+00
1.3066e-03 3.2176e-06 2.2690e+00 1.9872e-04 1.9323e+00
1.2932e-03 3.1469e-06 2.1542e+00 1.9430e-04 2.1817e+00
1.3491e-03 3.0803e-06 -5.0581e-01 1.8948e-04 -5.9433e-01
1.2610e-03 3.0397e-06 1.9649e-01 1.8427e-04 4.1264e-01

Note that the errors in the Table 16 and plots 21, associated to ε “ 5e ´ 2,
decrease with a second order in both norms only in the first three coarsest macro-scale
meshes. Then the errors decrease slowly by decreasing Hmax, up to reaching a value
6.38e´ 04 in the norm } ¨ }H and 4.994e´ 02 in the norm }∇´x}H,´. We perform in the
following a error analysis in the norm } ¨ }H but a similar analysis is valid in the norm
}∇´x ¨ }H,´ . Our understanding is that the error does not decrease further since for the
formula (7.35)2, is bounded by a term Opε2

q, that should be C1ε
2
“ C1p0.05q2 « 6.38e´04

with C1 “ 2.552e ´ 01. This understanding is confirmed by the observation that with
ε “ 1e´02 we have in Table 17 and plot 22 that the errors have a second order rate in more
meshes (5 coarsest meshes) and reach a constant value 2.7e´ 05 « C2ε

2
“ C2 ¨ p1e´ 04q

with C2 “ 2.7e ´ 01 that is approximately C1. Using ε “ 1e ´ 03 we observe in Table
18 that the error is still decreasing with the Hmax used, and that it is maybe reaching
the value C1ε

2
“ 2.5e´ 01 ¨ 1e´ 06 “ 2.5e´ 07. One can see also that C3 “ 2

a

C1 and
C4 “ 2

a

C2 fit very well in the bounds of } ¨ }H,´ norm. Now, observe that the errors in
} ¨ }H,´ does not have the same behavior as } ¨ }H errors, in fact the error in } ¨ }H,´ looks
like a ball that is thrown down and bounces on the surface. We are not able to explain
this effect without determining the theoretical the analytical error bounds.

7.4 Coupled multiscale problem
In this section we propose a multiscale method for solving with an high order

of convergence the one dimensional version of the coupled elliptic-parabolic multiscale
problem in (2.21) that determine the cell density and pressure inside the colonic crypts
with micro-domainY distributed in the colon domain Ω.

In Chapter 2 we proved that the microscale cell problem that determine χ can
be solved once in the reference domain, and then we can use this solution to obtain the
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homogenized tensor for both the elliptic and parabolic equation as well as the ε1 terms p1

and C1. We propose a multiscale method defined by the following steps:

1. Solve the microproblem using the supraconvergent method with periodic boundary
conditions, which means we get χh as before in (7.15)

2. Build a discrete version of the problem with the supraconvergent method again by
replacing the homogenized tensor by qh and use the meanY operator where it is
needed;

3. Solve first the homogenized elliptic equation and then insert the obtained homoge-
nized pressure in the parabolic equation;

4. Build an approximation of the multiscale solutions Cε and pε by using respectively
CH
ε “ CH

0 ´ εχ
H∇´xCH

0 and pHε “ pH0 ´ εχ
H∇´xpH0 ;

We observe that, as in HMM-FEM, the computational effort of this method is
quite independent of ε since we use a reference domain instead of each repeated periodic
domain. Beside that at the last step, we just have to interpolate χh near the nodal points
of ΩH to get χH .

In the following we prove numerically that this multiscale scheme is convergent
with order two with respect both step sizes H and h and with order 1 or 2 with respect
ε depending on the norm used. On the other words we have the same convergence rates
observed for the elliptic problem. The stability and convergence of this method will be
proved theoretically in the near future, see the conclusions Chapter.

Example 13. Consider the coupled 1D system
$

&

%

´∇ ¨ pKε∇pεq “ αpyqCε
` f ε1 .

BCε

Bt
`∇ ¨ pvεCε

q “ ∇ ¨ pDpyqKε∇Cε
q ` βpyqCε

` f ε2 .
(7.38)

where vε “ ´Kε∇pε, Kpyq “ 1{p2` cosp2πyqq and D “ β “ α “ 1.

Findig exact solutions for multiscale problems is not a too easy task, so we
added two additional functions f ε1 , f ε2 to make this analysis possible. In the following sets
of Tables we present the convergence for the macromesh H and the micromesh h for the
homogenized problem.
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Table 19 – Convergence rate for H in } ¨ }H norm(h „ 1e´ 04)

Hmax }ep,H0 }H Rate }eC,H0 }H Rate
5.0418e-02 4.6760e-03 - 1.4158e-03 -
2.5394e-02 1.1363e-03 2.06 3.5631e-04 2.01
1.2621e-02 2.7990e-04 2.00 8.9569e-05 1.97
6.3111e-03 7.1025e-05 1.97 2.2393e-05 2.00
3.1760e-03 1.7668e-05 2.02 5.6170e-06 2.01
1.6773e-03 4.4003e-06 2.17 1.4133e-06 2.16

Table 20 – Convergence rate for H in } ¨ }H,´ norm(h „ 1e´ 04)

Hmax }∇´xep,H0 }H,´ Rate }∇´xeC,H0 }H,´ Rate
5.0418e-02 6.6174e-03 - 2.3904e-03 -
2.5394e-02 1.6164e-03 2.05 6.1236e-04 1.98
1.2621e-02 4.0135e-04 1.99 1.5451e-04 1.96
6.3111e-03 1.0128e-04 1.98 3.8663e-05 1.99
3.1760e-03 2.5248e-05 2.02 9.7034e-06 2.01
1.6773e-03 6.2922e-06 2.17 2.4422e-06 2.16

Table 21 – Convergence rate for h in } ¨ }H norm(H „ 2e´ 03)

hmax }ep,H0 }H Rate }eC,H0 }H Rate
3.3527e-01 1.8098e-02 - 1.6986e-03 -
2.0195e-01 7.1451e-03 1.83 6.1790e-04 1.99
1.4397e-01 3.9705e-03 1.73 3.3595e-04 1.80
1.1214e-01 2.3891e-03 2.03 2.0017e-04 2.07
9.1816e-02 1.6658e-03 1.80 1.3907e-04 1.82
7.9848e-02 1.1984e-03 2.35 9.9901e-05 2.36

Table 22 – Convergence rate for h in } ¨ }H,´ norm(H „ 2e´ 03)

hmax }∇´xep,H0 }H,´ Rate }∇´xeC,H0 }H,´ Rate
3.3527e-01 2.5567e-02 - 1.8509e-03 -
2.0195e-01 1.0093e-02 1.83 6.7494e-04 1.99
1.4397e-01 5.6088e-03 1.73 3.6710e-04 1.79
1.1214e-01 3.3749e-03 2.03 2.1868e-04 2.07
9.1816e-02 2.3531e-03 1.80 1.5187e-04 1.82
7.9848e-02 1.6928e-03 2.35 1.0902e-04 2.37
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(a) (b)

Figure 24 – 24(a) and 24(b) show us the graph of the exact homogenized solution and the
numerical solution for pressure and density respectively (H „ 2e ´ 03, h “
1e´ 04).

(a) (b)

Figure 25 – Images 24(a) and 24(b) respectively with zoom applied.

The next table is one of our most interest which is the convergence for ε and
as we can see the error goes to zero in a first order of convergence for the gradient.

Table 23 – Convergence rate for ε in } ¨ }H norm(h „ 1e´ 04, H „ 2e´ 03)

ε }ep,Hε }H Rate }eC,Hε }H Rate
1.0000e-01 2.6331e-03 - 4.1198e-04 -
6.6667e-02 1.1420e-03 2.06 1.8319e-04 1.99
5.0000e-02 6.3743e-04 2.02 1.0306e-04 1.99
4.0000e-02 4.0681e-04 2.01 6.5964e-05 1.99
3.3333e-02 2.8230e-04 2.00 4.5810e-05 1.99
2.8571e-02 2.0749e-04 1.99 3.3657e-05 1.99
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Table 24 – Convergence rate for ε in } ¨ }H,´ norm(h „ 1e´ 04, H „ 2e´ 03)

ε }∇´xep,Hε }H,´ Rate }∇´xeC,Hε }H,´ Rate
1.0000e-01 1.0285e-02 - 2.0415e-03 -
6.6667e-02 6.7268e-03 1.04 1.3458e-03 1.02
5.0000e-02 5.0117e-03 1.02 1.0051e-03 1.01
4.0000e-02 3.9964e-03 1.01 8.0236e-04 1.00
3.3333e-02 3.3237e-03 1.01 6.6767e-04 1.00
2.8571e-02 2.8446e-03 1.00 5.7162e-04 1.00

Note that we used the same approximation as in (7.33). A Op
?
εq order of

convergence was expected for } ¨ }H,´ norm in the same way OpHq was expected from the
classical literature. We need a deeper analyze as done in Chapter 6 to conclude the exact
rate of convergence.

(a) (b)

Figure 26 – Graph of the exact multiscale solution and the numerical solution for pressure
and density respectively (ε “ 0.1).

(a) (b)

Figure 27 – Graph of the exact multiscale solution and the numerical solution for pressure
and density respectively (ε “ 0.01).
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In the next 4 Tables we show the errors for H and h convergence for the
multiscale problem. As we can see, the convergence rates are very similar to Tables 19-22
since ε „ 1e´ 06.

Table 25 – Convergence rate for h in } ¨ }H norm(ε „ 1e´ 06, H „ 2e´ 03)

hmax }ep,Hε }H Rate }eC,Hε }H rate
3.3639e-01 1.7881e-02 - 1.6748e-03 -
2.0367e-01 7.0458e-03 1.85 6.0837e-04 2.01
1.4403e-01 3.9115e-03 1.69 3.3032e-04 1.76
1.1412e-01 2.4817e-03 1.95 2.0753e-04 1.99
9.1788e-02 1.6750e-03 1.80 1.3932e-04 1.83
7.7804e-02 1.1982e-03 2.02 9.9364e-05 2.04

Table 26 – Convergence rate for h in } ¨ }H norm(ε „ 1e´ 06, H „ 2e´ 03)

hmax }∇´xep,Hε }H,´ Rate }∇´xeC,Hε }H,´ Rate
3.3639e-01 2.5260e-02 - 1.8253e-03 -
2.0367e-01 9.9535e-03 1.85 6.6480e-04 2.01
1.4403e-01 5.5256e-03 1.69 3.6119e-04 1.76
1.1412e-01 3.5058e-03 1.95 2.2697e-04 1.99
9.1788e-02 2.3662e-03 1.80 1.5237e-04 1.83
7.7804e-02 1.6926e-03 2.02 1.0866e-04 2.04

Table 27 – Convergence rate for h in } ¨ }H norm(ε „ 1e´ 06, h „ 1e´ 04)

Hmax }ep,Hε }H Rate }eC,Hε }H Rate
5.0994e-02 4.7257e-03 - 1.4058e-03 -
3.3641e-02 1.9674e-03 2.10 6.3358e-04 1.91
2.5243e-02 1.1147e-03 1.97 3.5674e-04 2.00
2.1161e-02 7.2352e-04 2.44 2.2919e-04 2.50
1.6831e-02 4.9429e-04 1.66 1.5901e-04 1.59
1.4717e-02 3.7325e-04 2.09 1.1683e-04 2.29

Table 28 – Convergence rate for h in } ¨ }H norm(ε „ 1e´ 06, h „ 1e´ 04)

Hmax }∇´xep,Hε }H,´ Rate }∇´xeC,Hε }H,´ Rate
5.0994e-02 6.5900e-03 - 2.3800e-03 -
3.3641e-02 2.8429e-03 2.02 1.0820e-03 1.89
2.5243e-02 1.6014e-03 1.99 6.1261e-04 1.98
2.1161e-02 1.0335e-03 2.48 3.9544e-04 2.48
1.6831e-02 7.0945e-04 1.64 2.7404e-04 1.60
1.4717e-02 5.2946e-04 2.17 2.0166e-04 2.28
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7.5 Comments
If we take a look closer, the scheme described here is very familiar with the

HMM framework (see Chapter 4). The macro solver choose is the supraconvergent method
described in Chapter 6 and we supply the need data by approximate the homogenized
tensor using information of the microscale. On the other hand, we take advantage of the
periodicity to build a scheme that does not need to solve a microproblem around each
node of the macro mesh. The micro problem is solved in a domain of reference that in
some sense is independent of ε. The main idea of the scheme is lead the convergence of
the micro problem to the macro problem without lose accuracy.

The numerical convergence of Opεq for the post-processing approximation was
not expected and is superior in comparison with other methods as HMM-FEM. We strongly
believe that it is a consequence of the supraconvergent method, but we remark that there
is a finite elements equivalency so we need to go deeper to find the right answer. Note
that the computational cost of this scheme is the same than solving a 1D coupled problem
in Chapter 6.
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8 Conclusions, contributions and future work

8.1 Conclusions
Based on some models for tumor growth in the colon, see Chapter 1, we used a

system of PDE in three spatial dimensions for the dynamics of colon cell populations. The
cell dynamics, differentiation and proliferation in the colon occur in three dimensional
cavities wide spread in the colon epithelium and called crypts. Due to its micro-dimension
(measured in micro-meters), that is very small with respect the dimension of the colon that
is measured in meters, such dynamics in the colon can be modeled by using multiscales
with a microscale dimension ε representing the dimension of a single crypt and a macroscale
for the colon epithelium dimension. Moreover due to the large diffusion of crypts in the
colon we suppose that an averaged crypt is periodically distributed in the colon, as done
in Chapter 2. The averaged reference crypt is there represented by a two dimensional
Riemannian manifold that permits to rewrite the three dimensional PDE system in a
bidimensional PDE system whose parameters describing the proliferation, diffusion and
geometry of the crypt will depend on the micro-scale dimension ε. Solving a multiscale
problem with a standard FEM usually needs to use the smallest scale in all the domain.
For multiscale elliptic problem

´∇pAε∇uεq “ f (8.1)

the following sharp a-priori error is valid

}uε ´ u}H1 ď C
h

ε
}f}H´1 , (8.2)

which means that to get a limited error the mesh size must satisfies h ă ε leading to a
huge computational effort. To overcome this difficulty in solving multiscale problems we
introduced the homogenization theory in Chapter 3 for the coupled multiscale PDE system
solving the cell dynamics in the colon epithelium. The homogenization permits to analyze
the multiscale problem with solution uε when εÑ 0 by using a single scale, transforming
the multiscale PDE equations in a problem, called homogenized problem with solution u0,
that is uniformly spanned in all the domain. There are known analytical forms for the
homogenized problem and error estimates associated to many elliptic, parabolic and coupled
problems (GOUDON; POUPAUD, 2005), however it results computationally expensive
to build the associated homogenization tensors. This is the reason for introducing the
HMM-FEM method in Chapter 4 that permits to approximate the homogenized solution
through a FEM multiscale strategy using a limited computational and memory effort. Its
computational cost is in fact independent of the dimension of the micro scale, and the
associated homogenized tensor can be computed by solving the microscale cell problem
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only around the quadrature points used to approximates the macro-scale integrals that
depend on the FEM used. As discussed in the thesis, exists in the literature HMM error
estimates with respect the homogenized solution }u0

´ uHMM
} for elliptic and parabolic

multiscale problems. It is known for example that the error estimates for the gradients
scales with a first order of convergence with respect H, and second order with respect to
h

ε
. Moreover the HMM-FEM solution can be used to approximate the multiscale solution

after a proper post-processing construction of a approximation of uε. This reconstructed
approximation scales for the gradients with order 0.5 and for the solutions with order 1.

A goal of this thesis was to speed-up such convergence in solving coupled
parabolic elliptic multiscale PDE problem as that associated to the colonic crypt cell
dynamics in nonuniform meshes. We succeed in this by building firstly a finite difference
method with a higher convergence order than to HMM-FEM for approximating the gradient
of the solution of coupled PDE parabolic-elliptic system in a single scale, see Chapter 5.
This supraconvergent method is proved to converge with a such high order for solutions in
C4
pΩq.

We were able to relax such assumption in Chapter 6 proving that this method
is equivalent to a FEM method that converges with the same order using less regular
functions that are in H3

pΩq. Finally in Chapter 7 we extended this method to solve
accurately, with an high order, multiscale coupled PDE systems. We proposed a multiscale
strategy that uses the supraconvergent method at each scale: in the micro to solve the
microscale cell problem for obtaining the homogenized matrix, and in the macro-scale to
solve the homogenized equations. Such strategy combined with the post-processing of the
homogenized solution uε,H :“ u0,H

` εu1,H permits to have a high accurate method for
the gradient that is a second order for the micro and macro scale mesh size and of first
order with respect ε. This post-processing strategy is similar to that used in HMM-FEM
(see Chapter 4).

8.2 Future work
In this section we give some remarks on perspectives of the thesis results that

can be investigated in the future.

8.2.1 Convergence and stability analysis

In Chapter 7 we presented how to use the supraconvergent method to obtain
better approximations of the multiscale solution of PDE multiscale coupled elliptic parabolic
problems. Our numerical tests show a OpH2

max`h
2
max`ε`fpH, h, εqq order of convergence

in nonuniform meshes. The next step is then to prove such orders theoretically using a
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similar approach of that used in Chapter 5 and 6 but now considering also the ε scale and
the interaction with the macro scale in the approximations.

8.2.2 The Hill equation

Nowadays medical doctors are interested in the physiochemical reactions of
drugs with the cancer cell proliferation. A such problem is modeled nowadays by adding a
reaction term represented by a Hill equation in the cell dynamics that inhibits or reduces
the cell proliferation and cancer growth. A such new equation coupled with a drug release
model in the colon can be considered in our mathematical modeling of colonic cell dynamics
to simulate its effect in the first stage of colorectal cancer under a pharmacological therapy.

This new equation can be represented by a Hill equation that is a nonlinear
relation between three parameters ymax, c and α:

y “
ymaxx

α

cα ` xα
. (8.3)

Focusing on pharmacodynamics, the Hill equation has been widely used to describe the
relation between drug effect pEq and drug concentration pCq. Mathematically, this model
has a Hill equation form

E “
EmaxC

α

Cα
50 ` C

α
, (8.4)

where E is the predicted effect of the drug, Emax is the maximum effect , C is the drug
concentration at time t, C50 is the drug concentration for which 50% of maximum effect is
obtained and α is the Hill coefficient of sigmoidicity. For more details see (GOUTELLE et
al., 2009; ZHAN; GEDROYC; XU, 2014).

8.2.3 Convergence and stability analysis of the HMM-FEM method applied
to a coupled problem

In Chapter 4 we applied the HHM-FEM to our coupled problem to get the first
numerical solutions in a observable macro scale. We showed numerically that HMM-FEM
solution converges to the homogenized solution when macro scale size goes to zero also for
our coupled elliptic parabolic problem.The convergence rates obtained are similar to those
obtained in (ABDULLE, 2009; ABDULLE, 2012; ABDULLE; HUBER, 2014; ABDULLE;
NONNENMACHER, 2009). It is interested to prove this convergence rate theoretically, in
fact this will help us to determine the exact error estimates and understand how reducing
the approximation error.

8.2.4 2D analysis of supraconvergent multiscale method

Results in Chapter 7 have been obtained applying the proposed multiscale
method to solve a multiscale problem in one dimension in space. Despite this, it is easy to
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extend such multiscale method in a 2D domain. Preliminary results have been already
obtained, see Example 14, where we prove that we can approximate the homogenized
tensor with a high order by using the supraconvergent method presented in Chapters 5-6.

Example 14. Taking Apy1, y2q “ p2` cosp2πy1qqI, where I P R2ˆ2 and

A0
“

« ?
3 0

0 2

ff

(8.5)

Table 29 – Numerical approximation for homogenized tensor

hmax }A0
´Ah}8 Rate

2.0005e-01 4.7314e-02 0.0000
1.0002e-01 1.3118e-02 1.8505
5.0024e-02 3.2997e-03 1.9919
2.5002e-02 8.2611e-04 1.9967
1.2503e-02 2.0664e-04 1.9996
6.2516e-03 5.1619e-05 2.0011

Using this result it will be possible to prove a high order of convergence for
the multiscale numerical solution in bidimensional domains. This will be obtained using
similar demonstrations of that presented for one dimensional multiscale problems.

8.3 Contributions

8.3.1 Presentations

Some parts of this work were presented in the following events:

• CNMAC - XXXVIII Computational and applied mathematics National Congress -
Campinas/SP - Brazil (2018);

• WCMNA - Workshop on Computational Modeling and Numerical Analysis -
Petrópolis/RJ - Brazil(2019);

• ICIAM - International Congress on Industrial and Applied Mathematics - Valencia -
Spain (2019);

• WANA - Workshop on Numerical Analysis and Applications- Imecc/Unicamp -
Brazil (2019);
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8.3.2 Project

I gained a CAPES-PRINT financed project for a visiting research in the
University of Coimbra-Portugal under the supervision of Professor José Augusto Ferreira
from September 2019 to March 2020.

The project was named Estabilidade e Convergência de métodos numéricos
multiescala aplicados a equacões diferenciais acopladas and started at 01/09/2019. During
this six months we developed a numerical process to approximate the solution of a general
coupled elliptic parabolic PDE system in a single scale on nonuniform meshes. The main
result obtained during this research visit was the quadratic convergence in L2 and H1

discrete norms of the numerical method presented in Chapters 5-6 when the solutions
belongs in H3.

Moreover during this period a small part of Chapter 7 have been developed,
and I profit that period to learn numerical techniques to improve further this Chapter
later on.

8.3.3 Submissions of articles

With this work we have the intention of publish up to 3 articles. The first one
are the results presented in Chapter 5. It is named

• Supraconvergent method for elliptic-parabolic PDE systems

and is expected to be submitted by January.

The second will present the results of Chapter 6.

The last one will contain the results of Chapter 7 together with the future work
8.2.1 discussed above.
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APPENDIX A – Riemannian Manifold

A.1 Differential model on a manifold
In what follows we introduce some notations, and the derivatives for functions

defined on a 2D Riemann manifold. This will permit to rewrite system (2.5) in the local
coordinates of the 2D manifold Γ. Briefly let Γ Ă R3 be a 2D Riemann manifold, tY, ϕu a
chart, and let py1, y2q P Y the local coordinates that parameterize the manifold Γ. For an
arbitrary C2

pΓq function f : Γ Ñ R, we define f : Y Ñ R such that f “ f ˝ϕ. The relation
between the derivatives of the function f , defined in Γ, and derivatives of f , defined in Y ,
are established using the metric g, associated to the manifold Γ (CARMO, 1976; HSU,
2007; BRENNER; SCOTT, 2004).

In the next paragraph we give the formal definitions for Riemannian Manifold,
metric g, the associated function matrix g, and the matrix A that are used in Chapter 2.

A.1.1 Riemannian manifold and metric

Definition 1. Let Γ be a differential manifold. A differentiable function α : p´ε, εq Ñ Γ
is called a (differentiable) curve in Γ. Suppose that αp0q “ p P Γ, and let D be the set of
functions on Γ that are differentiable at p. The tangent vector to the curve α at t “ 0 is a
function α1p0q : D Ñ R given by

α1p0qf “ Bpf ˝ αq
Bt

|t“0, f P D. (A.1)

Since αp0q “ p, each tangent vector defined in (A.1) is also called tangent vector at p. The
set of all tangent vectors to Γ at p, indicated by TpΓ, is called Tangent Plane of Γ at p.

A Riemannian Metric g in a differentiable manifold Γ is a correspondence
which associates to each point p on Γ an inner product x, yp (that is, a symmetric,
bilinear, positive-definite form) on the tangent space TpΓ. The differential manifold Γ
endowed with the metric g, that is pΓ, gq, is for definition a Riemannian manifold. If
ϕ : Y Ă R2

Ñ Γ is a system of coordinates around p, for each q P ϕpY q, q “ ϕpy1, y2q ,

then gi,jpy1, y2q :“ xBϕpy1, y2q

Byi
,
Bϕpy1, y2q

Byj
yp is a differentiable function on Y . The function

pgi,jqi,j“1,2. is called the local representation of the Riemannian metric g in the coordinate
system ϕ : Y Ă R2

Ñ Γ. This matrix function pgi,jq is represented in this thesis, for abuse
of notation, by the matrix function g.

We consider in our model problem a crypt as a surface in R3, that is a
Riemannian manifold thus in the next part we define the differential operators over
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surfaces. Recall that a subset Γ Ă R3 is a regular surface if, for every point p P Γ, there
exist a neighborhood V of p in R3 and a mapping x : U Ă R2

Ñ V X Γ of an open set
U Ă R2 onto V X Γ, such that:

• x is a differentiable homeomorphism;

• The differential pdxqq : R2
Ñ R3 is injective for all q P U (CARMO, 1976).

The natural inner product of Γ Ă R3 induces on each Tϕpy1,y2qpΓq of a regular
surface Γ, an inner product to be denoted by x, yϕpy1,y2q(x, y for convenience). In general,
to this inner product, which is a symmetric bilinear form, there corresponds a quadratic
form Ip : TpΓ Ñ R given by

Ippwq “ xw,wyp “ |w|
2
ě 0. (A.2)

In the case of Γ is a surface, gi j “ x
Bϕ

Byi
,
Bϕ

Byj
y that are the scalar product between

the derivatives Bϕ
Byi

P R3. A Riemannian metric is important to introduce the meaning of

distance on the manifold. We define by g´1, the g inverse matrix, with elements gi j , that is
g´1

“ pgijqi,j“1,2. This permits to define the function A with elements Ai j “
a

| det g|gi j,
where det g denotes the determinant of g.

A.1.2 Differential operators on a Riemannian manifold

Although we can solve the problem (2.5) in that form, the implementation
of numerical methods would be easier if the domain was a subset of Rn, thus we firstly
rewrite the original problem in local coordinates.

A.1.2.1 The gradient

Let pΓ, gq be a surface, and let f : Γ Ñ R be a real-valued function over Γ. For
any p P Γ and for any v P TpΓ, the gradient of f in p is a vector field defined by

xgradf, vy “ dfppvq. (A.3)

That is, for each p P Γ and for any v P TpΓ, gradf is a vector in TpΓ such that
the inner product with v is the derivation of f by v. In local coordinates

gradf “
n
ÿ

i,j“1
gij
Bf̄

Byi

B

Byj
. (A.4)
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A.1.2.2 The divergence

The divergence of a vector field V in local coordinates is

divV “ 1
|
?
det g|

n
ÿ

i“1

B

Byi
pVi

a

|det g|q (A.5)

where V “
n
ÿ

i“1
Vi
B

Byi
.

A.1.2.3 The Laplacian-Beltrami-Operator

After determining the expressions to the gradient and to the divergence, we can
combine them into a way to compute the Laplace-Beltrami-Operator(∆Γ : C8pΓq Ñ C8)
in local coordinates

∆Γf “ div gradf (A.6)

“
1

a

|det g|

n
ÿ

i,j“1

B

Byi

`

a

det ggij Bf̄
Byj

˘

(A.7)

“
1

a

| det g|

n
ÿ

i,j“1

B

Byi

`

Ai,j
Bf̄

Byj

˘

, (A.8)

where Ai,j “
a

det g gij . One can find more details about these operators in (LEE, 2003).
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APPENDIX B – Banach Spaces, Sobolev
Spaces and Periodic function in Sobolev Space

H1

B.1 Banach space

B.1.1 Dual space

Definition 2. If E is a Banach space, the set of the linear and continuous maps from E

into R is called the dual space of E and is denoted E 1. If x1 P E 1, the image x1pxq of x P E
is denoted by xx1, xyE1,E. The bracket x¨, ¨yE1,E is called the duality pairing between E 1 and
E.

B.1.2 Weak convergence

Definition 3. A sequence txnu P E is said to converge weakly to x iff

@x1 P E 1, xx1, xnyE1,E Ñ xx1, xyE1,E. (B.1)

This weak convergence is denoted

xn á x weakly in E. (B.2)

B.2 Sobolev space

B.2.1 W k
p pΩq

Definition 4. Let k be a non-negative integer, and let f P L1
locpΩq. Suppose that the weak

derivative Dα
wf exist for all |α| ď k. Define the Sobolev norm

}f}Wk
p pωq

”
`

ÿ

|α|ďk

}Dα
wf}

p
LppΩq

˘1{p (B.3)

in the case 1 ď p ă 8, and in the case p “ 8

}f}Wk
p pωq

” max|α|ďk}D
α
wf}L8pΩq. (B.4)

In either case, we define the Sobolev space via

W k
p Ω ” tf P L1

locpΩq : }f}Wk
p pΩq ă 8u. (B.5)
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For p “ 2, one denotes W k
2 pΩq “ Hk

pΩq. Suppose that BΩ is Lipschitz continu-
ous. Then

H1
0 pΩq “ tu|u P H1

pΩq, γpuq “ 0u. (B.6)

The function γpuq is called the trace of u on BΩ.

Definition 5. We denote by H´1
pΩq the Banach space defined by

H´1
pΩq “ pH1

0 pΩqq1 (B.7)

wquipped with the norm

}F }H´1pΩq “ sup
H1

0 pΩqz0

|xF, uyH´1pΩq,H1
0 pΩq|

}u}H1
0 pΩq

. (B.8)

B.3 Periodic functions in the Sobolev space H1
pY q

Here we introduce a notion of periodicity for functions in the Sobolev space
H1. Let Y be the reference cell defined by Y “ p0, l1q, where l1 is a positive number.

Definition 6. Let C8perpY q be the subset of C8pRq of Y -periodic functions. We denote by
H1
perpY q the closure of C8pRq for the H1-norm.

Proposition 13. Let u P H1
perpY q and u# be its extension defined by periodicity. Then

u# is in H1
pwq for any bounded open subset w of R.

Definition 7. The quotient space

WperpY q “ H1
perpY q{R (B.9)

is defined as the space of equivalence classes with respect to the relation

u » v ðñ u´ v is a constant, @u, v P H1
perpY q. (B.10)

We denote by 9u the equivalence class represented by u.

Proposition 14. The following quantity:

} 9u}WperpY q “ }∇u}L2pY q, @u P 9u, @ 9u PWperpY q, (B.11)

defines a norm on WperpY q.

Suppose that the coefficients ai,j are Y -periodic. Let f be Y -periodic and
consider the problem

$

’

’

’

&

’

’

’

%

´∇
`

A∇u
˘

“ f in Y

xuy “ 0

u Y ´ periodic.

(B.12)
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A natural space for the solutions is

Wper,0pY q “ tv|v P H
1
perpY q,MY pvq “ 0u. (B.13)

Hence, for f given in pWper,0pY qq
1, the variational formulation is

$

’

’

’

’

&

’

’

’

’

%

Find u P Wper,0pY q such that
ż

Y

A∇u∇v dy “ xf, vypWper,0pY qq1,Wper,0pY q

@v P Wper,0pY q.

(B.14)

Due to the Poincaré-Wirtinger inequality, Wper,0pY q is a Banach space for the
norm

}u}Wper,0pY q “ }∇u}L2pY q, @u P Wper,0pY q. (B.15)

Theorem 5. Let A be a elliptic matrix with Y -periodic coefficients and f P pWper,0pY qq
1.

Then problem (B.14) has a unique solution.

B.4 Homogenization in one dimensional function space
Consider the following problem

$

&

%

´
d

dx

`

λεpxq
Buε

Bx

˘

“ f ε, 0 ă x ă 1,

up0q “ up1q “ 0.
(B.16)

In the light of the properties of our model problem it is now natural to assume
a two scales asymptotic expansion for the solution uεpxq. We start by introducing the new
variable y, defined as y “ ε´1x, and assume that uεpxq can be represented as

uεpxq “ w0px, yq ` εw1px, yq ` ε
2w2px, yq ` ¨ ¨ ¨ (B.17)

where the function wipx, yq, i “ 0, 1, 2, ¨ ¨ ¨ , are assumed to be periodic in the variable y
over some fixed interval Y . We introduce the operator Aε as

AεΨ “ ´
d

dx

`

λεpxq
dΨ
dx

˘

. (B.18)

Assuming Ψpxq “ Φpx, yq, the chain rule yields

dΨ
dx

“
BΦ
Bx
`

1
ε

BΦ
By
. (B.19)
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Thus

Aεuε “ ´
d

dx

`

λεpxq
duε

dx

˘

(B.20)

“ ´
` B

Bx
`

1
ε

B

By

˘`

λpyq
` B

Bx
`

1
ε

B

By

˘`

w0 ` εwi ` ε
2w2 ` ¨ ¨ ¨

˘˘

(B.21)

“ pε´2A0 ` ε
´1A1 ` A2qpw0 ` εw1 ` ε

2w2 ` ¨ ¨ ¨ q “ f ε, (B.22)

where

A0 “ ´
B

By

`

λpyq
B

By

˘

, (B.23)

A1 “ ´
B

By

`

λpyq
B

Bx

˘

´ λpyq
B2

BxBy
, (B.24)

A2 “ ´λpyq
B2

Bx2 . (B.25)

Equating in powers of ε leads us to the following three lowest order equations

A0w0 “ 0, (B.26)

A0w1 ` A1w0 “ 0, (B.27)

A0w2 ` a1w1 ` A2w0 “ f ε. (B.28)

In order to solve (B.26)-(B.28) we need the following Lemma:

Lemma 7. Let ζpyq P L2
pΩq be Y´periodic. For the boundary value problem in Y

A0Ψ “ ζpyq, , (B.29)

where Ψpyq is Y´periodic, the following holds:

1. There exists a solution Ψ if and only if xζy “ 0.

2. If there exists a solution it is unique up to an additive constant.

Now we note that (B.26) has the trivial solution w0 “ 0. Since the variable x is
just a parameter in (B.26), Lemma 7 yelds that w0px, yq is a solution of (B.26) if and only
if w0 is a constant with respect to the variable y, i.e., w0px, yq “ upxq, for some sufficiently
differentiable function upxq. Then we have

A0w1 “
Bλ

By
pyq
Bu

Bx
pxq. (B.30)
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Here again x is just a parameter and the equation may be regarded as a problem
depending on the variable y only. Therefore it suffices to consider the cell problem

A0χ “ ´
Bλ

By
, χpyq Y ´ periodic. (B.31)

Now, assume that a solution χpyq of (B.31) is given. By using the linearity
and the fact that A0 not involves differentiation with respect to x, we conclude that the
function

w1px, yq “ ´χpyq
Bu

Bx
pxq ` u1pxq (B.32)

is also a solution of (B.31) for every sufficiently differentiable u1pxq. By using Lemma 7
once more we find that (B.28) has a solution w2px, yq, Y´periodic in y, if and only if

xf ´ A1w1 ´ A2w0y “ 0, (B.33)

where

A1w1 “
B

By
pλpyqχpyqq

B2u

Bx2 pxq ´
Bλ

By
pyq
Bu1

Bx
pxq ` λpyq

Bχ

By

B2u

Bx2 pxq, (B.34)

and
A2w0 “ ´λpyq

B2u

Bx2 . (B.35)

The Y´periodicity of λpyq and χpyq implies that

xA1w1 ` A2w0y “ ´xλ´ λ
Bχ

By
y
B2u

Bx2 . (B.36)

A function w2px, yq exists if and only if χpyq and upxq satisfy the relation

´xλ´ λ
Bχ

By
y
B2u

Bx2 “ xfy. (B.37)

We say that
q “ xλ´ λ

Bχ

By
y, (B.38)

is the homogenized coefficient of the homogenized equation (B.37).
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B.5 Some theorems of functional analysis

Theorem 6 (Lax-Milgram). Assume that H is a Hilbert space, B : H ˆ H Ñ R is a
bilinear functional and there exist constants α, β ą 0 such that

|Bpu, vq| ď α}u} ¨ }v}, u, v P H, (B.39)

β}u}2 ď Bpu, vq, u P H. (B.40)

Then for every continuous functional f on H there exists a unique w P H such that

Bpw, vq “ fpvq, v P H. (B.41)

For more details see (BRENNER; SCOTT, 2008).

Theorem 7 (Bramble-Hilbert). Let F be a linear functional on Hk
p pRq satisfying

• |F puq| ď C
k
ÿ

j“1
ρj´N{p|u|j,p where C is independent of ρ and u,

• F pqq “ 0 for q P PK.

Then there is a constant C independent of ρ and u such that

|F puq| ď Cρk´N{p
ÿ

τPK

}Dτu}p,R. (B.42)

For more details see (BRAMBLE; HILBERT, 1970).

B.6 Supraconvergence and Superconvergence of numerical meth-
ods

A finite difference method is called supraconvergent when it has an higher
convergence order than the truncation error order measured pointwise or in the L8 norm,
(KREISS et al., 1986) Thus for example if u is a solution of a differential problem and uh
is its approximation obtained by some finite difference method having a truncation error
Th, such that }Th} ď Chs, where h is the maximum mesh size used in the grid. If the error
of the method }u´ uh} converges to zero with order greater than s, then the method is
called supraconvergent. In our case we proved in Chapter 5 that in a discrete H1 norm the
error goes to zero with order two for any non uniform mesh, even if the truncation error is
of order one in the infinity norm. Then our method is supraconvergent in a discrete H1

norm. When a such supraconvergence appear for a finite element method then the method
is called superconvergent.
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