
 
 

                                                                                                                                      

 

UNIVERSIDADE ESTADUAL DE CAMPINAS 

FACULDADE DE ENGENHARIA DE ALIMENTOS 

 

 

LUIS JAM PIER CRUZ TIRADO 

 

 

 

 

HYPERSPECTRAL IMAGING FOR FOOD QUALITY CONTROL: COCOA 

BEANS HYBRIDS AND CHIA SEEDS SHELF-LIFE 

 

 

IMAGENS HIPERESPECTRAIS PARA O CONTROLE DA QUALIDADE DE 

ALIMENTOS: HIBRIDOS DE GRÃOS DE CACAU E VIDA DE PRATELEIRA 

DE SEMENTES DE CHIA 

 

 

 

 

 

CAMPINAS 

2020 



 
 

LUIS JAM PIER CRUZ TIRADO 

HYPERSPECTRAL IMAGING FOR FOOD QUALITY CONTROL: COCOA 

BEANS HYBRIDS AND CHIA SEEDS SHELF-LIFE 

 

 

IMAGENS HIPERESPECTRAIS PARA O CONTROLE DA QUALIDADE DE 

ALIMENTOS: HIBRIDOS DE GRÃOS DE CACAU E VIDA DE PRATELEIRA 

DE SEMENTES DE CHIA 

 

Dissertation presented to the School of Food 

Engineering of the University of Campinas in 

partial fulfillment of the requirements for the 

degree of Master, in the area of Food 

Engineering. 

 

Dissertação de mestrado apresentada à 

Faculdade de Engenharia de Alimentos da 

Universidade Estadual de Campinas como parte 

dos requisitos exigidos para a obtenção do título 

de Mestre em Engenharia de Alimentos. 

 

Orientador: Prof. Dr. DOUGLAS FERNANDES BARBIN 

ESTE EXEMPLAR CORRESPONDE À  

VERSÃO FINAL DA DISSERTAÇÃO  

DEFENDIDA PELO ALUNO LUIS JAM  

PIER CRUZ TIRADO E ORIENTADA PELO 

PROF. DR. DOUGLAS FERNANDES BARBIN. 

 

CAMPINAS – SP 

2020 



Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca da Faculdade de Engenharia de Alimentos
Claudia Aparecida Romano - CRB 8/5816

    
  Cruz Tirado, Luis Jam Pier, 1992-  
 C889h CruHyperspectral imaging for food quality control: cocoa beans hybrids and

chia seeds shelf-life / Luis Jam Pier Cruz Tirado. – Campinas, SP : [s.n.], 2020.
 

   
  CruOrientador: Douglas Fernandes Barbin.
  CruDissertação (mestrado) – Universidade Estadual de Campinas, Faculdade

de Engenharia de Alimentos.
 

    
  Cru1. Híbrido de cacau. 2. Chia - Sementes. 3. Aprendizado de máquinas. 4.

Vida de prateleira. 5. NIR. I. Barbin, Douglas Fernandes. II. Universidade
Estadual de Campinas. Faculdade de Engenharia de Alimentos. III. Título.

 

Informações para Biblioteca Digital

Título em outro idioma: Imagens hiperespectrais para o controle da qualidade de
alimentos: híbridos de graos de cacao de cacau e vida de prateleira de sementes de chia
Palavras-chave em inglês:
Cocoa hybrid
Chia - Seeds
Machine learning
Shelf life
NIR
Área de concentração: Engenharia de Alimentos
Titulação: Mestre em Engenharia de Alimentos
Banca examinadora:
Douglas Fernandes Barbin [Orientador]
Nuria Aleixos Borrás
Jose Blasco-Ivars
Data de defesa: 25-09-2020
Programa de Pós-Graduação: Engenharia de Alimentos

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-1963-4965
- Currículo Lattes do autor: http://lattes.cnpq.br/0860003173704816  

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


 
 

BANCA EXAMINADORA 

 

Prof. Dr. Douglas Fernandes Barbin – Orientador 

Faculdade de Engenharia de Alimentos (FEA) 

Universidade Estadual de Campinas (UNICAMP), Campinas - SP 

 

 

Prof. Dr. José Blasco Ivars – Membro Titular 

Instituto Valenciano de Investigaciones Agrarias - IVIA 

Moncada, Valencia, Espanha 

 

 

Dr. Nuria Aleixos Borras - Membro Titular 

Departamento de Ingeniería Gráfica 

Universitat Politècnica de València, Valencia - Espanha 

 

 

 

 

 

A Ata da defesa com as respectivas assinaturas dos membros encontra-se no 

SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade. 



 
 

 

 

 

 

 

 

 

 

 

 

 

This work is dedicated to my parents, Clara and Jorge, who motivate 

me every year to continue, even if they have to see me go. 

To my sisters and brother, Marjory, Angie and Nick, for their 

unconditional affection. 

To my grandmothers, Tarcila and Bartola, who were always mothers 

in my life. 

To my grandfather, Francisco, from whom I couldn't say goodbye, 

sorry. 

To my friends, from Peru, from Brazil and Belgium, they are and 

always will be my family. 



 
 

AGRADECIMIENTOS 

I thank God for taking care of me and for giving me strength every day to continue. 

To my parents, Jorge and Clara, for teaching me to pursue my goals, not to lose myself, 

to be a correct person and to take advantage of each new day. 

To my advisor, Prof. Dr. Douglas for his guidance, but above all for his friendship and 

his respect, for listening to me, supporting me, for being like a brother. Thank you for 

motivating me to always want more. 

To my colleagues, Amanda and Marciano, for the conversations, the jokes, the 

partnership, the extensive audios of whatsapp (Amanda), the coexistence (that implies 

one or another beer (Marciano)), and for their respect, which is reciprocal. 

To José Manuel Amigo, for his friendship and commitment. Thank you for always 

answering my emails and for your help in my professional development. 

To Juan Fernández Pierna, Vincent Baeten and the workers of the CRA-W Research 

Center, for the support during my exchange, for the conversations and for the advice. 

To my Belgian friends, Claudia Snipimoys Piccolo, David Beguin, Jérôme Dardenne, 

Vincent Exsteens and the guys of Gembloux Volleyball Team, for their friendship, the 

intense trainings, for the games, the hamburgers after training, for the countless beers, 

and for being that support during my stay in Belgium. 

To my friends that I met during the master's degree, Noadia, Raquel, Ramon, Joaquim, 

Tatiane, Raffaela, Sabrina e Diego, Bárbara, Erick, Karina (gordinha), Monique, María 

Isabel, Sara Fraga, Bia, Fernanda Sievich, Cassia and María Paula, for the 

conversations, for the coffees, for the beers, for the parties, for the advices, for the 

camaraderie, for her friendship. 



 
 

To my friends of Liga das Engenharias da Unicamp (LEU), George Paiva, Caio, Hugo, 

Pkizinho, Lucas (Megatron), Esperança, Gabriel (Contador), Vinicius, Leonardo, 

Victor, Mari Oliveira, Daniel (Bahía) and Ettore (Medina), for their friendship, for their 

love, for all training and games, for "after training" (Kadelao), for parties and for 

patience. 

This work was supported by São Paulo Research Foundation (FAPESP) with project 

number 2019/04833-3 (BEPE fellowship), 2018/02500-4 (Master fellowship) and 

2015/24351-2 (Young Researcher fellowship). 

This work was carried out with the support of the Coordenação de Aperfeiçoamento de 

Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001 

(88882.329557/2019-01). 

 

 

 

 

 

 

 

 

 

 

 



 
 

RESUMO 

A imagem hiperespectral (HSI) permite a aquisição simultânea de informações 

espectrais e espaciais. Neste trabalho, HSI foi utilizado para o controle de qualidade de 

produtos agrícolas, que inclui a autenticação de híbridos de cacau e a estimativa do 

prazo de validade de sementes de chia. Para o trabalho com sementes de chia, as 

amostras foram armazenadas a 25, 35 e 45 ° C por 180 dias, para análises aceleradas do 

prazo de validade. Periodicamente, as amostras de chia eram removidas do 

armazenamento para obter imagens hiperespectrais (900 - 2500 nm), análise de acidez e 

perfil de ácidos graxos. O objetivo foi usar imagens hiperespectrais e análises 

multivariadas para desenvolver uma metodologia para estimar a vida de prateleira de 

sementes de chia, denominada Multivariate Accelerated Shelf Life Testing (MASLT). A 

Análise de Componentes Principais (PCA) foi usada para estudar a variabilidade 

durante o armazenamento e, em seguida, as pontuações do PC foram usadas para 

modelar a cinética e estimar os parâmetros da Equação de Arrhenius e, finalmente, para 

estimar a vida de prateleira. Além disso, pela primeira vez, uma nova estratégia foi 

proposta para validar essa metodologia, que chamamos de "Re-sampling", onde as 

amostras do conjunto de validação foram projetadas no conjunto de calibração com um 

número razoável de iterações. Os escores PC1 e gráficos cinéticos foram construídos 

ajustando os escores PC1 relacionados ao tempo versus o tempo por um modelo 

cinético fundido (R2> 0,85). Os espectros de sementes de chia onde a acidez aumentou 

em 75% a partir do valor inicial foram usados para calcular o valor de corte (-0,9853). 

As estimativas de vida de prateleira foram 1300, 798 e 90 dias para sementes de chia 

armazenadas a 25, 35 e 45 ° C, respectivamente. Pela primeira vez, uma metodologia 

confiável é proposta para validar que todas as amostras foram previstas corretamente 

usando as pontuações PC1. No segundo estudo, cinco híbridos de cacau foram 



 
 

cultivados e processados nas mesmas condições na CEPLAC (Medicilândia, Pará, 

Brasil). Os grãos de cacau foram então transportados para o Wallonie Research Center 

(Bélgica), onde foram obtidas imagens hiperespectrais na faixa de 1100 - 2500 nm. A 

análise parcial discriminante dos mínimos quadrados (PLS-DA) e a máquina de vetores 

de suporte (SVM) foram implementadas para classificar os híbridos de cacau, (1) duas 

classes de híbridos e (2) cinco classes de híbridos. Além disso, um novo conjunto de 

imagens foi usado para validação externa pixel a pixel. Os resultados mostraram que 

PLS-DA e SVM tiveramresultados comparáveis para modelos de duas classes 

(híbridos), mas o SVM (erro de previsão de 3,8 a 23,1%) foi superior ao PLS-DA (erro 

de previsão de 4,4 a 34,4%) quando todas as cinco classes de híbridos foram incluídas 

em um modelo. Os resultados de previsão pixel a pixel em um conjunto de imagens 

externas mostraram uma taxa de classificação correta de 50 a 100%. Os resultados para 

os modelos de duas classes e cinco foram comparáveis às técnicas de reação em cadeia 

da polimerase. Os resultados mostram o potencial do HSI para o controle de qualidade 

de produtos agrícolas, tanto para autenticação quanto para estimativa do prazo de 

validade. 

PALAVRAS-CHAVE: híbrido de cacau; sementes de chia; aprendizado de máquina; 

re-sampling; imagem hiperespectral; NIR; vida de prateleira  

 

 

 

 

 



 
 

ABSTRACT 

Hyperspectral imaging (HSI) enables simultaneous acquisition of spectral and spatial 

information. In this work, HSI was used for quality control of agricultural products, 

which includes the authentication of cocoa bean hybrids and the estimation of shelf-life 

of chia seeds. Regarding the chia seeds study, samples were stored at 25, 35 and 45 ° C 

for 180 days, for accelerated shelf life analyzes. From time to time, chia samples were 

removed from storage to acquire hyperspectral images (900 - 2500 nm), acidity 

analysis, and fatty acid profile. The objective was to use hyperspectral images and 

multivariate analysis to develop a methodology for estimating the shelf-life of chia 

seeds, called Multivariate Accelerated Shelf Life Testing (MASLT). Principal 

Component Analysis (PCA) was used to study the variability during storage, and then, 

the PC scores were used to model the kinetics and estimate the parameters of the 

Arrhenius Equation, and finally to estimate the shelf life. Furthermore, for the first time 

a new strategy was proposed to validate this methodology, which we called "Re-

sampling", where the samples from the validation set were projected onto the calibration 

set with a reasonable number of iterations. PC1 scores and kinetic charts were built 

fitting the time-related PC1 scores versus time by a fused kinetic model (R2 > 0.85). The 

spectra of chia seeds where acidity increased at 75% from initial value were used to 

calculate the cut-off value (-0.9853). The shelf life estimations were 1300, 798 and 90 

days for chia seeds stored at 25, 35 and 45 °C, respectively. For the first time, a reliable 

methodology is proposed to validate that all samples were correctly predicted using PC1 

scores. In the second study, cocoa beans hybrids (five) were grown and processed under 

the same conditions in CEPLAC (Medicilândia, Para, Brazil). The cocoa beans were 

then transported to the Wallonie Research Center (Belgium), where hyperspectral 

images in the 1100 - 2500 nm range were acquired. Partial least square discriminant 



 
 

analysis (PLS-DA) and Support vector machine (SVM) was implemented to classify 

cocoa bean hybrids, (1) two classes of hybrids and (2) five classes of hybrids. 

Additionally, a new set of images was used for external pixel-to-pixel validation. The 

results showed that PLS-DA and SVM demonstrate comparable results for two-class 

(hybrids) models, but SVM (3.8–23.1% prediction error) was superior to PLS-DA (4.4–

34.4% prediction error) when all five classes (hybrids) were included in a model. Pixel-

to-pixel prediction results on a set of external images showed a correct classification 

rate of 50 - 100%. The results for both the two-class models and the five-class model 

were comparable with polymerase chain reaction techniques.   The results show the 

potential of HSI for quality control of agricultural products, both for authentication and 

estimation of shelf life. 

KEYWORDS: cocoa bean hybrid; chia seeds; machine learning; re-sampling; 

hyperspectral imaging; NIR; shelf life 
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1.1 General Introduction 

The food industry is especially complex, both in its processes and in its supply chain. 

Initially, all supplies must be analyzed, to ensure they have the necessary quality, both 

in composition and authenticity. Next, during processing, the characteristics of the food 

must be evaluated at each stage, and in the product. Generally, here, at this stage, from a 

representative sample, the quality analysis results are expanded to entire batches of 

products. Finally, in the distribution chain, the products may be victims of economically 

motivated adulteration (EMA) or counterfeiting, potentially damaging prestigious 

brands and affecting consumer confidence. 

Currently, science offers various technological approaches to analyze foods with great 

precision, such as mass spectrometry to quantify metabolites (Diomande et al., 2015) or 

nuclear magnetic resonance to identify the geographical origin of food (Caligiani, Palla, 

Acquotti, Marseglia, & Palla, 2014). However, the food industry is modernizing, within 

what is known as "Industry 4.0". Therefore, analysis and monitoring techniques that can 

be installed in the production lines are needed, preferably free of chemical reagents, that 

are precise, friendly and that allow analyzing a greater quantity of food in real time. To 

this end, imaging technology has become a powerful technique for food analysis. In this 

field, hyperspectral images (HSI) allow the simultaneous acquisition of spectral 

information, related to internal characteristics, and spatial information, associated with 

external physical characteristics (Hussain, Sun, & Pu, 2019). HSI has shown good 

performance for component quantification (Kamruzzaman, Makino, & Oshita, 2016),  

food classification (Velásquez, Cruz-Tirado, Siche, & Quevedo, 2017) and fraud 

detection (Orrillo et al., 2019).  

In this research, the application of HSI for quality control in two products of high 

interest was proposed: chia seeds and cocoa beans. In the first case, Chia seeds were 
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stored for a long period, to evaluate their shelf life using accelerated conditions, 

acquiring hyperspectral images every certain period of time. With the established 

premise that (1) the samples had the same initial composition and (2) the changes in the 

samples are the effect of storage temperature, hyperspectral images were associated 

with the degradation of Chia seeds. Using the scores of the principal components (PCs) 

obtained from a Principal Component Analysis (PCA), it is possible to develop a 

methodology called Multivariate Accelerated Shelf Life Testing (MASLT). This 

method was previously established by Pedro & Ferreira (2006), therefore, the 

contribution in this research was to develop a validation strategy. For the first time, we 

used a "Re-sampling" strategy to validate that the samples were correctly predicted by 

MASLT. Therefore, it was possible to assume that the shelf-life was correctly estimated 

for each storage temperature. In the second case, HSI allowed to identify different 

classes of dry and fermented cocoa bean hybrids, which came from Pará (Brazil). The 

hybridization process was controlled, making it possible to select samples of hybrids of 

industrial interest. Furthermore, all the cocoa beans had the same drying process and 

fermentation time. The challenge in this study implied that the hybrids had similar 

ancestry, so their composition could be very similar. Thus, HSI should be able to 

discriminate hybrids only for small variations in composition. Accordingly, HSI showed 

a high performance to identify cocoa bean hybrids, with a correct classification of 40 - 

100%.  

The results encourage future studies to expand the technology to on-site applications, 

performance improvements using new artificial intelligence methods, and to include 

new samples and types of food. 
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2.1 Literature review  

2.1.1 Hyperspectral imaging 

Hyperspectral imaging (HSI) has been widely used in quality control of agricultural 

products (Jia et al., 2020). HSI allows to obtain spatial information (2 dimensions: X 

and Y) and spectral information (1 dimension: λ) simultaneously, obtaining a spectrum 

for each pixel in the image (Oliveira, Cruz‐Tirado, & Barbin, 2019). Therefore, since 

each food has a particular composition, the spectra vary and can be used as a "spectral 

fingerprint" of that food. However, to analyze the large amount of information obtained 

from HSI, it is necessary to use multivariate analysis, in order to generate models that 

allow interpreting the variability in a data set, making correlations with characteristics 

or properties of foods, and obtaining and recognizing patterns to discriminate samples 

(Rehman, Mahmud, Chang, Jin, & Shin, 2019). Hyperspectral imaging has found 

several applications in quality control, safety, and in monitoring the processing of 

various agricultural products (Jia et al., 2020), including fruits and vegetables 

(Tsouvaltzis, Babellahi, Amodio, & Colelli, 2020), meat (Kamruzzaman et al., 2016; J. 

Ma & Sun, 2020), fish (Ivorra et al., 2013), milk and dairy products (Munir, Wilson, 

Yu, & Young, 2018), honey (Noviyanto & Abdulla, 2019), condiments (Oliveira et al., 

2019), coffee (Calvini, Amigo, & Ulrici, 2017), cereals (Vermeulen, Suman, Fernández 

Pierna, & Baeten, 2018), among others. 

2.1.2 Hyperspectral data processing 

Hyperspectral images collect a large amount of information (thousands of data points), 

stored in pixels, with a high correlation between neighboring pixels (Vidal & Amigo, 

2012). Therefore, the analysis of this information requires multivariate techniques, 

which allow analyzing hypercube and extracting useful information. However, before 
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performing any multivariate analysis, the images and spectra must be corrected and pre-

processed, respectively. Some erroneous data values in the image such as dead pixels 

and spike points must be corrected beforehand and the background must be removed. 

Similarly, spectral data must be pre-processed to eliminate defects associated with the 

effect of particle size, light scattering, or morphological differences (surface roughness 

and detector artifacts) (Amigo, 2010). 

2.1.2.1 Region of interest (ROI) 

Generally speaking, a hyperspectral image is made up of the sample and the 

background. Depending on the geometry of the sample, background removal may or 

may not be an easy task. Commonly, a mask is created using wavelengths where there is 

a high contrast between the ROI and the background. Although it can also use methods 

such as "clustering", “PCA scores”, “histograms” or "PLS-DA" to remove the 

background (Oliveira et al., 2019; Vidal & Amigo, 2012).  

2.1.2.2 Image correction 

Image defects such as dead pixels and spike points are associated with anomalies in the 

detector, environmental conditions, or defects in the equipment components.  

Spike points are defined as a sudden increase in spectrum, followed by a rapid decrease, 

which generally hides important imaging information (Zhang & Henson, 2007). For 

spike detection, manual monitoring is commonly used, which is difficult due to the high 

amount of information obtained for a hypercube (Nenadic & Burdick, 2005). Other 

techniques, such as comparing neighboring pixel information (Behrend, Tarnowski, & 

Morris, 2002) and wavelet transform (Ehrentreich & Summchen, 2001) can be used to 

remove or interpolate spikes, between other (Cannistraci, Montevecchi, & Alessio, 

2009; Feuerstein, Parker, & Boutelle, 2009).  
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On the other hand, according to Firtha et al. (2008) a dead pixel (zero or missing values) 

number in a NIR hyperspectral imaging represents approximately 1% of total of pixels. 

They can be one pixel, a group of pixels or a full line of pixels (Vidal & Amigo, 2012). 

Dead pixels can be located using different criteria, which are well established in 

previous reviews and tutorials (Burger & Geladi, 2005; Mobaraki & Amigo, 2018). As 

mentioned above, due to the high correlation between neighboring pixels, it is possible 

to replace the dead pixels by interpolating the mean values of the neighboring pixels. It 

is important to mention that the presence of dead pixels and spike points can generally 

lead to errors in multivariate analysis. Some algorithms like PCA or MCR are highly 

influenced by a high number of dead pixels, distorting the result (Vidal & Amigo, 

2012).  

2.1.2.3 Spectral pre-processing 

After extracting the spectral information from HIS, spectral pre-processing helps to 

minimize (or correct) the effect of unwavering phenomena that affect spectral 

measurement. These phenomena can be light scattering, the effect of particle size, 

differences in morphology, porosity, roughness and detector artifacts (Amigo, 2010). 

However, this step can be carried out with care, since an excess of the pre-processing 

(for example: an improper selection of window size in the smoothing) can cause loss of 

information (Jia et al., 2020). At present, there are spectral pre-processing techniques 

that can help solve these problems, such as: 

- Smoothing: it allows the removal of part of the instrumental noise, with the Savitzky-

Golay algorithm being the most widely used (Vidal & Amigo, 2012). 

- Lighter scattering correction: light scattering is a problem associated with the 

acquisition of HSI spectra (especially in the NIR region), and it is common when 
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obtaining reflectance spectra of solid and semi-solid materials (Burger & Geladi, 2007). 

Among the algorithms most used to reduce the effect of light scattering we have: 

Multiplicative Scatter Correction (MSC) and Standard Normal Variate (SNV) (Mendez, 

Mendoza, Cruz-Tirado, Quevedo, & Siche, 2019). 

- Baseline correction: Savitzky-Golay derivatives (1st and 2nd order) are the most 

popular algorithm to correct baseline and slopes. At the same time, the derivatives 

emphasize the characteristics of the spectrum. Therefore, it is of essential importance to 

be careful in the selection of the derivative parameters: derivative order, polynomial 

order and window size, to avoid noise being emphasized and to have erroneous 

measurements (Rinnan, Berg, & Engelsen, 2009). 

2.1.3 Chemometrics  

Multivariate analyses applied to predict chemical features are called chemometrics. 

There are several multivariate analysis methods for the analysis of hyperspectral images 

that are well discussed in previous reviews (Amigo, Babamoradi, & Elcoroaristizabal, 

2015; Cortés, Blasco, Aleixos, Cubero, & Talens, 2019; Fernández Pierna et al., 2020; 

Jia et al., 2020), therefore, here we only expose slightly the multivariate methods most 

relevant for this research. 

2.1.3.1 Principal component analysis (PCA) 

PCA is probably the most widely used chemometric tool for removes multi-collinearity, 

as well as dimensionality reduction and feature extraction, using its functionalities such 

as solving for non-full-rank eigen problems, ellipse fitting, noise reduction and 

translation error attenuation (Wu, Chen, Ding, Hsu, & Huang, 2013). The component 

matrix transformation tries to find a new coordinate whose origin is the mean of the 

input data (spectra), reaching a maximum variance and generating a new uncorrelated 
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principal components (PCs) but preserved of maximum of information of original data 

(Hashim et al., 2012). Generally, the first PCs contain the greatest variability in the data 

(J. Li, Rao, & Ying, 2011).  Therefore, the first main components (PC1 - 3) are 

generally used to show variations in samples as a consequence of storage conditions.  

2.1.3.2 Regression analysis  

- Partial least squares regression (PLSR): it is perhaps the most popular multivariate 

linear model for monitoring the evolution (quantification) of components in a food 

throughout its shelf-life. PLSR linearly relates two matrices: the matrix X containing the 

input data (spectra) and the matrix Y containing the responses (i.e. moisture content), 

but in addition, it also models the structure of X and Y (Wold, Sjöström, & Eriksson, 

2001). PLSR has the ability to analyze a large number of noisy and correlated variables, 

which is the case for spectral data. Furthermore, PLSR models can be improved by 

including more variables or a larger number of observations (samples) (Wold et al., 

2001).  

2.1.3.3 Discriminant analysis  

- Linear discriminant analysis (LDA): LDA is a probabilistic parametric classification 

technique whose objective is to find linear combinations of the X variables 

(discriminant functions) that discriminate between the classes (Sjöström, Wold, & 

Söderström, 1986). LDA maximizes the variance between classes and minimizes the 

variance within a class, obtaining orthogonal linear discriminant functions equal to the 

number of classes minus one (Meloun, Forina, & Militky, 1992).  

- Partial least squares discriminant analysis (PLS-DA): since the spectral data has a 

high correlation, a PLS version of LDA is required (Sjöström et al., 1986). PLS-DA is 

basically a PLS model, which has a variation on the dependent variables (matrix Y). 
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The dependent matrix Y is encoded with values of 0 and 1, that describes which class 

each sample belongs to (spectrum, matrix X) (Liu, He, & Wang, 2008). PLS-DA then 

rotates the latent variables to obtain a weight vector that promotes the best correlation 

with the response variable a and separating the classes (Lavine & Davidson, 2006). To 

delimit the classes, a cut-off value between 0 and 1 is established using probability 

density functions and Bayesian theory (Ferreira, 2015). 

- Support Vector Machine (SVM): SVM is supervised learning method, which reduced 

number of samples, called support vectors, where the input data is mapped into a high-

dimensional vector space by a specific mapping function (Menesatti et al., 2009). Here, 

the nonlinear separable problem can be transformed into a linear separable problem 

(Grelet et al., 2020; X. Li, Zhu, Ji, & Liu, 2010). Therefore, by working non-linear and 

linear way, SVM can, in many cases, offer better performance in both classification and 

prediction. 

2.1.4 Chia seed – Shelf life  

Chia (Salvia hispanica L.) is oleaginous seed with high contents of essential fatty acids 

ω-3 and a favorable ratio ω-6/ω-3 for human consumption (de Falco, Amato, & 

Lanzotti, 2017). In addition, phenolic compounds from Chia are related to a protective 

effect against oxidative stress and obesity-related diseases (Marineli et al., 2014), 

reduced risk of cardiovascular disease and have hepatoprotective effect (Poudyal, 

Panchal, Waanders, Ward, & Brown, 2012). Industrially, chia oil has been 

commercialized throughout South America, since their species extends from Mexico to 

Argentina. This shows that these seeds are of great interest, especially in developed 

countries. The fatty acid and phenolic composition of chia seeds is dependent of origin, 

since climatic and cultivation conditions influence the development of these 

compounds. However, during storage, the acidity value, which is one of the most 
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important indicators for oil quality of chia seeds, can increase. High acidity values 

indicate that the product has been stored incorrectly or for long periods of time, making 

it difficult to process and causing loss of nutritional quality (Franklin et al., 2017; Mata 

et al., 2017). Therefore, it is important to estimate the shelf life of oilseeds such as chia, 

especially in tropical countries where storage conditions may not be ideal. 

A more practical definition describes the shelf-life of a foodstuff as the “duration of the 

consumer's sensory acceptability”. Therefore, each food has a specific shelf-life, and 

this depends both on its specific quality characteristics and the storage conditions 

(Moschopoulou, Moatsou, Syrokou, Paramithiotis, & Drosinos, 2019). Currently, many 

of these shelf-life estimations are based on trial and error methods, with many risks of 

overestimating or underestimating the real shelf-life of foodstuffs (Wibowo, Buvé, 

Hendrickx, Van Loey, & Grauwet, 2018).  

Because the shelf-life-defining degradation reactions are many and very complex, new 

multivariate analysis approaches are necessary for correct prediction. For this purpose, 

there are technologies such as gas chromatography-mass spectrometry (GC-MS) 

(Nzekoue et al., 2019), Liquid chromatography – mass spectrometry (LC-MS) (Coelho 

et al., 2020), Nuclear magnetic resonance (NMR) (Bosmans, Lagrain, Ooms, Fierens, & 

Delcour, 2014), electronic nose sensor (Giovenzana, Beghi, Buratti, Civelli, & Guidetti, 

2014; Song et al., 2019), computational vision system (CVS) (Taheri-Garavand, Fatahi, 

Omid, & Makino, 2019), Near-infrared spectroscopy (NIRS) (Di Egidio et al., 2009; 

Pérez-Marín et al., 2019) and Hyperspectral imaging (HSI) (Chaudhry et al., 2018; 

Siripatrawan & Makino, 2018), which, in tandem with multivariate analysis, allow to 

model the kinetics of degradation (or transformation), estimate the shelf-life and predict 

the evolution of compounds of interest in a food during storage.  
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Using hyperspectral imaging, in a controlled shelf-life experiment where degradation 

reactions are caused by temperature (𝑇1and 𝑇2) and storage time (𝑡0, 𝑡1, ..., 𝑡𝑛), the 

spectra for the same temperatures are different for each day of storage, and vice versa. 

For example, as shown in Figure 1, 𝜆(𝑇1, 𝑡0)  ≠ 𝜆(𝑇1, 𝑡1)  or 𝜆(𝑇1, 𝑡𝑛)  ≠ 𝜆(𝑇2, 𝑡𝑛). 

Other factors may also influence spectral variation during shelf-life, such as packaging 

(Taghizadeh, Gowen, Ward, & O’Donnell, 2010), coatings (Yousuf, Qadri, & 

Srivastava, 2018), or special storage conditions (for example: modified atmosphere) (L. 

Ma, Zhang, Bhandari, & Gao, 2017; Tsironi, Ntzimani, & Taoukis, 2019).  

 

Figure 1. Spectral variations in a food as influence of temperature and storage time for 

spinach leaves 

2.1.5 Cocoa bean hybrids – Authentication  

Cocoa (Theobroma cacao) is one of the highly demanded crops, which are produced in 

tropical and sub-tropical regions. The largest producers are: (1) Cote D’Ivoire, (2) 

Ghana, (3) Indonesia, (4) Brazil, (5) Nigeria, (6) Cameroon, and (7) Ecuador (Teye, 
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Anyidoho, Agbemafle, Sam-Amoah, & Elliott, 2020). After being cultivated, the cocoa 

beans go through a fermentation process (between 5 - 7 days) and a drying process, 

which allows their particular flavor to develop. Cocoa beans presented a higher content 

and quality in proteins, vitamins, polyphenols, fat and carbohydrates compared to tea or 

wine (Lee, Kim, Lee, & Lee, 2003). Furthermore, cocoa bean is the raw material for 

chocolate and confectionery products, becoming more attractive and more consumed 

(Aprotosoaie, Luca, & Miron, 2016). However, the chocolate quality depends on the 

quality of the cocoa bean, which is influenced by geographic origin, soil and 

environmental conditions, growing and harvesting conditions, and post-harvest 

processing conditions (fermented and dried) (Efraim et al., 2013). Another factor that 

influences cocoa bean quality is the genetic variety. Hybridization is the technique that 

allows to create cocoa bean hybrids in order to improve some of its characteristics, such 

as resistance to diseases, greater efficiency, earliness and butterfat flavor expressed after 

optimal fermentation (Ji et al., 2013). Therefore, in a first approach, cocoa bean hybrids 

can have different prices in the market, making it possible for unscrupulous people to 

adulterate product batches. Second, the processing of cocoa beans is still rudimentary, 

thus, it is possible that different types of hybrids are mixed in the same batch, reducing 

the purity of the product.  

Various analytical techniques such as multi-element analysis (Diomande et al., 2015), 

NIR spectroscopy (Barbin et al., 2018), microsatellites (Herrmann et al., 2015), mass 

spectrometry (Scollo, Neville, Oruna-Concha, Trotin, & Cramer, 2020), Raman 

spectroscopy (Vargas Jentzsch et al., 2016), computer vision (Mite-Baidal et al., 2019) 

and Polymerase chain reaction (PCR) (Motilal & Butler, 2003) have been developed to 

identify different cocoa hybrids. Although the results are encouraging, in some cases the 

focus was to identify just one variety of cocoa beans, while in others the sample had to 
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be ground and conditioned for analysis. Therefore, there is still a need to develop new 

methodologies to identify various varieties of cocoa from the same batch, without the 

need to destroy the sample. 

Objective 

In this work, it is proposed the application of hyperspectral imaging for the prediction of 

shelf-life of chia seeds, and to identify cocoa beans from different hibrids. 
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Shelf life estimation and kinetic degradation modeling of chia seeds 

(Salvia hispanica) using principal component analysis based on NIR-

hyperspectral imaging 
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Abstract 

A new methodology based on Near Infrared-hyperspectral imaging and Principal 

Components Analysis (PCA) was developed and accurately validated to model the 

degradations kinetics and to estimate the multivariate accelerated shelf life (MASLT) of 

chia seeds (Salvia hispanica). Chia seeds were stored during 180 days at 25, 35 and 45 

°C, observing fatty acid degradation and an increasing in the acidity. PC1 scores and 

kinetic charts were built fitting the time-related PC1 scores versus time by a fused 

kinetic model (R2 > 0.85). The spectra of chia seeds where acidity increased at 75% 

from initial value were used to calculate the cut-off value (-0.9853). The shelf life 

estimations were 1300, 798 and 90 days for chia seeds stored at 25, 35 and 45 °C, 

respectively. For the first time, a reliable methodology is proposed to validate that all 

samples were correctly predicted using PC1 scores. 

Keywords: Chia seeds; shelf-life; NIR Hyperspectral Imaging; PCA; kinetic 

degradation.  

1. Introduction 

Chia (Salvia hispanica L.) is an annual herbaceous plant belonging to the Salvia 

category of the Labiatae family. Chia seeds are the most consumed part of this plant, 

and they are commonly consumed as whole seeds, seed oil, seed flour and seed 

mucilage. Chia seeds nutritional value is centered in its higher concentration of 

polyunsaturated fatty acids, mainly α-linolenic acid (ω-3) (59.9–63.2 g/100 g) (Oliveira-

Alves et al., 2017). In addition, chia seeds present a higher protein content (19.0–

26.5%), phenolic compounds (highlighting rosmarinic, caffeic, and gallic acids), dietary 

fiber (47.1 to 59.8%) (de Falco et al., 2017; Grancieri et al., 2019), mucilage (Muñoz et 

al., 2012), vitamins, tocopherols and minerals. All together, they make chia a highly 
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nutritional value seed, so quality control regarding the nutritional composition of chia 

seeds is industrially important. 

Depending on the market value, chia seeds can be stored for long periods, often without 

adequate control of storage conditions, producing the aging of the seed. Aging is a 

complex process that could lead to a diverse changes in chia seeds, including 

modifications in taste, flavor, fatty acid composition, protein, phenolic compounds and 

starch (Caruso et al., 2018). Storage conditions such as relative humidity and 

temperature are the most important factors that can cause important variations in seed 

quality during storage time, especially in tropical and subtropical regions (e.g. Brazil) 

(Delouche et al., 2016).  

Accelerated shelf life tests (ASLT) is a method commonly used to determine the shelf 

life of any food. ASLT consists of collecting data related to quality parameters for 

various storage conditions (market and severe conditions) at different times and 

building kinetic models for shelf-life. By using ASLT, it is possible to evaluate the 

reaction velocity profile and to determine the reaction order, in order to convert the data 

obtained from the accelerated tests into the normal market conditions (Pedro & Ferreira, 

2006). Some studies reported ASLT approach to predict shelf-life in seeds such as 

peanuts, linseeds (Cämmerer and Kroh, 2009) and chia seeds (Caruso et al., 2018). 

For any food, the shelf life is defined by the variation of several quality parameters, and 

each parameter has its own cut-off values. Although many cut-off values of the 

parameters evaluated may be in the literature, legislation or within the quality 

parameters of each industry, when analyzing these parameters together there may be 

complications (Pedro & Ferreira, 2006). In this regard, the multivariate analysis 

techniques (like Principal Component Analysis (PCA)) can be useful for shelf life 

testing in several foods. PCA use linear combinations of the original variables to create 
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a new set of axes, called Principal Components (PCs). PC scores collect the global 

quality information of the sample, therefore, when incorporated into ASLT, a 

Multivariate Accelerating Shelf Life Testing (MASLT) method is established (Pedro & 

Ferreira, 2006).   

Since all samples have the same initial composition and that storage conditions have 

been controlled correctly, MASLT assumes that the main cause of variation in PC 

scores (especially the first few PCs) are degradation reactions and, hence, scores values 

are related to time (Pedro & Ferreira, 2006). Firstly, MASLT use PC scores resulting of 

PCA model to describe the kinetic of degradation reactions. Subsequently, PC scores 

are used to model the Arrhenius equation allowing to explain the temperature 

dependence of degradation rate constants. Finally, the information obtained allows to 

calculate the shelf-life time (Chaudhry et al., 2018). Despite MASLT has been 

successfully tested in foods such as tomato paste (Pedro & Ferreira, 2006), sunflower 

oil (Upadhyay and Mishra, 2015), and fresh-cut lettuce (Derossi et al., 2016), its 

application in chia seeds has not been explored yet. It should be considered that 

MASLT is commonly applied using PC scores of a PCA model created with 

information from various specific parameters, which in the case of seeds may take 

several months for collecting data. Also, grinding seeds accelerate degradation reactions 

by exposing a larger area to temperature effect. Therefore, seed industries have focused 

their horizon towards the application of new non-destructive technologies, which are 

quick and efficient, that require a minimum of sample preparation and that can be 

applied in various parts of the supply chain.  

Near-infrared hyperspectral imaging (NIR-HSI) is a technology that meets all those 

requirements. NIR-HSI allows a unique spectral fingerprint for each food, that is related 

with its chemical composition. NIR-HSI allows obtaining spatial information, which 
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often helps to overcome the problem of food heterogeneity. Therefore, it is possible to 

acquire images every certain period of time to observe the spectral variations as a 

consequence of the degradation reactions and use the spectral data as a quality 

parameter. This approach was previously employed to determine shelf- life in rocket 

leaves using vis-NIR HSI with MASLT (Chaudhry et al., 2018).  

For chia seeds, NIR-HSI, can offer greater advantages, since degradation reactions can 

not necessarily generate color changes. While internal changes in the seed are result of 

lipid oxidation reactions, changes in carbohydrates and phenolic compounds may be 

expressed in the intensity of the spectral absorbance. In this context, the hypothesis of 

this work is that spectral variations in NIR-HSI may reflect chemical changes in chia 

seeds caused by temperature during storage. In addition, for the first time an attempt is 

made to design a "re-sampling" algorithm to validate the MASLT method to predict 

shelf-life.  

2. Material and methods  

2.1 Reagents  

Chloroform (Synth, Brazil), methanol (J.T. Baker, EUA), sodium sulfate (Exôdo, 

Brazil), hexane (Fisher Scientific, EUA), sodium chloride (Synth, Brazil), sodium 

hydroxide (Exôdo, Brazil), boron trifluoride solution (BF3) at 12% in methanol (Sigma 

Aldrich, EUA). Standards of methyl esters C4 - C24 and internal standar C23:0 were 

purchased from Sigma Aldrich (EUA). 

2.2 Samples preparation and storage  

Three batches of chia (Salvia hispanica L.) seeds were donated by R&S BLUMOS 

Industrial e Comercial Ltda (São Paulo, Brazil). Samples were transported to 

Laboratory of Food Inovation (LINA) (Campinas, Brazil), where they were inspected to 
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eliminate possible impurities or foreign materials. According to information obtained 

from sample supplier, 100 gr chia seeds contained: < 1g carbohydrates, 21g proteins, 

31g lipids (3.4g saturated lipids, 19.72g alfa-linolenic acid and 5.44g linolenic acid) and 

38g dietary fiber. Also, microbiological quality of the chia seeds was in accordance with 

the regulations of the Brazilian standards and there was no presence of insects (or part 

of them) in the samples. 

Representative samples of 250 g of chia seeds were packed in glass containers and 

sealed using parafilm (Sinergia Científica, Brazil). Then, sample was stored at 25 °C 

(reference temperature), 35 °C and 45 °C (accelerated temperatures) in three different 

BOD TECNAL TE-371 climatic chambers, without light incidence on the samples. 

Maximum temperature variation in the chambers was ± 0.3 ° C. Twelve replicates were 

prepared for each storage temperature. Samples (approximately 10g) were taken for 

image acquisition at 0 (initial), 3, 6, 9, 12, 15, 30, 37, 45, 52, 60, 90, 180 days of 

storage. 

2.3 Fatty acid composition and free fatty acid 

Chia seeds were ground using a mill (model A 11 B S32, IKA, Germany). Later, chia 

oil was extracted by Bligh-Dyer method (Hartman and Lago, 1973).  This method 

allows extracting lipids from chia seeds without applying heat, so it can be used to 

assess oil deterioration as a result of storage conditions. For fatty acid composition 

measurement, the lipids obtained were esterified as reported by Joseph and Ackman 

(1992) and the chromatographic conditions were based on Ballus et al. (2014), with 

modifications. Separation of methyl esters was performed on a 7890A gas 

chromatograph (GC-Agilent, Germany) equipped with a flame ionization detector 

(FID). The methyl esters were separated using a DB 23 capillary column (60 m, 0.25 

mm d.i., 0.25 μm film thick, Agilent, USA). Methyl esters were identified by comparing 
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their retention times with those obtained with the standards (FAME mix C4-C24) under 

the same chromatographic conditions. Quantification was performed by internal 

standardization, using C23:0 as internal standard. Correction factors and fatty acid 

concentration (mg/g oil) were calculated according to Joseph and Ackman (1992). The 

methodology is reported extensively in Supporting Information. 

Free fatty acid in stored chia seeds were determined according to Ca 5a-40 (AOCS, 

1998). All samples were analyzed in triplicate. 

2.4 NIR-HSI acquisition and processing 

Hyperspectral images were acquired using a SisuCHEMA SWIR hyperspectral camera 

(Specim Spectral Imaging Ltd, FIN-90571 Oulu, Finland), in the NIR range 928 – 2524 

nm with a spatial resolution of 320 pixels per line scan and spectral resolution of 10 nm. 

Hyperspectral images were acquired at 6.23 nm intervals in 256 wavelength channels. 

The spectra were acquired with an exposure time of 2.1 ms using a 50 mm lens. The 

instrumental calibration was performed using two-dimensional reference images: the 

dark (0% reflectance) and the white (∼99% reflectance). Then, the Evince software 

(UmBio AB, Sweden) automatically subtracted the white and dark references from 

subsequently acquired images.  

Chia seed samples were dispersed on a Teflon plate (5 mm thick) to acquired images. 

Twelve samples were taken for initial day (day 0) and eighteen samples were taken for 

subsequent days (6 samples per temperature). Hyperspectral images of samples were 

segmented using Evince software (UmBio AB, Sweden) and self-developed code in 

Matlab R2016a software (The Mathworks Inc., Natick, MA, USA) was used to extract 

the mean spectra and corrected base line effects using Standard Normal Variate (SNV), 

producing one mean spectrum per replicate.  
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2.5 Multivariate accelerated shelf life testing (MALST) modelling 

For MALST algorithm design, traditional convention in linear algebra is followed: 

boldface upper case represents matrices, boldface lower case represents vectors, italic 

lower case represents scalar quantities, and italic subscripts denote case letters and 

sequences.  

(1) First step: a matrix X (MxN), representing variability in quality parameters in seeds 

at 25, 35 and 45 °C, was constructed. In this matrix, m is the number of points collected 

during the time of storage (0, 3, 6, 9, 12, 15, 30, 37, 45, 52, 60, 90 and 180 days) where 

image acquisition was performed for each storage temperature; n represents the number 

of variables or wavelengths (256) in NIR range (928 – 2524 nm) included in the study. 

Since the spectral profiles serve as an attribute of property, mean centering was used for 

the normalization of the data (Chaudhry et al., 2018).  

(2) Second step: PCA model based on matrix X (after data mean centering) was 

performed using PLSToolbox (Eigenvector Research, Seattle, USA) in Matlab R2016a 

(The Mathworks Inc., Natick, MA, USA). Loading matrix corresponding to PC1-2 was 

plotted vs storage time in order to delete regions in NIR range that did not provide any 

information to PCA model. A self-developed Matlab R2016a code was used to create 

scores matrix (S) of time-related PC scores in each storage temperature (25, 35 and 45 

°C). Then, matrix S was plotted vs storage time to describe PC scores variation during 

storage time, well-known as kinetic plots or shelf-life charts. Kinetic plots were used to 

model reaction order (Eq. 1) and to estimate the multivariate kinetic parameters.  

Quality degradation kinetics can be represented by equation (1): 

𝑑𝑃

𝑑𝑡
=  𝑘𝑃𝑛  (1) 
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where P denoted any quality attribute, t is the storage time, n is the reaction order and k 

is the degradation rate (k is negative if P decreases with time). 

Also, acceleration factor (αm) was calculated for 35 °C and 45 °C storage temperatures, 

according to Eq. 2: 

𝛼𝑇+𝛿𝑇,𝑇 =
𝑘𝑇+𝛿𝑇

𝑘𝑇
 (2) 

where 𝛼𝑇+𝛿𝑇,𝑇  is the acceleration factor, T is the actual market temperature (25 °C), and 

k is the rate degradation for market and accelerated test conditions. 

Further, because the degradation rates show a direct dependence on the storage 

temperature, Arrhenius equation (Eq. 3) (Labuza, 1982) was used to estimate 

dependence temperature of each kinetic model.  

𝑘 = 𝐶 ∗ exp (−
𝐸𝑎

𝑅𝑇
)  (3) 

in which C is the pre-exponential or frequency term, Ea is the activation energy, R 

(8.314 J/mol) is the universal gas constant with a constant, Tref is the reference 

temperature (25 °C).  

All kinetic parameters were estimated using the Levemberg-Marquardt algorithm for 

non-linear fitting included in Curve Fitting toolbox in Matlab R2016a. 

(3) Third step: The cut-off criteria (tcrit) for the property under study is the most 

important and significant aspect of the MASLT methodology. In this work, we used the 

spectra of an unacceptable sample and the loadings to simultaneously calculate the cut-

off criteria x, according to Eq. 4: 

𝒕𝒄𝒓𝒊𝒕
𝑻 = 𝒙𝒂𝑻 ∗ 𝐋  (4) 
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where 𝑡𝑐𝑟𝑖𝑡
𝑇  is the vector of critical scores, 𝑥𝑎𝑇 is a row vector and L is the loading 

matrix of the time-related PCs obtained in step 2. Finally, for calculating the actual 

shelf-life of chia seeds using 𝛼𝑇+𝛿𝑇,𝑇 and 𝑡𝑐𝑟𝑖𝑡
𝑇  (Pedro & Ferreira, 2009). 

The visualization of degradation/transformation process of Chia seeds during storage (0, 

9, 30, 45, 60, 90 and 180 days) at different temperatures (25, 35 and 45 °C) were 

processed using PLS_Toolbox in Matlab R2016a.  

2.6 Acidity value as cut-off criteria  

As previously mentioned, the main advantage of chia consumption is its oil with a high 

content of polyunsaturated fatty acids. The acidity is defined as the amount of fatty 

acids no longer linked to their parent triglyceride molecules (Free fatty acids, FFA), and 

is one of the most important indicators for oil quality. High amounts of FFA indicate 

that the product has been stored for long periods of time and/or under inadequate 

storage conditions. In addition to nutritional and energy losses, the high FFA content 

increases the possibility of hydrolysis in the presence of moisture, during storage and 

industrial processing (Mata et al., 2017) and could affect the consumer acceptability 

(Franklin et al., 2017). Chia oil does not have a unique regulation for oil quality control, 

compared to olive oil, where the European Commission Regulation 2568/91 and 

subsequent amendments impose a maximum acidity of 0.8 g oleic acid/100 g oil (EC, 

1991).In this sense, we arbitrarily defined a reference limit for the increase of acidity 

value as 75% of the initial content.  

2.7 Validation  

For the validation of the methodology proposed in this work, we developed a re-

sampling-based algorithm that allows the projection of the validation samples on the 

calibration samples with a reasonable number of random iterations. For this purpose, 
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chia seeds samples were divided into calibration (70%) and validation (30%) sets. A 

PCA model was built using the calibration samples, and the PCs were projected onto the 

validation samples. The procedure was repeated for a number of iterations equal to 100, 

to ensure that all samples have been included at least once in the calibration and 

validation sets. Then, the frequency and standard deviation of the samples were 

calculated. The validation was performed using all the spectral information of the 

hyperspectral images.  

2.8 Statistical analysis  

Analyses were performed in triplicate for each sample for all tests, and data is presented 

as means ± standard deviation (SD). Analysis of variance (ANOVA) and Tukey's 

average comparison test (p < 0.05) were performed to compare fatty acid composition 

and free fatty acid values during storage using Statistica software version 7.0 (Statsoft, 

Oklahoma, USA). 

3. Results and discussion 

3.1 Fatty acid composition and free fatty acid 

Table 1 shows the evolution on fatty acid profile of chia seeds stored at 25, 35 and 45 

°C during 180 days. Palmitic (C16:0), stearic (C18:0) and Arachidic (C20:0) fatty acids 

increase (but not significantly, p > 0.05) during storage at 25 ° C and 35 ° C, reaching 

an increase of 5 and 8%, 13 and 22% and 15 and 25%, respectively. However, at 45 ° C 

these fatty acids are significantly degraded, reaching, at end of storage (180 days), 

reduction of 44% for palmitic acid, 60% for stearic acid and 93% for Arachidic acid. 

Imran et al. (2016) reported that, for raw chia oil stored during 60 days, an increase in 

palmitic acid of 28.8 – 30.8% and for stearic acid of 51.9 – 61.7%, when chia oil was 

stored at 25 °C.  
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Regardless of storage temperature, oleic (ω-9, C18:1n9c), linoleic (ω-6, C18:3n6), γ-

linoleic (C18:3n6), α-linolenic (ω-3, C18:3n6) and eicosenoic (C20:1n9) fatty acids are 

degraded during storage. However, the degradation of fatty acids increased with the 

increase of temperature; and some, such as α-linolenic, started to degrade early (30 

days) when stored at 45 ° C (Tukey’s test, p < 0.05). After 180 days of storage, oleic 

acid reduction was 8, 16 and 80%; linoleic acid reduction was 4, 8 and 68%, γ-linoleic 

reduction was 31, 50 and 88%; α-linolenic reduction was 1, 7 and 69%; and eicosenoic 

acid reduction was 7, 29 and 93%, from initial concentration (Day 0), at 25, 35 and 45 

°C, respectively. Imran et al. (2016) reported a decrease for linoleic acid (ω-6) of 28.9 – 

32.2% and for α-linolenic acid (ω-3) of 8.1 – 13.7%, for raw chia oil stored at 25 °C for 

60 days. Other author also reported decrease in polyunsaturated fatty acid composition 

of oils as effect of temperature (Choe and Min, 2006; Imran et al., 2015).  

Variations (mainly degradation) in fatty acids during storage are associated with 

oxidation or hydrolyzation reactions and lipolytic activity, which leads to the formation 

of carbonyl compounds, glycerol and fatty acids (Imran et al., 2015; Wang et al., 2012). 

Free fatty acids act as pro-oxidants in edible oils, thereby accelerating oil degradation 

(Miyashita and Takagi, 1986). These degradation reactions are accentuated with the 

increase in temperature (Choe and Min, 2006). Besides, oils with a high content of 

polyunsaturated fatty acids (like chia oil) are more susceptible to degradation processes 

(Timilsena et al., 2017). Therefore, processing, storage and transport conditions of chia 

seeds demand attention to avoid sample quality degradation.  

Table 1. Evolution on fatty acid composition of chia seeds during storage 

Fatty acid 

(mg/g oil) 

Tem 

(°C) 

Time (days) 

0 30 60 90 180 
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C16:0 

 

 

25 110±4Aa 110 ±4Aa 111±4Aa 113±5Aa 115±5Aa 

35 

 

111 ±5Aa 113±5Aa 118±2Aa 120±7Aa 

45 

 

106 ±4Aa 104±6Aa 92±2Bb 62±24Bb 

C18:0 

 

 

25 42±8Aa 42±8Aa 43±8Aa 45±8Aa 48±8Aa 

35 

 

44±7Aa 45±8Aa 50±8Aa 52±10Aa 

45 

 

38±7Aa 34±11Aab 28±12Aab 17±6Bb 

C18:1n9c 

 

 

25 102±2Aa 101±1Aa 100±1Aa 98±2Aab 94±2Ab 

35 

 

99±2Aa 97±3Aa 90±0Bb 86±4Bb 

45 

 

86±4Bb 84±6Bb 60±3Cc 20±3Cd 

C18:2n6c 

 

 

25 304±3Aa 302±2Aa 302±2Aa 298±2Aa 293±2Ab 

35 

 

299±3Aa 296±4Aa 289±5Ba 279±1Bb 

45 

 

286±4Bb 273±8Bb 123±6Cc 97±3Cd 

C18:3n6 

 

 

25 5.06±1.40Aa 4.80±1.56Aa 4.69±1.52Aa 3.92±0.93Aa 3.51±1.03Aa 

35 

 

4.56±1.71Aa 4.29±1.31Aa 3.33±0.58Aa 2.51±1.32ABa 

45 

 

2.80±0.69Aa 2.68±0.98Aa 0.71±0.34Bb 0.60±0.61Bb 

C18:3n3 

 

 

25 911±9Aa 909±9Aa 907±9Aa 904±7Aa 899±6Aa 

35 

 

904±8Aab 898±8Aab 890±10Aab 846±36Ab 

45 

 

878±2Bb 834±21Bc 551±23Bd 284±24Be 

C20:0 

 

25 3.15±0.34Aa 3.17±0.33Aa 3.20±0.32AAa 3.31±0.32Aa 3.63±0.24Aa 

35 

 

3.33±0.31Aa 3.73±0.46Bab 3.89±0.01Bb 3.93±0.06Ab 
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 45 

 

2.93±0.15Aa 1.92±0.90Aab 0.96±0.99Cbc 0.23±0.15Bc 

C20:1n9 

 

 

25 2.59±0.4Aa 2.53±0.4Aa 2.81±0.56Aa 2.61±0.60Aa 2.40±0.57Aa 

35 

 

2.3±0.44Aa 2.56±0.40Aa 2.05±0.47Aa 1.83±0.47Aa 

45 

 

2.0±0.26Aa 1.20±0.26Bb 0.77±0.47Bbc 0.18±0.07Bc 

a-e Mean with different lower case letter in the same column indicates significant difference between days 

of storage for each measured fatty acid according to Tukey's test, p < 0.05. 

A, B Mean with different upper case letter in the same column indicates significant difference between 

storage temperature (25, 35 and 45 °C) for each measured fatty acid according to Tukey's test, p < 0.05. 

Acidity is related to its oxidative stability and, therefore, allows to infer the storage 

conditions of the product. Figure 1 shows the acidity (%) behavior of chia seeds as a 

function of storage temperature (25, 35 and 45 ° C) for 180 days. For any storage 

temperature, acidity values increase during storage time, although no statistically 

significant difference (Tukey’s test, p > 0.05) was observed until after 30 days of 

storage, both for the effect of storage temperature and storage time. The increase in the 

content of free fatty acids indicates a hydrolytic degradation and autoxidative process of 

fatty acids (Choe and Min, 2006; Ixtaina et al., 2012), which is in agreement with fatty 

acid composition (Table 1). The acidity and oxidation level (amount of hydroperoxides) 

of chia seeds are important quality control parameters, as they have an influence on 

palatability, nutritional quality, and toxicity, as well as influences the process of 

extraction and production of edible oil (Choe and Min, 2006; Franklin et al., 2017; Mata 

et al., 2017).  As previously mentioned, FFA act as pro-oxidants, so an increase in the 

amount of FFA would accelerate the degradation processes of fatty acids (Miyashita and 

Takagi, 1986), especially oleic, linoleic and α-linolenic polyunsaturated fatty acids, 

which are more susceptible to oxidation and are predominant in chia seeds (Timilsena et 

al., 2017). Caruso et al. (2018) reported that the acidity of chia seeds increased 83% 
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after 5 months of storage at 25 ° C, Imran et al. (2016) found an increase in acidity in 

chia oil of  107% after 60 days of storage at 25 °C and Ixtaina et al. (2012) found an 

increase in acidity in chia oil of 8% when stored at 20 ° C for 225 days.  

The temperature had a significant effect on the acidity of chia seeds, as expected, since 

high temperatures degrade the antioxidant compounds naturally present in chia (e.g. 

tocopherols), accelerating the processes of autoxidation and degradation reactions. 

 

Fig. 1. Acidity (%) of Chia seeds stored at 25 °C, 35 °C and 45 °C over time. 

3.2 Spectra profile 

Fig. 2A shows the mean spectra based on storage temperature at day 180 and 2B 

demonstrates the changes in the mean spectra based on the days of storage at 45 °C. The 

absorption bands at 1200 - 1250 nm are related to C-H stretch second overtone and a 

great absorption band at 1400 – 1450 nm related to O-H stretch first overtone. The 

spectral region between 1600-1650 nm is related to the first overtone of C-H vibration, 
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influenced by the presence of CH3 bonds, which may be associated with the presence of 

phenolic compounds (such as tocopherol, polyphenols, myricetin, quercetin, 

kaempferol, chlorogenic acid, etc.) and mucilage content (da Silva et al., 2017). The 

peaks at 1720 and 1760 nm are too associate to C-H stretch first overtone, and can be 

associated with the several lipid species found in chia oil. According to Hourant et al. 

(2000), the peak at 1720 nm is characteristic for oils that are rich in polyunsaturated 

fatty acids, which was expected for chia seeds. In this context, variations in absorbance 

at 1720 nm may be associated with various classes of oxygenated compounds, 

indicating oxidation and hydrolytic degradation of lipids in chia seeds as result of 

storage conditions (Murray, 1986). The region between 2300 – 2350 nm are associated 

with C-H combinations and deformation tones; and C=C and C–H stretch combination 

tones of cis unsaturated fatty acids were observed at 2144 nm (Mureșan et al., 2016). 

The absorption band at 2340 nm is related to CH combinations, and in the case of chia, 

could be associated to polysaccharides such as fiber and mucilage (Muñoz et al., 2012). 

The region at 2250 – 2260 nm is associated to protein content, which represent 

approximately 20% chia composition (Grancieri et al., 2019). Chia seed spectra show 

variations in absorbance values with temperature (Figure 2A) and with storage days 

(Figure 2B). Besides, changes with storage time were more noticeable at 45 ° C, which 

was expected since the seed offers protection to the seed from environmental effects. 
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Fig. 2. A) Mean spectra based on temperature of storage 25 °C, 35 °C and 45 °C at day 

180, B) Mean spectra based on days of storage 0, 30, 60, 90 and 180 at 45 °C, C) 

PC1/PC2 plot for days of storage in the wavelength range of 928–2524 nm; D) time-

related PC1 scores at 25, 35 and 45 °C in the wavelength range of 1228–2238 nm; E) 

Loadings PC1 (red) PC2 (blue) in the wavelength range of 1228–2238 nm. 

3.3 Time-related PC scores analysis 
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PCA of the pre-processed spectral data (SNV + mean center) in the wavelength range of 

928–2524 nm was plotted in Figure 2C. PC1 (82%) and PC2 (14.32%) covered the 

maximum variance in the spectral data of chia seeds.  The spectral region in 928 – 1211 

nm and in 2244 – 2524 nm were removed because they did not contribute to the model 

from the preliminary PCA (Bro and Smilde, 2014). In the spectral range of 1218 – 2238 

nm, the two first PCs explained a total variability of 95.59%. Also, in this reduced range 

(164 variables) PC1 explained a variability of 81.59% (Fig. 2D), almost invariable 

compared to the 82% explained using the full range (256 variables) (Fig. 2C).  

It is notorious that the variability on PC1 scores (decreasing) were associated to storage 

time of chia seeds (Fig. 2C) and that this variability is greater for storage temperature of 

45 °C compared to 35 °C or 25 °C (Fig. 2D). This would indicate that, despite the 

inherent protection of the seed structure, the temperature has a significant impact on the 

quality of chia seeds. This is important, since in many countries with tropical climates, 

poor storage management can lead to increases in the degradation rates of chia seeds 

(Delouche et al., 2016).  

At 25 ° C, the variation in seed composition during storage time is minimal, especially 

in the fatty acid profile (Caruso et al., 2018; Imran et al., 2016). At 35 and 45 ° C, 

degradation processes are accelerated, and may be associated with changes in moisture 

and lipid degradation of chia seeds. In the first case, the decrease in moisture content is 

related to the integral entropy (degree of order/disorder) of chia seeds (Escalona-García 

et al., 2016). Temperature influences the seeds moisture loss, destabilizing the matrix 

and breaking the adsorbate (water) and adsorbent (food) bonds, which leads to a greater 

availability of free water for degradation reactions (Pérez-Alonso et al., 2006). PC 

loadings (Fig. 2E) clearly show the effect on the regions between 1400 - 1500 nm and 

1950 – 1970 nm, related to O-H stretch first overtone, on the variability of the samples.  
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In the second case, the high content of polyunsaturated fatty acids in chia makes it much 

more susceptible to oxidation processes compared to other vegetable oils (Souza et al., 

2017). The wavelengths at 1720 and 1760 nm shown in the loadings (Fig. 2E) are 

related, as previously mentioned, with various classes of oxygenated compounds, 

indicating oxidation and hydrolytic degradation of lipids in chia seeds (Murray, 1986). 

Imran et al. (2016), Guiotto et al. (2014) and Ixtaina et al. (2012) reported an increase in 

the oxidative stability parameters (peroxide value, free fatty acid and p-Anisidine value) 

during storage of chia oil and chia/sunflower blend oil stored at 4 - 25 °C by 60 - 360 

days. Also, it should be considered that the variability of PC1 scores may be influenced 

by the degradation of phenolic compounds during storage (Mannucci et al., 2019), as 

can be seen in Fig. 2B and in the loadings graph (Fig. 2E) in the surrounding region 

from 1600-1650 nm. This is relevant, since a lower presence of antioxidant compounds 

(e.g. tocopherol) facilitate lipid degradation processes (Ixtaina et al., 2012). 

Figure 3 shows the variability of PC1 scores in chia seeds stored at 25, 35 and 45 ° C in 

spectral range of 1228–2238 nm. In Figure 3A, the raw scores of PC1 applied on the 

hyperspectral images of chia seeds are observed, while in Fig. 3B a cut-off value 

(threshold) equal to mean scores was applied to hyperspectral images. Both figures 

show the color changes associated with the loss of quality or degradation of chia seeds, 

although these changes were more pronounced at 35 and 45 ° C. This is in accordance 

with Fig. 2D. In Figure 3A, it is possible to observe that the first 30 days of storage do 

not show variation in the scores for the samples stored at 25 ° C, which could be 

translated as an induction period, that is, from this period, degradation processes begin 

at this temperature (reduction of yellow and red color). This is expected, since the seed 

offers protection to the components of the seed. This induction period is shorter in 

samples stored at 35 ° C (~ 9 days) and was not observed at 45 ° C (also visible in Fig. 
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3B). Besides, it is possible to observe that at 45 ° C the greatest variability in the scores 

is observed, especially at the end of storage (180 days), where the degradation reaches 

its maximum point (Fig. 3B) and it is even possible to observe the morphology of the 

chia seeds (Fig. 3A). In effect, Fig. 3 shows how the degradation reactions that occur in 

chia seeds are dependent on time and temperature of storage. During storage of seeds, 

there are reports of changes in proteins, which are decomposed into amine 

macromolecules (Xu et al., 2018). Also, loss in phenolic compounds such as caffeic 

acid (chia seeds stored at 25 °C/10 months) (Caruso et al., 2018), tocopherols, 

carotenoids and chlorophyll (Mannucci et al., 2019), which are consumed to 

counteracting the oxidative reactions that can be generated over 6 months of storage. On 

the other hand, the oxidation and hydrolyzation processes of lipids in seeds or grains 

contribute to the formation of carbonyl compounds, glycerol and free fatty acids (Wang 

et al., 2012), which decreases the product quality, as observed in chia seeds (Caruso et 

al., 2018) and penaut and linseeds (Cämmerer and Kroh, 2009). Moreover, during the 

storage time there are variations in the composition of polysaccharides (Imran et al., 

2015; Xu et al., 2018), which in the case of chia could be related to the degradation of 

the mucilage. Finally, chia seeds lose moisture during storage, which is caused by 

transpiration process and by the disposal of water for biological processes 

(degradation/formation of compounds). Water activity affects the mobility and 

reactivity of chemical species, indicating that greater availability of free water allows 

greater dissolution, mobility and reaction of pro-oxidant (Escalona-García et al., 2016). 

In chia seed (% humidity <10), the greater amount of water is linked to other structural 

components. Therefore, when the temperature increases, the bonds break and a greater 

amount of free water is arranged for the transformation reactions in the seed (Pérez-
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Alonso et al., 2006). This can be seen in Figure 3, where seeds stored at 35 and 45 ° C 

show greater variability in PC1 scores. 

 

Fig. 3. (A) Variability in time-related PC1 scores at 25 °C, 35 °C and 45 °C, B) 

Variability in time-related PC1 scores at 25 °C, 35 °C and 45 °C using a cut-off value = 
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mean scores. Both figures were constructed in a wavelength range of 1228–2238 nm, C) 

Kinetic charts of the PC1 scores of Chia seeds stored at 25, 35, 45 °C. Black dotted-line 

represent the shelf –life cut-off value (-0.9853). 

3.4 Multivariate modeling and shelf life estimation 

The PC1 scores values over time were fitted using the non-linear regression by applying 

the kinetic model composed by two terms: exponential and lineal (Table 2). The fitting 

to this model showed better results, based on R2 and standard error, compared to the 

first-order and second-order models (data not shown). Initially, changes in PC1 scores 

presented an exponential behavior (Fig. 3C), which may be associated with the loss of 

water and/or volatile compounds due to temperature. Then, a greater availability of free 

water (breakdown of water-food bonds) allows degradation reactions to begin (Pérez-

Alonso et al., 2006). These degradation processes (such as the formation of 

hydrogenated compounds) are constant and explained by the linear term of the kinetic 

equation. The lowest value of R2 (0.853) was for samples stored at 25 ° C, probably 

because at this temperature the changes are minimal, as seen in Fig. 3. A0 values were 

different for samples stored at 25 (0.384), 35 (0.370) and 45 ° C (0.496). This could 

indicate that the degradation process starts earlier for temperatures of 35 and 45 ° C, 

being more noticeable at 45 ° C. Multivariate rate constant k associated to exponential 

term increases with increasing temperature, being 0.0058 (d-1) at 25 °C, 0.0146 (d-1) at 

35 °C and 0.1294 (d-1) at 45 °C. Instead, multivariate rate constant c associated to lineal 

term decreases with increasing temperature, being -0.0014 (d-1) at 25 °C, -0.0039 (d-1) at 

35 °C and -0.0092 (d-1) at 45 °C. The variation in the multivariate rate constant is 

greater for the exponential term than for the linear term. This could be caused by the 

rapid loss of water in the beginning of the storage process. Also, probably at the 

beginning of the storage process, phenolic compounds (e.g. tocopherols) may have been 
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rapidly consumed to avoid lipid oxidation processes. Together, these changes are 

expressly visible in Fig. 3, especially for 45 °C. Therefore, the acceleration factor (mean 

value of exponential and linear terms) was expected to be greater for 45 °C (𝛼45,25 =

2.6) compared to 35 °C (𝛼35,25 = 14.4). The estimated values for k and c by means of 

proposed kinetic model of PC1 scores are results of the input variables (spectra), which 

are related to the variation in the overall quality of chia seeds stored at different 

temperatures (Derossi et al., 2016). Both k and c are related to variations in moisture 

content, lipid self-oxidation and degradation of polysaccharides such as mucilage, 

reserve proteins and phenolic compounds and biological transformation process 

(germination) (Guiotto et al., 2014; Souza et al., 2017). Hence, this makes comparison 

with other oilseeds difficult. To our knowledge, there are no works that evaluate the 

shelf-life of chia seeds using the proposed kinetic model. However, various works 

reported association of kinetic parameters to the shelf-life of chia oil (Escalona-García 

et al., 2016; Guimarães-Inácio et al., 2018; Ixtaina et al., 2012). 

Table 2. Kinetic parameters of PC1 scores as a function of time and estimated 

parameters of the Arrhenius model for chia seeds samples stored at 25, 35 and 45 °C. 

Kinetic model: PC1 scores=A0*exp(-k*t) + c*t 

Tem

p 

(°C) 

A0 

(dimensionless

) 

Conf. 

Intervals 

k  

(1/d) 

Conf. 

Interval

s 

c  

(1/d) 

Conf. 

Intervals 

SSE R2 αT,25 

25 0.384 

[0.360;0.

408] 

0.0058 

[0.0018;

0.0098] 

-0.0014 

[-0.0020;-

0.0007] 

0.22

8 

0.853 … 

35 0.370 [0.341;0. 0.0146 [0.0102; -0.0039 [-0.0042;- 0.28 0.955 2.6 
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399] 0.0189] 0.0035] 

45 0.496 

[0.397;0.

595] 

0.1294 

[0.0854;

0.1734] 

-0.0092 

[-0.0096;-

0.0088] 

0.95

3 

0.954 14.4 

Arrhenius model, k = C*exp(-Ea/RT) 

C 

Activation 

energy (Ea, 

kJ.mol-1) 

R2 

       43.79 121.9 0.939 

       The beginning of the transformation processes within the seed begin with the breaking 

of the water-food bonds (Pérez-Alonso et al., 2006). Therefore, the values of k of the 

exponential term were used to calculate the activation energy of Arrhenius (R2 = 0.939, 

Table 2). The activation energy for chia seeds (Ea = 128.9 kJ.mol-1) was higher than for 

chia oil (Ea = 44.4 – 73.5 kJ.mol-1) (Escalona-García et al., 2016; Guimarães-Inácio et 

al., 2018; Ixtaina et al., 2012) and pure α-linolenic (Ea = 60 - 70 kJ.mol-1) (Litwinienko, 

2001), which is the main fatty acid present in chia seeds. This is in agreement with the 

previous results, since it is likely that there are other components, such as phenolic 

compounds or mucilage (Caruso et al., 2018; Imran et al., 2015), that begin to degrade 

before the oil in chia seeds. That is because the activation energy was calculated based 

on the k obtained from the kinetic modeling of the PC1 scores, which were obtained in 

NIR spectral data. Therefore, Ea is influenced by the degradation of all components 

within the structure of chia seeds, and is specific to this type of product. 

Figure 3C shows the PC1 scores as a function of time for each storage temperature, 

which were used to calculate the shelf life. For this study, we propose to use the acidity 

(%) of the chia seeds as a cut-off criterion to estimate the shelf-life. This limit was 
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established as the sample that presents a 75% increase in acidity compared to the initial 

value, which corresponded to the chia seeds stored at 45 ° C for 90 days. Then, the 

spectrum and the loadings of the time-related PC of this sample was taken to determine 

the shelf-life of chia seeds according to Eq. 4, and the cut-off criteria was calculated to 

be -0.9853 (black dashed line in Fig. 3).  

Finally, to calculate the shelf life of chia seeds stored at 25 ° C and 35 ° C, we project 

the cut-off time of the chia seeds stored at 45 ° C (90 days) on the PC1 scores, using the 

acceleration factor previously calculated (Table 2) (Pedro & Ferreira, 2009). 

𝑆ℎ𝑒𝑙𝑓 − 𝑙𝑖𝑓𝑒25 °𝐶 = 𝛼25,45 ∗ 𝑡𝑖𝑚𝑒𝑐𝑟𝑖𝑡,45 = 14.4 ∗ 90 = 1300 𝑑𝑎𝑦𝑠 

𝑆ℎ𝑒𝑙𝑓 − 𝑙𝑖𝑓𝑒35 °𝐶 = 𝛼35,45 ∗ 𝑡𝑖𝑚𝑒𝑐𝑟𝑖𝑡,45 = 8.9 ∗ 90 = 798 𝑑𝑎𝑦𝑠 

The time of shelf-life of chia seeds decreases with storage at higher temperatures, which 

is not an unexpected result. Although acidity was used as a cutting factor, due to its 

industrial importance (Mata et al., 2017) and its negative relationship with consumer 

acceptability (Franklin et al., 2017), the estimated useful life using the PC1 scores 

obtained from the NIR-hyperspectral images represents the overall degradation of chia 

seeds, such as previously discussed (see Fig. 3), yielding a more realistic estimation. 

Moreover, by encompassing the variability of all components of chia seeds, various cut-

off criteria (such as proteins or specific phenolic compounds) can be established to 

estimate the shelf life based on the needs or uses of the chia seeds.  

3.5 Validation 

The re-sampling-based validation methodology was applied to validate the category of 

the chia samples (day x temperature). Thus, it is possible to assume that a new sample 

can be predicted reliably. The validation was performed using all the spectral 
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information of the NIR-HSI images. However, to facilitate the visualization, Figure 4 

shows the validation obtained by using the mean spectrum of each sample.  

Fig. 4A indicates the frequency with which the samples have been validated. The 

frequency values are between 20-40 for all samples, indicating a satisfactory result of 

the proposed number of iterations. The low values in the standard deviation (Fig. 4B) 

indicate that the validation has been satisfactory. That is, all the validated samples were 

correctly assigned in the range of scores corresponding to the day (0 - 180 days) and 

temperature (25, 35 and 45 ° C) of the chia seeds samples. More clearly, Fig. 4C shows 

how the validation samples (red circle) were correctly assigned within the 

corresponding calibration group. Fig. 4D shows the validation of the variability of the 

PC1 scores of chia seeds stored at 25, 35 and 45 ° C for 180 days. Pixel-to-pixel 

validation shows how chia seeds degrade as a function of time and temperature. The 

results are consistent with those shown in the calibration, where samples at 45 ° C have 

a high degradation rate (Fig. 3B). Therefore, the validation confirms that PC1 scores 

vary in relation to time and temperature, and that they reflect the chemical changes 

occurred by the degradation/transformation processes. Fig. 4E shows the standard 

deviation of the NIR-HSI. Here we can see that all the pixels within the validated image 

were corresponding to the pixels assigned for the PCA model calibration. Therefore, 

this would indicate that the PC1 scores are useful for estimating the shelf life, since all 

seeds had the same variability in the scores in both calibration and validation. Then, the 

validation of the methodology allows to make some statements: 1) PC1 scores are 

associated with chemical changes during storage time at different temperatures, 2) chia 

samples belonging to the same category (time x temperature) present the same 

variability in the PC1 scores, and 3) chia seeds within the same sample have the same 
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degradation rate. Thus, it is possible to assume that PCA scores can be used reliably to 

estimate the shelf life of chia seeds. 

 

Fig. 4. Validation of time-related PC scores method for estimate shelf life of Chia seeds. 

A) Frequency, B) Standard deviation, C) Validation score projection, D) Variability in 

time-related PC1 validated scores at 25 °C, 35 °C and 45 °C using a cut-off value = 

mean scores, and E) Standard deviation in time-related PC1 validated scores at 25 °C, 

35 °C and 45 °C. 

4. Conclusions 
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NIR-HSI was used to explain the variability in the composition of chia seeds subjected 

to accelerated tests. The time-related PCs scores were used to model degradation 

kinetics and to estimate the multivariate accelerated shelf-life (MASLT) of chia seeds. 

Variability in PC1 is associated with the global degradation of chia seeds, which 

includes changes in proteins, lipids, carbohydrates and phenolic compounds, so their 

use to estimate the shelf life is appropriate. PC1 scores over time were adjusted to a 

fused kinetic model, with an R2 > 0.85, which indicates a degradation of the chia seed 

components in two steps: exponential and linear. The increase in temperature 

accelerated the processes of seed degradation, as shown by the composition of fatty 

acids and acidity. Using the spectral information of chia seed samples with an increase 

of 75% of their initial value in their acidity, the shelf-life of chia seeds was estimated, 

being 1300, 798 and 90 days for chia seeds stored at 25, 35 and 45 °C, respectively. A 

new approach for the validation of the methodology of estimation of shelf-life using 

PCs scores was proposed. The results show that all the samples were correctly predicted 

within the same category (day x temperature). Therefore, for the first time, it is possible 

to state that the method developed can estimate the shelf-life of chia seeds reliably. 

Future work could endeavor to estimate the useful life of chia seeds or others, 

depending on other characteristics that are associated with the final use of the product, 

such as a specific protein or phenolic compound, because the spectral information 

collected encompasses the entire composition of the sample. 
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Shelf life estimation and kinetic degradation modeling of Chia 

seeds (Salvia hispanica) using Principal Component Analysis 

based on NIR-Hyperspectral imaging 

 

1. Experimental 

1.1 Fatty acid composition and free fatty acid 

Chia seeds were ground using a mill model A 11 B S32 (IKA, Germany). Later, Chia 

oil was extracted by Bligh-Dyer method (Hartman & Lago, 1973).  This method allows 

extracting lipids from Chia seeds without applying heat, so it can be used to assess oil 

deterioration as a result of storage conditions. Summarized, 3 g of ground sample was 

weighed into test tubes with chloroform (8 mL), methanol (16 mL) and water (6.4 mL). 

The tubes were agitated for 30 minutes and then an additional 8 mL chloroform and 8 

mL anhydrous sodium sulfate (1.5%) were added, with phase separation occurring. The 

obtained lipid extract was dried at 40 ° C on a rotary evaporator model 801 (Fisatom, 

Brazil) until solvent drying. The oil was stored at -86 °C until the analysis. 
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For fatty acid composition measurement, the lipids obtained were esterified as reported 

by Joseph and Ackman (1992). Initially, 200 µL of C23:0 was added to tubes as an 

internal standard at a concentration of 5 mg/mL and then dried with N2 flow. The 

extracted fat (25 mg) together with 4 mL of sodium hydroxide (0.5 M in methanol) and 

C23:0 were heated at 100 °C for 20 min. Then the extract was derivatized with 3 mL of 

boron trifluoride solution (12% in methanol) at 100 °C for 5 min, and then 4 mL of 

saturated sodium chloride solution and 4 mL of hexane was added. The tubes were 

rested until the phases separated. Three consecutive partition steps were performed with 

hexane (2 mL) under stirring. The collected phases were mixed and concentrated to 

dryness on a rotary evaporator and resuspended in 2 mL hexane. Extraction was 

performed in triplicate (n = 3) and the extract was stored in at -86 °C until the analysis.  

The chromatographic conditions were based on Ballus et al. (2014), with modifications. 

Separation of methyl esters was performed on a 7890A gas chromatograph (GC-

Agilent, Germany) equipped with a flame ionization detector (FID). The methyl esters 

were separated using a DB 23 capillary column (60 m, 0.25 mm d.i., 0.25 μm film thick, 

Agilent, USA). An aliquot of the extract (1 µL) was injected at a ratio of 1:50. Injector 

and detector temperatures were maintained at 250 ° C and 280 ° C, respectively. The 

oven temperature ramp was 50 °C (5 min, hold time) increasing to 175 °C to 25 °C/min, 

finally to 230 ° C to 4 °C/min and maintained for 25 min. The flow rate of carrier gas 

(N2) was 1 mL.min-1 and detector gas flow rate (N2:H2:synthetic air) were 30 mL.min-1, 

30 mL.min-1 and 300 mL.min-1, respectively. Methyl esters were identified by 

comparing their retention times with those obtained with the standards (FAME mix C4-

C24) under the same chromatographic conditions. Quantification was performed by 

internal standardization, using C23:0 as internal standard. Correction factors and fatty 

acid concentration (mg/g oil) were calculated according to Joseph and Ackman (1992). 
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Free fatty acid in stored Chia seeds were determined according to Ca 5a-40 (AOCS, 

1998). All samples were analyzed in triplicate. 
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CHAPTER 4: 

 

Authentication of cocoa (Theobroma cacao) bean hybrids by NIR-

hyperspectral imaging and chemometrics 
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The hybridization of cocoa allows generating new varieties with the aim of opening new 

horizons in terms of yielding, disease resistance and flavor. The objective of this work 

was the development and validation of classification models based on NIR 

hyperspectral imaging and chemometrics for the discrimination of five valuable cocoa 

bean hybrids. The chemometrics tools, PLS-DA and SVM, showed comparable results 

for 2-class (hybrids) models, but SVM (3.8 – 23.1 % prediction error) was superior to 

PLS-DA (4.4 – 34.4 % prediction error) when all five classes (hybrids) were included in 

a model. PLS-DA maps showed a simple and informative way to discriminate hybrids, 

allowing a correct classification between 50 – 100 %. Finally, it can be concluded that 

the models created in this work could be a good and reliably alternative to the actual 

visual method for the discrimination of cocoa bean hybrids.  

Keywords: genotype; imaging; computer vision; near-infrared imaging 

1. Introduction 

According to International Trade Centre (2001), there is not a general rule to use both 

terms ‘cacao’ or ‘cocoa’ (Theobroma cacao) to refer to the bean. However, it is 

common to use the term ‘cacao’ to describe the scientific and horticultural aspects of the 

plant, reserving ‘cocoa’ for fermented and dried bean. The cocoa bean is one of the 

agricultural commodities highly demanded in the world for its high benefits in terms of 

nutrition and economics. Ivory Coast, Ghana, Indonesia, Nigeria, Cameroon and Brazil 

are the world’s largest cocoa producer (4.6 million tons of cocoa harvested in 2016) 

(The International Cocoa Organization, 2018).  

Hybridization is a common technology that allowed to create cocoa bean hybrids with 

different features such as a greater disease resistance (e.g. “witches broom disease” 

caused by Moniliophthora perniciosa), however it also can affect pod and bean yield 
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parameters, precocity and butterfat flavor expressed after optimal fermentation. 

Traditionally, cocoa genotypes are grouped into Criollo, Forastero and Trinitario. Later, 

Motamayor et al. (2008) proposed a new sub-classification for Forastero group, 

including: Marañon (PA), Curaray (AGU), Iquitos (IMC), Nanay (NA), Contamana 

(SCA), Amelonado (BE), Purús (CAB), Nacional (MO) and Guiana (CJ). These 

genotypes were reported for South America, and from them, through hybridization, 

cocoa producers create hybrids with disease resistance, a greater yielding, and 

interesting flavor. Nevertheless, many times hybrids are planted together and the seeds 

are mixed, making it difficult to identify the purity of cocoa in relation to a variety of 

high economic value, in order to assure the quality of the desired final product, 

especially the chocolate.  

Diverse analytical techniques such as multi-element and multi-compound isotope 

profiling (13C, 15N, % C, % N) (Diomande et al., 2015), proteomic and peptidomic 

fingerprinting by ultra-performance liquid chromatography tandem mass spectrometry 

method with electrospray ionization (UHPLC-ESI-MS/MS) (Kumari et al., 2018; 

Scollo, Neville, Oruna-Concha, Trotin, & Cramer, 2020), nanofluidic single nucleotide 

polymorphism (SNP) genotyping (Fang et al., 2014) or microsatellite markers (Dinarti 

et al., 2015; Herrmann et al., 2015) have been developed to identify cocoa bean hybrid. 

These techniques turn out to be accurate and reliable to identify cocoa bean hybrids, 

however, they consume a lot of time, use chemical reagents and destroy the samples. 

For the cocoa industry, it is essential to identify cocoa bean hybrids according to quality 

criteria without destroying the sample, quickly and reagent-free. Some non-destructive 

techniques such as Raman spectroscopy (Vargas Jentzsch et al., 2016) and computer 

vision (Jimenez et al., 2018; Mite-Baidal et al., 2019) showed a good performance to 

identify cocoa beans genotypes. However, in both cases the objective was to identify a 
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specific variety (CCN-51) and two-classes model was developed. New methods are still 

needed to quickly differentiate different types of hybrids, which can often be confused 

within the same batch. 

Near infrared spectroscopy (NIRS) is the technology that can help to solve this problem. 

For the cocoa beans, NIRS has proven to be efficient in determining protein, fat, 

caffeine, theobromine, (−)-Epicatechin, carbohydrates and moisture content in cocoa 

flour (Álvarez et al., 2012; Barbin et al., 2018; Veselá et al., 2007), to detect 

adulterations by substitution (e.g. carob flour) in cocoa flour (Quelal-Vásconez et al., 

2019; Quelal-Vásconez, Pérez-Esteve, Arnau-Bonachera, Barat, & Talens, 2018), 

geographical and varietal origin of the cocoa beans and shells of cocoa beans (Mandrile 

et al., 2019; Teye, Huang, Dai, & Chen, 2013; Trognitz et al., 2013). However, for NIR 

spectra acquisiton, cocoa bean samples were ground.  

Near infrared hyperspectral imaging (NIR-HSI) is a NIR-based technology that allows 

obtaining spectral and spatial information simultaneously (Baeten, Pierna, Vermeulen, 

& Dardenne, 2010; Dale et al., 2013; Fernández Pierna, Baeten, & Dardenne, 2006). 

Some previous works showed the ability of NIR-HSI in tandem with multivariate 

analysis to identify hybrids of rice (X. Liu, Feng, Liu, & He, 2017), okra seeds (Nie, 

Zhang, Feng, Yu, & He, 2019), maize seeds (Guo, Zhu, Huang, Guo, & Qin, 2017), 

sweet potato (Su, Bakalis, & Sun, 2019) and soybean (Y. Liu, Wu, Yang, Tan, & Wang, 

2019), among others. Regarding cocoa beans, Caporaso et al. (2018) showed that the 

spectral information obtained from NIR-HSI can be used to predict the fermentation 

index, total polyphenols and antioxidant activity in single peeled dried fermented cocoa 

beans.  

According to Okiyama et al. (2017), one kg dried cocoa bean shell is composed 

approximately by 504 – 606 g fiber, 116 – 181 g protein, 47 – 101 g moisture, ~178 g 
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carbohydrates, 20 – 68 g fat and 18 – 58 g phenols. Previous work reported that the 

chemical information obtained from the cocoa bean shell can be used to identify genetic 

varieties of cocoa beans (Mandrile et al., 2019). In this work, NIR-HSI technology was 

chosen in order to extract, from images, the adequate spectral information from 

fermented and dried unpeeled cocoa beans, in order to allow the discrimination of cocoa 

beans hybrids, for quality control purposes (purity). Thus, the objective of this work 

was to identify and classify cocoa bean hybrids originating in the Brazilian Basin, using 

NIR-HSI in combination with chemometric tools as a non-destructive procedure.  

2. Material and methods 

2.1 Sample collection 

Cocoa bean hybrids samples were collected by CEPLAC (Medicilândia, Para, Brazil) in 

August 2018. Samples were collected in the same geographical zone, to avoid the 

effects related to the soil composition and climatic factors. Five cocoa bean hybrids 

from Forastero genotype were selected considering their importance for Brazilian cacao 

industry, and they are summarized in Figure 1a.  

All samples were fermented during 7 days, under same conditions of temperature and 

relative humidity. After fermentation, samples were dried during 4 days under sun 

shining. Then, samples were stored at 25 °C until analysis. Figure 1b shows the final 

internal appearance of cocoa bean hybrids, confirming the good compartmentation and 

typical brown colour of these beans. No additional processing such as grinding, 

shelling, among others of the cocoa bean hybrids was performed. 



73 
 

 

Fig. 1a. Scheme showing the process for production of cocoa bean hybrids in CEPLAC 

(Medicilândia, Para, Brazil). 
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Fig. 1b. Photo of the visual aspect of the internal quality of cocoa bean hybrids. 

2.2 Instrumentation 

NIR hyperspectral images of cocoa bean hybrids were acquired using a line scan 

imaging system combined with a conveyor belt (BurgerMetrics SIA, Riga, Latvia) in a 

room temperature of 25 °C. This device consisted of a SWIR XEVA CL2.5 320 TE4 
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camera (Specim Ltd., Oulu, Finland) which has a resolution of 320-pixel lines and an 

ImSpector N25E spectrograph (Xenics nv, Leuven, Belgium) with a spectral range of 

1100 – 2400 nm (209 wavelengths) and a spectral resolution of 6.3 nm. 32 scans per 

image have been averaged and each pixel provides an absorbance spectrum at each 

point of the image. Acquisition is performed using the HyperPro software 

(BurgerMetricsSIA, Riga, Latvia). More details of the used device and its components 

can be found in Eylenbosch et al. (Eylenbosch, Bodson, Baeten, & Fernández Pierna, 

2018). 

Two-dimensional references are needed for dark and white in order to perform 

instrumental calibration prior to further analysis. For this, a dark image is collected by 

blocking the access of light to the camera and a white image using a standard white 

reference board. The spectra are then corrected according to equation 1. Then, cocoa 

beans were placed on a conveyor belt (speed of 1.1 mm/s) in groups of 10 beans per 

image. Image acquisition was performed at room conditions. 

 
 

100*0

BW

BI
I




  (Eq. 1) 

where I0 is the original hyperspectral image; B is the dark image and W is the white 

image. 

2.3 Spectral data collection 

In total, 50 fermented and dried cocoa beans from each hybrid were chosen for the 

construction of the models. Additionally, a second set of 200 cocoa beans was used for 

pixel-to-pixel external validation. The number of cocoa bean hybrids chosen was 

sufficient to create robust models, since the experiment was controlled in (1) soil type 

(geographical origin), (2) same fermentation and drying process and (3) same harvest 
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date and (4) same pre-analysis storage time. The mean spectra (ROI) was extracted from 

whole cocoa beans for each hybrid (both sides).  For this purpose, a mask was built to 

isolate the cocoa beans from the background using the difference in intensity. After ROI 

segmentation, spectral libraries for hybrids of cocoa beans were compiled by calculating 

the mean spectra on each of the 50 cocoa beans per hybrid, on both sides, finally 

resulting in 100 mean spectra for each variety (library with 500 spectra). In addition, a 

new set of cocoa bean hybrids containing 200 beans (200 images) was processed under 

the same conditions. This new dataset was acquired in order to demonstrate that the 

models created can predict on a completely independent set of dice, enhancing their 

robustness for industrial applications. 

2.4 Data treatment 

Chemometric data analysis was carried out using the PLS Toolbox from Eigenvector 

Research, Inc. (Manson, WA, USA) for Matlab R2017 (Mathworks, Natick, USA). 

First, the reflectance signal is converted to absorbance prior to spectral data treatments. 

The mean spectra of cocoa bean hybrids were pre-processed using standard normal 

variate (SNV) and the first derivative (Savitzky Golay, filter width 15 and a polynomial 

order of 2) to remove random shift of the baseline offset, light scattering interferences 

and noise (Vidal & Amigo, 2012).  

Principal component analysis (PCA) was carried out to investigate systematic 

differences between samples and to find and remove outliers (Sendin, Manley, Baeten, 

Fernández Pierna, & Williams, 2019). For this purpose, spectral data were mean 

centered, then, PCA model were performed by singular value decomposition (SVD) 

algorithm with a confidence level of 0.95 for Q and T2. 
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For discrimination purposes, Partial Least Squares discriminant analysis (PLS-DA) and 

Support Vector Machines (SVM) were applied on the data set. PLS-DA is a supervised 

lineal method widely used for food quality control and authentication. SVM is a 

supervised learning technique that works through the searching of hyperplanes (high 

dimensional feature space) by the use of  kernel functions and penalization criteria, 

allowing both linear and non-linear classifications (Pierna, Baeten, Renier, Cogdill, & 

Dardenne, 2004).   

Two approaches have been tested in this work. In the first approach, the aim was to 

construct PLS-DA and SVM models to discriminate between two cacao bean hybrids. 

The spectral data was constituted of 200 mean spectra for each model, of which 80 % 

(160 mean spectra) were randomly selected for the calibration and cross-validation of 

the models and the remaining 20 % (40 spectra) was used as test set to assess the 

discriminative capacity of the models. In the second approach, the aim was to construct 

one PLS-DA and SVM models to discriminate between the five cacao bean hybrids. 

Spectral data were randomly divided into two subsets: calibration and cross-validation 

set (80 % or 400 mean spectra) and test set (20 % or 100 mean spectra). In both cases, 

leave-one-out cross validation was applied when building the PLS-DA models, and the 

number of latent variables was chosen through the evaluation of sensitivity (Eq. 1), 

specificity (Eq. 2) and classification error (Eq. 3)  of cross-validation and prediction 

(Nie et al., 2019). For SVM models, the penalty parameters of cost (c) and kernel 

function parameters gamma (g) were optimized using a grid search (Fernández Pierna et 

al., 2012; Pierna et al., 2011). The model performance was also statistically evaluated 

according to sensitivity, specificity and classification error. 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (%) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (Eq. 1) 
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𝑆𝑝𝑒𝑐𝑖𝑠𝑓𝑖𝑐𝑖𝑡𝑦 (%) =
𝑇𝑁

𝑇𝑃+𝐹𝑁
 (Eq. 2) 

𝐸𝑟𝑟𝑜𝑟 (%) =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+ 𝐹𝑁
 (Eq. 3) 

Where TP: true positive (positive samples correctly classify), TN: true negative 

(negative sample correctly classify), FP: false positive (positive samples incorrectly 

classify), FN: false negative (negative samples incorrectly classify).   

For external validation of the models and to develop classification maps, a new sample 

test set (new cocoa bean hybrids not considered in the calibration or in the initial 

validation of the models) was used. The new test set consisted of 200 samples of the 5 

cacao bean hybrids (20 % of each hybrid) and were divided as follows on two subsets: 

SET 1 contained hybrids of the same class and SET 2 contained the 5 hybrids (20 % of 

each hybrid) placed in known spatial positions in the image. The discriminative capacity 

of the PLS-DA models for two classes and for five classes were evaluated based on the 

correct classification rate (% CCR) for each hybrid in the new test set. Predictive ability 

was assessed on hyperspectral images (pixel-to-pixel) and measured as the % CCR 

using an algorithm with 4 approaches: (1) prediction using raw model, (2) prediction 

using majority vote, (3) filtered model by deleted samples no possible to classify 

(difference between 2 classes with more probability < 65 pixel), and 4) PLS-DA model 

applied to pixel with mean spectra value. All PLS-DA maps were constructed using 

their own program developed in Matlab R2017 (Mathworks, Natick, USA). 

3. Results and discussion 

3.1 Spectra profile 

The raw spectra and pre-processed spectra of five cocoa bean hybrids are presented in 

Figures 2A and 2B, respectively. The mean spectra of all hybrids had similar pattern of 
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absorbance, but their relative absorbance was different in some spectral regions. 

Similarities in the shape of the spectrum are inherent to the specie (Theobroma cacao), 

while differences in absorbance are related to variations in the composition of the shell 

of cocoa beans (Quelal-Vásconez et al., 2019). Because all hybrids came from the same 

geographic area and the postharvest process (fermentation and drying conditions), it is 

possible to assume that variations in composition, and therefore spectral similarities and 

differences, are a consequence of hybrid genetics.  

Absorption bands 1181 and 1426 nm correspond to the second overtone of O–H 

stretching and O–H deformation (Teye et al., 2013), which is associated with water and 

fiber content (Okiyama et al., 2017). Also, the band at 1426 nm can also be associated 

to the first overtone of the N–H stretching vibration. Therefore this band is associated to 

–CONH– structure (peptide) and related to protein content in shell of cacao beans 

(Mandrile et al., 2019; Quelal-Vásconez et al., 2019; Veselá et al., 2007). Band 

absorption 1263 nm is associated to C–H stretching second overtone (–CH3 or –CH2), 

due to the presence of fibers and carbohydrates (Okiyama et al., 2017; Osborne, Fearn, 

Hindle, & Osborne, 1993). The absorption bands of 1533, 1577 and 1650 - 1780 nm are 

associated to functional groups like (−)-epicatechin (flavanol), theobromine and 

caffeine (alkaloids), proteins, volatile and non-volatile acids (Álvarez et al., 2012; Teye 

et al., 2013; Veselá et al., 2007). Also, absorption band at 1715 nm is mainly related to 

fat content and fatty acid. The spectral region at 1900 - 1950 nm is mainly associated 

with O-H combinations, influenced by moisture content in cocoa bean. It has also been 

reported that the band at 1916 nm is related to the second overtone of C=O and it is 

associated with the content of (−)-epicatechin (Álvarez et al., 2012) and lignin content. 

While the band at 1990 nm is related to O-H combinations and with asymmetric 

stretching of N-H and amide II group, strongly influenced by the content of protein. 
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Bands at 2092 and 2280 nm are also related to second overtone of CH=CH and CH3 

combination respectively, and they are characteristics of lignin, aromatics, polyphenols 

and fatty acids in cacao beans (Sunoj, Igathinathane, & Visvanathan, 2016; Teye et al., 

2015). However, the peak at 2092 nm is associated to protein content (Caporaso et al., 

2018; Veselá et al., 2007). The absorption bands at 2199 and 2375 nm could be 

attributed to the combination of C–H (Ma, Wang, Chen, Cheng, & Lai, 2017) and to the 

stretching and rocking vibrations of C-H and C-C of cellulose and hemicellulose 

(Okiyama et al., 2017; Wang et al., 2018), respectively. These bands were previously 

reported for cocoa bean shell (Mandrile et al., 2019; Quelal-Vásconez et al., 2019).  

3.2 PCA 

PCA models were performed using pre-processed data (Figure 2C) to identify possible 

clusters and to evaluate the effect of the pre-processing (SNV + 1st derivate). 

PCA shows the possibility, although not easily, to observe groups of hybrids of the 

same class. H1 hybrid (purple symbol) was characterized by negative scores on PC1 

and by negative scores on PC2. H2 (red symbol) and H4 (green symbol) hybrids were 

located on positive scores on PC1. While H2 hybrid presents greater variability on PC2, 

the H5 hybrid were characterized by positive scores on PC2. H3 (greenlight blue 

symbol) hybrid are characterized by negative scores on PC2, although they have great 

variability throughout PC1. Besides, H1 hybrids overlap on H2 hybrids, with whom 

they share a common ancestor (Figure 1). The results of the PCA show that for the same 

hybrid there is great variability between the samples, while there is an overlap between 

the hybrids of different classes. This could occur due to two situations: (1) the cocoa 

bean shell has fiber and protein as the majority components (Mandrile et al., 2019) and, 

(2) the five hybrids share genetic ancestry, so the concentration of fiber and protein can 

be very similar. Therefore, the overlap may be associated with the similarity in its major 
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components, while the clustering would be associated with the difference in minor 

components such as fatty acid tryptamides (FATs, more abundant in shell) (Quelal-

Vásconez et al., 2018), phenolic compounds and aromatic compounds (Okiyama et al., 

2017) developed during fermentation and drying for each class of hybrid. 
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Figure 2. Spectral profile of raw spectra (A), spectra treated with SNV + first derivative 

(B) and PCA scores based on spectra treated with SNV + first derivate (C). 

3.3 Discriminant analysis 
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PLS-DA models were created using the full spectral region (1100 - 2400 nm), however, 

the results (data no show) showed little sensitivity to discriminate between the 5 

hybrids. Therefore, in this work, PLS-DA and SVM was carried out in two approaches 

using spectral data in the range 1369 – 2054 nm. This spectral region was more 

significant for discrimination (lower % classification error) than using the full spectrum. 

PLS-DA and SVM discrimination models were calibrated and validated using the mean 

spectrum of the cocoa bean hybrids. Discrimination models were created to identify a 

specific hybrid (genetic cross-linking) within a heterogeneous batch of cocoa beans, 

where the provenance of each bean was known. These models were created to help the 

industry establish the purity of a batch of cocoa beans, more necessarily to associate it 

with the origin of a specific tree, since cocoa trees are hermaphrodites, and can contain 

more than two hybrids to the same time. 

3.3.1 IMC vs P7 classes 

Here, we investigated the possibility of constructing PLS-DA and SVM classification 

models to discriminate between hybrids according to their “mother”, being IMC 67 for 

H1 and H2, and P7 for H3 and H4. The PLS-DA model obtained a better result than the 

SVM model (11.3 % vs 17.5 % error, Table 1), although with a large number of latent 

variables (14). Recently, Scollo, Neville, Oruna-Concha, Trotin, & Cramer (2020) 

reported that the IMC 67 hybrid had a different protein profile from other types of 

hybrids (e.g. content of aminohydrolase), which allowed it to be clearly classified. 

Loading plot (Figure 2A, supplementary material) shows the importance of spectral 

region 1900 – 1990 nm for PLS-DA model, which are strongly associated with O-H 

combinations, mainly water, but it also is associated to functional groups of proteins, 

polyphenols, fatty acid and aromatics (Caporaso et al., 2018; Teye et al., 2013).  
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Figure 3. PLS-DA analysis for two classes of hybrids of cacao beans according to 

‘mother’: IMC vs P7. PLS-DA maps for the most probable class assigned to cocoa bean 

hybrids were performed according approach: a) PLS-DA model; b) model applying 

majority vote; c) filtered model by deleted samples no possible to classify (difference 

between 2 classes with more probability < 65 pixel); d) PLS-DA model applied to pixel 

with mean spectra value. 
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Figure 3 shows the classification results (based on mean spectrum) and the pixel-to-

pixel allocation of each hybrid class (IMC vs. P7). The classification results show as 

five beans of IMC hybrids and four beans of P7 hybrids are misclassified. For the pixel-

to-pixel classification, using majority vote (Figure 3b), all grains are correctly assigned 

to the ICM class (100 %), while for class P7 only 80 % of the correct classification was 

reached (16/20). The approach c (Figure 3c) shows that cocoa bean hybrids from P7 

misclassified as IMC always had a larger number of pixels similar to the IMC class 

(class 1 - class 2 < 65 pixels). This is also visible in Figure 3a. The higher 

discrimination capability may be associated with the ancestry of the “mothers” of the 

hybrids. IMC 67 is a variety from the genotype "Iquitos", while P7 probably comes 

from the "Namay" or "Marañon" groups (Motamayor et al., 2008). Satisfactorily, the P7 

hybrids classification improved when the average spectrum value was applied to each 

pixel for classification (Figure 3d), reaching 95% correct classification (19/20). Because 

the shell is maternally derived from the integuments of the ovary, its composition is 

preferably dominated by “mother” genetic. In this sense, success in the discrimination 

of hybrids is probably associated with the particularities in composition of each 

“mother” species.  

Table 1. Performance of 2-classes PLS-DA and SVM classification models for the 

hybrids of cocoa beans obtained by HSI in the spectral region 1369–2054 nm. 

Hybrid Model Parameter* 
Sensitivity  Specificity  Error 

CV Pred  CV Pred  CV Pred 

IMC vs P7 PLS-DA 14 0.969 0.875  0.963 0.900  0.034 0.113 

SVM (1;0.0316) 0.956 0.775  0.963 0.875  0.041 0.175 

H1 vs H2 PLS-DA 9 0.975 1.000  0.975 1.000  0.025 0.000 

SVM (10;0.0316) 0.988 1.000  0.963 0.750  0.025 0.125 

H1 vs H3 PLS-DA 6 0.975 0.700  0.925 0.900  0.069 0.200 

SVM (0.3;0.0316) 0.975 0.600  0.975 0.950  0.025 0.225 
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H2 vs H4 PLS-DA 6 0.963 0.650  0.975 0.900  0.031 0.225 

SVM (1;0.0316) 1.000 0.650  0.988 0.950  0.006 0.200 

H2 vs H5 PLS-DA 4 0.975 0.750  0.975 0.950  0.025 0.150 

SVM (100;0.00031) 0.975 0.700  1.000 1.000  0.125 0.150 

H1 vs H3 PLS-DA 4 0.963 1.000  0.938 0.850  0.050 0.075 

SVM (31.62;0.001) 0.963 1.000  0.925 8.000  0.050 0.050 

H1 vs H4 PLS-DA 8 1.000 1.000  0.975 9.000  0.013 0.050 

SVM (1;0.1) 1.000 0.988  1.000 0.950  0.006 0.025 

H1 vs H5 PLS-DA 5 0.988 1.000  1.000 0.950  0.006 0.025 

SVM (100;0.00316) 1.000 1.000  0.988 0.950  0.006 0.025 

H3 vs H4 PLS-DA 12 0.963 0.900  0.988 0.900  0.025 0.100 

SVM (3.16;0.0316) 0.875 0.900  0.950 0.850  0.088 0.125 

H3 vs H5 PLS-DA 8 0.938 0.800  0.950 0.900  0.056 0.150 

SVM (3.16;0.001) 0.963 0.950  0.975 0.900  0.031 0.075 

H4 vs H5 PLS-DA 8 0.988 0.900  0.975 1.000  0.019 0.050 

SVM (10;0.01) 1.000 0.900  1.000 1.000  0.000 0.050 

PLS-DA: partial least square discriminant analysis; SVM: support vector machine discriminant analysis; 

CV: cross-validation; Pred: prediction.  

*Parameter for PLS-DA model’s means the optimal number of LVs and for SVM model’s mean different 

penalty parameters: cost (c) and kernel function parameters gamma (g). 

3.3.1 2-class models 

Here, 2-classes PLS-DA and SVM models were built to discriminate between two 

specific cocoa bean hybrids, and the performance of models is showed in Table 1. In 

general, the PLS-DA and SVM models showed a good performance with a % sensitivity 

of 60 – 100 % and a % error of 0 – 22.5 %. In most cases, the% error for SVM models 

was less than or equal to that for PLS-DA models, except for models H1 vs H2 and H3 

vs H4. This is probably because the SVM algorithm is more complex and can work 

linearly and non-linearly way. However, generally speaking, a significant improvement 

was probably not observed for SVM models due to the complexity of the hybrids. The 

classification models were more sensitive for H1 in all cases (Table 1), which allows 

their clear distinction from any other hybrid.  
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For all PLS-DA models, the loadings (Figure 2B-K, supplementary material) showed 

the importance of the spectral region around 1650 nm is associated to functional groups 

like (−)-epicatechin, theobromine and caffeine content, and the band at 1715 is 

associated to fatty acid in cocoa beans, as previously reported by Alvarez et al. (2012). 

Also, the spectral region at 1900 – 1990 nm is associated with asymmetric stretching of 

N-H and amide II group present in the protein, which is  second larger component in 

cocoa shell (116 – 181 g protein/kg dried cocoa shell) (Okiyama et al., 2017). Also, 

each hybrid has a particular protein profile (Scollo et al., 2020), allowing the formation 

of flavor precursors in cocoa beans, however, not all protein is degraded or transformed, 

since the proteolytic processes are different in each hybrid (Moreira, Vilela, Santos, 

Lima, & Schwan, 2018).  

The H1 vs H2 model allowed, in the new external validation set (Figure 4A) to correctly 

classify all cocoa bean hybrids (100 %). Figure 4A, (approach a) shows the model 

sensitivity for the H1 class, where almost 100 % of the pixels corresponding to H1 

hybrid were assigned to that class. That sensitivity was lower for H2, although not 

sufficient to incorrectly classify hybrids in any of the approaches (Figure 4A, approach 

b-d). For H1 hybrid, protein content and profile, which are quite specific and distinctive 

in their predecessors IMC 67 and ICS 1 (fine cocoa) (Scollo et al., 2020).  

The model H3 vs H4 instead showed less sensitivity for prediction pixel-to-pixel 

(Figure 4B, approach a). Using majority vote (Figure 4B, approach b), the hybrids of 

class H4 were correctly classified at 100 %, while class H3 was correctly classified at 

70 %. However, the best prediction was achieved using the third approach, where H3 

and H4 hybrids were correctly classified at 100 % and 90 % (Figure 4B, d). Here, 

parents SIAL505 (H4) and BE10 (H3) (Figure 1) belong to the genotype "Amelonado” 
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(Motamayor et al., 2008). This would explain why some hybrids of the H3 class are 

confused with hybrids of the H4 class. 

Figure 4C (approach a) shows that H5 hybrids show a definite assignment of the class, 

with almost all pixels correctly assigned. This facilitated their authentication using any 

of the three approaches (Figure 4C, b-d) achieved a 100 % correct classification in the 

new test set of H5 and 90 % in the new test set of H2 (data not shown). Probably, the 

success in the classification of the hybrids H2 and H5 is related to the difference in the 

genotype to which their mothers belonged, being IMC 67 (mother of H2) belonging to 

the genotype "Iquitos" and PA121 (mother of H5) belonging to the genotype “Marañon 

(Parinari I)” (Motamayor et al., 2008). 

The differentiation between the H5 and H4 hybrids was more complicated (Figure 4D), 

reaching a 70 % correct classification for the H5 hybrid and 90 % for the H4 hybrid. A 

similar result with 80% correct classification for H5 and 100 % for H3 (data not shown) 

was found. None of the three approaches (Figure 4D, b-d) allowed an improvement in 

the prediction of cocoa bean hybrids. Hypothetically, the greater sensitivity of the 

model to identify the P7 samples suggests that these hybrids have a distinctive 

composition in residual compounds (e.g. protein fractions) that in quantity and type may 

be greater than in H5 hybrids.  
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Figure 4. PLS-DA analysis for two classes of hybrids of cacao beans. A) Model H1 vs 

H2; B) Model H3 vs H4; C) Model H1 vs H5; D) Model H3 vs H5. PLS-DA maps for 
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the most probable class assigned to new test sample set were performed according 

approach: a) PLS-DA model; b) model applying majority vote; c) filtered model by 

deleted samples no possible to classify (difference between 2 classes with more 

probability < 65 pixel); d) PLS-DA model applied to pixel with mean spectra value. 

From the results presented in this section, we can conclude the offspring hybrids of IMC 

67 (H1 and H2) presumably have a particularly distinctive composition of fine cocoa 

than the other hybrids, especially the H1 hybrid. This may be associated with its 

ancestor ICS1, which is a hybridization of cocoa with a fine aroma (Criollo and 

Trinitario) (Castro-Alayo, Idrogo-Vásquez, Siche, & Cardenas-Toro, 2019; Kongor et 

al., 2016; Scollo et al., 2020). The performance of classification models was similar to 

reported to discriminate two-classes of Ecuadorian cocoa bean genotypes using Raman 

spectroscopy (accuracy = 91.8%) (Vargas Jentzsch et al., 2016) and computer vision 

(until 98%) (Jimenez et al., 2018), even reaching an error of 0 % for some pairs of 

hybrids that was not previously reported. 

3.3.2 5-classes model 

In this step, one PSL-DA and one SVM model for the 5 cocoa bean hybrids. Table 2 

shows the performance evaluated as sensitivity, specificity and error for PLS-DA and 

SVM models. Both PLS-DA and SVM showed good performance to discriminate 

between the five types of cocoa hybrids (Figure 1). The lowest sensitivity and the 

highest error in cross-validation and prediction set was recorded for the hybrids H2 and 

H3 for both PLS-DA and SVM models. However, the prediction error for the test set 

was lower (18.1 % for H2 and 23.1 % for H3) for SVM models compared to PLS-DA 

models (23.1 % for H2 and 34.4 % for H3). In contrast, both models showed a good 

performance (lower error in test set) for the H1 hybrid, suggesting that this cocoa hybrid 

could have a rather particular composition compared to the other hybrids. Therefore, its 
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classification is more reliable, which is clearly shown in the low prediction error in test 

set (4.4 % for PLS-DA and 3.8 % for SVM).   

Table 2. Performance of the 5-classes PLS-DA and SVM classification model for the 

hybrids of cacao beans obtained by HSI in the spectral region of 1369–2054 nm.  

 

In Figure 5 it can be seen how many of the hybrids presented pixels of all classes. More 

clearly, PLS-DA maps (approach a) show how for the same hybrid, pixels of all classes 

can exist. This is mainly associated with shared genetic information, such as sharing the 

same mother (1/2 genetic information, especially for H3 and H4 hybrids), especially 

“mother” genetic that is responsible for shell composition. Meanwhile, it is likely that 

not all compounds present in the shell have been transformed after the fermentation and 

Hybrid 
Model Parameter* 

Sensitivity   Specificity  Error 

CV Pred  CV Pred  CV Pred 

H1 

PLS-DA 12 

0.963 1.000  0.944 0.912  0.047 0.044 

H2 0.938 0.600  0.897 0.938  0.083 0.231 

H3 0.787 0.500  0.806 0.813  0.203 0.344 

H4 0.925 0.850  0.881 0.813  0.097 0.169 

H5 0.938 0.950  0.956 0.925  0.048 0.053 

H1   0.963 1.000  0.994 0.925  0.022 0.038 

H2 

SVM (10;0,01) 

0.950 0.650  0.984 0.988  0.033 0.181 

H3 0.875 0.600  0.975 0.938  0.075 0.231 

H4 0.975 0.900  0.978 0.938  0.023 0.081 

H5 0.925 0.900  0.991 0.975  0.042 0.063 

PLS-DA: partial least square discriminant analysis; SVM: support vector machine discriminant analysis; 

CV: cross-validation; Pred: prediction.  

*Parameter for PLS-DA model’s means the optimal number of LVs and for SVM model’s mean 

different penalty parameters: cost (c) and kernel function parameters gamma (g). 
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drying process and, therefore, similar pixels in each cocoa bean are associated with the 

fiber, alkaloids (e.g. theobromine (Biehl & Ziegleder, 2003)) or some proteins (e.g. 

albumins (Dodo, Fritz, & Furtek, 1992)) that do not degrade or transformed completely 

during fermentation.  
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Figure 5. PLS-DA analysis for five classes of hybrids of cacao beans. A) H1; B) H2; C) 

H3; D) H4; E) H5. PLS-DA maps for the most probable class assigned to new test 
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sample set were performed according approach: a) PLS-DA model; b) model applying 

majority vote; c) filtered model by deleted samples no possible to classify (difference 

between 2 classes with more probability < 65 pixel); d) PLS-DA model applied to pixel 

with mean spectra value. 

Figure 6 shows the 5-classes PLS-DA map created using a new data set (SET 2), which 

had samples with known spatial position and the same number of samples for each 

hybrid (10). For new data set (SET 2), Figure 6 (approach a) reflects the genetic 

complexity of hybrids, showing how some cocoa beans can be assigned pixels of 2 or 

more classes. However, as in 2-class models, the H1 (Class 1) hybrid clearly differs 

from the other hybrids. Using approaches b and c, H1 correct classification reached 90 

%, but it reached 100 % when the average spectrum value is assigned to each pixel 

(Figure 6, d). This further reinforces the theory that hybrids descended from IMC 67 are 

compositionally particular. While for the H3 samples, the correct classification was 80 

% in all cases. Also, Figure 6c shows that two cocoa beans (1 from H3 and 1 H4) were 

delighted because there was no significant number of pixels assigned to a single class 

(difference between number of pixels in class H3 and class H4 was <65 pixels).  

For its part, H4 achieved a 100 % correct classification using any of the proposed 

approaches. The greatest difficulty for the 5-class model was to identify the H5 and H3 

hybrids, which were confused with the H4 hybrid (correct classification 40 – 60 %), 

using any approach. This behavior was also previously observed in the 2-class models. 

This could indicate that these hybrids are likely to be compositionally very similar, so 

they could have developed the same flavor compounds in cocoa. 

Finally, using 5-classes models we reached a correct prediction was 60 – 100 % for the 

set of cocoa beans that contained a single hybrid and between 40 – 100 % for cocoa 

beans set containing all hybrids. Previously, it was reported that using SSRs markets, 
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the classification error of cocoa germplasm was 15 – 44 % (Motilal & Butler, 2003). So 

we can say that our 5-classes model, in addition to not being destructive, chemical-free 

and requiring a minimum sample preparation, is reliable for the discrimination of cocoa 

hybrids. 

 

Figure 6. PLS-DA maps for the most probable class assigned to new test sample set. 

(Set 2) with hybrids with known spatial position. PLS-DA maps for the most probable 

class assigned to new test sample set were performed according approach: a) PLS-DA 

model; b) model applying majority vote; c) filtered model by deleted samples no 

possible to classify (difference between 2 classes with more probability < 65 pixel); d) 

PLS-DA model applied to pixel with mean spectra value. 

4. Conclusion 

In this paper, the development and robust validation of a method based on hyperspectral 

images to identify and classify cocoa bean hybrids has been proposed. The results 

indicated that comparable results are obtained for both PLS-DA and SVM for the 2-
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class models, however, for the model that included the 5 classes, the SVM models 

showed a significant improvement reducing the prediction error. The H1 hybrid was the 

most distinguishable in all cases. A second validation using a new data set (SET 1 and 

SET 2) was performed for pixel-to-pixel prediction of hybrid classes. The maps show 

the reliability of the 2-class models to classify all the hybrids correctly (70 – 100 % 

CCR). While the prediction in the image using the 5-class model allows a 100 % correct 

classification of the H1, H2 and H4 hybrids. Future works should investigate the 

composition of these hybrids as well as that of their ancestors, thus allowing less factual 

conclusions to be established. In addition, the feasibility of the method in other hybrids 

and with a larger number of samples should be investigated. 
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Figure 1. Loading plot of PLS-DA models. A) IMC vs P7; B) H1 vs H2; C) H2 vs H3; 

D) H2 vs H4; E) H2 vs H5; F) H1 vs H3; G) H1 vs H4; H) H1 vs H5; I) H3 vs H4; J) H3 

vs H5; K) H4 vs H5; L) 5-classes model 
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5.1 General discussion 

A hyperspectral imaging system (HSI) was implemented to ensure quality 

control of agricultural products in two different applications: (1) estimate the shelf life 

of chia seeds and (2) identify the variety of cocoa bean hybrid.  

In the first case, HSI and PCA were used to develop a methodology to estimate 

the shelf life of chia seeds. The PC scores allowed modeling the kinetics of chia seed 

degradation, which obeyed two-stage kinetics: exponential and linear (R2> 0.85). In 

addition, the increase in temperature accelerated the degradation of chia seeds, with an 

increase in acidity and the degradation of fatty acids. Using the cut-off value of the PC1 

score when the seeds showed an increase in acidity of 75%, it was possible to estimate 

the useful life of chia seeds in approximately 1300 days at 25 ° C. Furthermore, it was 

possible to create a "Re-sampling" strategy that allowed validating the methodology, by 

projecting the validation samples on the calibration set with an acceptable number of 

iterations. Thus, it was possible to prove that the pixels within each image were being 

correctly predicted. 

In the second case, HSI showed a high performance to discriminate between 2-

classes of hybrids and 5-classes of hybrids, both for PLS-DA and SVM models, with 

results comparable to those obtained by polymerase chain reaction. The pixel-to-pixel 

prediction showed the high predictability of the PLS-DA models to identify cocoa bean 

hybrids, in an external set. Therefore, the methodology developed here could be 

plausibly implemented in cocoa bean production centers.  
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6.1 General conclusion 

Generally speaking, hyperspectral images in combination with multivariate analysis 

allow, in a reliable way, an aid in the quality control of agricultural products. In this 

specific case, we can conclude that HSI can be implemented to estimate the shelf life of 

chia seeds at commercial temperatures, and in the identification of cocoa bean hybrids 

in Brazil. 

6.1. Future trends 

- The MASLT method should be expanded to other types of products, both fresh and 

processed products. In addition, the cut-off value to estimate shelf-life must be selected 

based on the end use of the product. 

- Re-sampling method can be used to validate analysis methods using PCA or the 

information from the image itself (spectral pixel value and/or texture features).  

- New varieties of cocoa bean hybrids produced in different locations in Brazil must be 

incorporated into the model to ensure the traceability of the products. 

- Other machine learning methodologies such as Random Forest or Neural networks 

should be tested to reduce the error in the classification of the different cocoa bean 

hybrids. 

- Variable selection methodology should be evaluated to reduce the error in the 

classification of cocoa bean hybrids, to reduce the calculation time of the models and to 

facilitate the construction of lower cost equipment. 
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