
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Luís Fernando Antonioli

DrPin: A dynamic binary instrumentator for multiple
processor architectures

DrPin: Um instrumentador dinâmico de binários para
múltiplas arquiteturas de processadores

CAMPINAS
2020

Luís Fernando Antonioli

DrPin: A dynamic binary instrumentator for multiple processor
architectures

DrPin: Um instrumentador dinâmico de binários para múltiplas
arquiteturas de processadores

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial fulfillment of the requirements for the
degree of Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Rodolfo Jardim de Azevedo

Este exemplar corresponde à versão final da
Dissertação defendida por Luís Fernando
Antonioli e orientada pelo Prof. Dr.
Rodolfo Jardim de Azevedo.

CAMPINAS
2020

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Antonioli, Luís Fernando, 1993-
 An88d AntDrPin : a dynamic binary instrumentator for multiple processor architectures

/ Luís Fernando Antonioli. – Campinas, SP : [s.n.], 2020.

 AntOrientador: Rodolfo Jardim de Azevedo.
 AntDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Ant1. Sistemas de computação. 2. Códigos binários. 3. Análise dinâmica. I.

Azevedo, Rodolfo Jardim de, 1974-. II. Universidade Estadual de Campinas.
Instituto de Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: DrPin : um instrumentador dinâmico de binários para múltiplas
arquiteturas de processadores
Palavras-chave em inglês:
Computer systems
Binary codes
Dynamic analysis
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Rodolfo Jardim de Azevedo [Orientador]
Fernando Magno Quintão Pereira
Guido Costa Souza de Araújo
Data de defesa: 16-10-2020
Programa de Pós-Graduação: Ciência da Computação

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-5519-5090
- Currículo Lattes do autor: http://lattes.cnpq.br/5657260716636888

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Luís Fernando Antonioli

DrPin: A dynamic binary instrumentator for multiple processor
architectures

DrPin: Um instrumentador dinâmico de binários para múltiplas
arquiteturas de processadores

Banca Examinadora:

• Prof. Dr. Rodolfo Jardim de Azevedo
IC/UNICAMP

• Prof. Dr. Fernando Magno Quintão Pereira
DCC/UFMG

• Prof. Dr. Guido Costa Souza de Araújo
IC/UNICAMP

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 16 de outubro de 2020

Simplicity is prerequisite for reliability
(Edsger W. Dijkstra)

Agradecimentos

Gostaria de agradecer a todos que contribuiram direta ou indiretamente a este trabalho,
em especial:

• Aos meus pais Antonio Sergio Antonioli e Lucia Helena Geraldo Antonioli, pela
imensa dedicação, cuidado e apoio que foram fundamentais ao longo de minha vida.

• Ao meu irmão, Carlos Eduardo Antonioli, pela motivação, parceria e ensinamentos.

• Ao meu orientador, Rodolfo Azevedo, que com sua compreensão, sabedoria e exper-
iência me guiou desde a graduação até o fim deste mestrado.

• Aos professores e funcionários do Instituto de computação da Unicamp, sempre
dispostos a ajudar.

• Aos colegas do Laboratório de Sistemas de Computação (LSC), fundamentais para
troca de conhecimento.

• Aos demais amigos que adiquiri durante graduação e o mestrado.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001.

O presente trabalho também foi realizado com apoio do CNPq, Conselho Nacional de
Desenvolvimento Científico e Tecnológico - Brasil (143197/2018-5).

Resumo

A complexidade dos programas está aumentando e as ferramentas usadas para seu desen-
volvimento tem acompanhado tal evolução. Aplicações modernas dependem largamente
de bibliotecas carregadas dinamicamente e algumas aplicações até geram código durante
sua execução. Logo, ferramentas de análise estática, usadas para depurar e entender apli-
cações não são mais suficientes para se ter um panorama completo de uma aplicação.
Como resultado, ferramentas de análise dinâmica (aquelas que são executadas durante o
tempo de execução) estão sendo adotadas e integradas ao desenvolvimento e estudo de
aplicacoes modernas. Entre essas, as ferramentas que operam diretamente no binário do
programa são particularmente úteis no meio de inúmeras bibliotecas carregadas dinami-
camente, onde o código-fonte pode não estar disponível. A construção de ferramentas que
manipulam e instrumentam código binário durante sua execução é particularmente difícil
e propensa a erros. Um pequeno erro pode resultar em um desvio completo do compor-
tamento do programa sendo analisado. Por esse motivo, frameworks de Instrumentação
dinâmica de binários (DBI) tornaram-se cada vez mais populares. Esses frameworks forne-
cem meios para criação de ferramentas de análise dinâmica de binarios com pouco esforço.
Entre eles, o Pin 2 tem sido de longe o mais popular e fácil de usar. No entanto, desde
o lançamento da série 4 do Linux Kernel, ele ficou sem suporte. Neste trabalho, nosso
foco é voltado para o estudo dos desafios encontrados ao criar um novo DBI (DrPin) que
tem como foco ser totalmente compatível com a API do Pin 2, ao mesmo tempo que tam-
bém suporta várias arquiteturas (x86-64, x86, Arm, Aarch64) e sistemas Linux modernos.
Atualmente, o DrPin suporta um total de 83 funções da API do Pin 2, o que o torna capaz
de executar várias pintools originalmente escritas para o Pin 2 sem nenhuma modificação.
Comparando o desempenho do DrPin com o Pin 2, para uma ferramenta simples que
conta o número de instruções executadas, observamos que, para o benchmark SPECint
2006, somos, em média, apenas 10% mais lentos que o Pin e 11,6 vezes mais lentos que a
execução nativa. Também exploramos um pouco o ecossistema em torno dos frameworks
de instrumentação dinâmica de binários. Especificamente, estudamos e estendemos uma
técnica que utiliza ferramentas de análise dinâmicas de binários, construida com a ajuda
de frameworks DBI, para prever o desempenho de uma determinada arquitetura ao exe-
cutar um programa ou benchmark específico, sem a necessidade de executar o programa
ou benchmark inteiro. Em particular, estendemos a Metodologia SimPoint [31, 14, 15]
para obter ganhos adicionais na redução do tempo necessário para obter tais previsões.
Mostramos que, considerando as semelhanças no comportamento do programa entre di-
ferentes entradas, podemos reduzir ainda mais o tempo necessário para obter resultados
de simulação de benchmarks inteiros. Especificamente para SPECint 2006, mostramos
que o número de SimPoints (diretamente proporcional ao tempo de simulação) pode ser
reduzido em média 32%, perdendo apenas 0,06% da precisão quando comparado a téc-
nica original. Diminuindo a precisão em 0,5%, observamos que o tempo de simulação é
reduzido em média 66%.

Abstract

Programs’ complexity is rising and the tools used in their development changed to keep
up with this evolution. Modern applications rely heavily on dynamically loaded shared
libraries and some of them even generate code at runtime, therefore static analysis tools
used to debug and understand applications are no longer sufficient to understand the full
picture of an application. As a consequence, dynamic analysis tools (those that are exe-
cuted during runtime) are being adopted and integrated into the development and study
of modern applications. Among those, tools that operate directly on the program binary
are particularly useful in the sea of dynamically loaded libraries, where the source code
might not be readily available. Building tools that manipulate and instrument binary
code at runtime is particularly difficult and error-prone. A minor bug can result in a
complete disruption in the behavior of the binary code being analyzed. Because of that,
Dynamic Binary Instrumentation (DBI) frameworks have become increasingly popular.
Those frameworks provide means of building dynamic binary analysis tools with low ef-
fort. Among them, Pin 2 has been by far the most popular and easy to use. However,
since the release of the Linux Kernel 4 series, it became unsupported. In this work we
focus on studying the challenges faced when building a new DBI (DrPin) that seeks to be
compatible with Pin 2 API, without the restrictions of Pin 3, that also runs multiple archi-
tectures (x86-64, x86, Arm, Aarch64), and on modern Linux systems. In total, currently,
DrPin supports a total of 83 Pin 2 API functions, which makes it capable of running many
pintools originally written for the Pin 2 framework without any modification. Comparing
the performance of DrPin to the original Pin 2 for a simple tool that counts the number
of instructions executed, we observed that for the SPECint 2006 benchmark we were, on
average, only 10% slower than the Pin 2 framework and 11.6 times slower than the na-
tive execution. We also explored the ecosystem around DBI frameworks. Specifically we
studied and extended one technique that makes use of dynamic binary tools, built with
the help of DBI frameworks, to predict the performance of a given architecture when exe-
cuting a particular program or benchmark without the need to run the entire program or
benchmark. In particular, we extended the SimPoint Methodology [31, 14, 15] to obtain
further gains in the time required to obtain the predictions. We showed that by taking
into account similarities in the program behavior among different inputs, we can further
reduce the time it takes to get simulation results of entire benchmarks. Specifically for
SPECint 2006, we showed that the number of SimPoints (which is directly proportional
to the simulation time) can be reduced by an average of 32% while losing only 0.06% of
the accuracy when compared to the original technique. Further decreasing the accuracy
by 0.5%, we observed the simulation time is reduced by an average of 66%.

List of Figures

2.1 DynamoRIO’s architecture. Image taken from [2] 21
2.2 Pin’s architecture. Image taken from [19] 23
2.3 Pin vs DynamoRIO: software compatibility 25
2.4 PinPlay’s architecture. Image taken from [29] 28
2.5 Gzip: Plot of some computer architecture metrics over billions of instruc-

tions when processing a graphic input. Image taken from [37] 30
2.6 Phases A, B, and C generated by the clustering intervals of the same program. 32

3.1 DrPin Overview . 37
3.2 DrPin: Arquitecture . 38
3.3 Top 30 most executed API functions by the SimpleExample pintools 44
3.4 Callgraph visual output . 51
3.5 SPECint 2006: Intrinsic execution slowdown 54
3.6 SPECint 2006: Instruction count execution slowdown 55
3.7 DrPin running firefox . 59
3.8 Pin trying to run firefox . 60

4.1 Phases of program P with inputs ei e ej 64
4.2 Phases A, B, and C generated by the clustering of distinct input intervals

of a same program. 65
4.3 PinPoint major execution steps . 65
4.4 Number of Simulation Points . 68
4.5 CPI evaluation for single input and multi-input (maxK = 30 andmaxK = 20) 69
4.6 Distribution of SimPoints weigths for two inputs of the astar benchmark:

input 1 on top and input 2 on bottom. Smaller weights omitted due to space
restrictions. The middle bar represents the collection of all simpoints of all
inputs . 70

4.7 Heatmap showing how many phases are present and their coverage 71

List of Tables

2.1 Types of analysis: Static vs Dynamic Analysis 18
2.2 Types of analysis: Binary vs Source Code Analysis 18

3.1 SimpleExamples pintools . 45
3.2 SPECint 2006: GCC Slowdown . 57

Contents

1 Introduction 13
1.1 Objective . 14
1.2 Contributions . 14
1.3 Structure . 14

2 Basic Concepts and Related Work 16
2.1 Program Analyses . 16

2.1.1 Static vs Dynamic Analysis . 16
2.1.2 Binary vs Source Code Analysis . 17

2.2 Dynamic binary instrumentation vs Static binary instrumentation 19
2.3 Dynamic binary instrumentation frameworks 19

2.3.1 Valgrind . 19
2.3.2 DynamoRIO . 20
2.3.3 Pin . 22
2.3.4 PEMU . 26

2.4 Deterministic replay . 26
2.4.1 PinPlay . 27

2.5 Techniques for reducing simulation time 29
2.5.1 Program Phases . 30
2.5.2 SimPoints . 30
2.5.3 PinPoints . 33

3 The DrPin Dynamic Binary Instrumentation Framework 35
3.1 DynamoRIO as basis infrastructure . 35
3.2 Architecture . 36
3.3 API friendliness . 39
3.4 Pin API Compatibility . 42
3.5 Evaluation on multiple platforms . 46
3.6 Peformance Optimizations . 51
3.7 Performance Comparison . 52
3.8 Instrumentation of real-world applications 57

4 SimPoints Among Multiple Program Inputs 61
4.1 Problem Statement . 62
4.2 Multiple-Input Phase Classification . 64
4.3 Experimental Evaluation . 66

4.3.1 Experimental Results . 67
4.3.2 Comparison of the Number of Simulation Points 67
4.3.3 Comparison of Errors in CPI . 67

4.3.4 Phase Sharing Analysis . 68

5 Conclusion and future work 72
5.1 Future Work . 72
5.2 Publications . 73

Bibliography 74

A DrPin API 78

13

Chapter 1

Introduction

Throughout the history of modern computing, programs’ complexity has been growing at
a fast pace and the need for tools that help users understand program behaviors are on
the rise. Modern applications and languages frequently rely on dynamically linked shared
libraries, dynamic code generation, and other features that are only defined at runtime.
The only viable option to grasp a precise understanding of these programs is to analyze
them at runtime. Among the many research fields that attempt to tackle these problems,
code instrumentation and analysis is one of the most popular ones.

Among the types of instrumentation, the dynamic instrumentation of binaries is one
of the most powerful. This is because it does not require its users to hold the source code
of the application, nor it requires recompilation or the rewrite of the binary.

Because of these advantages, the number of DBI (Dynamic Binary Instrumentation)
frameworks and tools based on them has grown. However, each framework has its own
API (application program interface) and often we are left with tools that only work in
some architectures or operating systems, due to inherited limitations from the chosen DBI
framework, instead of a limitation in the tool itself.

Among the existing dynamic binary instrumentation frameworks, DynamoRIO [3],
Valgrind [26] and Pin [19] are widely used as they provide APIs that facilitate the creation
of a wide spectrum of types of tools, from tools to detect memory allocation errors [33]
and cache simulation [25] to the analysis of malicious programs [38].

Several studies in the field of program instrumentation are available in the literature
and some will be described in chapter 2, where they will be better categorized. Among
these works, Nethercote et al. stands out in [26] describing how Valgrind differentiates it-
self from other DBIs, showing the features that allow Valgrind to support complex analysis
tools while its intermediate representation allows it to work with multiple architectures
and operating systems. Moreover, several publications [6, 32, 23, 22, 21] show that
there are a large number of tools that have been developed based on the Pin framework.
Lastly, in [2], Bruening et al. details into a great length the challenges faced by the au-
thors to design and implement DynamoRIO: a DBI framework focused on transparency
that is capable of running heavily multi-threaded applications and large scale real-world
applications.

14

1.1 Objective

Although Pin 2 is a very popular DBI and one of the easiest to use, it has several problems
that we want to work around in this work. First, it has its source code closed, property
of Intel Corporation, making its support and utility restricted to the company’s interests.

Secondly, support for Pin 2 is restricted to Linux kernel series 3.x, causing great
difficulties for its practicality in modern operating systems. Being outdated does not
affect only the tools distributed directly with Pin, but also those that use it indirectly, as
is the case of ZSim and the Sniper simulator. For purposes of illustration, the last Ubuntu
LTS operating system that was released with support for the 3rd series of Linux kernel
was released in April 2014.

Third, Pin 3, the successor of Pin 2, brought many new restrictions that made the
transition almost impossible for several pintools. Namely, the pintool (and all its depen-
dencies) cannot make any syscall or link to any system library. They are restricted to
interact with the host operating system using only the PinCRT runtime.

Fourth, Pin currently only supports IA-32, x86-64 and MIC architectures, meaning
that almost all IoT and mobile platforms are left outside of its reach.

This work aims to study and implement a new DBI, called DrPin, which is built on
top of the DynamoRIO infrastructure and is compatible with the Pin 2 API. DrPin’s
goal is to bring together the easy-of-use of Pin 2, without the restrictions of Pin 3 and
merge them with the support of multiple architectures (x86-64, x86, Arm, Aarch64) from
DynamoRIO. In the context of DBI frameworks, we also want to explore and study the
usage of DBI tools in other fields of computer science.

1.2 Contributions

The contributions made by this work can be divided into two parts. The first is Dr-
Pin itself. We designed, implemented and evaluated a new DBI framework capable of
executing on multiple architectures and modern Linux operating systems. The second
is the result of our study on practical applications of DBI based tools in other areas of
computer science. As a joint effort with another graduate student from the Computer
Systems Laboratory (LSC) at Unicamp, Rafael Mendonça Soares, we studied techniques
to predict the performance of a given computer architecture when executing a particular
workload based on information collected with the help of DBI tools.

More specifically, we extended the SimPoint methodology, which originally was in-
tended to find redundancy on program behavior of a single program on a single input,
to explore redundancy on program behavior for multiple inputs on the same program at
once.

1.3 Structure

This work is structured as follows:

15

• Chapter 2 provides an overview of the basic concepts that surround our work. It
also presents, in a condensed form, related work. We try to be brief and concise, but
a reader familiar to the world of dynamic binary instrumentation frameworks might
find the sections 2.1 and 2.2 skippable. However, section 2.3.3 is very important
to the understanding of this work, so we recommend the reader to not skip it.

• Chapter 3 introduces DrPin, describes how it is architectured under the hood, ex-
plaining the reasoning behind it and compare with other existing DBI frameworks.

• Chapter 4 is the result of our exploration around the DBI framework ecosystem.
Specifically, it is dedicated into presenting an extension of the SimPoint methodol-
ogy, which leverages information about the program’s behavior during its execution
(obtained by the use of DBI tools) to predict the program’s performance concerning
many architecture metrics. However, the focus on this chapter is mainly on the
SimPoint methodology and its extension.

• Chapter 5 provides an overall discussion about this work as well as some possible
future work.

• Appendix A provides a list of all the Pin 2 API functions currently implemented by
DrPin.

16

Chapter 2

Basic Concepts and Related Work

In this chapter, we go through the concepts and the related work that builds the basis for
our work. We start the chapter describing the classes of analyses usually made upon a
program. Next we go through three very popular DBI (Dynamic Binary Instrumentation)
frameworks (Valgrind [26], DynamoRIO [3] and Pin [20]), describing their architectures,
features and more importantly: their differences. Then, still in the topic of DBI frame-
works, we present a little known DBI that seeks to be compatible with the Pin API called
PEMU[42].

During our work we also explored some real use cases for DBI frameworks, therefore
we continue the chapter elaborating about deterministic program replaying techniques, in
particular, those who benefit from DBI frameworks to collect data about non-deterministic
events to later recreate them in the same order they were collected during another exe-
cution of the program.

At last, we talk about techniques that focus on reducing the time spent on simulations
used in computer architecture research. In special we talk about the SimPoints technique
and how DBI frameworks and deterministic program execution tools that were built on
top of DBI frameworks can be used to implement and validate it.

2.1 Program Analyses

With the increasing complexity of computer systems, tools that automatically extract
program information have become increasingly prominent. A program analysis tool is
generally analyzed from two perspectives: Whether the analysis is static or dynamic and
whether the analysis is performed with the program binary only or if it uses its source
code.

2.1.1 Static vs Dynamic Analysis

Static analysis involves analyzing program code (either binary or source) without execut-
ing it. This type of analysis is commonly used by many tools, compilers, and integrated
development environments (IDEs), where they perform analyses to improve program opti-
mization, remove unnecessary variable copies, improve memory management, and perform
program correctness analysis. An interesting aspect of this type of analysis is that, since

17

it does not execute the program being analyzed, its execution time is usually linked to the
complexity and size of the program and not to the problem that the program is trying to
solve or to an input in particular.

Dynamic analysis, on the other hand, involves analyzing the program as it executes.
Some popular tools [32, 6, 33] perform dynamic program analysis. Among them, we can
highlight profilers and debuggers. To perform such analysis, these tools need to insert
their code between code snippets of the application being analyzed (either binary or source
code) without the analysis code having any side effects on the application.

Both categories of analysis have strengths and weaknesses. While static analysis covers
all possible (even the rarest) execution paths, it usually involves more complex algorithms
and in some cases may be inaccurate as some program information can only be determined
at runtime. Dynamic analysis, while not covering all execution paths, is typically simpler
and more accurate.

2.1.2 Binary vs Source Code Analysis

In addition to the groups mentioned above, an analysis can also be characterized according
to the type of code it works on.

Binary analysis is usually done in terms of simple structures such as instructions, mem-
ory addresses, and registers and can be performed on codes before the linker processing
(object code) or codes after the linker processing (executable code).

As expected, source code analysis uses source code as the basis. Generally, the analysis
is done on higher-level structures such as functions, expressions, and variables. This group
also includes analyses that are made on top of structures that were extracted directly from
the source code, such as control flow graphs.

In the same way as dynamic analysis and static analysis, binary and source anal-
ysis each have strengths and weaknesses. Source code analysis is often architecture-
independent and sometimes even operating system independent. A weakness of this type
of analysis is that it is specific to a language or language family, and requires the source
code possession. By analyzing source code, this type of analysis can also gain access to
high-level information in the application, allowing it to build more powerful and abstract
tools.

Binary analysis, on the other hand, is generally architecture and operating system
dependent, but it is independent of the programming language that was used to generate
the binary. The biggest advantage of binary analysis is that it does not require the source
code, so a much wider range of programs can be analyzed.

To summarize the characteristics of the types of analysis described above, we present
Table 2.1 and Table 2.2

18

Table 2.1: Types of analysis: Static vs Dynamic Analysis

Main aspect Advantage Disadvantage

Static
Analysis

Does not execute the
code being analysed.

Covers all possible ex-
ecution paths.

Can be more inaccu-
rate as some informa-
tion are only available
at runtime.

Dynamic
Analysis

Executes the code be-
ing analysed.

Simpler and have all
the information avail-
able at runtime, there-
fore can be more pre-
cise.

Only covers the exe-
cution paths that were
taken during that par-
ticular execution.

Table 2.2: Types of analysis: Binary vs Source Code Analysis

Main aspect Advantage Disadvantage

Binary
Analysis

Built upon simple
structures such as
instructions, regis-
ters and memory
addresses.

Is independent of
the programming
language and does
not require the source
code of the appli-
cation therefore is
applicable to a wider
audience of programs.

Architecture and op-
erating system depen-
dent.

Source
Code
Analysis

Built upon higher
level structures such
as functions, expres-
sions and variables.

Architecture indepen-
dent and sometimes
even operating system
independent.

Specific to a language
(or a family of lan-
guages) and requires
the source code of the
application.

19

2.2 Dynamic binary instrumentation vs Static binary
instrumentation

Earlier in the chapter, we saw four ways in which an analysis can be categorized. Our work
is focused on dynamic analysis, which is usually performed by inserting new instructions
into the application code to collect information about its execution. The process of
inserting instructions into the program code to gather information about its behavior is
called instrumentation.

Performing dynamic analysis requires programs to be instrumented with analysis code.
Thus, there are two ways to instrument a program: dynamic instrumentation and static
instrumentation. Since during this work we are only interested in binary instrumentation,
we will restrict our discussion to the differences between dynamic binary instrumentation
and static binary instrumentation.

Static binary instrumentation rewrites the executable code or object code by entering
the instrumentation code before it is executed. Dynamic binary instrumentation (DBI)
occurs during program execution and instrumentation code is injected in the middle of
program execution.

The biggest advantage of dynamic binary instrumentation, compared to static instru-
mentation, is that it does not require the program being instrumented to be preprocessed,
and therefore, has no problem instrumenting code that is dynamically generated at run-
time or has data mixed with the code.

However, dynamic binary instrumentation has disadvantages. Because the entire pro-
cess is done during program execution, the impacts on execution performance are greater,
and the entire instrumentation process is repeated with each new program execution.

2.3 Dynamic binary instrumentation frameworks

In this section, we present three popular DBI frameworks: Valgrind, DynamoRIO, and
Pin. We briefly discuss their architectures, features, and differences. At the end of this
section, we also present a little known DBI framework called PEMU, that seeks to be
compatible with The Pin API.

2.3.1 Valgrind

Valgrind [26] is a dynamic binary instrumentation (DBI) framework focused primarily on
complex and heavy analysis. To be able to do so, it has a robust infrastructure containing
intermediate code representation and shadow values for registers and memory. It has its
code entirely available under the GNU General Public License (GPL), supports multiple
architectures (PPC, PPC64, ARM, ARM64, x86, AMD64, MIPS32, MIPS64, S390X) and
has popular tools such as Memcheck.

A key difference between Valgrind and the others DBI frameworks is its intermediate
language representation before applying instrumentation instructions, which allows the
users to work with a very wide range of architectures but cost you somewhat in perfor-
mance.

20

Valgrind’s architecture is divided into two parts: the core and the tools (plugins).
The core is responsible for providing the infrastructure to support instrumentation.

Therefore it provides many services:

1. JIT compiler

2. Memory management

3. Signal handling

4. Threads Scheduler

5. Error recording system

The tools, however, are responsible for defining how the program should be instru-
mented. The purpose of this architecture is to make the implementation of the tools as
light as possible.

Because Valgrind operates in user space, it is unable to instrument or translate the
execution of instructions that occurs within system calls, since it does not have access to
kernel code.

However, although Valgrind does not insert instrumentation code into system calls, it
must intercept all system calls of the application it is instrumenting to make sure that it
does not lose control over the program being instrumented.

Signal handling, as with all DBIs, is a delicate part of the system. This is because
when an application defines a signal handler, it is giving the kernel a memory address that
is in the application space to call so that the kernel can notify it of a signal. If nothing
was done by the DBI, the signal handler code would be called by the kernel directly,
causing it to not be translated and instrumented by the DBI. Another bad scenario could
also happen: If the signal handler does not return or use a longjmp1, the DBI would
permanently lose control over the application.

To work around this problem, Valgrind intercepts system calls that are used to register
signal handlers and write down their addresses. Next, it registers with the kernel its own
handlers so that if any signal is delivered by the kernel, it can pass on to the application
without risk of losing control of the execution.

2.3.2 DynamoRIO

DynamoRIO [3, 2] is a runtime code manipulation system that supports code transforma-
tions anywhere in the program during its execution. It has an API that allows its users
to develop dynamic tools for a wide variety of functions.

One feature that sets DynamoRIO apart from other DBI’s is that it does not just insert
analysis and instrumentation instructions into the middle of the application program, but
also allows the application instructions themselves to be manipulated. This is because,

1Longjmp is a C standard library function that restores the stack environment and execution location
that was previously saved in a buffer by the setjmp C standard library function. Longjmp can be seen
as a nonlocal goto.

21

when designed, its primary goal was to be a runtime code manipulation system, therefore
it can instrument applications as well. It has support for IA-32, AMD64, ARM, and
AArch64.

To ensure good performance, it modifies one basic block at a time and uses a cache to
store previous translations.

Figure 2.1: DynamoRIO’s architecture. Image taken from [2]

In Figure 2.1 we show a simplified diagram of DynamoRIO architecture. DynamoRIO
stands between the application and the operating system. Note that it executes only the
code that is being generated and placed in its cache and has to intercept system calls to
the kernel to ensure that it does not lose execution control on the way back of those calls.

DynamoRIO is capable of running multi-threaded desktop and server business appli-
cations with a performance penalty of typically thirty percent [2].

Transparency

A highly desired quality for a DBI is that it must be as transparent as possible. Being
transparent, in this context is being invisible to the application being instrumented. This
feature is not only desired by those who want to study the behavior of malicious appli-
cations but also for every user of the DBI. When analyzing applications, we want to see
their behavior as similar as possible of when the instrumentation is not being applied.

22

Many applications have hidden bugs, i.e. accesses wrong addresses in the memory, that
could change their behavior while running inside the DBI framework.

One source of conflict between the application that is being instrumented and the code
that is instrumenting it are shared libraries. Many libraries have non-re-entrant routines.
These routines could cause side effects from one code to another. To deal especially with
this problem, DynamoRIO created a private loader. The private loader is responsible for
loading all libraries that the instrumentation code needs into a memory address separated
from where the libraries used by the application resides.

Following the example of shared libraries, DynamoRIO also makes a private stack for
it to avoid conflicts with applications that access invalid positions in the stack or uses a
hand-crafted code that uses the stack pointer as a general-purpose register.

Signals and System Calls

When dealing with signals, DynamoRIO registers its own handler instead of the one
provided by the application by modifying all signal system calls. DynamoRIO uses only
one handler for all signal types. After receiving a signal, its handler function simulates
the same signal to the application handler. DynamoRIO also intercepts all system calls
made by the application.

2.3.3 Pin

Pin [20] is a dynamic binary instrumentation (DBI) framework for IA-32, x86-64, and MIC
architectures that enables the creation of dynamic analysis tools. One of the strengths of
Pin is the number of projects and tools built using it as the infrastructure, making it the
engine of many simulators, emulators as well as a tool for the study of architectures. Sniper
[6] and ZSim [32] are examples of two major projects that use Pin as infrastructure.

Like Valgrind, Pin has its instrumentation based on a JIT compiler that translates the
application code to the instrumented code at runtime.

The application’s original behavior is not disturbed by Pin as it preserves both in-
struction and data addresses as well as values in registers and memory. This makes the
information collected more relevant and accurate. To give an example of why this is im-
portant, some applications erroneously access data beyond the top of the stack and if Pin
changes the application stack it would be changing the application behavior as well.

23

Figure 2.2: Pin’s architecture. Image taken from [19]

In Figure 2.2 we have a small architecture diagram of Pin. As with Valgrind and
DynamoRIO, it also has a division between the tool code (pintool) that is used to define
how the application should be instrumented and the rest of the infrastructure (Pin).
All the interaction of the writer of a new tool (pintool) and the Pin infrastructure is
done through an API and just like Valgrind, all the Pin code, including infrastructure,
is executed in user space, so that it is not possible to instrument code executed in the
system kernel.

Pin Injection

Pin loads itself into the address space of the application and uses the Unix Ptrace API to
gain control over the application it is instrumenting. As soon as Pin is loaded, it loads the
user pintool into the same address space of the application. Because Pin uses the Ptrace
API as many debuggers do, it can attach to a running process and start jitting as well
as leave the process. In this case, the application continues to run after Pin exit without
any instrumentation.

JIT Compiler

Differently from Valgrind, Pin compiles one ISA directly into the same ISA, without any
intermediate representation of code. The compiled code is stored into a code cache and
the VM inside Pin (See figure 2.2) only executes code from the code cache. If necessary,
Pin changes the address of branches to ensure it never loses control over the application
that is being instrumented.

24

Pin evolution through time

Although DynamoRIO and Valgrind remained fairly backward-compatible during their
existence, in 2016 Intel released Pin 3.0 with some big changes that affected its whole user
base. During Pin 3.0 announcement, Intel said that the Pin framework now uses PinCRT
C runtime. PinCRT was introduced into Pin framework to improve the portability of
pintools across compilers and operating systems. By using PinCRT, pintools’ authors
would be presented with a consistent behavior across many system interfaces and C/C++
routines, all of that across all supported operating systems.

PinCRT

PinCRT is defined as an OS-agnostic, compiler-agnostic runtime. It is composed of three
layers of a generic interface that practically isolate all interactions between the pintools
and the host operating system. The three layers are:

• A generic operating system API which provides functions like thread control and
process control.

• A C runtime which provides standard C library implementation. The libc provided
is based on the bionic libc, which is the libc used in the Android operating system.

• A C++ runtime which does the same, but for the C++ standard library

It’s worth noting that several restrictions come along with PinCRT:

• Tools cannot make any system calls or link with any system libraries.

• The C++ runtime does not support C++11 and RTTI (Run-Time Type informa-
tion). For this reason, the famous C++ Boost library [18] cannot be used.

• Tools are obligated to use PinCRT instead of any system runtime

Pin 2 deprecation

The future of the Pin framework is along with PinCRT. Since the last release of Pin 2 was
made in February 2015, it seems PinCRT is here to stay. Unfortunately, a great number
of pintools already written uses Pin 2 and the more complex they are (like the pintool
that is the heart of the ZSim simulator) the harder it is for them to migrate to Pin 3.
This is because, as said earlier, to use PinCRT, which is necessary in order to use Pin 3,
the pintool, as well as all its dependencies, need to comply with PinCRT restrictions.

To be able to upgrade to Pin 3, pintools that have dependencies would need to drop
all dependencies that use native system libraries (ex: libc, pthreads, etc) or rewrite them
to replace those native system libraries with PinCRT counter-parts and recompile them
using PinCRT headers.

This process is problematic, because:

• Not everyone has the source code of all their dependencies to be able to recompile
them.

25

• PinCRT only provides limited support for the vastly rich functionalities provided
by native system libraries.

Because of the reasons listed above, many pintools have not yet been ported to Pin 3
series, and staying with Pin 2 brings many challenges, namely:

• Pin 2 only supports the Linux kernel 3.* series.

• Only GCC up to version 4.* is supported.

To illustrate how difficult is to work with the restrictions listed above, the last Ubuntu
LTS release that follows these restrictions is Ubuntu 14.04 LTS (end of life 2019). As a
result, it is very difficult to continue using all these tools in modern operating systems.
Figure 2.3 summarizes the above discussed software compatibility problems and contrasts
with the DynamoRIO situation.

Kernel ~ 2.x Kernel ~ 3.x Kernel >= 4.x

Ubuntu 10.04 Ubuntu 14.04 Ubuntu >= 16.04

Pin 2.0

Pin 3.0 + PinCRT

DynamoRIO

GCC ~ 4 GCC >= 5

201520142010 2020
Time

Figure 2.3: Pin vs DynamoRIO: software compatibility

Because Pin is a closed-source software under Intel property, the community around
Pin cannot provide support for pin 2, proposing patches that possibly would make their
pintools continue to work in modern Linux distributions.

26

2.3.4 PEMU

In 2015, Zeng et al. presented PEMU [42], an open-source DBI framework built on top of
QEMU [1] targeting only the i386 architecture. PEMU major feature is being able to not
only instrument user code, but also instrument the execution of kernel code, therefore per-
forming a more comprehensive analysis of the system as a whole. To accomplish this, the
authors used the QEMU emulator and did what they called out-of-vm instrumentation.
By out-of-vm, the authors meant that the instrumentation lives below the operating sys-
tem kernel. In the PEMU case, the framework is built as a software layer highly coupled
with QEMU, sitting between QEMU and the guest operating system. In contrast, popular
DBI frameworks like Valgrind, Pin and DynamoRIO share the same address space as the
application they instrument. PEMU is not unique in its attempt to perform operating
system level instrumentation, as others before it [41, 4] already explored this territory.
Nevertheless, what distinguishes it from others is the attempt of the authors to provide
the same instrumentation API as the popular Pin framework provides.

In the paper, the authors claim they implemented over one hundred Pin compatible
APIs, but inspecting the project repository provided, we could only find sixty implemented
APIs, being most of them related to Intel X86 encoder-decoder (Intel XED). Moreover, the
rest of the implemented API is quite poor on functionality, usually lacking all functionality
and sometimes being even completely empty. For instance, the arguably most important
Pin API: INS_InsertCall, which inserts a call to an analysis function (the base block of
the whole Pin framework), lacks almost all of the functionality that makes it useful. In
particular, PEMU implementation of this API lacks the ability to obtain any runtime
information like the branch target or whether a branch was taken or not.

Because of that and the fact that the project was not updated since its publication, we
believe PEMU was primarily a proof of concept and was not meant to actually compete
with other DBI frameworks.

2.4 Deterministic replay

As multi-core processors become increasingly popular and ubiquitous, complex and par-
allel applications are deployed everywhere. One of the many challenges of writing and
debugging parallel programs is their non-repeatable behavior. The non-repeatable be-
havior could be caused by many sources: from the operating system that is providing
resources for the application to the unsynchronized access to shared data (commonly
known as data race) made by the application itself. Further, this unpredictable behavior
makes debugging and analyzing complex parallel programs much more time consuming
and unreliable.

There are a number of papers proposing methods to record the execution of a pro-
gram, capturing all sorts of non-deterministic events, and later replaying the execution
reproducing all those captured events now in a deterministic fashion [7] [34], but usually
these approaches require special environments which can restrict its user base [7].

27

2.4.1 PinPlay

PinPlay [30] is a closed-source framework focused on capturing, deterministically replay-
ing, and analysing the execution of large programs, while still being easy to use. The
framework is based on the Pin DBI framework which only operates in user-space, not
requiring any special environment to be used.

Under the hood, the PinPlay framework actually consists of two pintools: A logger,
which is responsible for recording a program’s execution and storing its information in a
set of files collectively called pinball and a replayer, which runs off a pinball repeating the
previously captured execution.

As may be noticed, just replaying the execution is of little use if it is not combined
with a way to inspect the program being replayed.

Because PinPlay is built on top of Pin, it stands out its field by allowing the user to
instrument program execution during the replay phase using the Pin framework equipped
with a user-provided pintool.

How it works

PinPlay can be used to record both multi-thread and single-thread executions since even
during single-thread execution, non-deterministic events occur and the record/replay in-
frastructure is useful. Nonetheless, under the hood PinPlay treats these two situations dif-
ferently: For single-thread workloads, it replays the same sequence of instructions recorded
during the logging phase following an absolute global order, but for multi-threaded work-
loads, it does not guarantee the same global ordering among instructions from different
threads, except for the ones who interact with a shared memory space.

In Figure 2.4 we can see an abstracted overview of the components described earlier
that together compose the PinPlay framework.

28

Figure 2.4: PinPlay’s architecture. Image taken from [29]

One interesting feature that can be noticed from the figure is that after recording the
program execution, PinPlay does not need the program nor the input in subsequently
runs, because all the information necessary to replay the execution is stored into the
pinball.

To be able to remain consistent during subsequent executions of a program, PinPlay
needs to log all sorts of details about the execution and later be able to reconstruct and
guide the execution to the same path as is was previously recorded. Next, we see a list of
aspects which are monitored during the execution:

• System calls: During the logging phase, all registers modified by a system call
have their value recorded and later, during the replay phase, most system calls are
skipped and their behavior is reproduced by modifying the values to match the ones
observed during the logging phase.

• Program binary / shared library: It might seem obvious that the program
itself should not be modified between subsequently replay executions, but what
might not be obvious is that all the shared libraries that it depends on should also
not change. Freezing all the shared libraries used by the program might not be
practical in some environments. Because of this, PinPlay chooses to capture and
copy all the code need during the replay (including the shared libraries) and store
it into the pinball

• Signals: Signals are handled similarly as system calls. PinPlay keeps track of in
which instruction they occurred; records the state of registers before and after the
signal, and during replay it only modifies the values of those registers during that
particular instruction to match the ones previously observed.

29

• Un-initialized memory variables: To replicate the same behavior, all variables
which are read before being written have their initial value recorded, for later, during
the replay initialization have their value restored as they were initially captured

• Processor specific instructions: Because PinPlay provides the feature of al-
lowing the logging of a program in one machine and later replay in another, it is
also aware of instructions that are CPU specific (such as CPUID). Like signals and
system calls, PinPlay records the values inside pertinent registers and restore them
during replay.

• Shared memory access order: As said earlier, while PinPlay does not guarantee
global ordering in the execution of instructions, it needs, at least, to maintain the
same access order on shared memory space. To accomplish this, it records the order
of accesses to the shared memory during the logging phase and during replay, it
watches if the order is respected. If at any point in time it perceives that the order
will not be obeyed, it stalls threads or processes until it guarantees the order of
access will occur as it was previously recorded.

2.5 Techniques for reducing simulation time

Research in computer architecture often requires a detailed understanding of the behavior
of a processor while a program is running.

Many programs have very different behaviors during different parts of their execution
that we call phases. At one point they may use memory intensely, at others they may
suffer greatly from errors in branch predictions.

To obtain this level of information, researchers often use simulators that model the
platform of interest at each cycle executed. Unfortunately, this simulation detail brings
with it simulation time penalties, which means that industry benchmarks take months to
fully execute.

Further compounding the simulation time situation, it is often necessary to simulate
the same benchmark over and over again until researchers find an architecture configu-
ration that has a good balance between consumption, performance, and complexity. For
example, often the same program/input pair may be simulated multiple times so that the
difference in performance that changing the cache size can bring to a given architecture
can be examined.

This problem has not been missed by the academic community, and many researchers
have developed techniques that seek to reduce the simulation time [10, 40, 9, 11].

Among the related work, some seek to reduce the simulation time using phase analysis.
In our work, we focus on those.

Next, we explain to the reader what program phase is, and how it constitutes the basis
for the SimPoints methodology.

30

2.5.1 Program Phases

The way programs behave during execution is often not random. Many studies [37, 17]
have shown that programs often engage in repetitive behaviors called phases.

The authors of [37] define phases as the set of intervals (or slices in time) within the
execution of a program that has similar behavior, regardless of temporal adjacency.

Figure 2.5: Gzip: Plot of some computer architecture metrics over billions of instructions
when processing a graphic input. Image taken from [37]

Figure 2.5 shows the variation of some metrics such as CPI, energy consumed and
others during gzip program execution. In it, we can clearly see a phase behavior in the
program that repeats over time.

A key observation that makes studying program phases important is that any program
metric is a direct function of the way a program walks through code while executing [37].
In this way, it is possible to find the phases of a program by examining which regions of
code are being executed over time.

2.5.2 SimPoints

One of the techniques proposed to solve the problem of trying to reduce the simulation
time required to evaluate platforms is called SimPoint [31, 14, 15]. SimPoint intelligently
chooses a sample set of the program, which is called Simulation Points. These simulation

31

points are chosen in a way that by only simulating them, it is possible to have a good
estimate of how the tested platform would perform during the simulation of the whole
program.

The SimPoint methodology uses grouping algorithms to automatically find repetitive
patterns in the execution of a program. By simulating only one representative of each
phase of the program, the simulation time can be reduced to minutes rather than weeks
implying only a small loss of accuracy.

A key point of the SimPoint methodology is that the Simulation Points chosen by
the technique are independent of the architecture used for the simulation, thus allowing
the same set of Simulation Points to be used for the simulation of many architecture
configurations.

In order to make the choice of Simulation Points independent of architecture, the
concept of program profiling using a structure called BBV (Basic Block Vectors) has been
proposed in [35].

BBV is a vector where each position represents a basic block of the program. Each
element of the vector stores the number of times a given basic block has been executed
during a predefined interval of instructions and since we are not interested in the absolute
value of each position of the vector but in the proportion of the execution of each basic
block, normally BBV is normalized by dividing each element by the sum of all elements
of the vector. This normalization ensures that the sum of all vector elements is 1, making
the comparison of BBV of different interval sizes possible.

Thus, if we slice the program execution into multiple pieces, and store a BBV for each
slice of the program, we can compare each slice in regards to where, in the program code,
it spends its execution on.

The methodology

SimPoint is a methodology for identifying representative portions of a program. In the
methodology, the execution of a program is divided into intervals of an equal number of
instructions.

For each interval, a BBV is collected. SimPoint then groups the basic block vectors
(BBV) using the K-means [16] algorithm. In this grouping, each vector position is plotted
as a dimension for the clustering algorithm.

Since we expect the program to have phases (as seen in the previous section), we
expect the intervals that correspond to the same phase of the program to be close to each
other during the clustering process. Thus, after clustering, if we choose an interval from
each cluster, then we have a representative of each phase of the program.

In the SimPoints technique, the interval that is chosen to represent each cluster is the
closest one to the centroid of each cluster. These centroid intervals are called Simulation
Points (SimPoints) by the technique.

Since the phases of a program have different sizes and since each of these Simulation
Points represents a phase of the program, each Simulation Point naturally has different
relevance in composing the behavior of the entire program. This way each SimPoint has
a weight. This weight is given by the ratio of the number of intervals that the grouping

32

it came from had, and the total number of intervals of the entire program.
Therefore, if you want to predict the CPI value of the entire program by simulating

only the Simulation Points, you must make a weighted average of the Simulation Point
CPI value considering its weight.

As an example, suppose we have an application that has only 2 basic blocks and when
executed with a given input executes 10,000,000 instructions. For illustration purposes,
we are going to split it into 10 intervals (1,000,000 instruction intervals each). We chose
to illustrate the technique with a hypothetical program that has only two basic blocks so
that we can better visualize it.

Initially, the technique will execute the entire program and collect the BBV from each
of these intervals. In figure 2.6 each axis represents a basic block and each point marked
with a "+" represents one program interval. Note that as we said earlier, the basic block
vectors (BBV’s) are normalized. Thus the sum of the components of each point on the
graph is always 1. For this reason, all points are aligned in this example.

0 0.5 1
0

0.5

1

B2

B1

SimPoint 1

SimPoint 2

SimPoint 3

Phase A

Phase B

Phase C

Figure 2.6: Phases A, B, and C generated by the clustering intervals of the same program.

SimPonts technique will use the k-means algorithm to automatically find all clusters.
The next step is to find, for each group, the interval that is closest to the centroid of the
group. This interval will be chosen as the representative of that group and will now be
one of the SimPoints.

After knowing the SimPoints of a program, suppose we want to know the expected
CPI of a program. The estimated CPI can be calculated with the following formula:

33

CPIprogram = w1 ∗ CPISimPoint1 + w2 ∗ CPISimPoint2 + w3 ∗ CPISimPoint3

where
wi =

Number of intervals in Phase i

Number of intervals in the whole program

For the particular example of figure 2.6, we have:

CPIprogram = 0.3 ∗ CPISimPoint1 + 0.3 ∗ CPISimPoint2 + 0.4 ∗ CPISimPoint3

2.5.3 PinPoints

PinPoints is the result of joining the SimPoint technique with the PinPlay framework. In
[27] the authors describe how they combined them.

As discussed in 2.5.2 SimPoint methodology proposes a way to estimate the perfor-
mance of a program. Here the authors present a project capable of automatically gener-
ating Simulation Points and also comparing the results of the prediction given by using
SimPoints with the whole execution of the program.

To accomplish their goals, the authors take advantage of the PinPlay capabilities of
recording and later replaying deterministically the execution while still instrumenting it
with the Pin framework.

To compare the results, the authors use the Sniper x86 simulator, which is capable of
executing both pinballs (recorded executions made by PinPlay) and normal binaries for
the x86 platform. It is important to note that Sniper is only capable of running pinballs
itself because it is built on top of Pin.

Although PinPoints tries to be as automatic as possible, it still needs some parameters
which are up to its user to decide. Those are:

• Interval size: the number of instructions each interval will have.

• MaxK used in k-means: Because SimPoint uses the k-means clustering algo-
rithm, the user needs to provide this parameter. The implication of this parameter
is that k-means will never generate more clusters than the value of MaxK, therefore
the user needs to at least have an idea of how many phases the program has.

• Warmup size: To reduce inaccuracy related to cold cache when simulating a Sim-
Point, PinPoints offers the user the possibility of running a number of instructions
right before starting the SimPoint, just so the cache is not completely cold.

The authors describe PinPoints as being composed of the following steps:

1. PinPoints records the execution of the whole program using PinPlay. The output
of this step is a pinball of the whole program.

2. The pinball generated in the previous step is replayed, and during the replay, the
BBV (basic block vectors) for each interval is collected using a pintool.

34

3. BBVs collected in the last step are used as inputs for the SimPoints technique. The
output of this step is a list of intervals chosen as SimPoints.

4. With the information of which intervals are SimPoints, PinPoints replay the whole
program pinball again, but this time, during replay, it records the execution of each
SimPoint, generating a pinball for each SimPoint. The authors call each of these
pinballs a PinPoint.

5. They use Sniper to simulate each of the PinPoints as well as the pinball of the whole
program. During the Sniper simulation, they collect hardware performance metrics,
such as CPI, branch prediction, cache miss and others.

6. In the last step, they use the formula provided by the SimPoint technique and
compare the results given by SimPoints with the real values, which are given by the
results collected during the Sniper simulation of the whole program pinball.

35

Chapter 3

The DrPin Dynamic Binary
Instrumentation Framework

Considering the problems shown in section 2.3.3, since the deprecation of Pin 2, a gap in
the DBI framework spectrum appeared. In this work, we present DrPin, a DBI framework
to address this gap.

DrPin is an open-source dynamic binary instrumentation framework that aims to have
its API compatible with Pin 2, at the same time that supports multiple architectures
(aarch64, arm, x86, and amd64) while also running on modern Linux kernel series.

The main goal of this work is to study the challenges of building an easy to use DBI
framework, on top of another known open source DBI framework, while discussing the
issues concerning the viability of such DBI.

We decided to make our DBI framework on top of another well-established open-
source framework (DynamoRIO) primarily because making it from scratch would be a
very extensive and laborious task. Moreover, it would deflect efforts from our focus and
interest, which is to be able to provide great compatibility with the Pin 2 application
programming interface so that many of the tools that were written using Pin 2, and since
the release of Linux Kernel 4.0 are no longer supported, can be used again.

We start this chapter by explaining why we chose DynamoRIO as the foundation for
our DBI. After that, we present to the reader a brief overview of how DrPin is structured
under the hood. Next, we walk the reader through a small example to illustrate the differ-
ences in the ease of use of both Pin’s 2 and DynamoRIO’s APIs. Following the chapter, we
discuss DrPin API compatibility with Pin and walk through some examples demonstrat-
ing DrPin executing on both x86-64 and AArch64 architectures. Then, we discuss some
performance optimizations that took place during the development of DrPin followed by
a performance comparison of DrPin, Pin 2, and DynamoRIO. We finish the chapter by
showing how DrPin behaves during the instrumentation of real-world applications.

3.1 DynamoRIO as basis infrastructure

Since Dynamic instrumentation is not easy and a minor bug in its code can result in
tremendous instability during execution that are very hard to debug, we wanted to find a

36

battle-proof DBI framework that was actively used, maintained, had a community around
it, and was open-source, thus accepting possible bug fixes and improvements as needed.

While studying DBI frameworks it was noticeable that in this arena, besides Pin,
two frameworks were dominant: DynamoRIO and Valgrind. Both are stable and have
organically created a community around them. In popularity, Valgrind takes the lead as it
powers one of the most popular dynamic analysis tools used by many C/C++ developers.
The tool, called memcheck, is so popular that Valgrind authors decided to run it by
default if no other tool is specified to the Valgrind engine. This is the reason why many
novice C/C++ developers wrongly assume Valgrind is just a memory analysis tool.

Examining Valgrind closely we observed that its core is very different from Pin and
so does its API. Because Valgrind aims to support a vast amount of architectures, while
also making the process of supporting new architectures as easy as possible, its authors
decided to architect it around a disassemble-and-resynthesize (D&R) paradigm. Valgrind
does not instrument the binary code directly. Instead, it first translates the application
code into an IR (intermediate representation), transforming each application instruction
into one or more IR operations. Then it instruments the application by adding additional
IR operations into the program. Finally, it compiles the intermediate representation back
to binary code and executes.

Therefore, Valgrind offers an API to interact with the application code while it is in
this intermediate representation. This makes building tools that work on all Valgrind
supported platform easy, but also makes it difficult to match the level of platform details
provided by the Pin API, which focuses primarily only on the x86-64 platform.

DynamoRIO, on the other hand, implements a JIT compiler that operates directly into
the application binary, modifying application instructions and inserting instrumentation
instructions as the application runs, just like Pin does, without using an intermediate
representation. As a consequence, the DynamoRIO provides an API that is closer to Pin.

3.2 Architecture

DrPin is built as a DynamoRIO client (which is analogous to a pintool in the Pin world).
We decided to architect it this way, instead of modifying DynamoRIO core directly, to
avoid the need to maintain a fork of DynamoRIO, patching every change made on the
official DynamoRIO code repository.

However, there are drawbacks to our approach: We only have access to DynamoRIO’s
public interface, meaning we cannot take advantage of any private information that is
only available on DynamoRIO’s core.

37

Hardware
x86

Linux kernel
3.*

Pin 2

Operating System

Instrumentation API

PintoolApplication being
instrumented

Hardware
x86 or ARM

Linux kernel
3.*, 4.* or 5.*

DynamoRIO

Operating System

Instrumentation API

Pintool

Application being
instrumented DrPin

Figure 3.1: DrPin Overview

Figure 3.1 highlights the key points that distinguish DrPin from the original Pin 2
framework. While Pin 2 is only capable of running on old Linux kernels (3.* series) and
on the x86/x86-64 platform, DrPin is capable of running in modern Linux kernels (4.*
and 5.* series) while also running on Arm/Aarch64 and x86/x86-64. As represented in
the figure, DrPin itself only interacts with DynamoRIO through its public interface and
never interacts directly with the application being instrumented. All the interactions
between DrPin and the instrumented application are done through DynamoRIO. On the
other hand, DrPin is responsible for interacting with the pintool provided by the user,
thus receiving API calls from the pintool and finding ways to fulfill them using only
DynamoRIO API functions.

38

Hardware

Operating System

DynamoRIO

DrPin

Signal Event
Handler

DrPin Core

System Call
Event Handler

Threads Event
Handler

Basic Block
Event Handler

Pin API

Signal Event
Dispatcher

Application being instrumented
Pintool

System Call Event
Dispatcher

Threads Event
Dispatcher

Instruction Event
Dispatcher

Basic Block
Event Dispatcher

Callbacks

Pin API calls

DynamoRIO
Events

Figure 3.2: DrPin: Arquitecture

Because there is a disparity in the information provided by both Pin’s and Dy-
namoRIO’s API (not only in terms of granularity, but also in format), there is no simple
way of mapping every single Pin API call into one or more DynamoRIO API functions.
Instead, DrPin approaches this problem by gathering as much information as it can from
the DynamoRIO engine, constructing a light-weight model of the running application,
and then using this model to fulfill the requests made by the pintool. Another factor
that played an important role in our decision of keeping such light-weigth model (despite
the potential of increasing DrPin overhead) is the fact that DynamoRIO’s API does not
provide all the application’s life-cycle events specified in Pin’s API. This approach allows
not only DrPin to synthetically create events related to the life cycle of the instrumented
application that DynamoRIO’s API lacks and were found in Pin’s API, but also allows
DrPin to complement the events emitted by DynamoRIO with additional information
needed to match Pin API specifications.

As represented in Figure 3.2, DrPin subscribes to all events DynamoRIO issue through
its API. Doing so DrPin creates and maintains internal data structures that help DrPin
understand the state of the running application at any point in time. This information is
also used by DrPin dispatchers to decide when to issue Pin events to the user-provided
pintool.

39

3.3 API friendliness

It is not an accident that Pin 2 became a success right after its launch. It was a DBI
framework that, unlike anything before it, had an easy to use API that made instrument-
ing binary code dynamically accessible to everyone. The key difference in the Pin design
that made it so easy to use was the way users were required to interact with it. The
interaction was mostly done through callback functions that users registered when they
were interested in a particular event about the execution of the application. Parallel to
this event-callback mechanism, the core principle in the Pin-way of doing instrumentation
is registering an analysis function alongside with the desired runtime information (like a
Thread Id, or the value of a particular register, etc.) the users would like to receive as
parameters of the analysis function. Putting in another way, users would define analysis
functions that expect runtime information as parameters, and Pin would invoke them
with the needed information at the proper time during execution.

Because of that, users were able to write their analysis functions in a higher abstraction
language (C++) and let pin handle all the hassle related to gathering the information that
would be used as input by the analysis function, as well as taking care of not disturbing
the execution of the instrumented application.

To better illustrate how much simple it is to instrument and analyze an application
using the Pin API, we present listings 3.1 and 3.2. Both listings implement the same
analysis: they count the number of instructions executed by a given application.

The first, 3.1, is an excerpt from a pintool. The later, 3.2, is an excerpt from
a DynamoRIO client (a client is analogous to a pintool in DynamoRIO’s terminol-
ogy). The full version of both programs can be found and in https://github.com/
luisfernandoantonioli/inscount_pintools.

1 {...}
2 static UINT64 icount = 0;
3

4 VOID docount () { icount ++; }
5

6 VOID Instruction(INS ins , VOID *v)
7 {
8 INS_InsertCall(ins , IPOINT_BEFORE , (AFUNPTR)docount , IARG_END);
9 }
10

11 VOID Fini(INT32 code , VOID *v)
12 {
13 std::cout << "Count: " << icount << std::endl;
14 }
15 {...}
16

17 int main(int argc , char * argv [])
18 {
19 if (PIN_Init(argc , argv)) return ErrorInitPin ();
20

21 INS_AddInstrumentFunction(Instruction , 0);
22

23 PIN_AddFiniFunction(Fini , 0);
24

25 PIN_StartProgram ();
26

https://github.com/luisfernandoantonioli/inscount_pintools
https://github.com/luisfernandoantonioli/inscount_pintools

40

27 return 0;
28 }

Listing 3.1: Pin: Instruction counter

1 {...}
2 static uint64 global_count;
3

4 static void inscount(uint num_instrs)
5 {
6 global_count += num_instrs;
7 }
8

9 {...}
10

11 DR_EXPORT void dr_client_main(client_id_t id , int argc , const char *argv [])
12 {
13 {...}
14

15 if (! droption_parser_t :: parse_argv(DROPTION_SCOPE_CLIENT , argc , argv , NULL , NULL))
16 DR_ASSERT(false);
17 drmgr_init ();
18

19 {...}
20

21 dr_register_exit_event(event_exit);
22 drmgr_register_bb_instrumentation_event(event_bb_analysis , event_app_instruction ,
23 NULL);
24

25 {...}
26 }
27

28 static void event_exit(void)
29 {
30 /* code to print the number of instructions executed */
31 {...}
32 }
33

34 static dr_emit_flags_t event_bb_analysis(void *drcontext , void *tag ,
35 instrlist_t *bb , bool for_trace ,
36 bool translating , void ** user_data)
37 {
38 instr_t *instr;
39 uint num_instrs;
40

41 {...}
42

43 /* Count group of emulated instructions as only one */
44 bool is_emulation = false;
45 for (instr = instrlist_first(bb), num_instrs = 0; instr != NULL;
46 instr = instr_get_next(instr)) {
47 if (drmgr_is_emulation_start(instr)) {
48 num_instrs ++;
49 is_emulation = true;
50 continue;
51 }
52 if (drmgr_is_emulation_end(instr)) {
53 is_emulation = false;
54 continue;
55 }
56 if (is_emulation)
57 continue;
58 if (! instr_is_app(instr))
59 continue;

41

60 num_instrs ++;
61 }
62 *user_data = (void *)(ptr_uint_t)num_instrs;
63

64 {...}
65

66 return DR_EMIT_DEFAULT;
67 }
68

69 static dr_emit_flags_t
70 event_app_instruction(void *drcontext , void *tag , instrlist_t *bb, instr_t *instr ,
71 bool for_trace , bool translating , void *user_data)
72 {
73 uint num_instrs;
74 drmgr_disable_auto_predication(drcontext , bb);
75 if (! drmgr_is_first_instr(drcontext , instr))
76 return DR_EMIT_DEFAULT;
77 if (user_data == NULL)
78 return DR_EMIT_DEFAULT;
79 num_instrs = (uint)(ptr_uint_t)user_data;
80 dr_insert_clean_call(drcontext , bb, instrlist_first_app(bb), (void *)inscount ,
81 false /* save fpstate */, 1, OPND_CREATE_INT32(num_instrs));
82 return DR_EMIT_DEFAULT;
83 }

Listing 3.2: DynamoRIO: Instruction counter

We chose the instruction counter pintool to compare both APIs because it is usually
a canonical example in DBI frameworks documentation, and therefore, are easily found
inside the official documentation.

Not only the full version of 3.1, the pintool, has fewer lines of code, it is also simpler and
abstracts away much of the hassle involved in the process of instrumenting and analyzing
a particular program.

There are several reasons for why the DynamoRIO client has more code. First, Dy-
namoRIO has support for running multiple clients at once (what they call "chaining
clients") as well as emulating instructions (adding a series of instructions to the binary
that should be treated as a single instruction. This feature makes possible to simulate a
hypothetical instruction). Because of that, it is common for DynamoRIO clients to be
aware of the possibility of running in the application code after another client already
passed through the application code adding emulation instructions.

Second, Pin’s API is more granular, providing specific functions for all sorts of events
related to the lifecycle of the application, while DynamoRIO provides fewer events and
expects its clients to iterate through provided data structures.

As a result, simple pintools that are only interested in a specific aspect of the execution
of an application can be written with very few lines of code using the Pin API.

Although the difference in verboseness of both API’s is already clear in listings 3.1
and 3.2, the difference will rapidly grow as the complexity of the pintool grows as well.

The main reason is the difference between INS_InsertCall (from the Pin API) and
dr_insert_clean_call (from the DynamoRIO). While both provide means for the pin-
tool writer to insert calls anywhere in the instrumented code to an analysis function, the
Pin variant packs a lot more functionality. INS_InsertCall provides many conveniences,
like invoking the analysis function passing runtime information as argument, while the
latter can only provide fixed arguments defined at instrumentation time. Therefore, the

42

user of dr_insert_clean_call have to add a lot of code into its analysis function to get
the information needed by his analysis.

Another source of complexity in DynamoRIO API is the fact that it does not try
to hide the complexity of the engine from its user. This becomes evident in listing 3.2
where the tool writer is required to return a constant (in this case DR_EMIT_DEFAULT)
in many places to indicate to DynamoRIO how it would like to emit code into the code
cache. Knowing how the code cache works is important for DynamoRIO users that care
about performance, but might be another entry lever barrier for beginners with little
understanding of dynamic instrumentation. Even though Pin also have API functions
that let its users to interact with the code cache, these interactions are usually reserved
only to advanced API functions.

3.4 Pin API Compatibility

One of the goals of DrPin is to progressively support the most used Pin 2.0 API functions,
aiming to be a drop-in replacement for Pin in most cases, thus allowing most of the pintools
made for the original Pin to work with DrPin without any modifications.

As briefly mentioned in section 2.3.3, Pin instruments the application by using a
just-in-time compiler, but in contrast to other popular just-in-time compilers that use
bytecode, Pin uses the native binary as input for the JIT compiler.

Pin intercepts the application at the first instruction and using the pintool provided by
the user, it decides what instructions should be added to the native code. One important
aspect of the process is that Pin does not instrument the whole binary at once.

Instead, it instruments a trace at a time. Pin calls “a trace” a sequence of instructions
that may start anywhere and finishes at an unconditional branch or by other heuristic,
such as when the trace already has a certain number of conditional branches.

During the instrumentation of a trace Pin also changes the addresses of control flow
instructions to ensure that it does not lose control over the application when the instru-
mented code is being executed.

After this piece of code (trace) is instrumented, it then moves the newly compiled
code into what Pin calls the “code cache”. Pin never executes any application code that
has not been moved into the code cache.

Lastly, Pin transfers the control to the code that resides in the code cache, allowing
the application to run (now instrumented) and waits until the execution of the program
returns to it, starting again its cycle of instrumenting, sending to the code-cache, and
resuming the execution.

Every time Pin regains control of the process execution, it interacts with the pintool by
possibly calling many callback functions that were registered by the pintool, thus giving
the pintool the opportunity to instrument the next piece of code.

Therefore we can logically split the time during the execution of a program under
Pin into two major parts: When Pin is reading the original binary and generating the
new binary code, and when the newly generated code is actually running. This logical
separation is important to understand because all callbacks registered by the pintool will

43

only be called during this phase.
A common pattern for pintools is to use the instrumentation phase to choose places

to insert calls to analysis functions (using API functions like INS_InsertCall and
BBL_InsertCall). The analysis functions are also defined inside the pintool, but will
be executed during the second phase, when the actual instrumented application is run-
ning.

A key difference between Pin and many other DBI’s, is that not only it allows
the insertion of calls to these analysis functions (as DynamoRIO also does with its
dr_insert_clean_call API function), but also it supports sending runtime information
to these analysis functions as well, making them much more powerful.

To illustrate such functionality, imagine that one can write an analysis function that
will be called before every conditional branch is executed, and as a parameter, this analysis
function will receive if that particular branch instruction (that will be executed next) will
be taken or not. Not many DBI frameworks offers this functionality out of the box.

This is one of the many runtime informations that an analysis function can receive and
Pin would do what is necessary to provide the information and not disrupt the application
execution.

The Pin API is composed of a total of 549 functions that can be divided into eight
main categories:

• Instruction

• Basic Block

• Trace

• Section

• Routine

• Image

• Register

• Other Utilities

The instruction API partition is composed of functions that either register callback
functions for the events that involve instructions only (such as when Pin encounters an
instruction during the compilation phase) or functions that gives information about a
particular instruction (such as the address of the instruction, or how many operands does
the instruction have). All these API functions use the "INS_" prefix.

Very similar to the functions related to instructions, basic block API functions operate
on a basic block granularity and are also composed of events related to basic blocks, as
well as information about them. These API functions use the "BBL_" prefix.

Trace API functions operate very similarly to the basic block functions, but instead
of basic blocks, they operate on traces.

Similarly, section and image API functions also have their own prefixes ("SEC_",
and "IMG_" respectively) and offer functionalities and events related to their granularity.

44

Lastly, what we categorized as other utilities are functions for several purposes that usu-
ally have the "PIN_" prefix. They are used for all sorts of tasks, from initializing Pin data
structures, to getting a system call argument during a particular place of the execution.

Because the Pin API is very extensive, DrPin strategy is to progressively support
it, expanding the support one function at the time, increasing the number of supported
pintools. Naturally, some functions of the API are more popular than others, and imple-
menting those would allow us to support a bigger set of existing pintools.

The order in which API functions were implemented was guided by the tradeoff be-
tween popularity and engineering effort of each API function.

To guide us in the process of defining the popularity of each API function, we used a
mix of pintools. The mix is composed of the pintools that comes in a folder bundled with
the original Pin distribution called SimpleExamples as well as two other popular pintools:
Allcache and ZSim.

The SimpleExamples directory that comes with Pin that is meant to be a diverse set
of pintools to illustrate to pin users the vast Pin API. It is composed of 22 pintools that
uses a total of 117 different API functions. In order to visualize better the most popular
API functions, we built figure 3.3. The figure is a histogram, that shows for each API
function, how many pintools inside the SimpleExamples folder uses it.

As expected, both PIN_StartProgram and PIN_Init are present on all pintools, since
they are mandatory.

DrPin implemented all API functions from this list, as all of them are widely used by
pintool writers.

API function name

N
um

be
r o

f p
in

to
ol

s
th

at
 u

se
 th

is
 A

PI
 fu

nc
tio

n

0

5

10

15

20

25

PI
N_
St
ar
tP
ro
gr
am

PI
N_
In
it

PI
N_
Ad
dF
in
iF
un
ct
io
n

IN
S_
In
se
rtC
al
l

PI
N_
In
itS
ym
bo
ls

TR
AC

E_
Ad
dI
ns
tru
m
en
tF
un
ct
io
n

TR
AC

E_
Bb
lH
ea
d

RT
N_
Va
lid

BB
L_
Va
lid

BB
L_
Ne
xt

IN
S_
Va
lid

IN
S_
Ne
xt

BB
L_
In
sH
ea
d

TR
AC

E_
Rt
n

RT
N_
Se
c

SE
C_
Va
lid

RT
N_
O
pe
n

RT
N_
Cl
os
e

IN
S_
In
se
rtP
re
di
ca
te
dC
al
l

IM
G
_A
dd
In
st
ru
m
en
tF
un
ct
io
n

SE
C_
Im
g

IM
G
_T
yp
e

SE
C_
Rt
nH
ea
d

SE
C_
Ne
xt

RT
N_
Ne
xt

RT
N_
In
sH
ea
d

IN
S_
Is
M
em

or
yR
ea
d

IN
S_
Ad
dI
ns
tru
m
en
tF
un
ct
io
n

IM
G
_S
ec
He
ad

IN
S_
Is
M
em

or
yW

rit
e

Figure 3.3: Top 30 most executed API functions by the SimpleExample pintools

Table 3.1 shows all pintools present in the folder, describing their purpose and whether
or not DrPin currently support them.

45

Table 3.1: SimpleExamples pintools

Pintool Description Supported

Calltrace Traces call instructions yes

Catmix Category mix profiler yes

Coco Code coverage analyzer yes

Dcache Cache simulator yes

Edgcnt Edge Profile collector yes

Emuload Load emulator yes

Extmix Static and dynamic instruction mix profiler yes

Fence Runtime program text modification guard no

Icount Dynamic instructions counter yes

Ilenmix Static and dynamic instruction lenght mix profiler yes

Inscount2_mt Multi-thread dynamic instruction counter yes

Jumpmix Jump instructions profiler yes

Ldstmix Dynamic register/memory mix profiler yes

Malloctrace Malloc calls tracer no

Opcodemix Static and Dynamic opcode mix profiler yes

Oper-imm Prints information on immediate operands yes

Pinatrace Memory access tracer yes

Regmix Static and Dynamic register mix profiler yes

Regval Demonstrates the use of PIN_GetContextRegval API yes

Topopcode Realtime opcode mix profiler yes

Toprtn Realtime top routines yes

Trace Instructions tracer yes

The SimpleExample pintools guided us in the beginning of DrPin development, but
because its primary purpose is to familiarize pintool writers with the vast API, besides
the first 30 most popular functions, the lists starts to become too sparse to have a real
connection with the actual popularity of the other API functions.

Because of that, we looked for other popular pintools, and guided DrPin API devel-
opment around them, targeting their support.

Allcache is an interesting pintool written by Artur Klauser that does functional sim-
ulation of TLB and cache hierarchies. It is distributed alongs with Pin. The pintool uses
11 API functions and currently runs with no problems on DrPin. Because none of the
API used are specific to the x86 architecture, it can also run on the other architectures
supported by DrPin.

Another famous pintool is Zsim [32]. Zsim is a fast and accurate multicore x86-64
simulator that focuses on simulating memory hierarchies and large heterogeneous systems.
In essence, it is a large pintool that uses Pin to construct and update internal models about
the simulated system.

Zsim uses a total of 80 different Pin API functions, which is more than most pintools
do. Because it uses several libraries, it does not currently work on Pin 3. For instance,
some of Zsim dependencies like libelf, libhdf5, and libpthread are incompatible with
PinCRT.

DrPin support for Zsim is not fully stable, but DrPin can already successfully run the
examples shown in its readme.

Zsim case is not alone. Many pintool’s writers were not capable of porting their tools
to use PinCRT even when willing to re-write their tools. One example is the authors of
the Hybrid Verifier Cross-Platform Verification Framework for Instruction Set Simulators

46

[13]. Their pintool uses network sockets to send and receive data, but when they tried to
use the PinCRT sockets API they were surprised to find out that even though PinCRT
has a sendTo function in its API, it does not have implemented a function to receive data
through a socket yet.

At the time of this writing, DrPin already supports 83 API functions. The complete
list of all supported API functions can be found in appendix A.

3.5 Evaluation on multiple platforms

One of the aspects that sets DrPin apart from the original Pin 2 framework is the pos-
sibility of instrumenting not only x86/x86-64 applications, but also Arm/AArch64 ones.
As expected, not all Pin API functions are suitable for the Arm/AArch64 platform, as
some API functions are very specific to the x86/x86-64 platform (like INS_IsRDTSC which
returns if an instruction is rdtsc or rdtscp), but supporting at least the more generic ones
on both platforms makes the construction of pintools independent of platforms possible.
One example of such platform-independent pintool is presented in listing 3.3. The pin-
tool collects the mnemonic of every instruction executed and at the end of the execution,
displays a histogram of the 30 most executed mnemonics.

1 #include "pin.H"
2 // ... other includes
3

4 typedef std::pair <std::string , int > mnemonic_counter;
5 std::vector <mnemonic_counter > mnemonic_histogram;
6

7 int mnemonicIdx(std:: string &mnemonic) {
8 {...}
9 }
10

11 VOID incrementMnemonicCount(int idx) {
12 mnemonic_histogram[idx]. second ++;
13 }
14

15 VOID instrumentInstruction(INS ins , VOID *v) {
16 std:: string ins_disassembled = INS_Disassemble(ins);
17 std:: string mnemonic = ins_disassembled.substr(0, ins_disassembled.find(’ ’));
18 int mnemonicIndex = mnemonicIdx(mnemonic);
19 // Inserts mnemonic into histogram if it does not exists yet
20 if (mnemonicIndex == -1) {
21 // Pushing new mnemonic to the end of the mnemonic histogram
22 mnemonicIndex = mnemonic_histogram.size();
23 mnemonic_histogram.push_back(std:: make_pair(mnemonic , 0));
24 }
25

26 INS_InsertCall(ins , IPOINT_BEFORE , (AFUNPTR)incrementMnemonicCount , IARG_UINT32 ,
mnemonicIndex , IARG_END);

27 }
28

29 VOID fini(INT32 code , VOID *v) {
30 sort_mnemonic_vector ();
31 print_top_30_mnemonics ();
32 }
33

34 int main(int argc , char *argv []) {
35 if (PIN_Init(argc , argv)) {

47

36 return 1;
37 }
38

39 INS_AddInstrumentFunction(instrumentInstruction , 0);
40

41 PIN_AddFiniFunction(fini , 0);
42

43 PIN_StartProgram ();
44

45 return 0;
46 }

Listing 3.3: Pintool: Top 30 mnemonics

Although the pintool presented in listing 3.3 needs to know the mnemonic of all exe-
cuted instructions, it can rely on the INS_Disassemble API function (which works on all
platforms) and do a simple string operation to extract the desired information. Doing
so, the pintool can operate seamlessly on all platforms supported by DrPin.

The pintool 3.3 is very concise. It maintains an array of counters (one per mnemonic)
and updates it before every execution of an instruction.

The pintool starts by calling the PIN_Init function. This function is present in the
beginning of every pintool, and is used by DrPin to initialize all its internal data structures.
Next, in the line 39, we register a callback function (instrumentInstruction into DrPin
using Ins_AddInstrumentFunction API function. After this registration, whenever a
new instruction is found (during the compilation phase of DrPin, as described in 3.4), the
callback function will be called, giving us the opportunity to instrument the instruction.

Our callback function, defined in line 15 is very short as well. We use the
INS_Disassemble API function to disassemble the current instruction, and use a sim-
ple string operation to extract the mnemonic of the instruction. After that, we check
if that particular mnemonic is already present in our array of mnemonic counters, and if
not, we initialized its position with zero.

Then, we ask DrPin to insert a call before that particular instruction to our analysis
function called "incrementMnemonicCount". Because our analysis function is used by
every instruction, it needs to know what mnemonic will be executed next, so it can
update the corresponding counter. We could pass a string with the mnemonic name to
the analysis function, but an index of the corresponding counter suffice.

At the end of the main function, we also register a callback function called “fini” to
be called whenever the application being instrumented finishes its execution. We use the
“fini” function to sort and print the results accumulated in the mnemonic counters.

To exemplify the functionality of such pintool, we are going to instrument the execution
of the ubiquitous GNU ls program, present in almost all GNU/Linux distributions, during
its operation of listing the contents of the /etc folder.

48

1 mov : 150408
2 cmp : 47419
3 add : 44746
4 jz : 41268
5 test : 35868
6 jnz : 28868
7 push : 23115
8 lea : 22110
9 pop : 20314
10 movzx : 20208
11 jmp : 17214
12 and : 15889
13 sub : 11479
14 xor : 10581
15 data16 : 7991
16 jnbe : 7420
17 call : 7353
18 ret : 7349
19 shr : 6243
20 jbe : 3593
21 shl : 3565
22 jb : 3435
23 or : 3413
24 setnz : 3331
25 pcmpeqb : 3083
26 jnb : 3018
27 setz : 2232
28 movdqa : 2163
29 movsxd : 1740
30 vpcmpeqb : 1732

Listing 3.4: Top 30 mnemonics: x86-64
output

1 add : 162417
2 ldr : 152696
3 subs : 134900
4 orr : 117405
5 ldrb : 67643
6 str : 64406
7 stp : 49024
8 cbz : 48960
9 ldp : 44350
10 cbnz : 38602
11 movz : 36697
12 sub : 33877
13 b.eq : 33858
14 b.ls : 29333
15 csinc : 29227
16 adrp : 25163
17 b.hi : 24800
18 and : 24365
19 b : 23781
20 eor : 16346
21 b.ne : 15984
22 ubfm : 15539
23 ands : 14064
24 ret : 12958
25 bl : 11768
26 ccmp : 11642
27 b.cc : 10767
28 strb : 10586
29 br : 10365
30 udiv : 10218

Listing 3.5: Top 30 mnemonics:
AArch64 output

DrPin executed the same pintool on two different systems. The first, is an x86 system
that runs Manjaro Linux with Linux Kernel 5.6.16-1-MANJARO. The second is an Aarch64
system running Debian GNU/Linux 9 (stretch) with Linux Kernel 4.9.0-4-arm64 on a
QEMU emulator 5.0.0.

Listings 3.4 and 3.5 shows the output of the pintool on the x86 system and on the
AArch64 one respectively, running GNU ls.

Another class of pintools that are reasonably architecture-independent are the ones
that perform analysis on semantics that are closer to source code constructs. To ex-
emplify this class of pintools, we created the pintool present in listing 3.8 (the full
pintool source code can be found in https://github.com/luisfernandoantonioli/
callgraph_pintool).

1 #include "pin.H"
2 {...}
3

4 FILE * fp;
5

6 class Graph {
7 public:
8 void AddEdge(std:: string& source , std:: string& target){
9 {...}
10 }

https://github.com/luisfernandoantonioli/callgraph_pintool
https://github.com/luisfernandoantonioli/callgraph_pintool

49

11 void GenerateCallgraph(FILE* f){
12 {...}
13 }
14 };
15

16 Graph graph;
17

18 VOID createEdge(ADDRINT callerAddr , ADDRINT calleeAddr){
19 std:: string callerName = RTN_FindNameByAddress(callerAddr);
20 std:: string calleeName = RTN_FindNameByAddress(calleeAddr);
21 graph.AddEdge(callerName , calleeName);
22 }
23

24 VOID instrumentInstruction(INS ins , VOID *v) {
25 if(INS_IsDirectBranchOrCall(ins)){
26 ADDRINT ins_addr = INS_Address(ins);
27 ADDRINT target_addr = INS_DirectBranchOrCallTargetAddress(ins);
28

29 IMG ins_img = IMG_FindByAddress(ins_addr);
30 IMG target_img = IMG_FindByAddress(target_addr);
31 if(IMG_Valid(ins_img) && IMG_Valid(target_img) && IMG_IsMainExecutable(ins_img) &&

IMG_IsMainExecutable(target_img)){
32 INS_InsertCall(ins , IPOINT_BEFORE , (AFUNPTR)createEdge , IARG_ADDRINT , ins_addr ,

IARG_ADDRINT , target_addr , IARG_END);
33 }
34 }
35 }
36

37 VOID fini(INT32 code , VOID *v) {
38 fp = fopen ("./ callgraph.dot","w");
39 graph.GenerateCallgraph(fp);
40 fclose (fp);
41 }
42

43 int main(int argc , char *argv []) {
44 if (PIN_Init(argc , argv)) {
45 return 1;
46 }
47

48 PIN_InitSymbols ();
49

50 INS_AddInstrumentFunction(instrumentInstruction , 0);
51

52 PIN_AddFiniFunction(fini , 0);
53

54 PIN_StartProgram ();
55

56 return 0;
57 }

Listing 3.6: Callgraph pintool

The pintool 3.6 creates a graph where the functions defined in the source code of
the application are nodes, and the calling relation between them are graph edges. The
name of the pintool is callgraph because it generates a call graph of the instrumented
application. To operate correctly, the pintool needs to know the names of the functions
defined in the source code, therefore it expects the application to have debug information
embedded into the binary.

On Linux, the DWARF [8] format is the most popular debug format, and can be
easily embedded into the binary application. Currently, DrPin only supports the Dwarf

50

debugging format.
The pintool operation is quite simple. It inspects every instruction with the help of the

instrumentInstruction function. When it finds an instruction that is a call instruction
or a direct branch, it instruments the binary to insert a call to the createEdge function.
instrumentInstruction also does not instrument instructions that are in other shared
libraries.

It is important to notice that createEdge will only be executed for that particular
instruction if at runtime, the execution of the program passed through that part of the
binary code. Another aspect is that createEdge receives two addresses as input, the
caller address and callee address, so before adding the edge into the graph, it first needs
to ask DrPin for the name of the function that contains that address.

To illustrate the execution of the Callgraph pintool, we will use the C program defined
in listing 3.7. Although the program is not particularly useful, it contains a lot of functions
calls and fits well the purpose of illustrating the pintool

1 #include <stdio.h>
2

3 int fib0(){
4 return 0;
5 }
6 int fib1(){
7 return 1;
8 }
9 int fib2(){
10 return fib1() + fib0();
11 }
12 int fib3(){
13 return fib2() + fib1();
14 }
15 int fib4(){
16 return fib3() + fib2();
17 }
18 int fib5(){
19 return fib4() + fib3();
20 }
21 int fib6(){
22 return fib5() + fib4();
23 }
24

25 void print(int value){
26 printf("The 6th fibonacci number: %d\n", value);
27 }
28

29 int main(int argc , char const *argv [])
30 {
31 int value = fib6();
32 print(value);
33 return 0;
34 }

Listing 3.7: Callgraph demo application

The output of the pintool is presented in listing 3.7. Conveniently, the pintool outputs
its result in the graphviz dot file format [12]. Using graphviz Linux program, we can
transform the text output into figure 3.4. The number near the edges of the graph repre-
sents how many times a particular edge of the graph was activated during the execution
of the 3.7 program.

51

1

2

3 digraph callgraph {
4 "main" -> "fib6" [label =1]
5 "fib6" -> "fib4" [label =1]
6 "fib4" -> "fib2" [label =2]
7 "fib2" -> "fib0" [label =5]
8 "fib2" -> "fib1" [label =5]
9 "fib4" -> "fib3" [label =2]
10 "fib3" -> "fib1" [label =3]
11 "fib3" -> "fib2" [label =3]
12 "fib6" -> "fib5" [label =1]
13 "fib5" -> "fib3" [label =1]
14 "fib5" -> "fib4" [label =1]
15 "main" -> "print" [label =1]
16 }

Listing 3.8: Callgraph dot file output

main

fib6

1

print

1

fib4

1 fib5

1

fib2

2 fib3

2

fib0

5

fib1

5

3

3

1

1

Figure 3.4: Callgraph visual output

Although DrPin makes easy for its users to write architecture-independent pintools,
it is possible that a pintool that only uses architecture-independent API function, still
does not run correctly on all platforms. This might happen because there are architecture
details that may interfere with the correct operation of the pintool.

To ilustrate this issue, consider the Load-Exclusive and Store-Exclusive synchroniza-
tion primitive present in the arm architecture. A pintool that happens to executes code
between a linked load and store instruction might disrupt the application normal execu-
tion on arm while running fine on x86.

Therefore, knowledge of the target archtectures is still a valuable asset for the pintool
writer.

3.6 Peformance Optimizations

Although DynamoRIO and Pin have a lot of similarities under-the-hood, on the API level,
Pin values simplicity and ease-of-use. Therefore it provides many facilities for the pintool
writer that manifest itself in terms of rich API functions that provide many conveniences.
Because DrPin does not operate inside DynamoRIO, many of these conveniences pro-
vided by the Pin API needed to be simulated by calling multiple DynamoRIO API func-
tions, increasing DrPin overhead on those functionalities. This issue became most appar-
ent while implementing INS_InsertCall(INS ins, IPOINT action, AFUNPTR funptr,
...) API function.

This function is variadic and as parameters it receives:

• INS ins: an object that represents an instruction of the application.

• IPOINT action: an enum to control where in the neiborhood of the instruction,
the call to the analysis function will be placed.

• AFUNPTR funptr: a pointer to the analisys function.

52

• ...: zero or more parameters that will be passed to funcptr as arguments at runtime.
There is a wide variety of values that can be specified, from constants, to processor
architectural state at the time of the invocation, such as register values.

Pintools rely heavily on the InsertCall family of API functions (BBL_InsertCall,
RTN_InsertCall and etc.) to obtain runtime information, and not supporting them would
imply in a serious limitation for DrPin.

The closest API function that DynamoRIO has to perform the same operation is
dr_insert_clean_call. But DynamoRIO’s function lacks a major functionality that
makes the Pin variant especial: the ability to pass runtime information as argument to
the analisys function. To work around this, DynamoRIO clients requests the needed
runtime information inside the analisys function using other API functions.

To implement the InsertCall family of functions, whenever DrPin received a re-
quest to insert a call to an analysis function, DrPin registered a call to a helper function
that collected the information and later called the analysis function with the necessary
information.

This approach, however, implied that all the burden of parsing the function param-
eters and requesting the desired information from the DBI engine happened during the
execution of the instrumented application. This caused an overhead even for analysis
functions that did not need any runtime information, such as tracers that only operate
on information that does not change in the course of the execution of the application
(instruction addresses, function names and etc).

To mitigate this problem, we optimized DrPin to inspect the requested function ar-
guments and when it is detected that no argument needs runtime information, DrPin
registers the analysis function call using DynamoRIO’s dr_insert_clean_call directly.

This little optimization enabled DrPin to operate tracer pintools without almost no
overhead when compared to DynamoRIO, but also preserved Pin most valuable function-
alities.

3.7 Performance Comparison

DBI frameworks have always paid additional attention to their performance. Performance,
in their context, is not a luxury, but a necessity. DBI tools usually interacts with every
single instruction executed by an application, and a minor overhead in its operation can
add up, resulting in an increase in the application execution time of many orders of
magnitude.

It is true, however, that not all DBI tools are made equal. Some require little runtime
information, being as simple as generating an instruction trace, while others do heavy
analysis, creating and maintaining heavy-weight models to simulate how an application
interacts with a hypothetical machine’s hardware. Therefore, there is no single dimension
or metric that can overall describe the performance of a DBI framework. DBI frameworks
not only vary greatly their performance when running different applications, but more
importantly, have completely different performances depending on the type of analysis
tool that is built with them.

53

To better illustrate the performance characteristics of DrPin, we focused our attention
on two distinct scenarios commonly found in the DBI world.

In the first scenario, we want to quantify the intrinsic overhead created by the DBI
framework engines. As the reader might be wondering, all the infrastructure built inside
DBI engines to provide the ability to instrument a binary program (as the JIT compiler
and the code-cache) does not come for free, even if no instrumentation is inserted into the
application.

To test the intrinsic overhead created by DrPin, and compare it with other DBI
frameworks (DynamoRIO and Pin), we decided to measure the slowdown of running
the SPECint 2006 benchmark on these frameworks with an empty pintool. To reduce
the variance caused by different operating systems and libraries, we also executed all
frameworks in the same machine with the turbo boost disabled. The machine had the
following specifications:

• OS: Ubuntu 14.04.6 LTS

• Kernel: 3.19.0-25-generic

• Compiler: GCC 7.4.0 for DrPin/DynamoRIO and GCC 4.8.5 for Pin

• Processor: Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz

• RAM memory: DDR4 16GiB @ 3200 MHz

Unfortunately, because Pin cannot run on newer operating systems, we had to perform
the tests on a Ubuntu 14.04 machine with Linux kernel 3.19. We used different compiler
versions for both Pin and DrPin/DynamoRIO because GCC 4.8.5 did not fully support
all the C++11 features used in DynamoRIO and DrPin codebase.

Figure 3.5 shows the slowdown of each SPECint 2006 program for each DBI framework.
From figure 3.5 we observe that DrPin did not significantly increase the slowdown when
compared with DynamoRIO. This is really good, because although DrPin subscribes to
every application lifecycle event available in the DynamoRIO framework, this did not
translated into a big overhead during runtime.

54

40
0.

pe
rlb

en
ch

.1

40
0.

pe
rlb

en
ch

.2

40
0.

pe
rlb

en
ch

.3

40
1.

bz
ip

2.
1

40
1.

bz
ip

2.
2

40
1.

bz
ip

2.
3

40
1.

bz
ip

2.
4

40
1.

bz
ip

2.
5

40
1.

bz
ip

2.
6

40
3.

gc
c.

1

40
3.

gc
c.

2

40
3.

gc
c.

3

40
3.

gc
c.

4

40
3.

gc
c.

5

40
3.

gc
c.

6

40
3.

gc
c.

7

40
3.

gc
c.

8

42
9.

m
cf

.1

0

1

2

3

4

5
Sl

ow
do

wn

1.
92 2.

15

1.
88

1.
13

1.
04 1.
09 1.
12 1.

2

1.
17

1.
84

1.
68

1.
63 1.
67

1.
64

1.
56

1.
48 1.

62

1.
07

1.
43 1.

58

1.
37

1.
11

0.
99 1.
02 1.
07 1.
1

1.
05

1.
39

1.
38

1.
29 1.
34

1.
32 1.
34 1.

4 1.
52

1.
02

1.
43 1.

58

1.
37

1.
11

1.
0

1.
02 1.
09 1.
1

1.
07

1.
4

1.
4

1.
3 1.
37

1.
37 1.
39

1.
35 1.

53

1.
03

SPECint 2006

43
3.

m
ilc

.1

44
4.

na
m

d.
1

44
5.

go
bm

k.
1

44
5.

go
bm

k.
2

44
5.

go
bm

k.
3

44
5.

go
bm

k.
4

44
5.

go
bm

k.
5

44
7.

de
al

II.
1

45
0.

so
pl

ex
.1

45
0.

so
pl

ex
.2

45
3.

po
vr

ay
.1

45
6.

hm
m

er
.1

45
6.

hm
m

er
.2

41
0.

bw
av

es
.1

41
6.

ga
m

es
s.1

41
6.

ga
m

es
s.2

41
6.

ga
m

es
s.3

43
4.

ze
us

m
p.

1

0

1

2

3

4

5

Sl
ow

do
wn

1.
45

2.
02

1.
46

1.
45

1.
42 1.
49 1.
51 1.
57

1.
19 1.

44

1.
97

1.
16 1.
19

1.
54 1.

78

1.
77

2.
23

2.
71

1.
41

2.
01

1.
36

1.
36

1.
27 1.

37

1.
36 1.
45

1.
18 1.

33 1.
42

1.
02

1.
02

1.
52 1.

73

1.
72

2.
19

2.
71

1.
44

2.
02

1.
36

1.
36

1.
27 1.

38

1.
37 1.
46

1.
18 1.

31 1.
42

1.
01

1.
02

1.
52 1.

73

1.
72

2.
18

2.
74

Pin without instrumentation
DynamoRIO without instrumentation
DrPin without instrumentation

43
5.

gr
om

ac
s.1

43
6.

ca
ct

us
AD

M
.1

43
7.

le
sli

e3
d.

1

45
4.

ca
lcu

lix
.1

45
8.

sje
ng

.1

45
9.

Ge
m

sF
DT

D.
1

46
2.

lib
qu

an
tu

m
.1

46
4.

h2
64

re
f.1

46
4.

h2
64

re
f.2

46
4.

h2
64

re
f.3

46
5.

to
nt

o.
1

47
0.

lb
m

.1

47
1.

om
ne

tp
p.

1

47
3.

as
ta

r.1

47
3.

as
ta

r.2

48
1.

wr
f.1

48
2.

sp
hi

nx
3.

1

48
3.

xa
la

nc
bm

k.
1

0

1

2

3

4

5

Sl
ow

do
wn 2.

53

2.
32

1.
57

3.
13

1.
52

1.
85

1.
02

1.
84

1.
84

1.
75 1.

88

2.
84

1.
28

1.
11

1.
07

2.
42

3.
14

1.
67

2.
51

2.
31

1.
54

3.
11

1.
29

1.
81

1.
25 1.
32

1.
24

1.
18

1.
61

2.
83

1.
18

1.
1

1.
02

2.
36

3.
11

1.
52

2.
51

2.
34

1.
48

3.
11

1.
27

1.
81

1.
26 1.
31

1.
24

1.
18

1.
62

2.
83

1.
19

1.
09

1.
04

2.
35

3.
12

1.
55

Figure 3.5: SPECint 2006: Intrinsic execution slowdown

Another characteristic shown in figure 3.5 is that both DynamoRIO, Pin, and DrPin
have very similar intrinsic slowdowns. We believe this comes from the fact that both
DynamoRIO and Pin have very similar architectures, being built on top of a JIT compiler,
and also use a code cache to remove unnecessary re-instrumentations.

As said at the beginning of this section, there is no upper limit to the slowdown
that a dynamic instrumentation tool can cause, as the analysis functions can be of any
complexity. Therefore to compare the slowdown of the DBI frameworks, we chose the
instruction counter pintool. This pintool has a very light analysis function (only incre-
ments a counter for every executed instruction) but instruments every single instruction,
therefore can show the overhead of instrumenting all the instructions in an application.

The pintool used by both Pin and DrPin is the same presented in listing 3.1, and the
client used by DynamoRIO is the same that was presented in listing 3.2. We also used
the SPECint 2006 benchmark for this test, as well as the same machine described in the

55

previous slowdown test.

40
0.

pe
rlb

en
ch

.1

40
0.

pe
rlb

en
ch

.2

40
0.

pe
rlb

en
ch

.3

40
1.

bz
ip

2.
1

40
1.

bz
ip

2.
2

40
1.

bz
ip

2.
3

40
1.

bz
ip

2.
4

40
1.

bz
ip

2.
5

40
1.

bz
ip

2.
6

40
3.

gc
c.

1

40
3.

gc
c.

2

40
3.

gc
c.

3

40
3.

gc
c.

4

40
3.

gc
c.

5

40
3.

gc
c.

6

40
3.

gc
c.

7

40
3.

gc
c.

8

42
9.

m
cf

.1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sl
ow

do
wn

11
.7

1 12
.7

3 14
.3

4

8.
04

10
.5

3

11
.3

6

9.
69 9.
85

8.
3 8.
83

8.
58

9.
72 10

.1
4

10
.2

4

10
.3

4

9.
73 9.
83

3.
48

11
.6

4 13
.3

4 14
.7

7

7.
81

10
.7

9 11
.7

6

9.
72 9.
84

8.
11 8.
37

8.
32

9.
52 9.
76

9.
57

9.
3

8.
98 9.
11

2.
79

12
.5

1

14
.4

6

15
.1

4

8.
47

11
.3

2 12
.2

6

10
.2

5

10
.4

1

8.
77 9.

5

9.
42 10

.3
9

10
.7

6

10
.6

6

10
.3

9

9.
73 10

.8

4.
03

SPECint 2006
43

3.
m

ilc
.1

44
4.

na
m

d.
1

44
5.

go
bm

k.
1

44
5.

go
bm

k.
2

44
5.

go
bm

k.
3

44
5.

go
bm

k.
4

44
5.

go
bm

k.
5

44
7.

de
al

II.
1

45
0.

so
pl

ex
.1

45
0.

so
pl

ex
.2

45
3.

po
vr

ay
.1

45
6.

hm
m

er
.1

45
6.

hm
m

er
.2

41
0.

bw
av

es
.1

41
6.

ga
m

es
s.1

41
6.

ga
m

es
s.2

41
6.

ga
m

es
s.3

43
4.

ze
us

m
p.

1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sl
ow

do
wn

6.
07

9.
99

7.
55 7.
89 8.

37

7.
76 8.
09

12
.4

5

6.
3

8.
08

12
.6

1 14
.3

13
.8

5

11
.2

2

14
.4

5 15
.5

4 16
.6

4

13
.5

6.
14

10
.3

5

6.
84 7.
14 7.

66

6.
94 7.

38

12
.6

3

6.
16

8.
25

12
.8

6

15
.5

1

14
.9

1

11
.6

4

14
.8

9 16
.1

2 17
.3

13
.9

8

7.
3

10
.5

7

8.
42 8.

93 9.
02

8.
77 9.
06

13
.3

6

6.
94

8.
89

13
.8

2

15
.9

15
.5

7

11
.9

5

15
.9

4

16
.7

1 17
.9

2

14
.4

7

Pin with inscount pintool
Dynamorio with inscount client
DrPin with inscount pintool

43
5.

gr
om

ac
s.1

43
6.

ca
ct

us
AD

M
.1

43
7.

le
sli

e3
d.

1

45
4.

ca
lcu

lix
.1

45
8.

sje
ng

.1

45
9.

Ge
m

sF
DT

D.
1

46
2.

lib
qu

an
tu

m
.1

46
4.

h2
64

re
f.1

46
4.

h2
64

re
f.2

46
4.

h2
64

re
f.3

46
5.

to
nt

o.
1

47
0.

lb
m

.1

47
1.

om
ne

tp
p.

1

47
3.

as
ta

r.1

47
3.

as
ta

r.2

48
1.

wr
f.1

48
2.

sp
hi

nx
3.

1

48
3.

xa
la

nc
bm

k.
1

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Sl
ow

do
wn 11

.4
1

9.
42

15
.8

5

14
.8

9

9.
2 10

.5
9 12

.2
1

14
.7

7

13
.1

2

13
.2

3

11
.9

1

9.
53

3.
92

5.
66 6.

42

13
.8

4

12
.8

2

10
.8

712
.3

7

12
.6

2

16
.3

2

15
.4

8.
38

11
.3

3 13
.2

4 15
.0

6

13
.0

3

13
.3

4

12
.2

5

14
.8

5

4.
21

5.
42 6.

0

14
.4

4

12
.9

1

10
.3

6

14
.2

3

12
.2

8

16
.7

9

16
.0

7

9.
5

11
.3

6

13
.4

3

15
.9

4

14
.2

2

13
.9

6

12
.8

8 14
.7

4

4.
95

6.
25 6.

75

14
.8

2

13
.4

1

11
.4

7

Figure 3.6: SPECint 2006: Instruction count execution slowdown

In figure 3.6 we see that in this scenario the performance of all three DBI frameworks
is close, with Pin being a little faster than DynamoRIO, and DynamoRIO faster then
DrPin. On average, DrPin was 10% slower than Pin and 11.6 times slower than the
native execution.

We already expected DrPin to be a little slower than DynamoRIO, as it is natural since
DrPin uses DynamoRIO under the hood. What was not so expected was DynamoRIO
being a little slower than Pin.

DynamoRIO inscount pintool can be made faster at the cost of losing compatibility
with other architectures, by using x86 specific API functions to increment the instruction
counter inline, removing the need to call a function to increment the global counter. We
did not go through this path because our interest was not to make the fastest possible

56

inscount pintool, but rather, to understand the slowdown generated by a typical dynamic
instrumentation tool built by these frameworks.

In section 3.6 we explained that DynamoRIO does not provide a built-in way of imple-
menting the INS_InsertCall function if runtime information is requested by the analysis
function. Because of this, when an analysis function that needs runtime information
is registered with INS_InsertCall API function, DrPin cannot insert a direct call the
analysis function into the instrumented binary because it doesn’t know the value of the
arguments yet. Instead, it inserts a call to a function that at runtime will gather the
necessary data and will later call the analysis function with the right arguments.

To complete our performance evaluation, we wanted to show the implications this
aspect in the slowdown of DrPin execution. To abuse this weakness of DrPin, we create
a pintool that for every branch in the application, registers an analysis function that
receives as argument whether or not the executed branch has been taken. The pintool is
described in listing 3.9.

1 #include "pin.H"
2 #include <iostream >
3 using namespace std;
4

5 UINT64 cond_br_counter;
6 UINT64 cond_br_taken_counter;
7

8 VOID instr_branch(BOOL branch_taken) {
9 cond_br_counter ++;
10 if (branch_taken){
11 cond_br_taken_counter ++;
12 }
13 }
14

15 VOID Instruction(INS ins , VOID *v)
16 {
17 if (INS_Category(ins) == XED_CATEGORY_COND_BR){
18 INS_InsertCall(ins , IPOINT_BEFORE , (AFUNPTR)instr_branch , IARG_BRANCH_TAKEN , IARG_END

);
19 }
20 }
21

22 VOID PrintStatistics(INT32 exit_code , VOID *v){
23 cout << "===" << endl;
24 cout << "Number of executed conditional branches: " << cond_br_counter << endl;
25 cout << "Number of taken conditional branches: " << cond_br_taken_counter << endl;
26 cout << "===" << endl;
27 }
28

29 int main(int argc , char *argv [])
30 {
31 if(PIN_Init(argc ,argv))
32 {
33 cout << "initialization invalid" << endl;
34 }
35

36 cond_br_counter = 0;
37

38 INS_AddInstrumentFunction(Instruction , 0);
39

40 PIN_AddFiniFunction(PrintStatistics , 0);
41

42 PIN_StartProgram ();

57

43

44 return 0;
45 }

Listing 3.9: Conditional Branch Taken pintool

We believe that this pintool is near the worst-case scenario of DrPin compared to
Pin, because of all API functions that were implemented in DrPin that simulates a Pin
API, this one has an overhead that is manifested during the execution phase of the
instrumentation process and not only during the compilation phase. For this test, we
used the same system specification described in the other performance tests, but instead
of using the whole SPECint 2006 benchmark, we used only the GCC program with its eight
different inputs, because we think it is enough to show the slowdown.

Table 3.2 shows DrPin being two orders of magnitude slower than Pin for the giving
pintool.

Table 3.2: SPECint 2006: GCC Slowdown

Slowdown

Programs Pin DrPin

403.gcc.1 7.79 455.86

403.gcc.2 7.25 426.45

403.gcc.3 8.19 526.58

403.gcc.4 8.51 493.9

403.gcc.5 8.67 542.02

403.gcc.6 8.39 529.09

403.gcc.7 8.48 540.04

403.gcc.8 7.85 484.08

Even though DrPin provides Pin’s 2 API to its users, one is not only limited to use
the Pin API. DrPin users can mix both Pin and DynamoRIO’s API. Therefore, in the
case presented in table 3.2, the pintool writer could take advantage of DynamoRIO’s API
and thus reduce the slowdown by directly using specific DynamoRIO’s API functions to
only retrieve the runtime information it needs for its analysis

3.8 Instrumentation of real-world applications

The advantages of using dynamic instrumentation of binaries increases as the size and
complexity of application increases as well. Modern large applications are built from
multiple libraries and developers most of the time do not have all the source code of all

58

the pieces that forms the application. Analyses only with the source code might not be
enough to understand the application behavior.

But even dynamic instrumentation tools face difficulties dealing with massive modern
applications such as web browsers.

As of May of 2020, nether Pin, Valgrind, nor DynamoRIO can run the Google Chrome
Web Browser consistently without crashing. Such applications, as Google Chrome, are a
result of millions of lines of code that exposes DBI frameworks to edge cases that have
not yet been properly handled.

During the development of DrPin, a major concern was to try to maintain the same
level of reliability provided by DynamoRIO.

To verify how DrPin behaves compared to Pin instrumenting a large application, we
created a simple pintool, described in listing 3.10, which reports the number of concurrent
threads being executed in the application. There is nothing especial about this specific
pintool, except that we are going to use it to instrument a large application.

As said earlier, browsers are a good example of modern large application which is
everywhere. Unfortunately, we already know that both Pin and DynamoRIO currently
have trouble running Google Chrome. As a result, we chose Mozilla Firefox for our tests.

We used Firefox version 66.0.3 in our tests because it is present in Ubuntu 14.04
package repository. The machine used in our tests has the following specification:

• OS: Ubuntu 14.04.6 LTS

• Kernel: 3.19.0-25-generic

• Compiler: GCC 7.4.0 for DrPin and GCC 4.8.5 for Pin

• Processor: Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz

This specification was mostly chosen as a result of the Pin limitations.

1 #include "pin.H"
2 #include <iostream >
3

4 using namespace std;
5

6 UINT64 cur_num_of_threads;
7

8 VOID ThreadStartHandler (THREADID threadIndex , CONTEXT *ctxt , INT32 flags , VOID *v){
9 cur_num_of_threads ++;
10 cout << "Currently running Threads: " << cur_num_of_threads << endl;
11 }
12

13 VOID ThreadStopHandler (THREADID threadIndex , const CONTEXT *ctxt , INT32 code , VOID *v){
14 cur_num_of_threads --;
15 cout << "Currently running Threads: " << cur_num_of_threads;
16 }
17

18 int main(int argc , char *argv []) {
19 if(PIN_Init(argc ,argv)) {
20 cout << "initialization invalid" << endl;
21 }
22

59

23 cur_num_of_threads = 0;
24

25 // Register the ThreadStartHandler function to be called
26 // when a thread starts in application code
27 PIN_AddThreadStartFunction(ThreadStartHandler , 0);
28

29 // Register the ThreadStopHandler function to be called
30 // when a thread exits in application code
31 PIN_AddThreadFiniFunction(ThreadStopHandler , 0);
32

33 PIN_StartProgram ();
34

35 return 0;
36 }

Listing 3.10: Threads statistics pintool

The pintool described in listing 3.10 maintains a global counter that is incremented
whenever a new thread starts in the application and is decremented when a thread is
stopped. Figure 3.7 shows a screenshot of DrPin instrumenting Firefox with the pin-
tool 3.10, and figure 3.8 shows Pin trying to run the same pintool to instrument Firefox.

Figure 3.7: DrPin running firefox

60

Figure 3.8: Pin trying to run firefox

DrPin had no problems and correctly instrumented Firefox. Pin, however, could not.
Although pin outputs a limited stack trace showing what went wrong, since Pin source
code is closed, the community cannot investigate further the causes, and possibly con-
tribute with a fix.

DrPin’s goal was to bring together the easy-of-use of Pin 2, without the restrictions
of Pin 3, while still being able to execute in modern operating systems. DynamoRIO
turned out to be a solid base for DrPin, providing a stable experience across all supported
architectures. An interesting feature that came from using DynamoRIO under the hood
was the possibility for the pintool writers to also use DynamoRIO API functions if they
wish to do so, further expanding the spectrum of possibilities for a given pintool. DrPin
source code can be found in https://github.com/luisfernandoantonioli/drpin and
we encourage contributions and enhancements by the community.

https://github.com/luisfernandoantonioli/drpin

61

Chapter 4

SimPoints Among Multiple Program
Inputs

Besides the study of how to make dynamic binary instrumentation, which resulted in the
construction of DrPin, also explored a little the application of dynamic binary instrumen-
tation in other fields of computer science.

In particular, we studied and expanded the simpoints technique that uses informa-
tion extracted through dynamic binary instrumentation to make predictions about the
performance of a given hardware.

As discussed in section 2.5.2, the SimPoints is an effective methodology for automat-
ically searching and finding representative pieces of the execution of a program, which
in turn is very useful when trying to research, prototype and test new ideas in the com-
puter architecture field. The technique allows researchers to have an estimate of how
the newly designed platform would perform under real-world benchmarks without having
to wait long simulation times, which is normally the case when dealing with real-world
benchmarks like SPECint 2006.

One of the contributions of our work was to propose and validate an extension to the
SimPoints technique.

The SimPoint methodology automatically finds a small set of Simulation Points that
represent the complete execution of a program for a given input. Thus the analysis
performed by the methodology is made for each program/input pair separately.

In this work we seek to extend the methodology to perform analysis of multiple inputs
of the same program at the same time, thus seeking to find Simulation Points that are
representative for more than one input.

If the same Simulation Point is used to characterize more than one input, we decrease
the total number of Simulation Points needed to simulate a set of program inputs without
losing the ability to simulate each input individually. This way we get the hardware
metrics like CPI, cache miss, and branch misprediction for each input individually. By
reducing the number of Simulation Points required to simulate a set of inputs, we also
reduce the simulation time required to simulate all inputs.

Because the PinPoints project (discussed during section 2.5.3) is commonly used to
validate the SimPoints technique [24, 27], we also chose to use it to validate our extension
of the technique. Unfortunately, we cannot use DrPin to replace Pin inside the PinPoints

62

project. The reason is that PinPoints relies entirely in the PinPlay framework, and as
discussed in section 2.4.1, the PinPlay framework has its source code closed, therefore
to use DrPin as the basis for the PinPoint project it would be required to re-implement
PinPlay from scratch.

We start the chapter by presenting the reader with a formal description of the problem
that SimPoints try to solve and also the description of the problem that our extension of
the technique tries to solve.

Next we explain how we can leverage the existing SimPoints technique with a few
modifications to expand its effectiveness in reducing the required simulation time spent
executing a given program with a set of inputs.

To end the chapter we present to the reader a set of experimental evaluations of
our technique, comparing it with the original technique, regarding many aspects such as
accuracy and number of required representative regions.

4.1 Problem Statement

Let P be any program and PD = (i1, i2, ..., in) the instructions that were executed by P

for a given fixed input D, or simply its instruction trace. Also, consider the collection
of all the static basic blocks of P , let (BB1,BB2, ...,BB r) be that collection. Given m,
the SimPoint methodology divides PD in disjoint subsets of size m. Let I = (I1, I2, .., Il)

where l = d n
m
e, the sets resulting from this division. After the nomenclature established

by Sherwood et al. , we call these sets instruction intervals. For each interval Ik ∈ I, a
basic block vector BBV k is generated, such that each position BBV k(j) represents the
number of times the basic block BB j was executed in the interval k Let intervals(P, e,m)

be a function that takes a program P , an input e, and an integer m and returns the set
I we described above.

The main objective of the SimPoint technique is to find a partition of I such that
each element of this partition contains intervals with similar BBVs and, as consequence,
present a similar architectural behavior. Let (A1, A2, ..., Ak) be a partition of I. Each set
Ai contains intervals of a program phase. The first step consists in selecting a represen-
tative interval (SimPoint) from each phase for simulation. A partition of size k implies
k SimPoints. Let (sp1, sp2, .., spk) be the representatives of each one of the phases. Each
result of the execution metric of a SimPoint of a phase Ai is weighted by wi according to
the phase coverage size, i.e.:

wi =
|Ai|
|I|

(4.1)

If we take, for instance, CPI as a metric to be evaluated using the SimPoint method-
ology, the CPI of the complete execution can be estimated by the following equation:

CPI (P, e) ≈ w1 × CPI (sp1) + w2 × CPI (sp2) + ...+ wk × CPI (spk) (4.2)

Now, consider the following extension of the SimPoint technique: Let EP be the set
of input of program P , i.e., EP = (e1, e2, ..., en) and let I ′ be the set resulting of the

63

union of all the input intervals in EP , i.e., I ′ =
⋃

e∈EP
intervals(P, e,m). This work finds

a partition of the set I ′, clustering all the intervals from all inputs. The objective is to
find all distinct phases of P considering the inputs of Ep. We are looking for all equivalent
phases of execution common to every input.

Additionally, this work also finds a weight matrix W in which the lines represent the
inputs of EP . and the columns represent the chosen SimPoints. Thus, W (i)(j) represent
the weight of the SimPoint j for the input i.

W =

sp1 sp2 . . . spk

e1 w1,1 w1,2 . . . w1,k

e2 w2,1 w2,2 . . . w2,k
...

...
...

en wn,1 wn,2 . . . wn,k

Once again, if we take CPI as the metric, the complete execution of P for the inputs

in EP can be estimated using k SimPoints as:

CPI (e1)

CPI (e2)
...

CPI (en)

 ≈

sp1 sp2 · · · spk

e1 w1,1 w1,2 . . . w1,k

e2 w2,1 w2,2 . . . w2,k
...

...
...

en wn,1 wn,2 . . . wn,k

×

CPI (sp1)

CPI (sp2)
...

CPI (spk)

 (4.3)

A trivial partition of I ′ can be obtained using the SimPoint methodology individually
for each input. In this case, values of the line W (e), e ∈ EP are zero for the SimPoints of
the inputs in EP \ e. To illustrate this case, take for instance a program P with an input
set EP = {ei, ej, ek}. Considering that SP(ei) = (spA, spB, spC), SP(ej) = (spD, spE) and
SP(ek) = (spF , spG), the matrix W would be:

W =

spA spB spC spD spE spF spG

ei 21% 43% 36% 0 0 0 0

ej 0 0 0 38% 62% 0 0

ek 0 0 0 0 0 77% 23%

The trivial matrix produces the same results of the technique presented by [36]. How-

ever, this work clusters all intervals of every input, enabling us to find different phases
for different inputs. In other words, a subset of a partition of I ′ may contain distinct
input intervals. The objective is to find the phases presented by an input set and choose
a representative interval for each one of these phases. This means that a SimPoint can
be used to estimate the execution of two or more inputs.

64

A B C A C B

D E A ED E

(P, ei)

(P, ej)

Figure 4.1: Phases of program P with inputs ei e ej

Figure 4.1 illustrates our approach. Vertical lines show the division in intervals. The
input i presents 15 intervals such that: 6 intervals were clustered in phase A, 5 intervals
in phase B and 4 intervals phase C. The input j also resulted in 15 intervals clustered in
phases D, E, and A. Therefore, 3 input intervals of the input j present similar behavior
of the intervals of phase A of the input i, which results in the creation of a single phase
A. For this example, the matrix W would have the form:

W =

(spA spB spC spD spE

ei 40% 33% 27% 0 0

ej 21% 0 0 26% %53

)

For this particular example, the result of a SimPoint execution metric of phase A has
distinct values for inputs i and j.

4.2 Multiple-Input Phase Classification

Our approach to find every distinct phase from a program P for an input set EP employs
the same comparison metric and clustering methodology described by [36]. For each
interval Ik ∈ I ′ a basic block vector BBV k is generated in a way such that each position
BBV k(j) represents the number of times the basic block BB j was executed in the interval
k. Then, the k-means clustering algorithm divides the intervals into phases based on the
Euclidian distance among BBVs. Later, a single interval, the one closest to the cluster
center (centroid), is chosen to represent each phase. Finally, a detailed simulation is
executed using each SimPoint and properly weighted.

In the original methodology, the interval cluster size determines the weight of each
phase. On the other hand, in our version the weight of each SimPoint for a given input e
is defined by the number of input intervals of e contained by cluster c. Figure 4.2 shows
a clustering example for three inputs which resulted in phases A, B, and C along with
the chosen SimPoints (centroids) for each phase. In this example the weight of SimPoint
A for Input 1 is proportional to the number of intervals of Input 1 present in cluster A,
the weight of SimPoint A for Input 2 is proportional to the number of intervals of Input
2, and so on.

65

0 0.5 1
0

0.5

1

B2

B1

SimPoint 1

SimPoint 2

SimPoint 3

Phase A

Phase B

Phase C

Input 1

Input 2

Input 3

Figure 4.2: Phases A, B, and C generated by the clustering of distinct input intervals of
a same program.

Let (A′
1, A

′
2, ..., A

′
k) be a partition of the set I ′. Each A′

i represents a distinct phase
presented by the program by the execution of one or more inputs of EP . Formally, w(i)(j)
which represents the weight of the SimPoint j for the input i can be defined as:

w(i, j) =
|intervals(P, i,m) ∩ Aj|
|intervals(P, i,m)|

(4.4)

Because the SimPoint methodology requires information about the basic blocks ex-
ecuted in each program, and many workloads require a complex execution environment
that cannot easily be reproduced on any simulator, PinPoint [28] was introduced as a tool
that addresses such problems. Its main purpose is to provide an implementation of the
SimPoint methodology on top of the Pin and PinPlay.

Detect
representative
regions

Generate
traces for
regions

ValidateLog Profile
(I) (II) (III) (V)(IV)

Figure 4.3: PinPoint major execution steps

As illustrated in figure 4.3, the PinPoint execution is composed of five major steps.
PinPoint automatically (i) logs a program execution, (ii) profiles the application, (iii) de-
tects representative regions, (iv) generates traces for the regions and (v) validates the

66

results using hardware performance counters. In addition, because these five steps are
well defined, they were implemented as five distinct programs inside PinPoint framework.

For the purposes of this study, the PinPoint framework has been modified to find
SimPoints among multiple program inputs. Steps (i), (ii) and (iv) were used without
modification. First, steps (i) and (ii) are run for all inputs of a program. Step (ii) outputs
a .bb file such that each line represents an execution interval and stores the number of
times each basic block was executed during that interval. We then merge all the .bb file
generated for the multiple inputs of a program. We also keep a record of the number of
intervals of each input. We then apply (iii) on the merged .bb file.

Step (iii) creates the .simpoints and .weights files. Each simulation point in the
.simpoints file contains the number of intervals from the first interval to reach the start
of the simulation point. Based on this information and the number of intervals of each
input, we are able to infer the input each interval belongs to. The .weights are the
percentage of intervals of execution being represented by each simulation point. Since the
SimPoint methodology was run on the merged BBVs those weights are useless. PinPoint
also provides the information about the phase each interval has been assigned to. Based
on this information we weight each SimPoint for every input according to Equation 4.4.

Next, we apply (iv) on every input to the generated SimPoints. Finally, in (v) we
evaluate the accuracy of the SimPoints by running the whole program and the SimPoint
regions using Sniper (a x86 simulator to which PinPoint was integrated) [5].

4.3 Experimental Evaluation

We analysed our proposal using SPECint 2006 reference programs that have multiple in-
puts: perlbench, bzip2, gcc, gobmk, hmmer, h264ref, and astar. We used the PinPoint
framework to collect all the basic block vector profiles and generate the representative
regions. We evaluate our methodology using the micro-architectural simulator Sniper.
After identifying program phases, we used Sniper to compute CPI for SimPoint regions
and the whole program. The baseline micro-architectural model used was nehalem-lite
which is included along with the simulator software.

We compared our technique to the original SimPoint technique, i.e., we applied it to
each input separately. When running PinPoint, the user has to specify three parameters:
an interval size, a warm-up size and an upper limit on the number of cluster maxK , which
is essentially the maximum number of distinct phases to be selected by SimPoint. Thus,
if a program has N inputs, it will produce a maximum of N ×maxK SimPoints.

To fairly compare the two SimPoint methods (single input and multiple inputs) we
used the same SimPoint configurations of interval and warmup for both techniques. We
set the interval size to 35 million instructions and warm up to 1 million instructions. We
limited SimPoint’s maximum number of clusters to 30 for the single input methodology.
As outlined in Section 4.2, we found a cluster of the intervals from multiple inputs, based
on the merged BBVs from all inputs, using the same clustering algorithm from the original
methodology. Therefore, we also have to pick a maxK for this clustering. In our technique,
for a program with N inputs, we tested two values for maxK : 30×N and 20×N .

67

The reasoning behind this choice comes from the fact that maxK = 30 was chosen in
the original technique, Therefore choosing maxK = 30 x N enables that if no input shares
phases with one another, we still have the same expected level of accuracy as the original
technique. Because we expect at least some phases to be shared between distinct inputs,
we also tested for maxK = 20 x N, to see how the technique would behave with a little
more pressure to form fewer clusters.

4.3.1 Experimental Results

To evaluate our approach, we consider three main aspects: (i) the total number of Sim-
Points, (ii) the difference in precision between our approach and the original technique,
and (iii) phase equivalence between the multiple inputs. The first aspect is important be-
cause it directly relates to the simulation time, while the second determines the feasibility
of our approach. The third aspect, on the other hand, gives insights into the behavior of
the programs when we vary the inputs and how those changes influence the generation of
SimPoints.

4.3.2 Comparison of the Number of Simulation Points

The number of simulation points is a useful information to estimate the amount of simu-
lation time required by both techniques. SimPoint’s clustering algorithm generally picks
fewer simulation points than maxK (upper limit) because it usually finds a good phase
characterization with fewer clusters. Figure 4.4 shows the number of simulation points
generated for each of program in SPECint 2006 with more than one input.

Figure 4.4 shows that our technique is able to find a phase characterization with fewer
clusters than SimPoint’s original methodology. On average, our technique, compared
to the original technique, used 36% fewer SimPoints for maxK = 30 and 47% fewer
SimPoints for maxK = 20 (32% fewer on average). This indicates that it can find a
good phase characterization clustering of the intervals from multiple inputs of a program
with fewer clusters. As a result, this suggests that inputs do share phases, otherwise the
number of simulation points would be close to the sum of all SimPoints applied separately.

4.3.3 Comparison of Errors in CPI

Figure 4.5 shows the CPI error obtained by comparing a complete run to the results
obtained from the SimPoint for single input and SimPoint for multiple inputs. The average
error for a single input (original approach) is 5.30%; The average error in the analysis
using multiple program inputs (our approach) is is 5.36% and 5.74% for maxK = 30 and
maxK = 20 respectively. This implies that both techniques have similar errors. Therefore,
this analysis suggests that we can reduce the number of simulation points used by a set
of inputs of a program and get similar accuracy.

Even though the total number of SimPoints used in all inputs was lower, the number
of SimPoints taken into consideration to estimate the results of each input was higher.
This difference in the number of SimPoints does not change the total simulation time and
offsets a potential increase in the error rate that could be caused by the use of more general

68

N
um

be
r
of

Si
m
ul
at
io
n
P
oi
nt
s

0
50

10
0

15
0

20
0

SP single input
SP multiple input - maxk 30
SP multiple input - maxk 20

40
53

27

12
4

92
72

16
8

10
6

81

92
63

46

22 19 19

64
45

30 27
18

9

40
0.p
erl
be
nc
h

40
1.b
zip
2

40
3.g
cc

44
5.g
ob
mk

45
6.h
mm

er

46
4.h
26
4

47
3.a
sta
r

Figure 4.4: Number of Simulation Points

SimPoints instead of more specific ones. Our experimental results show that the average
CPI estimate error, when compared to the original approach, is 0.5% for maxK = 20 and
negligible (0.06%) for maxK = 30.

4.3.4 Phase Sharing Analysis

In the previous sections, we have shown the impact that shared phases have on the number
of SimPoints and on the precision of the simulation results. Those results suggest that
inputs share phases and that we can find a good phase characterization of the intervals
from multiple inputs of a program. In this section, we characterize how those phases are
shared among inputs, i.e., which phases are present in each input and their contribution
to each input. To do so, we first exemplify how sharing takes place using the astar
benchmark.

Figure 4.6 shows how the weights of the SimPoints differ for distinct inputs, in per-
centages of the execution time. The top bar represents the phases of the first input and
their weights. Only six phases play relevant role for input 1 execution. The bottom bar
shows the second input. Although the light green phase (rightmost) covers more than
half of the program execution, this input takes the program through more distinct phases
than input 1. Recalling Figure 4.4, by sharing several SimPoints, we could reduce their
total number (from 27 to 18, with maxK = 30) but still keep a similar precision.

69

C
P
I
E
rr
or

%
0

5
10

15
20

pe
rlb
en
ch
.1

pe
rlb
en
ch
.2

pe
rlb
en
ch
.3

7.
95 8.
86 9.
52

0.
26

0.
28 1.
31 2.
1 2.
27

2.
17

SP-SI SP-MI-30 SP-MI-20

(a) perlbench

C
P
I
E
rr
or

%
0

5
10

15
20

bz
ip2
.1

bz
ip2
.2

bz
ip2
.3

bz
ip2
.4

bz
ip2
.5

bz
ip2
.6

7.
98

8.
07

7.
85

7.
22

3.
42 3.
76

7.
78

5.
5 5.
69

8.
18 8.
5 9.
03

7.
41 8.
47

6.
71

4.
79

7.
47

7.
38

SP-SI SP-MI-30 SP-MI-20

(b) bzip2

C
P
I
E
rr
or

%
0

5
10

15
20

gc
c.1

gc
c.2

gc
c.3

gc
c.4

gc
c.5

gc
c.6

gc
c.7

gc
c.8

0.
92 2
.5

1.
97

5.
66

0.
3 1
.4
2

4.
81

1.
5 1.
92 3.
08

1.
91

1.
88

0.
06

5.
14

4.
16

2.
42

5.
93

4.
69

15
.3
8 17
.1
5

16
.9
2

15
.1
4

7 6.
32

(c) gcc

C
P
I
E
rr
or

%
0

5
10

15
20

go
bm
k.1

go
bm
k.2

go
bm
k.3

go
bm
k.4

go
bm
k.5

2.
9

2.
8 2.
92

2.
49 3.
17 3.
41

1.
1 1.
99

1.
86 2.
33

2.
17 2.
38

2.
21

2.
23 2.
54

(d) gobmk

C
P
I
E
rr
or

%
0

5
10

15
20

hm
me
r.1

hm
me
r.2

9.
42

6.
5 7.

81

4.
94 5.
35

5.
25

(e) hmmer

C
P
I
E
rr
or

%
0

5
10

15
20

h2
64
ref
.1

h2
64
ref
.2

h2
64
ref
.3

9.
48

9.
62

9.
64

5.
54

5.
36

4.
81 5.
07 5.
49

4.
61

(f) h264ref

C
P
I
E
rr
or

%
0

5
10

15
20

ast
ar.
1

ast
ar.
2

3.
8 4.
72

2.
67

4.
99

8.
07

14
.7
3

(g) astar

Figure 4.5: CPI evaluation for single input and multi-input (maxK = 30 and maxK = 20)

70

51,4	

11,1	

40,2	

3,0	

11,1	

5,5	

11,1	

11,1	

13,6	

11,1	

8,4	

9,9	

11,1	

18,5	

7,0	

11,1	

2,6	

11,1	

5,7	

11,1	

6,3	

11,1	

15,9	

Figure 4.6: Distribution of SimPoints weigths for two inputs of the astar benchmark:
input 1 on top and input 2 on bottom. Smaller weights omitted due to space restrictions.
The middle bar represents the collection of all simpoints of all inputs

To quantify phase sharing, we characterized the number of phases and the percentage
(in 20% increments) of the inputs that actually use them. Figure 4.7 shows our experi-
mental results. For instance, gcc has 32 phases that are present in all inputs, 49 phases
that are present in at least 80%, 68 phases present in at least 60%, and so on. The remain-
der of the results can be seen on the first line of each subfigure. Figure 4.7 also shows the
contribution (weight) of those shared phases to the overall behavior of the inputs. These
results are shown in lines (note the log axis). For instance, even though gcc’s inputs share
32 phases, only one of those phases covers every input with a contribution of at least 4%
(4th line), and none has a contribution of at least 32%.

The heatmap shown in Figure 4.7 also allows us to quickly observe the difference in
phase sharing behavior between the benchmarks. For instance, astar has, proportionally,
a larger number of phases shared among the multiple program inputs which can be seen
by the smaller number of dark cells on its heatmap. In particular, astar has one phase
that is present in all inputs with a contribution of more than 32%, which is not the case
for any other evaluated benchmark.

In this chapter, we showed that by taking into account similarities in the program
behavior among different inputs, we can further reduce the time it takes to get simulation
results of entire benchmarks. Specifically for SPECint 2006, we showed that the number
of SimPoints (which is directly proportional to the simulation time) can be reduced by
an average of 32% while losing only 0.06% of the accuracy when compared to the original
technique. Further decreasing the accuracy by 0.5%, we observed the simulation time is
reduced by an average of 66%

71

0

>=
20
%

>=
40
%

>=
60
%

>=
80
%

=
10
0%

>= 32%

>= 16%

>= 8%

>= 4%

>= 2%

>= 1%

0

Input presence

C
on

tr
ib
ut
io
n
to

th
e
ov
er
al
lb

eh
av

io
r

2 2 0 0 0 0

3 3 0 0 0 0

10 10 0 0 0 0

16 16 0 0 0 0

20 20 0 0 0 0

22 22 0 0 0 0

27 27 13 13 5 5

(a) perlbench

0

>=
20
%

>=
40
%

>=
60
%

>=
80
%

=
10
0%

>= 32%

>= 16%

>= 8%

>= 4%

>= 2%

>= 1%

0

Input presence

C
on

tr
ib
ut
io
n
to

th
e
ov
er
al
lb

eh
av

io
r

0 0 0 0 0 0

4 0 0 0 0 0

12 4 1 0 0 0

22 11 1 0 0 0

49 23 7 1 1 0

68 44 28 8 1 1

72 71 68 52 39 18

(b) bzip2

0

>=
20
%

>=
40
%

>=
60
%

>=
80
%

=
10
0%

>= 32%

>= 16%

>= 8%

>= 4%

>= 2%

>= 1%

0

Input presence

C
on

tr
ib
ut
io
n
to

th
e
ov
er
al
lb

eh
av

io
r

0 0 0 0 0 0

5 0 0 0 0 0

13 2 0 0 0 0

27 12 4 3 1 1

45 20 10 8 3 2

61 37 19 16 8 5

81 77 74 68 49 32

(c) gcc

0

>=
20
%

>=
40
%

>=
60
%

>=
80
%

=
10
0%

>= 32%

>= 16%

>= 8%

>= 4%

>= 2%

>= 1%

0

Input presence

C
on

tr
ib
ut
io
n
to

th
e
ov
er
al
lb

eh
av

io
r

0 0 0 0 0 0

0 0 0 0 0 0

9 9 3 0 0 0

22 22 12 4 4 0

31 31 20 11 11 1

44 44 26 17 17 10

46 46 46 40 40 34

(d) gobmk

0

>=
20
%

>=
40
%

>=
60
%

>=
80
%

=
10
0%

>= 32%

>= 16%

>= 8%

>= 4%

>= 2%

>= 1%

0

Input presence

C
on

tr
ib
ut
io
n
to

th
e
ov
er
al
lb

eh
av

io
r

1 1 1 0 0 0

5 5 5 0 0 0

10 10 10 0 0 0

12 12 12 0 0 0

15 15 15 0 0 0

16 16 16 0 0 0

19 19 19 4 4 4

(e) hmmer

0

>=
20
%

>=
40
%

>=
60
%

>=
80
%

=
10
0%

>= 32%

>= 16%

>= 8%

>= 4%

>= 2%

>= 1%

0

Input presence

C
on

tr
ib
ut
io
n
to

th
e
ov
er
al
lb

eh
av

io
r

3 3 0 0 0 0

3 3 0 0 0 0

8 8 0 0 0 0

20 20 4 4 0 0

25 25 8 8 0 0

28 28 14 14 3 3

30 30 28 28 10 10

(f) h264ref

0

>=
20
%

>=
40
%

>=
60
%

>=
80
%

=
10
0%

>= 32%

>= 16%

>= 8%

>= 4%

>= 2%

>= 1%

0

Input presence

C
on

tr
ib
ut
io
n
to

th
e
ov
er
al
lb

eh
av

io
r

1 1 1 1 1 1

2 2 2 1 1 1

5 5 5 3 3 3

7 7 7 5 5 5

8 8 8 6 6 6

8 8 8 6 6 6

9 9 9 9 9 9

(g) astar

Figure 4.7: Heatmap showing how many phases are present and their coverage

72

Chapter 5

Conclusion and future work

Our main objective in this work was to study and implement a new DBI, called DrPin,
which was built on top of the DynamoRIO framework and is compatible with the Pin 2
API. DrPin’s supports multiple architectures (x86-64, x86, Arm, Aarch64) and runs on
modern Linux systems. During the process, we studied and analyzed other existent DBI
frameworks. We also encountered many challenges during the implementation of DrPin,
since the differences in DynamoRIO and Pin API start to grow as we start implementing
more complex API functions.

In the context of DBI frameworks, we also explored and studied the usage of DBI
tools in other fields of computer science. As a joint effort with another graduate student
from the Computer Systems Laboratory (LSC) at Unicamp, Rafael Mendonça Soares,
we studied techniques to predict the performance of a given computer architecture when
executing a particular workload based on information collected with the help of DBI tools.
More specifically, we extended the SimPoint methodology, which originally was intended
to find redundancy on program behavior of a single program on a single input, to explore
redundancy on program behavior for multiple inputs on the same program at once.

The source code of DrPin can be found in the following repository: https://github.
com/luisfernandoantonioli/drpin. We hope it will be used in other future researches
and by those who currently struggle with the deprecation of Pin 2. We encourage contri-
butions and enhancements by the community.

5.1 Future Work

As future work, we intend to:

• Continue increasing the support for more Pin API functions.

• Look for bottlenecks in DrPin performance and study alternative paths for the
implementation of resource-heavy API functions.

• Completely support Zsim, without any instability.

https://github.com/luisfernandoantonioli/drpin
https://github.com/luisfernandoantonioli/drpin

73

5.2 Publications

We published our work on the extension of the Simpoints Technique in the proceedings of
the Brazilian Symposium on High-Performance Computational Systems (WSCAD-2018)
[39], and our work on DrPin will be published in the proceedings of WSCAD-2020.

74

Bibliography

[1] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In USENIX Annual
Technical Conference, FREENIX Track, volume 41, page 46, 2005.

[2] Derek Bruening and Saman Amarasinghe. Efficient, transparent, and comprehen-
sive runtime code manipulation. PhD thesis, Massachusetts Institute of Technology,
Department of Electrical Engineering and Computer Science, 2004.

[3] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infrastructure for
adaptive dynamic optimization. In Code Generation and Optimization, 2003. CGO
2003. International Symposium on, pages 265–275. IEEE, 2003.

[4] Prashanth P Bungale and Chi-Keung Luk. Pinos: a programmable framework for
whole-system dynamic instrumentation. In Proceedings of the 3rd international con-
ference on Virtual execution environments, pages 137–147. ACM, 2007.

[5] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulation. In Proceed-
ings of 2011 International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’11, pages 52:1–52:12. ACM, 2011.

[6] Trevor E Carlson, Wim Heirmant, and Lieven Eeckhout. Sniper: exploring the
level of abstraction for scalable and accurate parallel multi-core simulation. In High
Performance Computing, Networking, Storage and Analysis (SC), 2011 International
Conference for, pages 1–12. IEEE, 2011.

[7] George W Dunlap, Samuel T King, Sukru Cinar, Murtaza A Basrai, and Peter M
Chen. Revirt: Enabling intrusion analysis through virtual-machine logging and re-
play. ACM SIGOPS Operating Systems Review, 36(SI):211–224, 2002.

[8] Michael J Eager et al. Introduction to the dwarf debugging format. Group, 2007.

[9] L. Eeckhout, J. Sampson, and B. Calder. Exploiting program microarchitecture inde-
pendent characteristics and phase behavior for reduced benchmark suite simulation.
In IEEE International. 2005 Proceedings of the IEEE Workload Characterization
Symposium, 2005., pages 2–12, Oct 2005.

[10] Lieven Eeckhout. Computer architecture performance evaluation methods. Synthesis
Lectures on Computer Architecture, 5(1):1–145, 2010.

75

[11] Lieven Eeckhout. Computer architecture performance evaluation methods. Morgan
& Claypool Publishers, San Rafael, CA, USA, 2010.

[12] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen C North, and Gordon
Woodhull. Graphviz—open source graph drawing tools. In International Symposium
on Graph Drawing, pages 483–484. Springer, 2001.

[13] Maxiwell Garcia, Emilio Francesquini, Rodolfo Azevedo, and Sandro Rigo. Hybrid-
verifier: A cross-platform verification framework for instruction set simulators. IEEE
Embedded Systems Letters, 9(2):25–28, 2017.

[14] Greg Hamerly, Erez Perelman, and Brad Calder. How to use simpoint to pick sim-
ulation points. ACM SIGMETRICS Performance Evaluation Review, 31(4):25–30,
2004.

[15] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. Simpoint 3.0: Faster
and more flexible program phase analysis. Journal of Instruction Level Parallelism,
7(4):1–28, 2005.

[16] John A Hartigan and Manchek A Wong. Algorithm as 136: A k-means clustering
algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics),
28(1):100–108, 1979.

[17] Canturk Isci and Margaret Martonosi. Phase characterization for power: evaluating
control-flow-based and event-counter-based techniques. In HPCA, volume 3, pages
121–132, 2006.

[18] Björn Karlsson. Beyond the C++ standard library: an introduction to boost. Pearson
Education, 2005.

[19] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instrumentation. In Acm sigplan
notices, volume 40, pages 190–200. ACM, 2005.

[20] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: building
customized program analysis tools with dynamic instrumentation. In Acm sigplan
notices, volume 40, pages 190–200. ACM, 2005.

[21] Jason E Miller, Harshad Kasture, George Kurian, Charles Gruenwald, Nathan Beck-
mann, Christopher Celio, Jonathan Eastep, and Anant Agarwal. Graphite: A dis-
tributed parallel simulator for multicores. In High Performance Computer Archi-
tecture (HPCA), 2010 IEEE 16th International Symposium on, pages 1–12. IEEE,
2010.

[22] Onur Mutlu and Thomas Moscibroda. Stall-time fair memory access scheduling for
chip multiprocessors. In Proceedings of the 40th Annual IEEE/ACM international
Symposium on Microarchitecture, pages 146–160. IEEE Computer Society, 2007.

76

[23] Onur Mutlu and Thomas Moscibroda. Parallelism-aware batch scheduling: Enhanc-
ing both performance and fairness of shared dram systems. In ACM SIGARCH
Computer Architecture News, volume 36, pages 63–74. IEEE Computer Society, 2008.

[24] Arun A Nair and Lizy K John. Simulation points for spec cpu 2006. In Computer
Design, 2008. ICCD 2008. IEEE International Conference on, pages 397–403. IEEE,
2008.

[25] Nicholas Nethercote. Dynamic binary analysis and instrumentation. Technical report,
University of Cambridge, Computer Laboratory, 2004.

[26] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In ACM Sigplan notices, volume 42, pages 89–100.
ACM, 2007.

[27] Harish Patil, Robert Cohn, Mark Charney, Rajiv Kapoor, Andrew Sun, and Anand
Karunanidhi. Pinpointing representative portions of large intel® itanium® pro-
grams with dynamic instrumentation. In Microarchitecture, 2004. MICRO-37 2004.
37th International Symposium on, pages 81–92. IEEE, 2004.

[28] Harish Patil, Robert Cohn, Mark Charney, Rajiv Kapoor, Andrew Sun, and Anand
Karunanidhi. Pinpointing representative portions of large intel®itanium®programs
with dynamic instrumentation. In Proceedings of the 37th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture, MICRO 37, pages 81–92. IEEE Computer
Society, 2004.

[29] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James Cownie.
Pinplay: a framework for deterministic replay and reproducible analysis of parallel
programs. In Proceedings of the 8th annual IEEE/ACM international symposium on
Code generation and optimization, pages 2–11. ACM, 2010.

[30] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James Cownie.
Pinplay: a framework for deterministic replay and reproducible analysis of parallel
programs. In Proceedings of the 8th annual IEEE/ACM international symposium on
Code generation and optimization, pages 2–11. ACM, 2010.

[31] Erez Perelman, Greg Hamerly, Michael Van Biesbrouck, Timothy Sherwood, and
Brad Calder. Using simpoint for accurate and efficient simulation. In ACM SIG-
METRICS Performance Evaluation Review, volume 31, pages 318–319. ACM, 2003.

[32] Daniel Sanchez and Christos Kozyrakis. Zsim: fast and accurate microarchitectural
simulation of thousand-core systems. In ACM SIGARCH Computer Architecture
News, volume 41, pages 475–486. ACM, 2013.

[33] Julian Seward and Nicholas Nethercote. Using valgrind to detect undefined value
errors with bit-precision. In USENIX Annual Technical Conference, General Track,
pages 17–30, 2005.

77

[34] MXVMJ Sheldon and Ganesh Venkitachalam Boris Weissman. Retrace: Collecting
execution trace with virtual machine deterministic replay. In Proceedings of the Third
Annual Workshop on Modeling, Benchmarking and Simulation (MoBS 2007), 2007.

[35] Timothy Sherwood, Erez Perelman, and Brad Calder. Basic block distribution anal-
ysis to find periodic behavior and simulation points in applications. In Parallel Ar-
chitectures and Compilation Techniques, 2001. Proceedings. 2001 International Con-
ference on, pages 3–14. IEEE, 2001.

[36] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automatically
characterizing large scale program behavior. SIGOPS Oper. Syst. Rev., 36(5):45–57,
October 2002.

[37] Timothy Sherwood, Erez Perelman, Greg Hamerly, Suleyman Sair, and Brad Calder.
Discovering and exploiting program phases. IEEE micro, 23(6):84–93, 2003.

[38] Saravanan Sinnadurai, Qin Zhao, and Weng fai Wong. Transparent runtime shadow
stack: Protection against malicious return address modifications, 2008.

[39] Rafael Soares, Luis Antonioli, Emilio Francesquini, and Rodolfo Azevedo. Phase
detection and analysis among multiple program inputs. In 2018 Symposium on High
Performance Computing Systems (WSCAD), pages 155–161. IEEE, 2018.

[40] Roland E Wunderlich, Thomas F Wenisch, Babak Falsafi, and James C Hoe. Smarts:
Accelerating microarchitecture simulation via rigorous statistical sampling. In Com-
puter Architecture, 2003. Proceedings. 30th Annual International Symposium on,
pages 84–95. IEEE, 2003.

[41] Heng Yin and Dawn Song. Temu: Binary code analysis via whole-system layered
annotative execution. EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2010-3, 2010.

[42] Junyuan Zeng, Yangchun Fu, and Zhiqiang Lin. Pemu: A pin highly compatible
out-of-vm dynamic binary instrumentation framework. ACM SIGPLAN Notices,
50(7):147–160, 2015.

78

Appendix A

DrPin API

Function PIN_Init

Description Initialize DrPin system. Should be the first API
function to be called.

x86/x86-64 yes

ARM/AArch64 yes

Function INS_AddInstrumentFunction

Description Resgister an instrument function that will be
called every time DrPin finds an instruction for
the first time. The instrument function has the
opportunity to add instrumentation before or after
this instruction.

x86/x86-64 yes

ARM/AArch64 yes

79

Function PIN_AddFiniFunction

Description Register a function to be called before the
application exits. This function cannot insert
instrumentation.

x86/x86-64 yes

ARM/AArch64 yes

Function PIN_StartProgram

Description Should be called before the application starts
executing.

x86/x86-64 yes

ARM/AArch64 yes

Function INS_InsertCall

Description Add instructions to call an analysis function
before a given instruction

x86/x86-64 yes

ARM/AArch64 yes, but currently is not as optimized as the x86
version. It also supports fewer options

Function INS_Address

Description Returns the address of the instruction

x86/x86-64 yes

ARM/AArch64 yes

80

Function INS_Disassemble

Description Disassembles the instruction

x86/x86-64 yes

ARM/AArch64 yes

Function REG_FullRegName

Description Returns the name of the full name of the register.
For example, on IA-32, if input is REG_AL, the
function will return REG_EAX. If reg is a full
register, the function returns it unchanged.

x86/x86-64 yes

ARM/AArch64 Partially

Function REG_StringShort

Description Converts register into a printable string

x86/x86-64 yes

ARM/AArch64 yes

Function INS_OperandCount

Description Returns the number of operands for the instruction

x86/x86-64 yes

ARM/AArch64 yes

81

Function INS_OperandRead

Description Returns if the operand is a source

x86/x86-64 yes

ARM/AArch64 yes

Function INS_OperandWritten

Description Returns if the operand is a destination

x86/x86-64 yes

ARM/AArch64 yes

Function INS_OperandIsMemory

Description Returns if the operand is a memory reference

x86/x86-64 yes

ARM/AArch64 yes

Function INS_OperandIsReg

Description Returns if the operand is a register

x86/x86-64 yes

ARM/AArch64 yes

82

Function INS_OperandReg

Description Returns the register name for the operand

x86/x86-64 yes

ARM/AArch64 yes

Function INS_OperandMemoryBaseReg

Description Returns the register used as base register in
memory operand, or REG_INVALID().

x86/x86-64 yes

ARM/AArch64 yes

Function INS_OperandMemoryIndexReg

Description Returns the register used as index register in
memory operand

x86/x86-64 yes

ARM/AArch64 yes

Function INS_LockPrefix

Description Returns if the instruction has a lock prefix

x86/x86-64 yes

ARM/AArch64 No

83

Function INS_OperandWidth

Description Returns the operand width in bits

x86/x86-64 yes

ARM/AArch64 yes

Function INS_Category

Description Returns the category of the instruction. The
category is a high level grouping of instructions.
For exemple, XED_CATEGORY_COND_BR is the category
of all instructions that are conditional branches

x86/x86-64 yes

ARM/AArch64 yes

Function INS_Opcode

Description Returns the opcode of the instruction

x86/x86-64 yes

ARM/AArch64 yes

Function INS_IsAtomicUpdate

Description Returns if the instruction may do an atomic update
of memory

x86/x86-64 yes

ARM/AArch64 no

84

Function INS_OperandIsImmediate

Description Returns if the operand is an immediate

x86/x86-64 yes

ARM/AArch64 yes

Function INS_IsDirectBranch

Description Returns if instruction is a direct branch

x86/x86-64 yes

ARM/AArch64 yes

Function BBL_NumIns

Description Returns the number of instructions within the basic
block

x86/x86-64 yes

ARM/AArch64 yes

Function PIN_SpawnInternalThread

Description Creates a new thread for the tool in the current
process

x86/x86-64 yes

ARM/AArch64 yes

85

Function INS_Next

Description Returns the instruction that follows the current
one in the current basic block

x86/x86-64 yes

ARM/AArch64 yes

Function INS_Valid

Description Returns if the instruction is valid

x86/x86-64 yes

ARM/AArch64 yes

Function BBL_Size

Description Returns the number of instructions within the given
basic block

x86/x86-64 yes

ARM/AArch64 yes

Function BBL_InsHead

Description Returns the first instruction of the basic block

x86/x86-64 yes

ARM/AArch64 yes

86

Function INS_Size

Description Returns the size of the instruction in bytes

x86/x86-64 yes

ARM/AArch64 yes

Function BBL_Address

Description Returns the address of the first instruction in the
given basic block

x86/x86-64 yes

ARM/AArch64 yes

Function PIN_ThreadId

Description Returns the ID of the current thread

x86/x86-64 yes

ARM/AArch64 yes

Function PIN_GetSyscallNumber

Description Returns the number of the system call currently
being executed. This function should only be
called inside a SYSCALL_ENTRY_CALLBACK

x86/x86-64 yes

ARM/AArch64 yes

87

Function PIN_SetSyscallArgument

Description Sets the given value for the argument of
the system call currently being executed.
This function should only be called inside a
SYSCALL_ENTRY_CALLBACK

x86/x86-64 yes

ARM/AArch64 yes

Function PIN_GetSyscallArgument

Description Gets the value for the argument of the system call
currently being executed. This function should
only be called inside a SYSCALL_ENTRY_CALLBACK

x86/x86-64 yes

ARM/AArch64 yes

Function PIN_SetContextReg

Description Set the given value for the register in the
specified context

x86/x86-64 yes

ARM/AArch64 yes

88

Function PIN_SetSyscallNumber

Description Sets (overrides) the system call number for
currently being executed. This function should
only be called inside a SYSCALL_ENTRY_CALLBACK

x86/x86-64 yes

ARM/AArch64 yes

Function PIN_GetContextReg

Description Gets the value for the given register in the
specified context

x86/x86-64 yes

ARM/AArch64 yes

Function PIN_SafeCopy

Description Copies a specified amount of bytes from a source
memory address to a destination memory address

x86/x86-64 yes

ARM/AArch64 yes

Function TRACE_BblHead

Description Returns the first basic block (BBL) of the given
trace

x86/x86-64 yes

ARM/AArch64 yes

89

Function BBL_Valid

Description Returns if the basic block is valid

x86/x86-64 yes

ARM/AArch64 yes

Function BBL_InsertCall

Description Add instructions to call an analysis function
before a given basic block

x86/x86-64 yes

ARM/AArch64 yes

Function BBL_Next

Description Returns the following basic block relative to the
current basic block within a trace

x86/x86-64 yes

ARM/AArch64 yes

Function PIN_GetPid

Description Returns the current process ID

x86/x86-64 yes

ARM/AArch64 yes

90

Function GetVmLock

Description Get Pin VM lock. Should be used to avoid race
codition when the tool spawns multiple internal
threads.

x86/x86-64 yes

ARM/AArch64 yes

Function ReleaseVmLock

Description Relead Pin VM lock. Should be used to avoid race
condition when the tool spawns multiple internal
threads

x86/x86-64 yes

ARM/AArch64 yes

Function PIN_InitSymbols

Description Initializes symbols table. Should be called before
doing any symbol lookup. Must also be called
before PIN_StartProgram

x86/x86-64 yes

ARM/AArch64 yes

91

Function PIN_AddInternalExceptionHandler

Description Registers a function that is called upon receipt
of any unhandled internal exception in DrPin or the
tool

x86/x86-64 yes

ARM/AArch64 yes

Function TRACE_AddInstrumentFunction

Description Resgister an instrument function that will be
called every time DrPin constructs a new trace.

x86/x86-64 yes

ARM/AArch64 yes

Function PIN_AddThreadStartFunction

Description Register a function that will be called every time
a new thread starts executing in the application.
This function is also called for the main thread of
the application

x86/x86-64 yes

ARM/AArch64 yes

92

Function PIN_AddThreadFiniFunction

Description Registers a function that will be called every
time thread finishes in the application. This
function is also called for the main thread of the
application

x86/x86-64 yes

ARM/AArch64 yes

Function PIN_AddSyscallEntryFunction

Description Registers a function to be called immediately
before the execution of a system call

x86/x86-64 yes

ARM/AArch64 yes

Function PIN_AddSyscallExitFunction

Description Register a function to be called immediately after
the execution of a system call

x86/x86-64 yes

ARM/AArch64 yes

Function PIN_AddContextChangeFunction

Description Registers a function that will be called
immediately before the application changes context
due to an unix signal event

x86/x86-64 yes

ARM/AArch64 yes

93

Function PIN_AddFollowChildProcessFunction

Description Registers a function to be called before a child
process starts to execute

x86/x86-64 yes

ARM/AArch64 yes

Function PIN_AddForkFunction

Description Registers a function to be called when the
application forks a new process

x86/x86-64 yes

ARM/AArch64 yes

Function INS_IsMemoryRead

Description Returns if the instruction reads memory

x86/x86-64 yes

ARM/AArch64 yes

Function INS_IsMemoryWrite

Description Returns if the instruction writes memory

x86/x86-64 yes

ARM/AArch64 yes

94

Function INS_IsPredicated

Description Returns if the instruction is predicated

x86/x86-64 yes

ARM/AArch64 yes

Function INS_HasMemoryRead2

Description Returns if the instruction has 2 memory operands

x86/x86-64 yes

ARM/AArch64 yes

Function INS_IsXchg

Description Returns if the instruction is an xchg

x86/x86-64 yes

ARM/AArch64 no

Function INS_IsRDTSC

Description Returns if the instruction is rdtsc or rdtscp

x86/x86-64 yes

ARM/AArch64 no

95

Function INS_IsCJmp

Description Returns if the instruction is a conditional jump
instruction

x86/x86-64 yes

ARM/AArch64 yes

Function INS_IsBranch

Description Returns if the instruction is a branch instruction

x86/x86-64 yes

ARM/AArch64 yes

Function INS_IsCall

Description Returns if the instruction is a Call instruction

x86/x86-64 yes

ARM/AArch64 yes

Function INS_IsRet

Description Returns if the instruction is a Return instruction

x86/x86-64 yes

ARM/AArch64 yes

96

Function SEC_Valid

Description Returns if the section is valid

x86/x86-64 yes

ARM/AArch64 yes

Function INS_IsDirectBranchOrCall

Description Returns if the instruction is a direct branch or a
call

x86/x86-64 yes

ARM/AArch64 yes

Function INS_DirectBranchOrCallTargetAddress

Description Returns the target address of the direct branch or
the call instruction

x86/x86-64 yes

ARM/AArch64 yes

Function IMG_AddInstrumentFunction

Description Resgister an instrument function that will be
called every time DrPin finds a new image.

x86/x86-64 yes

ARM/AArch64 yes

97

Function IMG_AddUnloadFunction

Description Registers a callback function to be called when
this image is unloaded from memory. It is not
possible to add any instrumentation inside this
function.

x86/x86-64 yes

ARM/AArch64 yes

Function IMG_Close

Description Closes the open image

x86/x86-64 yes

ARM/AArch64 yes

Function IMG_FindByAddress

Description Returns the image that contains that address

x86/x86-64 yes

ARM/AArch64 yes

Function IMG_HighAddress

Description Returns the highest address of the image

x86/x86-64 yes

ARM/AArch64 yes

98

Function IMG_IsMainExecutable

Description Returns if the image is the main executable

x86/x86-64 yes

ARM/AArch64 yes

Function IMG_LowAddress

Description Returns the lowest address of the image

x86/x86-64 yes

ARM/AArch64 yes

Function IMG_Name

Description Returns the image name

x86/x86-64 yes

ARM/AArch64 yes

Function IMG_Open

Description Open the image. The image should be opened before
one can traverse it staticaly

x86/x86-64 yes

ARM/AArch64 yes

99

Function IMG_SecHead

Description Returns the first section of the image

x86/x86-64 yes

ARM/AArch64 yes

Function IMG_Type

Description Return the image type. Possible values
are: IMG_TYPE_STATIC, IMG_TYPE_SHARED,
IMG_TYPE_SHAREDLIB, IMG_TYPE_DYNAMIC_CODE

x86/x86-64 yes

ARM/AArch64 yes

Function IMG_Valid

Description Returns if the image object is valid

x86/x86-64 yes

ARM/AArch64 yes

Function BBL_InsTail

Description Returns the last instruction of the basic block

x86/x86-64 yes

ARM/AArch64 yes

	Introduction
	Objective
	Contributions
	Structure

	Basic Concepts and Related Work
	Program Analyses
	Static vs Dynamic Analysis
	Binary vs Source Code Analysis

	Dynamic binary instrumentation vs Static binary instrumentation
	Dynamic binary instrumentation frameworks
	Valgrind
	DynamoRIO
	Pin
	PEMU

	Deterministic replay
	PinPlay

	Techniques for reducing simulation time
	Program Phases
	SimPoints
	PinPoints

	The DrPin Dynamic Binary Instrumentation Framework
	DynamoRIO as basis infrastructure
	Architecture
	API friendliness
	Pin API Compatibility
	Evaluation on multiple platforms
	Peformance Optimizations
	Performance Comparison
	Instrumentation of real-world applications

	SimPoints Among Multiple Program Inputs
	Problem Statement
	Multiple-Input Phase Classification
	Experimental Evaluation
	Experimental Results
	Comparison of the Number of Simulation Points
	Comparison of Errors in CPI
	Phase Sharing Analysis

	Conclusion and future work
	Future Work
	Publications

	Bibliography
	DrPin API

