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Abstract
Time-frequency analysis (TFA) for mechanical vibrations in non-stationary operations is the main subject of this article,
concisely written to be an introducing tutorial comparing different time-frequency techniques for non-stationary signals.
The theory was carefully exposed and complemented with sample applications on mechanical vibrations and nonlinear
dynamics. A particular phenomenon that is also observed in non-stationary systems is the Sommerfeld effect, which occurs
due to the interaction between a non-ideal energy source and a mechanical system. An application through TFA for the
characterization of the Sommerfeld effect is presented. The techniques presented in this article are applied in synthetic and
experimental signals of mechanical systems, but the techniques presented can also be used in the most diverse applications
and also in the numerical solution of differential equations.
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1 Introduction

With the spread of microcomputer-based and, more recently,
open platform-based data acquisition systems [27, 46,
70, 83, 109–111], beyond the use of MEMS sensors to
measure mechanical measurements [24, 45, 108], these
works generally use the Arduino microcontroller and
Raspberry Pi single-board computers with sensors such
as accelerometer, gyroscope, ultrasound, and infrared, to
instrument vibrations in mechanical systems. These tools
are available to a wide range of students, professionals,
and young researchers in various areas of knowledge. On
the other hand, while in dedicated systems all the signal
processing was done by proprietary software or hardware,
without major user intervention and/or knowledge, in
generic or open platform-based data acquisition systems
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it is the user who implement the computational routines
that calculate the spectra and other parameters of the
acquired signals. One of the objectives of this tutorial
is to present time-frequency analysis techniques for the
processing of digitized signals in a microcomputer with
special attention to the application in linear and nonlinear
mechanical systems, particularly to mechanical vibration
signals.

Spectral analysis techniques based on Fourier transform
through FFT are efficient for analysis of signals with
stationary characteristics; however, many random processes
are non-stationary, causing frequencies to change over time.
Thus, the signal misses the periodic characteristic, one of
the basic assumption for the use of the Fourier transform [2,
21, 71].

Furthermore, systems excited by non-ideal power
sources, such as numerous motors, may exhibit some non-
linear phenomena in their response, such as the Sommerfeld
effect and the jump phenomenon. These phenomena occur
due to nonlinear interactions between energy sources and
elastic systems. In the occurrence of these phenomena, fre-
quency jumps occur in the system response and the increase
and/or decrease of the vibration amplitude. Processing sig-
nals of this nature need more specific techniques, as there
are large concentrations of energy in the time-frequency
domain that eventually hide frequencies with less energy.

According to Addison [2], various signals from machines
and mechanical components have non-stationary character-
istics, such as stopping and starting signals from electric
motors. Stop and start signals are particularly interesting
because they capture the richer frequency spectrum and
effectively store all the spectral information of the signal
[107, 121]. In these cases, the Fourier transform becomes
inadequate for the frequency domain signal representation.
In stationary signal analysis, the concept of amplitude and
frequency spectrum is generally intuitive [90]; for non-
stationary operation, it is more difficult to determine the
amplitude or frequency of the signal, since these quanti-
ties may vary over time, so it is helpful to introduce the
concept of instantaneous amplitude and frequency. These
concepts are widely used through the Hilbert transform [30,
90]. To deal with these issues, time and frequency domain
representation methods are often combined into a single
representation, which presents how the spectral content of
a signal evolves over time and is a more appropriate tool
for non-stationary signal analysis [28, 30, 86]. It is empha-
sized, for example, that the characterization of failures in a
mechanical system is made by observing changes in the sig-
nal frequency spectrum [107]. Also, the feature extraction
of images and neurophysiological and speech signals can be
realized through the characterization of the signal energy, in
a simple and precise way [33]. The time-frequency decom-
position [2] maps a 1-D signal to a 2-D time and frequency

image and provides information about local frequency vari-
ations. The literature presents a large number of methods for
this purpose, categorized mainly as linear or quadratic meth-
ods [28, 36, 114]. The linear methods include notably STFT
and CWT, while the quadratic methods, such as spectro-
gram, scalogram, and WVD, that treat the signal-associated
power spectral density [18]. A detailed and rigorous study
on the subject can be found at [11, 28].

One of the techniques used in non-stationary signal
analysis is the short-time Fourier transform (STFT). In this
case, the signal is placed in two dimensions, time and
frequency. It is known that in the analysis made from STFT
there is a compromise between time and frequency. Signal
analysis gives information on when and which frequencies
vary. However, this information is limited to the size of the
window, which once set will be the same for all frequencies
[28]. In [73], the basic concept of STFT is used but
the size of the window is fixed in the frequency domain
instead of the time domain. This approach is simpler than
similar existing methods, such as adaptive STFT and multi-
resolution STFT; it emphasizes that the method proposed
by the authors requires neither a band-pass filter banks nor
the evaluation of local signal characteristics of adaptive
techniques.

Another widely used technique for signal analysis in
non-stationary and transient operations is the Wigner-Ville
distribution (WVD), which is part of a group of integral
transforms called bilinear. This technique was the first
attempt to perform a joint time and frequency analysis [72].
The bilinear Wigner-Ville distribution achieves better time-
frequency domain joint resolution compared to any linear
transform; however, it suffers from a cross-term interference
problem, which does not represent any signal information,
i.e., the WVD of two signals is not the sum of their
individual WVDs [72].

In this context of time-frequency analysis is proposed
the wavelet transform in order to overcome the window
limitation of the STFT formulation, and overcome the
interference problems of the Wigner-Ville distribution
and deficiencies of other methods based on integral
transforms [21, 107, 127]. An important feature of the
Wavelet transform is that the frequency resolution varies in
proportion to the center frequency variation. For the past
two decades, the Wavelet transform has been successfully
used in the most diverse areas of scientific knowledge
and especially in mechanical system applications, as well
as many other fields of engineering, with proven success
in non-stationary signal analysis. The Wavelet transform
is applied in several studies with relative success. This
can be seen in the work of Yan and Gao [127], where
they demonstrate various techniques based on the wavelet
transform for fault diagnosis in rotating machines. Several
other works use techniques based on Wavelet transform
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for fault detection in mechanical systems [16, 34, 90, 105,
107, 127, 130], in structural dynamics and structural health
[4, 19, 38, 44, 49, 68, 92], and in nonlinear dynamics
applications [50, 85, 102–104, 112, 124, 125]. In [85]
was studied the nonlinear dynamics of a shape memory
oscillator subjected to ideal and non-ideal excitations. The
numerical results show that the CWT scale index can
successfully detect the system behavior when the signal
presents chaotic behavior.

Another emergent technique for time-frequency analysis
with wide application in mechanical systems is the Hilbert-
Huang transform (HHT), this technique is a way of
decompose a signal into so-called intrinsic mode functions
together with a trend and obtaining data from instantaneous
frequency. The method is designed to work well with non-
stationary and nonlinear data [39–41]. In contrast to other
common transforms, such as the Fourier transform, HHT
is a similar algorithm and has an empirical approach that
can be applied to a dataset rather than a theoretical tool.
The HHT is based on the empirical mode decomposition
(EMD) and Hilbert transform (HT); thus, it is an empirical
analysis method and its expansion base is adaptive, so that
it can produce physically significant results in the analysis
of nonlinear and non-stationary signals. The advantage of
being an adaptive method comes at a price: the difficulty
of a theoretical foundation [41]. HHT has wide application
in mechanical systems analysis such as failure analysis
in rotating systems [15, 47, 56, 116, 128], parameter
identification [3, 51, 61, 77, 88], and nonlinear dynamics
[13, 14, 17, 32, 42, 63, 80].

Another technique widely used in TFA is spectral
kurtosis (SK), which has been introduced as a statistical
tool that can indicate not only non-Gaussian components
in a signal but also their frequency domain locations.
It was initially used as a complement to the power
spectral density and demonstrated its efficiency in problems
related to the transient detection in noisy signals. The
literature presents successful applications in vibration-based
condition monitoring with the use of SK [5, 118]. Several
application examples of the use of SK can be seen in [35,
57, 64, 66, 89, 113]. A rigorous study can be found at [93].

New time-frequency analysis techniques have been
proposed in recent years. An emerging technique is
the synchrosqueezed transform. Known limitations, such
as tradeoffs between time and frequency resolution,
can be overcome by alternative techniques that extract
instantaneous modal components, as presented in the
synchrosqueezed transforms. The EMD of a signal into
components that are well separated in the time-frequency
domain allows the reconstruction of these components
[6, 79, 123]. In particular, the work presented in [6]
provides an overview of time-frequency reassignment and

synchronization techniques used in multicomponent signals,
covering theoretical history and applications, and attempts
to explain how synchrosqueezing can be viewed as a
special case of rebuilding the reassignment enable mode.
Synchrosqueezing transform-based methods are actually
an extension of the CWT that incorporates empirical
mode decomposition elements and frequency reassignment
techniques. This new tool produces a better defined time-
frequency representation, allowing instantaneous frequency
identification to highlight individual components.

Wavelet-based synchrosqueezing transform (WSST) is a
time-frequency analysis method proposed by Daubechies
and Maes in 1996 [22]. In 2011, Daubechies et al. [23]
propose a combination method through wavelet analysis
and EMD relocation method. By introducing a precise
mathematical definition for a class of functions that can
be seen as an overlay of a fairly small number of roughly
harmonic components and proving that our method actually
succeeds in decomposing arbitrary functions in this class.
The anti-noise capability and time-frequency resolution of
the WSST are enhanced based on the wavelet transform
(WT). WSST maintains the advantages of EMD and
CWT. WSST is adaptive like EMD and does not depend
on the mother wavelet. The problem of mixing modes
is significantly improved. Nowadays, WSST has been
deeply applied to mechanical systems with applications
as parameter estimation [53, 71, 74, 75, 84, 119, 120,
129], Rotor Rub-Impact Fault Diagnosis [65, 101, 117],
structural dynamics [62, 71, 84], and characterization of
chaotic behavior in several nonlinear systems [69, 96,
104, 117, 126]. In [37], a new stochastic chaotic secure
communication scheme based on the WSST algorithm is
proposed.

About other recent works on SST , we can mention
the demodulation transform-based SST method (also called
instantaneous frequency-embedded-SST) was introduced in
[48, 58, 115] to change the instantaneous frequency (IF) of
signal so that more accurate IF estimation and component
recovery (mode retrieval) can be achieved. Adaptive FSST
and adaptive WSST were proposed and analyzed in [60, 67,
94] and [9, 12, 59] respectively. In these papers, the window
width of the continuous wavelet for WSST and the window
function for FSST are time-varying. The results presented
in the literature demonstrate these methods outperform the
conventional WSST and FSST.

In addition, for the improvement of current machines,
nonlinear investigation of their dynamics is necessary and
this point is especially important when it comes to rotating
machines. It is observed that when it is considered that
a nonlinear motor exciting a structure has limited power
and its rotation depends on the response of the structure to
which it is coupled, the resultant electromechanical system
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presents a much richer dynamic than the linear case, being
possible to identify the most diverse nonlinear effects [7, 8,
20, 76].

A very notable phenomenon is the Sommerfeld effect,
which occurs in systems that are at some point excited at
their resonant frequencies by a non-ideal power source. In
this phenomenon, the power source cannot transform all
incoming energy into useful work and transforms a fraction
of this energy into mechanical vibration [20, 31]. Thus, the
Sommerfeld effect causes large vibration amplitudes to the
system, which can damage the structure due to the high
stresses generated.

However, it is known that algorithms based on the
Fourier transform are not indicated for nonlinear signal
analysis, so for nonlinear phenomenon identification in
mechanical systems it is necessary to use signal processing
techniques applicable to nonlinear signals with good time
and frequency domain resolution.

In particular, this tutorial consists of presenting appli-
cations of time-frequency analysis in synthetic and exper-
imental signals of mechanical systems, but the techniques
presented can also be used in the most diverse applications
and also in the numerical solution of differential equations.
The independent variable is generally assumed to be the
time, but nothing prevents to be a spatial variable or any
other quantity.

This paper is divided into some sections for better orga-
nization of the topics. Section 2 presents the methodologies
used for the time-frequency representations realized in this
paper. Section 2.1 presents the short-time Fourier transform,
Section 2.2 introduces the wavelet transform, Section 2.3
discusses the Hibert-Huang transform, and Section 2.4 dis-
cusses the syncrosqueezed transforms. Section 3 presents
the case studies covered by this paper, being divided into
synthetic test signals, Section 3.1, and experimental test
signals, Section 3.2; altogether, four case studies were per-
formed in this paper. Section 4 presents the results obtained
and Section 5 presents the conclusions and final remarks.

2 Time-Frequency Representation
Methodology

2.1 Short-Time Fourier Transform

STFT is the most commonly used method for studying non-
stationary and transient signals due to its simplicity and
computational power. The basic idea of the method is to
divide the signal into several short time blocks that are
separated or overlapped and then perform the FT on each
block. This is done by multiplying the signal analyzed by
a family of models obtained through time translation and
frequency modulation of a window function [90]. In (1),

we present the expression of STFT where the signal x(t) is
previously “windowed” by a g(t) function, around a τ time.

ST FT (τ, f ) =
∫ ∞

−∞
x(t)g(t − τ)e−i2πf tdt (1)

The magnitude spectrum, spectrogram, can be obtained
by:

S(τ, f ) =
∣∣∣∣
∫ ∞

−∞
x(t)g(t − τ)e−i2πf tdt

∣∣∣∣
2

(2)

There is a trade-off between time and frequency in the
STFT. In [1], a study is carried out comparing the efficiency
of the STFT in separating the components of a signal
for different window lengths. The signal analysis gives
information on when and which frequencies vary. However,
this information is limited to the window length, which once
set will be the same for all frequencies. A more generic
formulation can be found in [86] and a more detailed and
mathematically rigorous formulation in [6, 28].

2.2 ContinuousWavelet Transform

The CWT was proposed in order to overcome the limitation
of the window length in STFT. The wavelet transform uses
a variable window, where the resolutions vary along the
time-frequency plane, so as to obtain all the information
contained in the signal [2]. Equation (3) presents the wavelet
transform in the continuous form (CWT).

W(a, b) =
∫ ∞

−∞
x(t)ψ̄a,b(t)dt (3)

where,

ψ̄a,b(t) = 1√
(a)

ψ̄

(
t − b

a

)
(4)

In (4), the term ψ̄(t) is the prototype of windows,
known in wavelet theory as the mother wavelet. The
factor 1√

a
ensures the normalization of energy to any scale.

This analysis determines the correlation of the x(t) signal
through translations τ and changes of scales, for a given
wavelet mother. Criteria for choosing the mother wavelet
are found in [107]. In mechanical vibration analysis,
Daubechies and Meyer discrete wavelets are successfully
used [105–107]

2.3 Hilbert-Huang Transform

According to Huang [39], Hilbert-Huang transform (HHT)
is a TFA method that can be divided into two steps:
In the first, there is the EMD process, which allows
an adaptive set of base functions to be obtained, and
the second, through the HSA, allows obtaining a time-
frequency domain representation by calculating the Hilbert
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transform of each of the functions obtained by EMD
analysis.

The two main steps of HHT are [81]:

1. Apply EMD to decompose a time domain signal into n

intrinsic mode functions ci corresponding to different
intrinsic time scales as follows:

u(t) =
n∑

i=1

ci(t) + rn (5)

the term rn in (5) denotes the residue.
2. Apply the Hilbert transform and calculate the time-

dependent frequency and amplitude Ai of each term
ci .

The intrinsic mode function is a function that
satisfies two conditions:

– The number of extremes and the number of zero
crossings must be the same or different from one in
all data.

– The envelope defined by the local minimum and
maximum must be symmetrical, and therefore
the average value of the maximum envelope and
the minimum envelope is 0 at any given point.
Once the extremes are identified, all local maxima
are interpolated by a cubic spline as the upper
envelope. The procedure for the local minimums
to produce the lower envelope is then repeated.
The average of the upper and lower envelopes is
designated as m11, and the first intrinsic function
c11 is given by:

c11 = u(t) − m11 (6)

The sifting process has to be repeated more times. In the
kth sifting process, c1k−1 is treated as the data, then [81].

c1k = c1k−1 − m1k (7)

were k = 2, ..., K . The process is repeated until all local
maxima are positive, all local minima are negative, and the
waves are almost symmetrical, so c1k is accepted as c1. One
systematic method for ending the iteration is to limit the Dv

deviation calculated from the two consecutive sifting results
as follows:

Dv =
√∑

i=1 N(c1k(ti) − c1k(ti))2

∑N
i=1 c2

1k−1(ti)
(8)

In (8), ti = iδt and Nδt = T denote the sampled period.
Once you get c1, then set the residue r1, treat r1 as the new
data, and repeat the steps in (6) and (7) as follows:

c21 = r1 − m21, r1 ≡ u(t) − c1

c2k = c2k−1 − m2k (9)

k = 2, . . . , K . After obtaining the term c2, the residue r2 is
defined and the steps are repeated as in (10).

c31 = r2 − m31, r2 ≡ u(t) − c1 − c2

c3k = c3k−1 − m3k, k = 2, . . . , K (10)

After determining all the terms ci(t), the Hilbert
transform can be applied to get di(t) from each term ci .
Thus, it is defined:

zi(t) = ci(t) + jdi(t) = Aie
jθi

Ai =
√

c2
i + d2

i , θi(t) = tan−1 di

ci

, ωi = dθi

dt
(11)

Replacing ci(t) in (5) with zi(t) in (11) and neglecting rn
yield:

u(t) = Real

(
n∑

i=1

Ai(t)e
jθ(t)i

)
(12)

Where

θ(t)i =
∫ t

0
ωi(t)dt = arctan

(
di

ci

)
(13)

HHT is an adaptive method and intrinsic mode functions
are generally physical because the characteristic scales are
physical. Since distorted harmonics with time-dependent
frequencies and amplitudes are allowed in data decompo-
sition, spurious harmonics are not required to represent
non-stationary and nonlinear signals [40, 81]. In addition,
EMD essentially acts as an adaptive filter bank. A more
detailed and mathematically rigorous formulation can be
found in [40, 43].

2.4 Synchrosqueezed Transform

STFT and CWT are the main approaches for simultaneously
decomposing a signal into time and frequency components.
Known limitations, such as trade-offs between time and
frequency resolution, can be overcome by alternative
techniques that extract instantaneous modal components.
EMD aims to break down a signal into components that
are well separated in the time-frequency plane, allowing
the reconstruction of these components [6]. On the other
hand, a recently proposed method called synchrosqueezing
transform (SST) is an extension of the wavelet transform
that incorporates empirical mode decomposition elements
and frequency reassignment techniques. This new tool
produces a well-defined time-frequency representation,
allowing the identification of instantaneous frequencies in
non-stationary signals to highlight individual components
[6, 123].

The SST was initially proposed for the Wavelet transform
[23] and then later extended to the STFT [6]. In fact, it
corresponds to a nonlinear operator that emphasizes the
time-frequency representation of a signal by combining
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the location and dispersion properties of the reassignment
methods with the invertibility property of the linear time-
frequency representations [23].

2.4.1 Wavelet-Based Synchrosqueezing Transform

Wavelet-based synchrosqueezing transform, proposed by
Daubechies et al. [23], is basically composed of three steps.
The first step is to calculate CWT according to Eq. (3).
In the second step, a preliminary ωs(a, b) frequency is
obtained from the oscillatory behavior of Ws(a, b) in a,
such that:

ωs(a, b) = −i (Ws(a, b))−1 ∂

∂b
Ws(a, b) (14)

In the third step, the time scale plane is transformed to the
time-frequency plane. Each value of Ws(a, b) is reassigned
to (a, ωl), where ωl denotes the frequency that is closest
to the preliminary frequency of the original (discrete) point
ωs(a, b). This operation is presented in Eq. (13) [74]:

Ts(ωl, b) = (	ω)−1
∑

ak :|ω(ak,b)−ωl |≤	ω/2

Ws(ak, b)a
−3/2
k (	a)k (15)

In Eq. (14), 	ω is the width of each frequency bin 	ω =
ωl − ωl−1 and equivalently for 	b.

SWT can obtain a high-resolution time-frequency spec-
trum by compressing (reassigning) the CWT result. How-
ever, when the amplitude of the high-frequency components
of a signal is low, it is difficult to identify the components
in the CWT spectrum or the SST spectrum that is based on
the CWT result. In contrast to CWT, the SWT transform
is able to more efficiently display the high-frequency and
low-amplitude components of a signal and perform a loss-
less reverse transformation, but the ST resolution is not yet
satisfactory [23, 84].

Originally proposed in the case of wavelet, the SST was
extended similarly to the STFT context, known as STFT-
based SST. This method was first proposed and studied in
[100, 122]. A mathematically more rigorous formulation
can be found in [6, 79, 123].

3 Case Studies

3.1 Synthetic Test Signals

3.1.1 Case 1: Multicomponent Signal Analysis

In this first application was studied multicomponent signals,
that is, wave modulation overlays that appear in many
physical systems, especially in mechanical systems. To

facilitate replicability and comparison with other methods,
a set of two synthetic multicomponent signals is initially
considered, with 100, 001 samples, sampling frequency (Fs)
equal to 1000 Hz, and duration of 10 s. The signals with the
addition of +30 dB of additive white Gaussian noise.

The first signal consists of two linear chirps to show the
linear rate of change of frequency as a function of time. The
first chirp has f0 = 50 Hz, f1 = 400 Hz. Since the second
chirp has f0 = 400 Hz, f1 = 50 Hz, this model is also
known as cross chirp signal (Fig. 1a) [11, 97].

The second signal consists of the sum of three linear
chirps, a model known as divergent chirp signal (Fig. 1b)
[91], each showing the linear rate of change of frequency
as a function of time. The first component has f0 = 0 Hz,
f1 = 400 Hz. The second component has f0 = 0 Hz,
f1 = 200 Hz, while the third component has f0 = 0 Hz and
f1 = 100 Hz.

3.1.2 Case 2: 1DOF Syntentic Mechanical System

The resonance phenomenon is commonly found in nature.
In electrical and mechanical systems, it occurs when two
different energy storage devices have equal (but opposite
signals) impedances. During resonance, energy is passed
back and forth between the two energy storage devices. The
signal shown in Fig. 5a is from a 1DOF mechanical system
with resonant frequency wn = 39, 789 Hz, being excited
by variable sinusoidal (0 − 160 Hz) for 5 s. The signal has
Fs = 1000 Hz.

3.2 Experimental Test Signals

The measured signals obtained by the most diverse sensors
during dynamic events generally contain nonlinear, non-
stationary, and noisy properties. In this work was utilized
experimentally obtained acceleration signals from two
mechanical systems with 1 and 3 DOF, which have
their experimental and data acquisition procedure carefully
described in [102, 111].

3.2.1 Case 3: Experimental 1DOF System

The system under study with 1DOF [102] consists of a
portico with 400 mm width and 300 mm height. Its sides
are made of ASTM A-36 steel and the lower and upper
floors are made of polypropylene (Nitapro�). The steel
plates that make up the sides have dimensions of 76.2 × 300
mm and 1.75 mm thickness, while the polypropylene plates
have dimensions 76.2 × 400 mm and 15 mm thickness. The
lower floor is considered rigid and fixed to the ground. At
the top of the portico, there is an unbalanced DC motor with
a mass of 6.59 g and a radius of 15 mm. The Sommerfeld
effect occurs due to a nonlinear interaction between the
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motor speed and the dynamic response of the portico. In this
system, the Sommerfeld effect occurs at its second natural
frequency, 45 Hz. A detailed description of the experimental
apparatus can be found at [102].

Signals are obtained through an accelerometer attached
to the side of the portico at its upper end. A Type 4508
Brüel & Kjær accelerometer was used, which can work
in a temperature range of −54 to 121 ◦C and is capable
of measuring frequencies from 0.3 to 8 kHz. Utilized
were a Brüel & Kjær signal conditioner and the National
Instruments USB-6251 signal acquisition system [102]. The
signals were acquired with a sampling frequency of 1000 Hz
and 32,768 points, totaling an acquisition time of 32,768 s.
These signals are transient signals of the motor starting with
a small permanent at the end, where the motor speed is
varied from 0 to 20 Hz where there is no Sommerfeld effect
(Fig. 7a), and 0 to 65 Hz where the Sommerfeld effect is
present (Fig. 7b).

3.2.2 Case 4: Experimental 3DOF System

The system under study [102, 111] consists of a three
degree of freedom (3 DOF) shearbuilding structure, which
has a width of 400 mm and a height of 900 mm. Its
sides are made of ASTM A-36 steel and the floors are
made of polypropylene (Nitapro�). The steel plates that
compose the sides have dimensions of 76.2 × 300 mm
and 1.75 mm of thickness, while the polypropylene plates
have dimensions 76.2 × 400 mm, 15 mm of thickness,
and are equally spaced 300 mm apart. The lower floor is
considered rigid and fixed to the ground. At the top of the
shearbuilding, there is an unbalanced DC motor with a mass
of 6.59 g and a radius of 15 mm. The Sommerfeld effect
occurs due to a nonlinear interaction between engine speed
and shearbuilding dynamic response. In this system, the
Sommerfeld effect occurs at 45 Hz [102].

Signals are obtained through an accelerometer attached
to the side of the portico at its upper end. A Type 4508
Brüel & Kjær accelerometer was used, which can work
in a temperature range of −54 to 121 ◦C and is capable
of measuring frequencies from 0.3 to 8 kHz. Utilized
were a Brüel & Kjær signal conditioner and the National
Instruments USB-6251 signal acquisition system [102]. The
signals were acquired with a sampling frequency of 1000 Hz
and 32,768 points, totaling an acquisition time of 32,768 s.
These signals are transient signals of the motor starting with
a small permanent at the end, where the motor speed is
varied from 0 to 20 Hz where there is no Sommerfeld effect
(Fig. 11a), and 0 to 65 Hz where the Sommerfeld effect is
present (Fig. 11b).

4 Results

In this section are presented the results of the case
studies presented in Section 3, presenting the temporal
signals, obtained either numerically or experimentally, and
their respective time-frequency representations, which are
described in Section 2.

4.1 Synthetic Test Signals

4.1.1 Case 1: Multicomponent Signal Analysis

Figure 1 presents the analysis of the chirps described in
Section 3 (Fig. 1a and b) using STFT using a 256-sample
Hann window (Fig. 1c and d) and through CWT using
Bump wavelet (Fig. 1e and f). The representation through
STFT was adequate for the analysis of both chirps, and their
spectral contents are well represented as shown in Fig. 1c
and d.

Both analyses, STFT and CWT, have good time-
frequency domain representation and correctly show the
linear rate of change in frequency of the two chirps as a
function of time. Note in the STFT analysis that Gaussian
noise is also well represented in the analysis of both chirps.
The codes for STFT Matlab� implementations can be
found at [10, 11, 28], in Python [26, 52, 54].

Figure 2a and b show the analysis realized by means of
the CWT using the Meyer wavelet, while Fig. 2c and d show
the analysis realized with the WPT using the DMeyer filter.
In this CWT analysis, using the Meyer wavelet, we can
observe the good representation of the spectral content and
less energy dispersion in the time-frequency representation.

In the WPT analysis was utilized the DMeyer filter
and the decomposition was done until the 8th level. This
level already guarantees an adequate resolution in the time-
frequency representation in this specific case. The DMeyer
filter is known to be especially efficient for chirping and
transient analysis [107], as observed in the results obtained
(Fig. 2c and d). CWT and WPT Matlab� implementation
codes can be found at [10, 87, 90, 95, 98]. Python can be
found in [29, 54, 55, 78, 82].

Figure 3 presents the analyses made through HHT, using
cubic spline interpolation [40]. The use of HHT allows high
resolution in the time and frequency domain, as shown in
Fig. 3a and b, but the HHT method is very sensitive to noise.
For HHT implementation in Python, the PYHHT library can
be used [25].

Figure 4 shows the analysis made through FSST
(Fig. 4a and b), and analysis through WSST (Fig. 4c
and d). It is apparent in both synchrosqueezed transform-
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Fig. 1 Time-Frequency
Analysis by means of the STFT
and CWT: a Cross Chirp signal,
b Divergent Chirp signal, c
STFT of cross chirp d STFT of
divergent chirp e CWT of cross
chirp signal and f CWT of
divergente chirp signal

Fig. 2 Time-frequency analysis
using CWT and WPT: a CWT
of cross chirp signal, b CWT of
divergent chirp signal, c WPT of
cross chirp, and d WPT of
divergent chirp
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Fig. 3 Time-frequency analysis
by means of the HHT: a HHT of
the cross chirp signal, b HHT of
the divergent chirp signal

based analyses that the energy dispersion in the time-
frequency plane is much smaller than in the other cases,
demonstrating excellent resolution in the time-frequency
domain. Matlab� implementations can be found at [99].

4.2 Case 2: 1DOF syntentic Mechanical System

Figure 5 presents the analysis of the 1 DOF mechanical
system described in Section 3. The analysis performed
through STFT is presented in Fig. 5b and c using CWT with
the bump wavelet. In Fig. 5d, the result obtained through
the Meyer wavelet is presented. In STFT analysis, a Hann
window with 256 sample length was used. In all cases the
resonant frequency, fn = 39, 789 Hz, is well characterized;
however, the CWT analyses present the energy more
concentrated in the system resonant frequency on the time-
frequency domain, which makes the characterization most
effective.

Figure 6 presents the analysis of the 1DOF mechanical
system through the application of WPT, HHT, FSST
and WSST. In WPT analysis, Fig. 6a, it is possible to
characterize the resonant frequency of the system, and even

with a significant energy dispersion in the time-frequency
domain due to the excitation signal, its characterization is
still quite proper. The HHT analysis clearly characterizes
the resonant frequency. Figure 6c and d are performed
the analysis via FSST and WSST. Again it is possible
to observe in both analyzes using the synchrosqueezed
transform techniques that the energy dispersion in the time-
frequency plane is much smaller than in the other cases,
with excellent resolution in the time and frequency domain.
The use of the WSST method proved to be much more
appropriate.

4.3 Experimental Test Signals

4.3.1 Case 3: 1DOF Experimental Mechanical System

In this section, the experimental signals presented in
Fig. 7 come from a portal frame mechanical system,
which has a degree of freedom, briefly described in
Section 3 and detailed in [102]. The objective of this
analysis is to characterize the resonance phenomenon and
the Sommerfeld effect in the time and frequency domains.

Fig. 4 Time-frequency analysis
using FSST and SWT: a FSST
of cross chirp signal, b FSST of
divergent chirp signal, c WSST
of cross chirp, and d WSST of
divergent chirp
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Fig. 5 Time-frequency analysis using STFT and CWT: a 1DOF syntentic mechanical system signal, b STFT 1DOF syntentic mechanical system,
c CWT using bump wavelet 1DOF syntentic mechanical system, d CWT using Meyer wavelet 1DOF syntentic mechanical

Figure 7 also presents the system time-frequency
analyses by applying STFT (Fig. 7c and d).

Figure 7c shows the presence of several harmonics in the
signal, but the most energetic presence related to the motor
acceleration signal is highlighted, in addition to the presence
of the system resonant frequency, in a point where there
is the highest concentration of energy. Already in Fig. 7d
it is possible to observe that besides the presence of the

harmonics and the first natural frequency of the system,
there is also a greater concentration and dispersion of energy
in the time-frequency plane, coming from Sommerfeld
effect and jump phenomena. Despite the dispersion of
energy in the time-frequency spectrum in both analyses
performed with the STFT, it is noted the very energetic
presence of the first natural frequency. In Fig. 7c at about
9 s, there is a large energy concentration near the frequency

Fig. 6 Time-frequency analysis
1DOF syntentic mechanical
system using WPT, HHT, FSST,
and WSST: a WPT using
Dmeyer filter 1DOF syntentic
mechanical system signal, b
HHT 1DOF syntentic
mechanical system, c FSST
1DOF syntentic mechanical
system, and d WSST using
Meyer wavelet 1DOF syntentic
mechanical
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Fig. 7 Time-frequency analysis
using STFT: a 1DOF
experimental mechanical system
signal without Sommerfeld
effect, b 1DOF experimental
mechanical system signal with
Sommerfeld effect, c STFT
1DOF experimental mechanical
system signal without
Sommerfeld effect, d STFT
1DOF experimental mechanical
system signal with Sommerfeld
effect

of 11 Hz and in Fig. 7c there is a concentration of energy
at the same frequency, now at 4 s, in addition to a high-
energy concentration at a frequency of 45 Hz between 15
and 19 s due to the resonance capture phenomenon and
energy dispersion before the frequency jumps to 60 Hz at
19 s due to the jump phenomena.

The analysis presented in Fig. 8a and b deals with the
application of CWT using the Morlet wavelet to signals.
Additionally, it is also analyzed through the use of WPT

using Dmey filter in Fig. 8a and b. In the CWT analysis
in Fig. 8a, the resonant frequency is clearly identified as
in the STFT analysis at 9 s with a value of approximately
11 Hz as well as the entire operating regime of the
motor. In Fig. 8b, there is no spectrum dispersion as
shown in [102], but the characteristic jump phenomenon
of the Sommerfeld Effect is clearly observed, with energy
concentration at 45 Hz between 14 and 19 s with a jump
to the frequency of 60 Hz at 19 s. Already the analysis

Fig. 8 Time-frequency analysis
using CWT and WPT: a CWT
1DOF experimental mechanical
system signal without
Sommerfeld effect, b CWT
1DOF experimental mechanical
system signal without
Sommerfeld effect, c WPT
1DOF experimental mechanical
system signal without
Sommerfeld effect, d WPT
1DOF experimental mechanical
system signal with Sommerfeld
effect
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made through WPT shows in Fig. 8c the presence of
harmonic frequencies in the signal, but the frequencies
related to the resonant frequency of the system and the
operating regime of the motor are clearly more energetic.
It is also noted that the packet related to the first natural
frequency is more energetic than the others. Figure 8d
shows that the first natural frequency of the system does not
have relevant energy in the analysis, while a dispersion of
energy over the time-frequency plane is highlighted, with
significant concentration of energy in the packet related to
the frequency of 45 Hz, which characterizes the Sommerfeld
effect and the jump phenomena.

Figure 9 presents time-frequency analyses using HHT;
the results can be viewed in Fig. 9a and b. High resolution
in the frequency domain is observed. The resonance
phenomenon is well characterized in Fig. 9a at 9 s, as well
as the Sommerfeld effect in Fig. 9b at 19 s of analysis.

Finally, Fig. 10 presents the analysis based on the
synchrosqueezed transform methods, using FSST and
WSST. The results of the 1 DOF Experimental mechanical
system analysis without sommerfeld effect signal are
presented in Fig. 10a and c. The results of the analysis
of the system with Sommerfeld effect are presented in
Fig. 10b and d. In both cases, the resonance phenomenon
and the Sommerfeld effect are well characterized with good
energy concentration in the time-frequency distribution,
most notably the presence of the 11 Hz frequency in the
analysis without the Sommerfeld effect while the jump
phenomenon is well characterized in both methods. Both
techniques are quite suitable for the proposed problem
type, highlighting that the analysis performed by WSST
presents higher energy concentration, which allows a better
identification of the frequencies present in the signal.

4.4 Case 4: 3DOF Experimental Mechanical System
Signal

In this section, the experimental signals shown in Fig. 11a
and b are derived from a shearbuilding mechanical system
with a 3-DOF, previously described in Section 3 and
detailed in [102, 111].

Figure 11c and d present the system time-frequency
analysis through the application of STFT. Figure 11c shows
a large presence of noise in the analysis, but even so the
system signal has a reasonable representation; it is possible
to identify the moment of occurrence of the resonance of
the third mode of vibration of the system, at 10 s with the
value of 20 Hz, which is the most energetic mode of the
system. However, due to the large energy dispersion in the
time-frequency plane, it is not possible to identify the other
resonant frequencies of the system. Figure 11d presents the
analysis of the signal with the Sommerfeld effect. Again,
the noise representation is clear, as is the system’s response
to engine operation. The third resonant frequency of the
system stands out, at approximately 6 s with a value of
20 Hz, but the first two are not distinguished. In addition,
the Sommerfeld effect is clearly noted due to the energy
concentration between 15 and 20 s at the frequency of 45 Hz
and the dispersion of power and the sudden increase in the
frequency of the signal to 60 Hz at 20 s.

Figure 12 presents the results based on the wavelet
transform by applying CWT to the system (Fig. 12a and
b), and WPT (Fig. 12c and d). In the case without the
Sommerfeld effect, the signal energy is concentrated in the
third natural frequency of the system, 20 Hz at 15 s, due
to its greater amplitude. In the case of the presence of
the Sommerfeld effect, the signal energy is divided with
the frequency in which the resonance capture phenomenon
occurs, 45 Hz between 15 and 20 s, so both frequencies
are highlighted in the analysis. WPT analysis using the
DMeyer filter shows a lower concentration of energy in
the frequencies mentioned above, distributing the energy
throughout the signal, enabling to identify not only the third
resonant frequency and the Sommerfeld effect, but also all
the variation of the signal frequency over time.

Figure 13 presents the time-frequency analysis of the
time series of the 3DOF experimental mechanical system
through the use of HHT; the results can be viewed in
Fig. 13a and b. In the case analysis without the Sommerfeld
effect, the system’s third resonant frequency, 20 Hz at 10 s,
and the operating range of the motor are characterized. In
the case with the Sommerfeld effect, we can also observe

Fig. 9 Time-frequency analysis
via HHT: a HHT 1DOF
experimental mechanical system
signal without Sommerfeld
effect, b HHT 1DOF
experimental mechanical system
signal with Sommerfeld effect
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Fig. 10 Time-frequency
analysis using synchrosqueezed
transform: a FSST 1DOF
experimental mechanical system
signal without Sommerfeld
effect, b FSST 1DOF
experimental mechanical system
signal without Sommerfeld
effect, and c WSST 1DOF
Experimental mechanical
system signal without
Sommerfeld effect and d WSST
1DOF experimental mechanical
system signal with Sommerfeld
effect

the third resonant frequency of the system, 20 Hz at 6 s, and
all the phenomena related to the Sommerfeld effect, which
occur at a frequency of 45 Hz at 20 s.

Figure 14 presents the analysis based on the syn-
chrosqueezed transform methods through the use of FSST
and WSST. The results of the 3DOF experimental mechan-
ical system analysis without Sommerfeld effect signal are
presented in Fig. 14a and b. The results of the analysis of

the system with Sommerfeld effect are presented in Fig. 14c
and d. Again, there is less energy dispersion by the time-
frequency plane, and it is possible to identify the second and
third resonant frequencies of the system in the case without
the Sommerfeld effect, respectively 13 Hz at 10 s and 20
HZ at 15 s, occurring subtly in the analysis with FSST and
more clearly in the case of WSST. Even in the case that the
Sommerfeld effect is present, it is possible to identify the

Fig. 11 Time-frequency
analysis using STFT: a 3DOF
experimental mechanical signal
system without Sommerfeld
effect, b 3DOF experimental
mechanical signal system with
Sommerfeld effect, c STFT
3DOF experimental mechanical
signal system without
Sommerfeld effect, and d STFT
3DOF Experimental mechanical
system signal with Sommerfeld
effect
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Fig. 12 Time-frequency
analysis using CWT and WPT: a
CWT 3DOF experimental
mechanical system signal
without Sommerfeld effect, b
CWT 3DOF experimental
mechanical system signal with
Sommerfeld effect, c WPT
3DOF experimental mechanical
system signal without
Sommerfeld effect, and d WPT
3DOF experimental mechanical
system signal with Sommerfeld
effect

second and third resonant frequencies of the system, respec-
tively, 13 Hz at 4 s and 20 Hz at 6 s, and the effects due
to the nonlinearities of the system, which occur between 16
and 20 s at the frequency of 45 Hz and 60 Hz, which demon-
strates the low-energy dispersion capacity of the SST, which
allows the representation of less energetic frequencies with
excellent resolution.

5 Conclusions

In this paper was investigated several current techniques for
non-stationary signal processing, particularly in the study
of mechanical vibrations, evaluating their efficiency in
separating frequency components, such as in the evaluation

of case studies involving chirps, and in identifying
frequencies with different energy levels. The STFT is
applicable to the studied signals, but presents results with
low resolution in the time-frequency plane and it has large
energy dispersion, which makes it difficult to identify lower
energy frequencies. It may also have resolution issues
because of the fixed size of the window.

Wavelet transform-based techniques, CWT and WPT,
present good resolution in the time-frequency plane, but
CWT still obfuscates other components when there are
high-energy concentrations at some signal frequency. WPT,
with the use of Dmey filter and decomposition to the 8th
level, presented better results in these cases, being possible
to distinguish several signal components. Applications
of wavelet transform-based techniques to non-stationary

Fig. 13 Time-frequency analysis via HHT: a 3DOF HHT experimental mechanical system signal without Sommerfeld effect, b 3DOF HHT
experimental mechanical system signal with Sommerfeld effect
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Fig. 14 Time-Frequency
Analysis Using
synchrosqueezed transform: a
FSST 3DOF Experimental
mechanical system signal
without Sommerfeld effect, b
FSST 3DOF Experimental
mechanical system signal with
Sommerfeld effect, c WSST
3DOF Experimental mechanical
system signal without
Sommerfeld effect and d WSST
3DOF Experimental mechanical
system signal with Sommerfeld
effect

signals have demonstrated the ability of this technique to
monitor signal frequency variations and to detect short-
term transients with excellent time-frequency localization,
far exceeding the limitations presented by the techniques
based on the Fourier transform.

The application of HHT to the studied signals was also
satisfactory, but in the steady state of the motor in the
experimental results its resolution was not so great, being
not possible to have a value for the signal frequency in this
period. In this application, the method was very sensitive to
noise.

Finally, the results obtained through the SSTs were
excellent, presenting an optimal time-frequency resolution
and minimum energy dispersion. Although both SST
techniques have shown good results, it is observed that
those obtained through WSST have better resolution than
FSST, being possible to identify the signal frequency at
any time. Thus, the results show that SSTs present better
results in the proposed application, with special emphasis
on WSST, which presents better resolution in the time-
frequency domain.

The results showed the benefits through this approach for
structural dynamics analysis and non-stationary operation
problems, where the use of time-frequency analysis
techniques was quite adequate and easy to apply. The results
presented in this paper indicate the great potential of these
tools for the characterization of nonlinearities in mechanical
systems, especially the use of WPT and WSST.
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