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Resumo

de Carvalho, Douglas Daniel. FEM - Dinâmica de magnetização de não equilíbrio em ferrofluidos
sujeitos a escoamentos quadráticos. 2020. Dissertação (Mestrado). Faculdade de Engenharia
Mecânica, Universidade Estadual de Campinas, Campinas.

Neste trabalho são realizadas simulações por Dinâmica de Fluidos Computacional (CFD) de
umescoamento dePoiseuille planodeum ferrofluido sob a açãodeumcampomagnético uniforme
aplicado. Uma metodologia numérica original para calcular campos magnéticos e hidrodinâmicos
é proposta, incluindo uma discussão importante sobre uma região de entrada de magnetização
identificada. Três modelos de magnetização diferentes são considerados para calcular o campo
de magnetização. Esses modelos são implementados e validados por meio de diferentes aborda-
gens, incluindo uma teoria assintótica desenvolvida neste manuscrito. As discrepâncias obtidas
entre os resultados dados pelos diferentes modelos são fisicamente discutidas e interpretadas por
meio das escalas de tempo do problema. Um intrincado equilíbrio entre diferentes mecanismos
físicos é identificado e parece ser responsável por um comportamento difusivo do campo de mag-
netização. Esse equilíbrio é regido por uma competição entre a vorticidade do escoamento e os
mecanismos de relaxação magnética, o que leva à proposição de um coeficiente difusivo de mag-
netização equivalente 𝜈𝑚𝑎𝑔. Além disso, mostra-se que a combinação de três diferentes escalas de
tempo rege a dinâmica do desequilíbrio da magnetização: a escala de tempo difusiva Browniana,
uma hidrodinâmica (convectiva) e uma escala de tempomagnética controlável associada à intensi-
dade do campomagnético aplicado. Os resultados obtidos indicam a possibilidade de se controlar
o desenvolvimento do campo de magnetização do fluxo por meio do campo magnético aplicado,
da distribuição do tamanho das partículas, da concentração do fluido e da vazão. Inúmeros resul-
tados relativos ao escoamento totalmente desenvolvido também são apresentados, incluindo per-
fis de magnetização e ângulos entre o campo aplicado 𝐻 e o campo de magnetização 𝑀 . Além
disso, um perfil de magnetização contínua para o fluxo totalmente desenvolvido é reconstruído
usando uma abordagem de dinâmica de Langevin discreta para as partículas magnéticas. As simu-
lações dinâmicas discretas de Langevin de uma coleção de partículas interagindomagneticamente
leva em consideração as interações de longo alcance às quais as partículas estão sujeitas. Assim,
as partículas interagem magneticamente com um campo magnético externo aplicado e com elas
mesmas através de seus momentos dipolares magnéticos, além de estarem sujeitas a flutuações
Brownianas devido ao seu pequeno tamanho. Nesta metodologia, os valores de vorticidade local
extraídos das simulações CFD são usados como entrada para as simulações numéricas discretas,



que consideram uma suspensão coloidal submetida a um escoamento Couette local. Supõe-se que
os momentos dipolares das partículas magnéticas são fixos a si mesmas, o que significa que giram
ao longo da velocidade angular da partícula sem atraso. Para tanto, a rotação de partículas, pro-
movida tanto por torques Brownianos quanto magnéticos, também é explorada nas simulações
discretas, uma vez que a resposta de magnetização da suspensão está estritamente relacionada
ao movimento rotacional das partículas. As equações que governam o movimento de partículas
magnéticas suspensas em um fluido viscoso são resolvidas por simulações numéricas diretas em
diferentes cenários físicos. Em geral, uma concordância muito boa entre os perfis demagnetização
contínua e discreta foi obtida.

Palavras chave: Ferrofluidos, fluidos magnéticos, Dinâmica de Langevin, Região de entrada de
magnetização, Escoamento plano de Poiseuille.



Abstract

de Carvalho, Douglas Daniel. FEM - Non-equilibrium magnetization dynamics of ferrofluids
subjected to quadratic flows. 2020. Dissertação (Mestrado). Faculdade de Engenharia Mecânica,
Universidade Estadual de Campinas, Campinas.

In this work, Computational Fluid Dynamics (CFD) simulations of a ferrofluid plane Poiseuille
flow under the action of a uniform applied magnetic field are performed. An original numerical
methodology to compute magnetic and hydrodynamic fields is proposed, including an important
discussion regarding an identified magnetization entrance region. Three different magnetization
models are considered in order to compute the magnetization field. These models are imple-
mented and validated through different approaches, including an asymptotic theory developed
in this manuscript. The obtained discrepancies between the results given by the different mod-
els are physically discussed and interpreted by means of the problem’s timescales. An intricate
balance between different physical mechanisms is identified and it seems to be responsible for a
diffusive-like behavior of the magnetization field. This balance is ruled by a competition between
the flow’s vorticity and magnetic relaxation mechanisms, which leads to the proposition of an
equivalent diffusive coefficient of magnetization 𝜈𝑚𝑎𝑔. In addition, it is shown that the combina-
tion of three different timescales rules magnetization non-equilibrium dynamics: the Brownian
diffusive timescale, a (convective) hydrodynamic and a controllable magnetic timescale associated
with the intensity of the applied magnetic field. The obtained results indicate towards the pos-
sibility of controlling the development of the flow’s magnetization field by means of the applied
magnetic field, size distribution of the particles, concentration of the fluid and flow rate. Numer-
ous results regarding the fully developed flow are also presented, including magnetization profiles
and angles between the applied field𝐻 and the magnetization field𝑀 . In addition, a continuous
magnetization profile for the fully developed flow is reconstructed by using a discrete Langevin
dynamics approach for the magnetic particles. The discrete Langevin dynamics simulations of a
collection of magnetically interacting particles takes into consideration long-range interactions to
which the particles are subjected to. Hence, the particles interact magnetically with an external
applied magnetic field and with themselves through their magnetic dipole moments, besides be-
ing subjected to Brownian fluctuations due to their small size. In this methodology, local vorticity
values extracted from the CFD simulations are used as an input for the discrete numerical sim-
ulations, which consider a colloidal suspension subjected to a local Couette flow. It is assumed
that the dipole moments of the magnetic particles are fixed to themselves, meaning they rotate



along the particle’s angular velocity without delay. For this purpose, particle rotation, promoted
both by Brownian and magnetic torques, is also explored in the discrete simulations, since the
suspension’s magnetization response is strictly related to the particles’ rotational movement. The
equations governing the motion of magnetic particles suspended in a viscous fluid are solved by
direct numerical simulations under different physical scenarios. In general, a very good agreement
between the continuous and discrete magnetization profiles was obtained.

Keywords: Ferrofluids, magnetic fluids, Langevin dynamics, Magnetization entrance region,
Ferrofluid plane Poiseuille flow.
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1 Introduction

For centuries, researchers and scientists have been interested in some fascinating materials
due to their extraordinary physical properties and applications. Magnetic fluids are some of these
smart materials that can adaptively change their physical properties when in the presence of an
external magnetic field [1]. They may be classified as ferrofluids and magnetorheological fluids [2].
Ferrofluids are stable colloidal suspensions of magnetic nanoparticles immersed in a Newtonian
carrier liquid [3, 4]. Investigations of the flow, the rheological properties and the applications of
ferrofluids are an extremely lively research field nowadays. Since the 1960’s, they have been used
in applications ranging from heat transfer enhancement [5, 6, 7, 8, 9] to separation processes [10]
and biomedical applications (drug targeting or hyperthermia cancer treatments) [11, 12, 13], as well
as in many other fields of scientific and technological interest [14, 15, 16, 17, 18, 19].

One of the most remarkable features of a magnetic fluid from a purely scientific perspective
is the fact that the description of this material demands the coupled understanding of different
branches of the physical sciences, such as hydrodynamics and electromagnetism [3, 4]. The equa-
tions of motion for a magnetic fluid consider the presence of additional forces that are not present
in the classical set of Navier-Stokes equations [3, 4, 20, 21]. In the presence of a magnetic field
gradient, magnetic forces and magnetic torques are developed to drive magnetic particles, which
subsequently draw along the liquid solvent carrier. This allows continuous actuation and precise
positioning of the ferrofluid using a magnetic field [22]. The appearance of an internal magnetic
force acting on the dipolar matter due to the presence of a magnetic field gradient (Kelvin forces)
in the inner structure of a magnetic fluid, demands additional modeling in order for a consistent
closure of the mathematical description that governs the motion of a magnetic fluid [3, 4].

At the beginning of this century, an interesting study provided a rich discussion of whether
such magnetic forces should arise from a modified stress-tensor (with additional terms frommag-
netic origin) or if they should be added in the form of volume forces by a source term in the
equation of motion [23]. Indeed, this paper indicates different thoughts on the subject, presented
by two different schools . While some physicists, used to study the behavior of matter in sub-
molecular scales, often presents a way of thinking about these magnetic forces mostly in terms
of energy [23, 24], classical fluid dynamicists tend to perceive these magnetic forces in the inner
structure arising from the fluid’s stress tensor [25]. Anyway, regardless the thought school around
this subject, the fact is that additional terms of magnetic origin appear in the equation of motion
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when it comes to the description of a magnetic fluid flow [3, 4].
It is known that in the presence of an external magnetic field, the magnetic particles sus-

pended in the fluid tend to align theirmagnetic dipolemoments in the direction of the applied field
𝐻 , resulting in a so-called fluid’s bulk magnetization𝑀 [3, 4]. When it comes to the description of
magnetic fluid’s flow, the concept of internal rotation arises due to the relation between the mag-
netic and rotational degrees of freedom of the particles [26, 21], so that the fluid is subjected to an
intense interplay between hydrodynamic andmagnetic effects, whose intensity dependsmostly on
the particles internal magnetic relaxation timescale. In Néel regimes the particles dipole moments
usually respond instantaneously to the presence of the field and hence the flow’s vorticity has no
influence on themagnetization field. However, when the particles internal relaxation is dominated
by Brownian mechanisms the flow may substantially affect the magnetization response [27, 28].
This way, it seems the magnetization field is the main variable that connects magnetic manifesta-
tions with the hydrodynamic behavior of the fluid. Therefore, it is extremely important to properly
understand this concept and its implications in hydrodynamics. Physically, one may interpret the
fluid’s magnetization as a local average (based on the continuum hypothesis) of the alignment of
the magnetic dipoles in the direction of the applied field [29, 3, 30]. When the suspension is at
rest, this property is referred as equilibrium magnetization𝑀0 [3, 4]. This equilibrium scenario is
well described by a Langevin model for dilute suspensions [3, 15, 14, 31, 32]. However, in more con-
centrated regimes, the role of particles’ interactions produces a considerable deviation from this
equilibrium relation. Under these circumstances, some models that capture with good precision
the equilibrium magnetization of concentrated ferrofluids are known [33, 34].

In the equilibrium scenario, the physics of a magnetic suspension is well described by the
competition of three mechanisms: field-particle interactions, interparticle interactions (i.e. dipo-
lar and hydrodynamics long-range particle interactions) and particle-molecule interactions (Brow-
nian motion). However, when the fluid is set to move, the vorticity field tends to misalign the
magnetic particles from the direction of the field, producing a magnetic torque inside the material
that breaks-up the symmetry of the fluid’s stress tensor and leads to the so calledmagnetoviscous
effect [35, 26, 36, 3, 37, 38, 39, 40, 15, 16]. If these magnetic torques are instantly balanced by vis-
cous torques, the hypothesis of stress symmetry may be considered [40], but the appearance of
extra stresses inside thematerial related to the additional energy that the local shear must impose
in order to make the particles rotate in the direction of vorticity would still have to be dealt with.

Regarding hydrodynamics, in order to properly compute the velocity field of a ferrofluid flow-
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ing under the presence of an applied magnetic field, the applied magnetic field 𝐻 and the mag-
netization field 𝑀 must be known in advance. While the applied field can be obtained from the
solution of a Laplace equation through spherical harmonics (for the free space and depending on
the type of boundaries) [41] and then jumped to the medium using properly boundary conditions
arriving from Gauss and Ampère’s laws of magnetism [3], a physical consistent computation of the
magnetization field demands deeper thoughts and discussions [26, 42, 40, 43, 24], since in non-
equilibrium regimes the magnetization field is no longer an exclusive function of the field [44].

The phenomenological equations describing non-equilibrium magnetic fluid’s dynamics are
based in the continuum hypothesis. Hence, details on microscopic long-range particle interactions
are naturally filtered by this averaging process. Along these lines, an important unanswered ques-
tion is: how to incorporate the role of particle’s interactions in the non-equilibrium behavior of the
magnetization field? Some authors argue that these should be incorporated in the equilibrium re-
laxation term in the magnetization equations by using higher-order asymptotic models [34], while
others argue that these must be incorporated in the form of a configurational stress tensor that
dealswith themagnetoviscous effect directly [45], using hybridmodels thatmix LangevinDynamics
(LD) with classical Computational Fluid Dynamics (CFD) techniques [46]. This is a complex subject
which will not be fully answered in this work. However, several physical discussions on this matter
are presented, using as a case study amagnetic fluid flow between parallel plates under the action
of a uniform applied field in order to physically understand the interplay between hydrodynamic
and magnetic mechanisms in a framework that deals with this non-equilibrium magnetization dy-
namics.

It is important to mention that ferrofluid flows have been the subject of numerous scien-
tific works in the past. For instance, many studies focused on the interesting effect of spin-up flow
[47, 48, 49, 20, 50, 51], while others focused on the effect of oscillating fields on ferrofluid flow
both in the presence [17, 52, 53, 54, 16] and in the absence [55] of pressure gradients. There are
also theoretical studies of ferrofluid flow with applied fields [26, 17, 54] as well as experimental
[35, 56, 57, 18] and numerical works [18, 16] in Poiseuille flow. Although ferrofluid’s pipe flow has
already been numerically, theoretically and experimentally studied, many studies focused on rota-
tional viscosity (viscosity changes when in the presence of a magnetic field) [16, 56, 58, 57, 18, 17],
however, none of them focused on effectively describing non-equilibriummagnetization dynamics,
which is the center of attention of this present work.

In this work, by considering a continuummathematical description, Computational Fluid Dy-
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namics (CFD) simulations of a ferrofluid plane Poiseuille flow under the presence of a uniform
applied field are performed. The behavior of a non-uniform magnetoviscous effect is identified.
Spatial variations on the misalignment between the magnetization and the applied fields are ex-
plored and linked to vorticity profiles. In addition, the existence of a magnetic entrance length is
identified, which leads to the postulation that the vorticity-magnetization interplay may be inter-
preted in terms of an equivalent diffusive coefficient of magnetization. This work aims at trying to
contribute to the state of the art of this field, in order to enrich the discussion on how interparticle
forces affect the non-equilibrium magnetization dynamics of ferrofluid flows.

One concern regarding a continuous description of ferrofluid’s dynamics is that the phe-
nomenological equations describing non-equilibriummagnetic fluid’s dynamics do not necessarily
capture all the details of the micro-structure of the material. By applying the continuum hypothe-
sis in order to obtain the Eulerian hydrodynamic and magnetic fields, some information regarding
the sub-continuum cause that leads to a perceivable consequence in the continuum represen-
tation is lost. This way, it is extremely important to understand the micro-structural behavior of
the magnetic particles in order to comprehend the phenomenology of the suspension’s magne-
tization dynamics. Up to these days, stochastic molecular dynamics have been used very timidly
[2], with a few works regarding the equilibriummagnetization of a colloidal suspension formed by
magnetically interacting particles [27, 28] and numerical simulations of rotational Brownian mo-
tion of ferromagnetic particles [59], to cite a few. Bearing this in mind, discrete Langevin dynamics
(LD) simulations are performed in this work for the magnetic particles, which are subjected to
long-range field-dipole and dipole-dipole magnetic interactions. It is intended that such investiga-
tions, done in the scale of the particles, lead to a better comprehension regarding the connection
between the suspension microstructural behavior and its magnetization response, since hydrody-
namic forces associated with stochastic molecular dynamics can lead to realistic predictions for
magnetic fluids [2], leading to the prediction of properties and qualities of ferrofluids to be further
tested in a laboratory. In the next section, the studied problem is presented.

1.1 Problem’s description

A ferrofluid flow between parallel plates under the action of a uniform applied magnetic
field in the perpendicular direction 𝐻 = 𝐻𝑒𝑦 in considered, as shown in Fig. (1.1). The plates
are apart by a spacing of ℎ = 2𝑎. The length of the channel is 𝐿 = 400ℎ, in order to assure fully
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developedflow for the studied physical scenarios. Theflowentering the channel is considered to be
uniform and demagnetized, in the absence of an applied magnetic field. The flow of an isothermal
incompressible ferrofluid is considered, assuming a spatially uniform distribution of rigid spherical
monodisperse magnetic particles with mean diameter 𝑑 in the range 13𝑛𝑚 ≤ 𝑑 ≤ 15𝑛𝑚.

Figure. 1.1: Scheme of the geometry of the studied problem in the continuous approach. Imagefrom de Carvalho and Gontijo [46].
The magnetic fluid flow is simulated through a two-dimensional CFD in-house code where

the vorticity andmagnetization fields are calculated. Afterwards, the calculation domain is divided
into smaller cells called local vorticity cells. These cells are depicted in Fig. (1.2). These sub-regions
are then simulated in another in-house code through a LD numerical scheme. The local vorticity
obtained through the coupled solution of the vorticity and magnetization equations in the CFD
code is used as an equivalent local shear-rate to be used as an input in the LD code, which simulates
a local Couette flow.

The discrete simulations are carried out in a simulation boxwhich performs the local Couette
flows. A suspension of𝑁 magnetic spherical andmonodisperse particleswith diameter 𝑑 = 2𝑎 and
density 𝜌𝑠 immersed in a viscous fluidwith viscosity 𝜂 and density 𝜌𝑓 at an absolute temperature𝑇 .
The suspension is also subjected to the application of an external vertical homogeneous magnetic
field𝐻 . The localization of each one of the particles is described by a set of vectors 𝑟𝑁 and their
angular displacement by 𝑑𝑖, where 𝑖 refer to an index of the particles. The particle’s magnetic
dipole moments are described by𝑚𝑖 = 𝑚𝑑𝑖. An initial simulation box in sketched in Fig. (1.3).

The idea is to use this approach in order to reconstruct a continuous magnetization profile
without solving any partial differential equation based on the continuous hypothesis, but rather
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Figure. 1.2: Division of the flow into local vorticity cells. Image from de Carvalho and Gontijo [46].

Figure. 1.3: Typical magnetic suspension simulated in this work. Image adapted from Gontijo andCunha [27].
directly through the solution of the equations of motion for each individual magnetic particle.
This tool could be used in future works in order to understand how particle interactions affect
the magnetization of ferrofluid flows in non-equilibrium regimes. Nowadays, there is a discussion
regarding if the inclusion of higher order equilibrium asymptotic magnetization models [34] in the
evolutive magnetization equation are enough to capture this effect or if this should be considered
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in a new constitutive formulation for the stress tensor of the ferrofluid by adding their contribution
to a configurational tensor [45].We hope that the ideas presented in thismanuscript can be used in
futureworks in order to understand how long-range dipolar interactions affect the non-equilibrium
magnetization response of ferrofluids.

In this manuscript, a synthetic review regarding ferrofluids and particulate systems is firstly
presented, with special attention to the magnetoviscous effect (viscosity variations under the ac-
tion of a magnetic field). Afterwards, the mathematical description of the problem, both in its
continuous and discrete approach is presented. In the next chapter, the numerical routines devel-
oped and used to obtain the results of this work are carefully described. Finally, the main results
concerning the magnetization response of a ferrofluid plane Poiseuille flow are presented and dis-
cussed.

1.2 Ferrofluids: a synthetic review

Ferrofluids are stable colloidal suspensions of single domain (one single magnetic direction)
magnetic nanoparticles that magnetize strongly in the presence of an external magnetic field [3,
15].

Figure. 1.4: Ferrofluid under the action of an applied magnetic field. Protrude, Flow by SachikoKodama and Minako Takeno [60] (Accessed on March 4, 2020).



34

These synthetic fluids were first produced in the early 1960’s [3, 61]. The magnetic nanopar-
ticles are usually made of iron oxides, most commonly magnetite (Fe3O4) [62] and maghemite
(𝛾 − Fe2O3) [63], however MnZn ferrites [64] and ferrofluids containing cobalt particles have re-
cently become available [65]. The particle’s diameter are usually 𝑑 ≈ 10𝑛𝑚 (some references
report 𝑑 ≈ 3 − 15𝑛𝑚 [3], others 𝑑 ≈ 5 − 20𝑛𝑚 [63] while others claim that “ideal” ferrofluids
have 𝑑 ≈ 5 − 10𝑛𝑚 [1]) and the carrier liquid, which can be either polar or non-polar [2, 1], is
usually a Newtonian fluid, like water, kerosene and various oils [62]. Most commercially available
ferrofluids are synthesized with particles’ diameter in the range 𝑑 ≈ 5 − 15𝑛𝑚 [1], however fer-
rofluids with particles’ diameter 𝑑 = 24𝑛𝑚made of CoNi and others composed of fiberlike CoNi

particles of 56𝑛𝑚 in length and 6.6𝑛𝑚 in width have already been reported in the literature [66]. It
is important to mention that in the range 15𝑛𝑚 / 𝑑 / 40𝑛𝑚, magnetic fluids are still considered
ferrofluids, while above this limit they are considered magnetorheological fluids [1]. As mentioned
above, ferrofluids differ from the usual magnetorheological fluids due to the size of the magnetic
particles. In this case, the particles are larger (micron sized), usually non-stable magnetic particles,
and such suspensions are used in dampers, brakes and clutches [2]. Figure (1.5) displays magnetic
fluids classification due to the particle’s diameter according to López-López et al. [66].

Figure. 1.5: Magnetic fluids classification due to particle’s diameter according to López-López et al.[66]. Image adapted from López-López et al. [66].
Due to the small size of the magnetic particles, they undergo translational and rotational

Brownian motion [63]. Brownian motion refers to the random movement of particles suspended
in a fluid that occurs due to collision with molecules in the base fluid [67]. The particles do not sed-
iment in the gravitational field or in moderate magnetic field gradients nor do they form agglom-
erates due to magnetic dipole’s interactions [62]. Each particle, which must be sufficiently small
to be considered a monodomain in a way to possess a non-zero magnetic moment 𝑚 ≈ 104𝜇𝐵,
where 𝜇𝐵 is the Bohr magneton [62], is treated as a thermally agitated magnetic dipole, similar
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to the molecules of a paramagnetic gas [63], so that the ferrofluid shows its magnetic properties
[2]. In the absence of an applied magnetic field, the particles’ dipole moments 𝑚 are randomly
oriented due to the thermal agitation, and in this configuration the fluid has no net magnetization
[3, 63]

When a continuous body is placed in a magnetic field, the field in its vicinity can undergo
significant changes. For instance, for ferromagnetic materials, the field at one point can increase
by a tenfold factor [29], while for a dilute ferrofluid the magnetic field generated by the magneti-
zation (demagnetizing field) is much smaller than the applied field andmay be neglected [54]. This
property depends on the microscopic interaction of the material’s magnetic dipole moments with
the external magnetic field. Every magnetic molecule or nanoparticle acquires an induced mag-
netic moment when subjected to a magnetic field. On the molecular scale, particles in a magnetic
field are said to be magnetized, whereas on the macroscopic scale, magnetization measures the
polarization state of a continuous magnetized material. For magnetic fluids, where each particle
can be interpreted as a nanomagnet, the magnetization 𝑀 represents a global measure of the
degree of alignment of the magnetic moments in the direction of the applied field, being given by
[3, 30, 29]:

𝑀 = 𝑁𝑚̄ (1.1)

In Equation (1.1), 𝑚̄ is the magnetic moments average and 𝑁 is the density number of par-
ticles. Magnetization is, therefore, in the context of ferrofluids, a volumetric average of magnetic
moments in the direction of the field per unit of volume. In the case of ferrofluids, when a mag-
netic field is applied the particles’ magnetic moments tend to align in its direction, generating a
net magnetization which increases with increasing magnetic field strength as more dipoles align,
until a magnetization saturation value is reached (saturation magnetization𝑀𝑠) [3, 63].

The magnetic particles are protected against agglomeration due to van der Waals interac-
tions by a coating (with thickness 2𝑛𝑚 / 𝑠 / 8𝑛𝑚) either with long chained organic molecules
(surfacted ferrofluids) or an electric shell (ionic ferrofluids) [62, 2], as indicated in Fig. (1.6a). The
coating generates repulsive forces that prevent the contact of the particles, suppressing the desta-
bilizing effect of the van der Waals interaction [62]. This then creates a stable suspension which is
stable over years [62], however particle agglomeration have been reported to occur as commercial
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water-based ferrofluids age [51]. This coating also allows the fluidity of ferrofluids to bemaintained
under the action of high gradients of intense magnetic fields [68], as opposed to what is observed
in magnetorheological fluids, which solidify in strong magnetic fields [15, 69]. Ferrofluids have a
dark (almost black) color, being optically isotropic, but can exhibit an induced birefringence when
in the presence of an external magnetic field [14], which can be used to examine some aspects of
magnetic fluid rheology [70].

(a)

(b)

Figure. 1.6: (a) Schematic of the magnetic nanoparticles and their surfactant layer. (b) Type ofsurfactant layers: on the left, single-layered grain in an oil-based ferrofluid and on the right,double-layered grain in a water-based ferrofluid. Image adapted from that shown in Scherer andFigueiredo Neto [2] .
The research interest in ferrofluids is justified due to the fact that such fluids combine the

usual hydrodynamic properties of fluids with the possibility of controlling their flow and rheolog-
ical properties with moderate magnetic fields [62, 29]. This incredible possibility arises from the
fact that each of the thermally agitated particles is treated as a single domain with a magnetic mo-
ment (𝑚 ≈ 2.34× 10−19𝐴𝑚2 for 𝑑 = 10𝑛𝑚) that interacts with an applied magnetic field𝐻 [62],
leading to the ferrofluid’s magnetization, which may exist, though not for very long, even in the
absence of𝐻 [16]. Since the force experienced by a magnetizable mass in the presence of a mag-
netic field gradient is proportional to the material’s magnetization, strong magnetic forces can be
generated for magnetic fluids with moderate magnetic fields [62]. In addition, in the presence of a
non-homogeneousmagnetic field, ferrofluids are attracted to the regions of maximum intensity of
the field, as the magnetic moments𝑚 rotate towards the direction of minimum energy (parallel
to the field), causing the fluid to be pulled towards the magnetic field’s gradient [2].
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Thermodiffusion phenomena (Soret effect), of which in an initial isotropic fluid without ex-
ternal forces a concentration gradient accumulates due to an applied temperature gradient [71],
is also present in magnetic colloids, which in this case is strongly affected by the applied mag-
netic field [72, 73, 74, 75, 76, 77, 78, 79]. In this scenario, the originally homogeneous ferrofluid
is subjected to a temperature gradient and a concentration current of magnetic nanoparticles is
observed parallel to the direction of the thermal gradient [2]. The Soret effect is characterized by
the Soret coefficient 𝑆𝑇 , which represents the coupling between current of mass and temperature
gradient [80]. If the particles tend to move away from the hottest region, the ferrofluid is called
thermophobic (𝑆𝑇 > 0), however, if they tend to be concentrated in the warmest region, the col-
loid is called thermophilic (𝑆𝑇 < 0) [81]. Experiments performed in Luo et al. [82] demonstrated
a diffusion of magnetic particles to colder regions, indicating a thermophobic behavior for the
studied ferrofluid. Up to this day, a fully comprehensive theoretical picture of the different mech-
anisms that take place in the thermodiffusive behavior of these complex fluids is still lacking [2],
however interesting phenomena have already been observed. For instance, positive and negative
concentration gradients depending on the ferrofluid studied for the same temperature gradient
have already been observed; dependences of the sign of 𝑆𝑇 on the sign of the surface particles’
charges have been reported in Alves et al. [83], Lenglet et al. [84]; the nature of the liquid carrier
(i.e. polar or non polar) has been reported to be an important factor of the sign of 𝑆𝑇 , but not the
determinant one [2, 84, 81, 85], among others.

The large number of particles allows the spatial and temporal manipulation of small vol-
umes of ferrofluids. Such controllability results in different types of flows and instabilities on their
surfaces [63], so that they exhibit a wide range of very interesting lines, patterns and structures
[86, 87, 88], as those shown in Rinaldi and Zahn [87]. This attribute of ferrofluids is also used by
different artists worldwide to create different patterns and shapes in ferrofluids under the influ-
ence of magnetic fields [89], as the one presented in Fig. (1.4). Many astonishing images of fer-
rofluid control can be seen in Kodama [60]. The different types of instabilities that can arise at the
air/fluid interface in ferrofluids are due to the balance betweenmagnetic force, gravity and surface
tension, depending on the size, confinement configuration and direction of application of themag-
netic field [63]. One of the most common instabilities is the normal field instability of a ferrofluid
layer in air interface, also called the Rosensweig instability [3, 90]. The observed peaks initiate in
a hexagonal array when the magnetic surface force exceeds the stabilizing effects of fluid weight
and surface tension, as observed in Rinaldi and Zahn [87]. In addition, a most unusual instability
is the labyrinth instability, which appears when a ferrofluid layer confined between two parallel
plates is subjected to a magnetic field normal to the surface [3, 87, 91, 63], also observed in Rinaldi
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and Zahn [87].
The research field for magnetic fluids is enormously rich. They are the subject of study in

many areas. For instance, chemists are interested in their synthesis and production processes;
physicists study their physical properties and are constantly proposing theories to explain their
interesting and, at times, somewhat strange behavior; engineers are more concerned with their
applicability in various technological products; biologists and doctors study their biomedical possi-
bilities and are currently using them inmedicine applications and in research in the biological field;
finally, due to the small size of the magnetic particles, ferrofluids have involved nanoscience and
nanotechnology since its conception. In addition, due to their unique response to applied mag-
netic fields, which can deform their shapes and surfaces, direct their flow and exert forces and
torques on wet surfaces and submerged objects [63], they find many real-life applications, which
will be briefly described in section 1.2.2. For instance, ferrofluids are used to cool more than 50
million loudspeakers a year, almost all computer disk drives use a magnetic fluid rotary seal to
exclude contaminants, and the semiconductor industry uses silicon crystal growing furnaces that
uses ferrofluid rotary shaft seals [70].

Rosensweig [3] has given an authoritative introduction to research on ferrofluids in hismono-
graph, and the interested reader is referred to such reference for more information on the fasci-
nating world of magnetic fluids.

1.2.1 Synthesis and stability

Many aspects of the physics of ferrofluids and their content, such as the material and geom-
etry of the magnetic particles, the viscosity and concentration of the suspension, the surfactants
used in the particles, among others, affect their rheological properties, as well as their stability
and redispersibility. Another important parameter which affects the magnetic properties of a fer-
rofluid is its temperature. If it is above the Curie temperature 𝑇𝑐 the magnetic particles lose their
magnetization [1]. A brief description of the synthesis and stability of these colloids is presented in
the following sections.
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Magnetic nanoparticles

Even though pure metals as Fe,Co,Ni possess the highest saturation magnetization (which
is a very interesting attribute in ferrofluids’ applications, since the magnetic body force acting on
them is strongly related to the fluid’s magnetization), they are extremely sensitive to oxidation,
therefore magnetic particles are usually made of iron oxides [1]. Ferrites like magnetite (Fe3O4)

or maghemite (𝛾 − Fe2O3), or other materials with stoichiometric formula 𝜁O ·Fe2O3, where 𝜁
stands for divalent ions as Mn,Zn,Ni,Co are commonly used in ferrofluids [1].

In order to synthesize such magnetic nanoparticles, two methods are usually employed: 1)
themethod of size reduction [61] and 2) the chemical precipitationmethod [92]. The latter is prob-
ably the most used method nowadays [2]. In size reduction, micron-sized magnetic powder is held
in solution with a solvent and a dispersant in a ball mill. It will then grind for a long period, usu-
ally several weeks [2]. In the chemical precipitation method, the procedure usually starts with a
mixture of iron(II) chloride FeCl2, iron(III) chloride FeCl3 and water. A process of co-precipitation
then occurs after the addition of ammonium hydroxyde NH4OH. Later, different procedures are
applied to the system (i.e. peptization, magnetic separation, filtration and finally dilution) [2]. The
co-precipitation method is frequently used to prepare magnetic nanoparticles due to its low cost
and simplicity [1, 93]. Apart from the aforementioned most common methods, others have been
employed for magnetic particles synthesis and characterization [1], such as methods using sol-gel
pyrolysys [94], thermal reductive decomposition [95, 96], mechanical alloying technique [97] and
hydrothermal technique [98, 99].

Magnetic nanoparticles are coatedwith surfactant agents like amphiphilicmolecules, such as
oleic acid C18H34O2 and aerosol sodium di-2ethylhexyl-sulfosuccinate C20H36Na2O7S in the case
of surfacted ferrofluids for preventing aggregations [2]. The magnetic grains are kept in solution
due to steric repulsion between the particles which acts like a physical barrier [100], stabilizing
the colloid [2]. Two different arrangements of surfactants are present depending on the polarity
of the carrier liquid: 1) if the carrier medium is non polar, for instance oil, only one layer (left side
Fig. 1.6b) of surfactant is needed to form a hydrophobic layer, and in this case the polar head of the
surfactant is attached to the particles’ surface and the carbonic “tail” is in contact with the fluid [2];
2) if the particles are dispersed in a polar medium, for instance water, a hydrophilic layer around
them is composed of two layers (right side Fig. 1.6b) [2]. The minimization in the particles’ agglom-
eration as well as the increase in ferrofluid’s stability due to dispersants is of great importance in
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ferrofluids’ applications. The additives must also match the dielectric properties of the carrier liq-
uid [1]. Apart from the alreadymentioned, many surfactants as silica [101], chitosan [102], polyvinyl
alcohol (PVA) [103] and ethylene glycol [104] are usually used [1]. Besides oleic acid, others acids
as citric acid and tartaric acid are used to obtain stable ferrofluids over a large 𝑝𝐻 range (3 − 11)
[105]. Other classes of additives are sometimes used, such as anti-oxidation additives to prevent
oxidation [1]. Surfacted ferrofluids are widely used in many applications as they are commercially
available and easily found. One of the most well-known manufacturers is the company Ferrotec
(https://www.ferrotec.com/).

In the case of ionic ferrofluids [106, 107], in order to keep the colloidal system stable and
avoid aggregations, the nanoparticles are electrically charged, and in some cases both the steric
and electrostatic repulsion are present [2]. In this scenario, an acid-alkaline reaction between the
particles and the bulk keeps their surface electrically charged [2]. Such colloids usually make use
of water as the carrier liquid [2]. The solution’s 𝑝𝐻 is determined by the particle’s charge, being
acid (𝑝𝐻 < 7) if the particles are positively charged and alkaline (𝑝𝐻 > 7) if they are negatively
charged [2].

The magnetic nanoparticles must be suspended in a carrier liquid. The choice of the carrier
liquid is extremely important and dependsmainly on the type of application in which the ferrofluid
will be used. Theoretically, it should be possible to produce dispersion in any liquid, so that the
adequacy of some requirements in different applications such as viscosity, surface tension, tem-
perature and oxidative stability, vapor pressure, stability in hostile environments [72] and, in the
case of transfer applications, high conductivity, high heat capacity, high thermal expansion coeffi-
cient, among others, could be obtained [67]. Many liquids have already been used in ferrofluids,
such as water, mineral and silicone oils, kerosene, combinations of these in addition to other polar
and non-polar liquids [108]. The main attribute of carrier liquids is that they must be non-reactive
both with the magnetic phase and with the material of the device in which the ferrofluid will be in
contact [1].

One of the most noble applications of ferrofluids are those related to biomedical applica-
tions. Table (1.1) provides a list of polymers and molecules that can be used to coat nanoparticles
in biological applications [1, 109, 110].
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Table. 1.1: Different polymers and molecules that can be used as nanoparticles coating to provideferrofluid’s stabilization with some biological applications [109, 110]. Adapted from Genc and Derin[1].
Polymers/molecules Advantages

Polyethylene glycol (PEG) Improves the biocompatibility
Dextran Stabilizes the colloidal solution
Polyvinylpyrrolidone (PVP) Stabilizes the colloidal solution
Fatty acids Colloidal stability
Polyvinyl alcohol (PVA) Prevents coagulation of particles, giving rise to monodisperse particles;

Increases the stability and biocompatibility of the particles and helps in bioadhesion
Polyacrylic acid Good for cell biology, for instance, cell targeting
Phosphorylcholine Coagulation activation;

Colloidal solution stabilizer
Chitosan Used as a non-viral gene delivery system;

Biocompatible and hydrophilic, used in medicine, biotechnology and water treatment
Gelatin Hydrophilic emulsifier used as a gelling agent;

Natural biocompatible polymer

Stability of the colloid

Many aspects of ferrofluids’ physics affect their stability. It is worth noting that the mag-
netic nanoparticles are subjected to Brownian motion, interparticle interactions and particle-field
interactions. The magnetic colloid stability depends on the thermal contribution and on the bal-
ance between attractive (van der Waals and dipole-dipole) and repulsive (steric and electrostatic)
interactions [2].

Two main attractive interactions between magnetic nanoparticles in ferrofluids affect their
stability, namely the van der Waals interaction and the magnetic dipole-dipole interaction. The
short-range van der Waals interaction 𝑈𝐴𝑤 (also known as van der Waals-London interaction),
whose magnitude increases with particles’ sizes is given, for the case between two spherical par-
ticles of diameter 𝑑 separated by a distance 𝑟, by [111, 2]:

𝑈𝐴𝑤 = −𝐴
6

[︃
𝑑2

2(𝑟2 − 𝑑2)
+

𝑑2

2𝑟2
+ ln

(︃
1 − 𝑑2

𝑟2

)︃]︃
(1.2)
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In Equation (1.2), 𝐴 is the Hamaker constant (𝐴 ≈ 10−19𝐽 for ferrite particles
Fe,Fe2O3,Fe3O4 in hydrocarbon [2, 1]).

The other attractive interaction between the magnetic nanoparticles is that due to the mag-
netic dipole-dipole interaction. The interaction energy 𝑈𝐴𝑑 between two magnetic dipole’s 𝑚1

and𝑚2 separated by a distance 𝑟 is given by [3]:

𝑈𝐴𝑑 =
𝜇0

4𝜋𝑟3

[︃
𝑚1 ·𝑚2 − 3
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𝑚1 ·

𝑟

𝑟

)︃(︃
𝑚2 ·

𝑟

𝑟

)︃]︃
(1.3)

In Equation (1.3), 𝑟 is the relative position of the particles. For larger particle’s separation, the
dipole-dipole interaction energy is similar to a Keesom interaction [112, 63]. The interacting force
and torque between two permanent magnetic dipoles can be obtained from Eq. (1.3) [3].

Now, it is also important to briefly mention the large number of magnetic particles per unit
volume in ferrofluids even at low volume fractions [63], since it is associated with the particle-
particle interactions. The typical particle numerical density in a magnetic colloid is reported in
Scherer and Figueiredo Neto [2] to be ∼ 1023𝑚−3. An estimate of the number density of parti-
cles 𝑛 can be made by considering monodisperse nanoparticles arranged in a regular structure by
neglecting Brownian motion, external shear stress and magnetic fields [63]. Results for the typi-
cal particle density are presented in Torres-Díaz and Rinaldi [63] for different particle diameters
as a function of the hydrodynamic volume fraction 𝜑ℎ, along with an estimate relative distance
𝛿𝑖𝑝 = 𝑥/𝑎 between the particles’ surfaces, where 𝑥 is the distance between the particles’ sur-
faces and 𝑎 is the hydrodynamic particle radius. The estimated number density of particles 𝑛 was
estimated for a random distribution of particles [113].

The authors showed that ferrofluids have a large number of particles per unit volume along
with very small distances between them, even though these results represented a rough estimate.
This allows the control andmanipulation of ferrofluids using themagnetic forces and torqueswhich
are generated by static or time varying magnetic fields [63]. In addition, they point out the rel-
evance of magnetic and hydrodynamic interactions between the particles for volume fractions
𝜑ℎ > 0.1%𝑣/𝑣, suggesting the possibility of cluster formation even in the absence of applied mag-
netic fields [114, 115], a subject that will be thoroughly covered in section 1.3.1.
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The repulsive interaction between the magnetic particles is associated with the ferrofluid’s
nature (ionic or surfacted). In the case of ionic ferrofluids, repulsive interactions are due to the
long-range electrostatic interactions between charged particles. On the other hand, in surfacted
ferrofluids, the repulsive interactions are due to short-range steric repulsion forces [2]. In ionic
ferrofluids, the interaction 𝑈𝑅 between two electrically charged spherical particles of diameter 𝑑
separated by a distance 𝑟 is given by [116]:

𝑈𝑅 = 𝜋𝑑𝜖𝜓0 exp[−𝜅(𝑟 − 𝑑)] (1.4)

In Equation (1.4), 𝜖 is the electric permittivity of the carrier fluid, 𝜓0 is the surface potential
of the charged particle at the Helmholtz plane (typical values are of the order 𝜓0 < 50𝑚𝑉 ) and 𝜅
is the inverse of the Debye length, which is defined as the distance, from the Helmholtz plane, at
which the electrostatic potential is 37% smaller than the value at the plane [2]. For more details
regarding repulsive forces on ionic ferrofluids, the reader is referred to Scherer and FigueiredoNeto
[2].

For the case of surfacted ferrofluids, the steric repulsion𝑈𝑠𝑡 is linearly dependent on temper-
ature and, for spherical particles of diameter 𝑑, with a surfactant shell of thickness 𝑠 and density 𝜉
molecules per 𝑛𝑚2, at temperature T, is given by [3]:

𝑈𝑠𝑡 = 𝜋𝑑2𝜉𝜅𝐵𝑇
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𝑟
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]︃
+

𝑑

2𝑠

}︃
(1.5)

For more details regarding repulsive forces on surfacted ferrofluids, the reader is referred to
Rosensweig [3].

That said, the stability of ferrofluids can be assessed. Under a magnetic field, the magnetic
particles are driven to regions where the magnetic energy is higher. However, due to their small
size, they are forced to wander around the fluid due to Brownian motion (thermal agitation). This
way, the stability against segregation is favored when the thermal energy is higher than the mag-
netic energy [3, 1], therefore:
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𝜅𝐵𝑇

𝜇0𝑀𝑉𝐻
≥ 1 → 𝑑 ≤

(︃
6𝜅𝐵𝑇

𝜇0𝜋𝑀

)︃1/3

(1.6)

Also, when in the presence of a gravitational field, particles tend to settle in the direction of
gravity. Therefore, to prevent settling and assure stability, the gravitational energy must be much
smaller than the magnetic energy [3, 1]:

∆𝜌𝑔ℎ

𝜇0𝑀𝐻
≪ 1 (1.7)

In Equation (1.7), ∆𝜌 = 𝜌𝑠𝑜𝑙𝑖𝑑 − 𝜌𝑙𝑖𝑞𝑢𝑖𝑑 is the difference of the phases’ densities.
Now, taking into consideration the attractive dipole-dipole interaction between the particles,

in order to avoid agglomeration the thermal energymust be greater than the dipole-dipole contact
energy [3, 1]. This finally leads to an expression to calculate the typical particle diameter 𝑑 to avoid
magnetic agglomeration (right side of Eq. (1.8)).

12𝜅𝐵𝑇

𝜇0𝑀2𝑉
≥ 1 → 𝑑 /

(︃
72𝜅𝐵𝑇

𝜋𝜇0𝑀2

)︃ 1
3 (1.8)

In Equation (1.8), 𝜅𝐵 = 1.38 × 10−23𝑁𝑚𝐾−1, 𝑇 , 𝜇0 and𝑀 are the Boltzmann’s constant,
the absolute temperature, the permeability of free space and the intensity of magnetization, re-
spectively. By plugging typical ferrofluid values in the expression for the right side of Eq. (1.8), one
obtains 𝑑 / 10𝑛𝑚 [2] (other References report smaller values, i.e. 𝑑 ≤ 7.8𝑛𝑚 [1]), which is the typ-
ical particle diameter in ferrofluids. Therefore, typical ferrofluids are in the limits of agglomeration.
The aforementioned stability criteria are summarized in Tab. (1.2).

In addition, to prevent the particle’s contact, the application of coatings is another necessity
to ensure stability in colloids [3], as stable ferrofluids cannot be synthesizedwith uncoated particles
[117]. Despite the coating of the particles, over time the magnetic attraction causes the particles to
regroup. This agglomeration process is more irreversible for particles with a larger size and greater
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Table. 1.2: Forces acting on the magnetic nanoparticles and the ferrofluid’s stability criteria.Adapted from Genc and Derin [1].
Interaction force Expression Stability

Magnetic field energy 𝐸𝑚𝑎𝑔 = 𝜇0𝑀𝑉𝐻

𝜅𝐵𝑇
𝜇0𝑀𝑉𝐻

≥ 1;
𝑑 ≤

(︁
6𝜅𝐵𝑇
𝜋𝜇0𝑀

)︁1/3
Gravitational field 𝐸𝑔𝑟𝑎𝑣 = ∆𝜌𝑉 𝑔ℎ Δ𝜌𝑔ℎ

𝜇0𝑀𝐻
≪ 1

Dipole-dipole contact energy 𝐸𝑑𝑖𝑝 =
(︁
𝜇0𝑀2

0

12

)︁
𝑉

12𝜅𝐵𝑇
𝜇0𝑀2

0𝑉
≥ 1;

𝑑 ≤
(︁

72𝜅𝐵𝑇
𝜋𝜇0𝑀2

)︁1/3
van der Waals −𝐴

6

[︃
2

𝑟2+4𝑟
+ 2

(𝑟+2)2
+ ln

(︁
𝑟2+4𝑟
(𝑟+2)2

)︁]︃
Steric repulsion Short ranged repulsive force

magnetic moments [1]. For instance, particle agglomeration is reported to occur as commercial
water-based ferrofluids age [51].

1.2.2 Applications

Many aspects of the increasingly interest in the research field of ferrofluids is due to their
enormous range of applicability. A huge effort was made by physicists and chemists in the second
half of the last century in order to synthesize stable magnetic fluids, motivated by the perspective
of many and important technological uses [2].

Ferrofluids find numerous applications [14], some of them gaining high commercial value
[62] and many of them being justified due to their following physical and chemical properties:

1. They have the ability to move to regions where the magnetic field is strongest and remain
there;

2. They absorb electromagnetic energy at certain frequencies and, as a consequence, heat up;
3. Some of their physical properties may change when in the action of a magnetic field, for
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instance, their viscosity (magnetoviscous effect, covered in section 1.3.1).

These very interesting properties make ferrofluids useful in many technological, biological
andmedical applications, in addition to being useful in materials science and engineering research
[2]. For instance, they are used in shock absorbers, as heat transfer fluids in loudspeakers, in
magnetocaloric pumps and heat pipes, in bearing lubricants [118, 119], in microfluidic pumps and
valves [120, 121, 122], in microfluidic actuators and devices [123, 124], in stepper motors [125], in
accelerometers and inclinometers in sensor applications [126, 127], in separation processes [128],
in catalytic reaction supports [129, 130, 131, 132], and leak-proof seals [133], and are used in pneu-
matic and hydraulic micro-actuators [134, 135, 136] [63]. They are also used in many biomedical ap-
plications, such as contrast agents for magnetic resonance imaging, magnetically targeted and/or
triggered drug delivery, hyperthermia treatment of cancer, magnetomechanical actuation of cell
receptors, and biosensors [11, 12, 13] [63].

Not only ferrofluids are used in applications of fluid positioning and flow controlling, but also
for the modification of fluid’s properties, especially changes in their viscosity [62], which might be
extremely useful in some industries. This particular feature will be covered in section 1.3.1.

In case these fluids are used in applications involving heat exchanges, the possibility of in-
ducing and controlling the heat transfer and fluid flow processes through an applied external mag-
netic field has generated possibilities for applications in several sectors, includingmagnetically con-
trolled thermosiphons, cooling of high-power electrical transformers and use in energy conversion
systems [72]. Many of these applications are justified due to the possibility of flow induction in the
absence of moving mechanical parts, as in common conversion and cooling devices, since the flow
of ferrofluids can be generated by temperature and magnetic field gradients [137]. In addition, the
thermomagnetic convection process (convection heat transfer process that uses the spatial gradi-
ent of magnetic susceptibility produced when in the presence of a temperature gradient [67, 30])
is muchmore intense than gravitational convection [137], besides the possibility of increasing ther-
mophysical properties, such as thermal conductivity and viscosity, when ferrofluids are in the pres-
ence of an external magnetic field [15, 138]. Experimental investigations show that variations in the
volume fraction of particles 𝜑, in the particle size distribution, in the chemical composition of the
magnetic particles, among others, change the thermal conductivity of ferrofluids in the absence of
an applied magnetic field. For instance, it has been reported that the thermal conductivity of fer-
rofluids increases with its volume fraction 𝜑 [139, 140, 141, 142, 138, 143, 144]. Abareshi et al. [143]
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reports an increase in the thermal conductivity ratio 𝐾𝑡 (quotient of the thermal conductivity of
themagnetic nanofluid to that of the carrier liquid [67]) of 11.5% at 𝜑 = 3% in a water-basedmag-
netite ferrofluid; Li et al. [139] observed an increase in the thermal conductivity in awater-basedFe

ferrofluid with 𝜑 with and without a magnetic field; Yu et al. [144] reported a linear increase of𝐾𝑡

with 𝜑 with values reaching 34% at 𝜑 = 1% in a kerosene-based magnetite ferrofluid while Hong
et al. [145] reports a non-linear increase of𝐾𝑡 with 𝜑 in a ethylene glycon Fe ferrofluid; Philip et al.
[142, 138] observed a highest 𝐾𝑡 of 23% at 𝜑 = 7.8%; finally, the results obtained in Hong et al.
[140] confirmed the enhancement of the thermal conductivity with the particle’s volume fraction
attributing it to the fact that ferrofluidswith higher volume fractions tend to form clusters at higher
rates (more on particle’s aggregation in section 1.3.1). In addition to the changes in thermal con-
ductivity caused by the parameters mentioned above, when in the presence of magnetic fields the
thermal conductivity is also affected by the orientation and intensity of the applied field [72, 139].
For instance, Li et al. [139] reports an increase in the thermal conductivity of the ferrofluid with
the strength of the applied magnetic field parallel to the temperature gradient and little change
in fields applied perpendicular to the gradient. In addition, Philip et al. [142, 138] reports a huge
enhancement of 𝐾𝑡 = 300% under magnetic fields applied along the direction of heat flow and
Gavili et al. [146] reports an enhancement of more than 200% in thermal conductivity in water-
based ferrofluids with average diameter 𝑑 = 10𝑛𝑚. Nkurikiyimfura et al. [147] also relates the
thermal conductivity enhancement to magnetic fields parallel to temperature gradients. Li et al.
[139], Nkurikiyimfura et al. [147] attributed this increase due to the chain-like structures formed un-
der the influence of themagnetic field, which providedmore effective bridges for energy transport
along the direction of the temperature gradient. The most discussed mechanisms for interpreting
experimental data on the increase in the thermal conductivity of ferrofluids, both in the absence
and in the presence of a magnetic field, are the Brownian motion which the magnetic particles
are subjected and the already mentioned particle’s agglomeration/clustering [67, 142]. Brownian
motion would make a direct contribution due to the diffusion of magnetic particles that carry heat
and also through an indirect contribution due to the micro-convection of fluid surrounding the
particles [67, 148].

That said, some ferrofluids’ applications are now briefly presented. For more details regard-
ing ferrofluids’ applications, the reader is referred to Berkovski and Bashtovoy [14], Scherer and
Figueiredo Neto [2], Torres-Díaz and Rinaldi [63].
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Technological applications

These fluids have been used in dynamic sealings, heat dissipation and damping processes as
well as in doping (intentional introduction of impurities) of technological materials.

For instance, ferrofluids are used as dynamic seals on computers’ hard drives. In this case,
hard drives must operate in hermetically sealed cases, as any impurity can damage the device and
ruin its reading or writing processes. A hole is then made inside a magnet through which an axis
made of a soft magnetic material is inserted. The ferrofluid is then placed in a groove on the shaft,
being held in place by the applied magnetic field, thus blocking the passage of any impurities and
also leaving the shaft free to rotate, as the obstructivematerial is obviously a liquid [2]. A schematic
of this application can be found in Scherer and Figueiredo Neto [2].

Ferrofluids are also used as heat conductors in the process of removing heat from operating
equipment. On a daily basis, they are used in loudspeakers, where they surround the speaker’s
coil, which heats up when it is working. In this case, contrary to what would happen if ordinary
fluids were used for this application, as they would flow away from the place where they were
supposed to operate, the ferrofluid is held in place by the application of a magnetic field applied
by the magnet fixed on the loudspeakers’ horn. A schematic of this application can be found in
Odenbach [62]. In addition to heat dissipation, the presence of ferrofluid also improves the quality
of the speaker, as it dampens unwanted resonances [2].

Apart from being used indirectly as dampers in loudspeakers, ferrofluids have a more direct
use to dampen unwanted vibrations in inertial and viscous dampers in motors, mainly stepper
motors. In this case, the oscillatory movement is opposite to a torque produced by a shear effect,
causing the damper to absorb unwanted vibration. The damping has a non-magnetic housing con-
nected to the motor shaft, the interior of which is filled with ferrofluid, where an inertial mass
levitates. This clearly eliminates the need for bearings to support the mass [149]. In this scenario,
the application is based on the unique property of ferrofluids tomaintain amagnet, whose density
is greater than that of ferrofluid, floating in it [2].

In the field of materials research, the doping of lyotropic liquid crystals with water-based
surfacted ferrofluids is used to investigate different aspects of liquid crystal physics [150, 151, 2],
for example the response of the nematic matrix to pulsed magnetic fields [152] and in the investi-
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gation of elastic properties, such as the bend elastic constant and the anisotropy of diamagnetic
susceptibility, which can be measured by comparing the relaxation behavior of liquid crystals with
and without ferrofluid doping when subjected to different magnetic fields [153]. The introduction
of anisotropic magnetic nanoparticles in a liquid crystalline matrix may also reduce the magnetic
field needed to orient liquid crystals by a factor of 1000 [154, 2]. In addition, magnetic nanopar-
ticles significantly increase the light absorption of lyotropic liquid crystals [2]. For instance, the
non-linear refractive index of doped samples is 10 times higher than that of non-doped samples
[155, 2], whichmakes ferrofluids particularly useful for investigating the nonlinear behavior of such
complex fluids.

Biomedical applications

Of all the places and processes in which ferrofluids are used, biomedical applications are
definitely the most noble of them. Magnetic nanoparticles have many attractions related to their
physical properties that make them particularly useful in biomedical applications. First, its size
may be smaller or in the range of that of biological entities, such as cells (10 − 100𝜇𝑚), viruses
(20 − 450𝑛𝑚), proteins (5 − 50𝑛𝑚) or genes (2𝑛𝑚 wide and 10 − 100𝑛𝑚 long). Not only can
they be similar in size, but they can also be coated with biological molecules, making them bio-
logically compatible, which makes them able to interact or connect to biological entities. Second
is the fact that they are magnetic and can therefore be manipulated by external magnetic fields.
This attribute combined with the intrinsic penetrability of magnetic fields in human tissues makes
them useful in applications involving transport/immobilization of particles or biological entities,
such as the delivery of anticancer drugs or a cohort of radionuclide atoms to a target region of
the body, such as a tumor. Finally, magnetic nanoparticles can respond resonantly to time-varying
magnetic fields, transferring energy from the exciting field to the nanoparticles, heating them up.
This makes them hyperthermia agents, supplying energy to target bodies wheremoderate heating
of tissue results in the destruction of malignant cells more effectively. [156]. In this section, the use
of ferrofluids for magnetic drug targeting, cancer treatment, contrast enhancement for magnetic
resonance imaging (MRI) and magnetic separation of cells will be briefly described.

The idea behind magnetic drug targeting is to use smaller amounts of drugs compared to
traditional methods as well as applying it exclusively to particular cells or body tissues. The drug’s
distribution in the organism is done in such a way that its main fraction interacts exclusively with
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the tissue to which it is intended to be applied at the cellular or subcellular level [157]. In magnetic
drug targeting, the intended drug and a suitable magnetic component (a ferrofluid, for instance)
are formulated in a pharmacologically stable formulation [157]. In the case of ferrofluid drug tar-
geting, a ferrofluid bounded drug is locally injected into a cancerous tumor, being kept there by
a properly (i.e. sufficient field strength and gradient [157]) applied magnetic field during a fixed
period (approximately one hour). In addition to the smaller amount of medication used, as soon
as the magnetic field is turned off the rest of the drug is soon dispersed in the body. However, as it
is in small amounts, there are virtually no side effects [2]. Particles that are attached to magnetic
fluids can be used to remove cells and molecules by applying magnetic fields and concentrating
drugs in anatomical sites with restricted access [157]. Theoretically, in chemotherapy treatments,
targeted drug delivery can significantly improve its outcome by allowing the maximum fraction of
the administered drug to react exclusively with cancer cells, without side effects for normal cells, as
well as the obvious preferential distribution of the drug for cancer cells [157]. Ferrofluid bounded
drugs suitable for chemotherapy are already being used. An application of ferrofluid boundMitox-
antrone in 26 tumor-bearing rabbits is reported in Alexiou et al. [158], with outstanding success in
curing the tumor without side effects. The reader is referred to Lübbe et al. [157], where a wide
variety of possibilities with this technique is presented.

The ability of ferrofluids to absorb electromagnetic energy at certain frequencies is the key
behind a cancer treatment known as magnetic fluid hyperthermia (MFH) [2]. Hyperthermia ther-
apy is a treatment in which the temperature in a local region of the body is raised above the
baseline to obtain a therapeutic effect. For example, an increase in local temperature to between
40°𝐶 and 44°𝐶 is sufficient to negatively impact cancer growth [159]. In magnetic fluid hyperther-
mia, while the ferrofluid absorbs electromagnetic energy provided by a magnetic field, it heats up.
However, it absorbs electromagnetic energy at a different frequency than water absorbs it, thus
allowing only the part of the body where the ferrofluid was injected (usually a tumor) to warm up,
and not its surroundings. In this way, there is no compromise in the proper functioning of normal
cells, the largest portion of which is composed of water (which makes up 70% to 90% of most
tissues [160]), but only the functioning of cancer cells, due to the localized heating process by the
application of a magnetic field, usually oscillatory [2]. This technique is already being used both
in animals and human beings, with successful use for complete sarcoma tumor regression and life
span increase inmice [161] as well as very good results in the treatment of glioblastomas in humans
[2, 159].

Ferrofluids are also used to enhance the contrast inmagnetic resonance imaging (MRI) [156].
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MRI is a medical technique used to produce images of the body and its physiological processes by
using magnetic fields and radio waves to generate these images [160]. Its operation is based on
the differences between the relaxation times of the protons’ magnetic moments when they are in
different environments [2, 160]. In order to increase the contrast between the images produced
by different tissues of the body, since, in some cases, the differences between the relaxation times
are not strong enough to produce well resolved images, magnetic nanoparticles in biocompati-
ble ferrofluids are used. These, in turn, are absorbed by different tissues of the body in different
amounts, thus leading to different values in the relaxation time and, consequently, to clearly distin-
guishable images, since the magnetic particles are clearly visible by MRI [2]. For example, dextran
coated iron oxides are biocompatible and absorbed by the mononuclear phagocyte system (also
called reticuloendothelial system, which is a part of the immune system that consists of the phago-
cytic cells [162]). However, absorption occurs selectively, since cancer cells do not have an effective
reticuloendothelial system like that of healthy cells. In this way, the relaxation time is not altered
by the contrast agent, making the cancer cells easily differentiated from the surrounding healthy
cells. In addition, dextran coated iron oxides are excreted by the liver after treatment [2].

Another common application in ferrofluids is the process of magnetic separation using bio-
compatible magnetic particles. This technique can be used to separate biological entities from a
given environment, for several reasons, such as for the production of more concentrated samples
of these biological entities. The process consists of fixing the magnetic particles to these entities
and later removing them (which may be carrying a target), with the application of magnetic fields
[2]. Common coatings for magnetic particles are dextran, polyvinyl alcohol, among others [156]. A
prime example of application is the use of magnetic separation as a way to “clean” marrow sam-
ples infected with cancerous particles, aiming at implanting the clean sample in the same person,
thus avoiding rejection, which is a common problemwhen implantedmarrow comes from another
patient [2]. In this case, the magnetic particles are coated with monoclonal antibodies that have
an affinity for tumor cells, later removed by the magnetic separation process [14].

The interested reader is referred to Pankhurst et al. [156], Scherer and Figueiredo Neto [2]
for more information regarding the biomedical applications of ferrofluids.
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1.3 Ferrofluid flow phenomena

As indicated in section 1.2.2, ferrofluids are used on a daily basis in applications which require
ferrofluid’s flow. A ferrofluid flow in a magnetic field is accompanied with an interplay between
hydrodynamic and magnetic effects, and it represents practically the only relevant case of flow
with a continuum polarization, where the presence of body couples, internal angular momentum
density and antisymmetric stresses are needed in order to provide its complete macroscopic de-
scription [63]. Ferrofluid’s flows have been the subject of numerous scientific works. For instance,
some studies focused on the effect of oscillating fields on ferrofluid flow both in the presence
[17, 52, 53, 54, 16] and in the absence [55] of pressure gradients. Others consisted of theoretical
studies of ferrofluid flow under the action of applied fields [26, 17, 54] as well as experimental
[35, 56, 57, 18] and numerical studies [18, 16] on Poiseuille flow. In addition, many studies focused
on predictions and measurements of ferrofluid’s viscosity changes when in the presence of mag-
netic fields [16, 56, 58, 57, 18, 17]. Regardless the abundance of studies on ferrofluid’s flow, there
is a great lack of studies concerning the magnetization response of a ferrofluid when in the action
of an applied magnetic field, which is the center of attention of the present work.

In addition to this lack of studies, since ferrofluids are opaque, direct unobtrusive measure-
ments of ferrofluid flows are very difficult to achieve. Some works made use of ultrasonic tech-
niques to work around this problem [163, 164, 165, 166, 51]. It is important to mention that it is
well established, at this moment, that the speed of sound in a ferrofluid increases slightly with the
strength of themagnetic field and the frequency of the ultrasound [167]. For instance, by using the
ultrasonic velocity profile (UVP) method [168], which is based upon pulsed ultrasound echography,
Chaves et al. [51] made use of low fractions of a polyamide powder tracer (since themagnetite par-
ticles suspended in a ferrofluid are too small to produce a UVP signal) in order to obtain velocity
profiles for the bulk flow in the case of spin-up flow. Spin-up flow is a very interesting ferrofluid phe-
nomena which occurs when a ferrofluid placed in a stationary cylindrical container is set to motion
when in the action of a uniform rotating magnetic field [47, 51], having already been investigated
in some works [47, 48, 49, 20, 50, 51]. In particular, Chaves et al. [51] showed that the induced
flow behaves in a very interesting manner: a corotating bulk flowwith the field, in a rigid-body-like
rotation (i.e. linear dependence of the velocity with radial position) and a counter rotating flow at
the surface [51]. Using tracers on the upper rotating surface, Rosensweig et al. [49] observed the
velocity of the free surface of a ferrofluid under the action of a uniformmagnetic field, noting that
for situations where the meniscus (free surface) formed was concave the surface counter-rotated
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with the appliedmagnetic field, while for convexmenisci the ferrofluid surface co-rotated with the
field. For flat surfaces, the ferrofluid proved to be stationary [49].

Another interesting and rather anomalous aspect of ferrofluid flow is the ferrofluid “pump-
ing” effect [169, 52, 170, 22, 171, 55, 172], in which a time varying magnetic field is used to produce
ferrofluid’s motion [58]. In some cases, net flow is achieved in the absence of pressure gradients
and the flow is driven mostly by the magnetic torque generated by the field, which acts on the
particles whose rotational motion is converted to fluid motion by rotational friction and spin vis-
cosity diffusion [55, 172]. However, in the presence of travelling wave magnetic fields, both the
magnetic body force and torque pumping are developed [22]. In closed channel geometries, with
the use of a travelling wave magnetic field, ferrofluid motion can be achieved both in the direc-
tion of the wave (forward pumping) or in the opposite one (backward pumping), depending on the
field’s frequency, amplitude and direction [58, 52, 170]. This change in behavior occurs at a criti-
cal magnetic field strength, which depends on the frequency, the concentration of the suspended
magnetic particles and the fluid viscosity [52]. In the case of high magnetic field strengths, forward
pumping has been reported, yet in lowmagnetic field strengths, backward pumping was observed
[169]. Other magnetic field parameters such as the wavenumber and the frequency can also opti-
mize the net flow rate, in cases of planar duct [55, 22] or circular tube [172] flows in the presence
of running magnetic waves. Maximum pumping in planar ferrofluid layers is reported in Mao and
Koser [22] when the excitation wave number is the inverse of the ferrofluid channel thickness,
also, maximum flow velocity is achieved when the applied magnetic field frequency is close to the
reciprocal of the relaxation time of the magnetic particles 𝜏𝐵. Similarities are observed between
induction motors and ferrohydrodynamic pumping with traveling waves. In induction motors, a
stator creates a displacement excitation that moves the rotor and, where there is an ideal slip fre-
quency associated with the rotor geometry, which is analogous to the particle relaxation time in
the case of ferrohydrodynamic pumping [22]. The ferrofluid pumping effect is a promising method
of fluid manipulation [55] as it has a great potential for practical applications. For instance, it could
be used in precise positioning of ferrofluid’s segment inside the body by using external magnetic
fields [58, 22, 171].

As described in section 1.2.2, one of the main reasons behind the applications of ferrofluids
is that their physical macroscopic properties may change when under the action of an applied
magnetic field, specially their viscosity which varies accordingly to the intensity of the applied field,
in a process known as the magnetoviscous effect, which is described below in section 1.3.1.
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1.3.1 Magnetoviscous effect

The most important attribute of ferrofluids is that while they remain fluids (𝜏𝑦 = 0, where
𝜏𝑦 is the yield stress, which is a measure of the strength of solid materials [173]), they experi-
ence a change in their viscosity when in the presence of a magnetic field, achieving a wide range
of viscosity in a fraction of millisecond [1]. When in the absence of a magnetic field, their vis-
cosity can go up to 𝜂 = 0.002 − 7.5𝑃𝑎𝑠 - please refer to Tab. (4.1) - depending on the par-
ticle’s concentration and carrier liquid, however, under the action of magnetic fields, viscosity
enhancements of ∆𝜂(𝐵)/𝜂(0) ∼ 2 have been reported [173]. This way, ferrofluids exhibit non-
Newtonian behavior, as the field-dependent part of viscosity, which can be either positive or neg-
ative [17, 56, 174, 57, 175], depends on the flow’s vorticity [16] and the applied magnetic field.
Changes in the ferrofluid’s viscous behavior by an increase in fluid viscosity with increasing mag-
netic fields were first reported in Rosensweig et al. [176] with concentrated ferrofluids made of
magnetite nanoparticles, succeed by a different independent study [35] with highly diluted fer-
rofluids made of cobalt nanoparticles [62].

When it comes to ferrofluid flows, the net macroscopic effect of a magnetic field acting on
the magnetic particles is manifested through this change in viscosity [18, 58], which has been the
topic in numerous numerical, theoretical and experimental studies [35, 56, 57, 39, 54, 18, 16].

This effect [35, 26, 36, 3, 37, 38, 39, 40, 15, 16, 177] manifests due to hindering of the particle’s
rotation with the flow’s vorticity due to the action of the magnetic field, which tends to fix the par-
ticle’s magnetic moments in the direction of the field [16]. Under such conditions, the dissipation
of fluid’s kinetic energy is increased, leading to an additional - so-called rotational - viscosity [16].

In simplewords, assuming that the particles’magneticmoments are fixedwithin the particles
themselves (the rotation of a particle is directly followed by the rotation of its magnetic moment)
and that they do not interact with each other, a shear flow will generate a rotation of the particles
along the flow’s vorticity direction. When a magnetic field is applied, the magnetic moment of
the particles (and the particles themselves) will tend to align in the field’s direction, as long as the
relaxation process is governed by the Brownian mechanism, and not the Néel relaxation process
(Rosensweig, 1985), a topic which will be covered below. The rotation due to the viscous friction
will generate a misalignment between the particles’ moments and the applied field, which gives
rises to a magnetic torque which counteracts the mechanic torque due to the shear flow - Fig. (1.7)
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-. This hinders the free rotation of the particles, macroscopically manifesting an increase in fluid’s
viscosity. If the field and the flow’s vorticity are aligned, there will not be anything hindering the
free rotation of the particles, and thus no increase in fluid’s viscosity is observed [62].

Figure. 1.7: Model of the origin of the magnetic field-dependent viscosity increase in ferrofluids,where𝐻 stands for the applied magnetic field and𝑚 for the particle’s magnetic dipole moment.Image adapted from Odenbach [62].
In a pioneer work, Shliomis [26] derived a theoretical description of such phenomena that

takes into account three physical mechanisms acting on the particles’ dynamics: 1) the magnetic
torque acting on the particles; 2) the mechanical torque acting on the particles and 3) the parti-
cle’s Brownian motion. It has been shown that the rotational viscosity 𝜂𝑟 increases as𝐻2 in weak
fields and reaches a saturation value for large magnetic fields 𝜂𝑚𝑎𝑥𝑟 = 3

2
𝜂𝜑, where 𝜂 is the fluid’s

viscosity for vanishing magnetic fields and 𝜑 is the volume concentration of the magnetic particles
including their surfactant [62]. For instance, considering a commercial standard ferrofluid with 7%
of magnetic material, a mean particle diameter of 𝑑 ≈ 10𝑛𝑚 and a surfactant layer thickness of
2𝑛𝑚, 𝜑 ≈ 19.2%, which results in 𝜂𝑚𝑎𝑥𝑟 /𝜂 ≈ 30%. This theoretical estimate is based upon the
assumption that all magnetic particles contribute to the viscosity increase, however, only particles
with amagnetic moment fixed inside them can contribute to the phenomenon [62]. This condition
depends on the magnetic relaxation behavior of the particles. When the applied magnetic field𝐻
changes, the ferrofluid’s magnetization𝑀 relaxes to a new equilibrium magnitude and direction
[63]. In this case, two different relaxation behaviors are observed: 1) The particles with fixed mag-
netic moments align with the field by a rotation of the whole particles against the hydrodynamic
resistance of the carrier fluid to align𝑚 and𝐻 , in a process called Brownian relaxation or 2) the
magnetic moment𝑚 inside the particle aligns with𝐻 , due to flipping of atomic spins without par-
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ticle rotation [70] (the magnetic moment 𝑚 is quasi-free to rotate [2, 63]), in the so-called Néel
relaxation process.

The Brownian relaxation mechanism is given by [3]:

𝜏𝐵 =
3𝜂𝑉ℎ
𝜅𝐵𝑇

(1.9)

In Equation (1.9), 𝑉ℎ is the particle’s volume along with the surfactant or other surface coat-
ings [70]. In a similar manner, the Néel relaxation mechanism is given by [3]:

𝜏𝑁 = 𝜏0e

(︁
𝐾𝑉
𝜅𝐵𝑇

)︁
(1.10)

The parameter 𝐾 is the particle magnetic anisotropy and 𝜏0 = 1
𝑓0

is a constant where 𝑓0 is
the Larmor frequency [70, 2, 62]. Different values for the magnetic anisotropy𝐾 of magnetite can
be found in the literature, over the range 15𝑘𝐽𝑚−3 < 𝐾 < 100𝑘𝐽𝑚−3, while 𝑓0 ≈ 109𝑠 [70].
With the use of the Mossbauer spectroscopy, Lehlooh et al. [178] showed that the value of 𝐾 is
size dependent, increasing with the decrease in particle’s diameter, and also presents a value of
𝐾 = 78𝑘𝐽𝑚−3 magnetic nanoparticles with 𝑑 = 12.6𝑛𝑚.

In rotatingmagnetic fields, themagnetization relaxation timeprocesses of Eqs. (1.9) and (1.10)
create a phase difference between the ferrofluid’smagnetization𝑀 and the appliedmagnetic field
𝐻 , so that𝑀 and𝐻 are not in the same direction, which causes a magnetic torque [70]:

𝑇 = 𝜇0(𝑀 ×𝐻) (1.11)

The magnetic torque causes the magnetic particles and the surrounding fluid to spin. The
joint action of approximately 1023 particles/𝑚3 can lead to fluid pumping [179, 16, 18] and to in-
tricate microdrop behavior in Hele-Shaw cells [180, 181, 182], as depicted in the very interesting
patterns observed in Rinaldi et al. [70], Lorenz and Zahn [180].
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The total relaxation time scale 𝜏 represents the total magnetic time constant, which includes
both the Brownian and Néel relaxation mechanisms, and is dominated by the smaller of 𝜏𝐵 and
𝜏𝑁 , as shown by Eq. (1.12) [70].

1

𝜏
=

1

𝜏𝐵
+

1

𝜏𝑁
→ 𝜏 =

𝜏𝐵𝜏𝑁
𝜏𝐵 + 𝜏𝑁

(1.12)

For instance, in a ferrofluid at temperature 𝑇 = 300𝐾 with representative suspending
medium viscosity 𝜂 = 0.001𝑃𝑎𝑠, with magnetic nanoparticles with diameter 𝑑 = 12.6𝑛𝑚 coated
with a surfactant thickness of 𝑠 = 2𝑛𝑚 with anisotropy constant 𝐾 = 78𝑘𝐽𝑚−3, the relaxation
times are given by 𝜏𝑁 ≈ 368𝑚𝑠 and 𝜏𝐵 ≈ 1.7𝜇𝑠 [70]. Therefore, for this particular configuration,
we notice that the effective time constant is dominated by the Brownianmechanism. Direct torque
measurements in spin-up flow [183] and in a cylindrical Couette geometry [184] for ferrofluids with
diameter 𝑑 ∼ 10𝑛𝑚, have estimated, by comparison to theory, effectivemagnetic relaxation times
of the same order of this computed Brownian relaxation time (𝜏𝐵 ∼ 10−5𝑠).

The Brownian relaxation mechanism gets its name due to the fact that even in the absence
of magnetic fields, the particles rotate due to Brownian torques, associated with the molecular
collisions, which causes rotational Brownian motion [2]. If the Néel mechanism in the dominant
one, the particle is said to be superparamagnetic [2]. Equations of motion for 𝑚 to be used in
cases of superparamagnetic particles, non-superparamagnetic particles and mixed situations can
be widely found in the literature [185, 186].

FromEquations (1.9) and (1.10), one notices that the Brownianmechanism scales linearlywith
the particle’s volume, while the time for the Néel process grows exponentially with it. Since the
particles’ relaxation time is governed by the process with the shortest relaxation time, the small
particles (magnetically weak particles) will follow the Néel process while the large ones (magnet-
ically hard particles) will follow the Brownian manner [62]. Torres-Díaz and Rinaldi [63] gives the
expected dependence of the Brownian andNéel relaxation times formagnetite (FeO ·Fe2O3, 𝐾 ∼
15𝑘𝐽𝑚−3) and cobalt ferrite (CoO ·Fe2O3, 𝐾 ∼ 180𝑘𝐽𝑚−3) particles with different diameters of
materials with different representative magnetocrystalline anisotropies is presented. The authors
show that for a non-uniform particle size distribution, the particles’ relaxation can be given by a
combination of the two different mechanisms (Brownian and Néel) [63].
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The critical diameter on which the relaxation behavior becomes Brownian is 𝑑 ≈ 13𝑛𝑚 [62]
(it has already been presented that for particles with 𝑑 = 12.6𝑛𝑚, the calculated relaxation times
are 𝜏𝑁 ≈ 368𝑚𝑠 and 𝜏𝐵 ≈ 1.7𝜇𝑠). This way, only magnetically hard particles will contribute to
the rotational viscosity effect [62]. For instance, by looking at a particle size distribution of a com-
mercial standard ferrofluid made of magnetite nanoparticles𝐴𝑃𝐺513𝐴, as depicted in Odenbach
[62], one notices that particles with diameters 𝑑 > 13𝑛𝑚 are present with a volume concentration
of less than 1%, leading to a theoretical maximum increase in viscosity of less than 𝜂𝑟/𝜂 < 2%.

Themagnetic particles size distribution in ferrofluids is extremely important for several shear
flows subjected to the action of a magnetic field. A magnetic field gradient causes larger particles
to diffuse to regionswhere the intensity of the field is greater, while smaller particles suffer amilder
effect [70]. Viscosity measurements made on rheometers show that larger particles and particle
clusters have a strong magnetic field dependence on viscosity increase, which in turn depends on
the shear rate, while ferrofluids with smaller particles experience only a small increase in viscosity
and less dependence on the shear rate [187, 188].

In time varying magnetic fields, the magnetic weak particles (Néel relaxation time) will typi-
cally respond in phase with the field at most applied frequencies used in non-biomedical applica-
tions. However, the magnetic hard particles (Brownian relaxation time) response will depend on
the applied frequency Ω𝑓 . For frequencies used in non-biomedical applications, they behave in
phase when Ω𝑓𝜏 ≪ 1, are significantly out of phase when Ω𝑓𝜏 = 1 and have negligible magneti-
zation when Ω𝑓𝜏 ≫ 1 [63].

The relaxation processes of the magnetic particles (Brownian time and Néel time) are pro-
cesses that involve losses, which leads to energy dissipation, so that the complex magnetic sus-
ceptibility (𝜒 = 𝜒′ + 𝑖𝜒′′, where 𝜒′ is real part of the magnetic susceptibility 𝜒 related to magnetic
field energy storage and 𝜒′′ is the imaginary part which cases power dissipation) has an imaginary
part [70]. Such losses lead to heat generation when the particles are subject to the action of time-
varying magnetic fields, so that they can be used for the localized treatment of cancerous tumors
[189, 190]. Magnetic hyperthermia has been briefly described in section 1.2.2.

It is important to mention that the rotational viscosity 𝜂𝑟 is always positive in steady mag-
netic fields [16, 56] - in the case of Poiseuille flow a constant magnetic field balances vorticity and
impedes the rotation of individual magnetic particles [56, 58] -, and themagnitude of this increase
is dependent on field strength and its orientation [56]. Nevertheless, it can assume negative values
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in certain conditions (i.e. in high oscillation frequency [58]) under oscillating magnetic fields, pro-
viding flow rate increases [16] - in the case of Poiseuille flow, an alternating magnetic field helps
vorticity and favors this rotation, as a fast enough oscillating field forces the particles to rotate
faster than the fluid [56] -. In this scenario, the oscillating magnetic field’s energy is partially trans-
formed into fluid’s kinetic energy (angular momentum of the particles), accelerating it [16, 56], as
if the particles acted like tiny motors that reduced the friction between adjacent fluid layers [57].
The decrease in rotational viscosity has been reported in both laminar [56, 57] and turbulent [18]
ferrofluid flows. Even though the effect of viscosity reduction may appear odd, it is quite common
with polymers where it is called shear thinning [18]. Physical conditions for the appearance of neg-
ative viscosity have been reported when Ω𝜏𝐵 ≥ 1 [56, 57] and in the case of planar Couette flow
with a linear polarized oscillating magnetic fieldΩ𝜏𝐵 > 1 [17]. Dependences of the reduced viscos-
ity on flow rate, magnetic field and oscillation frequency have also been reported [18]. In the case
of laminar pipe flow at a constant magnetic field the reduced viscosity decreases with increasing
flow rate, yet for turbulent flow it remains relatively constant [18].

The increase in viscosity is also shear dependent. For instance, the change in viscosity of a
magnetite based ferrofluid𝐴𝑃𝐺513𝐴 in an oily carrier liquid, containing 7% of magnetic particles
with a size distribution given in Odenbach [62], is presented in Odenbach [62] as a function of the
magnetic field strength for various shear rates 𝛾̇. The author notes twomain aspects: 1) a significant
shear dependence of the increase of viscosity, which diminishes as the shear is increased and 2)
the changes in viscosity can reach more than 100% in moderate magnetic fields of order 𝐻 =

30𝑘𝐴/𝑚, which is in contrast to the classical theory of rotational viscosity. Thus, this phenomenon
is referred as the “magnetoviscous effect” [62].

The dynamics governing ferrofluid flow is mainly dictated by the competition of three phys-
ical mechanisms: the magnetic torque (𝑚 × 𝐻), the Brownian torque (𝜅𝐵𝑇 ) and the viscous
torque (6𝜂𝑉 Ω). The magnetic torque acts in order to align the particle’s magnetic moment 𝑚
along the field’s𝐻 direction. Such alignment is hindered by the random and the viscous torques
[16].When in low shear rates (i.e.Ω𝜏𝐵 ≪ 1), the system’s behavior is only governed by the thermal
- which in this case is the only mechanism preventing orientation of the magnetic particles - and
magnetic mechanisms [16]. Under this scenario, the rotational viscosity 𝜂𝑟 is a function only of the
magnetic field, not depending on flow’s vorticity [16]. In most commercially available ferrofluids,
𝜏𝐵 ≪ 1 (i.e. 𝜏𝐵 ∼ 10−6𝑠) due to the smallness of the particles (i.e. 𝑑 ≈ 10𝑛𝑚), in a way that the
physical condition Ω𝜏𝐵 ≪ 1 is very often satisfied in practice, leading to Newtonian-like behavior
of the fluid [16]. This would be the case for single particles, however, in many cases, ferrofluids are
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composed by aggregates of magnetic grains, which is provided bymagnetic dipole-dipole interpar-
ticle interactions [16], described by the dipole’s coupling parameter 𝜆, which must be sufficiently
large to form long chains [16].

𝜆 =
𝜇0𝑚

2

4𝜋𝑑3𝜅𝐵𝑇
(1.13)

When in the absence of a magnetic field, the particle’s distribution in the ferrofluids is
disordered leading to an isotropic thermal conductivity. However, when magnetic particles self-
assemble, there is a tendency to align their magnetic dipole moments in the direction of the
magnetic field due to neighboring particles or applied magnetic fields [15, 191, 192], resulting
in anisotropy of the interactions, allowing the magnetic nanoparticles to form one-dimensional
chains/wires, rings, two-dimensional aggregates or even three-dimensional super-lattices [67].

For a ferrofluid with coated particles a modified interaction parameter 𝜆̃must be used [193].

𝜆̃ =

(︃
𝑑

𝑑+ 2𝑠

)︃3

𝜆 (1.14)

In Equation (1.14), 𝑠 denotes the thickness of the surfactant layer. For 𝑠 = 2𝑛𝑚, this change
means a reduction of 𝜆 by a factor of approximately 2 [62].

Many experiments and analysis show that forces of magnetic dipole-dipole interaction in
strong magnetic fields cause large magnetic particles to form chains and aggregates (structures
formedby the particles). These, in turn, can greatly affect themacroscopic properties of ferrofluids,
such as their viscosity, even in physical scenarios of low particle concentration [194, 195, 196, 197].
The presence of aggregates is used as a macroscopic approach to understand the strong magne-
toviscous effect displayed by ferrofluids. The ferrofluid is described as a bidisperse system, with a
large fraction of small particles and a small fraction of large particles, however, as already men-
tioned, this small amount of magnetically hard particles cannot describe the observed behavior of
viscosity increase [62]. So, one has to assume that the magnetic interparticle interactions lead to
the formation of particles’ aggregates. The excess of these strongly anisotropic interactions com-
pared to the energy of thermal fluctuations leads to the formation of aligned magnetic dipole
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chains [16], which in the easiest case the structures could be rigid straight chains [62]. A ferrofluid
represents a set of these flexible chains [16, 195, 198], whose relaxation time, depending on its size,
may reach values of 𝜏𝐵 ∼ 10−4 − 10−2𝑠, and, in such cases, Ω𝜏𝐵 is not small anymore, because
the relaxation time - Eq. (1.9) - is directly proportional to the volume of the particles, and thus any
agglomeration leads to larger relaxation times [18], which finally leads to non-Newtonian behavior
of the fluid. It is important to mention that only big enough aggregates have perceptible contri-
butions in this non-Newtonian behavior [16]. For the large particles with diameter 𝑑 ≥ 13𝑛𝑚 the
magnetic dipole interaction is so strong that the parameter 𝜆 clearly exceeds 1, and thus these
particles are able to form chain-like structures [62]. Based on the modified interaction parame-
ter [193] - Eq. (1.14) - , particles should have diameter larger than 𝑑 > 16𝑛𝑚 for magnetite and
𝑑 > 6.5𝑛𝑚 for cobalt to able to form structures [199]. The strong increase in viscosity with mag-
netic field intensity has been assumed to be directly linked to the hindrance of rotation of these
structures in the flow [62]. However, Krekhov et al. [16] points out that in the presence of high
enough shear rates, these chains could be destroyed, which leads to reductions in the relaxation
time 𝜏𝐵 and also provides an explanation for the reduction of the increasing viscosity effect with in-
creasing shear rate, as the one presented in Odenbach [62]. In the case of pipe flows, Schumacher
et al. [18] hypothesizes that in turbulent flow the particle agglomerates will be broken, however in
laminar flows they could remain, considering that shear stresses are null at the pipe’s center.

The formation of particles’ clusters and chains is also reported in Butter et al. [115], whose
experiments evidenced the important role of magnetic dipole-dipole interactions in ferrofluid dy-
namics. In this study, large particles tended to form clusters spontaneously even in the absence
of an applied magnetic field [115]. Formation of linear dipole structures at small particles sepa-
rations and particle chaining and clustering at constant magnetic fields were also observed, with
disassembling of such structures due to thermal agitation after removing the field [63]. Reindl and
Odenbach [200] also points out the importance of the way the magnetic material interacts at the
microscopic level. In their Taylor-Coette experiments, a cobalt-based ferrofluid showing a high level
of particle-particle interaction with 60 times less magnetic material compared to a magnetite-
based ferrofluid without interacting magnetic particles showed much greater observed effects,
evidencing the important role of particle-particle interaction in contrast to the role of the amount
of magnetic material in a ferrofluid. The strong interactions in the cobalt-based ferrofluid led to
enormous changes in the flow behavior, such as the decay in the number of vortices under axial
magnetic fields and a greater stabilization of the circular Couette flow under transverse and axial
fields.



62

Particles’ clustering is also a mean of explaining the thermal conductivity enhancement
in ferrofluids [142, 138, 201] and is regarded as the main mechanism of thermal conductivity
[67, 202, 203, 204, 205, 148]. The presence of particle agglomerates in a ferrofluid leads to en-
larged and highly conductive paths for the heat flow and, therefore, to a faster and more efficient
heat transport over long distances, since the heat can be conducted much more quickly by solid
particles compared to a carrier liquid [67, 202]. Philip et al. [138] claims that the enhancement in
thermal conductivity in ferrofluids at higher volume fraction (𝜑 > 2%) is due to the presence of
dimmers and trimmers in the fluid and that the maximum enhancement was achieved when the
chain-like aggregates were well-dispersed without clamping. The effect of particle clustering on
thermal conductivity was also reported in Hong et al. [140], Zhu et al. [206], indicating that the
size of the clusters [140] and the alignment of the particles [206] had major influences on thermal
conductivity. Finally, Nkurikiyimfura et al. [207] indicates that the thermal conductivity component
along themagnetic field parallel to the temperature gradientwas significantly enhanced due to the
chain-like aggregates.

It is clear that the formation and breakage of chains are the determining processes for the
magnetoviscous effect, provided by the small amounts of large particles in magnetite ferrofluids
[62]. Experimental studies [208, 193] have shown the dependence of the magnetoviscous effect
on the content of large particles in the fluid, where it has been shown that fluids with an increased
content of large particles show a strongly enhanced magnetoviscous effect yet fluids with a re-
duced fraction show a weak dependence of viscosity on magnetic field strength [62]. Finally, the
model of chain formation of magnetic particles as an explanation for the magnetoviscous effect
has also been confirmed in numerical studies [209, 210, 211], in neutron scattering experiments
[212] and validations of a theoretical model [213] calculating the viscosity changes in a ferrofluid
with chain formation [62].

In ferrofluid flow, the rotational viscosity effect is reported in many studies. In the cases of
rigid rotation or Couette flow [214], as the vorticity field is constant so is the rotational viscosity 𝜂𝑟
[16]. When a magnetic field is applied, the effective viscosity of the fluid is hence 𝜂𝑒𝑓𝑓 = 𝜂 + 𝜂𝑟,
which leads to alterations in the flow rate but not in the velocity profile, which remains linear [16].
Conversely, in the case of Poiseuille flow, vorticity is spatial coordinate dependent and so is 𝜂𝑟.
Under such conditions, if the shear rate is significantly high, the values of rotational viscosity may
vary significantly along the flow’s section, which could generate velocity profiles that deviate from
the parabolic Poiseuille analytical ones, as observed in Krekhov et al. [16]. Astonishing is also the
fact that in time oscillating fields in sufficiently high frequencies the flow rate increases [17, 174, 54].



63

In addition, Krekhov et al. [16] reports the aforementioned increase in the flow rate when 𝜂𝑟 < 0

and reductions when 𝜂𝑟 > 0. The flow rate can also be altered depending on the magnitude of the
magnetization and induction fields and on their phase relations [54]. In oscillating fields, besides
the pressure gradient, there is an oscillating magnetic force density, accelerating the fluid, which,
in low frequencies, its net effect acts against the pressure gradient, slowing the fluid down [54].

1.4 A brief discussion of the rheology of ferrofluids

The viscosity of ferrofluids is an important issue in its rheology. Many physical factors influ-
ence viscosity, such as the 𝑝𝐻 of the solution, the surfactants and the size of themagnetic particles,
the content of solids and the temperature of the fluid [215]. Many models have been proposed to
account for the presence of particles in solutions.

Albert Einstein proposed a model which predicts the viscosity of dilute particle suspensions
[216]. This simple model relates the mixture viscosity 𝜂𝑒𝑓𝑓 to the carrier fluid’s viscosity 𝜂0 and the
volume fraction of particles 𝜑, which in this dilute model must be 𝜑 < 0.05.

𝜂𝑒𝑓𝑓
𝜂0

= 1 +
5

2
𝜑 (1.15)

Following Einstein’s model [216], manymodels were developed by different scientists to pre-
dict viscosity. Brinkman [217] extended Einstein’s model [216] for the case of concentrated suspen-
sions.

𝜂𝑒𝑓𝑓
𝜂0

=
1

(1 − 𝜑)2.5
(1.16)

By considering Brownianmotion interactions of the particles with each other, Batchelor [218]
extended Einstein’s model [216] to include terms of order 𝜑2 in Eq. (1.15).

𝜂𝑒𝑓𝑓
𝜂0

= 1 + 2.5𝜑+ 6.5𝜑2 (1.17)
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Later, Bicerano et al. [219] proposed an expression for the suspensions’ viscosity that pro-
vides a smooth transition between dilute and concentrated regimes and is valid for low-shear, by
examining the viscosity of suspensions of different hard bodies [1].

𝜂𝑒𝑓𝑓
𝜂0

= 1 + 𝜁𝜑+ 𝜅𝐻𝜑
2 (1.18)

In Equation (1.18), 𝜁 is the virial coefficient and 𝜅𝐻 is the Huggins coefficient.
All aforementioned models relate viscosity as a function of volume fraction, without taking

into consideration temperature dependences. Viscosity is a strong function of temperature [220],
as fluids near their freezing point increase their viscosity while they have relatively low viscos-
ity near the boiling point [221]. A correlation for pure fluids between viscosity and temperature
is presented in White and Corfield [222], where 𝜂𝑟𝑒𝑓 , 𝑇0 are reference values and 𝑎, 𝑏 and 𝑐 are
dimensionless curve-fit constants.

ln 𝜂

𝜂𝑟𝑒𝑓
≈ 𝑎+ 𝑏

(︃
𝑇0
𝑇

)︃
+ 𝑐

(︃
𝑇0
𝑇

)︃2

(1.19)

In the particular case of ferrofluids, one has to account for changes in viscosity when in the
presence of an applied magnetic field due to the magnetoviscous effect, carefully described in
section 1.3.1. Einstein’s formula for calculating the viscosity of a suspension works well in dilute
suspensions of small particles. However, it does not consider the rotational motion of the parti-
cles in respect to the fluid [21]. When a difference between particle’s and fluid’s angular velocities
arises, novel frictional forces will manifest themselves as an additional viscosity, called rotational
viscosity 𝜂𝑟 [21]. This way the viscosity of a suspension will be given by:

𝜂𝑒𝑓𝑓 = 𝜂0

(︃
1 +

5

2
𝜑

)︃
+ 𝜂𝑟 (1.20)

In this scenario, the rotational viscosity 𝜂𝑟 represents the difference between the ferrofluid’s
effective viscosity and the viscosity given by the Einstein expression - Eq. (1.15) - [63], which would
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then be the ferrofluid’s viscosity in the absence of a magnetic field. More on rotational viscosity 𝜂𝑟
will be presented in section 2.1.5.

Another important aspect affecting the rheological behavior of ferrofluids is the presence
of particle-particle interactions when they are subjected to magnetic fields [15]. If it is assumed
that the particles do not interact, the viscosity changes are solely due to the hindrance of the
particle’s free rotation caused by the magnetic torque exerted on the particles [26]. In this case,
the magnetically hard particles are responsible for this effect, as described in section 1.3.1, even
though the observed effects are comparatively small [223, 200]. Conversely, in ferrofluids with
interacting particles, there are formations of particle’s aggregations such as clusters and chains,
and, as described in section 1.3.1, these structure’s relaxation times are larger than that of single
particles, in a way that the observed effects are also larger [200]. Some works have investigated
the rheological response of ferrofluids with respect to the level of interparticle interactions [224,
193, 188, 199, 223, 200].

Allmodelsmentioned above are summarized in Tab. (1.3), alongwith Lundgren’smodel [225],
under the form a Taylor expansion series.
Table. 1.3: Conventional models used for predicting suspensions’ viscosity. Adapted from Hezavehet al. [220].

Model Expression Description
[216] 𝜂𝑒𝑓𝑓

𝜂0
= 1 + 2.5𝜑 For low concentrations

[217] 𝜂𝑒𝑓𝑓

𝜂0
= 1

(1−𝜑)2.5 Concentrated suspensions
[225] 𝜂𝑒𝑓𝑓

𝜂0
= 1 + 2.5𝜑+ 6.25𝜑2 +𝒪(𝜑3) Under the form of a Taylor series

[218] 𝜂𝑒𝑓𝑓

𝜂0
= 1 + 2.5𝜑+ 6.5𝜑2 Brownian motion’s effect on bulk stress

[219] 𝜂𝑒𝑓𝑓

𝜂0
= 1 + 𝜁𝜑+ 𝜅𝐻𝜑2

[222] ln 𝜂
𝜂𝑟𝑒𝑓

≈ 𝑎+ 𝑏
(︁

𝑇0

𝑇

)︁
+ 𝑐
(︁

𝑇0

𝑇

)︁2

Although ferrofluids respond to the action of external magnetic fields with changes in vis-
cosity, stable ferrofluids show a relatively small magnetorheological effect (MR effect), such as an
increase yield strength [1, 173]. In a nutshell, the MR effect in magnetorheological fluids is associ-
ated with the property that, in the presence of a magnetic field, the magnetic particles are sub-
ject to a strong magnetostatic attraction, leading to the formation of structures which align in the
field’s direction. These structures impede the flow of the fluid and, as a consequence, the fluid’s
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rheological properties change to those of plastic materials, presenting high values of yield stress
and viscosity, whose intensity depends on the strength of the applied magnetic field [66]. On the
other hand, the effects of an applied magnetic field on the rheological properties of ideal ferroflu-
ids (rigidly defined as colloidal suspensions of nanoparticles with 𝑑 / 10𝑛𝑚 to ensure stability,
in which Brownian motion dominates over all other interaction forces) [66] are limited to small
increments in viscosity, explained by the impediment of the free rotation of the particles with the
vorticity due to their tendency of orientation in the direction of the field by the magnetic torque
[36, 226, 227, 228], as carefully described in section 1.3.1. This would be the case for ideal ferroflu-
ids, however, real ferrofluids are polydispersed and a part of the particles is large enough that the
Brownian motion energy is overcome by the dipole-dipole interaction energy, in a way that these
particles are grouped in the magnetic fields direction, which can generate high viscosity changes
and even the appearance of yield stress 𝜏𝑦 [66].

The static yield stress is associated with the shear stress that must be overcome to dismantle
the particle’s structures formed under the influence of the field in order to induce the material’s
flow [66]. In simple words, when the shear stress is smaller than the yield stress there is no fluid
motion [1]. The static yield stress is the first parameter used to assess the intensity of theMR effect
inmagnetorheology [69]. There is also the dynamic yield stress, which is generally greater than the
static yield stress [66]. While the static yield stress is the shear stress necessary to induce the flow
of a material, the dynamic yield stress is the one used to break up the aggregates that are formed
in the presence of magnetostatic forces [229, 66]. In magnetic fluids, changes in the yield stress
can be suitably described by some yield stress models, as the Bingham model [230, 231].

𝜏 = 𝜏𝑦 + 𝛾̇𝜂𝑝𝑙 (1.21)

In Equation (1.21), 𝜏 is the shear stress, 𝜂𝑝𝑙 is the plastic viscosity and 𝜏𝑦 is the yield stress.
Shear stress (𝜏 ) results at high shear rates (𝛾̇) for ferrofluids with spherical CoNi particles and
fiberlike CoNi particles presented in López-López et al. [66] were shown to be well-adjusted by
the Bingham model - Eq. (1.21) -.

Models accounting for both yield stress and shear thinning behavior are also available [231],
as the Carson model and the Herschel-Bulkley model. Shear thinning is characterized by the non-
Newtonian behavior of fluids when their viscosity decreases with increased shear rate [232]. Car-
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son’s model, based on a structure model of the interactive behavior of the solid and liquid phases
of a biphasic suspension [1], accounts for both the yield stress threshold and the shear thinning
behavior, being given by [231]:

√
𝜏 =

√
𝜏𝑦 +

√︀
𝜅𝛾̇ (1.22)

In Equation (1.22), 𝜅 is a Carson model constant.
In a similar manner, the Herschel-Bulkley (H-B) model also takes the yield stress and shear

thinning into consideration, being expressed in Eq. (1.23), where the constants 𝑚 and 𝑛 in are
regarded as model factors [1].

𝜏 = 𝜏𝑦 +𝑚𝛾̇𝑛 (1.23)

Results for water-based Fe3O4 ferrofluids were correlated in Hong et al. [215] using the H-B
model.

In diluted suspensions, the shear thinning behavior may be linked to changes caused by
shearing in the structure and arrangement of particles [233, 1]. The effect generated by the shear
can orient the particles in the flow’s direction. The particle’s structures, previously formed due
to magnetostatic forces, can break due to shear gradients, leading to a decrease in the amount
of carrier liquid immobilized by the particles, which ultimately generates a decrease in apparent
viscosity [1]. This effect is clearly observed in the results presented in Fig. (4.9). Shear thinning be-
havior has been reported for water-basedFe3O4 ferrofluids [215], paraffin-basedFe2O3 ferrofluids
[220], as well as in other various types of ferrofluids [234, 235], including cobalt-based ferrofluids
[200], indicating a strong level of particle-particle interaction [15].

Although the magnetorheological response of ferrofluids may be assessed with the yield
stress and viscosity models presented above, it is more common to quantify it through themagne-
toviscous effect, since most ferrofluids applications must work in flow regimes, where yield stress
is not relevant [1, 66]. The magnetoviscous effect was thoroughly described in section 1.3.1 and can
be defined in mathematical notation as [15]:
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𝑀𝐻 =
𝜂𝐻 − 𝜂0
𝜂0

(1.24)

In Equation (1.24), 𝜂𝐻 and 𝜂0 are the fluid’s viscosity in the presence and in absence of a
magnetic field, respectively. The dimensionless parameter𝑀𝐻 quantifies the gain in viscosity that
can be reached at a shear rate when in the presence of a magnetic field [1].

1.5 A brief discussion of particulate systems

It is of extreme importance to understand the micro-structural behavior of magnetic parti-
cles in order to comprehend the phenomenology of the colloidal suspension’s magnetization dy-
namics, since a continuous description of such materials may not capture all the details regard-
ing their micro-structure. An important tool to understand their complex physical behavior is di-
rect numerical simulations, aiming at proposing or better understanding constitutive equations
for a continuous description of these fluids, with special interest in their stress tensor or evolutive
magnetization equations. In the field of ferrohydrodynamics, these are still relatively controversial
points, as evidenced when one compares the mathematical formulation presented in Jansons [33]
for the stress tensor with that presented in Rosensweig [236], Rinaldi et al. [70], Odenbach [226]
or the different magnetization models proposed in Shliomis [26], Martsenyuk et al. [42], Shliomis
[40], Felderhof and Kroh [43], Müller and Liu [24], which will be better covered in section 2.1.3.

The study of particulate systems with long-range interactions is important in many scientific
and industrial areas, since they appear in various practical situations in civil, chemical, mechanical
and oil engineering, to cite a few. Usually, studies in this area are concernedwith properties such as
themean sedimentation velocity or velocity fluctuations of particulate systems [237]. In the partic-
ular case of magnetic fluids, their complex physics involve different mechanisms and possibilities
of particle interactions [28], which leads to a difficult task to properly model such fluids in the par-
ticle’s scale. However, understanding their micro-structure behavior is an important step in order
to quantify their transport properties (of special interest to this work is the fluid’s magnetization)
and also control their stability in a more precise way [70, 226, 238]. In this scenario, numerical
simulations done on the particle scale are important tools for a deeper understanding of physi-
cal phenomena present in the suspension’s microstructure, also helping to understand how such
phenomena affect transport properties on a macroscopic scale. The behavior of diluted magnetic
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suspensions with hydrodynamic and magnetic interactions has been investigated in some studies,
considering the effect of rotational motion and, in some cases, particle inertia, with special inter-
est in the analysis of the relative trajectory of particles in interaction as well as in formation of
aggregates and self-diffusion of particles [239, 240, 241, 242, 243, 244, 27, 28].

This particular work aims at recovering continuous magnetization profiles obtained for the
fully developed flow of a plane Poiseuille flow, as indicated in section 1.1, through simulations done
in the scale of the magnetic particles. In order to model the dynamic behavior of a magnetic sus-
pension of magnetically hard interacting spherical particles, the approach of Langevin dynamics
simulations [226] was used. In few words, this approach solves the classical Langevin stochastic
equation for each of the suspended particles in the fluid [27, 28]. This equation comes from New-
ton’s second law of motion applied to dispersed particles subjected to random Brownian fluctu-
ations. To date, few techniques that efficiently and accurately capture the temporal evolution of
particle systems that interact magnetically have been developed [28], with fewworks investigating
by direct numerical simulations transport properties or providing calculations of the bulk magneti-
zation in both Brownian and non-Brownianmagnetic suspensions [226, 27, 28]. On the other hand,
several studies can be found in the literature regarding simulations of ferrofluids and dipolar fluids
by means of Monte Carlo static simulations [245, 246, 247, 248] and others using a combination of
othermethods, such as the Fokker-Plank equation in conjunctionwith an approach ofMonte Carlo
with a Langevin dynamics scheme [249]. Brownian dynamics was also explored by some works,
with some of them focusing on the influence of interactions between particle’s dipole moments
on ferrofluid magnetization [250] and others on direct numerical simulations of the rotational
Brownian motion of ferromagnetic particles [59]. Such suspensions are not only studied through
numerical techniques. For instance, some macroscopic properties of magnetic suspensions were
predicted in some theoretical works based on a statistical physics approach [33, 251, 34, 252].

The central idea behind the discrete formulation of this problem is, as mentioned, the appli-
cation of Newton’s second law to each of the suspended particles, taking into account the transla-
tion and rotation movements. As the particles are considered hard magnetically interacting parti-
cles (those whose magnetic dipole moment is fixed and the rotation of its magnetic dipole is only
possible with the rotation of the particle itself [3, 62, 70], as discussed in section 1.3.1), the calcu-
lation of its rotational movement is extremely important, because it is strictly related to the fluid’s
magnetization, which is precisely the physical property studied in this work. Much of the difficulty
encountered comes frommodeling the forces and torques that act on each particle. Most of these
interactions decay in space, being instantaneous functions of the configuration of all particles in
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the simulation space, which leads to an enormous computational effort for the calculation of such
interactions. Since the magnetic particles are immersed in a carrier liquid, not only magnetic force
and torque long-range interactions are modeled in our simulations, but also hydrodynamic forces
due to the viscous flow induced by the motion of a single particle in the others. As a suspension
contains many particles dispersed in the carrier liquid, the motion a single particle leads to distur-
bances in the velocity and pressure fields, which exerts an influence on the surrounding particles
affecting their motion, inducing the so-called hydrodynamic interactions. At low Reynolds num-
bers, such disturbances are propagated by the fluid through the viscosity diffusion [28]. The hy-
drodynamic interactions between two rigid particles are classified in twomain groups according to
the distance between them: 1) far field interactions, which happen between two widely separated
particles and 2) lubrication interactions, which happen in near contact particles [253, 254, 255].

Such interactions between magnetic particles depend on the way the particles are arranged
and oriented in space (in the so-called hydrodynamic interaction network), in a way that the long-
range interactions are fundamental to describe the movement of a single particle in the suspen-
sion. These interactions also lead to velocity fluctuations, which are also observed even in non-
Brownian suspensions with very small particle Reynolds number [28]. Such fluctuations also lead
to the so-called hydrodynamic self-dispersion, whose effect is important in describing mixing pro-
cesses that inhibit separation [256, 257].

In general, hydrodynamic interactions are characterized by a “slow decay” of order (1/𝑟),
where 𝑟 is the distance between the center of two arbitrary particles [28]. Such slow decays lead
to classical divergence problemswhen these interactions are numerically computed [258, 259, 260,
261, 262, 263, 264] in incompressible creeping flows (also known as Stokes flow or low Reynolds
number 𝑅𝑒 ≪ 1 hydrodynamics, referring to flows in which inertial effects are negligible when
compared to viscous and pressure forces [265]), in which some important statistical properties
such as the mean velocity and mean velocity variance depend on the size of the system [27]. This
problem is directly associated with the far-reaching nature of hydrodynamic interactions between
the particles under creeping flows [27]. For more information regarding these interactions and the
aforementioned problem, the reader is referred to Guazzelli and Hinch [264].

To avoid this particular problem, in order to perform the sums of these interactions in sus-
pensions with periodic boundary conditions (𝒪(𝑁2) operations), a rather sophisticated technique
is necessary, since the operations become lattice sums and the accurate, but expensive, method
proposed in Ewald [266], known as the Ewald lattice summation technique [266, 267, 268, 269,
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270, 271, 27, 28], must be applied to accelerate convergence [27]. The Ewald summing technique
basically consists of calculating the sum of the interactions of all (𝑁 − 1) particles dispersed in the
suspensionwith an arbitrary reference particle 𝑖, replicating the physical suspension periodically in
space, in order to simulate an infinite suspension (that is, a suspensionwith periodic boundary con-
ditions). In this way, the long-range particle-particle interactions that act on the reference particle
𝑖 are computed for all particles in the physical cell, as well as for all periodic images replicated in
the reciprocal space. In other words, this technique is an efficient although numerically expensive
way of representing, as far as possible, a so-called infinite suspension in order to obtain the con-
vergence of the physical properties of the suspension volume in numerical simulations [28]. Both
magnetic and hydrodynamic interactions between the particles can be calculated in our numerical
code using this technique, which has already been used in the works of Gontijo [272], Gontijo and
Cunha [27], Gontijo et al. [273], Gontijo and Cunha [28]. Likewise, other works have also made use
of Ewald sums in the simulation of particle systems subject only to hydrodynamic, not magnetic
interactions [274, 262, 275, 276, 277]. The fact is that both periodic and non-periodic ways of carry-
ing the summations while simulating suspensions of magnetically interacting particles have their
own advantages and disadvantages. Both methods have already been employed in various works
found in the literature. For instance, to cite a few, periodic summations were used to compute the
dynamic behavior of magnetic suspensions in the works of McWhirter and Patey [278], Wang et al.
[279], Berkov and Gorn [280], Usov and Grebenshchikov [281], Gontijo and Cunha [27, 28] while
other works considered non-periodic ways (minimum image method) [282, 283, 284, 285].

Since this work deals with magnetic suspensions, other far-field interactions due to themag-
netic interactions among the particles are considered. Such interactions decay like (1/𝑟3) for mag-
netic force and (1/𝑟4) for the magnetic torque, which are both faster decays than that of hydrody-
namic interactions (1/𝑟) [28]. Since magnetically interacting suspensions account for new type of
physical mechanisms, other issues impact on the numerical implementation of such suspensions.
In particular, such suspensions tend to form particle’s aggregates due to the induced magnetic
dipole-dipole interactions, as discussed in section 1.3.1. These agglomeration effects require ad-
ditional numerical control in order to prevent particle overlapping as the simulations progress in
time, specially when the effect of particle inertia is considered [272, 27]. As shown in Gontijo and
Cunha [27], a significant amount of computation time is saved when computing only the mag-
netic particle interactions induced by torque-dipole-dipole interactions through periodic bound-
ary conditions in dilute suspensions where 𝜑 ∼ 5%, leaving the magnetic force interactions to be
computed directly with theminimum imagemethod, since these interactions decay faster. This so-
called hybrid methodwas effectively used to compute fluid’s equilibrium magnetization and other



72

transport properties in Gontijo and Cunha [27, 28] and is also used in this particular work. In sec-
tion 3.2, the numerical approach used in this work to simulate the behavior of the dynamics of a
colloidal suspension of magnetically interacting particles is covered in detail.
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2 Mathematical formulation

2.1 Ferrohydrodynamic equations - Continuous description

The classical set of ferrohydrodynamics equations consists of the phenomenologically de-
rived equation of fluid motion, the Maxwell equations in the magnetostatic limit and a magneti-
zation equation. The latter one gets revised from time to time [44].

2.1.1 Maxwell equations in the magnetostatic limit

Magnetic fluids are regarded as non-conducting fluids, therefore Maxwell equations [286,
287] are reduced to the classical Ampère’s circuit law in the magnetostatic limit and Gauss’s mag-
netism law [3].

∇×𝐻 = 0; ∇ ·𝐵 = 0 (2.1)

In Eq. (2.1), ∇ is the usual nabla operator, 𝐻 is the applied magnetic field and 𝐵 is the
magnetic induction field.

2.1.2 Phenomenological equation of motion

A ferrofluid flow in amagnetic field is accompaniedwith an interplay between hydrodynamic
and magnetic effects. When subjected to a magnetic field 𝐻 , ferrofluids magnetize and are sub-
jected to magnetic force - Eq. (2.2) - and torque - Eq. (1.11) - densities [3].

𝐹 = 𝜇0(𝑀 · ∇)𝐻 (2.2)
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𝑇 = 𝜇0(𝑀 ×𝐻) (1.11 revisited)

In the above relations,𝑀 is the ferrofluid magnetization and 𝜇0 = 1.2566× 10−6kgm/s2A2

is the magnetic permeability of free space. The magnetic force density in Eq. (2.2) is extremely
important and has been used for precise transportation and positioning of ferrofluids in damping,
sealing, heat transfer and liquid distribution systems [288, 289, 290], as well as in experiments
with possible zero gravity using the magnetic force to precisely balance gravity, so that bubbles
float freely in the ferrofluid [291].

When it comes to magnetic fluids flow, the concept of internal rotation arises, due to the
relation between the magnetic and rotational degrees of freedom of the magnetic particles of
which the fluids are composed [26]. To model such fluids, the total volume density of angular
momentum is composed not only by the visible (orbital) angular momentum 𝐿, as in ordinary
fluids, but also by a new contribution, regarded as the internal (spin) angular momentum 𝑆. The
prior is associated with the translational motion of magnetic grains and molecules of the solvent -
Eq. (2.3) -, and the latter to the rotation of the particles themselves - Eq. (2.4) - [21].

𝐿 = 𝜌(𝑟 × 𝑣) (2.3)

𝑆 = 𝐼𝜔 (2.4)

Here, 𝜌 is the fluid’s density, 𝑟 is the position vector of the infinitesimal fluid element, 𝑣 is the
element velocity, 𝐼 is the volume density of the particle’s moment of inertia, which depends on the
shape and concentration of the particles [63],𝜔 is themacroscopic angular velocity of the particles
averaged over a physically small magnetic fluid volume. For spherical particles with density 𝜌𝑠 and
diameter 𝑑, the volume density of moment of inertia is given by [21]:

𝐼 =
𝜌𝑠𝜑𝑑

2

10
(2.5)
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This way, a new appropriate thermodynamic coordinate arises, (𝑆 − 𝐼Ω), where Ω = 1
2
𝜉

is the local angular velocity of the fluid and 𝜉 = (∇ × 𝑣) is the flow’s vorticity. Any deviation
between 𝜔 and Ω causes additional dissipation processes due to the redistribution of angular
momentum between the visible 𝐿 and internal 𝑆 forms [21], which is manifested by an increase
in fluid’s viscosity, defined as rotational viscosity 𝜂𝑟. This process will eventually contribute to the
stresses on the fluid.

The stress tensor of an ordinary non-magnetic suspension, obtained from irreversible ther-
modynamics is given by [292]:

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜂

(︃
𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗
𝜕𝑥𝑖

)︃
+

1

2𝜏𝑠

(︀
𝑆𝑖𝑗 − 𝐼Ω𝑖𝑗

)︀ (2.6)

In Eq. (2.6), 𝑝 is the hydrodynamic pressure, 𝜂 is the usual shear viscosity, 𝜏𝑠 = 𝐼/6𝜂𝜑 is
the spin relaxation time, 𝜑 is the volume fraction of particles, 𝛿𝑖𝑗 is the Kronecker delta operator,
𝑆𝑖𝑗 = 𝜖𝑖𝑗𝑘𝑆𝑘, where 𝜖𝑖𝑗𝑘 is the anti symmetric unit tensor and Ω𝑖𝑗 = 1

2

(︁
𝜕𝑣𝑗
𝜕𝑥𝑖

− 𝜕𝑣𝑖
𝜕𝑥𝑗

)︁.
It is easy to check that for spherical nanoparticles the difference (𝜔 − Ω) instantly decays

due to the smallness of 𝜏𝑠 (i.e. 𝜏𝑠 ≈ 10−11s) reducing to ordinary hydrodynamics [21]. However, in
ferrohydrodynamics, when in time transients or dynamic flow conditions, fluid viscosity causes the
magnetization𝑀 to lag themagnetic field𝐻 with angle 𝜃, making vectors𝐻 and𝑀 not collinear,
giving rise to a magnetic torque density - Eq. (1.11) - that acts upon the particles making them and
the surrounding fluid to spin, leading to novel flow phenomena [70], where the aforementioned
difference (𝜔−Ω) can be held. In a two-dimensional problem, the angle between vectors𝐻 and
𝑀 can be calculated through Eq. (2.7).

𝜃 = sin−1

(︃
|𝑀 ×𝐻|
𝑀𝐻

)︃
= sin−1

⎡⎢⎢⎣ |𝑀𝑥𝐻𝑦 −𝑀𝑦𝐻𝑥|√︁
(𝑀2

𝑥 +𝑀2
𝑦 )(𝐻2

𝑥 +𝐻2
𝑦 )

⎤⎥⎥⎦ (2.7)

In Eq. (2.7), 𝑠𝑖𝑛 stands for the sine function,𝑀 and 𝐻 stand for the magnitude of vectors
𝑀 and 𝐻 , respectively,𝑀𝑥 and𝑀𝑦 are the horizontal and vertical magnetization components,
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respectively, finally 𝐻𝑥 and 𝐻𝑦 are the horizontal and vertical applied field components. A visual
representation of angle 𝜃 can be visualized in Fig. (4.8)-(a).

These internal rotation effects modify the stress tensor, leading to a new one for a magnetic
suspension under the action of internal torques, shown in Eq. (2.8) [26, 36, 21].

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜂

(︃
𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗
𝜕𝑥𝑖

)︃
+ 3𝜂𝜑𝜖𝑖𝑗𝑘(𝜔𝑘 − Ω𝑘) +

(︁
𝐻𝑖𝐵𝑗 −

𝜇0

2
𝐻2𝛿𝑖𝑗

)︁ (2.8)

The last tern in Eq. (2.8) represents the Maxwell tensor of magnetic stresses in magnetic
fluids [40]. The magnetic induction field 𝐵 is related to the applied magnetic field and the fluid
magnetization by [286]:

𝐵 = 𝜇0(𝑀 + 𝐻) (2.9)

The general torque equation for a magnetic fluid (internal angular momentum density) can
be obtained by subtracting the moment of the linear momentum density equation of a ferrofluid
from the total angular momentum density [63], given by [3, 15, 14, 31, 32, 70]:

𝐼

[︃
𝜕𝜔

𝜕𝑡
+ (𝑣 · ∇)𝜔

]︃
= 𝜇0(𝑀 ×𝐻) + 2𝜁(∇× 𝑣 − 2𝜔) + (𝜆′ + 𝜂′)∇(∇ · 𝜔) + 𝜂′∇2𝜔 (2.10)

The viscosity coefficients are the shear and bulk coefficients of spin viscosity 𝜂′ and 𝜆′, re-
spectively. The coefficient 𝜁 is called the vortex viscosity (different than the rotational viscosity 𝜂𝑟
discussed in Shliomis [36]) and from microscopic theory for dilute suspensions of non-interacting
spheres it obeys the approximate relationship 𝜁 = 3

2
𝜂𝜑 [26, 293, 294, 70, 63]. This equation is valid

in the limit of infinite dilution, in the absence of hydrodynamic and magnetic interactions [63].
It is important to notice that the antisymmetric part of the stress tensor provides a mechanism
for conversion between internal angular momentum 𝑆 and external angular momentum 𝐿 [63].
Magnetic fluids flows are incompressible, so that (∇·𝑣) = 0, and, as indicated in Rinaldi et al. [70],
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flow geometry often results in (∇ · 𝜔) = 0. In addition, dimensional analysis leads to 𝜂′ ∼ 𝜂𝑙2𝜑2,
where 𝑙 is of the order of the distance between particles. In ordinary ferrofluids 𝜑 is small and 𝑙
is comparable to particle diameters (∼ 10nm) thus 𝜂′ becomes very small and may be neglected
[70]. Even though the spin viscosity is very small in magnitude, Felderhof [55, 172] report crucial
dependence of the net flow rate on spin viscosity 𝜂′ in the case of ferrofluid pumping by means
of a running magnetic wave in the absence of a pressure gradient, both in planar duct [55] and
circular tube [172] flows, indicating that it would vanish in the case of null 𝜂′. Differences in veloc-
ity profiles were also reported in such works [55, 172] under different 𝜂′ conditions, which varied
from a pluglike shape in small 𝜂′ configuration to a nearly parabolic one in large 𝜂′ configuration.
The importance of spin viscosity is also reported in Zaitsev and Shliomis [48], Chaves et al. [295]
for the case of spin-up flow [51], and its value has been experimentally [295] reported to be rather
larger in comparison with earlier theoretical estimates [172]. Recent experimental evidences also
support the role of the “spin viscosities” in describing/predicting certain classes of ferrofluid flows
[296, 297, 298, 299].

In this work, the effects of spin viscosity are neglected due to its smallness, in a way that it
is possible to rewrite Eq. (2.10), in the assumed physical limits, as:

𝜔 ∼=
𝜇0

6𝜂𝜑
(𝑀 ×𝐻) +

1

2
𝜉 − 𝜏𝑠

[︃
𝜕𝜔

𝜕𝑡
+ (𝑣 · ∇)𝜔

]︃
(2.11)

By substituting Eq. (2.11) into Eq. (2.8) with the aid of Eq. (2.9), it is easy to check that the
obtained stress tensor is asymmetric, as (𝜎𝑖𝑗 − 𝜎𝑗𝑖) = 𝐼𝜖𝑖𝑗𝑘

[︁
𝜕𝜔𝑘
𝜕𝑡

+ 𝑣𝑗
𝜕𝜔𝑘
𝜕𝑥𝑗

]︁. The asymmetry of the
stress tensor due to internal torques are better portrayed in Fig. (2.1), where two configurations
are presented, one in the absence of internal angular momentum and other in its presence.

Due to the smallness of the magnetic particles, the spin relaxation time 𝜏𝑠 is much smaller
than unity, and thus the inertial term in Eq. (2.11) may be neglected, in a way that the magnetic
torque acting upon the particles is balanced by the viscous torques, leading to an algebraic equa-
tion for the macroscopic angular spin rate 𝜔:

𝜔 ∼ 𝜇0

6𝜂𝜑
(𝑀 ×𝐻) +

1

2
𝜉 (2.12)
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Figure. 2.1: Left: stress configuration in the absence of internal angular momentum. Right: stressconfiguration in the presence of internal angularmomentum. Image adapted from Rosensweig [3].
When the macroscopic angular spin rate 𝜔 is modeled with Eq. (2.12) and this relation is

substituted into Eq. (2.8), one obtains [40]:

𝜎𝑖𝑗 = −

(︃
𝑝+

𝜇0

2
𝐻2

)︃
𝛿𝑖𝑗 + 𝜂

(︃
𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗
𝜕𝑥𝑖

)︃
+𝐻𝑖𝐵𝑗 +

𝜇0

2

(︁
𝑀𝑖𝐻𝑗 −𝑀𝑗𝐻𝑖

)︁ (2.13)

By using Eq. (2.9) into Eq. (2.13), one notices that the stress tensor for a magnetic fluid takes
now a symmetric form (𝜎𝑖𝑗 = 𝜎𝑗𝑖) [40], which is not an explicit function of the angular spin rate,
but a function of the field variables𝐻 and𝑀 .

𝜎𝑖𝑗 = −

(︃
𝑝+

𝜇0

2
𝐻2

)︃
𝛿𝑖𝑗 + 𝜂

(︃
𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗
𝜕𝑥𝑖

)︃
+ 𝜇0𝐻𝑖𝐻𝑗 +

𝜇0

2

(︁
𝑀𝑖𝐻𝑗 +𝑀𝑗𝐻𝑖

)︁ (2.14)

For the symmetric configuration under consideration [55], a uniform rotating magnetic field
does not cause net flows [300]. With the stress tensor of a magnetic fluid defined, it is possible to
obtain the equation of motion by using the momentum conservation law [301]:
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𝜌

[︃
𝜕𝑣

𝜕𝑡
+ (𝑣 · ∇)𝑣

]︃
= ∇ · 𝜎 (2.15)

After carrying out the necessary algebra, the equation of motion for a magnetic fluid is ob-
tained [21]:

𝜌

[︃
𝜕𝑣

𝜕𝑡
+ (𝑣 · ∇)𝑣

]︃
= −∇𝑝+ 𝜂∇2𝑣 + 𝜇0(𝑀 · ∇)𝐻 +

𝜇0

2
∇× (𝑀 ×𝐻) (2.16)

It is interesting to notice in Eq. (2.16) the presence of the aforementioned magnetic force
density - Eq. (2.2) -, and a term which is associated with the magnetic torque density - Eq. (1.11) -.
The latter is referred as the rotation of the magnetic torque [58], which can be expressed as the
divergence of an antisymmetric tensor [54, 55].

It is clear that fluid magnetization plays a major role in fluid motion, and, as will be shown,
magnetization itself depends on the motion as well, due to the intertwinement between hydro-
dynamics and magnetism of which magnetic fluids are subjected to. A second way of presenting
Eq. (2.16) is by taking its curl to obtain an evolutive equation for the flow’s vorticity 𝜉.

𝜌

[︃
𝜕𝜉

𝜕𝑡
+(𝑣·∇)𝜉

]︃
= 𝜂∇2𝜉+(𝜉·∇)𝑣+𝜇0∇×

[︁
(𝑀 ·∇)𝐻

]︁
+
𝜇0

2

{︃
∇
[︁
∇·(𝑀×𝐻)

]︁
−∇2(𝑀×𝐻)

}︃
(2.17)

In two-dimensional problems - Fig. (1.1) -, some terms presented in Eq. (2.17) vanish, resulting
in the following two-dimensional vorticity equation:

𝜌

[︃
𝜕𝜉

𝜕𝑡
+ (𝑣 · ∇)𝜉

]︃
= 𝜂∇2𝜉 + 𝜇0∇×

[︁
(𝑀 · ∇)𝐻

]︁
− 𝜇0

2
∇2(𝑀 ×𝐻) (2.18)
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2.1.3 Magnetization equations

When in equilibrium, in the absence of a flow field, magnetic fluids’ magnetization is called
equilibrium magnetization 𝑀0, which is collinear to the applied magnetic field 𝐻 . In the case
of a monodisperse collection of non-interacting particles, the equilibrium magnetization𝑀0 in a
ferrofluid is accurately described by the Langevin equation for paramagnetism [3, 15, 14, 31, 32, 70]:

𝑀0 = 𝑀𝑠

[︃
coth(𝛼) − 1

𝛼

]︃
(2.19)

The saturation magnetization 𝑀𝑠 is defined as the magnetization value reached when all
particles with volume 𝑉𝑝 and bulk magnetization𝑀𝑑 have magnetic dipole moments m =𝑀𝑑𝑉𝑝

aligned with the applied magnetic field 𝐻 . It is defined as 𝑀𝑠 = 𝑁𝑚 = 𝜑𝑀𝑑, where N is the
number of magnetic dipoles per unit volume [70]. For the typically used magnetite nanoparti-
cles with bulk magnetization𝑀𝑑 = 4.46 × 105𝐴𝑚−1 in ferrofluids, with a representative volume
fraction of 𝜑 = 4% with particle’s diameter 𝑑 = 10𝑛𝑚 (𝑉 = 5.236 × 10−25𝑚3) one obtain a satu-
ration magnetization 𝜇0𝑀𝑠 = 0.0244𝑇 and𝑁 = 𝜑

𝑉
≈ 7.64 × 1022 magnetic nanoparticles/𝑚3. In

Eq. (2.19) 𝛼 is the Langevin parameter - Eq. (2.20) -, also named dimensionless magnetic field, be-
ing defined as a measurement of the relative intensity between magnetic and Brownian energies
and 𝑐𝑜𝑡ℎ stands for the hyperbolic cotangent function, and

𝛼 =
𝜇0𝑚𝐻

𝜅𝐵𝑇
(2.20)

In Eq. (2.20), 𝜅𝐵 is the Boltzmann constant and 𝑇 is the absolute temperature.
Langevin magnetization measurements may be used as a mean to estimate the magnetic

particle’s diameter [70]. In the linear low field region (i.e.𝛼 ≪ 1), estimates of the largestmagnetic
particles may be obtained, conversely, in the high field regime (i.e. 𝛼 ≫ 1) an estimate of the
smallest diameters may be obtained [3, 302].
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lim
𝛼≫1

𝑀0

𝑀𝑠

≈ 1 − 1

𝛼
= 1 − 6𝜅𝐵𝑇

𝜋𝜇0𝑀𝑑𝐻𝑑3

lim
𝛼≪1

𝑀0

𝑀𝑠

≈ 𝛼

3
=
𝜋𝜇0𝑀𝑑𝐻𝑑

3

18𝜅𝐵𝑇

(2.21)

With the use of a magnetometer, this method leads to estimates concerning the size range
to which ferrofluid magnetic nanoparticles may belong [70], other methods such as transmission
electron microscopy, atomic force microscopy and forced Rayleigh scattering of light can also be
used [303, 70].

The prior model for describing magnetic fluids’ equilibrium magnetization does not account
for magnetic dipole-dipole interactions. In more concentrated regimes, the correct behavior of
the suspension’s equilibrium magnetization is predicted by higher-order asymptotic solutions, as
the one proposed in Ivanov and Kuznetsova [34] that takes into consideration the interactions of
dipole moments among triplets of particles. It corresponds to a second-order correction in 𝜑 of
Langevin’s equation.

𝑀0 = 𝑀𝑠

[︁
ℒ + 𝐸𝜆𝜑+

(︀
𝐹 +𝐺

)︀
𝜆2𝜑2

]︁ (2.22)

In Eq. (2.22),ℒ,𝐸, 𝐹 and𝐺 are functions of 𝛼, whereℒ is the well known Langevin function.
The dipole’s coupling parameter 𝜆 is a non-dimensional number responsible for accounting for the
dipole-dipole interactions, calculated from the ratio of the interparticle interaction of twomagnetic
particles in contact to thermal energy, defined in Eq. (1.13). Typical values of 𝜆 range from 0.04 < 𝜆
< 4.5, depending on the particle’s size and the fluid’s temperature.

ℒ(𝛼) = coth(𝛼) − 1

𝛼
(2.23)

𝐸(𝛼) =

(︃
8𝜋

𝛼

)︃
ℒ(𝛼)

[︃
− 𝛼 csch2(𝛼) +

1

𝛼

]︂
(2.24)
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𝐹 (𝛼) =

(︃
32𝜋2

𝛼2

)︃
ℒ2(𝛼)

[︃
2𝛼2 csch2(𝛼) coth(𝛼) − 2

𝛼

]︂
(2.25)

𝐺(𝛼) =

(︃
4𝜋2

𝛼2

)︃
ℒ(𝛼)

[︃
− 𝛼 csch2(𝛼) +

1

𝛼

]︂2 (2.26)

𝜆 =
𝜇0𝑚

2

4𝜋𝑑3𝜅𝐵𝑇
(1.13 revisited)

In Eqs. (2.24), (2.25) and (2.26), 𝑐𝑠𝑐ℎ stands for the hyperbolic cosecant function.
It is still up to debate a proper way of incorporating the role of particle’s interactions in non-

equilibrium magnetization dynamics. Some works argue that they should be incorporated in the
equilibrium relaxation term in the magnetization equation by using higher-order asymptotic mod-
els [34], as the one presented in Eq. (2.22), while other works claim that thy must be incorporated
in the form of a configurational stress tensor that deals with the magnetoviscous effect directly
[45], using hybridmodels that mix Langevin Dynamics with classical Computational Fluid Dynamics
techniques [46]. Recently, de Carvalho and Gontijo [46] comparedmagnetization profiles obtained
through CFD techniques and Langevin dynamics. Even though the shapes of the magnetization
profiles were remarkably similar, the authors attributed the discrepancies among the results due
to the non-prediction of the dipolar interactions effects by the studied magnetization models in
non-equilibriumphysical regimes, however, they indicated that further investigations needed to be
done. In this particular work, the effects of the dipolar interactions are accounted by incorporating
them into the predicted equilibrium magnetization [34], according to Eq. (2.22).

Whenmagnetic fluids are not at rest and the magnetization is not in equilibrium due to time
transients or time varying magnetic fields, a magnetization evolution equation is needed in order
to fully describe the physics of the flow [70]. As there is no corresponding conservation law for
magnetization, unlike energy and momentum, from the formal phenomenological thermodynam-
ics the magnetization equations are ill defined [44]. In the scientific realm of ferrohydrodynamics,
magnetization models have been the subject of several scientific publications. At least five models
for the magnetization relaxation have been proposed in the literature [26, 42, 40, 43, 24]. These
models have several differences in terms of accuracy and limitations in their validity [58]. They also
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lead to drastically different predictions for the dependence of the magnetoviscosity on amplitude
and frequency of an applied oscillating magnetic field [54].

In this work, three distinct models are used, which have proven to be capable of describing
the magnetization dynamics of magnetic fluids in different regimes, two of them derived phe-
nomenologically [26, 40] and the other one by using an effective-field method (EFM) [42]. Before
presenting the aforementioned magnetization models, it is important to characterize the relax-
ation time 𝜏 it takes for each magnetic nanoparticle with magnetic moment 𝑚 to align 𝑚 with
𝐻 when it experiences a torque 𝜇0𝑚 × 𝐻 . Since the particles’ relaxation time is governed by
the process with the shortest relaxation time, the small particles (magnetically weak particles) will
follow the Néel process while the large ones (magnetically hard particles) will follow the Brow-
nian manner [62]. The critical diameter on which the relaxation behavior becomes Brownian is
𝑑 ≈ 13𝑛𝑚, in a way that only magnetically hard particles will contribute to the rotational viscos-
ity effect [62]. In the magnetization models presented below, the particles are assumed to be rigid
magnetic dipoles whose reorientation is only possible with the rotation of the particles themselves
[21], and therefore 𝜏 = 𝜏𝐵. In addition, in this particular work, ferrofluids consisted of magnetite
nanoparticles with average diameter 𝑑 = 13𝑛𝑚 are considered.

The first presented model was derived phenomenologically in Shliomis [26] as a generaliza-
tion of the Debye relaxation equation [304] in the case of spinning magnetic grains [21].

𝜕𝑀

𝜕𝑡
+ (𝑣 · ∇)𝑀 =

1

2
𝜉 ×𝑀 − 1

𝜏
(𝑀 −𝑀0) − 𝜇0

6𝜂𝜑
[𝑀 × (𝑀 ×𝐻)] (2.27)

Equation (2.27) is valid in weakly non-equilibrium situations, when in small vorticities, for
an arbitrary intensity of 𝛼 and small values of Ω𝜏 [21]. Numerical and analytical solutions of the
Fokker-Planck equation have corroborated the applicability of Eq. (2.27) for Ω𝜏 ≪ 1 [305, 306].
Apart from the presented validations of this model, Felderhof [307] claims that it does not apply
in concentrated regimes and has limited validity in dilute regimes.

Using irreversible ferrofluid thermodynamics with hydrodynamics and the complete set of
Maxwell’s equations, a relaxation model for magnetization, which is closely related but not identi-
cal to the model of Eq. (2.27) [26], was proposed in Felderhof and Kroh [43], Felderhof [39]. How-
ever, it is presented here for illustrative purposes only, as this equation will not be used in our
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studies, since Shliomis [21, 308] states that it leads to an incorrect rotational viscosity limit value
when the non dimensional magnetic field 𝛼 becomes too large. In addition, rotational measure-
ments under the action of DC magnetic fields applied perpendicular to Poiseuille flow [309] are in
line with the result of the first model - Eq. (2.27) - [26] and differ from that of Felderhof and Kroh
[43] - Eq. (2.28) -. Similar measurements, however, with alternating magnetic fields [310] were
in qualitative agreement with the rotational viscosity of the the first model - Eq. (2.27) - [26], al-
though a frequency-dependent adjustment parameter was used to successfully fit theory and the
experiment. This model is presented in Eq. (2.28).

𝜕𝑀

𝜕𝑡
+ (𝑣 · ∇)𝑀 =

1

2
𝜉 ×𝑀 −𝑀(∇ · 𝑣) + 𝛾𝐻(𝐵 −𝐵′) (2.28)

In Equation (2.28), 𝛾𝐻 is a relaxation rate [39] and 𝐵′ = 𝐵 − 1
𝑐
(𝑣 × 𝐸) is in the local rest

frame moving with velocity 𝑣 with respect to the laboratory frame.𝐸 is the electric field and 𝑐 is
the speed of light [43].

The second model used in this work is a more precise magnetization equation that was de-
rived microscopically from the Fokker-Planck equation by the implementation of an effective-field
method (EFM) [42], derived for dilute ferrofluids in an effective field approximation for the orienta-
tional distribution function [54]. Out of equilibrium, the magnetization𝑀 is no longer a function
of the field𝐻 [44], however, the model consists in considering an arbitrary magnetization𝑀 as
an equilibrium one in a certain especially prepared effective field𝐻𝑒 [40]. The effective field𝐻𝑒

is related to the non-equilibrium magnetization𝑀 through the equilibrium relation [21]:

𝑀 = 𝑀𝑠ℒ(𝛼𝑒)
𝛼𝑒

𝛼𝑒
(2.29)

The dimensionless effective field𝛼𝑒 is determined by:

𝛼𝑒 =
𝜇0𝑚𝐻𝑒

𝜅𝑇
(2.30)

The dimensionless effective field𝛼𝑒 tends to the dimensionless true field𝛼 as the magneti-
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zation𝑀 - Eq. (2.29) - relaxes to its equilibrium value𝑀0 - Eq. (2.19) - [21], through the relaxation
equation [42]:

𝜕𝑀

𝜕𝑡
+ (𝑣 · ∇)𝑀 =

1

2
𝜉 ×𝑀 −

[︁
𝛼2
𝑒 − (𝛼 ·𝛼𝑒)

]︁
𝜏𝛼2

𝑒

𝑀 −

[︁
𝛼𝑒 − ℒ(𝛼𝑒)

]︁
6𝜂𝜑𝛼𝑒ℒ2(𝛼𝑒)

𝑀 × (𝑀 ×𝐻) (2.31)

For the calculation of the effective field, the 𝒪(𝜑2) asymptotic model of Ivanov and
Kuznetsova [34] was considered using the following relation𝐻𝑒 = 𝐻𝑒𝑀/𝑀0, which comes from
Eq. (2.29), where𝑀0(𝛼𝑒, 𝜆, 𝜑) is the equilibrium magnetization analogous to the model proposed
in Ivanov and Kuznetsova [34], since𝛼𝑒 can be defined as𝛼𝑒 = 𝛼𝐻𝑒

𝐻
. This process is done iteratively

from a numerical implementation perspective.
Equation (2.31) describes very well real magnetic fluids for any values of 𝛼 and Ω𝜏 [40], and

its use has been corroborated by experiments and direct numerical methods [20, 59, 32, 44]. It is
clear that the potential of microscopic theory is much greater than that of macroscopic approach
[44], as Eq. (2.31) guarantees the correct description of magnetization even far from equilibrium
Ω𝜏 ≫ 1 [40]. Equation (2.31) also provides a very good approximation to the results of exact
solution of the Fokker–Planck equation [306] and to the steady state magnetoviscosity in dilute
ferrofluids [54], in addition to agreement to computer simulations of the Brownian dynamics of
magnetic grains [311, 312]. However, according to Felderhof [54], this equation may not describe
the relaxation behavior in dense ferrofluids correctly.

The last model used in this work consists of another phenomenological equation derived
from irreversible thermodynamics [21].

𝜕𝐻𝑒

𝜕𝑡
+ (𝑣 · ∇)𝐻𝑒 =

1

2
𝜉 ×𝐻𝑒 −

(𝐻𝑒 −𝐻)

𝜏
− 𝜇0

6𝜂𝜑
[𝐻𝑒 × (𝑀 ×𝐻)] (2.32)

Equation (2.32) along with Eq. (2.29) determines the magnetization 𝑀 in an implicit form,
with the effective field 𝐻𝑒 as the parameter [21]. Equation (2.32) gives a correct quantitative
description of magnetization even far from equilibrium, when Ω𝜏 ≫ 1. It also coincides with
Eq. (2.27) in the limit of low field (𝛼 ≪ 1) when the true magnetization 𝑀 and its equilibrium
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value𝑀0 can be written as [40]:

𝑀 = 𝜒𝐻𝑒; 𝑀0 = 𝜒𝐻 (2.33)

In Eq. (2.33), 𝜒 is the initial magnetic susceptibility. However, as the shear rate is increased,
a discrepancy between Eqs. (2.32) and (2.27) arises [40]. So, in the low magnetic field limit, the
magnetization is approximately linear with H. The magnetic susceptibility can then be written as
[70]:

𝑀0

𝐻
= 𝜒; 𝜒 =

𝜇0𝑚
2𝑁

3𝜅𝐵𝑇
=
𝜋𝜑𝜇0𝑀

2
𝑑𝑑

3

18𝜅𝐵𝑇
(2.34)

In Equation (2.34), the initial magnetic susceptibility 𝜒 is related to magnetic permeability as
𝜇 = 𝜇0(1 +𝜒) [70]. By plugging some representative typical ferrofluid values, one obtain, at room
temperature 𝑇 = 298𝐾 for magnetite nanoparticles with typical diameter 𝑑 = 10𝑛𝑚 and volume
fraction 𝜑 = 4%, 𝜒 ≈ 0.424, 𝜇 ≈ 1.79 × 10−6𝑁/𝐴2 and relative permeability 𝜇

𝜇0
= 1.424, which

is larger than that of a neodymium magnet ( 𝜇
𝜇0

= 1.05 [313]).
When the initial magnetic permeability is large, the interaction betweenmagnetic moments

is quite appreciable in a way that Eq. (2.34) no longer holds [70]. For the case of monodispersed
particles, Shliomis [36] uses a method similar to the used in the Debye-Onsager theory of polar
fluids [70] to replace Eq. (2.34) with:

𝜒(2𝜒+ 3)

𝜒+ 1
=
𝜇0𝑚

2𝑁

𝜅𝐵𝑇
=
𝜋𝜑𝜇0𝑀

2
𝑑𝑑

3

6𝜅𝐵𝑇
(2.35)

Following the presentation of magnetization models, Eq. (2.32) is also in an excellent agree-
ment in the low and high field limits with Eq.(2.31), and does not deviate much in the entire 𝛼
region [40]. According to Krekhov et al. [16], the application of the first - Eq. (2.27) - and third -
(Eq. 2.32) - models is limited to small amplitudes of an oscillating magnetic field and weak flow
vorticities.
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Finally, another important magnetization model but not used in this work is the one derived
in Müller and Liu [24] with standard non-equilibrium thermodynamics with magneto-dissipative
effects. The main advantage of this approach is that it does not need any microscopical assump-
tions about the fluid’s structure, as the properties of the fluid are included in material parameters
which have to be experimentally determined [62]. This equation, in a reduced form, is given by:

𝜕𝑀

𝜕𝑡
+ (𝑣 · ∇)𝑀 =

1

2
(𝜉 ×𝑀 ) +

1

𝜏
(𝐻 −𝐻𝑒𝑞) − 𝜆1(∇ · 𝑣)𝑀 − 𝜆2[(∇𝑣) + (∇𝑣)𝑇 ] (2.36)

First of all, the model presented in Eq. (2.36) contains the term associated with appearance
of rotational viscosity (i.e. vector product of vorticity andmagnetization) [62] which is also present
in all models presented so far. In addition to that, two new terms appear, one associated to the
divergence of the velocity field (sound propagation in ferrofluids) and other related to the the sym-
metric velocity gradient [62]. Experiments measuring the parameter 𝜆2 [314] had been conducted
and the value 𝜆2 = 0.2 was found, contradicting the expected 𝜆2 = 0 value from the model pre-
sented in Eq. (2.27), giving a clear proof for the validity of the model presented in Eq. (2.36). Good
results relating the found 𝜆2 = 0.2 parameter tomean particle chain length 𝑛̃ predicted in Zubarev
et al. [213] were also reported [62]. Other experiments carried out with cobalt-based ferrofluid
showed that fluids with a strong tendency to form chains show a 𝜆2 parameter that depends on
the shear rate, corresponding well to the findings of rheological measurements [62]. Müller and
Liu [24] claims that the models presented in Eqs. (2.27) and (2.31) are special cases of their model
- Eq. (2.36).

Once again, it is important to emphasize that the magnetization models used in this work
were those proposed in Shliomis [26], Martsenyuk et al. [42], Shliomis [40], given, respectively, by
the Eqs. (2.27), (2.31) and (2.32).

A theoretical and quite satisfactory closed form solution for the particles’ magnetization was
obtained in Hatzikonstantinou and Vafeas [315], with the main assumption of immediate orien-
tation of the magnetization vector 𝑀 in a steady magnetic field with relatively small gradients
[58] (i.e. negligible magnetic inertia 𝐷𝑀/𝐷𝑡 in comparison to other terms in the magnetization
equation), using the magnetization model proposed in Shliomis [26]. This solution was later con-
fronted in Papadopoulos et al. [58] with direct numerical simulations of the governing equations,
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where it has been shown that themodel proposed is accurate for bothmagnetization components,
and could be used in cases of non-uniform steady magnetic fields, especially for strong magnetic
fields with weak gradients [58], as opposed to the steady and spatially uniformmagnetic field that
justifies the the null magnetic inertia hypothesis. In this case, estimations for the magnetization
values could bemade without the need for solving amagnetization equation [58]. However, in this
particular, the whole set of ferrofluid’s dynamics equations is solved.

The magnetization models used in this work are only valid for dilute regimes. In the case of
dense ferrofluids, the equations describing magnetization relaxation are nor well established, as
a detailed kinetic theory allowing for a macroscopic calculation of the magnetization relaxation
is not available [54]. For more details regarding the differences among the magnetization models
presented, please refer to Shliomis [40]. It is also important to mention that the described mathe-
matical modeling behind ferrofluids’ physics was discussed in detail in Rosensweig [3], Odenbach
[4], Shliomis et al. [20], Shliomis [21].

2.1.4 Ferrohydrodynamic Bernoulli equation

A special case of the ferrohydrodynamic equations is that of incompressible Newtonian fer-
rofluids undergoing irrotational flow at constant temperature conditions. In this particular case,
the equations are reduced to the so-called ferrohydrodynamic Bernoulli equation, which is anal-
ogous to the classical hydrodynamic Bernoulli equation however accounting for magnetic effects.
In steady state it reads [3]:

𝑝+
1

2
𝜌𝑣2 + 𝜌𝑔ℎ− 𝜇0𝑀𝐻 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (2.37)

In Equation (2.37), ℎ is the height above a reference plane and the magnetic term is the
magnetic contribution to fluid pressure [299, 70]. Even though Eq. (2.37) is rather simple and sim-
plified, it is a powerful weapon to describe simple yet practical phenomena, such as magnetic
self-levitation in a ferrofluid, ferrofluid seals, magnetic nozzles, shape of ferrofluid meniscus, flow
and instabilities of a ferrofluid jet and sink-float separations [3, 316, 14, 31].
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2.1.5 Rotational viscosity

The phenomenon of rotational viscosity 𝜂𝑟, in which the viscosity of the ferrofluid changes
when in the presence of a magnetic field due to the impediment of particle rotation along vor-
ticity by magnetic torques, has been widely described in section 1.3.1. It represents the difference
between the ferrofluid’s effective viscosity when in the presence of a magnetic field and the vis-
cosity given by the Einstein expression - Eq. (1.15) - [63]. In Poiseuille or Couette flow subjected to
a transversal magnetic field𝐻 - Fig. (1.1) -, rotational viscosity 𝜂𝑟 may be expressed as [40]:

𝜂𝑟 =
𝑀𝑥𝐻

4Ω
(2.38)

For small values of Ω𝜏 ,𝑀𝑥 is also small and 𝜂𝑟 does not depend on flow vorticity [40]. Ac-
cording to all magnetization models presented in Eqs. (2.27), (2.31) and (2.32),𝑀𝑥 is proportional
to Ω𝜏 [40].

In the configurationwhere𝐻 is perpendicular to the flow, Eqs. (2.31) and (2.32) admit steady
solutions inwhich the effective field𝛼𝑒 tracks the true field𝛼with lag angle𝛽. In an analogousway,
Eq. (2.27) admits a steady solution but considering a special created variable 𝛼′

𝑒 = 𝛼𝑀
𝑀𝑠ℒ(𝛼) [40].These considerations lead us to the following relations for the rotational viscosity in all models

presented [40]:

∘ First model [26]:
𝜂𝑟 =

3

2
𝜂𝜑

𝛼′2
𝑒 ℒ(𝛼)

2𝛼 + 𝛼′2
𝑒 ℒ(𝛼)

;
√︀
𝛼2 − 𝛼′2

𝑒 =
2Ω𝜏𝛼𝛼′

𝑒

2𝛼 + 𝛼′2
𝑒 ℒ(𝛼)

(2.39)

∘ Second model [42]:
𝜂𝑟 =

3

2
𝜂𝜑

𝛼𝑒ℒ2(𝛼𝑒)

𝛼𝑒 − ℒ(𝛼𝑒)
;
√︀
𝛼2 − 𝛼2

𝑒 =
2Ω𝜏𝛼𝑒ℒ(𝛼𝑒)

𝛼𝑒 − ℒ(𝛼𝑒)
(2.40)

∘ Third model [21]:
𝜂𝑟 =

3

2
𝜂𝜑

𝛼𝑒ℒ(𝛼𝑒)

2 + 𝛼𝑒ℒ(𝛼𝑒)
;
√︀
𝛼2 − 𝛼2

𝑒 =
2Ω𝜏𝛼𝑒

2 + 𝛼𝑒ℒ(𝛼𝑒)
(2.41)
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Due to the small size of the particles, the relaxation time 𝜏 is 𝜏 < 10−4 even for high viscous
magnetic fluids, in a way that the conditionΩ𝜏 ≪ 1 is usually satisfied [40]. Having that in mind, it
is easy to see that in such cases 𝛼𝑒 = 𝛼 or 𝛼′

𝑒 = 𝛼, leading to the following relations for rotational
viscosity as a function of the dimensionless field 𝛼 when in the limit Ω𝜏 ≪ 1 [40]:

∘ First and third models (phenomenological equations):
𝜂𝑟(𝛼) =

3

2
𝜂𝜑

(︃
𝛼− 𝑡𝑎𝑛ℎ(𝛼)

𝛼 + 𝑡𝑎𝑛ℎ(𝛼)

)︃
(2.42)

∘ Second model (EFM equation):
𝜂𝑟(𝛼) =

3

2
𝜂𝜑

(︃
𝛼ℒ2(𝛼)

𝛼− ℒ(𝛼)

)︃
(2.43)

In Eq. (2.42), 𝑡𝑎𝑛ℎ stands for the hyperbolic tangent function. A quick analysis of Eqs. (2.42)
and (2.43) shows that in the absence of a magnetic field, when an individual particle is able to
roll freely along the flow, in a torque free configuration (𝜔 = Ω), the rotational viscosity is zero
𝜂𝑟(0) = 0 [21], as expected. In a similar manner, when the field is sufficiently large (𝛼 ≫ 1) that
it guarantees the constancy of particle’s orientation, the rolling of the particle is substituted by
slipping, and the rotational viscosity reaches a saturation value 𝜂𝑟(∞) = 3

2
𝜂𝜑 [21].

Together, Eqs. (2.1), (2.16) and one among equations (2.27), (2.31) or (2.32) describe the
physics of magnetic fluids flow under conditions of null spin viscosity (𝜂′).

2.1.6 Vorticity-streamfunction formulation in two-dimensional flows

In the present work, the aforementioned governing equations were solved through the well-
known vorticity-streamfunction formulation [317, 318]. As it deals with a two-dimensional flow
confined in two parallel plates - Fig. (1.1) -, it is possible to define a streamfunction 𝜓 as a direct
function of the velocity field 𝑣 = 𝑣𝑥𝑒𝑥 + 𝑣𝑦𝑒𝑦, where [301]:
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𝑣𝑥 =
𝜕𝜓

𝜕𝑦
; 𝑣𝑦 = −𝜕𝜓

𝜕𝑥
(2.44)

In Equation (2.44), 𝑣𝑥 and 𝑣𝑦 are the horizontal and vertical components of the velocity field,
respectively. From the definition of flow’s vorticity (𝜉 = ∇×𝑣), a Poisson equation for the stream-
function is readily obtained, as 𝜉 =

(︁
𝜕𝑣𝑦
𝜕𝑥

− 𝜕𝑣𝑥
𝜕𝑦

)︁ [301]:
∇2𝜓 = −𝜉 (2.45)

2.1.7 Non-dimensional equations

The governing equations have been made non-dimensional with the use of some reference
scales, shown in Eq. (2.46):

𝑥̃ =
𝑥

ℎ
; 𝑦 =

𝑦

ℎ
; 𝑡 =

𝑡

ℎ/𝑈
; 𝑝 =

𝑝

𝜌𝑈2
; 𝑀̃ =

𝑀

𝑀𝑠

;

𝑢̃ =
𝑢

𝑈
; ∇̃ = ℎ∇; 𝐻̃ =

𝐻

𝐻0

; 𝜉 =
ℎ

𝑈
𝜉; 𝐻̃𝑒 =

𝐻𝑒

𝐻0

(2.46)

In Equation (2.46), ℎ = 2𝑎 is the spacing between the parallel plates,𝐻0 is a reference field
with the same magnitude as the applied magnetic field and 𝑈 is the mean Poiseuille velocity. For
clarity in presenting the non-dimensional equations, the tildes ∼ were omitted and the obtained
non-dimensional governing equations are presented below.

Linear momentum equation

𝜕𝑣

𝜕𝑡
+ (𝑣 · ∇)𝑣 = −∇𝑝+

1

𝑅𝑒
∇2𝑣 +

3𝜑𝛼

𝑃𝑒𝑅𝑒

[︁
(𝑀 · ∇𝐻)

]︁
+

3

2

𝜑𝛼

𝑃𝑒𝑅𝑒

[︁
∇× (𝑀 ×𝐻)

]︁ (2.47)
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Vorticity equation for a two-dimensional problem

𝜕𝜉

𝜕𝑡
+ (𝑣 · ∇)𝜉 =

1

𝑅𝑒
∇2𝜉 +

3𝜑𝛼

𝑃𝑒𝑅𝑒

{︁
∇×

[︀
(𝑀 · ∇)𝐻

]︀}︁
− 3

2

𝜑𝛼

𝑃𝑒𝑅𝑒

[︁
∇2(𝑀 ×𝐻)

]︁ (2.48)

Relaxation magnetization equations

∘ First model - Phenomenological equation:
𝜕𝑀

𝜕𝑡
+ (𝑣 · ∇)𝑀 =

1

2
𝜉 ×𝑀 − 1

𝑃𝑒
(𝑀 −𝑀0) − 1

2

𝛼

𝑃𝑒
[𝑀 × (𝑀 ×𝐻)] (2.49)

∘ Second model - EFM equation:
𝜕𝑀

𝜕𝑡
+(𝑣 ·∇)𝑀 =

1

2
𝜉×𝑀− 1

𝑃𝑒

[︁
𝛼2
𝑒 − (𝛼 ·𝛼𝑒)

]︁
𝛼2
𝑒

𝑀− 1

2

𝛼

𝑃𝑒

[︁
𝛼𝑒 − ℒ(𝛼𝑒)

]︁
𝛼𝑒ℒ2(𝛼𝑒)

𝑀×(𝑀×𝐻)

(2.50)
∘ Third model - Phenomenological equation:

𝜕𝐻𝑒

𝜕𝑡
+ (𝑣 · ∇)𝐻𝑒 =

1

2
𝜉 ×𝐻𝑒 −

1

𝑃𝑒
(𝐻𝑒 −𝐻) − 1

2

𝛼

𝑃𝑒
[𝐻𝑒 × (𝑀 ×𝐻)] (2.51)

In Eqs. (2.47), (2.48), (2.49), (2.50) and (2.51) one notices the presence of non-dimensional
physical parameters, defined as follows:

𝑅𝑒 =
𝜌𝑈ℎ

𝜂
; 𝑃𝑒 =

𝜏𝐵
𝜏𝑓𝑙𝑜𝑤

=
𝜏𝐵𝑈

ℎ
; (2.52)

The classical Reynolds number Re is a measurement between the relative intensities of iner-
tial and viscous effects and the Péclet number Pe represents the relative importance of particles
and flow time scales.
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2.1.8 The case of non-zero spin viscosity

As described, the effect of spin viscosity, even though small, has been reported to have
influence in ferrofluid dynamics in Felderhof [55, 172], Zaitsev and Shliomis [48], Chaves et al.
[295, 296], Torres-Díaz and Rinaldi [297], Torres-Diaz and Rinaldi [298], Torres-Diaz et al. [299].
Therefore, the interested reader who wants to simulate ferrofluid flow dynamics considering the
effects of the spin viscosity (the antisymmetric part of the stress tensor), is briefly referred to the
presented below set of ferrohydrodynamic equations along with themost common boundary con-
dition used for the spin velocity.

1. Continuity equation:

∇ · 𝑣 = 0 (2.53)
2. Linear momentum equation [63]

𝜌

(︃
𝜕𝑣

𝜕𝑡
+𝑣·∇𝑣

)︃
= −∇𝑝+𝜌𝑔+𝜇0(𝑀 ·∇)𝐻+2𝜁(∇×𝜔)+(𝜆+𝜂−𝜁)∇(∇·𝑣)+(𝜂+𝜁)∇2𝑣

(2.54)
Here, 𝜆 is the usual bulk viscosity.

3. Internal angular momentum

𝐼

[︃
𝜕𝜔

𝜕𝑡
+ (𝑣 · ∇)𝜔

]︃
= 𝜇0(𝑀 ×𝐻) + 2𝜁(∇× 𝑣 − 2𝜔) + (𝜆′ + 𝜂′)∇(∇ · 𝜔) + 𝜂′∇2𝜔

(2.10 revisited)
4. Magnetization relaxation equation

Phenomenological equation from Shliomis [26]

𝜕𝑀

𝜕𝑡
+ (𝑣 · ∇)𝑀 =

1

2
𝜉 ×𝑀 − 1

𝜏
(𝑀 −𝑀0) − 𝜇0

6𝜂𝜑
[𝑀 × (𝑀 ×𝐻)] (2.27 revisited)
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Irreversible thermodynamics model from Felderhof and Kroh [43]
𝜕𝑀

𝜕𝑡
+ (𝑣 · ∇)𝑀 =

1

2
𝜉 ×𝑀 −𝑀(∇ · 𝑣) + 𝛾𝐻(𝐵 −𝐵′) (2.28 revisited)

Effective field model from Martsenyuk et al. [42]

𝜕𝑀

𝜕𝑡
+ (𝑣 · ∇)𝑀 =

1

2
𝜉 ×𝑀 −

[︁
𝛼2
𝑒 − (𝛼 ·𝛼𝑒)

]︁
𝜏𝛼2

𝑒

𝑀 −

[︁
𝛼𝑒 − ℒ(𝛼𝑒)

]︁
6𝜂𝜑𝛼𝑒ℒ2(𝛼𝑒)

𝑀 × (𝑀 ×𝐻)

(2.31 revisited)
Phenomenological equation from Shliomis [40]

𝜕𝐻𝑒

𝜕𝑡
+ (𝑣 · ∇)𝐻𝑒 =

1

2
𝜉 ×𝐻𝑒 −

(𝐻𝑒 −𝐻)

𝜏
− 𝜇0

6𝜂𝜑
[𝐻𝑒 × (𝑀 ×𝐻)] (2.32 revisited)

Irreversible thermodynamics model from Müller and Liu [24], here not presented in its
fully form

𝜕𝑀

𝜕𝑡
+ (𝑣 · ∇)𝑀 =

1

2
(𝜉 ×𝑀 ) +

1

𝜏
(𝐻 −𝐻𝑒𝑞) − 𝜆1(∇ · 𝑣)𝑀 − 𝜆2[(∇𝑣) + (∇𝑣)𝑇 ]

(2.36 revisited)

Even though the correct choice of boundary conditions for the spin velocity is still up to
debate [319, 298, 320, 321, 322, 323, 324, 325, 326], the most common is:

𝜔 − 𝜔𝑠 =
𝛾𝜔
2

(∇× 𝑣)𝑏 (2.55)

In Equation (2.55), 𝛾𝜔 is an adjustable coefficient and 𝜔𝑠 represents the angular velocity of
thewall. Here, two cases are considered: 1) that of strong interactions between thewall surface and
the subcontinuum units and 2) that of weak interactions between the wall surface and the fluid.
The first case is represented by the no-spin-slip condition (𝛾𝜔 = 0). The second case is expressed
by the vanishing antisymmetric stress at the wall surface (𝛾𝜔 = 1) [63].
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2.2 Discrete approach

In the discrete approach of the problem, Langevin dynamics is used to solve for each particle
suspended in the magnetic fluid its linear and angular momentum balance equations, which are
based on the Langevin stochastic equation that comes from Newton’s second law of motion ap-
plied to colloidal particles subjected to Brownianmotion [27]. The suspension under consideration
is also subject to a local Couette flow. Once again, it is important to note that the discrete simu-
lations are used in order to recover a continuous magnetization profile obtained through the nu-
merical solution of the ferrohydrodynamic equations presented in the previous section by means
of CFD techniques, covered in section 3.1. After the continuous simulations are performed, the
flow field is divided into local vorticity cells and these are simulated under the Langevin dynamics
scheme, as previously described in section 1.1.

A monodisperse suspension of𝑁 spherical magnetic particles with radius 𝑎 = 𝑑/2 and den-
sity 𝜌𝑠 dispersed in a Newtonian viscous fluid of viscosity 𝜂 and density 𝜌𝑓 at an absolute tem-
perature 𝑇 is studied, as indicated in Fig. (1.3). All particles are large enough to be considered
magnetically hard particles [62], in a way that they will follow the Brownian relaxation process 𝜏𝐵,
in which the particle’s magnetic dipole moment 𝑚 is fixed in the particle and rotates along with
it in the surrounding fluid to align vectors 𝑚 and 𝐻 [62, 70]. Under this scenario, the intrinsic
magnetic timescale for the particle’s dipole moment to rotate 𝜏𝑁 (Néel relaxation time) can be
much larger than the Brownian 𝜏𝐵, defined in Eq. (2.56), and the Stokes timescale 𝜏𝑆 [28], defined
in Eq. (2.56).

𝜏𝐵 =
𝑎2

𝐷
; 𝐷 =

𝜅𝐵𝑇

6𝜋𝜂𝑎
; 𝜏𝑆 =

𝑎

𝑈𝑠
; 𝑈𝑠 =

2𝑎2∆𝜌𝑔

9𝜂
(2.56)

In Equation (2.56), 𝐷 is the Stokes-Einstein Brownian diffusion coefficient [216], 𝑈𝑠 is the
Stokes velocity, ∆𝜌 = (𝜌𝑠 − 𝜌𝑓 ) is the density difference between the particle and the fluid and 𝑔
is the gravitational acceleration [28].

Under the assumed conditions that 𝜏𝑁 ≫ 𝜏𝐵, the effect of magnetic field moment rotation
relative to the particle as a consequence of particle anisotropy is neglected and, since the dipole is
assumed to be fixedwith respect to the particles, the onlymagnetic interactions are those between
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the particles themselves and with the external applied field 𝐻 [28]. It is of extreme importance
to compute the rotational motion of the particles, since it is related to the fluid’s magnetization.
Therefore, the rotational movement, induced by Brownian fluctuations, magnetic dipole-dipole
interactions and by the action of the applied magnetic field, which tends to magnetize the sus-
pension, is considered in this work. Relevant physical properties, such as fluid magnetization, are
calculated based on the particle’s dipolar orientation throughout the time evolution process [27].

In addition, the particles are immersed in a viscous fluid, which brings tomind the quite small
scales involved in the problem. The velocities the particles acquire combined with the viscosity of
the carrier liquid and their extremely small sizes (𝑑 ∼ 10𝑛𝑚) will usually generate a low Reynolds
number (𝑅𝑒 << 1) flow (creeping flow)when theymove. In this particular case,𝑅𝑒 is the particle’s
Reynolds number defined as𝑅𝑒 = 𝜌𝑓𝑎𝑈𝑠/𝜂. Therefore, the particles are subjected to the creeping
flow properties, as instantaneity and time-reversibility [254]. The particle’s inertial relaxation time
is defined as 𝜏𝑖 = 𝑚𝑝/(6𝜋𝜂𝑎), where𝑚𝑝 is the particle’s mass [28]. For a typical magnetite spher-
ical particle with diameter 𝑑 = 13𝑛𝑚 and 𝜌𝑠 ≈ 7874𝐾𝑔/𝑚3 the particle’s mass is extremely low
(𝑚𝑝 = 9.06×10−21𝐾𝑔). This is associated with the low Stokes number 𝑆𝑡 configurations to which
the particles are subjected to, since the Stokes number is defined as 𝑆𝑡 = 𝜏𝑖/𝜏𝑠 = 𝑚𝑝𝑈𝑠/(6𝜋𝜂𝑎

2).
For instance, the sameparticle immersed inwaterwith 𝜌𝑓 ≈ 1000𝐾𝑔/𝑚3 and 𝜂 = 8.9×10−4𝑃𝑎.𝑠,
under 𝑔 = 9.81𝑚/𝑠2 reads 𝑆𝑡 ≈ 9.09 × 10−12. For this reason, in this work particle inertia is ne-
glected. It is important to brieflymention that a small amount of inertia is inserted in the numerical
routine when hydrodynamic interactions are neglected in the simulations. This topic is covered in
section 3.2.6.

Under low Reynolds conditions, when each particle moves, it induces a flow that will reach
other suspended particles. The configuration resembles the presence of several microflows being
generated, producing different local disturbances in each particle. The hydrodynamic interactions
between the particles are then calculated taking into account all these velocity disturbances pro-
duced by themovement of the surrounding particles at the velocity of a single reference particle. If
the particle is adhered to the fluid (i.e. there is no slip), it will move along with the fluid induced by
the other particles. Therefore, the particles are connected on a microscale in a hydrodynamic net-
work, usually called the hydrodynamic interaction network. The flow induced by such movements
is, as alreadymentioned, a creeping flow, in which𝑅𝑒≪ 1. Since the density ratio is usually of first
order 𝜌𝑠/𝜌𝑓 = 𝒪(1) (for instance, formagnetite andwater it reads 𝜌𝑠/𝜌𝑓 ≈ 7.87), the Stokes num-
ber 𝑆𝑡 will also be much smaller than unity, since 𝑆𝑡 = (2/9)𝑅𝑒(𝜌𝑠/𝜌𝑓 ) → 𝑆𝑡 ∼ 𝑅𝑒(𝜌𝑠/𝜌𝑓 ) ≪ 1

[28]. Therefore, the flow is then governed by Stokes’ equations, which, for an incompressible New-
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tonian fluid, the lack of inertia of the fluid leads to a physical balance between pressure gradients
and viscous velocity diffusion, which are the physical mechanisms that govern flow dynamics in-
duced by each of the suspended particles. Stokes’ equations are shown below.

∇ · 𝑣 = 0 (2.53 revisited)

∇𝑝 = 𝜂∇2𝑣 (2.57)

Stokes’ equations are linear and the forces induced in the fluid by the movement of the par-
ticles are proportional to the velocity induced by the particles. To solve these equations, it is then
assumed the presence of a point particle (null volume) immersed in an infinite fluid. Afterwards, a
concentrated force accompanied by a Dirac 𝛿(𝑟) function is applied in the system,meaning the nul-
lity of the force in all the extension of the fluid, except at the point where the particle is located,
in a way that there is a singularity of force due to the presence of the particle. In this scenario,
Eq. (2.57) yields:

𝑓𝛿(𝑟) = −∇𝑝+ 𝜂∇2𝑣 (2.58)

Equation (2.58) is analytically solved in conjunction with Eq. (2.53) using Fourier transform
techniques, leading to the calculation of both pressure and velocity fields for the entire fluid in
the context of a point particle. It is observed in such expressions that both pressure and veloc-
ity, in any part of the fluid, are functions of the forces located on top of a particle that will be
multiplying tensors of disturbance propagation, known as Green tensors. In other words, the dis-
turbance generated by a particle when it moves at a certain point is given by the product of the
force at the position where the particle is by tensors that depend on the decay of the space that
connects the cause (particle’s movement) with the consequence (disturbance generated). There-
fore, by knowing the force acting on each particle and the position occupied by the others, one is
able to calculate all the velocities on the surface of each particle. The information regarding the
configuration of the system as a whole is placed in such tensors, leading to the computation of
the long-range interactions between the particles. In this point it is important to mention that, as
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discussed in section 1.5, the computation of hydrodynamic interactions by using Green’s functions
of incompressible creeping flows [327] leads to well known divergence problems [27], but this will
be covered later in section 2.2.1.

The linearity of the Stokes equations lead to two formulations used to compute the veloc-
ities or forces induced by the interparticle hydrodynamic interactions: 1) mobility formulation -
Eq. (2.59) - and 2) resistance formulation - Eq. (2.60) -. The first is more indicated in the context
of non-massive particles and the later when inertial effects are considered [28]. So to speak, by
using a multipole expansion, the grand resistance matrix relating force, torque and stresslet be-
tween two interacting spherical particles was obtained in Jeffrey and Onishi [328] for low Reynolds
number [63]. For the case of lubrication interactions (in near contact particles), forces and torques
were assessed in different physical scenarios, such as relative shearing motion, both translational
and rotational, and relative squeezing flow, all of themdepending on the relative distance between
the particles’ surfaces [254].

𝑢 = 𝑀 · 𝑓 (2.59)

𝑓 = 𝑀−1 · 𝑢 (2.60)

In Equations (2.59) and (2.60), 𝑢 denotes the velocities of the particles, 𝑀 the Green ten-
sors,𝑀−1 the inverted Green tensors and 𝑓 the forces acting on the particles.

As already mentioned, in this study the particles are considered to be non-massive, since
𝑚𝑝 ∼ 10−21𝐾𝑔. Therefore, the mobility formulation is used. The mobility representation when
one groups together the velocities induced by𝑁 spherical magnetic particles is given in Eq. (2.61).

⎛⎜⎜⎜⎜⎝
𝑢1

𝑢2...
𝑢𝑁

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
𝑀1,1 𝑀1,2 · · · 𝑀1,𝑁

𝑀2,1 𝑀2,2 · · · 𝑀2,𝑁... ... . . . ...
𝑀𝑁,1 𝑀𝑁,2 · · · 𝑀𝑁,𝑁

⎞⎟⎟⎟⎟⎠ ·

⎛⎜⎜⎜⎜⎝
𝑓1

𝑓2...
𝑓𝑁

⎞⎟⎟⎟⎟⎠ (2.61)
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In Equation (2.61), 𝑢1,𝑢2, . . . ,𝑢𝑁 represent the velocities of particles 1, 2, . . . , 𝑁 , respec-
tively. As already mentioned, the second rank mobility tensor 𝑀 𝑖𝑗 , for 𝑖 = 1, . . . , 𝑁 and 𝑗 =

1, . . . , 𝑁 depends on the suspension spacial configuration. In simple words, these tensors connect
the way the particles move, based on how the forces acting on a particle 𝑗 change the velocities
of a different particle 𝑖. Also, 𝑓 𝑖 represents the sum of all non-hydrodynamic forces acting on the
reference particle 𝑖.

2.2.1 Periodic hydrodynamic interactions

In the previous section, it was shown that in order to obtain the solutions for the Stokes
equations - Eq. (2.53) and (2.57) - a point particle (null volume) was considered to be immersed in
an infinite fluid. To incorporate the effects of a finite sized particle in such solutions, a multipole
expansion (Taylor series expansion around the center of the particle) is applied in the Green tensor,
leading to the so-called Rotne-Prager tensor [268]. The tensor proposed in Rotne and Prager [268]
is used for computing the long-range hydrodynamic interactions between solid spherical particles
in a particulate system, given by:

𝑀 𝑖𝑗 =
1

8𝜋𝜂

[︃
1

𝑟
(𝐼 + 𝑟̂𝑟̂) +

2𝑎2

3𝑟3
(𝐼 − 3𝑟̂𝑟̂)

]︃
(2.62)

In Equation (2.62), 𝐼 is the identity tensor, 𝑟 =
[︁
(𝑥𝑗 − 𝑥𝑖)

2 + (𝑦𝑗 − 𝑦𝑖)
2 + (𝑧𝑗 − 𝑧𝑖)

2
]︁ is the

relative spacing between particle 𝑖whose center is located in the coordinates𝑥𝑖 = (𝑥𝑖,𝑥,𝑥𝑖,𝑦,𝑥𝑖,𝑧)

and particle 𝑗, whose center is located in the coordinates 𝑥𝑗 = (𝑥𝑗,𝑥,𝑥𝑗,𝑦,𝑥𝑗,𝑧). Also, the unit
vector 𝑟̂ = 𝑟/𝑟 points out in the centerline direction of two independent suspended particles.

It is important to mention that, due to the far-reaching nature of hydrodynamic interactions,
which decay spatially in the form (1/𝑟), the calculation of the sums of these interactions in a direct
way, using the Rotne-Prager tensor - Eq. (2.62) -, leads to divergent numerical results for the mean
transport properties of the suspension. These divergences are associated with the relatively small
sizes of the numerical suspension. This is a classic problem found in the study of particulate sys-
tems that take into account long-range interactions, which in turn slowly decay as the separation
distance is increased. Therefore, in order to compute the hydrodynamic interactions as accurately
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as possible, the so-called Ewald sum technique applied to the Rotne-Prager tensor [266, 268, 269]
is used, which takes into account the suspension with periodic boundary conditions, so that it is
replicated in all spaces. In a nutshell, in order to reduce the𝑁 number of particles necessary for a
reliable computation of suspension properties and in order to accelerate the convergence of the
sum of the interactions between the particles, a finite number of particles𝑁 is used and they are
replicated periodically within a finite volume 𝑉 . This periodic sum, in turn, is efficiently calculated
using a well-known technique, proposed by Ewald-Beenakker [266, 269]. In this way, the parti-
cles considered are distributed in a periodic system composed of a lattice structure. For the prob-
lem under analysis, a central physical cell is considered and another 124 image cells are arranged
around the central cell to form the computational network. The surrounding cells (124 in this case)
contain replicated images of the particles contained in the central cell. Through this approach,
it is possible to accelerate the convergence of the sums of long-range interactions between the
particles across the computational network, which, in the case of this particular problem, interact
bothmagnetically and hydrodynamically. In this way, it is possible to carry out dynamic simulations
that, besides being accurate, are also computationally efficient. By this approach, the numerical
simulations performed do not require the presence of physical walls [28].

In order to better illustrate the concept of the periodic cells, it is presented in Fig. (2.2) a
three-dimensional perspective view of an initial arbitrary simulation volume of the suspension
under analysis as well as a side view of one of the typical periodic structures.

It is important to note that the central cell is the physical cell that contains the reference
particles, the number of which may vary in the simulations. All other cells shown are periodic and
exactly identical images of the central physical cell, containing the same number of particles. Thus,
to calculate the velocity disturbances induced in each of the 𝑖 particles within the central refer-
ence cell, it is necessary to calculate not only the interactions between these and other particles
located in the reference cell, but also the interactions among them with all the particles inserted
in the image cells along the entire periodic spatial network. Even though the interactions must be
computed between the particles of the central cell with all others of the periodic cells, when us-
ing this technique there is no need to calculate the interactions that occur between the particles
inserted in the images. For this reason, when considering𝑁 particles in the central cell and𝑁𝑐 in
the imaging cells, the computational cost will not be𝒪[(𝑁 ×𝑁𝑐)2], but𝒪[(𝑁 ×𝑁 ×𝑁𝑐)] [28].

To model the simulation box, the center positions of 𝑁 particles within a unit cell denoted
by the set of vectors 𝐶𝑁 = (𝑥1, . . . ,𝑥𝑁) are considered [269, 262, 271, 28]. It is assumed
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Figure. 2.2: Left: typical representation of a three-dimensional simulation box of a suspension withperiodic boundary conditions. Right: side view of one of the typical periodic structures. In thisparticular image, each cell has 20 particles, of which, considering the total amount of 125 cells (1physical + 124 periodic), lead to the representation of an infinite suspension with 2500 particles.Images kindly provided by Dr. Rafael Gontijo, from Gontijo [272].
the existence of a periodic lattice ℒ = (𝑥𝛾1, . . . ,𝑥𝛾𝑁) = (𝑥1 + 𝑥𝛾, . . . ,𝑥𝑁 + 𝑥𝛾), where
𝑥𝛾 = (𝛾1𝑑, 𝛾2𝑙, 𝛾3ℎ) and (𝛾1, 𝛾2, 𝛾3 = 0,±1,±2, . . .) denotes the lattice points, which are ob-
tained through a linear combination of the base orthogonal vectors 𝑑𝑒1, 𝑙𝑒2 and ℎ𝑒3. In these
relations, 𝑑, 𝑙 and ℎ correspond to the lengths of the edges of each of the cubic lattice cells, also
𝛾 = {𝛾1, 𝛾2, 𝛾3} denotes the set of integer coefficients named as cell indices and finally, the set of
vectors {𝑒1, 𝑒2, 𝑒3} is the canonical base. In this technique, not only latticesℒ in the physical space
are considered, but also numerical lattices ℒ̂ in the reciprocal (wavenumber) space. In this context,
the reciprocal lattice vectors 𝑘𝜁 are written in the manner 𝑘𝜁 = 2𝜋(𝜁1/𝑑, 𝜁2/𝑙, 𝜁3/ℎ), where the
cell index in the reciprocal space 𝜁 = {𝜁1, 𝜁2, 𝜁3} is denoted as (𝜁1, 𝜁2, 𝜁3 = 0,±1,±2, . . .).

That being said, one is able to calculate the time evolution of the velocity of each of the
suspended non-massive particles periodically distributed in space and subjected to long-range hy-
drodynamic and magnetic interactions as:

𝑢𝑖 = 𝑀 𝑠 · 𝑓 𝑖 +
∑︁
𝑗 ̸=𝑖

𝑀 𝑖𝑗 · 𝑓 𝑗 (2.63)
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In Equation (2.63),𝑀 𝑠 stands for the self-mobilitymatrix (i.e.𝑀 𝑠 ·𝑓 𝑖 represents the velocityself-induced in a particle by its own periodic images) and 𝑀 𝑖𝑗 is the pair mobility matrix, given,
respectively by Eqs. (2.64) and (2.65).

𝑀 𝑠 =

(︃
1

6𝜋𝜂𝑎
− 1

𝜂
𝜉𝜋− 3

2 +
20

9𝜂
𝜉3𝜋− 3

2𝑎2

)︃
𝐼 (2.64)

𝑀 𝑖𝑗 =
∑︁
𝑥∈ℒ

𝑀 1(𝑟) +
1

𝐿*3

∑︁
𝑘∈ℒ̂,𝑘 ̸=0

𝑀 2(𝑘) cos(𝑘 · 𝑟) (2.65)

In the above relation,𝑀 1(𝑟) and𝑀 2(𝑟) are given by:

𝑀 1(𝑟) = ℱ(𝑟)𝐼 + 𝒢(𝑟)𝑟̂𝑟̂ (2.66)

𝑀 2(𝑘) = ℋ(𝑘)(𝐼 − 𝑘̂𝑘̂) (2.67)

In Equations (2.66) and (2.67), one notices the presence of the scalar functions ℱ(𝑟), 𝒢(𝑟)

andℋ(𝑘), which are respectively given by the relations:

ℱ(𝑟) =

(︃
3

4𝑟
+

1

2𝑟3

)︃
erfc(𝜉𝑟) +

(︃
4𝜉7𝑟4 + 3𝜉3𝑟2 − 20𝜉5𝑟2 − 9

2
𝜉 + 14𝜉3 +

𝜉

𝑟2

)︃
e−𝜉

2𝑟2

√
𝜋

(2.68)

𝒢(𝑟) =

(︃
3

4𝑟
− 3

2𝑟3

)︃
erfc(𝜉𝑟) −

(︃
4𝜉7𝑟4 + 3𝜉3𝑟2 − 16𝜉5𝑟2 − 3

2
𝜉 + 2𝜉3 +

3𝜉

𝑟2

)︃
e−𝜉

2𝑟2

√
𝜋

(2.69)
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ℋ(𝑘) =
6𝜋

𝑘2

(︃
1 − 𝑘2

3

)︃(︃
1 +

𝑘2

4𝜉2
+

𝑘4

8𝜉4

)︃
e
− 𝑘2

4𝜉2 (2.70)

In Equations (2.68), (2.69) and ((2.70)), 𝑟 represents the distance between the center of
two individual distinct particles, 𝑘̂ = 𝑘/𝑘 denotes the normalized wavenumber vector (reciprocal
space coordinate), 𝜉 = 𝜋1/2𝑉 −1/3 is the convergence parameter of the lattice sums proposed in
Beenakker [269], where 𝑉 is the volume of the central lattice and, finally, erfc is the complemen-
tary error function, defined as [329]:

erfc(𝑥) = 1 − erf(𝑥); erf(𝑥) =
2√
𝜋

∫︁ 𝑥

0

e−𝑡𝑑𝑡 (2.71)

If the reader is interested in a more instructive description of the used lattice summation
technique, he or she is referred to Cunha et al. [262] and to some extent to Gontijo and Cunha
[27, 28].

In the next section, a modeling of the forces to which the magnetic particles are subjected
to and that are considered in this work is presented.

2.2.2 Forces modulation

In this section, the modulation of the forces involved in the discrete simulations behind the
dynamics of magnetic suspensions is presented.

In the case of non-massive particles (absence of inertial effects), the balance of forces acting
on a particle 𝑖 is given by:

𝑓 𝑖 = ∆𝜌𝑔
4

3
𝜋𝑎3 + 𝑓𝐵

𝑖 + 𝑓𝑚
𝑖 + 𝑓𝑟

𝑖 + 𝑓𝑐
𝑖 (2.72)

In Equation (2.72), 𝑔 is the gravitational acceleration vector and 𝑓𝐵,𝑓𝑚
𝑖,𝑓𝑟

𝑖 and 𝑓𝑐
𝑖 corre-



104

spond to the Brownian, magnetic, repulsive and contact forces acting on an arbitrary particle 𝑖,
respectively. The first term in the right-hand side of Eq. (2.72) denotes the net gravitational force,
due to the difference between the particle and the fluid densities (∆𝜌). For a mobility problem,
the trajectories of the particles are simply obtained from the integration of kinematic Eq. (2.73).

𝐷𝑥𝑖
𝐷𝑡

= 𝑢𝑖; 𝑥𝑖(0) = 𝑥𝑖0 (2.73)

As an addendum, if one considered massive particles, the formulation would be slightly dif-
ferent than that presented in Eq. (2.72). Under this scenario, it would not be necessary to take
into account hydrodynamic interactions, since ferrofluids usually consist of dilute suspensions with
volume fraction of particles of approximately 𝜑 ≈ 5% and 𝜑 is usually treated as the parameter
responsible for measuring the influence of hydrodynamic interactions [27]. In addition, when con-
sidering particle inertia, the influence of hydrodynamic interactions is smaller than it would be in
the approaching limit of non-massive particles [27]. That said, the translational motion of a particle
𝑖 inside a monodisperse solution of𝑁 particles would be given by:

𝑚𝑝
𝑑𝑢𝑖

𝑑𝑡
= −6𝜋𝜂𝑎𝑢𝑖 + ∆𝜌𝑔

4

3
𝜋𝑎3 + 𝑓𝐵

𝑖 + 𝑓𝑚
𝑖 + 𝑓𝑟 + 𝑓𝑐

𝑖 (2.74)

The first term on the right-hand side of Eq. (2.74) is defined as the Stokes viscous drag, which
is purely produced by the motion of the particles that occurs in low Reynolds number regimes,
which would also be the only hydrodynamic force considered. One could also consider other hy-
drodynamic forces such as virtual mass or Oseen [330] and Basset [331] drags, however, as shown
in Sobral et al. [332], in regimes of low Reynolds number combined with non-null Stokes number,
the dominant hydrodynamic force on the particles is the Stokes hydrodynamic drag.

Still considering the scenario of massive particles, the rotational motion of the particles
would take into account the promotion of particle rotation by torques due to hydrodynamic drag,
Brownian and magnetic forces. In particular, the torque generated due to magnetic interactions
is due to magnetic dipole-external field interactions and to magnetic dipole-dipoles interactions.
This would read:
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𝐽𝑝
𝑑𝜔𝑖

𝑑𝑡
= −8𝜋𝜂𝑎3𝜔𝑖 + 𝑇𝐵

𝑖 + 𝑇𝑚
𝑖 (2.75)

In Equation (2.75), 𝐽𝑝 is the polar moment of inertia and 𝑇𝐵
𝑖 and 𝑇𝑚

𝑖 are the non-
hydrodynamic torques due to Brownian and magnetic forces, respectively, defined in Eqs. (2.80)
and (2.86). The first term on the right-hand side of Eq. (2.75) is the torque produced due to the
viscous Stokes drag [27].

Now, each of the forces presented in Eq. (2.72) is modeled.

Brownian interactions

The first force that appears in Eq. (2.72) other than the net thrust is the Brownian force 𝑓𝐵
𝑖.

The stochastic Brownian force comes from a subroutine of generation of random numbers which
have a uniform distribution in the interval [−1, + 1]. A well-known model [333] of the stochas-
tic Brownian force comes from the solution of the stochastic Langevin’s differential equation, as-
suming that Brownian fluctuations are isotropic, have no memory and by using the dissipation-
fluctuation theorem. Under such conditions, a random force 𝑓𝐵(𝑡) is considered to be a stationary
white noise with non-correlated random fluctuations on the timescale of the particle’s motion.
Such condition is expressed as [27]:

⟨𝑓𝐵(𝑡)⟩ = 0; ⟨𝑓𝐵(𝑡)𝑓𝐵(𝑡′)⟩ = 𝐹𝐵𝛿(𝑡− 𝑡′) (2.76)

In Equation (2.76), 𝛿 is the Dirac delta distribution and 𝐹𝐵 = 12𝜋𝜂𝑎𝜅𝐵𝑇𝛿 relates the inten-
sity of the Brownian force with viscous forces which act in order to dissipate the thermal fluctua-
tions of the suspended particles [333].

After taking the trace of Eq. (2.76), one arrives at the fluctuation and dissipation theorems
for force and torque, which reads, respectively:
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⟨𝑓𝐵(𝑡) · 𝑓𝐵(𝑡′)⟩ = (6𝜋𝜂𝑎)(6𝜅𝐵𝑇 )𝛿(𝑡− 𝑡′) (2.77)

⟨𝑇𝐵(𝑡) · 𝑇𝐵(𝑡′)⟩ = (8𝜋𝜂𝑎3)(6𝜅𝐵𝑇 )𝛿(𝑡− 𝑡′) (2.78)

With the aid of Eqs. (2.77) and (2.78), one is able to model both stochastic Brownian force
𝑓𝐵 and stochastic Brownian torque 𝑇𝐵, which are respectively given by:

𝑓𝐵
𝑖 = 6𝜋𝜂𝑎

(︃
6𝐷𝑡

𝛿𝜏

)︃ 1
2

𝛽 (2.79)

𝑇𝐵
𝑖 = 8𝜋𝜂𝑎3

(︃
6𝐷𝑟

𝛿𝜏

)︃ 1
2

𝛽 (2.80)

In Eqs. (2.79) and (2.80),𝐷𝑡 and𝐷𝑟 = 𝜅𝑇/8𝜋𝜂𝑎3 are the translational and rotational Brow-
nian diffusion coefficient of Stokes-Einstein [216], respectively, 𝛿𝜏 is a typical time step related to
Brownian thermal fluctuations and 𝛽 is a random unitary vector associated with the stochastic
Brownian fluctuations, where 𝛽𝑥, 𝛽𝑦 and 𝛽𝑧 are three different random numbers with uniform
probability in [−1,+ 1] and 𝛽 = |𝛽|−1(𝛽𝑥𝑒̂𝑥, 𝛽𝑦𝑒̂𝑦, 𝛽𝑧𝑒̂𝑧) [27, 28].

Magnetic interactions

When it comes to magnetic interactions, the forces experienced by the particles are closely
linked to magnetic interaction potentials. Generally, the mathematical expressions for such forces
are calculated through the appliance of gradients to the potentials. The interaction potential be-
tween particles depends on how they are arranged in space. Therefore, one must have precise
control of mapping the positions and the orientations (since this work deals with magnetic par-
ticles which are also subject to rotate) of the particles over time (evolutionary process), which
consumes a great deal of computational time. Magnetic interactions between magnetic particles
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come from two different sources: 1) magnetic interactions between dipole-dipole moments and
2) magnetic interactions between the particle’s dipole moment and the external applied magnetic
field. The magnetic particle interaction potentials for the dipole-dipole interactions and external
field-dipole interactions are given below, respectively [3, 226]:

𝜓𝑖𝑗 =
∑︁
𝑖 ̸=𝑗

𝜇0𝑚𝑖𝑚𝑗

4𝜋𝑟3
[𝑑𝑖 · 𝑑𝑗 − 3(𝑑𝑖 · 𝑟̂𝑖𝑗)(𝑑𝑗 · 𝑟̂𝑖𝑗)] (2.81)

𝜓𝑖 = −𝜇0𝑚𝑖𝐻(𝑑𝑖 · ℎ̂) (2.82)

In Equations (2.81) and (2.82), the lower indexes 𝑖 and 𝑗 denote particles 𝑖 and 𝑗, respectively,
𝑚𝑖 and 𝑚𝑗 represent the magnitude of the magnetic dipole moment of particles 𝑖 and 𝑗 with
directions 𝑑𝑖 and 𝑑𝑗 , respectively. Also, 𝑟𝑖𝑗 is the unitary vector in the direction that links particle 𝑖
to particle 𝑗 and𝐻 is the intensity of an applied externalmagnetic fieldwith direction ℎ̂. Therefore,
the magnetic force acting on each of the suspended particles in given by:

𝑓𝑚
𝑖 = −(∇𝜓𝑖𝑗 + ∇𝜓𝑖) (2.83)

Since particles are able to rotate with an angular velocity different than that of the surround-
ing fluid (particles are not considered torque-free), it is of extreme importance to compute the
magnetic torque acting on each of the suspended particles, which is calculated through Eq. (2.84).

𝑇𝑚
𝑖 = −𝑑𝑖 × (∇𝑑𝑖𝜓𝑖𝑗 + ∇𝑑𝑖𝜓𝑖) (2.84)

In Equation (2.84), ∇𝑑𝑖 is a vector operator that accounts for the derivatives with respect
to the orientation of the magnetic dipole moments of the 𝑖𝑡ℎ particle [27, 28]. After carrying out
the necessary algebra (presented in detail in Gontijo [272]) to deduce expressions for both the
magnetic force and torque from Eqs. (2.83) and (2.84) using Eqs.(2.81) and (2.82), one obtains:
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𝑓𝑚
𝑖 =

∑︁
𝑖 ̸=𝑗

3𝜇0𝑚𝑖𝑚𝑗

4𝜋𝑟4

[︁
(𝑑𝑖·𝑑𝑗)𝑟𝑖𝑗+(𝑑𝑖·𝑟𝑖𝑗)𝑑𝑗+(𝑑𝑗·𝑟𝑖𝑗)𝑑𝑖−5(𝑑𝑖·𝑟𝑖𝑗)(𝑑𝑗·𝑟𝑖𝑗)𝑟𝑖𝑗

]︁
+
[︁
𝜇0𝑚𝑖𝐻(𝑑𝑖·∇)ℎ̂

]︁
(2.85)

𝑇𝑚
𝑖 =

∑︁
𝑖 ̸=𝑗

3𝜇0𝑚𝑖𝑚𝑗

4𝜋𝑟3

[︃
− 1

3
(𝑑𝑖 × 𝑑𝑗) + (𝑑𝑗 · 𝑟𝑖𝑗)(𝑑𝑖 × 𝑟𝑖𝑗)

]︃
+
[︁
𝜇0𝑚𝑖𝐻(𝑑𝑖 × ℎ̂)

]︁ (2.86)

Since this work deals with a uniform (homogeneous) applied magnetic field (∇(𝐻ℎ̂) = 0),
as indicated in Fig. (1.3), the last term in Eq. (2.85) is null, leading to:

𝑓𝑚
𝑖 =

∑︁
𝑖 ̸=𝑗

3𝜇0𝑚𝑖𝑚𝑗

4𝜋𝑟4

[︁
(𝑑𝑖 · 𝑑𝑗)𝑟𝑖𝑗 + (𝑑𝑖 · 𝑟𝑖𝑗)𝑑𝑗 + (𝑑𝑗 · 𝑟𝑖𝑗)𝑑𝑖 − 5(𝑑𝑖 · 𝑟𝑖𝑗)(𝑑𝑗 · 𝑟𝑖𝑗)𝑟𝑖𝑗

]︁ (2.87)

Periodic magnetic interactions

The magnetic interactions in this work can be calculated through the same technique of
periodic particle-particle interactions described in Beenakker [269], Cunha et al. [262], Abade and
Cunha [271], Gontijo and Cunha [27, 28]. When one applies Ewald’s summation technique [266] to
Eqs. (2.87) and (2.86), one obtains expressions for the periodic magnetic force and torques acting
on a particle 𝑖. The expression for the magnetic force reads:

𝑓𝑚
𝑖 = 𝜇0𝑚𝑖𝑚𝑗

{︃∑︁
𝑥∈ℒ

[︁
𝒯1(𝑟) + 𝒯2(𝑟)

]︁
+

2𝜋

𝐿4

∑︁
𝑘∈ℒ̂,𝑘 ̸=0

𝒯3(𝑘)

}︃
(2.88)

In Equation (2.88), 𝐿 denotes the length of the primary lattice cell. Also, one identifies the
presence of vector functions 𝒯1(𝑟), 𝒯2(𝑟) and 𝒯3(𝑘), given, respectively, by:
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𝒯1(𝑟) =
[︁
(𝑑𝑖 · 𝑑𝑗)𝑟𝑖𝑗 + (𝑑𝑖 · 𝑟𝑖𝑗)𝑑𝑗 + (𝑑𝑗 · 𝑟𝑖𝑗)𝑑𝑖

]︁
𝒞(𝑟) (2.89)

𝒯2(𝑟) = −
[︁
(𝑑𝑖 · 𝑟𝑖𝑗)(𝑑𝑗 · 𝑟𝑖𝑗)𝑟𝑖𝑗

]︁
𝒟(𝑟) (2.90)

𝒯3(𝑘) = 4𝜋𝑘̂(𝑑𝑖 · 𝑘̂)(𝑑𝑗 · 𝑘̂)e−
(︀
𝜋𝑘
𝜉

)︀2
sin
(︁

2𝜋𝑘̂ · 𝑟𝑖𝑗
)︁ (2.91)

The scalar functions 𝒞(𝑟) and𝒟(𝑟) that appear in Eqs. (2.89) and (2.90), are given by:

𝒞(𝑟) =

[︃
3 erfc(𝜉𝑟) +

(︃
2𝜉𝑟√
𝜋

)︃
(3 + 2𝜉2𝑟2)e−𝜉

2𝑟2

]︃
𝑟−4 (2.92)

𝒟(𝑟) =

[︃
15 erfc(𝜉𝑟) +

(︃
2𝜉𝑟√
𝜋

)︃
(15 + 10𝜉2𝑟2 + 4𝜉4𝑟4)e−𝜉

2𝑟2

]︃
𝑟−4 (2.93)

In the same manner, the periodic magnetic torque acting on a particle 𝑖 due to magnetic
interactions between the suspended particles dispersed in the lattice system reads:

𝑇𝑚
𝑖 = 𝜇0𝑚𝑖𝑚𝑗

[︃
−
∑︁
𝑥∈ℒ

𝒯4(𝑟) +
1

𝐿3

∑︁
𝑘∈ℒ̂,𝑘 ̸=0

𝒯5(𝑘)

]︃
+ 𝜇0𝑚𝑖𝐻

(︀
𝑑𝑖 × ℎ̂

)︀ (2.94)

In the above relation, one identify the presence of vector functions 𝒯4(𝑟) and 𝒯5(𝑘), which
are respectively denoted as:

𝒯4(𝑟) = (𝑑𝑖 × 𝑑𝑗)ℬ(𝑟) − (𝑑𝑖 × 𝑟𝑖𝑗)(𝑑𝑗 · 𝑟𝑖𝑗)𝒞(𝑟) (2.95)
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𝒯5(𝑘) = 4𝜋(𝑑𝑖 × 𝑘̂)(𝑑𝑗 · 𝑘̂)e−
(︀
𝜋𝑘
𝐿𝜉

)︀2
cos
(︁
𝑘̂ · 𝑟𝑖𝑗

)︁ (2.96)

Finally, the scalar function ℬ(𝑟) in Eq. (2.95) is given by:

ℬ(𝑟) =

[︃
erfc(𝜉𝑟) +

(︃
2𝜉𝑟√
𝜋

)︃
e−𝜉

2𝑟2

]︃
𝑟−3 (2.97)

Repulsion forces 𝑓𝑟
𝑖

It is well known that along numerical simulations, particles may somehow overlap [27, 28].
One way of avoiding such overlaps is to incorporate a pairwise repulsive force acting on near-
contact particles [27, 28]. The use of fictitious repulsive forces is much cheaper computationally
than the numerical implementation of near-field lubrication forces, since it does not require resis-
tance matrix inversions - Eq. (2.60) - at each time-step (as commonly treated in Stokesian dynam-
ics simulations [334]) nor𝒪(𝑁3) calculations [27] and very small time steps [28, 256] to compute
the near-field particle interactions. This way, as to emulate a lubrication-like force, as proposed in
Cunha [256], this work considers:

𝑓𝑟
𝑖 = 𝐶1(6𝜋𝜂𝑎)𝑢𝑖e

(︀
−
𝜖𝑖𝑗
𝐶2

)︀
𝑒𝑟 (2.98)

In Equation (2.98), 𝐶1 and 𝐶2 are calibration constants related to the intensity and range of
the repulsive force based on the behavior of two approaching particles [272, 27, 28], 𝑢𝑖 represents
the velocity of the 𝑖𝑡ℎ particle, 𝜖𝑖𝑗 = 𝑟𝑖𝑗 − 2𝑎 denotes the distance between the surfaces of two
near-contact particles 𝑖 and 𝑗 and𝑒𝑟 denotes the unit vector in the repulsion direction and depends
only on the configuration of the particles. These quantities are better visualized in Fig. (2.3), which
presents a scheme of the near-field particle interaction configurations.

The approach proposed in Cunha [256] has been successfully adopted in Nitsche and Batch-
elor [335] in investigations of the motion of sedimenting blob of rigid particles at low Reynolds
number, also in Gontijo and Cunha [27, 28] for simulating colloidal suspensions of magnetically
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Figure. 2.3: Schematic of the near-field interactions. Left: Repulsive configuration. Right: Hertz con-tact configuration. Image adapted from Gontijo and Cunha [28].
interacting particles. A similar repulsive force to this one, known as the screened-Coulomb type,
was used in Berkov et al. [252].

Contact forces 𝑓𝑐
𝑖

In magnetic suspension simulations, along the numerical time evolution, magnetic attractive
forces may become very strong depending on many factors as the dipole’s coupling parameter 𝜆,
and, in some cases, the repulsive force 𝑓𝑟

𝑖 of Eq. (2.98) may not be strong enough to avoid par-
ticle’s collisions or overlaps [27, 28]. This problem is also observed when particles are considered
to be massive. Under this scenario, due to the particle inertia, an intrinsic particle relaxation time
associated with the moment a particle receives the influence of a force and the moment it re-
sponds to it is present. So, in order to avoid such problem, a nonlinear contact force is proposed
and modeled using a Hertz tension that depends on the mechanical properties of the surfaces in
contact and the materials which the particles are made of [27, 28]. Thus, this is a pseudophysical
methodology used in order to avoid particle’s overlap.



112

𝑓𝑐
𝑖 = 𝐶3𝐸𝑐𝑏

1/2𝜖
3/2
𝑖𝑗 𝑒𝑟 (2.99)

In Equation (2.99), 𝐶3 is a calibration constant of the model, 𝐸𝑐 is a material constant that
depends on the particles elastic modulus (𝐸 represent the Youngmodulus and 𝜈 denotes the Pois-
son coefficient). For amonodisperse solution, 𝑏 = 𝑎/2, however,𝐸𝑐 and 𝑏 changes for polydisperse
suspensions [27].

𝐸𝑐 =
𝐸

2(1 − 𝜈)
(2.100)

This effect is better visualized in Fig. (2.3).

Non-dimensional equations

The governing equations of the discrete approach have been made non-dimensional with
the use of some reference scales, shown in Eq. (2.101):

𝑢̃ =
𝑢

𝑈𝑠
; 𝑡 =

𝑡𝑈𝑠
𝑎

; 𝜔̃ =
𝜔𝑎

𝑈𝑠
; 𝑟 =

𝑟

𝑎
(2.101)

In order to make the presentation as clear as possible, the tildes ∼ are removed from the
non-dimensional variables and the resulting equations are presented below. For the forces which
compose the vector 𝑓 𝑖 in Eq. (2.72), it reads:

𝑓𝑔
𝑖 = −𝑒𝑧 (2.102)

𝑓𝐵
𝑖 =

(︃
6

𝑃𝑒𝛿𝜏

)︃ 1
2

𝛽 (2.103)
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𝑓𝑟
𝑖 = 𝐶1𝑢𝑖𝑒

(︁
−
𝜖𝑖𝑗
𝐶2

)︁
𝑒𝑟 (2.104)

𝑓𝑐
𝑖 = 𝑃𝑐𝜖

3/2
𝑖𝑗 𝑒𝑟 (2.105)

In Equation (2.105), 𝑃𝑐 is a contact parameter related to the elastic properties of the particle
material defined in Eq. (2.111). In all simulations, 𝑃𝑐 was set to 𝑃𝑐 = 100.

The magnetic force acting on a particle 𝑖 takes the following non-dimensional form:

𝑓𝑚
𝑖 =

24𝜋𝜆

𝑃𝑒

{︃∑︁
𝑥∈ℒ

[︁
𝒯1(𝑟) + 𝒯2(𝑟)

]︁
+

2𝜋

𝐿4

∑︁
𝑘∈ℒ̂,𝑘 ̸=0

𝒯3(𝑘)

}︃
(2.106)

Since the magnetic interactions for the force have a faster decay like (1/𝑟4), as seen in
Eq. (2.87), the sums of magnetic interactions via induced forces may not be calculated by lattice
sums [27]. On the other hand, due to the slower decay of the magnetic torques (1/𝑟3), as seen in
Eq. (2.86), torque interactionsmust be carried out in a periodic way, as indicated inMcWhirter and
Patey [278],Wang et al. [279], Berkov and Gorn [280], Usov and Grebenshchikov [281], Gontijo and
Cunha [27, 28], otherwise the summations may lead to divergent suspension transport properties
that depend strictly on rotational dynamics, as the fluid’s magnetization. That being said, if one
desires to calculate the magnetic force in a non-periodic manner, making use of a hybrid method,
as clearly explained in Gontijo and Cunha [27], this force will take the non-dimensional form:

𝑓𝑚
𝑖 =

24𝜆

𝑃𝑒

∑︁
𝑖 ̸=𝑗

1

𝑟4𝑖𝑗

[︂(︀
𝑑𝑖 ·𝑑𝑗

)︀
𝑟𝑖𝑗+

(︀
𝑑𝑖 ·𝑟𝑖𝑗

)︀
𝑑𝑗+

(︀
𝑑𝑗 ·𝑟𝑖𝑗

)︀
𝑑𝑖−5

(︀
𝑑𝑖 ·𝑟𝑖𝑗

)︀(︀
𝑑𝑗 ·𝑟𝑖𝑗

)︀
𝑟𝑖𝑗

]︂
+
𝛼

𝑃𝑒

(︀
𝑑𝑖 ·∇

)︀
ℎ̂

(2.107)
The relations presented above accounted for the translational motion of a particle 𝑖. As for

the rotational motion of a particle 𝑖, one obtains:
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𝜔𝑖 = 𝑇𝑚
𝑖 + 𝑇𝐵

𝑖 (2.108)

In Equation (2.108), 𝑇𝑚
𝑖 and 𝑇𝐵

𝑖 denote the magnetic and Brownian torques acting on par-
ticle 𝑖, respectively. The non-dimensional form of such torques are given by:

𝑇𝑚
𝑖 =

24𝜋𝜆

𝑃𝑒

[︃
−
∑︁
𝑥∈ℒ

𝒯4(𝑟) +
1

𝐿*3

∑︁
𝑘∈ℒ̂,𝑘 ̸=0

𝒯5(𝑘)

]︃
+

3𝛼

4𝑃𝑒

(︀
𝑑𝑖 × ℎ̂

)︀ (2.109)

𝑇𝐵
𝑖 =

(︃
6

𝑃𝑒𝑟𝛿𝜏

)︃ 1
2

𝛽 (2.110)

In Equations (2.106), (2.107), (2.109) and (2.110), one notices the presence of the non-
dimensional physical parameters 𝑃𝑒, 𝑃𝑒𝑟, 𝜆 and 𝛼. The Péclet number 𝑃𝑒, the non-dimensional
field 𝛼 and the dipole’s coupling parameter 𝜆 have already appeared in the formulation of the
continuous part, but are again depicted in Eq. (2.111). The new parameter 𝑃𝑒𝑟 corresponds to the
rotational Péclet number, also defined in Eq. (2.111).

𝑃𝑒 =
𝑈𝑠𝑎

𝐷
; 𝑃𝑒𝑟 =

𝑈𝑠
𝐷𝑟𝑎

; 𝜆 =
𝜇0𝑚

2

4𝜋𝜅𝐵𝑇 (2𝑎)3
; 𝛼 =

𝜇0𝑚𝐻

𝜅𝐵𝑇
; 𝑃𝑐 =

𝐶𝜖𝑎2

6𝜋𝜂𝑎𝑈𝑠(2.111)
As an addendum, in the case of massive particles, the non-dimensional equations, which

come from Eqs. (2.74) and (2.75) would read, for the translational and rotational motion, respec-
tively:

𝑆𝑡
𝑑𝑢𝑖

𝑑𝑡
= −𝑢𝑖 + 𝑔 + 𝑓𝐵

𝑖 + 𝐹𝑚
𝑖 + 𝑓𝑟

𝑖 + 𝑓𝑐
𝑖 (2.112)
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𝑆𝑡𝑟
𝑑𝜔𝑖

𝑑𝑡
= −𝜔𝑖 + 𝑇𝐵

𝑖 + 𝑇𝑚
𝑖 (2.113)

In Equation (2.113), 𝑆𝑡𝑟 is the rotational Stokes number, defined as 𝑆𝑡𝑟 = 𝐽𝑝𝑈𝑠/(8𝜋𝜂𝑎
4).

The interested reader in this discrete formulation, is referred to Gontijo and Cunha [27] for
a more complete mathematical modulation of this problem in the case of massive particles in the
absence of hydrodynamic interactions and to Gontijo and Cunha [28] for the case of non-massive
particles subjected to hydrodynamic interactions.
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3 Numerical solutions and code validation approaches

3.1 Continuous approach

The classical vorticity-streamfunction (𝜉−𝜓) formulation [317, 318], which leads to the solu-
tion of the two-dimensional vorticity equation - Eq. (2.48) -, the Poisson equation for the stream-
functions - Eq. (2.45) - and one of the magnetization equations - Eqs. (2.49), (2.50) or (2.51) - was
used in this work. The velocity field is then recovered with the aid of the relations in Eq. (2.44).

Three distinct non-commercial Fortran based numerical routines were developed, which in-
corporates each of the magnetization models. These codes were fully programmed by the author
and account for the results which will be shown in section 4.1. The post-processing of the obtained
data was performed with Tecplot 360, allowing the presentation in graphical form of the obtained
results.

The governing equations were discretized using a finite-difference method and solved in a
coupled manner through a first-order, explicit forward-time central-space scheme (FTCS), which
is based on central differences in space and the classical forward in time Euler method [318]. The
discretized equations can be found inAppendix A. The oscillations associatedwith the FTCSmethod
were treated by applying a first-order upwind difference to model the convective terms in the
governing equations [318].

3.1.1 Computational domain

Auniformgridwith distinct dimensionless steps in vertical and horizontal directionswas used
tomodel the channel, whose dimensionswere obtained bymeans of a simple grid analysis in plane
Poiseuille flow. In the vertical direction, they weremade sufficiently small to be able to capture the
high gradients close to the walls. The procedure consisted in taking a determined number of grid
points that after being changed would not be able to perturb the final solution anymore, as if it
had reached a saturation value or oscillated through a particular value after a fixed number of grid
points. Figure (3.1a) displays the obtained results for themaximum velocity in Poiseuille plane flow.
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Number of grid points

v
x
,m

ax
/U

11 26 41 56 71 86 101
1.465

1.47

1.475

1.48

1.485

1.49

1.495

1.5

(a)
Number of grid points

v
x
,m

ax
/U

11 31 51 71 91 111 131
1.49

1.492

1.494

1.496

1.498

1.5

(b)
Figure. 3.1: Number of grid points as a function of the maximum streamwise velocity. (a) Verticaldirection with 𝑛𝑥 = 101. (b) Horizontal direction with 𝑛𝑦 = 81. In both figures 𝑅𝑒 = 5000.

From Fig. (3.1a) it is clear that after a determined number of grid points, the obtained solution
is not altered anymore. In this case, the saturation velocity was 𝑣𝑥/𝑈 = 1.4985, which corresponds
to 99.9% of the analytical Poiseuille non-dimensional velocity 𝑣𝑥/𝑈 = 1.5. However, 𝑛𝑦 = 81 grid
points were employed in the vertical direction, where the maximum velocity reached 𝑣𝑥/𝑈 =

1.4984, which corresponds to 99.89% of the analytical Poiseuille velocity. This choice was based
on the significant smaller time the grid with 𝑛𝑦 = 81 took for the numerical simulation to take
place compared to that with 𝑛𝑦 = 101, bearing almost exactly the same result in both cases.
A similar procedure was done in the horizontal direction, aiming to determine the length of the
channel necessary to obtain a fully developed flow under the studied Reynolds number condition.
By doing this, the dimensionless horizontal stepwas fixed and the number of grid pointswas varied.
These results are presented in Fig. (3.1b).

After completing this process, 𝑛𝑥 = 101 grid points were used in the horizontal direction.
In this case, the saturation velocity was 𝑣𝑥/𝑈 = 1.4984, which corresponds to 99.89% of the
analytical Poiseuille non-dimensional velocity 𝑣𝑥/𝑈 = 1.5. It is important to mention that this
number of grids points was used when analyzing the fully developed flow. For the analysis of the
flow’s entrance region, a more refined grid was employed. In this case, the chosen number of grid
points was: 𝑛𝑥 = 801 and 𝑛𝑦 = 81.
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Additional tests were carried out for the strictly magnetic case. In this scenario, the value
of magnetization on the wall was the variable chosen to verify the existence of variations under
changes in the number of grid points. Similar to that performed in the non-magnetic case, when
the wall magnetization reached a saturation value for a certain number of grid points, these were
then chosen to define the mesh. Therefore, in both cases, the number of grid points chosen was
sufficient to guarantee no variations in the test variables (velocity in the center and wall magneti-
zation).

3.1.2 Boundary conditions

In this section we present the boundary conditions used in order to numerically solve the
discretized equations presented in Appendix A.

The solution of Eqs. (A.4), (A.5), (A.6), (A.7), (A.8), (A.9), (A.10), (A.11) and (A.12) requires that
appropriate vorticity, streamfunction, magnetization and velocity boundary conditions are speci-
fied at the boundaries of the problem. The specification of the boundary conditions is extremely
important, as it directly affects the stability and precision of the solution [336].

Regarding hydrodynamics, in order to properly compute the velocity field of a ferrofluid flow-
ing under the presence of an applied magnetic field, the applied magnetic field 𝐻 and the mag-
netization field 𝑀 must be known. While the applied field can be obtained from the solution of
a Laplace equation through spherical harmonics (for the free space) [41], and then jumped to the
medium using properly boundary conditions arriving from Gauss and Ampère’s laws of magnetism
[3], a physical consistent computation of the magnetization field demands deeper thoughts and
discussions [26, 42, 40, 43, 24], since in non-equilibrium regimes the magnetization field𝑀 is no
longer an exclusive function of the field𝐻 [44]. The magnetic boundary conditions between two
distinct media state that, in two-dimensional conditions, the horizontal components of the applied
magnetic field 𝐻 and the normal components of the magnetic induction field 𝐵 are conserved,
in a way that, between medias 1 and 2, 𝐻2𝑡 = 𝐻1𝑡 and 𝐵1𝑛 = 𝐵2𝑛. The demonstration of these
boundary conditions are presented in Appendix B.

For the hydrodynamic problem, many different sets of boundary conditions have already
been employed [319, 298, 320, 321, 322, 323, 324, 325, 326]. However, in this work, a model for
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the simulation of ferrofluid flows is proposed, which leads to assumptions in boundary conditions,
especially with regard to magnetization.

For the translational velocity, Lamb [337] suggests that:

𝑣 − 𝑣𝑠 =
1

𝛽
[𝑛× (𝑛 · 𝑇 × 𝑛)] (3.1)

In Equation (3.1), 𝛽 is a friction coefficient, 𝑣𝑠 is the surface velocity, 𝑛 is the unit vector
outward to the surface and 𝑇 is the Cauchy stress tensor. However, 𝛽 is inversely proportional to
the particles’ radius 𝑟 [320], which makes it extremely large, since 𝑟 ∼ 10−9 → 𝛽 ∼ 109, in a way
that the slip effects can be considered negligible in macroscopic ferrofluid flows [63]. Then, for the
translational velocity, one gets:

𝑛 · (𝑣2 − 𝑣2) = 0; 𝑛× (𝑣2 − 𝑣2) = 0; (3.2)

That said, the boundary conditions used to solve the problem’s ferrohydrodynamic governing
equations were:

1. Solid walls
The classical no-slip condition of ordinary fluids on the walls was conventionally used, which
leads to null velocities at solid boundaries. The no slip condition has an uncertain status in
the present context of magnetic fluids [3], however, it was retained since its use has proven
to produce physically consistent results, even though there is no assertive that this simple
condition is physically sound in all instances [3]. Solid boundaries and symmetry planes are
surfaces of constant streamfunction [336]. As the flow is parallel to the duct walls, they were
treated as streamlines with a constant streamfunction value. The difference between two
streamlines corresponds to the volume flow rate per unit depth normal to the paper [336]
between them, so the values of the streamfunctions have been set to maintain a difference
equal to the flow rate 𝑄̇. By expanding the streamfunction 𝜓 at the wall point using a Taylor
series, it is possible to obtain boundary conditions for the vorticity [317, 318, 336]. A first-
order approximation was used, as it often provides better results than higher-order expres-
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Table. 3.1: Problem’s boundary conditions.
Variable Lower wall Upper wall Entrance Exit

𝜉 𝜉(𝑖,1) =
2

Δ𝑦2

[︁
𝜓(𝑖,1) − 𝜓(𝑖,2)

]︁
𝜉(𝑖,𝑛𝑦) =

2
Δ𝑦2

[︁
𝜓(𝑖,𝑛𝑦) − 𝜓(𝑖,𝑛𝑦−1)

]︁ 0 𝜕𝜉
𝜕𝑥

= 0

𝜓 𝜓(𝑖,1) = 0 𝜓(𝑖,𝑛𝑦) = 𝑄̇ 𝜓(1,𝑗) =
∫︀
𝑣𝑥(1,𝑗)𝑑𝑦

𝜕𝜓
𝜕𝑥

= 0

𝑀𝑥 𝑀𝑥(𝑖,1) = 2𝑀𝑥(𝑖,2) −𝑀𝑥(𝑖,3) 𝑀𝑥(𝑖,𝑛𝑦) = 2𝑀𝑥(𝑖,𝑛𝑦−1) −𝑀𝑥(𝑖,𝑛𝑦−2) 0 𝜕𝑀𝑥
𝜕𝑥

= 0

𝑀𝑦 𝑀𝑦(𝑖,1) = 2𝑀𝑦(𝑖,2) −𝑀𝑦(𝑖,3) 𝑀𝑦(𝑖,𝑛𝑦) = 2𝑀𝑦(𝑖,𝑛𝑦−1) −𝑀𝑦(𝑖,𝑛𝑦−2) 0 𝜕𝑀𝑦

𝜕𝑥
= 0

sions, susceptible to instabilities in higher Reynolds numbers [318]. To avoid an imprudent
assumption about the boundary conditions of the magnetization, a simple approximation of
the values on the walls was used using a Taylor series expansion. In this case, the magnetiza-
tion profile smoothly approaches the wall, with no clear discontinuities between the value
calculated at the first point of the grid above the wall and the value imposed on the wall.
A similar approach was used in Schumacher et al. [18] for calculations of the spin bound-
ary conditions when it comes to the smoothness of the profiles. The approach used in this
work is different than that used in Papadopoulos et al. [58], where the magnetization at the
boundaries was obtained from the numerical solution of the magnetization equation after
neglecting the term of magnetic inertia (𝑣 · ∇𝑀).

2. Inlet boundary conditions:
The flow that enters the duct is uniformanddemagnetized, causing bothmagnetization com-
ponents to be null and the irrotationality of the flow. As for the streamfunctions, the bound-
ary values are obtained from a simple numerical integration of the first relation in Eq. (2.44).

3. Outlet boundary conditions:
Sufficiently away from the entrance, the solution of the governing equations must approach
a fully developed flow between parallel plates, so that the derivatives of the quantities in
relation to the horizontal direction 𝑥, with the exception of pressure, are all null.

The boundary conditions used to solve the governing equations are best seen in Tab. (3.1).
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3.1.3 Stability and stop criteria

The dimensionless time step∆𝑡 used in the simulations was based on the well-known condi-
tion of stability for the (FTCS) method in the non-magnetic casemultiplied by an arbitrary constant
𝐶. In Equation (3.3),𝑚𝑖𝑛 represents the minimum value.

𝐶

[︃
∆𝑡

𝑅𝑒×𝑚𝑖𝑛(∆𝑥,∆𝑦)2

]︃
≤ 1

2
(3.3)

As for stopping criteria, a process similar to that presented in Erturk [338] was adopted.
During the calculations, the residual parameter 𝑅𝐸𝑆 was used as a measure of the solution’s
convergence to steady state. This residue is defined as the maximum absolute difference between
two iteration steps in the streamfunction, vorticity and magnetization, which is an indication if the
solution has converged to a steady state.

𝑅𝐸𝑆𝜓 = 𝑚𝑎𝑥
(︁
|𝜓𝑛+1 − 𝜓𝑛|

)︁
;

𝑅𝐸𝑆𝜉 = 𝑚𝑎𝑥
(︁
|𝜉𝑛+1 − 𝜉𝑛|

)︁
;

𝑅𝐸𝑆𝑀𝑥 = 𝑚𝑎𝑥
(︁
|𝑀𝑛+1

𝑥 −𝑀𝑛
𝑥 |
)︁

;

𝑅𝐸𝑆𝑀𝑦 = 𝑚𝑎𝑥
(︁
|𝑀𝑛+1

𝑦 −𝑀𝑛
𝑦 |
)︁

;

(3.4)

In Equation (3.4),𝑚𝑎𝑥 represents the maximum value. In the calculations, convergence was
achieved when𝑅𝐸𝑆𝜓,𝑅𝐸𝑆𝑀𝑥 ,𝑅𝐸𝑆𝑀𝑦 ≤ 10−6 and𝑅𝐸𝑆𝜉 ≤ ∆𝑡× 10−6. These low values were
chosen to guarantee the accuracy of the obtained solution. At these convergence levels, 𝑅𝐸𝑆𝜉
was always in the order of 𝑅𝐸𝑆𝜉 ∼ 10−9.

A schematic algorithm of the numerical routine developed by the authors is presented be-
low:

1. Input computational domain;
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2. Input Re, Pe, 𝛼, 𝜑, 𝜆 and tol = 10−6;
3. Input initial conditions for 𝑣,𝐻 , 𝜉, 𝜓,𝑀 ,𝐻𝑒 and p;
4. Calculate ∆𝑡 and𝑀0;
5. Solve Poisson streamfunction equation - Eq. (A.4) -;
6. Boundary conditions for 𝜓;
7. Compute velocity field 𝑣 - Eq. (A.12) -;
8. Boundary conditions for 𝜉;
9. Solve vorticity transport equation - Eq. (A.5) -;
10. Solve magnetization equations - Eqs. (A.6) and (A.7); or (A.8) and (A.9); or (A.10) and (A.11) -;
11. Boundary conditions for𝑀𝑥 and𝑀𝑦;
12. Calculate residue RES between time steps;
13. If RES𝜉 ≤ ∆t× tol→ END (go to step [16])
14. Actualize properties values from new time step
15. Get back to item [5]
16. Generate data files.

3.1.4 Numerical code validation

Three different approaches were used to validate the numerical codes: one at the limit of
non-magnetic fluid flowand two in the context ofmagnetic fluid flow. For the case of non-magnetic
fluid flow, the simulated conditions were simply adjusted to consider the absence of a magnetic
field (i.e. 𝛼 = 1.0 × 10−7), which led to completely non-magnetic conditions. Under this condi-
tion, the analytical velocity profile predicted by simple hydrodynamic plane Poiseuille flow [301]
was completely recovered in the simulations. As for the magnetic approaches, an asymptotic so-
lution for the velocity profile was developed using a regular perturbation method - see Appendix
C -, in addition to comparing the calculated rotational viscosity with that given by the analytical
expressions presented in section 2.1.5.
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Figure. 3.2: (a) and (c) Horizontal velocity; (b) and (d) stream-function and (c) and (f) vorticity pro-files obtained for the fully developed flow in non-magnetic conditions. and represent thenumerical and Poiseuille analytical results - Eqs. (3.5), (3.6) and (3.7) -, respectively. For (a), (b) and(c): 𝑅𝑒 = 50. For (d), (e) and (f): 𝑅𝑒 = 5000. .

The first approach used to validate the numerical routines was to compare the numerical
results obtained for the velocity, streamfunction and vorticity profiles for the flow fully developed
at the limit of the non-magnetic Poiseuille flow with the analytical equations for such quantities
known in the literature [301], in two distinct conditions of Reynolds number. The velocity profile
for the fully developed Poiseuille flow is easily obtained through the Navier-Stokes equations af-
ter some simplifications and application of boundary conditions on the walls. The equations for
the streamfunction and vorticity profiles are easily obtained by integrating and differentiating the
velocity equation with respect to 𝑦, respectively, which leads to the following non-dimensional
equations:



124

𝑣𝑥(𝑦) = 6𝑄̇(𝑦 − 𝑦2) (3.5)

𝜓(𝑦) = 𝑄̇(3𝑦2 − 2𝑦3) (3.6)

𝜉(𝑦) = 6𝑄̇(2𝑦 − 1) (3.7)

In the above relations, 𝑄̇ stands for the non-dimensional flow rate.
To simulate the limit of non-magnetic Poiseuille flow in the numerical routines, a magnetic

fluid was simulated in the absence of a magnetic field (𝛼 = 1.0 × 10−7) , which led to completely
non-magnetic conditions. The results obtained are shown in graphical form in Fig. (3.2).

From Figure (3.2), it is clear that the obtained numerical results are in excellent agreement
with the analytical results proposed in Eqs. (3.5), (3.6) and (3.7) for both Reynolds number condi-
tions simulated: 𝑅𝑒 = 50 and 𝑅𝑒 = 5000.

Asymptotic solution

An asymptotic solution for the fluid velocity was derived to be used as a means to validate
the numerical code. This solution takes into account the coupling between magnetization and hy-
drodynamics, however, it is assumed that the fluid is symmetrical, which leads to the nullity of the
magnetic torque, since the vectors 𝐻 and 𝑀 are collinear in such a physical scenario. The mag-
netization model used for its development was that presented in Eq. (2.27) proposed in Shliomis
[26]. In addition, the variations produced in magnetization𝑀 due to its advective transport were
consideredmuch smaller than those produced by the flow’s vorticity. Such simplifications lead to a
system of linear differential equations which are solved asymptotically to obtain a solution for the
flow’s velocity in the fully developed region. This solution was developed taking inspiration from
the pioneer work of Rosa et al. [339], where the authors presented an asymptotic solution for a
magnetic fluid laminar pipe flow undergoing pressure and magnetic field gradients. In the present
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context, a ferrofluid laminar flow is held between two horizontal flat plates with unitary spacing
ℎ = 2𝑎 and aspect ratio 𝐿/ℎ = 100. The flow is subjected to a stationary magnetic field gradient
with linear decay applied in the horizontal direction as well as a pressure gradient. The complete
mathematical development of the asymptotic solution is presented in Appendix C and the final
solution is given by Eq. (3.8).

𝑣𝑥(𝑦) =
𝛾

2

(︀
𝑦−𝑦2

)︀
+𝜖

𝛾2

24

(︀
2𝑦4−4𝑦3+3𝑦2−𝑦

)︀
+𝜖2

𝛾3

6

(︃
−2

15
𝑦6+

2

5
𝑦5−1

2
𝑦4+

1

3
𝑦3−1

8
𝑦2+

1

40
𝑦

)︃
(3.8)

In Equation (3.8), the perturbation parameter 𝜖 is defined as:

𝜖 =
𝑃𝑒2𝑅𝑒𝑀0𝑥

𝑑𝐻
𝑑𝑥

8𝑅𝑒𝑚
(3.9)

One identifies in Eq. (3.9) the presence of the Péclet number 𝑃𝑒, the Reynolds number 𝑅𝑒,
the magnetic Reynolds number𝑅𝑒𝑚, the horizontal component of the equilibrium magnetization
𝑀0𝑥 and the magnetic field gradient 𝑑𝐻

𝑑𝑥
, all of which are thoroughly defined in Appendix C.

For the validation of the numerical code, the velocity obtained in the center of the duct for
the fully developed flow in the context of a magnetic fluid was compared with that proposed by
Eq. (3.8). The obtained results are presented in Fig. (3.3) and Tab. (3.2).

For a given 𝜖, a magnetic Reynolds number 𝑅𝑒𝑚 was defined through relations (C.20) and
the simulations were carried out.

Two different sets of asymptotic results are presented in Fig. (3.3). One is associated with
a first-order correction in 𝜖 and the other with a second-order correction in 𝜖. One is associated
with a first order correction in 𝜖 and the other with a second order correction. One notices the
non-linearity of the first order solution, which happens due to the correction performed in the
solution due to the 𝛾 parameter - Eq. (C.20) -, which is associated with the pressure gradient. As
expected, the second order solution presents better results when compared to the first order. The
numerical results agreed very well up to 𝜖 ≈ 0.05 with the first-order solution and up to 𝜖 ≈ 0.35
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Table. 3.2: Associated percentage errors betweennumerical and analytical solutions.
𝜖 1𝑠𝑡 order 2𝑛𝑑 order1.0E-06 0.00% 0.00%1.0E-05 0.00% 0.00%1.0E-04 0.00% 0.00%1.0E-03 0.01% 0.01%1.0E-02 0.56% 0.06%1.0E-01 5.25% 0.32%0.2 9.95% 0.52%0.3 14.21% 1.27%0.4 18.13% 3.36%0.5 21.73% 7.52%0.6 25.05% 14.17%0.7 28.13% 23.16%

with the second-order solution. Overall, the numerical results were in excellent agreement with
the analytical solution for 𝜖≪ 1. As the analytical solution was developed under such conditions,
the numerical results are then validated.

Rotational viscosity

Another approach used to validate the numerical schemes was to compare the obtained nu-
merical rotational viscosity, calculated through - Eq. (2.38) -, with the analytical relations presented
in section 2.1.5 - Eqs. (2.39), (2.40) and (2.41) -. For that, thirty different simulationswere carried out
for thirty different dimensionless fields 𝛼, for each of the three numerical codes. Six local vorticity
values were extracted from a fully developed vorticity profile, and, at points analogous to those
in which the vorticity values were extracted, local magnetization values in the horizontal direc-
tion were also collected. With these values, it is possible to calculate the rotational viscosity using
Eq. (2.38). It is important to keep in mind that the calculations refer to non-dimensional rotational
viscosity, therefore Ω𝜏 = 1

2
𝜉𝑃𝑒. The six points selected to calculate the rotational viscosity repre-

sent one point on the duct’s wall - Ω𝜏 = 3 -, one in the center of the duct - Ω𝜏 = 0.0001 -, and the
four others are linearly distributed between the aforementioned two. These points are associated
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Figure. 3.4: Non-dimensional rotational viscosity as a function of 𝛼 for various Ω𝜏 configurations.Symbols represent numerical and lines represent analytical - Eqs. (2.39), (2.40) and (2.41) - results.and for the model of Shliomis [26]; and for the model of Martsenyuk et al. [42], andand for the model of Shliomis [40]. In all figures: 𝑃𝑒 = 1 and 𝜑 = 0.05.
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with the highest, lowest and intermediaries vorticity values of the flow. The results for rotational
viscosity, normalized by its saturation value 3

2
𝜂𝜑, are presented in Fig. (3.4), for six different Ω𝜏

configurations.
It is clear in Fig. (3.4) that, across the simulated range of vorticity and dimensionless field 𝛼,

the numerical results are in excellent agreement with the analytical ones, in the three magnetiza-
tion models.

In addition, the numerical code is capable of correctly capturing the expected trend of an
increase in rotational viscosity when 𝛼 is increased. Due to the increased intensity of the magnetic
field, the magnetic particles are subjected to more intense magnetic torques, which act to align
them in the direction of the field, making them less free to rotate along the flow’s vorticity, which
leads to an increase in energy dissipation. This physical effect is manifested by increasing the vis-
cosity of the fluid, as discussed in section 2.1.5. The numerical code also captures the expected
saturation value of the rotational viscosity, as 𝜂𝑟 → 3

2
𝜂𝜑 as 𝛼 → ∞.

In this way, the numerical results were validated using three different approaches. The next
section deals with the description of the numerical code used in the discrete approach of this work.

3.2 Discrete modulation

In this section, a brief description of the numerical code used to simulate the colloidal sus-
pensions of magnetically interacting particles under the perspective of Langevin dynamics is de-
scribed. Since the numerical routine is very similar to that presented in Gontijo and Cunha [27, 28],
the reader is deprived from all its details. If the reader is interested in more details regarding this
numerical modeling process, he/she is referred to such References.

As previouslymentioned in sections 1.5 and 2.2, themobilitymatrix is a function of the config-
uration and the decay of particle’s interactions, which happen to be a very slow one when describ-
ing hydrodynamic interactions (1/𝑟). The tendency to obtain a statistical divergencewhen comput-
ing average transport properties of particulate systems that are subject to very slow decays is quite
general, appearing inmany systems that involve numerous interacting bodies (magnetic, purely hy-
drodynamic, charges that interact over long distances . . .). To achieve convergent statistics of the
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system’s properties, a large system should be considered, since the interactions disturbances, due
to their slow decay, are felt over long distances. This results in an impractical situation when one
considers how far one should simulate in order to generate convergent statistics. To work around
this problem, the well known periodic summation technique [266] should be considered. In few
words, this technique consists in the simulation of an infinite system (from the point of view of
a statistical thermodynamic limit) with viable computational cost. Ewald’s summation technique
[266] arose from his studies on crystals (geometric structures with periodic structures that repli-
cate in space). He proposed a lattice theory to compute crystal properties by looking at its periodic
repetitions. Under the condition of periodic interactions, a number of boxes surrounding the main
box defines a lattice system where the number of particles is replicated periodically in the wholly
space, and these periodic boxes are Incorporated in the accounting of the particle’s interactions
sums [27]. Not only the summation technique was proposed but also a procedure to accelerate
its convergence when simulating “infinite” spaces in not very large systems. Under this technique,
analysis in both physical and reciprocal (Fourier) spaces are performed in order to accelerate the
convergence of the properties over time. This way, two lattice structures are considered, one in
the physical space 𝑟 and the other in the wavenumber Fourier space 𝑘.

Much later, Beenakker [269] used Ewald’s technique [266] to compute summations of the
Rotne-Prager Tensor tensor (associated with hydrodynamic interactions under low Reynolds num-
ber regimes, considering particles with finite volume, originating from Green’s tensors) when sim-
ulating infinite systems. Beenakker [269] expressions are used in this numerical routine to simulate
hydrodynamic interactions.

In the case of magnetic interactions, as proposed in Gontijo and Cunha [27], a hybrid model
is considered, which combines the computation of interactions using periodic and non-periodic
approaches. As shown in Eqs. (2.85) and (2.86), magnetic forces decay spatially with (1/𝑟4), which
correspond to a fast decay, while magnetic torques decay spatially with (1/𝑟3), which correspond
to a relatively slow decay. Since the magnetic interactions for the force have a faster decay, the
sums of magnetic interactions via induced forces may not be calculated by lattice sums [27]. On
the other hand, due to the slower decay of the magnetic torques, torque interactions must be
carried out in a periodic way, as indicated in McWhirter and Patey [278], Wang et al. [279], Berkov
and Gorn [280], Usov and Grebenshchikov [281], otherwise the summations may lead to diver-
gent suspension transport properties that depend strictly on rotational dynamics, as the fluid’s
magnetization. This has also been demonstrated in Gontijo and Cunha [27], with the analysis of
numerical stability and convergence applied to simulations of colloidal suspensions of magneti-
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cally interacting particles, where it has been shown that the computation of magnetic forces can
be done in a non-periodic manner, since their faster decay allows for non-periodic calculations in
order to achieve convergent statistics, particularly in the prediction of the suspension’s equilibrium
magnetization𝑀0. On the other hand, Gontijo and Cunha [27] pointed out that magnetic torque
interactions, due to their slower decay, should be computed through periodic spaces. The authors
demonstrated that computations of magnetic torques in a non-periodic manner lead to large dis-
crepancies from the predicted values (asymptotic theories) of the equilibriummagnetization, spe-
cially when considering concentrated magnetic fluids (𝜑 ∼ 10%). To work around this problem,
the authors proposed a so-called hybrid method, in which magnetic forces are computed directly,
through the minimum image method, while magnetic torques are computed periodically (with
the use of lattice imaginary structures, in which the central cell structure is replicated). This hy-
brid technique is applied in this particular work, since it enables accurate calculations of transport
properties with statistical convergence, as indicated in the works of Gontijo and Cunha [27, 28].

That said, to simulate a colloidal suspension of particles interacting magnetically, a non-
commercial numerical code was developed by the author’s advisor, undergoing minor changes to
be used in this work. It is written in Fortran language and uses Langevin dynamics to compute inter-
actions between the particles subjected to a local Couette flow through a Lagrangean perspective,
calculating for each suspended particle its translational and rotational motions. This code accounts
for all the results which involve discrete simulations in section 4.2. It uses a non-commercial Intel
Fortran compiler to produce an executable file that reads an entrance text file which contains all
the information regarding the physical parameters to be simulated (i.e. 𝛼, 𝑃𝑒, 𝜆, 𝜑 . . .) along with
the simulations characteristics (i.e. periodicity in computing torques or magnetic forces . . .). The
numerical code makes all the required statistics of the suspension based on an ensemble average
through several simultaneous numerical experiments, providing the wanted transport properties,
which, in the case of this particular work, correspond solely to the suspension’s magnetization. As
already mentioned, a hybrid method is used to compute the magnetic interactions, where parti-
cle interactions induced by force-dipole are accounted without periodic sums while interactions
induced by torque-dipole are accounted using the periodic approach, where a number of image
boxes surrounding themain cell will define the so-called lattice system, in which the periodic boxes
will be incorporated for accounting the images particle contributions to the particle’s interacting
sums [27]. As indicated in Gontijo and Cunha [27, 28], this procedure enhances the computational
cost. The numerical code used in this work is very similar to that presented in Gontijo and Cunha
[27, 28], therefore, one is referred to such References for more details regarding this numerical
modeling process. Some of the steps used to compute both magnetic and hydrodynamic periodic
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interactions are briefly described in this section.

3.2.1 Initialization of the process and generation of the lattice network

To initialize the numerical process, all simulation variables must be declared. These include
the number of particles𝑁 , the number of lattice boxes in the simulating network (125 in this work),
the number of particle’s realizations, as well as the non-dimensional physical parameters involved
in the problem’s physics, namely: the non-dimensional magnetic field 𝛼, the dipole’s coupling pa-
rameter 𝜆, the Péclet number 𝑃𝑒, the rotational Péclet number 𝑃𝑒𝑟 and the volume fraction of
particles 𝜑. It is important to mention that although 𝜑 do not appear explicitly in the discrete mod-
eling of the problem, it determines implicitly the size of the simulation boxes. One must also bear
inmind that𝛼,𝜑,𝜆 and𝑃𝑒 also appear explicitly in the ferrohydrodynamic equations in the contin-
uous formulation. The suspension’s initial condition is generated without the presence of particle
overlaps in all realizations [28]. At each realization of the dynamical simulation - all numerical re-
alizations are computed simultaneously -, there is an initial particle distribution with random and
independent position of the particles inside the simulation box. This generates an initial condition
as close as possible to a spatially statistical homogeneous particle distribution in the absence of
particle’s clusters or any heterogeneity [27]. It is then checked if the smallest distance between
the center of two interacting particles is greater than a particle’s diameter 𝑑 = 2𝑎. If this is not
the case for any pair of interacting particles, a small Brownian random displacement is numerically
provided to ensure the absence of particle’s overlapping [28]. A similar procedure is used for the
initial configurations of the particles’ dipole moments, which are generated with a procedure of
random and independent orientations [27]. As soon as the physical simulation box is created, re-
specting the imposed spatial restrictions, the imaginary lattice cells are replicated and distributed
around the central cell, as indicated in Fig. (3.5) [262, 271, 28].

For the construction of the numerical lattice network, one procedure is adopted for the lat-
tice physical space and other for the lattice reciprocal space [28]. For the lattice physical space, a
vector𝑥𝑅 is added to the position of each particle located in the central cell, according to Eq. (3.10)
and Fig. (3.6).
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Figure. 3.5: Lattices simulating network. Left: the central cell, surrounded by the image cells, isshown highlighted in the center. Right: example of a two-dimensional domain, in which the cell(0,0) represents the so-called physical lattice cell, while all the surrounding ones are the imaginaryperiodic cells. Image adapted from Gontijo and Cunha [28].

𝑥𝑅 =
3∑︁
𝑖=1

𝛾𝑖𝑙𝑖𝑒𝑖, 𝛾𝑖 ∈ Z (3.10)

In Equation (3.10), 𝛾𝑖 = 𝛾1, 𝛾2, 𝛾3 are integers contained in the interval [−2,+2], representing
the lattice vectors and 𝑙𝑖 = 𝑙1, 𝑙2, 𝑙3 denote the lengths of each side of the central cubic cell [28].
The procedure presented in Eq. (3.10) is depicted in Fig. (3.6).

It is easily verified that, when accounting for all the combinations, it reaches 53 = 125 lattice
cells, in a way that each of the 𝛾𝑖 coefficients represent a different cell. For instance, the central
cell would be described as 𝛾1 = 𝛾2 = 𝛾3 = 0. As for the reciprocal space sums, associated with
the Ewald summation technique [266], a vector 𝑥𝑘 is added to the position of each particle, in
accordance to Eq. (3.11) [28].

𝑥𝑘 =
3∑︁
𝑖=1

2𝜋𝛽𝑖
𝑙𝑖

𝑒𝑖, 𝛽𝑖 ∈ Z (3.11)
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(a) (b)
Figure. 3.6: (a) distance of an arbitrary particle in the central cell to its correspondent particle inone of the imaginary surrounding cells. (b) Construction of lattice vectors. Image adapted fromGontijo and Cunha [28].

In Equation (3.11), 𝛽𝑖 = 𝛽1, 𝛽2, 𝛽3 denote integers contained in the interval [−2,+2]. The pro-
cedure described in Eq. (3.11) is used for creating reciprocal lattice cells with differentwavenumbers
[28]. Each of these cells are enumerated in accordance to the algorithm presented in Eq. (3.12) and
visually presented in Fig. (3.7).

𝐿𝑛 = 𝜁1 + 𝜁2 + 𝜁3 (3.12)

In Equation (3.12), 𝜁1, 𝜁2, 𝜁3 denote the components of the lattice enumeration vector, all
defined in Eq. (3.13), and 𝐿𝑛 is the lattice number.

𝜁1 =
(︀
𝛾1 + max |𝛾𝑖|

)︀
𝑁

2
3
𝑙

𝜁2 =
(︀
𝛾2 + max |𝛾𝑖|

)︀
𝑁

1
3
𝑙

𝜁3 = 𝛾3 + max |𝛾𝑖| + 1

(3.13)
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Figure. 3.7: Enumeration of each of the 125 lattice cells in different planes for the three-dimensionaltypical configuration depicted in Fig. (2.2). Image adapted from Gontijo and Cunha [28].
To illustrate the algorithm presented in Eq. (3.12), if one considers the central cell in which

𝛾𝑖 = (𝛾1,𝛾2,𝛾3) = (0,0,0) and for a periodic system composed of 125 lattice cells where 𝛾𝑖 ∈
[−2, + 2] and max |𝛾𝑖| = 2, by taking 𝜁1 = 50, 𝜁2 = 10 and 𝜁3 = 3 the number of central cell
according to Eq. (3.12) would be 𝐿𝑛 = 63, as illustrated in plane 𝑥 = 0 in Fig. (3.7).

Although tedious, the process of enumerating each of the lattice cells is extremely impor-
tant, since interactions between all the particles in the imaginary cells and those in the real lattice
cell are computed in order to describe their motions influenced by magnetic and hydrodynamic
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interactions. This procedure is performed in a loop which considers all of the 125 lattice cells, and
it accounts for the effects of the imaginary particles on their counterparts in the central lattice-cell,
but not between the imaginary particles themselves [28].

As previously discussed, the sum of the hydrodynamic interactions of the particles results in
divergence problems in the statistical properties of the suspension due to the slow decay of these
interactions (1/𝑟) [340, 341, 262, 27, 28], which is avoided by the application of a periodic system
with periodic boundary conditions [27, 28]. However, this approach is accompanied with a signif-
icant increase in the computational cost in dynamic simulations [27]. It is important to mention
that, in the context of magnetic interactions, dipole–dipole interactions spatially decay consider-
ably faster then hydrodynamic interactions, like (1/𝑟4) for the force-dipole interactions and (1/𝑟3)
for torque-dipole interactions. It has been shown in Gontijo and Cunha [27] that a hybrid method,
in which periodicity for particle interaction in a periodic box is considered only when comput-
ing the torque-dipole interactions, is both accurate and much less expensive when it comes to
computational cost. This hybrid method is used in the present work for computing the magnetic
interactions.

3.2.2 Computation of the functions present in the discrete equations

After the initialization process described in section 3.2.1 is completed, several tables con-
taining the values of the scalar functions (section 2.2) used to module the suspension’s discrete
dynamics are computed. Scalar functionsℱ(𝑟), 𝒢(𝑟) andℋ(𝑘) presented in Eqs. (2.68), (2.69) and
(2.70) respectively, used to compute matrices 𝑀 1(𝑟) and 𝑀 2(𝑘) of Eqs. (2.66) and (2.67), are
computed along with scalar functionsℬ(𝑟), 𝒞(𝑟) and𝒟(𝑟) of Eqs. (2.97), (2.92) and (2.93), respec-
tively, used to compute functions 𝒯1(𝑟), 𝒯2(𝑟), 𝒯4(𝑟) and 𝒯5(𝑘) of Eqs. (2.89), (2.90), (2.95) and
(2.96) modeling the long-range periodic magnetic interactions. As easily seen in their own defini-
tions, these functions depend only on the distance between the particles 𝑟 and on the different
wavelengths 𝑘 used in the computation of the reciprocal sums, therefore, these functions are cal-
culated beforehand for all possible particle configurations and these values are then interpolated
from the pre-tabulated mobility functions [28]. According to Gontijo and Cunha [28], this proce-
dure is quite accurate and computationally effective, since it avoids the expensive computation of
the mobility functions in all timesteps, drastically decreasing the𝒪(𝑁2 ×𝑁𝑐) computational cost
of these simulations.
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Figure. 3.8: One-dimensionalmeshes used to pre-tabulate themobility functions for hydrodynamicand magnetic interactions in both physical and reciprocal spaces in the periodic lattices configura-tions. Image adapted from Gontijo and Cunha [28].
The aforementioned pre-calculated tables are better interpreted as one-dimensionalmeshes

with 104 nodes, as depicted in Fig. (3.8). As soon as the suspension geometrical parameters (num-
ber of particles 𝑁 and volume fraction of particles 𝜑) are defined, the largest and shortest dis-
tances between two interaction particles should be defined, in the same manner as all possible
wavelengths [28]. This way, the one-dimensional mesh of pre-tabulated functions is constructed,
in accordance to Fig. (3.8).

As indicated in Fig. (3.8), the possible distances will lie in the interval [2,
√

3𝑙], where 𝑙 cor-
responds to the length of an edge of the central lattice cell. Similarly, wavenumbers will lie in the
interval [2𝜋/√3𝑙,𝜋] [28].

3.2.3 Evolution process

The forces and torques acting on each of the suspended magnetic particles are computed
along with their velocities and positions in space. A fourth-order Runge-Kutta scheme [318, 342]
is used to solve the time developing of the suspension’s dynamics. As soon as the velocities are
calculated, the particles’ positions are evaluated froma current iteration𝑛 to the next𝑛+1 through
[28]:

𝑥𝑛+1 = 𝑥𝑛 + 𝑢𝑛∆𝑡 (3.14)
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In Equation (3.14),∆𝑡 corresponds to the numerical time-step. The non-dimensional physical
parameters presented in Eq. (2.111) represent ratios between different time-scales of the problem.
Therefore, the numerical time-step∆𝑡 used in the Langevin dynamics simulations is defined based
upon these parameters. In addition, 0.01 is considered, which works as a numerical filter in order
to avoid large numerical time-steps [28].

∆𝑡 = min

(︃
𝑃𝑒

10
,
𝛼

10
,
𝜆

10
, 0.01

)︃
(3.15)

With the information obtained from the torques acting on each particle, their angular ve-
locities are then computed, assuming that the magnetic dipole moments will rotate without delay
with their angular velocities, since this work deals with magnetically hard particles [62]. After do-
ing so, the particles’ velocities evolve in time with the next time step. The evolution of the dipole
moments 𝑑𝑖 of the particles follow:

𝑑𝑛+1
𝑖 = 𝑑𝑛𝑖 + (𝜔 × 𝑑𝑛𝑖 )∆𝑡 (3.16)

This procedure is carried out until the desiredmagnetization value reaches a statistical steady
state behavior.

3.2.4 Computing magnetization

One of the most important properties of a suspension of magnetic particles is its magne-
tization 𝑀 , and, in the absence of a flow, its equilibrium magnetization 𝑀 0. Such macroscopic
property is strictly related to the particle’s rotational motion when it is subjected to an external
applied magnetic field. In the absence of a magnetic field, the particle’s dipole moments are ran-
domly oriented in space. When in the presence of a field, a magnetic torque (𝑇𝑚 = 𝑚 × 𝐻)
is exerted in each magnetic particle due to the interaction between the particle’s dipole moment
and the external field. This torque tends to orient the dipole moments in the direction of the field,
resulting in a net magnetization. In the simulations considered in this work, the assumption that
the particle’s Néel relaxation time 𝜏𝑁 is greater than the Brownian relaxation time 𝜏𝐵 is assumed,
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in a way that the rotation of the particle’s dipole moment due to magnetic torques is followed by
the rotation of the particle itself. When all particles are aligned in the field’s direction, the sus-
pension’s equilibrium magnetization reaches a saturation value 𝑀𝑠. In this particular condition,
the suspension’s magnetization is simply given by the volume average 𝜑𝑀𝑑, where𝑀𝑑 is the mag-
netization of the solid material which composes the magnetic particles. That said, the procedure
used in this work for calculating magnetization is based upon its own definition. Magnetization is a
macroscopic physical property defined as the average orientation of the particle’s dipole moments
with respect to the direction of an applied external field, being calculated in this work as [27]:

𝑀

𝜑𝑀𝑑

=

(︃
1

𝑁

1

𝑁𝑟𝑒𝑎

)︃
⟨cos(𝜃)⟩𝑗𝑖 (3.17)

In Equation (3.17),𝑁 is the number of particles in the simulating box,𝑁𝑟𝑒𝑎 is the number of
realizations and 𝜃 is the angle between the direction of the dipole moment of particle 𝑖 in realiza-
tion 𝑗 at a given time step and an applied field direction [27].

3.2.5 Local Couette flow

As discussed in section 1.1, Langevin dynamics simulations are used in order to reconstruct a
continuous magnetization profile of a plane Poiseuille ferrofluid flow. The magnetization and vor-
ticity profiles are obtained through a two-dimensional CFD in-house code. After the continuous
simulations are carried out, the numerical domain is divided into smaller so-called local vorticity
cells, in accordance to Fig. (1.2). These small flow field sub-regions are precisely the domains sim-
ulated in the discrete approach. In order to do so, the local vorticity obtained in the continuous
approach is used as an equivalent local shear-rate to feed a local Couette flow simulated through
the LD numerical code. Since this specific part is responsible for differentiating this numerical code
to the ones used in Gontijo and Cunha [27, 28], it is important to explain how the implementation
of the aforementioned local Couette flow is performed.

The vorticity 𝜉 obtained through the CFD approach is used as an input in the discrete simula-
tions, as an equivalent local shear-rate 𝛾̇ (𝛾̇ = −𝜉). From kinematics of fluids [301], a linear velocity
profile associated with the Couette flow, where 𝑣 = 𝛾̇𝑦𝑒̂𝑥, is locally created in the domain central
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Figure. 3.9: Scheme representing a local Couette ferrofluid flow in the presence of amagnetic field.Image adapted from Rosa [343].
cell (physical box subject to periodic boundary conditions), as indicates the scheme of Fig. (3.9).

Afterwards, this deterministic velocity in the direction of the shear (𝑣 = 𝛾̇𝑦𝑒̂𝑥), which in
turn varies according to the height 𝑦, is added to the pre-calculated translational velocity of the
particles, which results from the interactions between the particles.

In addition to increments in the translational velocity, an angular velocity, associated to the
fluid’s vorticity 𝜉, is also added to the angular velocity of the particles. From kinematics of fluids
[301], the angular velocity of an infinitesimal particle is associated with the fluid’s vorticity (Ω =
1
2
𝜉 = 1

2
∇×𝑣). In the present case, the velocity field is known a priori (Couette flow’s velocity field),

being given by 𝑣 = 𝛾̇𝑦𝑒̂𝑥. By taking the curl of this velocity field, vorticity 𝜉 is obtained, given by
𝜉 = −𝛾̇. This way, −1

2
𝛾̇ is added to the angular velocity of each of the suspended particles. It

is important to mention that this increase promoted in the angular movement of the particles
does not depend on their position in space, therefore all particles present in the central cell will
have their angular velocities modified in the same way, since the increase by the deterministic
angular velocity (in vorticity’s direction) is the same throughout the simulation box, in contrast
to the increase in the deterministic translational velocity, which depends on the position of the
particles.

These modifications in both translational and rotational velocities of the particles are made
in those suspended in the central cell. It is important to remember that the particles are subjected
to long-range interactions, which in order to be computed, a periodic cells schememust be applied.
Under this approach, the central domain (cell) is replicated periodically in all directions. To avoid
wall effects, a particle which leaves the domain through any of the surrounding walls, enters the
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Figure. 3.10: Scheme of the movement of the upper and lower domains, in the presence of shear,according to the scheme of Lees and Edwards [344]. Image adapted from Rosa [343].
very opposite wall again, in a way that the number of particles inside the box remains constant
throughout the simulation. In order for the discontinuities in particle velocities to be minimized,
the condition proposed by Lees and Edwards [344] is used, in which the domains above and below
the central domainmove with velocities proportional to the shear rate [343]. This way, a distortion
in the position of the imaginary lattices is generated, as if they were being sheared, generating a
change in the relative position of the particles that occupy the imaginary cells in relation to the
particles that are in the physical central box. Figure (3.10) shows a schematic of this method. Under
this scheme, it is interesting to notice that a particle which leaves the domain through the lower
wall, will enter the upper wall with its velocity added to the product of the shear rate by the size
of the simulation domain 𝑦 [343].

3.2.6 Should hydrodynamic interactions be computed?

It is well-known that the computation of hydrodynamic interactions significantly increases
the computational cost of dynamic simulations [28]. The important issue is whether hydrodynamic
interactions substantially affect ferrofluid dynamics or not. In case such interactions could be ne-
glected in dynamic simulations, a substantial economy of simulating time would be achieved. Sur-
prisingly, it has become known in ferrohydrodynamics that the effect of hydrodynamic interac-
tions can be neglected to first order in dilute ferrofluids [63]. For instance, Torres-Díaz and Rinaldi
[63] compares the magnitude of hydrodynamic interactions with that of magnetic interactions in
a typical water-based ferrofluid whose particles have radius 𝑎 = 10𝑛𝑚 and bulk magnetization
𝑀𝑑 = 425𝑘𝐴𝑚−1. The authors show that is in both cases of large and small separations between
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the particles, the magnetic interactions clearly exceed the magnitude of the hydrodynamic inter-
actions. Therefore, as already stated, hydrodynamic interactions can be neglected to first order in
dilute ferrofluids [63], leading to less computational cost in dynamic simulations.

In addition, Gontijo and Cunha [28] has demonstrated that hydrodynamic interactions tends
to attenuate the frequency in which particle agglomerates are formed, modifying their overall
behavior, however only when considering dense ferrofluids with volume fraction of particles up
to 𝜑 = 15%, which is clearly not the case in this work, since it deals with dilute ferrofluids with
𝜑 ∼ 5%, confirming that hydrodynamic interactions may be neglected under such conditions.

That said, it is important to mention that in this work, although the calculation of hydro-
dynamic interactions is already programmed in the discrete numerical routine, they are not con-
sidered in its dynamical simulations. It is also important to mention that, in practical terms, the
magnetic particles are not massive, so that the Stokes number is practically null (𝑆𝑡 ∼ 10−11).
However, in the absence of hydrodynamic interactions and when considering 𝑆𝑡 = 0, the only hy-
drodynamic force considered in the problem’smodulation is the Stokes drag (𝐹 𝑑𝑟𝑎𝑔 = −6𝜋𝜂𝑎𝑢), in
a way that the particle’s velocity is algebraically resolved, since∑︀𝐹 = 0 and that the Stokes drag
depends linearly on velocity. Nevertheless, when this modeling is considered in the absence of hy-
drodynamic interactions, the numerical code becomes unstable, leading to several noise generated
in part by the presence of Brownian interactions. Thus, a numerical subterfuge for the purpose of
controlling numerical stability is usedwhen hydrodynamic interactions are not computed, in which
the presence of little inertia (a very small but not null Stokes number) is considered, which leads to
an attenuation/stabilization of code instabilities, attenuating stochastic noises, which come from
the fictitious modeling of Brownian forces and torques, leading to statistically convergent results.
Nonetheless, when in the presence of hydrodynamic interactions, this numerical subterfuge is not
necessary, since the mitigating role is exercised by the mobility matrix itself, since it is associated
with viscous dissipation strictly associated with hydrodynamic interactions.

3.2.7 Code validation and computational cost

It has been established inGontijo and Cunha [27, 28] that periodic particle interactions drasti-
cally increase the computational cost involved in performing dynamic simulations. Such References
also demonstrated that depending on the volume fraction of particle’s 𝜑 and on the intensity of



142

the dipole’s coupling parameter 𝜆, a hybrid method, which involves computations of interactions
in a periodic way for interactions with slower decays and in a non-periodic manner for interactions
with faster decays can be used. Since the computational cost of these particular simulations is
𝒪(𝑁2 ×𝑁𝑐), it rapidly increases when all interactions are calculated periodically by using the lat-
tice system [28]. For instance, Gontijo andCunha [28] shows thatwhenperforming particle-particle
interactions using 𝑁 = 1500 particles in the central cell (𝑁𝑐 = 186000) with full periodicity, the
numerical cost is 200% larger if compared to the case when only magnetic-torque interactions are
calculated periodically. Bearing that in mind, and considering that the hybrid method has proved
to be accurate in Gontijo and Cunha [27, 28] for physical regimes where 𝜑 ∼ 5%, it is applied in
this particular work.

The numerical routine used in this work was extensively validated in Gontijo and Cunha
[27, 28] by comparing the values obtained numerically for transport properties of the suspension
with those theoretically predicted in the literature. Properties such as mean sedimentation veloc-
ity and equilibrium magnetization were used in such validations. The latter is directly associated
with the scope of this work and, therefore, the numerical validation of the code in relation to the
calculation of the equilibrium magnetization 𝑀0 will be briefly presented below, in accordance
with that presented in Gontijo and Cunha [27, 28].

Equilibrium magnetization is the suspension’s magnetization in the absence of flow. Its sim-
plest theoretical model, used in very dilute magnetic fluids with non-interacting magnetic dipoles,
is the well-known Langevin model [3], presented in Eq. (2.19), which is a𝒪(𝜑) model. However, in
more concentrated regimes and in the presence of interacting particles, more robust (𝒪(𝜑2,𝜑3))
models [33, 34] must be used, as the one presented in Ivanov and Kuznetsova [34] - Eq. (2.22) -
which is a𝒪(𝜑3,𝜆2) along with the model of Jansons [33].

Gontijo and Cunha [27] shows a very good agreement between the first [3] order and sec-
ond [33] order models with their obtained numerical results. They note that under high 𝛼 regimes,
where field effects dominates both Brownian thermal fluctuations and dipole-dipole interactions,
all curves collapse to the same prediction of magnetization. It is also shown that the numerical
values tend to underestimate the higher order asymptotic models, which is an indicative that non-
periodic dipole-dipole magnetic interactions are valid only for small values of 𝜑 and 𝜆 [27]. The
biggest discrepancies between the models lie when 𝛼 ∼ 1, since under these regime the energy
of the external field is compared with that of the Brownian fluctuations. In addition, they show the
behavior of the suspension’s magnetization when 𝛼 = 1, calculated considering both periodic and
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non-periodic interactions for the dipole-dipole-magnetic torque interactions. They state that when
𝜑 ∼ 0.01, all theoretical results and numerical simulations give very similar results. Up to a point
where 𝜑 = 0.03, the results were very close to each other. However, when 𝜑 ≥ 5%, the results
seemed to deviate. In this dilute regime, when considering 𝜆 ∼ 1, the dipole–dipole magnetic
interactions are not as significant as the other interactions that govern the suspension’s dynamics.
However, when the volume fraction of particles 𝜑 is increased, the dipole–dipolemagnetic interac-
tions tend to become much more important on the suspension’s dynamics. Under these regimes,
they note that the numerical results computing particle interactions without periodic sums tend
to underestimate significantly the asymptotic𝒪(𝜑3) model [34]. Thus, it is demonstrated that the
computation of dipole–dipole magnetic interactions in a non-periodic way tend to underestimate
the equilibrium magnetization values for more concentrated regimes (i.e. 𝜑 > 0.05 for 𝜆 ∼ 1).
On the other hand, when using periodic computations for magnetic torques due to dipole–dipole
interactions (using the hybridmodel), the numerical results produced by the authors were in excel-
lent agreement with the theoretical𝒪(𝜑3) model [34] for values of 𝜑 up to 𝜑 = 0.1 [27]. This way,
the authors not only validated the numerical routine in terms of computing magnetization, but
also established the limits where the hybrid method can be applied, which occurs when 𝜑 ∼ 10%.
Considering that this particular work deals with dilute suspensions of 𝜑 ∼ 5%, the hybrid method
is clearly applicable and the results obtained through the dynamic numerical simulations can be
considered accurate. That said, the discrete numerical routine is validated and the results obtained
through the numerical approach described in section 3.2 are presented in section 4.2.

Numerical convergence of the suspension’s magnetization was also evaluated in Gontijo and
Cunha [27, 28]when considering the number of particles𝑁 andnumber of realizations𝑁𝑟𝑒𝑎, where
it has been shown that for 𝑁 ∼ 500 particles and 𝑁𝑟𝑒𝑎 ∼ 50 realizations convergent statistical
properties of the suspension can be obtained.
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4 Results and discussions

4.1 Results and discussions

This section is concerned with the presentation of the numerical results obtained through
the coupled numerical solution of the non-dimensional vorticity equation - Eq. (2.48) -, one of the
non-dimensional magnetization equations - Eqs. (2.49), (2.50) or (2.51) - and the Poisson equation
- (2.45) - in different physical situations. The results presented cover both the entrance region and
the fully developed region of the flow. These results are published in de Carvalho andGontijo [345].

4.1.1 Considerations

A brief discussion about the choice of the magnitude of physical parameters

Before presenting the results, a brief discussion is made about the choice of the magnitude
of the problem’s physical parameters. Some of themare physically limited due to the very nature of
problem. As in this study a laminar flow is considered, the Reynolds number𝑅𝑒must be less than
𝑅𝑒 < 5772 in order to guarantee laminar flow [346, 347]. Thus, the simulations are performed
with 𝑅𝑒 = 5000 so that a laminar flow is maintained. The physical parameters related to the
composition of the analyzed ferrofluid, such as the volume fraction of particles 𝜑 and the dipole’s
coupling parameter 𝜆 are also physically limited. Ferrofluid’s magnetic particles have diameter in
the range 3𝑛𝑚 < 𝑑 < 15𝑛𝑚 [3], therefore 𝜆, according to Eq. (1.13), lies in the range 0.036 < 𝜆 <

4.474. As for 𝜑, this paper deals with diluted ferrofluids. Therefore, values of 𝜑 ∼ 0.05 and 𝜆 ≈ 2.9

are used in the simulations, for particle’s diameter 𝑑 ≈ 13𝑛𝑚. When it comes to the magnitude
of 𝛼, it is strictly related to the temperature of the ferrofluid, the composition and geometry of
the particles, as well as the applied magnetic field. All simulations were performed considering
ferrofluids with magnetite nanoparticles with domain magnetization𝑀𝑑 = 4.46×105𝐴/𝑚 [70] at
𝑇 = 298𝐾. Different values of 𝛼 were simulated through changes in the intensity of the applied
magnetic field. Normally, in all simulations, 𝛼 is in the range 1 < 𝛼 < 15.

The main issue regarding the choice of physical parameters was the choice of physically con-
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sistent Péclet numbers 𝑃𝑒. As discussed in de Carvalho and Gontijo [46], typical values of Péclet
number for ferrofluid applications are generally 𝑃𝑒≪ 1, due to the small nature of the Brownian
timescale 𝜏𝐵. However, under these conditions, magnetization cannot be effectively disturbed by
the vorticity field and, therefore, hydrodynamics has little influence on the magnetization field.
As this work is concerned with understanding the nature of the hydrodynamic-magnetic coupling
through the action of vorticity, it is interesting to analyze scenarios in which 𝑃𝑒 ≈ 1. Péclet num-
bers of this order can lead to non-physical consequences, as they can be outside of realistic config-
urations in which magnetic fluids exist and have stable properties. To ensure physically applicable
scenarios, the properties of commercially available ferrofluids taken fromRosensweig [3]were con-
sidered in the pressure gradient 𝑑𝑃

𝑑𝑥
calculations necessary to maintain the flow for fixed Reynolds

and Péclet numbers. Calculations of the Brownian timescale 𝜏𝐵 - Eq. (1.9) - of themagnetic particles
were performed using commercially available ferrofluids data from Rosensweig [3]. For a typical
particle’s diameter 𝑑 = 13𝑛𝑚, Tab. (4.1) presents the calculated values for 𝜏𝐵.
Table. 4.1: Brownian timescale of different commercially available ferrofluids with diameter 𝑑 =
13𝑛𝑚 taken from Rosensweig [3] at 298K.

Carrier liquid 𝜌 (Kg/𝑚3) 𝜂 (Pa.s) 𝜏𝐵 (s)Diester 1185 0.075 6.29E-05Hydrocarbon 1050 0.003 2.52E-06Hydrocarbon 1250 0.006 5.03E-06Fluorocarbon 2050 2.5 2.10E-03Ester 1150 0.014 1.17E-05Ester 1300 0.03 2.52E-05Ester 1400 0.035 2.94E-05Water 1180 0.007 5.87E-06Water 1380 0.01 8.39E-06Polyphenylether 2050 7.5 6.29E-03
A huge variation in the typical Brownian timescale 𝜏𝐵 is observed for different carrier liq-

uids. This timescale has a major impact on the estimate of the Péclet number. For fixed Péclet and
Reynolds numbers scenarios, such as the cases studied in this work, it is possible to calculate the
typical velocity and spacing between the plates using Eq. (2.52). The pressure gradient required to
maintain these flows can also be estimated using Eq. (4.1).

𝑑𝑃

𝑑𝑥
=

12𝜂𝑈

ℎ2
(4.1)
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The greater the Péclet number, the greater the hydrodynamic impact on magnetization dy-
namics, leading to non-equilibrium results. However, as already mentioned, it is necessary to de-
fine 𝑃𝑒 with caution, in order to guarantee physically applicable situations, without jeopardizing
the important physical consequences of non-equilibrium scenarios. That said, the Péclet number
was fixed as 𝑃𝑒 = 0.5 in the simulations, as it guarantees applicability in order to maintain consis-
tent physical values for at least some of the aforementioned ferrofluids. The calculated values are
shown in Tab. (4.2).
Table. 4.2: Pressure gradient in order to maintain the channel flow of different commerciallyavailable ferrofluids with diameter 𝑑 = 13𝑛𝑚 taken from Rosensweig [3] at 298K. In this table:
𝑅𝑒 = 5000 and 𝑃𝑒 = 0.5.

Carrier liquid U (m/s) h (m) dP/dx (atm/m)Diester 50.15 6.31E-03 11.19Hydrocarbon 53.28 2.68E-04 263.27Hydrocarbon 48.83 4.92E-04 143.63Fluorocarbon 38.13 1.60E-01 0.44Ester 50.91 1.20E-03 59.04Ester 47.88 2.41E-03 29.29Ester 46.14 2.71E-03 26.06Water 50.26 5.90E-04 119.61Water 46.47 7.80E-04 90.55Polyphenylether 38.13 4.80E-01 0.15
From the data obtained in Tab. (4.2), it is possible to see that, for part of the presented fer-

rofluids, the chosen values of Péclet and Reynolds numbers (𝑃𝑒 = 0.5 and𝑅𝑒 = 5000) would lead
to realistic physical scenarios, as is the case of ferrofluids with carrier liquids of diester, fluorocar-
bon, ester and polyphenylether. In this way, physical applicability is guaranteed in relation to the
choice of physical parameters used in the numerical simulations (𝜑 ∼ 5%, 𝜆 = 2.9, 𝑅𝑒 = 5000

and 𝑃𝑒 = 0.5).
From a different perspective, we decided to explore what the particle’s diameter 𝑑 should

be so that physical scenarios with higher Péclet number configurations, which would generate
strongly non-equilibrium results, were physically “possible”. Table (4.3) presents results on val-
ues of 𝑑 necessary to obtain consistent physical pressure gradients for all ferrofluids present on
Tab. (4.1) under conditions of 𝑅𝑒 = 5000 and 𝑃𝑒 = 1. For this, the velocity 𝑈 was fixed at
𝑈 = 15𝑚/𝑠 and the diameter 𝑑 was obtained through Eq. (4.2).
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𝑑 =

(︃
2𝜅𝐵𝑇𝑅𝑒𝑃𝑒

𝜋𝜌𝑈2

)︃ 1
3 (4.2)

Table. 4.3: Typical diameters 𝑑 in order to maintain conditions of 𝑅𝑒 = 5000, 𝑃𝑒 = 1 and 𝑈 =
15𝑚/𝑠.

Ferrofluid d (m) dP/dx (atm/m)Diester 3.66E-08 0.30Hydrocarbon 3.81E-08 5.88Hydrocarbon 3.60E-08 4.16Fluorocarbon 3.05E-08 0.03Ester 3.70E-08 1.51Ester 3.55E-08 0.90Ester 3.46E-08 0.90Water 3.67E-08 3.18Water 3.48E-08 3.04Polyphenylether 3.05E-08 0.01
All results presented in Tab. (4.3) are physically applicable. However, it would be necessary to

employ a synthesized ferrofluid with an average particles diameter of 𝑑 ≈ 35𝑛𝑚. These ferroflu-
ids would be suitable for a higher hydrodynamic-magnetic coupling, which could lead to other
possibilities in terms of ferrofluid flow control and to strongly non-equilibrium configurations. Un-
fortunately, this ferrofluid cannot exist, since the dipole’s coupling parameter would reach 𝜆 ≈ 58.
In the range 𝜆 ≈ 5 − 7, the interparticle magnetic attraction forms – in a sufficiently strong exter-
nal field – long and almost linear particle chains. In a weak magnetic field, the chains collapse into
dense globules. Therefore, these fluids could not exist. These physical scenarios would approach
those of magneto-rheological suspensions (MRS), as suspensions of magnetic globules (i.e. big ag-
gregates of single-domain particles) represent a variety of MRS, but having little in common with
ferrofluids. This would obviously be outside the scope of this work.

Although particles with diameter 𝑑 ∼ 35𝑛𝑚 seem unrealistic, ferrofluids with larger par-
ticle’s diameter of 𝑑 = 24𝑛𝑚 made of CoNi and others composed of fiberlike CoNi particles of
56𝑛𝑚 in length and 6.6𝑛𝑚 in width have been reported in the literature [66]. Such ferrofluids have
greater intensity of the magnetorheological (MR) effect [1], which results in the development of
a larger yield stress and viscosity upon magnetic field application. However, they are less stable
than conventional ferrofluids, as magnetostatic forces dominate Brownian motion [1]. Although
less stable, they have properties between the conventional ferrofluids and magnetorheological



148

fluids, making them good candidates for applications that require stability and moderate MR ef-
fect [1].

A brief discussion about the choice of magnetization model

Figure (4.1) displays total magnetization𝑀 =
√︀
𝑀2

𝑥 +𝑀2
𝑦 profiles for the fully developed

flow obtained by the three magnetization models presented in section 2.1.3. Two different con-
figurations of the Péclet number are shown. In both cases, the hydrodynamic timescale is greater
than the magnetic relaxation time of the particles; however, in one case, the former is ten times
greater than the latter (𝑃𝑒 = 0.1) and in the second case, twice as large (𝑃𝑒 = 0.5).

M/(φM
d
)

y
/h

0.65 0.69 0.73 0.77 0.81
0

0.2

0.4

0.6

0.8

1

M/(φM
d
)

y
/h

0.795 0.797 0.799 0.801
0

0.2

0.4

0.6

0.8

1

(a)
M/(φM

d
)

y
/h

0.65 0.69 0.73 0.77 0.81
0

0.2

0.4

0.6

0.8

1

(b)
Figure. 4.1: Total magnetization profiles obtained for the fully developed flow. represent thefirst magnetization model (Eq. (2.27)); represent the second magnetization model (Eq. (2.31))and represent the third magnetization model (Eq. (2.32)). In all figures, Re = 5000, 𝛼 = 5 and 𝜑= 0.05. In (a) Pe = 0.1 and (b) Pe = 0.5.

Lower Péclet number configurations are associated with a more magnetic state in which hy-
drodynamics is not able to significantly disturb the magnetization field. This occurs due to higher
relative magnitudes between the hydrodynamic timescale, when compared to the magnetic relax-
ation time of the particles, leading to weakly non-equilibrium states. In the case of configurations
with a larger Péclet number, the hydrodynamic effects become more prominent and lead to non-
equilibrium states. In simple words, the Péclet numbermeasures the relative importance between
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Brownian and hydrodynamic convective timescales. Configuring numerical settings of the Péclet
number is a way of interacting with the timescales of the problem. However, it is important to re-
strict the range of variations, as very high Péclet numbers can lead to non-physical consequences,
as they may be outside of realistic configurations in which magnetic fluids exist and have stable
properties.

A first glance in Fig. (4.1) reveals differentmagnetization profiles produced by the three differ-
ent models in the two different Péclet number configurations. All models recover the equilibrium
magnetization value𝑀0 = 0.8, predicted by Langevin’s model - Eq. (2.19) -, in the center (where
vorticity is null - check Fig. (4.10b) -). However, they diverge differently from equilibrium along the
cross section.

Under the weakly non-equilibrium configuration (𝑃𝑒 = 0.1), a more detailed inspection in
Fig. (4.1a) shows that deviations between models occur only in third decimal places. In weakly
non-equilibrium states, the models predict very similar results in the studied dimensionless field 𝛼
configuration, as discussed in section 2.1.3. Thus, any of the threemodels is suitable for use. As the
first model is the easiest to implement numerically, this model should be implemented to simulate
weakly non-equilibrium situations.

On the other hand, in the higher Péclet number configurations, as shown in Fig. (4.1b), the
second - Eq. (2.31) [42] - and third - Eq. (2.32) [40] - models predict similar results, however, there is
a large discrepancy between these models and the first - Eq. (2.27) [26] -, mainly in the magnetiza-
tion close to the walls. Right on the walls, the deviations reach≈ 10.1% between the first [26] and
second [42] models and≈ 11.5% between the first [26] and third [40] models. Likewise, it reaches
only≈ 1.5% between the second [42] and third [40]models. The higher the shear rate, the greater
the discrepancy between the first [26] and third [40] models, according to Shliomis [40]. It is inter-
esting to note that the deviations increase as one approaches the walls. On the other hand, they
decrease towards the center, where all models collapse to the same predicted value of equilibrium
magnetization𝑀0.

In short, for weakly non-equilibrium situations, the first [26] magnetization model should
be used, as it is much simpler to implement than the others. The second [42] model, however,
guarantees the correct description of the magnetization field, even if the equilibrium deviation is
large [40]. However, as the third [40] model is simpler than the second [42] and is also valid for
describing non-equilibrium situations, it should be used for a wide range of applications [21].
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Regarding the time that the simulations took to be carried out in each case, after some tests,
it was observed that 𝑡𝑓𝑖𝑟𝑠𝑡 < 𝑡𝑠𝑒𝑐𝑜𝑛𝑑 < 𝑡𝑡ℎ𝑖𝑟𝑑, where 𝑡𝑠𝑒𝑐𝑜𝑛𝑑 ≈ 1.21𝑡𝑓𝑖𝑟𝑠𝑡 and 𝑡𝑡ℎ𝑖𝑟𝑑 ≈ 1.33𝑡𝑓𝑖𝑟𝑠𝑡. In
this analysis, 𝑡𝑓𝑖𝑟𝑠𝑡, 𝑡𝑠𝑒𝑐𝑜𝑛𝑑 and 𝑡𝑡ℎ𝑖𝑟𝑑 corresponds to the time the simulations took complete when
applying the first [26], second [42] and third [40] magnetization models, respectively. That said,
the second model - Eq. (2.31) [42] - was used in the following results, as it describes very well real
magnetic fluids for any values of 𝛼 and Ω𝜏 configurations [40].

A brief discussion about the problem’s timescales

In this section, the timescales responsible for governing the dynamics of the problem are
presented. Three different physical timescales have been identified: the Brownian relaxation time
of the particles 𝜏𝐵; the magnetic timescale 𝜏𝑚𝑎𝑔 associated with the applied magnetic field and
the hydrodynamic timescale 𝜏ℎ𝑦𝑑𝑟𝑜 associated with the characteristics and geometry of the flow.
In simple words, the magnetic timescale 𝜏𝑚𝑎𝑔 is associated with an intrinsic timescale related to
viscosity, such as how the dissipation of momentum is altered when in the presence of a magnetic
field.

Table. 4.4: Typical timescales of the problem.
Time scales Mathematical expression
Brownian 𝜏𝐵 = 3𝜂𝑉𝑝

𝜅𝐵𝑇

Magnetic 𝜏𝑚𝑎𝑔 = 3𝜂𝑉𝑝
𝜇0𝑚𝐻

Hydrodynamic 𝜏ℎ𝑦𝑑𝑟𝑜 = ℎ
𝑈

It is important to note that the particle’s diameter play an important role in both the Brow-
nian and the magnetic timescales. In addition, the duct’s geometry is strictly related to the hydro-
dynamic timescale. The magnetic timescale is confined to typical intervals, as its value depends
on the magnitude of the applied magnetic field. It is a balance between these timescales that will
govern all physical phenomena observed in the simulations; therefore, it is of great importance
to estimate the order of magnitude of each individual timescale. It is important to highlight that
these timescales depend on the properties of the ferrofluids, being, therefore, different for each
ferrofluid present in Tab. (4.1). The estimates of these timescales are presented in Tab. (4.5) for
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all ferrofluids presented in Tab. (4.1). For the magnetic timescale, magnetic fields were considered
stronger than the Earth’s magnetic induction field on its surface (𝐵𝐸𝑎𝑟𝑡ℎ ≈ 5 × 10−5T) [348] and
smaller than 1𝑇 .
Table. 4.5: Timescales of different commercially available ferrofluids with diameter 𝑑 = 13𝑛𝑚taken from Rosensweig [3] at 298K, 𝑅𝑒 = 5000 and 𝑃𝑒 = 0.5.

Carrier liquid 𝜏𝑚𝑎𝑔 (s) [5 × 10−5𝑇 < 𝜇0𝐻 < 1𝑇 ] 𝜏ℎ𝑦𝑑𝑟𝑜 (s) 𝜏𝐵 (s)
Diester 1.01E-02 < 𝜏𝑚𝑎𝑔 < 5.04E-07 1.26E-04 6.29E-05

Hydrocarbon 4.04E-04 < 𝜏𝑚𝑎𝑔 < 2.02E-08 5.03E-06 2.52E-06
Hydrocarbon 8.07E-04 < 𝜏𝑚𝑎𝑔 < 4.04E-08 1.01E-05 5.03E-06
Fluorocarbon 3.36E-01 < 𝜏𝑚𝑎𝑔 < 1.68E-05 4.19E-03 2.10E-03

Ester 1.88E-03 < 𝜏𝑚𝑎𝑔 < 9.42E-08 2.35E-05 1.17E-05
Ester 4.04E-03 < 𝜏𝑚𝑎𝑔 < 2.02E-07 5.03E-05 2.52E-05
Ester 4.71E-03 < 𝜏𝑚𝑎𝑔 < 2.35E-07 5.87E-05 2.94E-05
Water 9.42E-04 < 𝜏𝑚𝑎𝑔 < 4.71E-08 1.17E-05 5.87E-06
Water 1.35E-03 < 𝜏𝑚𝑎𝑔 < 6.73E-08 1.68E-05 8.39E-06

Polyphenylether 1.01E+00 < 𝜏𝑚𝑎𝑔 < 5.04E-05 1.26E-02 6.29E-03
Beforehand, it is noted that, in all cases, the hydrodynamic timescale 𝜏ℎ𝑦𝑑𝑟𝑜 is greater than the

relaxation time of the particles 𝜏𝐵, which means that the hydrodynamic effects will take longer to
manifest when compared to the Brownian’s. A relation between the magnitudes of the magnetic
timescale 𝜏𝑚𝑎𝑔 and the others depends on the strength of the applied magnetic field. However,
assuming commonly appliedmagnetic fields (𝛼 ≥ 1), in all cases themagnetic timescale is less than
or equal (i.e. 𝜏𝑚𝑎𝑔 = 𝜏𝐵 when 𝛼 = 1) to the Brownian and hydrodynamic timescales. Therefore,
it must be borne in mind that magnetic effects will always occur faster than hydrodynamic and
Brownian effects. This “timescale dance” is responsible for governing the complex nature of this
problem.

The timescales presented in Tab. (4.4) were used to compose two important physical param-
eters of the problem, that is, 𝛼 and 𝑃𝑒, as they will be used to interpret the results.

𝛼 =
𝜏𝐵
𝜏𝑚𝑎𝑔

; 𝑃𝑒 =
𝜏𝐵
𝜏ℎ𝑦𝑑𝑟𝑜

→ 𝛼

𝑃𝑒
=
𝜏ℎ𝑦𝑑𝑟𝑜
𝜏𝑚𝑎𝑔

(4.3)

From Equation (4.3), it is possible to see that the non-dimensional magnetic field 𝛼 is given
by a ratio between the Brownian and magnetic timescales, that is, the larger the applied magnetic
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field, the faster the magnetic effects are manifested, because the value of the magnetic timescale
𝜏𝑚𝑎𝑔 is decreased under such conditions.

As already mentioned, a ferrofluid flow in a magnetic field is accompanied by a coupling
between hydrodynamic andmagnetic effects. From Equation (4.3), it is noted that the combination
of physical parameters responsible for pointing out a possible interplay between themagnetic and
hydrodynamic timescales will be a combination of the parameters (𝛼, Pe), since their ratio 𝛼/𝑃𝑒
is a relation between these timescales (𝛼/𝑃𝑒 = 𝜏ℎ𝑦𝑑𝑟𝑜/𝜏𝑚𝑎𝑔).

The terms associated with hydrodynamics in the magnetization models are linked to the Pé-
clet number, since this number has the hydrodynamic timescale in its own definition. One notes
the presence of the Péclet number associated with the mechanisms related to the deviation from
equilibrium magnetization, as well as the precession restoring mechanism in the magnetization
models. The relation 𝛼/𝑃𝑒 appears explicitly in all magnetization models multiplying the preces-
sion terms. In common applied magnetic fields under the simulated hydrodynamic physical condi-
tion, this relationwill always be a positive number larger than 1, since 𝜏𝑚𝑎𝑔 < 𝜏ℎ𝑦𝑑𝑟𝑜, evidencing the
importance of the restorative precession mechanism in non-equilibrium magnetization dynamics.
In addition, in Eqs. (2.49), (2.50) and (2.51), the presence of 𝑃𝑒−1 = 𝜏ℎ𝑦𝑑𝑟𝑜/𝜏𝐵 is noted. In this
case, since 𝜏ℎ𝑦𝑑𝑟𝑜 > 𝜏𝐵, the terms associated with the deviation from equilibrium magnetization
will also be significant, since the quotient 𝜏ℎ𝑦𝑑𝑟𝑜/𝜏𝐵 always lead to a number greater than 1. That
said, it is clear that hydrodynamic effects will effectively affect the magnetization field.

On the other hand, the only terms associated with magnetism in the equation of motion -
Eq. (2.48) - are preceded by the relation:

𝑅𝑒−1
𝑚 =

3𝜑𝛼

𝑃𝑒𝑅𝑒
(4.4)

In Equation,𝑅𝑒𝑚 is themagnetic Reynolds number. For fixed𝜑 and𝑅𝑒 scenarios, this relation
is reduced to 𝛼/𝑃𝑒, described by the quotient of the hydrodynamic and magnetic timescales.
Since 𝜏𝑚𝑎𝑔 < 𝜏ℎ𝑦𝑑𝑟𝑜 in usual appliedmagnetic fields under the simulated hydrodynamic conditions,
this quotient will always lead to a positive number greater than 1. However, as this work deals
with diluted ferrofluids (𝜑 ∼ 5%) in consistently large Reynolds numbers, the relation 𝜑/𝑅𝑒 =

10−5 for 𝜑 = 0.05 and 𝑅𝑒 = 5000, so that 𝑅𝑒−1
𝑚 will always lead to a much smaller number
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than the unit. Therefore, it is assumed that, although hydrodynamics plays a major role in non-
equilibrium magnetization dynamics, magnetization effects would not lead to significant changes
in hydrodynamic fields, since the magnetic effects are not numerically significant in the equation
of motion due to the smallness of 𝑅𝑒−1

𝑚 under the simulated physical conditions.

4.1.2 Flow’s entrance region

This work investigates the hydrodynamic-magnetic coupling in the context of a non-
equilibrium ferrofluid flow, using as a case study a flow between two parallel plates. Such flows
are divided into two basic regions: 1) The entrance region and 2) the fully developed region, as
shown in Fig. (1.1).

The hydrodynamic entrance region is defined as the region in which the fluid entering the
duct develops a non-uniform velocity profile due to the propagation of viscous forces that arise
close to the walls. Its length 𝐿ℎ is determined as the section in which the hydrodynamic boundary
layers - which appear on the walls and increase their thickness 𝛿ℎ in the downstream direction
- meet in the center of the duct, as indicated in Fig. (4.2a). After this region, the velocity profile
remains unchanged. The mechanism for developing the velocity profile is well-known in the liter-
ature. Due to the diffusive nature of viscosity and the non-slip boundary condition, the fluid layers
in contact with the walls gradually resist the movement of the adjacent ones. For mass conserva-
tion - (∇ · 𝑣) = 0 -, the velocity of the layers in the center of the duct must increase as a way to
balance the decrease in the velocities of the layers close to thewalls, generating a velocity gradient
[349, 222, 350].

Figures (4.2a) and (4.2b) represent typical velocity and magnetization fields, respectively.
In Figure (4.2a), the aforementioned hydrodynamic entrance length 𝐿ℎ and the hydrodynamic
boundary layer thickness 𝛿ℎ are identified. The main feature of Fig. (4.2b) is the presence of a
magnetization entrance region, characterized by a magnetization entrance length 𝐿𝑚 and what
we call an analogous magnetization boundary layer thickness 𝛿𝑚. The presence of a magnetization
entrance region is strictly linked to the hydrodynamic-magnetic coupling that governs the physics
of the problem. As the velocity field develops due to a balance between advective and diffusive
mechanisms, as in a classical boundary layer problem, it leads to a developing region in the vorticity
field that is strictly linked to the dynamics of magnetization, ultimately leading to a magnetization
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Figure. 4.2: (a) Velocity field. (b) Magnetization field. (c) Velocity profiles obtained for differentsections in the duct. (d) Magnetization profiles obtained for different sections in the duct. For (c):The dotted line , the dashed line , the chain line and the solid line represent sectionsx/d = 2.5, 30, 70 and 230, respectively. For (d): The dotted line , the dashed line , the chainline and the solid line represent sections x/d = 10, 30, 70 and 160, respectively.. In all figures:
𝛼 = 1, Pe = 0.5, Re = 5000, 𝜑 = 0.05 and 𝜆 = 2.9. In (a): 𝛿ℎ and 𝐿ℎ represent the hydrodynamicboundary layer thickness and the hydrodynamic entrance length, respectively. In (b): 𝛿𝑚 and 𝐿𝑚represent the “magnetization boundary layer” thickness and the magnetization entrance length,respectively. .
developing region. When comparing the differences between the length of the thermal and hy-
drodynamic entrance regions of a flow heated by the wall, it is noted that the relation 𝐿ℎ/𝐿𝑇 (𝐿𝑇
is the thermal entrance length) is associated with the Prandtl number, which is a dimensionless
parameter that represents the ratio between two diffusive coefficients. This characteristic in par-
ticular led us to speculate the existence of an equivalent diffusive coefficient of magnetization.
Generally, the diffusive coefficients are material dependent; however, in this context, this coeffi-
cient may be flow dependent. In this specific scenario, we speculate that the competition between
vorticity and restorative magnetic torques would function as an equivalent diffusive mechanism,
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leading to something analogous to a magnetization boundary layer, as indicated in Fig. (4.2b).
As indicated, the magnetization entrance region is developed by a balance of advective/dif-

fusive physical mechanisms, which leads to the development of the magnetization boundary layer
up to the entrance length. This indicates the existence of a diffusive magnetization mechanism. In
an analogy to the purely hydrodynamic regime, in which the diffusion of momentum by viscous
effects leads to a term of the type (∇2𝑣), we speculate the modeling of such diffusive terms in the
magnetization relaxation equation in a form like:

𝜕𝑀

𝜕𝑡
+ (𝑣 · ∇)𝑀 ∼ 𝜈𝑚𝑎𝑔∇2𝑀 (4.5)

In Equation (4.5), 𝜈𝑚𝑎𝑔 is the equivalent diffusive coefficient of magnetization. It is important
to mention that this term on the right side of Eq. (4.5) does not appear explicitly in any of the
magnetization models studied in this work. However, it is important to note that the mechanisms
of vorticity and restorative magnetic torques, present in the relaxation models, would combine
and act as this equivalent diffusive mechanism.

For numerical purposes, the entrance length was defined as the non-dimensional distance
from the entrance of the duct to the point where the maximum deviation between the fully devel-
oped profile of any variable and that of that specific section is less than 1%. For this specific choice
of physical parameters, the hydrodynamic entrance length is 𝐿ℎ ≈ 216 and the magnetization
entrance length is 𝐿𝑚 ≈ 146, indicating that the magnetization field develops in smaller regions.

Figures (4.2c) and (4.2d) show velocity and magnetization profiles obtained in different sec-
tions of the duct, respectively. As expected, the velocity profiles are very flat close to the duct’s
entrance, as the inlet flow is uniform. As diffusive mechanisms begin to occur in the dynamics of
the problem, a velocity gradient is formed until the velocity field remains unchanged in the fully
developed region, assuming a parabolic shape, as indicated in the evolution of the velocity profiles
in Fig. (4.2c). Similarly, themagnetization profiles are quite flat near the entrance of the duct, since
the inlet fluid is demagnetized, in the absence of an applied magnetic field. When the fluid enters
the duct, it begins to magnetize, since it is now subjected to the action of a magnetic field, causing
the magnetic particles to begin to align in its direction. The magnetization then develops due to
the speculated diffusive magnetic mechanism until it remains unchanged in the fully developed
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magnetization region, as portrayed in Fig. (4.2d). In addition, it is possible to notice in Fig. (4.2d)
that the magnetization values do not change in the center of the duct along the development
region. As there are no hydrodynamic effects in the center of the duct, where vorticity is null -
Fig. (4.10b) - , there will be no mechanisms that deviate magnetization from its equilibrium value,
predicted by Eq. (2.22), which is the studied physical scenario (𝛼 = 1, 𝜑 = 0.05 and 𝜆 = 2.9) leads
to𝑀/𝜑𝑀𝑑 = 0.583. This observation is best depicted in Fig. (4.5).

The functional dependency of four physical parameters of the problem was identified in this
developing region, namely, the non-dimensional magnetic field 𝛼, the relaxation time of the par-
ticles, which is directly associated with the Péclet number 𝑃𝑒, the dipole’s coupling parameter 𝜆
and the volume fraction of particles 𝜑.

The developing region is associated with the interplay between hydrodynamic andmagnetic
effects. When the field is increased, the magnetic influence dominates magnetization dynamics
and the particles are not able to efficiently perceive the effect of vorticity, since the magnetic
torque works more efficiently, fixing the particles dipole moment in the direction of the field,
which, as a result, leads to faster alignment in the direction of the field, leading to shorter entrance
lengths. This behavior is seen in Fig. (4.3a) for𝛼 ' 4. For the interval 1 / 𝛼 / 4, an interesting but
unforeseen behavior is manifested, as a change in the figure’s trend is observed. For 1 / 𝛼 / 3,
the expected response of a decrease in the entrance region is observed when the field intensity
increases. However, when 3 / 𝛼 / 4, the opposite behavior is observed, since 𝐿𝑚 increases with
𝛼. This odd behavior confirms the complex nature of the problem and will be manifested in differ-
ent ways in the next results. We assume that the unexpected change in behavior is associated with
changes in the intensity of the dominant mechanisms that govern non-equilibriummagnetization,
so that, in this specific physical scenario (when 3 / 𝛼 / 4), the action of hydrodynamic effects
would overcome the general damping action of the magnetic field and interparticle interactions
-see Figs. (4.3c) and (4.3d) -, leading to larger developing regions.

On the other hand, changes in 𝐿𝑚 under variations of 𝑃𝑒, 𝜑 and 𝜆 are not accompanied
by changes in behavior, as shown in Figs. (4.3b), (4.3c) and (4.3d). When the Péclet number de-
creases, the physical scenario approaches equilibrium, which means that there is no space for an
effective interaction between the physical mechanisms, leading to smaller development regions,
as shown in Fig. (4.3b). In this case, the intensity of the hydrodynamic action in non-equilibrium
magnetization dynamics is reduced, leading to an ineffective misalignment of the particles by the
action of vorticity, which, in turn, evidences the response of the magnetic mechanism which, as
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Figure. 4.3:Magnetization entrance length as a function of (a)𝛼, (b) Péclet, (c)𝜆 and (d)𝜑. In (a): Re= 5000,𝜑 = 0.05, 𝜆 = 2.9 and Pe = 0.5. In (b): Re = 5000,𝜑 = 0.05, 𝜆 = 2.9 and𝛼 = 1. In (c): Re = 5000,
𝜑 = 0.05, 𝛼 = 1 and Pe = 0.5. In (d): Re = 5000, 𝛼 = 1, 𝜆 = 2.9 and Pe = 0.5. The curve fits obtainedare as follows: In (a): 𝐿𝑚 = 251.5 - 126.3𝛼 + 21.75𝛼2; 𝐿𝑚 = exp(−0.3585𝛼 + 5.979). In (b):

𝐿𝑚 = -13.19 + 410.1Pe - 196.9𝑃𝑒2; In (c): 𝐿𝑚 = 222.9 - 26.55𝜆; In (d): 𝐿𝑚 = 226.1 - 1616𝜑..
generally observed in Fig. (4.3a), leads to smaller developing regions.

As for cases of variations in 𝜆 and 𝜑, an increase in these parameters resulted in smaller
developing regions. It is important to mention that both the volume fraction of particles 𝜑 and
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the dipole’s coupling parameter 𝜆 act to increase the intensity of the dipolar interactions be-
tween the particles. Inmany cases, real ferrofluids are composed by aggregates ofmagnetic grains,
which are provided by the magnetic dipole-dipole interparticle interactions [16], described by the
dipole’s coupling parameter 𝜆, which must be large enough to form long chains [16]. When in
the absence of a magnetic field, the distribution of particles in ferrofluids is disordered. However,
when the magnetic particles self-assemble, there is a tendency to align their magnetic dipole mo-
ments in the direction of themagnetic field due to neighboring particles or appliedmagnetic fields
[15, 191, 192], resulting in anisotropy of the interactions, allowing the magnetic nanoparticles to
form one-dimensional chains/wires, rings, two-dimensional aggregates or even three-dimensional
super-lattices [67]. A ferrofluid represents a set of these flexible chains [16, 195, 198]. Many exper-
iments and analysis show that forces of magnetic dipole-dipole interactions in strong magnetic
fields cause large magnetic particles to form chains and aggregates. These, in turn, can greatly af-
fect the macroscopic properties of ferrofluids, such as their viscosity, even in physical scenarios of
low particle concentration [194, 195, 196, 197]. For instance, the presence of aggregates is used as
a macroscopic approach to understand the strong magnetoviscous effect exhibited by ferrofluids.
The intensity of the dipolar interactions also appears to have a huge effect on the magnetization
entrance region, as indicated in Figs. (4.3c) and (4.3d). In this case, when the fluid concentration is
increased (augmenting 𝜑) or when the fluid possess particles with larger diameters (augmenting
𝜆), the effect of the dipolar interactions in non-equilibrium magnetization is perceived as a way
to replace the field’s effect, since there is a general trend of an increase in the effect of the local
field generated by the presence of the particle clusters. Thus, increases in both parameters lead
to decreases in the developing region, in a result analogous to that generally seen in Fig. (4.3a),
where increases in 𝛼 generate decreases in 𝐿𝑚.

At this point, results on how themagnetization entrance length𝐿𝑚 behaves in other physical
configurations of 𝜑, 𝑃𝑒 and 𝜆 as a function of 𝛼 are presented.

First of all, it is interesting to note that, in all the cases presented in Fig. (4.4), for sufficiently
strong fields, all curves present the same behavior of converging to the same magnetization en-
trance length 𝐿𝑚. As a general trend, when the field’s effect on non-equilibrium magnetization
dynamics becomes strong enough, it appears to dominate all other physical mechanisms leading
to smaller developing regions. Making an analogy with the purely hydrodynamic case, where the
hydrodynamic entrance length 𝐿ℎ is a direct function of the Reynolds number 𝑅𝑒 (i.e. for lami-
nar pipe flow, 𝐿ℎ/ℎ = 0.05𝑅𝑒 [351]), it is observed that that the lower the 𝑅𝑒, the smaller the
development region. Since 𝑅𝑒 is inversely proportional to the diffusion coefficient - Eq. (2.52) -,
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Figure. 4.4: Magnetization entrance length as a function of 𝛼 under different physical configura-tions. (a) Different Péclet scenarios. In this figure: Re = 5000, 𝜑 = 0.04 and 𝜆 = 2.9. (b) Different 𝜑scenarios. In this figure: Re = 5000, Pe = 0.5 and 𝜆 = 2.9. (c) Different 𝜆 scenarios. In this figure: Re= 5000, 𝜑 = 0.04 and Pe = 0.5.
the higher the diffusion coefficient, the smaller the entrance region. Therefore, the length of the
entrance region is inversely associated with the diffusion coefficient. As indicated by the general
trend observed in Fig. (4.4), the increase in field strength leads to reductions in the magnetization
entrance length, so that increases in 𝛼 are accompanied by increases in the equivalent magneti-
zation diffusion coefficient 𝜈𝑚𝑎𝑔, making these two variables, in general, directly proportional to
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each other.
Another trend observed in Fig. (4.4) is the presence of a change in the behavior of 𝐿𝑚 in the

regions ofmoderate fields (𝛼 ≈ 3), already observed in Fig. (4.3a), which becomesmuchmore pro-
nounced under physical conditions of intense hydrodynamic effects (greater𝑃𝑒) and intense dipo-
lar interactions (greater 𝜆 and 𝜑). In these moderate field regions, the field effects are not strong
enough to dominate non-equilibrium magnetization dynamics, and the effects of non-equilibrium
flow can compete with the magnetic field-particle and particle-particle interaction mechanisms in
order to substantially alter the equivalent magnetization diffusion field. On the other hand, when
the field becomes strong enough, the other mechanisms become much less intense, and the field
determines the behavior of the magnetization entrance region, bringing it to a fixed value, as al-
ready discussed.

Figure (4.4a) depicts 𝐿𝑚 as a function of 𝛼 in different 𝑃𝑒 configurations. It is observed
that for lower 𝑃𝑒 configurations, in which a less pronounced magnetic-hydrodynamic coupling is
present, the effects of the field are dominant and a tendency to decrease the entrance region is ob-
served as the field is increased. This trend is generally observed in Fig. (4.4). For moderate 𝑃𝑒 con-
figurations, in which hydrodynamics has a more pronounced effect, it is observed that the hydro-
dynamic mechanism is able to compete effectively with the other mechanisms in non-equilibrium
magnetization dynamics in the regions of moderate field (𝛼 ≈ 3). It is also observed that, in the
same 𝛼 configurations, increases in 𝑃𝑒 lead to increases in 𝐿𝑚, as also shown in Fig. (4.3b). There-
fore, it is concluded that the equivalent magnetization diffusion coefficient 𝜈𝑚𝑎𝑔 is, in general, in-
versely proportional to the Péclet number.

Figures (4.4b) and (4.4c) show 𝐿𝑚 as a function of 𝛼 in different 𝜑 and 𝜆 configurations,
respectively. Overall, both figures show very similar results. Both parameters work in a way to
strengthen the intensity of the interparticles interactions when increased. In regimes of low dipo-
lar interactions intensity (small 𝜑 and 𝜆), non-equilibrium magnetization dynamics is effectively
governed by field effects, in a way that increasing values of 𝛼 lead to smaller values of 𝐿𝑚. This
scenario is also the case for low intensity fields (𝛼 / 3) under intense dipolar interactions. Un-
der intense dipolar interactions, the particles tend to form aggregates, which, in turn, generates
an increase in the effect of the local field, which is manifested by the presence of particle’s clus-
ters, leading to a decrease in the entrance region. In regions of moderate fields (3 / 𝛼 / 4),
there is an interplay between timescales in which dipolar interactions and particle-field interac-
tions are somewhat replaced by the equivalent effect of hydrodynamics, which becomes the main
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mechanism governing magnetization dynamics in the entrance region and, therefore, an increase
in𝐿𝑚 is observed, similar to that observed in Fig. (4.3b). As soon as themagnetic field is increased,
particle-field interactions gradually dominates all mechanisms and, although dipolar interactions
and hydrodynamics can be intense, they become weak in relation to the field and, as a general
trend, the curves converge towards a single value, as already discussed. It is also observed that,
for a fixed value of 𝛼, increases in the intensity of dipolar interactions lead to smaller developing
regions, similar to that shown in Figs. (4.3c) and (4.3d). Thus, increases in 𝜑 and 𝜆 lead to increases
in the equivalent magnetization diffusion coefficient 𝜈𝑚𝑎𝑔.

The results obtained in Figs. (4.3) and (4.4) are indicatives of the characteristics of the non-
linear equivalent magnetization diffusion coefficient 𝜈𝑚𝑎𝑔 postulated in Eq. (4.5), in terms of how it
varies andwithwhat it varies. As there is no analogousmagnetization diffusionmaterial coefficient,
we propose one whose functional dependence on the problem’s parameters is given, in a first
estimate, based on the results presented in Figs. (4.3) and (4.4), by:

𝜈𝑚𝑎𝑔 ∼
𝜆𝜑e𝛼

𝑃𝑒𝐶
(4.6)

In Equation (4.6), 𝐶 is a constant.
Overall, these results seem to indicate the possibility of controlling the development of the

flow’s magnetization field through the applied magnetic field (affecting 𝛼), size distribution of the
particles (affecting 𝜆), the concentration of the fluid (affecting 𝜑) and flow rate (affecting 𝑃𝑒),
despite temperature 𝑇 variations (affecting 𝜆 and 𝑃𝑒).

In the next sections, the results obtained for the fully developed flow are presented.

4.1.3 Fully developed flow

As observed, the physics of the analyzed problem is mainly altered by four main non-
dimensional parameters, namely, the non-dimensional magnetic field 𝛼, the Péclet number 𝑃𝑒,
the dipole’s coupling parameter 𝜆 and the volume fraction of particles 𝜑. In this section, analyzes
of how changes in these parameters affect non-equilibrium magnetization dynamics for the fully
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developed flow are presented. The first result presented corresponds to magnetization profiles
obtained for the fully developed flow under different physical configurations.
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Figure. 4.5:Magnetization profiles for the fully developed flownormalized by their respective equi-libriummagnetization values for different (a) 𝛼, (b) Péclet, (c) 𝜆 and (d) 𝜑 configurations. In (a):, and represent 𝛼 = 1, 𝛼 = 3 and 𝛼 = 5, respectively. In (b): , and represent
𝑃𝑒 = 0.1, 𝑃𝑒 = 0.3 and 𝑃𝑒 = 0.5, respectively. In (c): , and represent 𝜆 = 0.03, 𝜆 = 3and 𝜆 = 4.5, respectively. In (d): , and represent 𝜑 = 0.01, 𝜑 = 0.05 and 𝜑 = 0.1,respectively. In (a): 𝑅𝑒 = 5000, 𝜑 = 0.05, 𝜆 = 2.9 and 𝑃𝑒 = 0.5. In (b): 𝑅𝑒 = 5000, 𝜑 = 0.05,
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𝜆 = 2.9 and 𝑃𝑒 = 0.5.
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Figures (4.5a), (4.5b), (4.5c) and (4.5d) depict total magnetization profiles for the fully devel-
oped flow normalized by their respective equilibrium magnetization𝑀0 under different 𝛼, 𝑃𝑒, 𝜆
and 𝜑 configurations, respectively. At first glance, Fig. (4.5) shows that variations in any of the four
major physical parameters (𝛼, 𝑃𝑒, 𝜆 and 𝜑) lead to different magnetization profiles, showing the
sensitivity of the problem to variations, however small. The obtained profiles are symmetric with
respect to the center of the duct and variations do not occur after the development of the magne-
tization boundary layer. They also seem to be of parabolic nature, having similarity to the velocity
profiles in classic Poiseuille flow, demonstrating a probable quadratic nature of the magnetization
profiles in relation to the vertical 𝑦 coordinate of the duct.

In all cases, deviations of the local magnetization are observed in relation to its respective
equilibrium value, specially in the regions of greater vorticity (closer to the walls). As briefly de-
scribed in section , in physical conditions of 𝑃𝑒 = 0.5, which is the case of Figs. (4.5a), (4.5c) and
(4.5d), hydrodynamics is capable of significantly disturbing magnetization dynamics, leading to a
complex competition of physical mechanisms. As the particles’ dipole moments are considered
fixed (i.e. relaxation time is 𝜏 = 𝜏𝐵), the torque produced by the interaction of the particles with
the applied magnetic field𝐻 will tend to align them in the direction of the field as soon as it is ap-
plied. However, as the fluid is subjected to shear stresses, the torque due to viscous forces tends to
rotate the particles in the direction of vorticity, generating a misalignment between the particles’
dipole moments and the applied magnetic field [29]. As pointed out in de Carvalho and Gontijo
[46], the physical mechanisms responsible for promoting themisalignment of the dipole moments
in the direction of the field are weaker in regions of low vorticity (i.e closer to the center), leading
to local magnetization values closer to equilibrium. In fact, right in the center, where vorticity is
null, the local magnetization value is precisely the predicted equilibrium magnetization𝑀0, in all
cases analyzed. de Carvalho and Gontijo [46] also points out that in regions where the interplay
between hydrodynamics and magnetism is more prominent (i.e. regions of higher vorticity), the
deviation of magnetization from the equilibrium magnetization is increased, as if the magnetic
dipole moments of the particles were less aligned in the direction of the field due to the action of
vorticity, leading to lower magnetization values.

Figure (4.5a) shows the influence of the non-dimensional magnetic field𝛼 on themagnetiza-
tion profiles. Different 𝛼 configurations lead to different polarization states in the ferrofluid, since
particle-field interactions are modified according to the intensity of the field. Once the polariza-
tion of the ferrofluid is altered, associated with the degree of alignment of the magnetic particles
suspended in the fluid, the fluid’s magnetic response is significantly altered over the competition
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of physical mechanisms, leading to different responses in different regions of the flow, since the
intensity of these mechanisms is altered along the duct’s cross section. This generates a magneti-
zation profile, which tends to be modified according to the intensity of the physical mechanisms.

Figure (4.5b) depictsmagnetization profiles in different𝑃𝑒 configurations. One of itsmain as-
pects is that, in low 𝑃𝑒 configurations (i.e. 𝑃𝑒 = 0.1), the magnetization profile obtained is almost
linear, with values approximately equal to the predicted equilibriummagnetization𝑀0. Very small
deviations are observed, the largest being around the fourth decimal place. As briefly described
in section , in these physical conditions weakly non-equilibrium configurations are observed, as
hydrodynamics is not able to significantly deviate local magnetization from its equilibrium value,
due to the great nature of the hydrodynamic timescale when compared to the magnetic relax-
ation time of the particles. For instance, averaging the hydrodynamic and magnetic timescales for
all ferrofluids presented in Tab. (4.1) under physical conditions of 𝑃𝑒 = 0.1, 𝛼 = 1, 𝑅𝑒 = 5000,
𝜑 = 0.05 and 𝜆 = 2.9, one obtains a hydrodynamic timescale ten times larger than the magnetic
one (𝜏ℎ𝑦𝑑𝑟𝑜 ≈ 8.54 × 10−3 and 𝜏𝑚𝑎𝑔 ≈ 8.54 × 10−4). In such physical configurations, the distur-
bances produced by the flow’s vorticity would take longer to manifest, so that they would not be
perceived by the particles. At the approaching limit of very low Péclet numbers, magnetization dy-
namics ismainly governed by a linearmagnetization relaxation. Thus, in the absence of perceptible
hydrodynamic effects or in the impossibility of being perceived by the magnetic particles, weakly
non-equilibrium results are expected. The other profiles presented, for higher 𝑃𝑒 configurations
present exactly the opposite,where greater deviations fromequilibriumare observed. Under these
conditions, hydrodynamics play an important role in magnetization dynamics, which means that
hydrodynamic effects will manifest themselves most effectively in the complex physical nature of
this problem. Once again, it is important to mention that low Péclet number regimes are more
suitable for the applications of a large part of the commercially available ferrofluids presented in
Rosensweig [3]. However, the objective of this work is to highlight a physical concept, predicted
in the governing equations, of a competition of physical mechanisms (mainly magnetic and hy-
drodynamic ones) that lead to disturbances in non-equilibrium magnetization dynamics. These
mechanisms would only manifest themselves clearly under large Péclet number configurations, as
shown in Fig. (4.5b).

As modifications in the dipole’s coupling parameter 𝜆 and in the volume fraction of particles
𝜑 lead to changes in the intensity of the interparticles’ interactions, thesemodificationswould lead
to different responses in the competition of mechanisms that alter the fluid’s magnetic response
when in the presence of a magnetic field. Such changes would lead to modifications in the mag-
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netization profiles, showing the importance of particles’ aggregates in ferrofluids non-equilibrium
magnetization dynamics, as indicated in Figs. (4.5c) and (4.5d), which portray magnetization pro-
files under different 𝜆 and 𝜑 configurations, respectively. Note that the greater the intensity of the
dipolar interactions (higher 𝜆 and 𝜑), the smaller the deviation from equilibrium magnetization.
As already discussed, particles’ aggregates tend to increase the local field, which, in turn, acts in
conjunctionwith the particle-field interaction in order to overcome the hydrodynamic effect, caus-
ing the particles to become more aligned in the field’s direction, resulting in a magnetic response
closer to that of the predicted equilibrium magnetization𝑀0/𝜑𝑀𝑑 in Eq. (2.22).

As seen in Fig. (4.5), the closer to the walls, the greater the deviation between the local
magnetization values and the predicted equilibrium values. Figure (4.6) shows the behavior of
the maximum deviation ∆𝑀𝑚𝑎𝑥 = 𝑀𝑐𝑒𝑛𝑡𝑒𝑟 −𝑀𝑤𝑎𝑙𝑙 obtained, where𝑀𝑐𝑒𝑛𝑡𝑒𝑟 and𝑀𝑤𝑎𝑙𝑙 are the
magnetization values in the center of the duct and on the wall, respectively, as functions of the
four main physical parameters (𝛼, Pe, 𝜆 and 𝜑).

Overall, Figure (4.6) shows that variations in any of the physical parameters of the problem
affect the way the maximum deviation ∆𝑀𝑚𝑎𝑥 behaves. Under variations of 𝛼 there are two dis-
tinct patterns. For 𝑃𝑒 variations, it is noted that the greater the 𝑃𝑒, the greater is ∆𝑀𝑚𝑎𝑥 and,
finally, for both increases in 𝜆 and 𝜑, the maximum deviation is decreased.

Figure (4.6a) represents ∆𝑀𝑚𝑎𝑥 as a function of the non-dimensional magnetic field 𝛼.
Different behaviors of ∆𝑀𝑚𝑎𝑥 are observed as 𝛼 is increased. ∆𝑀𝑚𝑎𝑥 decreases with 𝛼 when
1 / 𝛼 / 2 and 𝛼 ' 4 and it increases with 𝛼 when 2 / 𝛼 / 4. As the intensity of the non-
dimensional field 𝛼 is increased, field effects dominate magnetization dynamics, preventing any
hydrodynamic perturbations due to vorticity gradients to be efficiently perceived. In this scenario,
flow’s vorticity would not be able to misalign the magnetic particles from the orientation of the
magnetic field, leading to an equilibrium behavior of magnetization at the approaching limit of
𝛼 ≫ 1. According to Eq. (4.3), 𝛼 is defined as a ratio between the particle’s relaxation timescale
and the magnetic timescale; therefore, the higher this parameter, the less the relative importance
of magnetic timescale. In this physical scenario, the magnetic effects are more noticeable in the
magnetization dynamics, as they manifest themselves stronger or more quickly. For smaller values
of 𝛼, vorticity is able to misalign the particles’ dipole moments, leading to an interesting compe-
tition of physical mechanisms: the demagnetizing effect due to the action of vorticity and the ex-
ternal magnetic torque due to the applied field, which seeks to realign the dipoles in the direction
of the field. When the field strength is decreased, there is more flexibility in these mechanisms, as
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Figure. 4.6: Maximum magnetization deviation from the equilibrium magnetization𝑀0 as a func-tion of (a) 𝛼, (b) 𝑃𝑒, (c) 𝜆 and (d) 𝜑. In (a): 𝑅𝑒 = 5000, 𝜑 = 0.05, 𝜆 = 2.9 and 𝑃𝑒 = 0.5. In (b):
𝑅𝑒 = 5000, 𝜑 = 0.05, 𝜆 = 2.9 and 𝛼 = 1. In (c): 𝑅𝑒 = 5000, 𝜑 = 0.05, 𝛼 = 1 and 𝑃𝑒 = 0.5. In(d): 𝑅𝑒 = 5000, 𝛼 = 1, 𝜆 = 2.9 and 𝑃𝑒 = 0.5.
indicative of a deterministic mechanism associated with the field that is dominated by the effects
of Brownian fluctuations.

As discussed above, a decrease in the value of ∆𝑀𝑚𝑎𝑥 with an increase in 𝛼 is expected,
because in these conditions the effects of the field dominate magnetization dynamics, making it
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extremely difficult for vorticity to misalign vector fields𝑀 and𝐻 . This trend was observed, in the
simulated physical conditions, in the intervals 1 / 𝛼 / 2 and 𝛼 ' 4, however, when 2 / 𝛼 / 4,
the behavior is exactly the opposite. In the interval 2 / 𝛼 / 4, hydrodynamics effects seem to
dominatemagnetization dynamics, so that∆𝑀𝑚𝑎𝑥 increaseswith𝛼. This very interesting behavior
was also observed as a trend in Fig. (4.3a) and Fig. (4.4), confirming the complex nature of the
analyzed problem. It becomes clear that not only the intensity of the magnetic field is primarily
responsible for dictating the behavior of magnetization dynamics, but also an interplay between
hydrodynamic, interparticle andmagnetic effects. Under such conditions, the hydrodynamic effect
through vorticity is more intense than that of the particle-particle and particle-field interactions,
so that there is a greater deviation in the direction of the dipoles in relation to the field, resulting in
a larger∆𝑀𝑚𝑎𝑥. The physical interplay is related to the problem’s timescales, presented in section
, where it was demonstrated that the combination (𝛼;Pe) would result in a relation between the
hydrodynamic and magnetic timescales 𝛼/𝑃𝑒 = 𝜏ℎ𝑦𝑑𝑟𝑜/𝜏𝑚𝑎𝑔. Therefore, we postulate that there
is a combination (𝛼;Pe) in which an interaction between hydrodynamics andmagnetism is present
and is not subjugated to the intensity of the applied magnetic field. Under the studied physical
configuration, when 2 / 𝛼 / 4, the precession physical mechanism - more clearly observable as
the term𝑀×(𝑀×𝐻) in Eq. (2.27) - is not strong enough to restore local values ofmagnetization
to higher values, closer to those of equilibrium. As if only the precessionmechanismwere changed
when the field strength varies and the Péclet number is kept constant.

When it comes to the behavior of ∆𝑀𝑚𝑎𝑥 as a function of 𝑃𝑒, it can be seen in Fig. (4.6b)
that it increases with 𝑃𝑒. The magnitude of the Péclet number is related to the intensity of the
hydrodynamic mechanism. When increased, the flow through vorticity is more likely to misalign
the particles in the direction of the field, as if the particlesweremore permissive to rotate, resulting
in greater demagnetization. This would lead to a decrease in ∆𝑀𝑚𝑎𝑥. Therefore, it reaffirms the
fact that, under conditions of greater Péclet number, the flow is able to disturb the magnetization
more efficiently.

Increases in 𝜆 and 𝜑 causes ∆𝑀𝑚𝑎𝑥 to decrease, as portrayed in Figs. (4.6c) and (4.6d), re-
spectively. In this case, when the interparticles’ interactions are altered due to variations in 𝜑 and
𝜆, the fluid’s magnetic response is also altered. Increases in the the intensity of dipolar interac-
tions result in particles forming aggregates, which are accompanied by increases in the local field,
so that, in such scenarios, increases in 𝜑 and 𝜆 are perceived as a way for such physical mecha-
nism to assume the role of particle-field interactions. As a general trend, a decrease in ∆𝑀𝑚𝑎𝑥

is observed in Fig. (4.6a) as 𝛼 increases. The same behavior is observed in Figs. (4.6c) and (4.6d),
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because, as already discussed, dipolar interactions act in the sameway as the field’s effect, causing
the particles to become more aligned in the direction of the field, resulting in a closer magnetiza-
tion response to that of the predicted equilibrium magnetization𝑀0/𝜑𝑀𝑑 in Eq. (2.22), a general
trend observed for the entiremagnetization profile, not only the response on thewall, as indicated
in Figs. (4.5c) and (4.5d).

Different regions along the duct’s section are subject to different intensities of the physical
mechanisms that govern non-equilibriummagnetization dynamics. For instance, themagnitude of
the hydrodynamicmechanism, which is strictly linked to vorticity, is clearly vertically dependent, in
a way that the interplay of physical mechanisms behaves differently along the duct’s section. In re-
gions where vorticity is higher, closer to the walls, vectors𝐻 and𝑀 should be very misaligned, as
the hydrodynamic mechanism acts to rotate the particles along the direction of vorticity. Similarly,
where vorticity is null, right in the center of the duct, vectors𝐻 and𝑀 should be fully aligned, as
no other physical mechanism act to misalign these vectors. This physical response of the particles’
magnetic dipole moments according to the net intensity of the physical mechanisms, would also
generate a profile for the angles 𝜃 between vectors𝐻 and𝑀 - Eq. (2.7) - along the duct’s section.
The expected behavior of larger angles in regions of higher vorticity and smaller ones in regions of
lesser vorticity is confirmed in the profiles shown in Fig. (4.7), which depicts 𝜃 profiles for different
𝑃𝑒 configurations.

As expected, right in the center, where vorticity is null, these vectors are completely aligned
and 𝜃 = 0. First, it is noticed that, for any position along the duct’s section, the angles produced
by configurations with the highest 𝑃𝑒 are greater, again due to an increase in the intensity of the
hydrodynamic mechanism that tends to misalign the particles in the applied magnetic field. For
instance, at 𝑦/ℎ = 0.2, under conditions of 𝑃𝑒 = 0.1, 𝑃𝑒 = 0.3 and 𝑃𝑒 = 0.5, the obtained
angles 𝜃 are respectively: 𝜃 = 0.088𝑟𝑎𝑑, 𝜃 = 0.256𝑟𝑎𝑑 and 𝜃 = 0.408𝑟𝑎𝑑. It is also clearly ob-
served a change from a linear behavior to a more complex and less linear behavior of the profiles
as 𝑃𝑒 is increased. This change in behavior reaffirms that, in configurations with higher Péclet
number, the interplay of physical mechanisms responsible for governing non-equilibrium magne-
tization dynamics becomesmuchmore complex. This higher response to disturbances at higher𝑃𝑒
configurations is also associated with the fact that the only term in the two-dimensional vorticity
equation - Eq. (2.48) - associated withmagnetism, when in the presence of a uniform appliedmag-
netic field, is strictly related to the misalignment between vectors 𝑀 and 𝐻 . Therefore, higher
Péclet number scenarios are required for the vorticity to be significantly capable of disturbing the
magnetization field.
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Figure. 4.7: Profiles for the fully developed flow of angles between vectors𝑀 and𝐻 for differentPéclet number physical configurations. , M and represent 𝑃𝑒 = 0.1, 𝑃𝑒 = 0.3 and 𝑃𝑒 = 0.5,respectively. For this figure: 𝛼 = 1, 𝑅𝑒 = 5000, 𝜑 = 0.05 and 𝜆 = 2.9.
As seen in Fig. (4.7), the maximum angle 𝜃 between vectors 𝐻 and 𝑀 is obtained at the

point of greatest vorticity, directly on the walls. Figure (4.8) shows how it behaves for changes in
𝛼,𝑃𝑒,𝜆 and𝜑. Figure (4.8a) displays the behavior of 𝜃𝑤𝑎𝑙𝑙 as a function of𝛼. It is possible to see two
distinct behaviors of 𝜃𝑤𝑎𝑙𝑙 as 𝛼 is increased, in a similar way to that observed in Fig. (4.6a). For the
interval𝛼 ' 3, 𝜃𝑤𝑎𝑙𝑙 decreaseswith𝛼, on the other hand, when 1 / 𝛼 / 3, it increases. Ferrofluids
are made of magnetic nanoparticles whose fixed magnetic dipole moments tend to align in the di-
rection of the field as the field’s magnitude is increased [3]. The aforementioned alignment would
mean a decrease in 𝜃𝑤𝑎𝑙𝑙. This behavior is observed in the interval𝛼 ' 3. Under physical conditions
of high intensity fields, the magnetic physical mechanism overcomes the hydrodynamic, leading
to a minor misalignment between vectors𝑀 and𝐻 due to the action of vorticity. These results
highlight the importance of the competition of physical mechanisms. Even if they are obtained
under conditions of high Péclet number (𝑃𝑒 = 0.5), where vorticity is able to efficiently disturb
the magnetization field, once the intensity of the field is increased and, therefore, the intensity of
the magnetic mechanism, there will come a point where there will be no significant misalignment
between vectors𝑀 and𝐻 , and themain responsible for dictating non-equilibriummagnetization
dynamics will be the magnetic mechanism, which acts to align vectors 𝑀 and 𝐻 . In a limit case
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Figure. 4.8: Maximum angle 𝜃 (angle at the walls) between𝑀 and𝐻 along the angle profile as afunction of (a) 𝛼, (b) 𝑃𝑒, (c) 𝜆 and (d) 𝜑. In (a): 𝑅𝑒 = 5000, 𝜑 = 0.05, 𝜆 = 2.9 and 𝑃𝑒 = 0.5. In(b): 𝑅𝑒 = 5000, 𝜑 = 0.05, 𝜆 = 2.9 and 𝛼 = 1. In (c): 𝑅𝑒 = 5000, 𝜑 = 0.05, 𝛼 = 1 and 𝑃𝑒 = 0.5.In (d): 𝑅𝑒 = 5000, 𝛼 = 1, 𝜆 = 2.9 and 𝑃𝑒 = 0.5.
where 𝛼 ≫ 1, Fig. (4.8a) seems to indicate that these vectors will be almost aligned, even in the
regions of greatest vorticity. However, as was the case in the analysis of Fig. (4.6a), it appears that
at some intervals of 𝛼, in this particular scenario when 𝛼 / 3, due to the complex nature of the
problem, the physical response of the problem to variations in 𝛼 would behave differently, as it
has already been postulated that there is a combination (𝛼;Pe) in which an interaction between
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hydrodynamics and magnetism is present and not subjugated to the intensity of the applied mag-
netic field and dipolar interactions. Under such conditions, hydrodynamics overcomes the effects
of particle-particle and particle-field interactions, in order tomisalign vectors𝑀 and𝐻 , leading to
larger magnetization entrance regions 𝐿𝑚 - Fig. (4.3a) -, greater magnetization deviations ∆𝑀𝑚𝑎𝑥

- Fig. (4.6a), and, consequently, to smaller angles 𝜃.
An increase in 𝜃𝑤𝑎𝑙𝑙 is also observed when 𝑃𝑒 is increased, as shown in Fig. (4.8b). As ex-

pected, the increase in 𝑃𝑒 is accompanied by an increase in the intensity of the hydrodynamic
physical mechanism, which acts to misalign the magnetic particles in the direction of the field,
leading to greater angles 𝜃. This result is in perfect agreement with what has been shown so far,
especially with the direct correspondence with Fig. (4.6b). One of the key features of this figure
is that in regimes of Low Péclet numbers, where most commercially available ferrofluids are suit-
able for use, the misalignment between vectors 𝑀 and 𝐻 is almost null, justifying, once again,
the decision to explore regimes where a complex and quite interesting physical behavior of non-
equilibrium magnetization dynamics happens, that is, higher Péclet number regimes.

As for the cases of variations in𝜆 and𝜑, an increase in these parameters results in smaller an-
gles on thewalls, as indicated in Figs. (4.8c) and (4.8d).When themagnetic particles self-assemble,
they tend to align their magnetic moments in the direction of the field due to neighboring particles
or applied magnetic fields [15, 191, 192], allowing the magnetic nanoparticles to form aggregates.
The formation of particles agglomerates is favored in higher 𝜆 and 𝜑 scenarios, since the intensity
of dipolar interactions is increased in these cases. The increase in the intensity of such interactions
leads to an increase in the magnetic restorative mechanisms, which tend to approximate vectors
𝐻 and 𝑀 . The general trend of increase in the effective local field generated by the presence
of particles aggregates manifested in decreases in both 𝐿𝑚 and ∆𝑀𝑚𝑎𝑥 is also manifested here,
so that dipolar interactions assume the role of field-particle interactions, causing the particles to
become more aligned with the field, leading to minor deviations between vectors𝐻 and𝑀 and,
consequently, smaller angles 𝜃.

Since different regions of the flow are subject to different angular velocities, one would ex-
pect a profile of rotational viscosity in the duct’s section, as it manifests when a difference appears
between the angular velocities of the particle and the fluid. Figure (4.9) shows the rotational vis-
cosity profile for the fully developed flow.

Closer to the walls, where vorticity is higher, the displayed values of 𝜂𝑟 are lower, but closer
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Figure. 4.9: Rotational viscosity profile for the fully developed flow. In this figure: 𝛼 = 1, 𝑃𝑒 = 0.5,
𝑅𝑒 = 5000, 𝜆 = 2.9 and 𝜑 = 0.05.
to the center, where the values of vorticity are lower, the values of 𝜂𝑟 are higher, in a behavior
analogous to shear thinning. In the regions of low vorticity, magnetic particles are highly aligned
in the direction of the field, as already shown in Fig. (4.7). In such regions, the flow is more likely
to spendmore energy to deflect the particles from the direction of the field, in order to align them
with the direction of vorticity, leading to an increase in energy dissipation, which manifests itself
as an increase in the viscosity value. These observations are in agreement with those presented
in Shliomis [40]. In a torque-free configuration, when particles are able to roll freely in the direc-
tion of vorticity (i.e. in the absence of a magnetic field), rotational viscosity is null. However, under
high intensity magnetic fields, when the rolling of the particles is substituted by slipping, rotational
viscosity reaches a saturation value equal to 𝜂𝑟 = 3

2
𝜂𝜑 [21], as already depicted in Fig. (3.4). It is

worthy mentioning that, for example, considering an ester based ferrofluid, as the one presented
in Tab. (4.1), with density 𝜌 = 1400kg/m3 and viscosity 𝜂 = 0.035𝑃𝑎.𝑠, this saturation value would
reach for 𝜑 = 0.05% approximately 𝜂𝑟(∞) = 0.0026𝑃𝑎.𝑠, which corresponds to approximately
7.5% of the ferrofluid’s viscosity. Therefore, even under extremely strong magnetic fields, the in-
crease in fluid’s viscosity corresponds to a small percentage of its original viscosity, indicating that
the viscosity transport coefficient does not change noticeably [54].
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The analogous shear thinning behavior is associated with the fact that, in diluted suspen-
sions, shearing causes changes in the structure and arrangement of particles [233, 1]. The effect
generated by the shear can orient the particles in the flow’s direction. The particle’s structures,
formed previously due to magnetostatic forces, can break due to shear gradients, leading to a de-
crease in the amount of carrier liquid immobilized by the particles, which ends up generating a
decrease in apparent viscosity [1]. Shear thinning behavior in various types of ferrofluids has been
reported in Hong et al. [215], Pastoriza-Gallego et al. [234], Moeen et al. [235], Hezaveh et al. [220].

Up to this point, it has been demonstrated how hydrodynamics interact and disturb themag-
netization field. At this point, results are presented on how hydrodynamics is disturbed by the
presence of magnetic effects. Figures (4.10a) and (4.10b) display velocity and vorticity profiles ob-
tained for the fully developed flow in comparison to the analytical profiles (solid lines) predicted
for non-magnetic plane Poiseuille flow [301], given by Eqs. (3.5) and (3.7).
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Figure. 4.10: (a) Velocity profile for the fully developed flow. (b) Vorticity profile for the fully devel-oped flow. In both figures, represent the numerical results and represent the Poiseuille ana-lytical results - Eqs. (3.5) and (3.7) - for velocity and vorticity, respectively. In all figures: 𝑃𝑒 = 0.5,
𝑅𝑒 = 5000, 𝜑 = 0.05, 𝜆 = 2.9 and 𝛼 = 2.

Although magnetization dynamics was strongly influenced by the effects of vorticity, espe-
cially in high Péclet number configurations, hydrodynamics has not been significantly influenced by
magnetism. There is a slight deviation from the predicted non-magnetic Poiseuille profile - Eq. (3.5)
- in the regions of low vorticity, close to the center. However, in general, the magnetic and non-
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magnetic regimes profiles are very close to each other, the same is observed in the vorticity profile.
The slight difference in profiles may be associated with non-Newtonian properties acquired by fer-
rofluidswhen in the action ofmagnetic fields, as shown in the the shear-dependent viscosity profile
of Fig. (4.9).

For the simulated physical conditions presented in Fig. (4.10), Tab. (4.6) presents calculated
values for both the hydrodynamic and magnetic timescales.
Table. 4.6: Hydrodynamic and magnetic timescales of different commercially available ferrofluidswith diameter 𝑑 = 13𝑛𝑚 at 𝑇 = 298𝐾. In this table: 𝑅𝑒 = 5000, 𝑃𝑒 = 0.5 and 𝛼 = 2.

Carrier liquid 𝜏𝑚𝑎𝑔 (s) 𝜏ℎ𝑦𝑑𝑟𝑜 (s)Diester 3.15E-05 1.26E-04
Hydrocarbon 1.26E-06 5.03E-06
Hydrocarbon 2.52E-06 1.01E-05
Fluorocarbon 1.05E-03 4.19E-03

Ester 5.87E-06 2.35E-05
Ester 1.26E-05 5.03E-05
Ester 1.47E-05 5.87E-05
Water 2.94E-06 1.17E-05
Water 4.19E-06 1.68E-05

Polyphenylether 3.15E-03 1.26E-02
It is observed in Tab. (4.6) that in all cases the characteristic hydrodynamic timescale 𝜏ℎ𝑦𝑑𝑟𝑜

is larger than the magnetic timescale 𝜏𝑚𝑎𝑔. This means that the velocity changes much slowly than
the magnetization, being subject to minor influences. Furthermore, under the simulated condi-
tions of Fig. (4.10),𝑅𝑒−1

𝑚 = 1.2× 10−4, which is a very small termmultiplying the magnetic effects
in the equation of motion.

Parabolic velocity profiles in ferrofluid flows under the action of an applied magnetic field
have also been reported in the literature, in the case of pipe flows with an imposed linearly polar-
ized oscillating magnetic field [18] and under the effect of a steady magnetic field produced by a
DC solenoid [58], also in the case of a planar duct subjected to a spatially uniform magnetic field
along and transverse to the duct axis [52]. In such cases, the velocity profiles were similar to those
of pure hydrodynamic flow, where the axial velocity profile is parabolic and the transverse velocity
components are negligible. It is important to mention that this work is concerned with laminar
flows, since turbulent profiles have been reported to be visually distinct [18]. Variations in the ve-
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locity profile were present in cases of non-zero spin viscosity 𝜂′ in Zahn and Greer [52], however
the authors reported Poiseuille parabolic profiles in the case of null spin viscosity, which is the case
of this present work, where the assumption that in ordinary ferrofluids 𝜂′ becomes very small and
may be neglected [70].

The similarity of the velocities profiles may be associated with the fact that only a small
increase in ferrofluid’s viscosity is present under extreme conditions of strong magnetic fields (i.e.
7.5% for the ester based ferrofluid in Tab. (4.1)), since little additional dissipation is present under
such physical conditions. In this present context, the similarity in the velocity profiles occurred
under a uniform field configuration where the only magnetic effect on the equation of motion is
related to the term 𝑅𝑒−1

𝑚 ∇× (𝑀 ×𝐻), where 𝑅𝑒−1
𝑚 is defined in Eq. (4.4).

Note that the alteration of the hydrodynamic field due tomagnetic effects is proportional not
only to the misalignment between𝑀 and𝐻 , but also to the combination of physical parameters
expressed by𝑅𝑒−1

𝑚 . Although the angle formed between𝑀 and𝐻 is high for smaller values of 𝛼,
spatial variations between the product 𝑀 × 𝐻 are very small in the asymptotic limit 𝛼 ≪ 1, in
addition to the small value of 𝑅𝑒−1

𝑚 . This occurs since in lower field configurations the suspension
is weakly magnetized. Under non-uniform magnetic fields condition, the term that mainly affects
the ferrofluid is the Kelvin force density. As reported in Papadopoulos et al. [58], the effect of the
rotation of themagnetic torque only affected the flowcharacteristics in their numerical simulations
when the magnetic field was approximately uniform.

Apart from the similarity in the velocity profile of the magnetic and pure hydrodynamic
regimes, Papadopoulos et al. [58], Felderhof [54] claim that differences under such regimes will
also occur in the axial pressure gradient [58] and in the flow rate [54]. The latter manifests through
an increase in the viscosity (i.e. magnetoviscous effect) [26, 3, 39, 54]. The prior has been reported
in Papadopoulos et al. [58], where the axial pressure drop varied significantly in the regions of
strong magnetic field gradients, with its magnitude depending linearly on the volume fraction of
particles 𝜑.
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4.2 Discrete results

In this section, the results obtained for the dynamic simulations of a suspension of particles
interacting magnetically under the action of an external magnetic field are presented. The results
were obtained following the numerical code described in section 3.2, which follows a dynamic
Langevin scheme. First, some preliminary results are presented regarding the magnetization re-
sponse of the magnetic particles when subjected to the field action, as well as to a local Couette
flow. Subsequently, results are presented regarding the reconstruction of a continuous magneti-
zation profile for the fully developed Poiseuille flow, obtained through the approach described in
section 3.1. These results are partially published in de Carvalho and Gontijo [46].

When the simulation begins, the particles are randomly distributed in the simulation box,
and no net magnetization is observed, as indicated in Fig. (4.11). As time goes by, the particles are
subject to rotational and translationalmotions, due to dipole-dipole interactions, dipole-field inter-
actions, flow field interactions and Brownian fluctuations. Dipole-dipole interactions, depending
on their intensity (controlled by both 𝜆 and 𝜑), tend to induce particle aggregates, which locally
increase the magnetic field, resulting in the very interesting results observed in section 4.1. On
the other hand, particle-field and particle-flow interactions are, in a way, more associated with
the suspension’s magnetization response, since both mechanisms are associated with the suspen-
sion’s rotational dynamics, as well as with the so-called magnetoviscous effect, carefully described
in section 1.3.1, in which the suspension’s viscosity increases when in the presence of an applied
magnetic field. Not only are the particles subject to the mentioned interactions, but also to ran-
dom movements produced by Brownian thermal fluctuations, which tend to act to demagnetize
the suspension. It is worth remembering that the simulation box of Fig. (4.11) is subsequently sub-
ject to a Couette flow, whose shear rate is provided by the continuous simulations, as discussed
in section 3.2.5. The described complex physics governs the particle’s dynamics, and some results
regarding the suspension’s magnetization response are presented below.

Magnetization is a suspension’s property closely related to the rotation movement of the
suspended magnetic particles, since it is defined as the average alignment of the particle’s mag-
netic dipole moments in the direction of the applied field. Figure (4.12) depicts this rotation mech-
anism obtained from the numerical simulations developed here. These results are obtained under
a null vorticity 𝜉 = 0 configuration, indicating that the magnetization response obtained would
correspond to the suspension’s equilibrium magnetization𝑀0.
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Figure. 4.11: Scheme of a three-dimensional initial configuration of the discrete simulation box.

(a) (b)
Figure. 4.12: (a) Two-dimensional view of the initial configuration (𝑡 = 0) of the suspension’s nu-merical box, in the absence of an applied magnetic field. (b) Later configuration (𝑡 ̸= 0) of thesuspension’s numerical box, in the presence of an applied magnetic field. In all figures: 𝛼 = 10,
𝑃𝑒 = 0.7, 𝜉 = 0, 𝜑 = 0.04 and 𝜆̃ = 0.56.

Figure (4.12) shows a typical dynamic response of the orientations of the dipole moments
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when subjected to an applied magnetic field in two different configurations: when the suspension
is numerically “generated” (𝑡 = 0, in the absence of field 𝐻) and after some development time
(𝑡 ̸= 0, in the presence of field𝐻). Figure (4.12a) corresponds to the suspension’s initial condition
(𝑡 = 0) in the absence of an applied magnetic field. Note that each of the suspended particles
is accompanied by a randomly oriented magnetic dipole moment. In this configuration, the sus-
pension’s net magnetization is null in the simulated volume, since the average orientation of the
dipole moments over all particles is also zero. However, as soon as the suspension is subjected to
an applied magnetic field, the particle’s dipole moments respond to its presence, as indicated in
Fig. (4.12b). This configuration is taken from the dynamic simulations at a later time, when 𝑡 ̸= 0.
When the magnetic field is applied, a magnetic torque (𝑇𝑚 = 𝜇0𝑚 × 𝐻) is exerted on each of
the suspended particles due to the interactions between the particles dipole moments with the
external applied field. In all numerical simulations carried out in this work, it was assumed that the
typical timescale of the magnetic relaxation mechanism is much smaller than the Néel relaxation
- Eq. (1.10) -, so that the condition of fixed dipole moments in the particles (Brownian relaxation
mechanism - Eq. (1.9) -) is considered. In this way, in the presence of the applied magnetic field,
the magnetic torque also produces rotation movement of the particles and, thus, the fixed dipole
moments tend to align in the direction of the field, generating a net magnetization. In a physical
regime in which 𝛼 > 1, that is, the ratio between the magnetic and Brownian energies is suffi-
ciently large, the net alignment of the particles appears to be in the field’s direction, as Fig. (4.12b)
clearly indicates.

With the magnetization response of the suspension analyzed in the absence of vorticity in
Fig. (4.12), it is important to present now a typical response when in the presence of a local shear
rate. As described in section 3.2.5, the vorticity values of a continuous flow field are extracted and
used as an input for discrete simulations, which calculate the suspension’s magnetization response
in a local Couette flow subject to an applied magnetic field. In this scenario, another important
physical mechanism is present in the suspension’s dynamics: the hydrodynamic action by vorticity,
which is a clear mechanism present in themagnetization ferrohydrodynamic relaxation equations.
Here, the particleswill also be subjected to a viscous torque,which tends tomisalign the particles in
the direction of the field, leading to lower values ofmagnetization and increases in the suspension’s
viscosity. That said, Fig. (4.13) shows extracts from the actual discrete simulations corresponding
to three different regions in a vorticity field obtained through the continuous approach.

Three distinct regions of the flow field are represented in Fig. (4.13): one in the domain’s
center, where vorticity is null, another exactly on the wall, where vorticity is maximum and an-
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Figure. 4.13: Snapshots from the discrete simulations in three different regions of a vorticity fieldobtained through the continuous approach. For this figure:𝛼 = 5,𝑃𝑒 = 0.7,𝑅𝑒 = 5000, 𝜑 = 0.04and 𝜆̃ = 0.56.
other located in a position between them, where the value of vorticity is intermediate between
the other two. In the central region, it is clear that an almost equilibrium behavior is observed,
since there is no hydrodynamic effect acting to misalign the particles in the direction of the field,
so that most of the particles are clearly aligned in the field’s direction. The same scenario is ob-
served in Fig. (4.12b). In the middle region, where the hydrodynamic action is present, there is still
a tendency of alignment of the dipole moments with the field, however the particles do not seem
as aligned in the vertical direction as they were in the previous image. In these regions, the shear-
ing action clearly acts tomisalign the particles and align them in vorticity’s direction. Nevertheless,
the hydrodynamic action is not strong enough to produce an intense misalignment, as the one ob-
served in the walls. For the simulation on the wall under the maximum vorticity value obtained,
there is a clear action of the shear that drives the particles’ dipoles away from the vertical direc-
tion of the magnetic field, leading to lower magnetization values, as the particles are not clearly
aligned in the field’s direction as they were previously in the central region. These numerical re-
sults corroborate those obtained by the continuous approach, when vorticity and magnetization
profiles were compared, indicating that regions of greater vorticity are associated with regions of
less magnetization.
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The previous results were qualitative when analyzing the suspension’s magnetization re-
sponse. Quantitatively speaking, these results have not yet been presented. Magnetization is nu-
merically computed in this numerical code according to Eq. (3.17). As soon as the initial configura-
tion is initialized, the time evolution process of the suspension dynamics begins, continuing until
a convergent statistical property is reached. In the case of magnetization, the process begins with
randomly oriented dipoles, which tend to orient themselves in the direction of the field as time
passes. As soon as magnetization converges to a reliable statistical property, its value is extracted
from the numerical routine. Figure (4.14) depicts the time evolution of the three magnetization
components𝑀𝑥,𝑀𝑦 and𝑀𝑧 until they reach statistical convergent values.
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Figure. 4.14: Suspension’s magnetization response as a function of the evolutive numerical time.In these figures: 𝛼 = 4, 𝑃𝑒 = 1.0, 𝜑 = 0.04 and 𝜆̃ = 0.56. (a) 𝜉 = 0. (b) 𝜉 = 3.57.

Two physical scenarios are presented in Fig. (4.14): 1) in the absence of vorticity (equilib-
rium scenario), where the only non-null magnetization component is that in the field’s direction;
2) in the presence of hydrodynamic effects, where two distinct magnetization components are
obtained. In Figure (4.14a), the value reached for the magnetization component in the field’s di-
rection is𝑀𝑦/𝜑𝑀𝑑 ≈ 0.75, which is exactly the result predicted by Langevin’s equilibrium model
of Eq. (2.19). Figure (4.14b) depicts a physical scenario where hydrodynamic effects are present,
leading to a magnetization response where two components are non-null. Under the simulated
physical conditions, they read:𝑀𝑦/𝜑𝑀𝑑 ≈ 0.35 and𝑀𝑥/𝜑𝑀𝑑 ≈ −0.49.

With the magnetization response analyzed under the action of a local shear, the results ob-
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tained for the reconstruction of themagnetization profiles of the fully developed Poiseuille floware
finally analyzed. In future works, not only magnetization profiles will be reconstructed, but the en-
tiremagnetization field. Figure (4.15) depicts the horizontal and verticalmagnetization components
obtained for the fully developed flow for the two magnetization models of Shliomis [26], Mart-
senyuk et al. [42], given respectively by Eqs. (2.50) and (2.49), along with the numerical results
obtained from the numerical discrete scheme, in accordance to the procedure described in section
3.2. Two physical conditions were considered in these simulations: 1) 𝛼 = 3, 𝑃𝑒 = 0.7,𝑅𝑒 = 5000

and 𝜑 = 0.04; 2)𝛼 = 4,𝑃𝑒 = 0.3,𝑅𝑒 = 5000 and 𝜑 = 0.04. These parameters were carefully cho-
sen to capture two very distinct regimes, one subject to intense hydrodynamic effects (𝑃𝑒 = 0.7)
and other to weak/moderate hydrodynamic effects (𝑃𝑒 = 0.3). The particles were considered to
be 𝑑 = 15𝑛𝑚 in size, so that the dipole’s coupling parameter is 𝜆 = 4.47, according to Eq. (1.14),
under 𝑇 = 298𝐾 for magnetite particles. However, considering a surrounding coating thickness
of 𝑠 = 7.5𝑛𝑚 (𝑠 is generally 2𝑛𝑚 < 𝑠 < 8𝑛𝑚) the modified dipole’s coupling parameter 𝜆̃, given
in Eq. (1.14), reads 𝜆̃ = 0.56.

Figure (4.15) shows a very good agreement between the two continuous models in both
magnetization components 𝑀𝑥 and 𝑀𝑦. In addition, there is a behavior change in the horizon-
tal magnetization component 𝑀𝑥 when the system is subjected to higher hydrodynamic effects
(𝑃𝑒 = 0.3 → 𝑃𝑒 = 0.7), which ceases to be linear to become non-linear. As for the discrete
response, although the model proposed by Martsenyuk et al. [42] is more suitable for calculating
magnetization in non-equilibrium regimes, it is noted that the discrete numerical simulation re-
sults are relatively closer to the magnetization response provided by the model of Shliomis [26].
For the horizontal𝑀𝑥 component, a very good agreement is observed between the discrete and
continuous results predicted by the two models - Figs. (4.15a) and (4.15c) -. However, there ap-
pear to be greater discrepancies in the vertical magnetization component 𝑀𝑦, especially in the
regime with the lowest Péclet number, as indicated in Fig. (4.15d). Under this regime, the discrete
system is subjected to more intense Brownian effects, which acts in order to randomize the parti-
cles’ orientations resulting in a lower magnetization response. Nevertheless, under conditions of
greater hydrodynamic effects, the discrete code was able to capture the magnetization response
satisfactorily, since the results obtained are in very good agreement with that proposed by the
continuous models. The discrepancies observed between the results may be associated with the
non-prediction of the dipolar interactions effects by themodels studied in non-equilibriumphysical
regimes, since the equilibrium magnetization model considered in these continuous simulations
is that of Langevin [3]. However, it is interesting to note that the shape of both profiles seems to
be in accordance with the results captured by the numerical simulations. The largest discrepancies
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Figure. 4.15: Comparison between the profiles obtained for the fully developed flow for both mag-netization components 𝑀𝑥 and 𝑀𝑦. The lines corresponds to the results obtained through thecontinuous approach and represents the results obtained through the discrete approach. Thesolid line represents the model of Martsenyuk et al. [42] from Eq. (2.31) and the dashed linerepresents the model of Shliomis [26] from Eq. (2.27). For (a) and (b): 𝛼 = 3, 𝑃𝑒 = 0.7,
𝑅𝑒 = 5000, 𝜑 = 0.04 and 𝜆̃ = 0.56. For (c) and (d): 𝛼 = 4, 𝑃𝑒 = 0.3, 𝑅𝑒 = 5000, 𝜑 = 0.04 and
𝜆̃ = 0.56.
observed seem to occur in regions of greater vorticity, including the differences between the two
continuous solutions. The obtained results are in accordance with the deviations firstly noted by
Shliomis [40], where the authors clearly state that these differences could be relevant for testing
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newmagnetizationmodels and for the interpretation of corresponding experiments. Nonetheless,
further studies are needed to properly identify the physical mechanisms responsible for these dis-
crepancies and to simulate new physical scenarios. In addition, not only the profiles for the fully
developed flow will be reconstructed, but the entire magnetization field in future works.

Experimentally, small angle neutron scattering (SANS) can be used for the precise determi-
nation of magnetization profiles, since it distinguishes between magnetic and non-magnetic com-
ponents of ferrofluids, also allowing for the determination of both density and ferrofluid’s compo-
sition [352, 353, 70].
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5 Concluding remarks

This work consisted of investigating the non-equilibrium magnetization dynamics of a fer-
rofluid’s flow using two distinct tools: a continuous one, using Computational Fluid Dynamics (CFD)
simulations of a plane Poiseuille flow of a ferrofluid flowing between two parallel plates under the
action of an applied transverse magnetic field and a discrete one, using Langevin dynamics to sim-
ulate a suspension of particles interacting magnetically subject to the action of a magnetic field
under a local Couette flow.

For the continuous part, the numerical developed codewas validated bymeans of an asymp-
totic solution obtained by a regular perturbationmethod, by comparing the rotational viscosity ob-
tained along the duct’s cross section with the proposed theoretically and considering the limiting
case of the absence of an applied magnetic field (purely hydrodynamic regime).

To mathematically modulate the problem, three different magnetization models (that of
Shliomis [26], Martsenyuk et al. [42], Shliomis [40]) were used. A discussion regarding the dif-
ferent magnetization fields obtained for such models was also made. Overall, all considered mag-
netization models produced very similar results under physical conditions of low Péclet number
(weak hydrodynamic action), but under high Péclet configurations, significant discrepancies were
observed, specially between the magnetization response predicted by the models of Martsenyuk
et al. [42], Shliomis [40] and that of Shliomis [26].

In addition, discussions regarding the flow identified timescales where made, in which it
was observed that non-equilibrium magnetization dynamics is mainly governed by the Brownian
diffusive timescale, a (convective) hydrodynamic timescale and a controllable magnetic timescale
associatedwith the intensity of the applied field. Under low Péclet number scenarios, the hydrody-
namic timescale is much larger than the magnetic one, justifying the almost equilibrium behavior
observed in all results in such physical conditions.

An intricate balance between different physical mechanisms seemed to be responsible for
a diffusive-like behavior of the magnetization field. This balance is governed by a competition be-
tween the flow’s vorticity and magnetic relaxation mechanisms, which culminated in the postu-
lation of the existence of an analogous magnetization diffusion coefficient 𝜈𝑚𝑎𝑔, which is directly
proportional to the volume fraction of particles 𝜑, the dipole’s coupling parameter 𝜆, the non-
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dimensional magnetic field𝛼 and inversely proportional to the Péclet number𝑃𝑒. It was proposed
that this magnetization diffusion coefficient 𝜈𝑚𝑎𝑔 could be associated with a non-existent term of
the form (𝜈𝑚𝑎𝑔∇2𝑀 ) in the magnetization relaxation equations. In addition, physical parameters
responsible for this non-equilibriummagnetization dynamicswere identified and interpreted using
the problem’s timescales. Overall, increases in both 𝛼, 𝜆 and 𝜑 led to decreases in the magneti-
zation entrance region 𝐿𝑚, while increases in 𝑃𝑒 led to increases in 𝐿𝑚. This particular part of
the obtained results indicated towards the possibility of controlling the development of the flow’s
magnetization field by means of the applied magnetic field, the size distribution of the particles,
ferrofluid’s concentration and flow rate.

The wall magnetization and the angle between vectors𝑀 and𝐻 were also analyzed. In the
regions of moderate field (𝛼 ≈ 3), a change in the behavior of the analyzed variables was always
observed. This behavior was attributed to the complex nature of the problem’s time scales, which
under these conditions would lead to amore prominent hydrodynamic mechanism at the expense
of the intensity of the particle-particle and field-particle interactions.

After extensive discussion of the magnetoviscous effect made in section 1.3.1, predictions
of rotational viscosity along the duct’s cross section were presented, where an analogous shear
thinning behavior was observed, being attributed as associated with changes caused by shearing
action on structures and particle’s disposition.

Finally, even though magnetization dynamics was strongly influenced by hydrodynamic ef-
fects, especially in high Péclet number configurations, the hydrodynamic fields were not signifi-
cantly influenced by magnetism.

As for the discrete part of this work, the effect of the hydrodynamic-magnetic coupling in
non-equilibrium magnetization dynamics was clearly observed through the reconstruction of a
continuous magnetization profile for the fully developed flow. The discrete simulations provided
very good approximations of the continuous magnetization response, with the obtained discrep-
ancies being attributed to the lack of predictions of particle-particle interactions by the continuous
magnetization models. It has also been observed that in regions of higher vorticity, the particles
tended to be less aligned in the direction of the field, resulting in regions of lower magnetization.
The methodology proposed proved to be quite efficient when it comes to analyzing the magnetic
response of a colloidal suspension of magnetic particles in the context of dynamic simulations.
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Overall, this work presented physically consistent results regarding the magnetization field
of a ferrofluid flowing between two parallel plates under different physical scenarios, in addition
to a magnetization response obtained in the particle’s scale.
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APPENDIX A – Discretized governing equations

In this Appendix, the discretized mathematical form of the problem’s governing equations
is presented. A finite difference method was employed to discretize the governing equations due
to its compatibility with the regularly shaped geometry of our problem. A forward-differencing
scheme was used to approximate the time derivatives and central differences were used to ap-
proximate the spatial derivatives [354]. To make a clear presentation of the discretized equations,
the finite difference operators 𝛿 was used, which is defined by the relations in Eq. (A.1) [318]. The
forward-differencing scheme for the time derivatives is shown in Eq. (A.2) [318].

𝛿𝑥(𝜄) =
𝜄𝑖+1,𝑗 − 𝜄𝑖−1,𝑗

2∆𝑥
; 𝛿𝑥𝑥(𝜄) =

𝜄𝑖+1,𝑗 − 2𝜄𝑖,𝑗 + 𝜄𝑖−1,𝑗

∆𝑥2
; 𝛿𝑦(𝜄) =

𝜄𝑖,𝑗+1 − 𝜄𝑖,𝑗−1

2∆𝑦
;

𝛿𝑦𝑦(𝜄) =
𝜄𝑖,𝑗+1 − 2𝜄𝑖,𝑗 + 𝜄𝑖,𝑗−1

∆𝑦2
; 𝛿𝑥𝑦(𝜄) =

𝜄𝑖+1,𝑗+1 − 𝜄𝑖+1,𝑗−1 − 𝜄𝑖−1,𝑗+1 + 𝜄𝑖−1,𝑗−1

4∆𝑥∆𝑦

(A.1)

𝜕𝜄𝑖,𝑗
𝜕𝑡

=
𝜄𝑛+1
𝑖,𝑗 − 𝜄𝑛𝑖,𝑗

∆𝑡
(A.2)

In Equations (A.1) and (A.2) 𝜄 is an arbitrary variable, ∆𝑥 and ∆𝑦 are the horizontal and verti-
cal dimensionless steps, respectively,∆𝑡 is the dimensionless time step, 𝑛 represents the property
in a time 𝑡 and 𝑛+ 1 represents the property in a time 𝑡+ ∆𝑡.

The convective terms of the governing equations were modelled using a first-order upwind
scheme, as described in Eq. (A.3) [318].
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𝑢
𝜕𝜄

𝜕𝑥
= 𝑢

(︃
𝜄𝑖,𝑗 − 𝜄𝑖−1,𝑗

∆𝑥

)︃
, 𝑓𝑜𝑟 𝑢 > 0

𝑢
𝜕𝜄

𝜕𝑥
= 𝑢
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𝜄𝑖+1,𝑗 − 𝜄𝑖,𝑗

∆𝑥

)︃
, 𝑓𝑜𝑟 𝑢 < 0

𝑢
𝜕𝜄

𝜕𝑦
= 𝑢

(︃
𝜄𝑖,𝑗 − 𝜄𝑖,𝑗−1

∆𝑦

)︃
, 𝑓𝑜𝑟 𝑢 > 0

𝑢
𝜕𝜄

𝜕𝑦
= 𝑢

(︃
𝜄𝑖,𝑗+1 − 𝜄𝑖,𝑗

∆𝑦

)︃
, 𝑓𝑜𝑟 𝑢 < 0

(A.3)

In Equation (A.3), 𝑢 stands for a component of the velocity field, 𝑣𝑥 or 𝑣𝑦. The discretized
equations are presented in below.

∘ Discretized Poisson streamfunction equation

𝛿𝑥𝑥(𝜓) + 𝛿𝑦𝑦(𝜓) = −𝜉𝑖,𝑗 (A.4)
∘ Discretized vorticity equation in two-dimensional flow

𝜕𝜉𝑖,𝑗
𝜕𝑡

+ 𝑣𝑥
𝜕𝜉

𝜕𝑥
+ 𝑣𝑦

𝜕𝜉

𝜕𝑦
=

1

𝑅𝑒

[︁
𝛿𝑥𝑥(𝜉) + 𝛿𝑦𝑦(𝜉)

]︁
+

3𝜑𝛼

𝑃𝑒𝑅𝑒

[︃
𝛿𝑥(𝑀𝑥)𝛿𝑥(𝐻𝑦) + 𝛿𝑥(𝑀𝑦)𝛿𝑦(𝐻𝑦)

+𝑀𝑥𝛿𝑥𝑥(𝐻𝑦) +𝑀𝑦𝛿𝑥𝑦(𝐻𝑦) − 𝛿𝑦(𝑀𝑥)𝛿𝑥(𝐻𝑥) − 𝛿𝑦(𝑀𝑦)𝛿𝑦(𝐻𝑥) −𝑀𝑥𝛿𝑥𝑦(𝐻𝑥) −𝑀𝑦𝛿𝑦𝑦(𝐻𝑥)

− 1

2
𝛿𝑥𝑥(𝑀𝑥𝐻𝑦 −𝑀𝑦𝐻𝑥) −

1

2
𝛿𝑦𝑦(𝑀𝑥𝐻𝑦 −𝑀𝑦𝐻𝑥)

]︃
(A.5)

∘ Discretized magnetization equations
· First model - Phenomenological equation:
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Horizontal direction:

,

𝜕𝑀𝑥𝑖,𝑗

𝜕𝑡
+ 𝑣𝑥

𝜕𝑀𝑥

𝜕𝑥
+ 𝑣𝑦

𝜕𝑀𝑥

𝜕𝑦
= −1

2
(𝜉𝑀𝑦)𝑖,𝑗 −

1

𝑃𝑒
(𝑀𝑥 −𝑀0𝑥)𝑖,𝑗

− 1

2

𝛼

𝑃𝑒

[︁
𝑀𝑦(𝑀𝑥𝐻𝑦 −𝑀𝑦𝐻𝑥)

]︁
𝑖,𝑗

(A.6)

Vertical direction:
𝜕𝑀𝑦𝑖,𝑗

𝜕𝑡
+ 𝑣𝑥

𝜕𝑀𝑦

𝜕𝑥
+ 𝑣𝑦

𝜕𝑀𝑦

𝜕𝑦
=

1

2
(𝜉𝑀𝑥)𝑖,𝑗 −

1

𝑃𝑒
(𝑀𝑦 −𝑀0𝑦)𝑖,𝑗

+
1

2

𝛼

𝑃𝑒

[︁
𝑀𝑥(𝑀𝑥𝐻𝑦 −𝑀𝑦𝐻𝑥)

]︁
𝑖,𝑗

(A.7)

· Second model - EFM equation:
Horizontal direction:
𝜕𝑀𝑥𝑖,𝑗

𝜕𝑡
+ 𝑣𝑥

𝜕𝑀𝑥

𝜕𝑥
+ 𝑣𝑦

𝜕𝑀𝑥

𝜕𝑦
= −1

2
(𝜉𝑀𝑦)𝑖,𝑗 −

1

𝑃𝑒

[︁
𝛼2
𝑒 − (𝛼 ·𝛼𝑒)

]︁
𝛼2
𝑒

𝑀𝑥𝑖,𝑗

− 1

2

𝛼

𝑃𝑒

[︁
𝛼𝑒 − ℒ(𝛼𝑒)

]︁
𝛼𝑒ℒ2(𝛼𝑒)

[︁
𝑀𝑦(𝑀𝑥𝐻𝑦 −𝑀𝑦𝐻𝑥)

]︁
𝑖,𝑗

(A.8)

Vertical direction:
𝜕𝑀𝑦𝑖,𝑗

𝜕𝑡
+ 𝑣𝑥

𝜕𝑀𝑦

𝜕𝑥
+ 𝑣𝑦

𝜕𝑀𝑦

𝜕𝑦
=

1

2
(𝜉𝑀𝑥)𝑖,𝑗 −

1

𝑃𝑒

[︁
𝛼2
𝑒 − (𝛼 ·𝛼𝑒)

]︁
𝛼2
𝑒

𝑀𝑦𝑖,𝑗

+
1

2

𝛼

𝑃𝑒

[︁
𝛼𝑒 − ℒ(𝛼𝑒)

]︁
𝛼𝑒ℒ2(𝛼𝑒)

[︁
𝑀𝑥(𝑀𝑥𝐻𝑦 −𝑀𝑦𝐻𝑥)

]︁
𝑖,𝑗

(A.9)

· Third model - Phenomenological equation:
Horizontal direction:
𝜕𝐻𝑒𝑥𝑖,𝑗

𝜕𝑡
+ 𝑣𝑥

𝜕𝐻𝑒𝑥

𝜕𝑥
+ 𝑣𝑦

𝜕𝐻𝑒𝑥

𝜕𝑦
= −1

2
(𝜉𝐻𝑒𝑦)𝑖,𝑗 −

1

𝑃𝑒
(𝐻𝑒𝑥 −𝐻𝑥)𝑖,𝑗−

1

2

𝛼

𝑃𝑒

[︁
𝐻𝑒𝑦(𝑀𝑥𝐻𝑦 −𝑀𝑦𝐻𝑥)

]︁
𝑖,𝑗

(A.10)
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Vertical direction:
𝜕𝐻𝑒𝑦𝑖,𝑗

𝜕𝑡
+ 𝑣𝑥

𝜕𝐻𝑒𝑦

𝜕𝑥
+ 𝑣𝑦

𝜕𝐻𝑒𝑦

𝜕𝑦
=

1

2
(𝜉𝐻𝑒𝑥)𝑖,𝑗

− 1

𝑃𝑒
(𝐻𝑒𝑦 −𝐻𝑦)𝑖,𝑗 −

1

2

𝛼

𝑃𝑒

[︁
𝐻𝑒𝑥(𝑀𝑥𝐻𝑦 −𝑀𝑦𝐻𝑥)

]︁
𝑖,𝑗

(A.11)

In Equations (A.10) and (A.11),𝐻𝑒𝑥 and𝐻𝑒𝑦 stand for the horizontal and vertical components
of the effective field𝐻𝑒, respectively.

∘ Discretized velocity field relations

𝑣𝑥𝑖,𝑗 = 𝛿𝑦(𝜓); 𝑣𝑦𝑖,𝑗 = −𝛿𝑥(𝜓) (A.12)
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APPENDIX B – Magnetic boundary conditions

Themagnetic boundary conditions come from the Ampère andGaussmagnetism laws, being
determined as follows:

(a) (b)
Figure. B.1: Scheme for the magnetic boundary conditions between media 1 and media 2. In (a):Magnetic induction field𝐵. In (b): Applied magnetic field𝐻 . Image adapted from Ref. [29].

The boundary condition for themagnetic induction field𝐵 is a direct consequence of Gauss’
law of magnetism (∇·𝐵) = 0 - Eq. (2.1) -. For its calculation, consider the infinitesimal volume 𝛿𝑉
presented in Fig. (B.1a), with radius 𝑎 = 𝐷/2 and height 𝜀, which is placed between two different
continuousmedia 1 and 2. Integrating Gaussmagnetism law into the referred volume and applying
Gauss divergence theorem [355] one arrives at [3, 29]:

y
∇ ·𝐵𝑑𝑉 =

x
𝐵 · 𝑛𝑑𝑆 = 0. (B.1)

Equation (B.1) indicates that the magnetic induction’s net flow through any closed surface
is null. When the volume’s height 𝜀 is diminished in order to ensure 𝜀 ≪ 𝐷, the total magnetic
induction flow over the 𝛿𝑆 disk’s surface will have significant contributions coming only from the
upper𝐴2 (out) and lower𝐴1 (in) areas, since 𝜀≪ 𝑎, or |𝐵|𝜋𝑎2 ≫ |𝐵|2𝜋𝑎𝜀. Therefore, the surface
integral in Eq. (B.1) is reduced to:
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x

𝐴1

𝐵1𝑛𝑑𝑆 =
x

𝐴2

𝐵2𝑛𝑑𝑆. (B.2)

Since𝐴1 = 𝐴2, the condition presented in Eq. (B.2) is only satisfied if the normal component
of𝐵 is continuous along the interface between medias 1 and 2 [29]. Which leads to:

𝐵1𝑛 = 𝐵2𝑛. (B.3)

Thus, Equation (B.3) indicates that the normal component of the magnetic induction field𝐵
is continuous across any interface.

As for the applied field’s 𝐻 boundary conditions, they are readily obtained from Ampère’s
circuit law in themagnetostatic limit∇×𝐻 = 0 - Eq.(2.1) - with the aid of Fig. (B.1b). By integrating
the applied field’s 𝐻 irrotationality condition into the regular surface 𝑆 limited by the outline 𝐿
and by applying Stokes’ theorem [355], one obtains [29]:

x
(∇×𝐻) · 𝑛𝑑𝑆 =

∮︁
𝐻 · 𝑡𝑑𝐿 = 0. (B.4)

In Equation (B.4), 𝑡 is the unit tangent vector to path 𝐿. One notices in the integrating path
indicated in Fig.(B.1b) that𝐷 ≫ 𝜀, in a way that the first species line integrals in 𝜀 considering the
path 𝐿 are much smaller than those in 𝐷. Thus, the integral along the closed path 𝐿 of Eq. (B.4)
reduces to:

∮︁
𝐷1

𝐻 · 𝑡𝑑𝐿 =

∮︁
𝐷2

𝐻 · 𝑡𝑑𝐿. (B.5)

Which leads to:

𝐻2 · 𝑡−𝐻1 · 𝑡 = 0 → 𝐻2𝑡 = 𝐻1𝑡 (B.6)
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This way, Eq. (B.6) indicates that the tangential component of the applied field𝐻 is contin-
uous throughout the interface of medias 1 and 2.

Altogether, the field’s boundary conditions, given by Eqs. (B.3) and (B.6), indicate that the
normal components of the induction field 𝐵 and the tangential components of the applied field
𝐻 are continuous through an interface [3].
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APPENDIX C – Asymptotic solution for code validation purposes

In this Appendix, the asymptotic solution used to validate the numerical code is derived. This
solutionwas developed taking inspiration from the pioneer work of Rosa et al. [339]. In the present
context, a ferrofluid laminar flow is held between two horizontal flat plates with unitary spacing
ℎ = 2𝑎 and aspect ratio 𝐿/ℎ = 100. The flow is subjected to a stationary magnetic field gradient
with linear decay applied in the horizontal direction as well as a pressure gradient. The derivation
process of this solution is now briefly described.

For the present asymptotic solution, the working magnetic fluid is considered symmetrical.
The condition of symmetry of the stress tensor is met when there are no internal torques per
unit volume acting on the fluid. Under the symmetry hypothesis, the resulting magnetic torque -
Eq. (1.11) - is null 𝑇 = 𝜇0(𝑀 ×𝐻) = 0, leading to the collinearity of the magnetization 𝑀 and
magnetic field𝐻 vectors in all points of the fluid domain. Physically, this means that the relaxation
time 𝜏 is so short that as soon as the magnetic field is applied, the magnetic dipole moments
instantly line up in the field’s direction[339].

The magnetic stress tensor for a symmetric magnetic fluid is given by [3, 39]:

Σ = −1

2
𝜇0𝐻

2𝐼 +
1

2
𝜇0(𝐻𝑀 + 𝑀𝐻) (C.1)

For symmetric fluids, the equation of motion - Eq. (2.16) - is modified to:

𝜌

[︃
𝜕𝑣

𝜕𝑡
+ (𝑣 · ∇)𝑣

]︃
= −∇𝑝+ 𝜂∇2𝑣 + 𝜇0(𝑀 · ∇)𝐻 (C.2)

This asymptotic solution is developed for regimes close to equilibrium; therefore, the mag-
netization model used is that of Eq. (2.27)[26]. With the symmetry hypothesis, Eq. (2.27) takes the
form:
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𝜕𝑀

𝜕𝑡
+ (𝑣 · ∇)𝑀 =

1

2
𝜉 ×𝑀 − (𝑀 −𝑀0)

𝜏
(C.3)

Since𝑀 and𝐻 collinear, the last term in Eq. (C.2), associated with the magnetic force den-
sity - Eq. (2.2) -, can be written in the horizontal coordinate 𝑥 as:

[︃
𝜇0(𝑀 · ∇)𝐻

]︃
𝑥

= 𝜇0

(︃
𝑀𝑥

𝜕𝐻𝑥

𝜕𝑥
+𝑀𝑦

𝜕𝐻𝑥

𝜕𝑦

)︃
(C.4)

Note that the horizontal component of the term 𝜇0𝑀∇𝐻 is given by:

[︃
𝜇0(𝑀∇𝐻)

]︃
𝑥

= 𝜇0

⎛⎜⎜⎝√︁𝑀2
𝑥 +𝑀2

𝑦

𝜕

𝜕𝑥

√︁
𝐻2
𝑥 +𝐻2

𝑦

⎞⎟⎟⎠ (C.5)

Due to the small aspect ratio 𝑎 ≪ 𝐿 associated with the problem’s geometry, it is possible
to consider that 𝐻𝑦 ≪ 𝐻𝑥 and 𝑀𝑦 ≪ 𝑀𝑥, thus, it is noticed that 𝑀 · ∇𝐻 = 𝑀∇𝐻 in the
horizontal direction.

To make Eqs. (C.2) and (C.3) non-dimensional, reference scales presented in Eq. (2.46) were
used, with a slight modification f the pressure reference scale, which was made non-dimensional
using a normalized volume rate 𝑝 = 𝑝

12𝜌𝑈2 . Thus, the non-dimensional linear momentum andmag-
netization equations are given, respectively, by:

𝜕𝑣

𝜕𝑡
+ (𝑣 · ∇)𝑣 = −12∇𝑝+

1

𝑅𝑒
∇2𝑣 +

1

𝑅𝑒𝑚
(𝑀 · ∇)𝐻 (C.6)

𝜕𝑀

𝜕𝑡
+ (𝑣 · ∇)𝑀 =

1

2
𝜉 ×𝑀 − 1

𝑃𝑒
(𝑀 −𝑀0) (C.7)
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In this particular case, the Péclet number indicates the tendency of magnetization to change
in time and space compared to a flow characteristic timescale[339]. The magnetic Reynolds num-
ber 𝑅𝑒𝑚 is defined as 𝑅𝑒𝑚 = 𝜌𝑈2

𝜇0𝑀𝑠𝐻0
.

In addition, the variations produced in magnetization𝑀 due to its advective transport are
considered to be much smaller than those produced by flow’s vorticity. In mathematical notation,
it means that |𝑣 · ∇𝑀 | ≪ |1

2
𝜉 ×𝑀 |, reducing Eq. (C.7) to:

𝜕𝑀

𝜕𝑡
=

1

2
𝜉 ×𝑀 − 1

𝑃𝑒
(𝑀 −𝑀0) (C.8)

With all the restrictions discussed so far, and also considering a stationary magnetic field
with linear decay in the horizontal (streamwise) direction in a fully developed steady state flow,
Eq. (C.6) can be written, in the horizontal direction, as:

𝑑2𝑣𝑥
𝑑𝑦2

+
𝑅𝑒

𝑅𝑒𝑚
𝑀
𝑑𝐻

𝑑𝑥
= −12𝑅𝑒𝐺 (C.9)

In Equation (C.9), 𝑑𝐻
𝑑𝑥

is the dimensionless constant magnetic field gradient and𝐺 is a dimen-
sionless constant pressure gradient, given by:

𝐺 = −

(︃
ℎ

𝑙

)︃
∆𝑝

12𝜌𝑈2
(C.10)

In Equation (C.10), ∆𝑝 is the pressure difference between two points in the fully developed
flow domain. In steady state, Eq. (C.8) is rewritten as:

𝑃𝑒

2
𝜉 ×𝑀 = 𝑀 −𝑀0 (C.11)

Equation (C.11) makes it clear that the developed analytical solution deals only with the devi-
ation of the magnetization from its equilibrium value due to the vorticity of the flow. Components
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of Eq. (C.11) in the horizontal 𝑥 and vertical 𝑦 directions are presented below.

𝑑𝑣𝑥
𝑑𝑦

𝑀𝑦 =
2

𝑃𝑒
(𝑀𝑥 −𝑀𝑥0) (C.12)

𝑑𝑣𝑥
𝑑𝑦

𝑀𝑥 = − 2

𝑃𝑒
(𝑀𝑦 −𝑀𝑦0) (C.13)

In Equations (C.12) and (C.13),𝑀𝑦0 and𝑀𝑥0 represent the vertical and horizontal equilibrium
magnetization components, respectively. If it is assumed that the initial magnetization is aligned
with the applied magnetic field, it leads to𝑀𝑦0 = 0. Therefore, Eq. (C.13) is reduced to:

𝑀𝑦 = −𝑃𝑒
2

𝑑𝑣𝑥
𝑑𝑦

𝑀𝑥 (C.14)

Substituting Eq. (C.14) in Eq. (C.12), and after performing some algebraic manipulations, it
yields:

𝑀𝑥 = 𝑀𝑥0

⎡⎢⎢⎣1

4
𝑃𝑒2

(︃
𝑑𝑣𝑥
𝑑𝑦

)︃2

+ 1

⎤⎥⎥⎦
−1

(C.15)

In this way, the absolute value of the the magnetization vector 𝑀 present in Eq. (C.9) can
be calculated, leading to:

𝑀 =
√︁
𝑀2

𝑥 +𝑀2
𝑦 = 𝑀𝑥0

⎡⎢⎢⎣1

4
𝑃𝑒2

(︃
𝑑𝑣𝑥
𝑑𝑦

)︃2

+ 1

⎤⎥⎥⎦
− 1

2

(C.16)

The term in brackets in Eq. (C.16) can be expanded using binomial expansion. Taking only the
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highest order term, it yields:

𝑀 ≈𝑀𝑥0

⎡⎢⎢⎣1 − 1

8
𝑃𝑒2

(︃
𝑑𝑣𝑥
𝑑𝑦

)︃2

⎤⎥⎥⎦ (C.17)

The substitution of Eq. (C.17) in Eq. (C.9) results in a nonlinear ordinary differential equation
- Eq. (C.18) - that governs the laminar flow of a diluted magnetic fluid between two horizontal flat
plates with small aspect ratio under the action of a horizontal constant magnetic field gradient,
that takes into consideration the coupling between flow’s vorticity and fluid’s magnetization.

𝑑2𝑣𝑥
𝑑𝑦2

+
𝑅𝑒

𝑅𝑒𝑚

𝑑𝐻

𝑑𝑥
𝑀𝑥0

⎡⎢⎢⎣1 − 1

8
𝑃𝑒2

(︃
𝑑𝑣𝑥
𝑑𝑦

)︃2

⎤⎥⎥⎦+ 12𝑅𝑒𝐺 = 0 (C.18)

Equation (C.18) is best visualized with the aid of some constants, defined in Eq. (C.20).

𝑑2𝑣𝑥
𝑑𝑦2

− 𝜖

(︃
𝑑𝑣𝑥
𝑑𝑦

)︃2

= −𝛾 (C.19)

𝛽 =
𝑅𝑒

𝑅𝑒𝑚
𝑀0𝑥

𝑑𝐻

𝑑𝑥

𝛾 = 12𝑅𝑒𝐺+ 𝛽

𝜖 =
𝑃𝑒2𝛽

8

(C.20)

It is difficult to perform a direct integration of Eq. (C.19) due to the presence of the term(︁
𝑑𝑣𝑥
𝑑𝑦

)︁2, responsible for its non-linearity. However, if one assumes that the 𝜖 parameter is small
enough (𝜖≪ 1), Eq. (C.19) can be solved by a regular perturbation method[356].
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The𝒪(𝜖2) asymptotic expansion for 𝑣𝑥(𝑦) is given by:

𝑣𝑥(𝑦) = 𝑣𝑥0(𝑦) + 𝜖𝑣𝑥1(𝑦) + 𝜖2𝑣𝑥2(𝑦) (C.21)

Substituting Eq. (C.21) in Eq. (C.19) yields:

[︃
𝑑2𝑣𝑥0
𝑑𝑦2

+ 𝛾

]︃
+ 𝜖

[︃
𝑑2𝑣𝑥1
𝑑𝑦2

−

(︃
𝑑𝑣𝑥0
𝑑𝑦

)︃2]︃
+ 𝜖2

[︃
𝑑2𝑣𝑥2
𝑑𝑦2

− 2

(︃
𝑑𝑣𝑥0
𝑑𝑦

)︃(︃
𝑑𝑣𝑥1
𝑑𝑦

)︃]︃
= 0 (C.22)

Therefore, it is necessary to solve a system of linear differential equations given by:

𝑑2𝑣𝑥0
𝑑𝑦2

+ 𝛾 = 0

𝑑2𝑣𝑥1
𝑑𝑦2

−

(︃
𝑑𝑣𝑥0
𝑑𝑦

)︃2

= 0

𝑑2𝑣𝑥2
𝑑𝑦2

− 2

(︃
𝑑𝑣𝑥0
𝑑𝑦

)︃(︃
𝑑𝑣𝑥1
𝑑𝑦

)︃
= 0

(C.23)

To solve the system of linear equations shown in Eq. (C.23), the classic no-slip boundary
condition on the walls is used. This leads to:

𝑣𝑥0(𝑦) =
𝛾

2

(︀
𝑦 − 𝑦2

)︀
𝑣𝑥1(𝑦) =

𝛾2

24

(︀
2𝑦4 − 4𝑦3 + 3𝑦2 − 𝑦

)︀
𝑣𝑥2(𝑦) =

𝛾3

6

(︃
−2

15
𝑦6 +

2

5
𝑦5 − 1

2
𝑦4 +

1

3
𝑦3 − 1

8
𝑦2 +

1

40
𝑦

)︃ (C.24)
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Finally, the asymptotic velocity profile is obtained.

𝑣𝑥(𝑦) =
𝛾

2

(︀
𝑦−𝑦2

)︀
+ 𝜖

𝛾2

24

(︀
2𝑦4−4𝑦3 + 3𝑦2−𝑦

)︀
+ 𝜖2

𝛾3

6

(︃
−2

15
𝑦6 +

2

5
𝑦5− 1

2
𝑦4 +

1

3
𝑦3− 1

8
𝑦2 +

1

40
𝑦

)︃
(3.8 revisited)

The velocity profile in Eq. (3.8) represents a parabolic profile only in the absence of magnetic
effects, resulting in non-Newtonian behavior of the magnetic fluid when in the presence of an
external magnetic field.
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