
UNIVERSIDADE ESTADUAL DE CAMPINAS
SISTEMA DE BIBLIOTECAS DA UNICAMP

REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website:

https://dl.acm.org/doi/abs/10.1016/j.cam.2014.12.031

DOI: 10.1016/j.cam.2014.12.031

Direitos autorais / Publisher's copyright statement:

©2015 by Elsevier. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAÇÃO

Cidade Universitária Zeferino Vaz Barão Geraldo
CEP 13083-970 – Campinas SP

Fone: (19) 3521-6493

http://www.repositorio.unicamp.br

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/427530131?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.repositorio.unicamp.br/

Journal of Computational and Applied Mathematics 282 (2015) 1–16

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Assessing the reliability of general-purpose Inexact
Restoration methods✩

E.G. Birgin a,∗, L.F. Bueno b, J.M. Martínez c

a Department of Computer Science, Institute of Mathematics and Statistics, University of São Paulo, São Paulo, SP, Brazil
b Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, SP, Brazil
c Department of Applied Mathematics, Institute of Mathematics, Statistics, and Scientific Computing, State University of Campinas,
Campinas, SP, Brazil

a r t i c l e i n f o

Article history:
Received 3 April 2014
Received in revised form 1 December 2014

Keywords:
Nonlinear programming
Inexact Restoration
Numerical experiments

a b s t r a c t

Inexact Restoration methods have been proved to be effective to solve constrained
optimization problems in which some structure of the feasible set induces a natural
way of recovering feasibility from arbitrary infeasible points. Sometimes natural ways
of dealing with minimization over tangent approximations of the feasible set are also
employed. A recent paper [Banihashemi and Kaya (2013)] suggests that the Inexact
Restoration approach can be competitive with well-established nonlinear programming
solverswhen applied to certain control problemswithout any problem-oriented procedure
for restoring feasibility. This result motivated us to revisit the idea of designing general-
purpose Inexact Restoration methods, especially for large-scale problems. In this paper we
introduce affordable algorithms of Inexact Restoration type for solving arbitrary nonlinear
programming problems and we perform the first experiments that aim to assess their
reliability. Initially, we define a purely local Inexact Restoration algorithm with quadratic
convergence. Then, we modify the local algorithm in order to increase the chances of
success of both the restoration and the optimization phase. This hybrid algorithm is
intermediate between the local algorithm and a globally convergent one for which, under
suitable assumptions, convergence to KKT points can be proved.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Inexact Restoration (IR) is an attractive approach for solving Nonlinear Programming problems, see [1–12]. The idea of
IR methods is that, at each iteration, feasibility and optimality are addressed in different phases. In the Restoration Phase
the algorithms aim to improve feasibility and in the Optimization Phase they aim to improve optimality, preserving a linear
approximation of feasibility. These algorithms have been successfully used in applications in which there exists a natural
way to improve (or even obtain) feasibility (see [1,6,9,10] among others).

✩ This work was supported by PRONEX-CNPq/FAPERJ E-26/111.449/2010-APQ1, FAPESP (grants 2010/10133-0, 2013/03447-6, 2013/05475-7, and
2013/07375-0), and CNPq.
∗ Corresponding author.

E-mail addresses: egbirgin@ime.usp.br (E.G. Birgin), lfelipebueno@gmail.com (L.F. Bueno), martinez@ime.unicamp.br (J.M. Martínez).

http://dx.doi.org/10.1016/j.cam.2014.12.031
0377-0427/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cam.2014.12.031
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2014.12.031&domain=pdf
mailto:egbirgin@ime.usp.br
mailto:lfelipebueno@gmail.com
mailto:martinez@ime.unicamp.br
http://dx.doi.org/10.1016/j.cam.2014.12.031

2 E.G. Birgin et al. / Journal of Computational and Applied Mathematics 282 (2015) 1–16

In [9,10] control problems of the following form were considered:

Minimize
 tf

t0
f0(s(t), u(t)) dt

subject to ṡ(t) = F(s(t), u(t))
s(t0) = s0,

(1)

where the state variable is s(t) ∈ Rns , ṡ = ds/dt , the control variable is u(t) ∈ Rnu , t varies between t0 and tf , f0 : Rns ×

Rnu → R, and F : Rns × Rnu → Rns . The initial state is given by s0 ∈ Rns . The time domain [t0, tf] is subdivided into N
intervals with equidistant points ti = ti−1 + 1t or, equivalently, ti = t0 + i 1t, i = 1, . . . ,N , where 1t = (tf − t0)/N
and, hence, tN = tf . Considering the Euler discretization scheme si+1 = si + 1tF(si, ui) and approximating the integral in
the objective function of (1) by its Riemann sum, we arrive to the discretized optimal control problem

Minimize 1t
N−1
i=0

f0(si, ui)

subject to si+1 = si +1tF(si, ui), i = 0, . . . ,N − 1,

(2)

where s0 is given, the variables si approximate the states s(ti) for i = 1, . . . ,N , and the variables ui approximate the controls
u(ti) for i = 0, . . . ,N − 1. The number of variables is n = (ns + nu)N and the number of (equality) constraints is m = nsN .
Higher-order discretization schemes such as the ones in the Runge–Kutta family of methods can be used. In the case of
problem (2), restoration consists of fixing the control variables and approximately solving the initial value problem. In the
Optimization Phase, IR methods change both the control and the state variables. The restoration procedure is quite natural
and, so, it is not surprising the obtention of good numerical results using IR approaches.

Surprisingly, in a recent paper, Banihashemi and Kaya [13] applied an IR scheme to a family of control problems for
which the natural initial-value restoration procedure cannot be applied anymore and obtained better results with their
method than with a standard well-established nonlinear optimization software. Although the problems addressed in [13]
possess an interesting particular structure, the algorithm used for recovering feasibility does not exploit that structure at
all. Therefore, we found the relative efficiency reported in [13] surprising. The Banihashemi–Kaya paper motivated us to
revisit the application of IR to general nonlinear programming problems, without regarding any specific structure. Themain
question is: Is it worthwhile to develop a universal constrained optimization package based on the IR idea? In the present
paper wewish to report the first steps in the process of answering this question and developing the corresponding software.

Global convergence theories for modern Inexact Restoration methods were given in [12,11,5,7,14,15]. In [12] the theory
is based on trust regions and a quadratic penaltymerit function. The trust-region approach employing a sharp Lagrangian as
merit functionwas introduced in [11]. In [5,7] global convergencewas based on a filter approach. Fischer and Friedlander [14]
proved global convergence theorems based on line searches and exact penalty functions. A global convergence approach
that employs the sharp Lagrangian and line searches was defined in [15]. Local and superlinear convergence of an Inexact
Restoration algorithm for general problems was proved in [2] and a general local framework that includes composite-step
methods was given in [16]. In the present paper we adopt the scheme of [2] that requires improvement of feasibility with
controlled distance to the current point at the feasibility phase. Here this requirement will be achieved minimizing the
distance to the current point subject to the minimization of the quadratic approximation of infeasibility.

We will define four algorithms. The first one will be a local method, similar to the method introduced in [2], for
which local quadratic convergence will be proved under suitable sufficient conditions. (In [2] sufficient conditions for the
welldefinedness of the algorithm were not provided.) The second method will be a variation of the local method that aims
to improve the global convergence performance and has the same local convergence properties as the first one. The third
method uses the basic tools of the first two but is globally convergent thanks to the employment of line searches and sharp
Lagrangians, as in [15]. The fourth one is a hybrid combination of the second and the third methods, designed to improve
its computational performance.

We wish to provide a practical assessment of the reliability of IR methods on general (potentially large-scale) Nonlinear
Programming. For this purpose some decisions will be taken on the concrete implementation of each particular IR method,
leaving apart the degrees of freedom that the general approach provides. In particular, the first trial point for the feasibility
phase will come from the solution of a quadratic box-constrained problem and the first trial point of the optimization phase
will come from the solution of a feasible quadratic programming problem. The implementation of the four algorithms
introduced in this paper will be described and a comparison between them and against well established Nonlinear
Programming solvers will be provided. As a final consequence we will establish a conclusion about the reliability of using IR
ideas for general problems, in which specific characteristics of the feasible set or the objective function are not used at all.

We will consider the problem
Minimize f (x) subject to h(x) = 0, x ∈ Ω (3)

where f : Rn
→ R, h : Rn

→ Rm, and Ω = {x ∈ Rn
| ℓ ≤ x ≤ u}. For all x ∈ Ω and λ ∈ Rm we define the Lagrangian

L(x, λ) by

L(x, λ) = f (x)+
m
i=1

λihi(x).

E.G. Birgin et al. / Journal of Computational and Applied Mathematics 282 (2015) 1–16 3

The functions f and hi, i = 1, . . . ,m, will be assumed to admit continuous and bounded second derivatives for all x ∈ Ω .
Moreover, their Hessians will be assumed to be Lipschitz-continuous. Therefore, given c > 0, there exist Lf , Lh, L, and LL such
that for all x, z ∈ Ω and ∥λ∥ ≤ c ,f (z)− f (x)−∇f (x)T (z − x)−

1
2
(z − x)T∇2f (x)(z − x)

 ≤ Lf ∥z − x∥3, (4)

∥h(z)− h(x)− h′(x)(z − x)∥ ≤ Lh∥z − x∥2, (5)
∥h(z)− h(x)∥ ≤ L∥z − x∥, (6)

and, L(z, λ)− L(x, λ)−∇L(x, λ)T (z − x)−
1
2
(z − x)T∇2L(x, λ)(z − x)

 ≤ LL∥z − x∥3. (7)

The rest of this work is organized as follows. Section 2 introduces the local version of the IR algorithm. The semilocal and
global IR methods are introduced in Sections 3 and 4, respectively. Section 5 introduces the hybrid IR method and presents
the computational experiments. Some final remarks are given in Section 6.

Notation. The symbol ∥·∥will denote the 2-normof vectors andmatrices. Given x ∈ Rn, we denote by X the diagonalmatrix
whose elements are the entries of x. The canonical basis of Rn will be denoted e1, . . . , en. We will denote e = e1 + · · · + en.
The symbol N indicates the set of natural numbers. K1⊂

∞

K indicates that K is a subsequence of natural numbers and K1 is a

subsequence of K . PΩ(x) will denote the Euclidean projection of x onto Ω .

2. An implementable local algorithm

In order to simplify the notation, we take, from now on in this section,

Ω = {x ∈ Rn
| x ≥ 0}.

Therefore, problem (3) becomes

Minimize f (x) subject to h(x) = 0, x ≥ 0. (8)

In the local algorithm introduced in [2] the restoration phase of iteration k establishes that an approximately feasible
point yk should be defined satisfying improved infeasibility and controlled distance to the current point xk. Analogously, in
the optimization phase the new iterate should be chosen decreasing a linear-constraint KKT residual with bounded distance
to yk. No sufficient conditions are given in [2] on the satisfiability of both requirements. In contrast, in Algorithm 2.1, we
rigorously define the computational procedures used in both phases and, later, we prove that, under suitable sufficient
conditions, welldefinedness and local quadratic convergence take place.

Algorithm 2.1.
Let ρ ≫ 1. Assume that x0 ∈ Ω . Initialize k← 0.

Step 1. Restoration phase
Try to solve the problem

Minimize ∥s∥2 subject to h′(xk)s = −h(xk) and xk + s ∈ Ω. (9)

If the feasible region of (9) is empty, solve the problem

Minimize
1
ρ
∥s∥2 + ∥h′(xk)s+ h(xk)∥2 subject to xk + s ∈ Ω. (10)

Let sk be the solution found and define

yk = xk + sk. (11)

Step 2. Initial multipliers
If k = 0 compute (λ0, µ) ∈ Rm

× Rn
+
as the minimum norm solution of the linear least-squares problem

Minimize

∇h(yk) −I

0 Yk

 
λ
µ


+


∇f (yk)

0

2

(12)

and define µ0
= max{µ, 0}. (The vectors µk have no influence in the calculations but are defined in the algorithm for being

used in proofs.)

4 E.G. Birgin et al. / Journal of Computational and Applied Mathematics 282 (2015) 1–16

Step 3. Optimization phase
Step 3.1. Computeσk ≥ 0 such that for all non null d ∈ Rn in the null-space of h′(yk)wehave that dT [∇2L(xk, λk)+σkI]d > 0.
Step 3.2. Solve the Quadratic Programming problem given by

Minimize
1
2
dT [∇2L(yk, λk)+ σkI]d+∇f (yk)Td subject to h′(yk)d = 0 and yk + d ∈ Ω. (13)

(Note that the objective function of the problem (13) above is strictly convex on the feasible set defined by h′(yk)d = 0 and
yk + d ∈ Ω .) Let dk be the solution of (13) and let (λk+1, µk+1) ∈ Rm

× Rn
+
be a vector of Lagrange multipliers for problem

(13).
Step 3.3. If yk = xk and dk = 0 stop declaring Convergence. Otherwise, compute

xk+1 = yk + dk. (14)

Step 3.4. Set k← k+ 1, and go to Step 1.

Remarks.
1. If the algorithm declares convergence (yk = xk and dk = 0) then we have that xk is a stationary point of minimizing
∥h(x)∥2 subject to x ∈ Ω . Moreover, we have that xk is also a stationary point of minimizing f (x) subject to h(x) = h(xk)
and x ∈ Ω . Thus, if xk is feasible, we have that xk is a stationary point of (8).

2. The condition required for σk at the Optimization Phase reveals our desire of solving a strictly convex quadratic
optimization problem in (13). This requirement is related with the affordability of the algorithm. Nonconvex global
quadratic optimization is a hard optimization problem that we wish not to address at all. Moreover, even being close
to the solution of the problem, the solution of a nonconvex quadratic programming subproblem could lead us to a point
far away from the solution. Consider, for example the problem

Minimize − (x− 1)2 + x3 subject to x ∈ [0, 10].

In this problem, xk could be arbitrarily close to the solution x∗ = 0 but the nonconvex quadratic approximation has a
global minimizer at d = 10. We could ask for the local minimizer of the quadratic subproblem which is closest to 0 but
finding the minimum norm local minimizer of a nonconvex quadratic problem is an even more difficult optimization
problem that we do not want to face. Note that, in the example presented above, the minimizer x∗ = 0 satisfies both
the Linear Independence Constraint Qualification (LICQ) and the Second-Order Sufficient condition, and even the Strong
Second-Order Sufficient Condition of Jittorntrum [17–19].

3. The positive definiteness of ∇2L(xk, λk)+ σkI on the null-space of h′(yk) guarantees that the subproblem (13) is convex
and has only one solution. However, such positive definiteness may be too strong for that purpose. We impose this
condition for the sake of implementability, sincewe candetect its fulfillment computing an inertia-revealing factorization
of the matrix

∇
2L(yk, λk)+ σkI h′(yk)T

h′(yk) 0


.

Having this factorization, wemay obtain the globalminimizer of 1
2d

T
[∇

2L(yk, λk)+σkI]d+∇f (yk)Td subject to h′(yk)d =
0, which is quite useful for the process of solving (13). A practical approach for obtaining σk satisfying the condition
required by Step 3 of the algorithm consists of applying Lanczos’ matrix-free algorithm for computing eigenvalues [20].

2.1. Local convergence

Assumption KKT. The point x∗ ∈ Ω satisfies the KKT conditions of (8) with multipliers λ∗ ∈ Rm and µ∗ ∈ Rn
+
.

Assumption LICQ. The gradients of the active constraints at x∗ are linearly independent.

Assumption S2. There exists c > 0 such that for all d ∈ Rn such that h′(x∗)d = 0 we have that dT∇2L(x∗, λ∗)d ≥ c∥d∥2.

Assumption S2 implies that the objective function of the problem

Minimize
1
2
dT∇2L(x∗, λ∗)d+∇f (x∗)Td subject to h′(x∗)d = 0 and x∗ + d ∈ Ω (15)

is strictly convex on the feasible set defined by h′(x∗)d = 0 and x∗ + d ∈ Ω .
Given a nonsmooth system of equations F(z) = 0, where F : Rp

→ Rp is Lipschitz-continuous, the set of points where
F is continuously differentiable will be denoted DF . Then for any z ∈ Rp, we define, as in [21], the B(ouligand)-differential

∂BF(z) ≡ {lim∇F(zk) | zk → z, zk ∈ DF }.

If all members in ∂BF(z) are nonsingular, then we say that F is BD-regular at z.

E.G. Birgin et al. / Journal of Computational and Applied Mathematics 282 (2015) 1–16 5

Consider the KKT system associated with (8) in the form

∇f (x)+ h(x)Tλ− µ = 0, h(x) = 0, min{xi, µi} = 0 for i = 1, . . . , n. (16)

This system has the form F(z) = 0 with z = (x, λ, µ) and F is semismooth in the sense of [22,23]. Moreover, the solution
(x∗, λ∗, µ∗) also solves 2ℵ smooth nonlinear systems, where ℵ is the number of indices j for which x∗j = µ∗j = 0. The first
n+m equations of those nonlinear systems are given by

∇f (x)+ h(x)Tλ− µ = 0 and h(x) = 0. (17)

For each j such that x∗j = 0 and µ∗j > 0, the (m+ n+ j)th equation of all those nonlinear systems is

xj = 0. (18)

Conversely, for each j such that x∗j > 0 and µ∗j = 0, the (m+ n+ j)th equation of all those nonlinear systems is

µj = 0. (19)

If x∗j = µ∗j = 0 two branches of nonlinear systems are generated, for one of them, the (m+ n+ j)th equation is xj = 0 and
for the other branch the (m + n + j)th equation is µj = 0. The set of 2ℵ smooth nonlinear systems so far described will be
denoted

Fν(x, λ, µ) = 0, ν = 1, . . . ,ℵ.

We state the following well known result for the sake of completeness.

Lemma 2.1. Assume that the LICQ condition holds. Then, there exist i1, . . . , im such that x∗i1 , . . . , x
∗

im > 0 and the columns
i1, . . . , im of h′(x∗) are linearly independent.

Lemma 2.2. Assume that (x∗, λ∗, µ∗) satisfies Assumptions LICQ and S2. Then, the nonsmooth system (16) is BD-regular at
(x∗, λ∗, µ∗). Equivalently, all the Jacobians F ′ν(x

∗, λ∗, µ∗), ν = 1, . . . ,ℵ are nonsingular.

Proof. Consider first the case in which x∗j > 0 for all j = 1, . . . , n. Then, µ∗j = 0 for j = 1, . . . , n, F is differentiable at
(x∗, λ∗, µ∗), and the only element of ∂BF(x∗, λ∗, µ∗) is the matrix

A =

∇2L(x∗, λ∗) ∇h(x∗) 0
h′(x∗) 0 0

0 0 In×n

 . (20)

By Assumptions LICQ and S2, matrix (20) is nonsingular. Therefore, x∗ is BD-regular in this case.
In the general case, by Assumption LICQ, h′(x∗) contains m linearly independent columns that correspond to variables

x∗j > 0. Without loss of generality, assume that the last m columns of h′(x∗) are linearly independent and x∗j > 0 for
j = n−m+ 1, . . . , n.

Assume now that x∗1 = 0 and x∗j > 0, j = 2, . . . , n. Now we have two possibilities: µ∗1 > 0 and µ∗1 = 0. In the first case
∂BF(x∗, λ∗, µ∗) also contains a single element, given by

A1 =

∇
2L(x∗, λ∗) ∇h(x∗) e1 0
h′(x∗) 0 0 0
(e1)T 0 0 0
0 0 0 In−1×n−1

 .

By Assumptions LICQ and S2 the matrix A1 is also nonsingular. In the second case we have that ∂BF(x∗, λ∗, µ∗) = {A, A1}.
Therefore, (x∗, λ∗, µ∗) is BD-regular also in this case. We may continue this procedure inductively in order to generate, for
j = 1, . . . , n−m, all the possibilities for x∗j being null or positive, the first of which has two possibilitiesµ∗j > 0 andµ∗j = 0.
In all the steps, employing Assumptions LICQ and S2, we verify that all the generated matrices are nonsingular. �

Assumption S2, together with the KKT assumption, provides a second-order sufficient condition for x∗ being a local
minimizer. There are much weaker sufficient second-order conditions, so the reasons why we use S2 should be clarified. In
UnconstrainedOptimization, the classical second-order sufficient condition (positive definiteness of theHessian) guarantees
(with the annihilation of the gradient), not only that the point under consideration is a strict localminimizer but also that the
quadraticmodel based on this condition has a sole globalminimizer at x∗. Analogously, in equality constrained optimization,
if the Hessian of the Lagrangian is positive definite restricted to the null-space of the Jacobian of the constraints at x∗, and the
KKT condition holds, we have, not only that the point is a strict local minimizer, but also that the quadratic model defined by
the Hessian of the Lagrangian has a sole globalminimizer at the solution. Sufficient conditions for general (with inequalities)
constrained optimization obviously guarantee that the critical point is a local minimizer but they do not guarantee that the
quadratic model has a globalminimizer or that a global minimizer (provided that it exists) is close to the solution. Therefore,

6 E.G. Birgin et al. / Journal of Computational and Applied Mathematics 282 (2015) 1–16

when the classical second-order sufficient conditions take place, the minimizer of the quadratic model may be far away
from the true solution. Since we generally wish to mimic the quadratic model at the solution when we approximate the
problem, this is a serious inconvenience. Therefore, we prefer here to derive the theoretical properties of the algorithm on a
neighborhood of a solution that satisfies a stronger second-order sufficient condition, which obviously guarantees that the
quadratic model has a global minimizer and that this global minimizer is close to the current point.

If we have a good initial primal estimate x0 we can obtain a good estimate for the multipliers λ0 solving the linear least
squares problem (12). If the columns of the (2n)× (m+ n) matrix

∇h(y0) −I
0 Y0


are linearly independent, problem (12) has only one solution. Therefore, one may obtain good estimates of the Lagrange
multipliers if y0 is close to a solution x∗ and the columns of

∇h(x∗) −I
0 X∗


(21)

are linearly independent. This corresponds to the case in which Assumption LICQ is fulfilled. If the LICQ assumption is
relaxed, the columns of (21) may be linearly dependent and, consequently, the problem (12) may be ill-conditioned and
the numerically obtained solution of this problem may be unreliable.

Lemma 2.3. Suppose that Assumption LICQ holds. Then, there exist β > 0 and ε > 0 such that, whenever ∥x − x∗∥ ≤ ε and
x ≥ 0, the problem

Minimize ∥s∥2 subject to h′(x)s+ h(x) = 0 and x+ s ≥ 0 (22)

is feasible, has a sole solution s̄, and satisfies the LICQ condition for problem (22). Moreover, we have that

∥s̄∥ ≤ β∥h(x)∥, (23)

∥h(x+ s̄)∥ ≤ Lh∥s̄∥2 ≤ Lhβ2
∥h(x)∥2, (24)

and

∥x+ s̄− x∗∥ ≤ (1+ Lβ)∥x− x∗∥. (25)

Proof. By Lemma 2.1, there exist i1, . . . , im such that x∗i1 , . . . , x
∗

im > 0 and the columns i1, . . . , im of h′(x∗) are linearly
independent. Without loss of generality, suppose that i1 = 1, . . . , im = m. Then, we can write

h′(x∗) = (B(x∗) | N(x∗)),

where B(x∗) ∈ Rm×m is nonsingular and N(x∗) ∈ Rm×(n−m).
Define c = min{x∗1, . . . , x

∗
m}/3. By the continuity and nonsingularity of B(x∗), since h(x∗) = 0, there exists ε1 > 0 such

that, whenever ∥x− x∗∥ ≤ ε1 one has
(i) xj ≥ 2c for all j = 1, . . . ,m,
(ii) B(x) is nonsingular,
(iii) ∥B(x)−1∥ ≤ 2∥B(x∗)−1∥,
(iv) |[B(x)−1h(x)]j| ≤ c for all j = 1, . . . ,m.
Define, for all x ∈ Ω such that ∥x− x∗∥ ≤ ε1,

y = x−

B(x)−1h(x)

0


.

Clearly, y is well defined because B(x) is nonsingular. By construction we have that h′(x)(y− x)+ h(x) = 0. Moreover, since
xj ≥ 2c and |[B(x)−1h(x)]j| ≤ c for all j = 1, . . . ,m, we have that yj ≥ c > 0 for all j = 1, . . . ,m. Thus, since yj = xj for all
j = m+ 1, . . . , n, we have that y ≥ 0. Therefore, y− x is a feasible point of (22).

Since the feasible set of (22) is nonempty and the objective function is strictly convex,wehave that (22) has a sole solution
s̄ for every x ≥ 0 such that ∥x− x∗∥ ≤ ε1. By the definition of (22) it follows that

∥s̄∥ ≤ ∥y− x∥ = ∥B(x)−1h(x)∥ ≤ 2∥B(x∗)−1∥ ∥h(x)∥. (26)

Therefore, (23) holds with β = 2∥B(x∗)−1∥. Now, taking ε ∈ (0, ε1] in such a way that xj + s̄j > 0 for all j = 1, . . . ,m, the
LICQ condition of (22) at x+ s̄ follows from the nonsingularity of B(x).

Finally, by the Lipschitz condition,

h(x+ s̄) = h(x)+ h′(x)s̄+ r(s̄),

where ∥r(s̄)∥ ≤ Lh∥s̄∥2. Since h′(x)s̄ + h(x) = 0 this completes the proof of (24), while (25) follows trivially from (6) and
(23). �

E.G. Birgin et al. / Journal of Computational and Applied Mathematics 282 (2015) 1–16 7

Lemma 2.4. Suppose that Assumptions LICQ and S2 hold. Suppose that the sequence {(yk, λk)} ⊂ Ω×Rm converges to (x∗, λ∗).
Consider the problem

Minimize
1
2
(z − yk)THk(z − yk)+∇f (yk)T (z − yk) subject to h′(yk)(z − yk) = vk, z ≥ 0, (27)

with Hk = ∇
2L(yk, λk) and ∥vk

∥ = O(∥yk − x∗∥). Then, for k large enough we have that:

(i) Problem (27) has a sole solution zk associated with sole Lagrange multipliersλ k
∈ Rm andµ k

∈ Rn
+
,

(ii) limk→∞(zk,λ k,µ k) = (x∗, λ∗, µ∗).

Proof. Define, for all z ∈ Rn,

Qk(z) =
1
2
(z − yk)THk(z − yk)+∇f (yk)T (z − yk)

and

H∗ = ∇2L(x∗, λ∗).

By Assumptions LICQ and S2 and the convergence of yk andλk, problem (27) is strictly convex for k large enough, the solution
zk and the multipliers are sole, and {zk} is bounded. By the definition of zk we have that

Qk(zk) ≤ Qk(yk), h′(yk)(zk − yk) = vk, and zk ≥ 0. (28)

Let z∗ be a limit point of {zk}. Taking limits in (28) we obtain that

1
2
(z∗ − x∗)TH∗(z∗ − x∗)+∇f (x∗)T (z∗ − x∗) ≤ 0, h′(x∗)(z∗ − x∗) = 0, and z∗ ≥ 0.

But, by the KKT assumption and the positive definiteness of H∗, x∗ is the only global minimizer of 1
2 (z − x∗)TH∗(z − x∗) +

∇f (x∗)T (z − x∗) subject to h′(x∗)(z − x∗) = 0 and z ≥ 0. Therefore, z∗ = x∗. So, every limit point of the bounded sequence
{zk} is equal to x∗, which implies that {zk} converges to x∗.

Therefore, for k large enough, x∗i > 0 implies that zki > 0 and, consequently, µ k
i = 0. So, for k large enough, zki = 0

implies that x∗i = 0. Roughly speaking, the set of active constraints of problem (27) at zk is contained in the set of active
constraints of problem (8) at x∗.

Define I∗ = {i ∈ {1, . . . , n} | x∗i = 0} and consider the system

∇Qk(zk)+∇h(yk)λ−

i∈I∗

µiei = 0. (29)

By LICQ, for k large enough, the system (29) has a unique solution given byλ k andµ k
i , i ∈ I∗.

Taking limits and using the linear independence of the gradients of active constraints in a neighborhood of the solution,
since zk → x∗, we get thatλ k

→ λ∗ andµ k
→ µ∗. In particular,µ k

i > 0 if µ∗i > 0 and k is large enough. �

Lemma 2.5. Suppose that Assumptions LICQ and S2 hold. Let ε > 0. Then, there exists δ > 0 such that ∥(xk−x∗, λk
−λ∗)∥ ≤ δ

implies that xk+1 is well defined by Algorithm 2.1 and ∥(xk+1 − x∗, λk+1
− λ∗, µk+1

− µ∗)∥ ≤ ε.

Proof. By Lemma 2.4 (with vk
= 0) there exists ε1 > 0 such that ∥(yk − y∗, λk

− λ∗)∥ ≤ ε1 implies that xk+1 is well
defined by Algorithm 2.1 and ∥(xk+1 − x∗, λk+1

− λ∗, µk+1
− µ∗)∥ ≤ ε. By (23) and (25), taking ε2 ≤ ε1/[2(1 + Lβ)] and

∥xk − x∗∥ ≤ ε2, we have that ∥yk − y∗∥ ≤ ε1/2. Therefore, taking δ ≤ ε2 we obtain the desired result. �

Lemma 2.6. Suppose that Assumptions LICQ and S2 hold. Then, there exists δ > 0 such that, whenever ∥(xk−x∗, λk
−λ∗)∥ ≤ δ

we have that

xki = 0 ⇒ x∗i = 0, (30)

[∇f (xk)+∇h(xk)λk
]i = 0 ⇒ µ∗i ≡ [∇f (x

∗)+∇h(x∗)λ∗]i = 0, (31)

xk+1i = 0 ⇒ x∗i = 0, (32)

µk+1
i = 0 ⇒ µ∗i ≡ [∇f (x

∗)+∇h(x∗)λ∗]i = 0, (33)

µ∗i > 0 and x∗i = 0 ⇒ µk+1
i > 0 and xk+1i = 0, (34)

µ∗i = 0 and x∗i > 0 ⇒ µk+1
i = 0 and xk+1i > 0. (35)

Proof. (30) and (31) follow, for δ small enough, by the continuity of ∇f and ∇h. Moreover, (32), (33), (34), and (35) follow
from Lemma 2.5 and the complementarity of the solution of the subproblem (xk+1i µk+1

i = 0), taking δ sufficiently small. �

8 E.G. Birgin et al. / Journal of Computational and Applied Mathematics 282 (2015) 1–16

Let us briefly recall the convergence theory for Brown–Brent methods given in [24] in a suitable form for our local
convergence purposes. Assume that w∗ ∈ Rq satisfies ℵ nonlinear systems Fν(w) = 0, where all the functions Fν ,
ν = 1, . . . ,ℵ are sufficiently smooth. In addition, we will assume that each system is of the form

Fν,1(w) = 0, Fν,2(w) = 0,

where Fν,1 and Fν,2 are blocks of equations. In addition, all the Jacobians F ′ν(w
∗) are nonsingular with a common bound for

the norms of the Jacobian inverses and Lipschitz constants. The Generalized Brown–Brent (GBB) iteration consists of, given
wk
∈ Rn, choose ν ∈ {1, . . . ,ℵ}, takewk,1 such that F ′ν,1(w

k,1)(wk,1
−wk)+Fν,1(w

k,1) = 0 and ∥wk,1
−wk
∥ ≤ β∥Fν,1(w

k)∥,
and wk+1 such that F ′ν,1(w

k,1)(wk+1
− wk,1) = 0 and F ′ν,2(w

k,1)(wk+1
− wk,1) + Fν,2(w

k,1) = 0. The theory in [24] has an
option for avoiding derivatives, includes several blocks (more than 2), employs a family of factorizations to find the sub-
iterations, and is restricted to ℵ = 1. However, to adapt the arguments for proving local quadratic convergence to the case
of arbitraryℵ ismere routine. Themethod so far defined is quadratically convergent tow∗ if one takes ∥w0

−w∗∥ sufficiently
small. Here we will apply this classical result to Algorithm 2.1.

Lemma 2.7. Consider Algorithm 2.1 skipping Step 2. Suppose that Assumptions LICQ and S2 hold. Then, there exists ε > 0 such
that, if max{∥x0 − x∗∥, ∥λ0

− λ∗∥} ≤ ε, the sequence {(xk, λk)} is well defined and converges quadratically to (x∗, λ∗).

Proof. We denotew = (x, λ) and q = m+n. We will define a family of nonlinear systems Fν(w) = 0 with Fν = (Fν,1, Fν,2),
where

Fν : Rq
→ Rq, Fν,1 : Rq

→ Rm, and Fν,2 : Rq
→ Rn.

Assume, without loss of generality, that nx, nu, and nb with n = nx + nu + nb are such thatx∗i = 0 and µ∗i > 0 for all i = 1, . . . , nx,
x∗i > 0 and µ∗i = 0 for all i = nx + 1, . . . , nx + nu,
x∗i = 0 and µ∗i = 0 for all i = nx + nu + 1, . . . , nx + nu + nb.

Define ℵ = 2nb ,

[Fν,1(w)]i = [h(x)]i for all i = 1, . . . ,m and all ν ∈ {0, 1}nb ,

and

[Fν,2(w)]i =


xi for all i = 1, . . . , nx and all ν ∈ {0, 1}nb ,
[∇f (x)+∇h(x)λ]i for all i = nx + 1, nx + nu and all ν ∈ {0, 1}nb ,
xi for all i = nx + nu + 1, . . . , nx + nu + nb such that νi−nx−nu = 0,
[∇f (x)+∇h(x)λ]i for all i = nx + nu + 1, . . . , nx + nu + nb such that νi−nx−nu = 1.

In this way, ℵ systems are defined and, by Assumption KKT, (x∗, λ∗) is a solution for all of them. Moreover, as in Lemma 2.2,
we may prove that the Jacobian F ′ν(x

∗, λ∗) is nonsingular for all ν ∈ {0, 1}nb .
The solution zk = yk + dk associated with (13) satisfies zki = 0 or µk+1

i = 0. By Lemma 2.5, if ∥(xk, λk) − (x∗, λ∗)∥ is
small enough we have that zki = 0 only if x∗i = 0 and µk+1

i = 0 only if µ∗i = 0. This implies that, if ∥(yk, λk) − (x∗, λ∗)∥
is small enough, the process that computes (xk+1, λk+1) given by Algorithm 2.1 is a GBB iteration corresponding to one
of the systems Fν(w) = 0. Taking ε > 0 small enough and using an inductive argument, this implies, firstly, that
∥(xk+1, λk+1)− (x∗, λ∗)∥ ≤ (1/2)∥(xk, λk)− (x∗, λ∗)∥ and, secondly, that the convergence is quadratic. �

Theorem 2.1. Suppose that Assumptions LICQ and S2 hold. Then, there exists ε > 0 such that, if ∥x0 − x∗∥ ≤ ε, the sequence
{(xk, λk)} defined by Algorithm 2.1 is well defined and converges quadratically to (x∗, λ∗).

Proof. By (12), taking x0 close enough to x∗, we have that ∥λ0
− λ∗∥ is as small as desired. Then, the proof follows from

Lemma 2.7. �

3. A semilocal algorithm

In this section we introduce two modifications of the local algorithm. The restoration phase is modified with the aim
of guaranteeing that yk is at least as feasible as xk. The optimization phase, on the other hand, is modified by means
of a backtracking procedure that ensures Lagrangian tangent decrease. These modifications are not enough to guarantee
theoretical global convergence but seem to improve robustness of the IR method.

Algorithm 3.1. In this algorithm, we proceed as in Algorithm 2.1 except that, instead of (11), we define yk = xk + tyk s
k

where tyk ≤ 1 is obtained by backtracking in order to guarantee that ∥h(yk)∥ ≤ ∥h(xk)∥, and, instead of (14), we define
xk+1 = yk + txkd

k where txk ≤ 1 is obtained by backtracking in order to guarantee that L(xk+1, λk) ≤ L(yk, λk).

E.G. Birgin et al. / Journal of Computational and Applied Mathematics 282 (2015) 1–16 9

Since sk is a descent direction for ∥h(·)∥2 at xk and dk is a descent direction for L(·, λk) at yk, we have that Algorithm 3.1
is well defined. Moreover, if the Assumptions LICQ, KKT, and S2 hold, then, for (xk, λk) close to (x∗, λ∗), we have that there
exists t̄ > 0 such that txk ≥ t̄ .

Theorem 3.1. Assume that the sequence (xk, λk) is generated by Algorithm 3.1 and converges to (x∗, λ∗). Suppose that
Assumptions LICQ,KKT, and S2 hold. Then, for k large enoughwe have that ∥h(xk+sk)∥ ≤ ∥h(xk)∥ and L(yk+dk, λk) ≤ L(yk, λk).

Proof. By Theorem 2.1 and Assumptions LICQ and S2, we have that σk = 0 for k large enough. By Lemma 2.3 we have that
∥h(xk + sk)∥ ≤ Lhβ2

∥h(xk)∥2. Therefore, ∥h(xk + sk)∥ ≤ ∥h(xk)∥ for k large enough.
If dk = 0 there is nothing to prove. So, let us consider the case that dk ≠ 0. By (23) we have that ∥yk − xk∥ tends to zero.

By the hypothesis, ∥xk+1 − xk∥ also tends to zero and, since xk+1 = yk + txkd
k and txk > t̄ > 0, we deduce that

lim
k→∞
∥dk∥ = 0. (36)

Let wk be the unconstrained minimizer of the quadratic

w→
1
2
(w − yk)T∇2L(yk, λk)(w − yk)+∇L(yk, λk)T (w − yk) (37)

along the linew = yk+ t dk, t ∈ R. By the definition of yk+dk, it is the minimizer of (37) along the same line but restricted
to w ≥ 0. So we have that

yk + dk = yk + ξk(w
k
− yk), (38)

for some ξk ∈ [0, 1]. Let us denote

uk
=

wk
− yk

∥wk − yk∥
,

ϕk(t) = L(yk + tuk, λk)− L(yk, λk),

and

Qk(t) =
1
2
(tuk)T∇2L(yk, λk)(tuk)+∇L(yk, λk)T (tuk).

Then,

Qk(t) = ϕ′k(0)t + ϕ′′k (0)t
2/2.

By continuity, (36), and Assumptions LICQ and S2, we have that there is c > 0 such that ϕ′′k (0) ≥ c > 0 for k large
enough. By the definition of wk we have that ∥wk

− yk∥ is the minimizer of Qk(t). Therefore,

∥wk
− yk∥ = −ϕ′k(0)/ϕ

′′

k (0).

By Taylor’s formula (7), the continuity assumptions, and the convergence of the sequence, there exists LL > 0 such that

ϕk(ξk∥w
k
− yk∥) ≤ Qk(ξk∥w

k
− yk∥)+ LL(ξk∥wk

− yk∥)3. (39)

We wish to prove that the right-hand side of (39) is nonpositive if k is large enough. We have that

Qk(ξk∥w
k
− yk∥) = ϕ′k(0)ξk∥w

k
− yk∥ + ϕ′′k (0)(ξk∥w

k
− yk∥)2/2

= −ϕ′k(0)
2ξk/ϕ

′′

k (0)+ ϕ′′k (0)(ξkϕ
′

k(0)/ϕ
′′

k (0))
2/2

= −
ϕ′k(0)

2

ϕ′′k (0)
(ξk − ξ 2

k /2)

= −∥wk
− yk∥2ϕ′′k (0)(ξk − ξ 2

k /2).

Therefore, the right-hand side of (39) is

−∥wk
− yk∥2ϕ′′k (0)(ξk − ξ 2

k /2)+ LL(ξk∥wk
− yk∥)3.

This quantity is nonpositive if, and only if,

− ϕ′′k (0)(1− ξk/2)+ LLξ 2
k ∥w

k
− yk∥ ≤ 0. (40)

For k large enough, by (38) and the fact that ξ ∈ [0, 1], and ϕ′′k (0) ≥ c > 0, we have that

− ϕ′′k (0)(1− ξk/2)+ LLξ 2
k ∥w

k
− yk∥ = −ϕ′′k (0)(1− ξk/2)+ LLξk∥dk∥ ≤ −c(1− 1/2)+ LL∥dk∥. (41)

So, by (36) and (41), we conclude that (40) holds. This completes the proof. �

10 E.G. Birgin et al. / Journal of Computational and Applied Mathematics 282 (2015) 1–16

4. Global algorithm

The next algorithm is essentially the ‘‘Flexible Inexact Restoration Algorithm with Sharp Lagrangian’’ introduced in [15],
with the particular choices of Algorithm 3.1 for the restoration procedure and for the computation of the optimization
direction. The only difference between the algorithm proposed in [15] and the algorithm below is that in the line search of
the latter one we ask for a sufficient decrease of the Lagrangian instead of the simple decrease required in [15]. Note that
in [15] the algorithm was introduced with the specific purpose of minimizing an objective function with multiobjective
constraints.

Given a penalty parameter θ ∈ [0, 1], we consider, for all x ∈ Ω and λ ∈ Rm, the merit function [11] given by
Φ(x, λ, θ) = θL(x, λ)+ (1− θ)∥h(x)∥. (42)

Algorithm 4.1.
Let x0 ∈ Ω be an arbitrary initial point, cbig ≥ 0, and α ∈ (0, 1

2). We initialize θ−1 ∈ (0, 1) and k← 0.
Step 1. Restoration step
Step 1.1. Compute sk and yk as in Algorithm 3.1. (Note that yk = xk if h(xk) = 0.)
Step 1.2. If ∥h(xk)∥ = ∥h(yk)∥ = 0, take 0 < r ′k < rk < 1, else, define

0 < r ′k < rk ∈

∥h(yk)∥
∥h(xk)∥

, 1


. (43)

Step 2. Estimation of Lagrange multipliers
Step 2.1. If k = 0 compute λ0 as in Algorithm 3.1 and define λ−1 = λ0.
Step 2.2. If ∥λk

∥ > cbig, redefine λk
← 0 (also redefine λ−1 ← 0 if k = 0).

Step 3. Penalty parameter computation
Compute θk as the supremum of the values of θ ∈ [0, θk−1] such that

Φ(yk, λk, θ) ≤ Φ(xk, λk−1, θ)+
1− r ′k

2


∥h(yk)∥ − ∥h(xk)∥


. (44)

Step 4. Quadratic subproblem
Compute dk as in Algorithm 3.1 and let λk+1 be the vector of Lagrange multipliers associated with the subproblem (13).

Step 5. Line search and iteration update
Step 5.1. Compute tk ∈ {1, 1/2, 1/4, . . .} as large as possible, such that

L(yk + tkdk, λk) ≤ L(yk, λk)+ αtk∇L(yk, λk)Tdk (45)

and

Φ(yk + tkdk, λk, θk) ≤ Φ(xk, λk−1, θk)+
1− rk

2


∥h(yk)∥ − ∥h(xk)∥


. (46)

Step 5.2. Set

xk+1 = yk + tkdk, (47)

update k← k+ 1 and go to Step 1.

Remark. The Restoration step (Step 1) of Algorithm 4.1 is deemed successfully computed in the iteration k if h(xk) = 0 or
h(yk) < h(xk).

Theorem 4.1. For all xk ∈ Ω , if the point yk at Step 1 of Algorithm 4.1 is successfully computed, then the iterate xk+1 is well
defined.
Proof. By thewell definiteness of the algorithm introduced in [15], we just have to prove that condition (45) can be satisfied
in finite number of attempts. However, since dk is a descent direction for L(·, λk) at yk, the result follows from the classical
theory of the Armijo line search rule. �

Assumption P1. There exists σmax > 0 such that

dT∇2L(x, λ)d ≤ σmax∥d∥2, (48)

for all d ∈ Rn, x ∈ Ω , and ∥λ∥ ≤ cbig.

Assumption A1. For all k ∈ N, Step 1 of the Algorithm is successful and there exist r ∈ [0, 1) and ζ > 0 such that

rk ≤ r (49)

and

∥yk − xk∥ ≤ ζ∥h(xk)∥. (50)

E.G. Birgin et al. / Journal of Computational and Applied Mathematics 282 (2015) 1–16 11

Assumption A2. For all k ∈ N, σk is chosen in such way that there exist σmin > 0 and σmax > 0 such that

σmin∥dk∥2 ≤ (dk)T [∇2L(yk, λk)+ σkI]dk ≤ σmax∥dk∥2. (51)

Note that there is no loss of generality in considering the same σmax in Assumptions P1 and A2.

Theorem 4.2. Suppose that Assumptions P1, A1, and A2 hold. Then
1. For all k ∈ N, xk is well defined.
2. There exists θ̄ > 0 such that θk ≥ θ̄ for all k ∈ N.
3. limk→∞ ∥h(xk)∥ = limk→∞ ∥h(yk)∥ = 0 and any cluster point of {xk} or {yk} is feasible.
4. There exists t̄ > 0 such that tk ≥ t̄ for all k ∈ N.
5. limk→∞ ∥dk∥ = 0.
6. limk→∞ ∥yk − xk∥ = 0.
7. The sequences {xk} and {yk} admit the same cluster points.
8. Limit points of {xk} satisfy the L-AGP [25] optimality condition.
9. If a limit point x∗ of {xk} satisfies the Constant Positive Generators (CPG) constraint qualification [26] then the KKT conditions

hold at x∗.
10. If a limit point x∗ of {xk} satisfies the Mangasarian–Fromovitz constraint qualification and ∥λk

∥ ≤ cbig for k large enough
then the sequence {λk

} admits a limit point λ∗ which is a Lagrange multiplier associated with ∇h(x∗).
Proof. By the general hypothesis of the original problem (3), the algorithmic choices of the optimization direction dk, the
Lagrange multiplier estimates λk, and Assumptions A1 and A2, it is straightforward that Assumptions 3.1, 3.2, 3.3 and 3.5
of [15] hold. So, items 1–3 follow from Theorem 3.1 of [15].

By Assumption A2 we have that, for all k ∈ N,

∇L(yk, λk)Tdk ≤ −
σmin

2
∥dk∥2. (52)

If t ≤ (1− α)σmin/σmax, by Taylor’s formula, and Assumptions A2 and P1, we have that

L(yk + tdk, λk) ≤ L(yk, λk)+ t∇L(yk, λk)Tdk + σmaxt2∥dk∥2/2
≤ L(yk, λk)+ t


∇L(yk, λk)Tdk + (1− α)σmin∥dk∥2/2


≤ L(yk, λk)+ t


∇L(yk, λk)Tdk − (1− α)∇L(yk, λk)Tdk


≤ L(yk, λk)+ tα∇L(yk, λk)Tdk.

Thus we have that condition (45) is satisfied with tk bounded way from zero. By Lemma 3.3 of [15], we have that condition
(46) can also be satisfied with tk bounded way from zero, therefore we conclude the proof of item 4.

Let us define now

γk = −α
∇L(yk, λk)Tdk

∥dk∥2
,

if dk ≠ 0. By (52) we have that

γk ≥ ασmin/2.

So, by (45), we have that

L(yk + tkdk, λk) ≤ L(yk, λk)+ αtk∇L(yk, λk)Tdk

≤ L(yk, λk)− tkγk∥dk∥2

≤ L(yk, λk)− tkασmin∥dk∥2/2.

Therefore we have that Assumption 3.4 of [15] also holds. So items 5–9 follow directly from Theorem 3.1 of [15]. Finally, if
∥λk
∥ ≤ cbig for k large enough, we also have that Assumption 3.6 of [15] holds. Therefore item 10 also follows from Theorem

3.1 of [15], and so the proof is complete. �

5. Numerical experiments

Many general purpose constrained optimization methods have been defined in the last 60 years. Few of them have been
seriously implemented and only a small group can be considered to be practical for solving real-life problems. Here we
adopted the point of view that if a Nonlinear Programming algorithm deserves to be considered ‘‘promising’’ for solving
optimization problems, it should be competitive with well-established implemented algorithms when applied to problems
with only equality constraints. This means that the new algorithm should either be superior to the competitors on average,
considering some adequate collection of problems, or it should outperform the other algorithms regarding some specific
measure of performance or some specific difficulty on the problems. For this reason we initially tested the algorithms
described in this paper in the case of equality constrained problems.

12 E.G. Birgin et al. / Journal of Computational and Applied Mathematics 282 (2015) 1–16

5.1. Implementation details and hybrid alternative

Wewill describe themain features of the implementation of Algorithms 2.1, 3.1, and 4.1 for the case inwhich, in problem
(3), we have Ω ≡ Rn. Algorithms were written in Fortran 90. At Step 1 of Algorithm 2.1, we compute sk by solving the linear
system

I ∇h(xk)
∇h(xk)T −ξ I

 
s
w


=


0

−h(xk)


, (53)

where w is an auxiliary variable to be discarded and ξ ∈ {0,
√

εmach, 3
√

εmach, 9
√

εmach, . . .} is the smallest value such that
the coefficients’ matrix in (53) is numerically non-singular. Note that, if ξ ≠ 0, 1/ξ ‘‘plays the role’’ of parameter ρ ≫ 1 of
Algorithm 2.1. At Step 2 of Algorithm 2.1, the initial estimation λ0 of the Lagrange multipliers is computed by solving the
linear system

I ∇h(y0)T

∇h(y0) −ξ I

 
λ
w


=


0

−∇f (y0)


, (54)

where w is an auxiliary variable to be discarded and ξ ∈ {0,
√

εmach, 3
√

εmach, 9
√

εmach, . . .} is the smallest value such that
the coefficients’ matrix in (54) is numerically non-singular. This means that λ0 is the solution of the problem

Minimize
1
2
∥∇h(y0)λ+∇f (y0)∥22 + ξ

1
2
∥λ∥22.

At Step 3 of Algorithm 2.1, we compute, simultaneously, σk and (dk, λk+1) by solving the linear system
∇

2L(yk, λk)+ σ I ∇h(yk)
∇h(yk)T −ξ I

 
d
λ


=


−∇f (yk)

0


. (55)

In the process of solving (55), the matrix of coefficients is decomposed using an inertia-revealing factorization. We start
trying σ = 0 and ξ = 0, unless m > n in which case we start trying with ξ =

√
εmach. Let M(σ , ξ) be the decomposed

matrix whose inertia is known. If its number of negative eigenvalues is smaller thanm thenwe set ξ ← max{
√

εmach, 3ξ}. If
its number of positive eigenvalues is smaller than n then we set σ ← max{

√
εmach, 3σ }. If σ or ξ was updated then matrix

M(σ , ξ) is decomposed and its inertia checked. It is not hard to see that this process is finite (see [27, Theorem 16.6, p. 476]).
At the end, we set σk = σ and (dk, λk+1) as the solution of system (55) with the final computed values of σ and ξ . In all
cases we considered εmach = 10−16 and subroutine MA57 from HSL [28] was used to solve the linear systems. In the two
backtracking processes of Algorithm 3.1, we start trying the unitary step and we halve it until the desired descent property
is satisfied. In Algorithm 4.1, we arbitrarily set cbig = 1020, α = 10−4, and θ−1 = 1− εmach. The selection rule for r ′k and rk at
Step 1.2 of Algorithm 4.1 was the subject of some numerical experimentation described below. At Step 3 of Algorithm 4.1,
it is easy to see that the desired value for θk is given by θk = θk−1 if L(yk, λk)− ∥h(yk)∥ ≤ L(xk, λk−1)− ∥h(xk)∥, and

θk = min

θk−1,

1+ r ′k
2

∥h(xk)∥ − ∥h(yk)∥
[L(yk, λk)− ∥h(yk)∥] − [L(xk, λk−1)− ∥h(xk)∥]


,

otherwise.
In addition to Algorithms 2.1, 3.1, and 4.1, a supplementary hybrid algorithm (named Algorithm 5.1 from now on) will

also be considered in the numerical experiments. Let {Nk
loc} be a sequence of nonnegative integer numbers. In the hybrid

algorithm, at each iteration k, we proceed as in Algorithm 4.1 (global) except that, previous to the execution of Step 1, and
starting from (xk, λk), we execute at most Nk

loc iterations of Algorithm 3.1 (semilocal). Let (xk,ℓ, λk,ℓ) for ℓ = 0, . . . ,Nk
loc be

the iterates of Algorithm 3.1. Define

γk,ℓ = max{∥PΩ [xk,ℓ −∇L(xk,ℓ, λk,ℓ)] − xk,ℓ∥∞, ∥h(xk,ℓ)∥∞}

and let ℓ̄ be such that γk,ℓ̄ = min{γk,1, . . . , γk,Nk
loc
}. If γk,ℓ̄ < γk,0 thenwe redefine (xk, λk)← (xk,ℓ̄, λk,ℓ̄). Note that Algorithm

5.1 coincides with Algorithm 4.1 if Nk
loc = 0 for all k and coincides with Algorithm 3.1 if N1

loc = ∞. In particular, in these
numerical experiments, we will consider one of the most trivial instances of the hybrid Algorithm 5.1 that consists of taking
N1

loc = 100 and Nk
loc = 0 for all k > 1. This choice coincides with applying first Algorithm 3.1 with a maximum number

of iterations kmax = N1
loc = 100 and then, if a solution was not found (the stopping criterion associated with success is

described below), applying Algorithm 4.1 with a potentially improved initial guess.

5.2. Stopping criterion and comparison

We assume that the original problem is given by

Minimize f̂ (x) subject to ĥ(x) = 0 (56)

E.G. Birgin et al. / Journal of Computational and Applied Mathematics 282 (2015) 1–16 13

and that, given the initial point x0, in problem (3) we have f (x) ≡ sf f̂ (x) and h(x) ≡ Shĥ(x), where sf = 1/max{1,
∥∇f (x0)∥∞}, [sh]j = 1/max{1, ∥∇hj(x0)∥∞} for j = 1, . . . ,m, and Sh = diag(sh). This means that we are solving a scaled
version of problem (56). On the one hand, the optimality tolerance to declare that a solution of problem (56) was found is
based on the scaled problem and is given by ∥f (x)+∇h(x)λ∥∞ ≤ εopt. On the other hand, the feasibility tolerance is based
on the original problem and is given by ∥ĥ(x)∥∞ ≤ εfeas. This means that, in Algorithms 2.1, 3.1, 4.1, and 5.1 the stopping
criterion is given by

∥f (x)+∇h(x)λ∥∞ ≤ εopt

∥ĥ(x)∥∞ ≤ εfeas.
(57)

This criterion is tested for the pair (yk, λk) after the restoration phase and also for the pair (xk+1, λk+1) after the optimization
phase. In the numerical experiments, we considered εfeas = εopt = 10−8. For comparison purposes, it is worth noting that
this stopping criterion is identical to the one adopted by Algencan [29–31], while it is also very similar to the one adopted by
Ipopt [32]. In Ipopt, the same criterion is used for feasibility, while a relaxed criterion is used for optimality since, in the right-
hand-side of (57), εopt appears multiplied by max{smax, ∥λ∥1/m}/smax with smax = 100. A very detailed analysis, that is out
of the scope of the present work, might be done in order to determine the influence of this difference between the stopping
criteria of the evaluated methods in their numerical performance. Moreover, Algencan and Ipopt have additional stopping
criteria that, in different ways, detect, for example, ‘‘lack of progress’’. These criteria may help to improve the efficiency of
a method by detecting that a solution (to a bad scaled problem) has been found when the conventional stopping criteria
associated with success fail. The algorithms implemented in this work have no additional stopping criteria.

We used performance profiles [33] to compare the methods evaluated in the present study. Consider q methods
M1, . . . ,Mq and p problems P1, . . . , Pp and let tij be a metric of the effort that method Mi made in problem Pj in order
to arrive to a point x∗ with functional value f (x∗) = fij and feasibility ∥h(x∗)∥∞ = hij. It is assumed that the metric tij is such
that the smaller its value, the higher the performance of method Mi on problem Pj. Moreover, let tmin

j denote the smallest
among all the performance measurements required by each method that ‘‘found a solution’’ for problem Pj. In performance
profiles, each methodMi is related to a curve

Γi(τ) =
#{j ∈ {1, . . . , p} | Mi found a solution for Pj with tij ≤ τ tmin

j }

p
,

where #S denotes the cardinality of set S. Let

f min
j = min

1≤i≤q
{fij | hij ≤ εfeas}

and consider

εij =
fij − f min

j

max{1, |f min
j |}

. (58)

For a given tolerance εf > 0, we say that method Mi found a solution to problem Pj if

hij ≤ εfeas and εij ≤ εf . (59)

In addition, we also say that methodMi found a solution to problem Pj if

hij ≤ εfeas and fij ≤ −f∞,

where f∞ is a very large positive number. In this case, we assume the objective function is unbounded from belowwithin the
feasible region and any value of fij ≤ −f∞ is considered a solution. In the numerical comparison, we considered the CPU time
that a method Mi took on a problem Pj to find a point x∗ that satisfies the method’s stopping criterion as the performance
measurement tij. We arbitrarily set εf = 10−4 and f∞ = 1010 (and εfeas = 10−8).

5.3. Preliminary numerical experiments

In a first set of experiments, we aimed (a) to evaluate different choices for r ′k and rk in Algorithm 4.1 and (b) to perform
a comparison between Algorithms 2.1, 3.1, 4.1, and 5.1. We considered all the 162 problems with only equality constraints
from the CUTEst collection [34] (version 1.10000) with their default dimensions. In these preliminary experiments we
considered a CPU time limit of 1 min. All tests were conducted on a 2.4 GHz Intel Core 2 Quad Q6600 with 8 GB of RAM
memory and running GNU/Linux operating system (Ubuntu/Linaro 4.6.3-1ubuntu5, kernel 3.2.0-58). Codes were compiled
by the GFortran Fortran compiler of GCC (version 4.6.3) with the -O3 optimization directive enabled.

Given constants c1, c2 ∈ (0, 1), at Step 1.2 of Algorithm 4.1, if ∥h(xk)∥ = ∥h(yk)∥, we take rk = c1 and r ′k = c2rk.
Otherwise, we take

rk = max

c1,
∥h(yk)∥
∥h(xk)∥



14 E.G. Birgin et al. / Journal of Computational and Applied Mathematics 282 (2015) 1–16

Fig. 1. Comparison between the different choices for rk and r ′k in Algorithm 4.1.

Table 1
Comparison between the different choices for rk and r ′k in Algorithm 4.1.

c1 = 0.1 c1 = 0.5 c1 = 0.9
c2 = 0.1 c2 = 0.5 c2 = 0.9 c2 = 0.1 c2 = 0.5 c2 = 0.9 c2 = 0.1 c2 = 0.5 c2 = 0.9

Efficiency 0.45 0.48 0.43 0.48 0.46 0.45 0.47 0.51 0.48
Robustness 0.69 0.70 0.69 0.70 0.71 0.71 0.72 0.73 0.73
convergence 101 102 102 101 102 103 104 105 104

Table 2
Comparison between Algorithms 2.1, 3.1, 4.1, and 5.1.

Algorithm 2.1 (local) Algorithm 3.1 (semilocal) Algorithm 4.1 (global) Algorithm 5.1 (hybrid)

Efficiency 0.46 0.42 0.52 0.48
Robustness 0.63 0.70 0.70 0.72
convergence 103 108 105 113

and r ′k = c2rk. To determine the values of c1 and c2, we run numerical experiments with all nine combinations of
c1 ∈ {0.1, 0.5, 0.9} and c2 ∈ {0.1, 0.5, 0.9}. Fig. 1 and Table 1 show the results, the best combination being c1 = 0.9 and
c2 = 0.5. In the table, ‘‘efficiency’’ ofmethodMi is the value ofΓi(1), ‘‘robustness’’ is the value ofΓi(∞), and ‘‘# convergence’’
is the number of times method Mi satisfied its convergence criterion (i.e. criterion (57) for the case of Algorithms 2.1, 3.1,
4.1, and 5.1) within the imposed CPU time limit.

Having determined the way of choosing r ′k and rk in Algorithm 4.1, we are ready to compare the local, semilocal, global,
and hybrid versions of the IR method given by Algorithms 2.1, 3.1, 4.1, and 5.1, respectively. Fig. 2 and Table 2 show the
results. On the one hand, the figures appear to show that the global algorithmwould solve more problems than the others if
a very short limit on the CPU timewere imposed (since it has the largest efficiencymeasure). However, this advantage is only
in appearance (recall thatwe defined the efficiencymeasure of amethodMi as the value ofΓi(1)). Noting thatΓ (1.1) ≈ 0.55
for the local method, Γ (1.1) ≈ 0.64 for the semilocal method, and Γ (1.1) ≈ 0.65 for the global and the hybrid method,
we may conclude that the last three methods are equivalently efficient and that the relatively large difference among the
values of Γ (1) for the different methods might be related to the measurement error of the elapsed CPU times. On the other
hand, on the robustness side, with no CPU time limit (or with a very large CPU time limit), the hybrid algorithm is the one
that solves more problems. Considering robustness as a criterion more relevant than efficiency, we opted by considering
Algorithm 5.1 as the one to be compared against other well-known optimization software.

5.4. Comparison against well-established software

In this section we show the results of comparing the hybrid version of IR (Algorithm 5.1) against Algencan and Ipopt.
Again, we considered all the 162 problems with only equality constraints from the CUTEst collection [34] (version 1.10000)
with their default dimensions and a CPU time limit of one minute. Fig. 3 and Table 3 present the results and a few remarks
are in order.

Due to the difficulty of measuring small CPU times when running third party codes, each pair problem/method was run
only once. For small and simple problems, the measured CPU time may be null. In those cases, the elapsed CPU time was

E.G. Birgin et al. / Journal of Computational and Applied Mathematics 282 (2015) 1–16 15

Fig. 2. Comparison between Algorithms 2.1, 3.1, 4.1, and 5.1.

Fig. 3. Comparison between Algencan, Inexact Restoration (hybrid), and Ipopt.

Table 3
Comparison between Algencan, Inexact Restoration (hybrid), and Ipopt.

Algencan Inexact restoration (hybrid) Ipopt

Efficiency 0.41 0.46 0.57
Robustness 0.69 0.71 0.69
convergence 122 113 127

considered as being 0.01 s. It is worth noting that for Algencan, Ipopt, and the IR approach, the number of measured null
times was 51, 29, and 39, respectively. The number of times Algencan, Ipopt, and the IR approach exceeded the CPU time
limit of one minute was 32, 41, and 26, respectively. In 7 problems Ipopt was not applicable becausem > n. In 38 out of the
41 problems inwhich Ipopt exceeded the CPU time limit, the final iteratewas infeasible (considering the sup-norm tolerance
εfeas = 10−8 as mentioned above). In one case Ipopt was able to perform a single iteration preserving the feasibility of the
initial point and in the other 2 cases no iteration was done and the ‘‘final’’ iterate was in fact the initial (feasible) guess. In
those 3 cases (in which the CPU time limit was reached but the final reported iterate was feasible) the objective function
was compared according to (58), (59) to determine whether a solution was found.

Algencan, Ipopt, and the IR algorithm delivered a final feasible iterate in 122, 123, and 122 problems, respectively.
Algencan was the only one to find a feasible point in 9 problems and Ipopt was the only one to find a feasible point in 5
problems. In 4 problems the IRmethod was the only one to find a feasible point. The three methods found a feasible point in
95 problems. In 83 out of the these 95 problems, the three methods found a solution. In the remaining 12 problems, at least
one of the methods delivered a feasible final iterate with an objective function value that, according to (58), (59) was not

16 E.G. Birgin et al. / Journal of Computational and Applied Mathematics 282 (2015) 1–16

considered a solution. Those cases were considered as failures. In the case of failure of a method, due to an infeasible final
iterate or an objective function value that does not classify the final iterate as a solution, the performance measure (CPU
time in this case) is considered to be infinity. For this reason, the value of the performance profile curves does not reach the
value 1 at the right-hand-side of the graphic.

Summing up,while Ipopt appears to be themost efficientmethod, the Inexact Restorationmethod appears to be themost
robust one (see Table 3). However, differences are small and, at least for the considered set of problems and the evaluation
procedure adopted in the present numerical experiments, the performances of the three evaluatedmethods are very similar.
Thismeans that the hybrid version of the Inexact Restorationmethodperforms very similar to the other twowell-established
nonlinear programming software.

6. Conclusions

From the theoretical point of view the algorithms presented in this paper have several desirable characteristics. The local
algorithm is locally and quadratically convergent under suitable assumptions, the semilocal algorithm improves the local
algorithm preserving fast local behavior, and the global and the hybrid algorithms converge starting from arbitrary initial
points (although this global convergence does not seem to be associated with the local properties).

The hybrid algorithm seems to be the best of the four algorithms implemented from the point of view of efficiency and
robustness. Moreover, only one very simple alternative of hybridization among a wide range of choices was considered. In
the numerical experiments, it was possible to observe that there were some problems for which only the pure local version
of the IR method was able to find a KKT point. Since the pure local version does not take part of the hybrid IR method, it
seems to be even more room for improvement of the hybrid IR algorithm. These experiments suggest that it is worthwhile
to implement the Inexact Restoration idea in the way given in this paper for general problems.

References

[1] R. Andreani, S.L.C. Castro, J.L. Chela, A. Friedlander, S.A. Santos, An inexact-restoration method for nonlinear bilevel programming problems, Comput.
Optim. Appl. 43 (2009) 307–328.

[2] E.G. Birgin, J.M.Martínez, Local convergence of an inexact-restorationmethod and numerical experiments, J. Optim. Theory Appl. 127 (2005) 229–247.
[3] L.F. Bueno, A. Friedlander, J.M. Martínez, F.N.C. Sobral, Inexact restoration method for derivative-free optimization with smooth constraints, SIAM J.

Optim. 23 (2013) 1189–1213.
[4] M.A. Gomes-Ruggiero, J.M. Martínez, S.A. Santos, Spectral projected gradient method with inexact restoration for minimization with nonconvex

constraints, SIAM J. Sci. Comput. 31 (2009) 1628–1652.
[5] C.C. Gonzaga, E.W. Karas, M. Vanti, A globally convergent filter method for nonlinear programming, SIAM J. Optim. 14 (2004) 646–669.
[6] J.B. Francisco, J.M. Martínez, L. Martínez, F. Pisnitchenko, Inexact restoration method for minimization problems arising in electronic structure

calculations, Comput. Optim. Appl. 50 (2011) 555–590.
[7] E.W. Karas, C.C. Gonzaga, A.A. Ribeiro, Local convergence of filter methods for equality constrained non-linear programming, Optimization 59 (2010)

1153–1171.
[8] E.W. Karas, E.A. Pilotta, A.A. Ribeiro, Numerical comparison of merit function with filter criterion in inexact restoration algorithms using hard-spheres

problems, Comput. Optim. Appl. 44 (2009) 427–441.
[9] C.Y. Kaya, Inexact restoration for Runge–Kutta discretization of optimal control problems, SIAM J. Numer. Anal. 48 (2010) 1492–1517.

[10] C.Y. Kaya, J.M. Martínez, Euler discretization and inexact restoration for optimal control, J. Optim. Theory Appl. 134 (2007) 191–206.
[11] J.M. Martínez, Inexact-restoration method with Lagrangian tangent decrease and new merit function for nonlinear programming, J. Optim. Theory

Appl. 111 (2001) 39–58.
[12] J.M. Martínez, E.A. Pilotta, Inexact-restoration algorithms for constrained optimization, J. Optim. Theory Appl. 104 (2000) 135–163.
[13] N. Banihashemi, C.Y. Kaya, Inexact restoration for Euler discretization of box-constrained optimal control problems, J. Optim. Theory Appl. 156 (2013)

726–760.
[14] A. Fischer, A. Friedlander, A new line search inexact restoration approach for nonlinear programming, Comput. Optim. Appl. 46 (2010) 333–346.
[15] L.F. Bueno, G. Haeser, J.M. Martínez, A flexible inexact restoration method for constrained optimization, J. Optim. Theory Appl. (2014)

http://dx.doi.org/10.1007/s10957-014-0572-0. in press.
[16] A.F. Izmailov, A.S. Kurennoy,M.V. Solodov, Some composite-step constrained optimizationmethods interpreted via the perturbed sequential quadratic

programming framework, Optim. Methods Softw. (2014) http://dx.doi.org/10.1080/10556788.2014.924515. in press.
[17] A.V. Fiacco, Introduction to Sensitivity and Stability Analysis in Nonlinear Programming, Academic Press, 1983.
[18] K. Jittorntrum, Sequential algorithms in nonlinear programming, Bull. Aust. Math. Soc. 19 (1978) 151–153.
[19] K. Jittorntrum, Solution point differentiability without strict complementarity in nonlinear programming, Math. Program. 21 (1984) 127–138.
[20] C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Natl. Bur. Stand. 45

(1950) 255–282.
[21] L. Qi, Convergence analysis of some algorithms for solving nonsmooth equations, Math. Oper. Res. 18 (1993) 227–244.
[22] R. Mifflin, Semismooth and semiconvex functions in constrained optimization, SIAM J. Control Optim. 15 (1977) 959–972.
[23] L. Qi, J. Sun, A nonsmooth version of Newton’s method, Math. Program. 58 (1993) 353–367.
[24] J.M. Martínez, Generalization of the methods of Brent and Brown for solving nonlinear simultaneous equations, SIAM J. Numer. Anal. 16 (1979)

434–448.
[25] R. Andreani, G. Haeser, J.M. Martínez, On sequential optimality conditions for smooth constrained optimization, Optimization 60 (2011) 627–641.
[26] R. Andreani, G. Haeser, M.L. Schuverdt, P.J.S. Silva, Two new weak constraint qualifications and applications, SIAM J. Optim. 22 (2012) 1109–1135.
[27] J. Nocedal, S.J. Wright, Numerical Optimization, second ed., Springer, New York, 2006.
[28] HSL, 2013, A collection of Fortran codes for large scale scientific computation, http://www.hsl.rl.ac.uk.
[29] R. Andreani, E.G. Birgin, J.M. Martínez, M.L. Schuverdt, On augmented Lagrangian methods with general lower-level constraints, SIAM J. Optim. 18

(2007) 1286–1309.
[30] E.G. Birgin, E.V. Castelani, A.L.M. Martinez, J.M. Martínez, Outer trust-region method for constrained optimization, J. Optim. Theory Appl. 150 (2011)

142–155.
[31] R. Andreani, E.G. Birgin, J.M. Martínez, M.L. Schuverdt, Augmented Lagrangian methods under the constant positive linear dependence constraint

qualification, Math. Program. 111 (2008) 5–32.
[32] A.Wächter, L.T. Biegler, On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming,Math. Program.

106 (2006) 25–57.
[33] E.D. Dolan, J.J. Moré, Benchmarking optimization software with performance profiles, Math. Program. 91 (2002) 201–213.
[34] N.I.M. Gould, D. Orban, Ph.L. Toint, CUTEst and SifDec, a constrained and unconstrained testing environment with safe threads, Technical Report

RAL-TR-2013-005, Rutherford Appleton Laboratory, Chilton, Oxfordshire, England, 2013.

http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref1
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref2
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref3
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref4
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref5
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref6
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref7
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref8
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref9
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref10
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref11
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref12
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref13
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref14
http://dx.doi.org/doi:10.1007/s10957-014-0572-0
http://dx.doi.org/doi:10.1080/10556788.2014.924515
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref17
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref18
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref19
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref20
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref21
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref22
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref23
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref24
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref25
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref26
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref27
http://www.hsl.rl.ac.uk
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref29
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref30
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref31
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref32
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref33
http://refhub.elsevier.com/S0377-0427(14)00587-1/sbref34

