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Abstract

different patterns.

compared the songs with 12 already available.

species.

Background: Brazilian populations of Lutzomyia longipalpis may constitute a complex of cryptic species, and this
report investigates the distribution and number of potential sibling species. One of the main differences observed
among Brazilian populations is the type of acoustic signal produced by males during copulation. These copulation
song differences seem to be evolving faster than neutral molecular markers and have been suggested to contribute
to insemination failure observed in crosses between these sibling species. In previous studies, two main types of
copulation songs were found, burst-type and pulse-type. The latter type can, in turn, be further subdivided into five

Methods: We recorded male song from 13 new populations of the L. longipalpis complex from Brazil and

Results: Out of these 25 populations, 16 produce burst-type and 9 produce pulse-type songs. We performed a
principal component analysis in these two main groups separately and an additional discriminant analysis in the
pulse-type group. The pulse-type populations showed a clear separation between the five known patterns with a
high correspondence of individuals to their correct group, confirming the differentiation between them. The
distinctiveness of the burst-type subgroups was much lower than that observed among the pulse-type groups and
no clear population structure was observed. This suggests that the burst-type populations represent a single

Conclusion: Overall, our results are consistent with the existence in Brazil of at least six species of the L. longipalpis
complex, one with a wide distribution comprising all the populations with burst-type songs, and five more closely
related allopatric siblings with different pulse-type song patterns and more restricted distribution ranges.

Keywords: Sexual behaviour, Sand fly, Copulation song, Copulatory courtship, Insect vector, Species complex

Background

Understanding speciation is one of the central questions
in evolutionary biology. Many authors consider sexual
selection to be one of the main causes of speciation, cre-
ating reproductive barriers that can prevent gene flow
[1, 2]. Acoustic communication has been implicated in
sexual selection and can act as a recognition signal in
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many animals, from insects to primates, with sibling species
showing distinct songs [3—8]. Hence song variation could
represent an important phenotype for understanding pat-
terns of speciation in species complexes.

Lutzomyia longipalpis (Diptera: Psychodidae) males
produce a song to females during copulation that may
contribute to reproductive success [9-11]. This sand fly
is the main vector of American visceral leishmaniasis
and it constitutes a species complex [12—14]. However,
the distribution and number of sibling species is still
unclear, particularly in Brazil [11, 15, 16]. Among the ev-
idences for the existence of cryptic species in Brazil is
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Fig. 1 Examples of the song traces of all 6 patterns observed in Brazilian populations of L. longipalpis (see text for further details). The first five
correspond to the different pulse-type patterns or subtypes and the last one to the burst-type
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(See figure on previous page.)

Fig. 2 Examples of song traces from pulse-type populations of L. longipalpis from the localities of Lassance, Pirendpolis and Palmas 1S. The figure
shows ~1 s of song in each case. Two traces from the populations Lassance, Pirendpolis and Palmas 1S are shown to illustrate the variation in the

P4 pattern

the reproductive isolation observed in laboratory crosses
between some populations [12, 17, 18] and the fact that
they have differences in phenotypic characters, such as
male copulation songs and sex pheromones, and moder-
ate to high levels of genetic divergence in some molecu-
lar markers such as microsatellites and several protein
coding genes, including some associated with sexual be-
haviour in Drosophila [11, 13, 16, 18-30].

The reproductive isolation observed between Brazilian
populations of the L. longipalpis complex is caused by
insemination failure during copulation in crosses be-
tween only certain populations [13, 17, 18]. This sug-
gests that after copulation has started, there is signalling
that is important for insemination to occur. Because
males sing during copulation and the insemination fail-
ure is observed in crosses between populations produ-
cing different types of copulation songs, this acoustic
signal might have a role in species recognition, acting as
a reproductive barrier reducing gene flow and potentially
preventing gamete wastage [10, 11].

The different cryptic species of the L. longipalpis com-
plex can be separated into two main groups according to
the types of copulation song which males produce:
pulse-type and burst-type [10, 11]. The Burst-type song
is composed of trains with highly polycyclic pulses
(“bursts”) modulated in frequency and amplitude. The
pulse-type group on the other hand, has previously been
shown to include five different song patterns designated
as P1, P2, P3, P4 and P5 [10, 11].

Here we test the variability of song amongst L. longipalpis
using a more comprehensive geographic sampling analysing
13 new Brazilian populations and comparing them with 12
populations analysed by Araki et al. [11]. We examine the

number of phenotypic song types found within each of the
pulse- and burst-type song patterns, specifically asking if
the pulse-type group represents multiple species and the
burst-type only one. Overall, our results are consistent with
the existence of at least six species of the L. longipalpis
complex in Brazil, one with a wide distribution comprising
all the populations with burst-type songs despite some level
of geographic structuring, and five more closely related
allopatric siblings with different pulse-type song patterns
and more restricted distribution ranges.

Methods

Sand flies were collected using CDC light traps and the
L. longipalpis individuals were identified according to
Young & Duncan [31]. Samples were obtained from the
following localities: Afonso Claudio (September 2009)
(20°04'S, 41°08'W) (Espirito Santo State); Ipanema
(March 2010) (19°48'S, 41°42" W), Nova Porteirinha
(December 2007) (15°48°'S, 43°18°'W) and Lassance
(January 2009) (17°53'S, 44°34"W) (Minas Gerais State);
Pirenépolis (December 2007) (15°51'S, 48°57 W) (Goids
State); Aracaju (October 2010) (10°54°S, 37°4"W) (Sergipe
State); Itamaraca (September 2007) (7°45'S, 34°51"W) and
Passira (December 2007) (7°56'S, 35°35"W) (Pernambuco
State); Barcarena (December 2007) (1°31'S, 48°37'W),
Cametd (February 2010) (2°15°S, 49°30'W) and Camara
(June 2010) (2°25°S, 54°43"W) (Pard State); and Palmas
(July 2006 and April 2010) (10°10°S, 48°19"W) (Tocantins
State).

Lutzomyia longipalpis males show a polymorphism in
the number of abdominal spots, which are sex phero-
mone glands. Males can have either one pair in the
fourth tergite (called 1S) or two pairs in the third and

Table 1 Mean (+SE) values of all parameter analysed in the pulse-type populations and their respective pattern

N Type IPI (ms) NP TL (s) Freq (H2) CPP AmpAlt (%)

Jacobina 11 Pulse 1 51.80 (+1.60) 44.90 (+3.00) 2.30 (x0.20) 231.90 (+11.00) 2.60 (£0.20) 0.60 (+0.08)
Lapinha 15 Pulse 2 57.30 (+1.30) 0 (+2.80) 3.30 (x0.20) 284.10 (+6.90) 140 (£0.10) 0.64 (+0.07)
Sobral 15 11 Pulse 3 65.60 (+1.00) 32.30 (+1.00) 2.10 (£0.1) 306.50 (+5.80) 3.10 (+0.10) 0.93 (+0.05)
Teresina 7 Pulse 3 65.50 (+0.74) 32.81 (x2.75) 2.08 (+£0.18) 298,67 (£9.05) 3.11 (£0.15) 0.90 (+£0.13)
Jaiba 1S 4 Pulse 4 66.68 (+4.12) 33.00 (+6.81) 2.10 (+0.36) 29838 (+7.67) 281 (+0.33) 0.54 (+0.05)
Pirendpolis 9 Pulse 4 7447 (+1.26) 34.06 (+1.85) 246 (+£0.16) 288.80 (£10.74) 328 (£0.12) 0.54 (+0.05)
Palmas 15 4 Pulse 4 71.68 (+5.65) 29.28 (+3.69) 9 (+0.10) 295.87 (+8.89) 291 (£0.06) 0.52 (£0.02)
Lassance 7 Pulse 4 69.40 (+2.54) 3802 (+2.24) 258 (+0.20) 288.70 (+3.54) 3.05 (x0.09) 0.54 (+0.05)
Estrela 1S 5 Pulse 5 36.59 (+0.89) 101.30 (+4.23) 3.66 (+0.08) 174.05 (£043) 1.99 (£0.16) 0.67 (+£0.04)

N number of samples; IPI inter-pulse interval; NP number of pulses per train; TL train length; Freq carrier frequency; CPP: cycles per pulse; AmpAlt the proportion of
pulse that have amplitudes either higher or lower than both adjacent pulses. The values of IP/, NP TL Freq and CPP of the population of Jacobina, Lapinha, Sobral
1S, Teresina, Jaiba 1S and Estrela 1S have been published previously by Souza, et al. [10] and Araki, et al. [11]



Vigoder et al. Parasites & Vectors (2015) 8:290

Table 2 Loadings of the principal components analysis in the
pulse-type populations

Variable PC1 PC?2 PC3

Pl 785 406 291
NP -938 -007 224
TL -715 343 576
Freq 726 122 A48
CpPP 703 034 -037
AmpAlt 223 -865 425

fourth tergites (called 2S). The second pair in the third
tergite can also be smaller than the pair in the fourth and
this is sometimes called the intermediate form [13, 17].
Although the spot polymorphism usually has no taxo-
nomical value [13], in localities where sympatric species
producing either pulse-type or burst-type song are found,
males can also be differentiated by the number of spots
and in these cases individuals with an intermediate spot
phenotype are rare [10, 11, 20, 21, 24]. Of the new samples
analysed in the present work we observed 1S and 2S males
in sympatry only in the locality of Palmas, therefore this
sample was subdivided into Palmas 1S and Palmas 2S.

The recordings were made in accordance with Souza
et al. [10] using a male and a female in each trial. Insects
were placed in a small chamber inside an INSECTAVOX
[32], which contains the microphone. Trials were also
filmed using a Sony Hi8CCD-TRV65 video camera. Both
sound and video were recorded using a Panasonic DMR-
ES10 DVD recorder. All trials were performed at 25 °C +
1 °C and if no copulation occurred in 4—5 min the couple
was replaced. Most recordings were performed using ei-
ther wild caught sand flies or their F1 progeny.

After recording, songs were digitized using CED 1401
and analysed using Spike 2 software (version 4.08), both
from Cambridge Electronic Design, United Kingdom.
The parameters measured were: inter-pulse or inter-
burst interval (IPI/IBI), number of pulses or bursts per
train (NP/NB), train length (TL) and the carrier fre-
quency of the pulse train (Freq). In the pulse-type pop-
ulations (see Results) we also measured the cycles per
pulse (CPP) and the proportion of pulses with alter-
nated amplitudes (AmpAlt), which is the proportion of
pulses that have amplitudes either higher or lower than
both adjacent pulses. The alternated amplitude analysis
was also performed in the populations previously de-
scribed by Souza et al. [10] and Araki et al. [11]. Note
that in the previous analysis of AmpAlt carried out in
Araki et al. [11] for a couple of populations, this song
parameter was computed based on a simple visual in-
spection of the song traces and small differences in
pulse amplitude were therefore ignored. In the current
analysis this was carried out automatically based on
exact amplitude values.
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Statistical analysis was performed using SPSS version
19 software. All statistical analyses were done using the
new populations reported here combined with data from
the populations analysed by Souza et al. [10] and Araki
et al. [11].

Results
Males from all the new samples produced song during
copulation, i.e., after they grabbed the female with their
genital clamp. The copulation songs showed the same
characteristics described previously for L. longipalpis,
with primary and secondary songs [10, 11]. The analysis
here concentrates on the primary song as it shows more
variation among populations with a clear and consistent
pattern and is produced in every copulation, while the
secondary song is a long train of song with an uneven
distribution of polycyclic pulses not produced by every
male (see Araki et al. [11]). Also even when it is pro-
duced, the secondary song is similar in all populations.
Figure 1 shows examples of traces of the different song
types and patterns observed in L. longipalpis populations
based on the current and previously published data.
Audio samples of each song type are available in the on-
line supplementary material (Additional files 1, 2, 3, 4, 5
and 6). The songs are consistent in each population with
every male producing a similar pattern. Because burst-
type and pulse-type songs are clearly distinguishable
both by visual inspection (Fig. 1) and sound (Additional
files 1, 2, 3, 4, 5 and 6) and do not share the same
descriptive parameters (see Methods), the analyses were
performed for each of these groups separately. It should
be noted that in Palmas the 2 sympatric populations
have a different type of song.

Pulse-type populations

The P1 songs are composed of trains of similar pulses
with usually two or three cycles per pulse. P2 songs dif-
fer from P1 mainly by the presence of interspersed poly-
cyclic pulses between nearly monocyclic pulses. The P3
songs are characterized by an almost perfect alternation
of high and low amplitude pulses. P4 also presents a
modulation in pulse amplitude but this occurs through-
out the train with a more gradual amplitude oscillation
or with alternating sequences of 2 or more high and low
amplitude pulses. Finally, P5 is characterized by having a
very short inter-pulse interval (~35 ms while other Pulse
songs have > 50 ms) with some very polycyclic pulses in
the end of the train (Fig. 1).

Among the 13 new samples, males from the popula-
tions of Pirendpolis, Lassance and Palmas 1S produced
Pulse-type songs. These 3 populations produce the P4
pattern (Fig. 2, see also Fig. 1). Table 1 shows the mean
values of the different song parameters for each popula-
tion. Values for most song parameters, except AmpAlt,
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(See figure on previous page.)

Fig. 3 Scatter-plots of the first 3 factors obtained in the Principal Component Analysis of the pulse-type populations. (@) shows the plot of the first
2 canonical functions, (b) shows the plot of the first and third canonical functions

from the populations of Jacobina, Lapinha, Sobral 18,
Teresina, Jaiba 1S and Estrela 1S have been published
before by Souza et al. [10] and Araki et al. [11] but were
included here for comparison. All values of AmpAlt
were obtained in the present work.

A principal component analysis (PCA) was made using
the six parameters (See above). PCA is a multivariate
statistical test that transforms the variables creating new
factors focusing on where the main variance in the data
is and is performed independently of any assumptions
about groups present in the data. The first 3 factors
accounted for 83 % of the total variance (51 %, 18 % and
14 % respectively). With the exception of AmpAlt, all
parameters had a similar influence to the first factor
with NP and TL having an inversed influence (Table 2).
The 3 factors showed significant differences when com-
paring the populations grouped according to the pulse
pattern with an ANOVA test (p<0.001) and the 5
groups form clear clusters when the factors are plotted
(Fig. 3a and b). Although P1 & P2 overlap in plots of
PCA1 vs 2, they are distinct in PCA 2 vs. 3 (Fig. 3a and b).
In order to quantitatively assess the distinctness of the
clusters in song type, we also performed secondary ana-
lysis using the pulse type as a priori groups for a standard
discriminant analysis (DCA) using the default configur-
ation of SPSS. In the DCA the multiple variables are used
to find the best model that maximises variance in the data
between groups, and allocation tests for each individual
(omitting them from the original classification) allows
quantification of how accurately group membership can
be determined.

The first three discriminant canonical functions ex-
plained 94 % of the total variation (61 % and 20 % and
13 % respectively). NP, AmpAlt and CPP had the highest
load on each of the discriminant functions, which means
they are the parameters creating most of the differences
between the groups. All groups formed clear clusters
with an almost perfect separation as can be seen in the
scatter plots of the first three canonical functions
(Figs. 4a and 4b). Plotting the first 2 functions showed a
clear separation of P3 and P4 (Fig. 4a) and plotting the
first and third function P1 and P2 becomes distinguished
(Fig. 4b). Figure 4c also shows a plot of the second and
third canonical functions but P5 was not included since
it forms an obvious cluster in the other 2 figures and in
the present plot it has a scatter distribution. Figure 4c
shows a more clear separation of P1, P2, P3 and P4.

The five groups had a perfect 100 % correct assign-
ment of individuals to each original group, confirming

that the five song types are quantitatively completely
distinct.

Burst-type populations

Males from Afonso Cldudio, Aracaji, Palmas 2S, Ipa-
nema, Barcarena, Cametd, Camard, Itamaracd, Passira
and Nova Porteirinha produced burst-type songs (Fig. 5,
see also Fig. 1). No clear song pattern variation was ob-
served within this group. Table 3 shows the mean values
of the different song parameters for each population.
The values of the burst-type populations obtained by
Souza et al. [10] and Araki et al. [11] were not included
in the table because no new measurement of song pa-
rameters were carried out in those populations.

The principal component analysis showed that the first
two factors represented 83.6 % of the total variance
(47.5 % and 36.1 % respectively) and the values obtained
are plotted in Fig. 6. NB and TL had a strong influence
on the first factor and IBI and Freq a strong inverse in-
fluence (Table 4). The ANOVA performed with the prin-
cipal component factors showed no significant difference
for the first factor among all populations (p =0.14) but
significant differences in the second one (p=0.002).
However, a post-hoc analysis of the second factor using
Bonferroni correction showed that only Jaiba 2S had a
significant difference to other populations, Sobral 2S and
Marajé (p <0.05) (Additional file 7). The fact that the
vast majority of the pairwise comparison did not show
any difference suggests a lack of population structure in
this group.

Discussion

The occurrence of cryptic species is common among in-
sects and very often they can be separated by phenotypic
traits involved in mating [33]. In L. longipalpis sensu
lato, the male song produced during copulation clearly
suggests the existence of cryptic species within this
taxon. The different song patterns observed in Brazilian
populations suggests that song is evolving faster than
other phenotypic traits, probably because it is under sex-
ual selection [2, 3, 5, 34]. Characteristics under sexual
selection tend to evolve faster than other traits making
them good markers to differentiate closely related spe-
cies [35, 36]. Acoustic communication has often been
implicated in sexual selection [6] and this is likely that it
has this role in the L. longipalpis species complex since
the songs are produced during copulation and some
studies suggest the existence of a mechanism of recognition
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Table 3 Mean (+SE) values of all parameter analysed in the burst-type populations

Page 10 of 14

N IPI/1BI (ms) NP/NB TL (5) Freqg (Hz)
Nova Porteirinha 5 24351 (+5.61) 7 (£0.99) 262 (+0.23) 263.67 (+6.18)
Barcarena 11 25515 (+6.46) 8.64 (£1.12) 6 (£0.29) 278.85 (£3.79)
[tamaraca 6 264.20 (+7.75) 7 (+£1.73) 3.05 (£043) 286.36 (+9.17)
Passira 6 249.73 (+£14.20) 4 (+£0.74) 269 (+£0.29) 272.06 (+5.66)
Camara 7 24136 (£9.72) 4 (£1.23) 2.74 (+0.31) 268.17 (£5.14)
Palmas 25 3 283.15 (+28.78) 42 (£145) 0 (+0.33) 276.34 (+2.90)
Afonso Claudio 2 266.73 (+20.95) 14.25 (£2.75) 3.65 (£042) 255.00 (+5.43)
Aracaju 12 269.78 (£12.71) 7 (+0.80) 3.06 (+0.27) 289.06 (+6.01)
Cametd 6 256.93 (+23.02) 9.92 (+£1.23) 240 (+0.36) 27129 (£742)
Ipanema 8 243.71 (£12.79) 15.02 (+0.69) 357 (£0.28) 285.30 (+6.17)

N number of samples; IBI inter-burst interval; NB number of bursts per train; TL train length; Freq carrier frequency

during mating that is important for insemination success
[13, 18].

Our analysis of the song produced by males from a
number of Brazilian populations of L. longipalpis s.l.
shows the existence of two main groups within this spe-
cies complex, one producing burst-type songs and the
other producing pulse-type songs (Fig. 7). The differ-
ences between the two song types are so large that it is
difficult to quantitatively compare them [10, 11]. A third
type is called the “mix-type”, because it shares some

features of burst- and pulse-type songs, and seems to be
quite rare as it was only found in a single small sample
so far by Araki et al. [11]. It is important to note, how-
ever, that the mix-type songs is a completely different
pattern and no song observed outside of the Mesquita
populations can be classified as such so far [11].

Until now, 9 populations have been found to produce
five distinct patterns of pulse-type songs (Fig. 7). These
five patterns or subtypes not only have qualitative differ-
ences, but the discriminant analysis also demonstrates
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Fig. 6 Scatter-plots of the first 2 factors obtained in the Principal Component analysis of the burst-type populations
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Table 4 Loadings of the principal components analysis in the
burst-type populations

Variable PC1 PC?2
BI 222 -836
NP 925 336
TL 991 -042
Freq -106 794

quantitative variation that allows high discrimination
among them (Fig. 4). These five groups also show geo-
graphical separation and no overlap between their distri-
butions have yet been observed (Fig. 7).

Statistical analysis showed clear differentiation among
the five groups and the discriminant function analysis
found that 100 % of the individuals could be assigned to
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the correct group based on song pattern. P2 song type
was found so far in a single locality (Lapinha Cava) in
south-eastern Brazil (Fig. 7) and the P1 song is present
only in the north-eastern state of Bahia (Fig. 7). P5 was
also found in a single locality (Estrela de Alagoas) in the
Northeast region, in sympatry with a burst-type popula-
tion in (Fig. 7).

Consistent with the available molecular data [11, 25],
the song analysis also suggests that P3 and P4 are the
two closest related groups among the pulse-type groups,
since they both have pulse amplitude variation being dif-
ferentiated mainly by the type of this variation seen, ei-
ther an almost perfect alternation between high and low
amplitude pulses (P3) or a more continuous variation
throughout the train (P4) (Fig. 2) and also having more
similar values in most parameters (Table 1). Such
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Fig. 7 Map of Brazil showing the approximate geographical localization of all L. longipalpis populations that had their male copulations songs
analysed so far (see text for further details). The colours of the circles symbolize the song pattern found in each population. The lighter patch of
similar colour in the background marks the hypothetical distribution area of each cryptic species
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amplitude variation is extremely unusual in dipteran
song, but presumably could be detected by females as
song is always produced in copula. The currently known
distribution places P3 populations in the far northern
part of north-eastern Brazil while P4 is found in the
more central part of Brazil (Fig. 7).

Further investigation is necessary to confirm that all
five different pulse-type patterns represent distinct spe-
cies and if the songs are associated with reproductive
isolation among them, especially as they are allopatric
in nature. The divergence in song patterns observed
among the different pulse-type L. longipalpis popula-
tions is similar to the variation seen among some
closely related Drosophila species [37, 38], so it is quite
possible that they represent distinct species. In
addition, populations with different song types also
produce different pheromones [11, 23] and crossing
experiments have found reproductive isolation between
at least two of these populations: Jacobina (P1) and
Lapinha (P2) [18]. Moreover pulse-type populations
with different patterns tend to have a considerable level
of genetic divergence [11, 16, 17, 22].

Some small differences were also observed amongst
the burst-type populations, but not close to the same ex-
tent as the Pulse-type populations. This group has a
much wider geographical distribution in Brazil, ranging
from the Southeast region up to the North region, cross-
ing several different ecosystems (Fig. 7). Despite the
similar song pattern, the statistical analysis of the copu-
lation song of this group showed a difference between
Jaiba 2S and a pair of other population. This difference
could be an indication of the beginning of a separation
of the Jaiba 2S population from the other Burst-type
populations. However, the fact that the other 7 popula-
tions did not have significant differences suggests that
even if it were true, the separation would be very recent
and is qualitatively much less significant than that seen
among pulse populations.

It is important to note that crossing experiments using
different populations with burst-type songs showed they
have normal insemination rates [13]. Finally, all burst-
type populations that have had their sex pheromone
analysed produced the same compound (cembrene) [11].
They have an overall smaller mean Fst (a widely used
measure of genetic differentiation) [39, 40] of ~0.16 in
the per gene in comparison among them [11, 13, 23] in
contrast to the mean Fst observed among pulse-type
populations, ~0.26 [11]. All this strongly suggests that
the burst-type group constitute a single species.

In Palmas, as previously observed for the localities of
Sobral, Jaiba and Estrela [10, 11], males of two sympatric
species can be distinguished by the spot phenotype, 1S
or 2S. Palmas 1S males produce pulse-type songs (P4)
while Palmas 2S males produce burst-type songs. The
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occurrence of sympatric species in many localities is one
of the strongest pieces of evidence that L. longipalpis is a
species complex in Brazil. It also suggests the absence of
very large ecological differences between the sibling
species, reinforcing the idea that sexual selection is acting
as the primary force of speciation in the L. longipalpis
complex [11].

A striking aspect of the geographic distribution of the
L. longipalpis complex is the large distribution of the
burst-type species coupled with a low level of phenotypic
variation and the restricted distribution and high level of
variation among the pulse-type populations (Fig. 7).
What could cause these contrasting patterns of differen-
tiation between the two song-type groups? Multilocus
coalescent analysis estimates a recent separation be-
tween the burst- and pulse types around 0.5 mya [26], so
if the differences between pulse-types have evolved since
then, the evolution of these song types has been ex-
tremely rapid. The biogeographic history of the region is
poorly understood, but it is possible that after an initial
separation between burst- and pulse populations the
ecological and climatic changes during the Quaternary
could have caused vicariance of the pulse-type popula-
tions in refugia with more stable climatic zones [41],
whereas the burst-type was confined to a single refu-
gium with a more rapid expansion following climatic
amelioration. If the pulse-types had a more complex his-
tory of secondary contacts between developing forms
[42], there would have been more potential for character
displacement to influence song and pheromone diver-
gence. More biological reasons for greater divergence
could include greater dispersal and gene flow among the
burst-type or higher effective population sizes. If sexual
selection is stronger in the pulse-type due to mating sys-
tem variation then mating signals may diverge more
quickly, leading to greater levels of sexual isolation
among species. Little is known about mating rates or
variance in mating success in natural populations of
these species, but some of these intriguing hypotheses
could be investigated by analyses of broader patterns of
genomic divergence between the forms [43].

Conclusion

Our results show clear qualitative and quantitative vari-
ation among the male song patterns found in Brazilian
populations of the L. longipalpis complex. These results
confirm that the acoustic signals are a very good marker
to differentiate these potential cryptic species. Six song
patterns were observed, five among pulse-type popula-
tions and another one among burst-type populations.
The statistical analysis shows that they can be easily dif-
ferentiated suggesting that populations producing each
pattern belong to a different cryptic species of the L.
longipalpis complex. Further studies will be important to
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better understand the mechanism by which the song
may be contributing to reproductive isolation.
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