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Despite increasing research in type 2 diabetes mellitus (T2D), there are few studies showing the impact of the poor glycemic control
on biological processes occurring in T2D. In order to identify potential genes related to poorly/well-controlled patients with T2D,
our strategy of investigation included a primary screen by microarray (Human Genome U133) in a small group of individuals
followed by an independent validation in a greater group using RT-qPCR. Ninety patients were divided as follows: poorly
controlled T2D (G1), well-controlled T2D (G2), and normoglycemic individuals (G3). After using affy package in R,
differentially expressed genes (DEGs) were prospected as candidate genes potentially relevant for the glycemic control in T2D
patients. After validation by RT-qPCR, the obtained DEGs were as follows—G1+G2 versus G3: HLA-DQA1, SOS1, and BRCA2;
G2 versus G1: ENO2, VAMP2, CCND3, CEBPD, LGALS12, AGBL5, MAP2K5, and PPAP2B; G2 versus G3: HLA-DQB1, MCM4,
and SEC13; and G1 versus G3: PPIC. This demonstrated a systemic exacerbation of the gene expression related to immune
response in T2D patients. Moreover, genes related to lipid metabolisms and DNA replication/repair were influenced by the
glycemic control. In conclusion, this study pointed out candidate genes potentially associated with adequate glycemic control in
T2D patients, contributing to the knowledge of how the glycemic control could systemically influence gene expression.

1. Introduction

Diabetes mellitus (DM), characterized by hyperglycemia, is
associated with the progressive development of complica-
tions, like atherosclerosis, renal and neuronal damage, and
blindness [1]. Type 2 diabetes mellitus (T2D), the most com-
mon form of diabetes mellitus (DM) accounting for 80–90%
of the cases, is a chronic polygenic disorder identified by
defects in insulin action and/or deficiencies in pancreatic
insulin secretion [2, 3]. It is known that T2D occurs

concomitantly to other systemic diseases, such as dyslipid-
emia [4] and cardiovascular diseases [5]. Patients affected
by these diseases have demonstrated a hyperinflammatory
state [6–8] that put their health at major risk [9, 10]. It has
been shown that chronically elevated levels of inflammatory
markers in T2D patients with poor glycemic control can
increase the risk for myocardial infarction [11] and infectious
diseases, including chronic periodontitis [12].

Adequate glycemic control remains a challenge for clini-
cians; thus, more studies are needed to investigate the impact
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of poor glycemic control on diverse biological mechanistic
processes in patients with T2D. It is already known that
hyperglycemia can lead to vascular complications via several
mechanisms, and clinical trials have reported that intensive
glycemic control significantly reduces microvascular compli-
cations, for instance, retinopathy, nephropathy, and periph-
eral arterial disease [13–15].

A significant difference in the expression of genes
involved in insulin signaling and immune response, for
example, TNFα, interleukin- (IL-) 6, and IL-1β, was found
in PBMCs from T2DM and impaired glucose tolerance
patients [16–18]. The influence of hyperglycemia on gene
expression, somewhat, can explain the distinct expression
profiles displayed by diabetic patients compared to the con-
trol group, such as fatty acid metabolism and protection
against lipid-induced oxidative stress, adipocytokine, and
ceramide signaling pathways [16].

Despite previous reports, adequate glycemic control
remains a challenge for clinicians; thus, additional studies
are necessary to investigate the impact of poor glycemic con-
trol on patients with T2D. Therefore, we utilized a primary
microarray screening to prospect candidate genes potentially
relevant for the glycemic control in T2D patients, and to val-
idate this finding, we investigated their expression levels in
T2D patients with poor or good glycemic control and in nor-
moglycemic individuals.

2. Materials and Methods

2.1. Study Population and Physical and Biochemical
Evaluations. This study was approved by the Ethics in
Human Research Committee of School of Dentistry (Univer-
sidade Estadual Paulista (UNESP), Araraquara, Brazil; Proto-
col number 50/06) and was conducted according to the
ethical principles of the Declaration of Helsinki. During three
years (2009–2011), after we examined 1788 patients, we
selected 90 patients according to our criteria of inclusion/
exclusion as detailed in our previous studies [19–21]. From
the selected patients, blood samples were collected after a
12-hour overnight fast for the evaluation of fasting plasma
glucose (mg/dl), glycated hemoglobin (HbA1c), and insulin
levels (U/l), in which all the analyses were performed by the
same laboratory. Physical examinations including measure-
ment of waist and hip circumference (centimeters), height
(meters), weight (kilograms), and body mass index (BMI)
were evaluated in all selected patients.

Based upon diabetic and glycemic control statuses, mon-
itored by an endocrinologist, 90 patients were enrolled in this
study who were divided into three groups (G) of 30 patients
each as follows: poorly controlled T2D (G1, HbA1c≥ 8.5%),
well-controlled T2D (G2, HbA1c< 7.0%), and normoglyce-
mic individuals (G3, HbA1c< 6.5%) [19]. Patients from G1,
G2, and G3 were tightly matched for the presence of two
common comorbidities: dyslipidemia and chronic periodon-
titis, as previously demonstrated in Bastos et al. [20] and
Corbi et al. [21].

2.2. Selection of Candidate Genes. We used a list of differen-
tially expressed genes (DEGs) based on microarray analysis

(Human U133 Plus 2.0 Affymetrix Inc., Santa Clara, CA,
USA—unpublished data) to select candidate genes in poorly
and well-controlled T2D as well as normoglycemic patients.
Microarray data was generated from patients of G1 (n = 5),
G2 (n = 7), and G3 (n = 6), after considering greater homoge-
neity regarding biochemical parameters. DEGs were selected
as follows: G1+G2 versus G3, in order to compare T2D
patients (independent of glycemic control) with normoglyce-
mic individuals; G2 versus G1, to access the effect of good
glycemic control on the gene expression, in comparison with
poorly controlled T2D patients; G2 versus G3, to access the
effect of good glycemic control on the T2D patients in com-
parison with normoglycemic individuals; and G1 versus G3,
to access the effect of poor glycemic control on the T2D
patients in comparison with normoglycemic individuals.

2.3. Reverse Transcription-Quantitative Polymerase Chain
Reaction (RT-qPCR) Real-Time Analysis. For this study, each
group was composed of 30 patients (including patients cho-
sen for microarray analysis) totalizing 90 patients. Reverse
transcription reactions for the complementary DNA (cDNA)
were made utilizing the SuperScript III First Strand Synthesis
SuperMix (Invitrogen). Considering together the three stud-
ied groups, three genes were identified by microarray data as
demonstrating the best housekeeping expression patterns:
ACTG1 (Hs03044422_g1), RPL7A (Hs00605223_g1), and
GAPDH (Hs02758991_g1). The mean values of them were
used as endogenous controls of the qPCR reactions. All reac-
tions were performed in duplicate utilizing TaqMan® gene
expression assays (Applied Biosystems) in the 7500 Real-
Time PCR System (Applied Biosystems, Foster City, CA,
USA). PCR cycling parameters were 2 minutes at 50°C, 10
minutes at 95°C and 40 cycles of 15 seconds at 95°C, and 60
seconds at 60°C. To calculate gene expression, the Expression
Suite Software was used (Applied Biosystems, Foster City,
CA, USA), which employs the comparative Cτ (ΔCτ)
method for multiplate data analysis.

2.4. Statistical Analysis. General characteristics of each group
were described by mean and standard deviation (SD). The
distribution and normality of the demographic and clinical
variables were evaluated by the D’Agostino-Pearson test.
Accordingly, we used the chi-squared test (for gender), and
to compare other characteristics among the three groups,
we used the Kruskal-Wallis test (followed by Dunn’s post-
test), alternatively, when only two groups were compared.

For RT-qPCR analyses, values of 2−ΔCτ were compared
between each two groups by the Mann–Whitney test using
a significance level of p = 0 05. These analyses were carried
out in the GraphPad Prism software, version 5.0.

3. Results

3.1. Sample Population.Table 1 shows demographic, physical,
and biochemical data of the investigated patients. Gender,
age, ethnicity, and socioeconomic status were similar among
the three groups. Independent of the group, all individuals
were overweight, and the diabetic patients were obese and
presented higher values of BMI, abdominal circumference,
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and waist/hip proportions. This information can also be
found in our previous studies [19–21].

3.2. Candidate Genes and RT-qPCR. Candidate genes
selected to the RT-qPCR study are shown in Table 2. Thirty
individuals were investigated for each gene, and after obtain-
ing the Cts in the qPCR, we withdraw the outliers (mean of
five individuals who presented huge difference regarding
the group). We chose to use this approach in order to ensure
that the significance was due the group and not influenced by
a single individual.

In theG1+G2versusG3 comparison,which evaluated the
influence of T2D independent of glycemic control, we found
that theHLA-DQA1 (p < 0 0001) and SOS1 (p = 0 005) genes
were upregulated and the BRCA2 (p = 0 008) was downregu-
lated. The qPCR results are presented in Figure 1(a). The full
name of each gene can be found in Table 2.

Regarding G2 versus G1, which evaluated the influence
of the glycemic control in patients withT2D, the genesAGBL5
(p = 0 043), CCDN3 (p = 0 0003), CEBPD (p < 0 0001),
VAMP2 (p = 0 0001), ENO2 (p < 0 0001), and MAP2K5
(p = 0 027) were significantly upregulated in the G2 subjects
compared to the G1 subjects (Figure 1(b)). In addition, the
PPAP2B (p = 0 021) and LGALS12 (p = 0 0004) genes were
downregulated (Table 2).

Comparison between G2 versus G3, which evaluated
the influence of T2D with good glycemic control, showed
that the HLA-DQA1 (p = <0 0001) and HLA-DQB1
(p = <0 0001) genes were upregulated and the MCM4
and SEC13 genes were downregulated DEGs in G2 subjects

(p = 0 0006 and p = 0 008, resp., Figure 1(c)). And lastly, the
comparison of G1 versus G3, which evaluated the influence
of poor glycemic control of T2D patients, showed that the
PPIC gene was upregulated in the G1 (p = 0 001, Table 2,
Figure 1(d)).

4. Discussion

Despite the knowledge in the field, the molecular processes
regarding the adequate or poor glycemic control in patients
with T2D remain poorly understood. Additional studies
seeking to investigate DGEs in these conditions might shed
some light on the molecular processes underlying it. In the
present study, we investigated candidate genes potentially
relevant for the glycemic control in a large cohort of patients
with poorly or well-controlled T2D subjects and normogly-
cemic individuals. It is important to highlight that our cohort
of patients was strictly selected after a complete clinical eval-
uation. The quality and robustness of the eligibility criteria
certainly contributed to promote confident findings.

Candidate genes were chosen from a panel of DEGs
obtained from microarray data (unpublished data). In order
to identify DEGs in T2D, independent of the glycemic con-
trol, we compared G1+G2 versus G3. Using this approach,
we selected the HLA-DQA1 and HLA-DQB1 as candidate
genes. Our results showed that both genes were upregulated
in T2D patients (Figures 1(a) and 1(c)). Major histocompat-
ibility complex (MHC), class II, is a heterodimer of molecules
consisting of an alpha (DQA) and a beta chain (DQB), both
anchored in the membrane. It plays a central role in the

Table 1: Characteristics of the sample: demographic, physical, biochemical, and diabetic data (mean± SD).

Group 1
n = 30

Group 2
n = 30

Group 3
n = 30

Gender (F/M) 18/12 20/10 17/13

Age (mean± SD) 48.0 (±7.6) 50.3 (±6.7) 49.0 (±7.5)
Ethnicity (white/brown/black) 13/10/7 15/11/4 20/8/2

BMI (m/kg2) 30.5 (±5.2) 31.4 (±4.1) 28.4 (±3.8)
Abdominal circumference (cm)∗ 104.3 (±14.6) 109.3 (±10.8)a 98.1 (±9.9)
Waist/hip proportion 1.0 (±0.1) 1.0 (±0.1) 0.9 (±0.1)
Fasting glucose (mg/dl)∗ 226.6 (±74.2)a,b 137.5 (±41.4)a 90.0 (±6.4)
HbA1c (%)∗ 10.4 (±1.9)a,b 6.6 (±0.9)a 5.4 (±0.6)
Insulin (U/l)∗ 19.7 (±20.9)a 21.1 (±21.5)a 12.6 (±8.5)
Time since DM onset
(years) (mean± SD) 6.2 (±4.2) 5.2 (±6.6) —

Presence of diabetes

Total complicationsc 19c 12 —

Medication for DM control

Hypoglycemic 20 15 —

Insulin 1 1 —

Hypoglycemic/insulin 8 5 —

None 1 9 —

SD = standard deviation. ∗α = 0 017 (since Bonferroni’s correction = 0.05/3, i.e., three comparisons); asignificant p value in relation to group 3; bsignificant
p value in relation to group 2 (Kruskal-Wallis test, Dunn’s posttest); cp < 0 05 in relation to group 2, to access differences regarding complications of diabetes
(Mann–Whitney test, α = 5%); some data from G1, G2, and G3 were also presented in de Souza Bastos et al. [19], Bastos et al. [20], and Corbi et al. [21].
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immune system by presenting peptides derived from
extracellular proteins. Class II molecules are expressed in
antigen-presenting cells (APC: B lymphocytes, dendritic
cells, and macrophages) (http://v4.genecards.org/cgi-bin/
carddisp.pl?gene=HLA-DQB1&UserNotification=BetaRe
direct). HLA-DQA1-DQB1 genes are related to leukocyte
chemotaxis; G-protein signaling; IL-17-induced mucin
expression; Th1, Th2, Th9, Th17, and Th22 cell differentia-
tions; and immunological synapse formation. The current
results led us to suppose that the HLA-DQA1-DQB1 overex-
pression in T2D patients, mainly in well-controlled diabetics
(G2), could indicate that an adequate glycemic control might
reduce inflammatory response, supporting the link between
inflammation and glucose metabolic disturbance [22]. Inter-
estingly, in spite of the MHC class II molecules HLA-DQA1

and DQB1 being classically associated with type 1 DM, we
observed their high expression in the investigated patients
with T2D. A higher frequency of the high-risk HLA-
DQB1∗0201/0302 was found in patients with latent autoim-
mune diabetes in adults (LADA) [23]. Also, a study com-
prised of 695 families with patients affected by type 1 and
others by type 2 DM (mixed families) had HLA class II risk
haplotypes, such as DR3(17)-DQA1∗0501-DQB1∗02. This
result supports a possible genetic interaction between type 1
and type 2 diabetes mediated by the HLA locus [24].

Patients with T2D (G1+G2) showed an upregulation of
the SOS1 in comparison to the normoglycemic individuals
(G3). The SOS1 gene is related to immune response path-
ways, such as IL-7 signaling in B lymphocytes, regulation of
lipid metabolism, and the insulin signaling pathway [25].

Table 2: DEGs detected by microarray chosen as good candidates for validation by RT-qPCR.

Comparison Gene title Gene symbol
Microarray FC
(FDR p value)

RT-qPCR
p value (validation)

G1+G2 versus G3

@213831_at #Hs03007426mH
Major histocompatibility complex,

class II, DQ alpha 1
HLA-DQA1 127.80 (0.002) <0.0001

@212777_at #Hs00893134_m1 Son of sevenless homolog 1 (drosophila) SOS1 2.60 (0.005) 0.005
@222381_at #Hs00918237_m1 Aryl-hidrocarbon receptor repressor PDCD6 −2.43 (0.007) NV
@208368_s_at #Hs00609073_m1 Breast cancer 2, early onset BRCA2 −1.46 (0.009) 0.008
@210808_s_at #Hs01071081_m1 NADPH oxidase 1 NOX1 −1.43 (0.002) NV

G2 versus G1
@231857_s_at #Hs01005454_g1 ATP/GTP-binding protein-like 5 AGBL5 6.08 (0.002) 0.042
@1562028_at #Hs00236949_m1 Cyclin D3 CCDN3 1.99 (0.006) 0.0003

@213006_at #Hs00270931_s1
CCAAT/enhancer-binding
protein (C/EBP), delta

CEBPD 1.89 (0.007) <0.0001
@214792_x_at #Hs00360269_m1 Vesicle-associated membrane protein 2 VAMP2 1.67 (0.001) 0.0001
@201313_at #Hs01102367_g1 Enolase 2 (gamma, neuronal) ENO2 1.66 (0.0008) <0.0001
@211370_s_at #Hs00177134_m1 Mitogen-activated protein kinase 5 MAP2K5 1.39 (0.001) 0.027
@212226_s_at #Hs00170359_m1 Phosphatidic acid phosphatase type 2B PPAP2B −2.68 (0.005) 0.021
@223828_s_at #Hs00263821_m1 Lectin, galactoside-binding, soluble 12 LGALS12 −2.09 (0.007) 0.0004

G2 versus G3

@209480_at #Hs03054971_m1
Major histocompatibility complex,

class II, DQ beta 1
HLA-DQB1 131.31 (0.005) <0.0001

@211571_s_at #Hs00171642_m1 Versican VCAN 1.73 (0.009) NV
@212142_at #Hs00907398_m1 Minichromosome maintenance MCM4 −4.46 (0.0001) 0.0006
@239617_at #Hs01115007_m1 SEC13 homolog (S. cerevisiae) SEC13 −2.34 (0.007) 0.008

@205672_at #Hs00166045_m1
Xeroderma pigmentosum,
complementation group A

XPA −1.29 (0.003) NV

G1 versus G3

@204517_at #Hs00917412_m1
Peptidylprolyl isomerase

C (cyclosphilin C)
PPIC 2.21 (0.008) 0.001

@1554586_a_at #Hs01598095_g1 Rho-related BTB domain containing 2 RHOBTB2 2.13(0.007) NV

@1559921_at #Hs00169777_m1
Platelet/endothelial cell adhesion

molecule (CD31 antigen)
PECAM1 1.86 (0.004) NV

@215723_s_at #Hs00160118_m1
Phospholipase D1,

phosphatidylcholine-specific
PLD1 −3.77 (0.005) NV

FC = fold change; FDR = false discovery rate method according the Benjamini-Hochberg procedure was used for correcting each p value for multiple hypothesis
testing; NV =microarray not validated by RT-qPCR; @ = probe set ID; # = TaqMan code of Applied Biosystems.
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Figure 1: Continued.
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Myers and colleagues described that during insulin stimula-
tion, insulin receptor-expressing cells result in the tyrosine
phosphorylation of SHC-transforming protein 1 or insulin
receptor substrate 1 (IRS-1), which are both associated with
growth factor receptor-bound protein 2 (GRB-2). GRB-2
activates p2l-RAS by forming a stable complex through its
SH3 domains to SOS-1 [25]. Moreover, the SOS1 gene is
involved in the regulation of lipid metabolism and insulin
signaling generic cascades (http://lsresearch.thomsonreuters
.com/maps/724). It is worth bearing in mind that all patients
are similarly affected by dyslipidemia; therefore, it is reason-
able to infer that the presence of T2D in the G1+G2 groups
could have an additive effect for the higher expression of
SOS1 in comparison to the G3 normoglycemic patients.

In contrast, the BRCA2 gene was downregulated in
G1+G2 compared to G3. This result is interesting
because this gene is related to the repair of the damage
to the double-stranded DNA pathway indicating that
T2D patients may have a deficiency in this process. This
is in agreement with Corbi et al. [21], who found higher
irreversible damage to the double-stranded DNA in T2D
patients than in those without the disease (G3) by utiliz-
ing the micronucleus test in the same patients enrolled in
the present study.

Considering the well-controlled diabetics (G2) as refer-
ence, we found out that the CCDN3, CEBPD, and MAP2K5
genes were upregulated in G2 when compared to G1 (poorly
controlled diabetics) (Figure 1(b)). Taking into mind, the
gene functions are as follows: (i) CCDN3 gene is associated

with the IL-5 immune-related response and with IGF-1
(growth factor similar to insulin-like 1) receptor signaling;
(ii) CEBPD gene is associated with the IL-6 and IL-17 signal-
ing pathways and; (iii)MAP2K5 gene is related to T lympho-
cytes and the inflammatory response; it seems to indicate that
the well-controlled diabetics (G2) could better orchestrate
the immune system functions. Also, we found an overexpres-
sion of the enolase 2 (ENO2, aliasNSE) and vesicle-associated
membrane protein 2 (VAMP2) genes in G2 subjects. The
function of the VAMP2 gene is linked to the secretion of
insulin by pancreatic β-cells. The VAMP-2 protein is also
associated with the regulation of GLUT-4 trafficking and
fusion in adipocytes. In animals with diabetes induced by
streptozotocin and nicotinamide, resveratrol supplementa-
tion increased the VAMP2 gene expression and blood
insulin level, as well as reduced the fasting blood glucose
and improved the insulin resistance [26]. Because we vali-
dated here higher expression of the VAMP2 gene in the
G2 group, it seems to indicate that the good glycemic con-
trol contributes to increase the insulin production in these
patients, in comparison to G1 poorly controlled T2D
patients. Obviously, it is essential to T2D patients to
achieve and maintain the glycemic control, preferentially
without adding basal insulin therapy, because it was
related to increased number of patients experiencing hypo-
glycemia during 1 year of follow-up of basal insulin ther-
apy [27]. Interestingly, intensive glycemic control was
associated with higher rates of severe hypoglycemia than
less intensive control, as raised by the ACCORD (Action
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Figure 1: Validation results by RT-qPCR of the genes considering the different comparisons. (a) G1+G2 versus G3; (b) G2 versus G1; (c) G1
versus G3; (d) G2 versus G3. All mRNA levels of the investigated genes were normalized to a mean of the endogenous controls GAPDH,
ACTG1, and RPL7A genes. Data represent the mean± SEM of 30 patients per group (Mann–Whitney U test; α = 5%). p values are
presented in Table 2.
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to Control Cardiovascular Risk in Diabetes), ADVANCE
(Action in Diabetes and Vascular Disease: Preterax and
Diamicron MR Controlled Evaluation), and VADT
(Veterans Affairs Diabetes Trial) studies [28–30].

Another DEG in the G2 versus G1 comparison is the
ENO2, which encodes an intracellular protein present
mainly in the neuronal cytoplasm, in central and peripheral
neuroendocrine cells [31, 32], and in white blood cells
(http://www.genecards.org/cgi-bin/carddisp.pl?gene=ENO2&
keywords=ENO2). Interestingly, ENO2 is also associated
with the glycolysis and gluconeogenesis processes (http://
lsresearch.thomsonreuters.com/maps/9300). ENO2 or NSE
is readily secreted into the cerebrospinal fluid and blood after
tissue injury and is related to diabetic retinopathy [31, 33].
Retinopathy, neuropathy, and nephropathy are common
complications in patients with diabetes mellitus. Early dia-
betic retinopathy includes a neurodegenerative component,
and diabetic retinopathy is generally viewed as a neurovascu-
lar disease [33]. Circulating ENO2/NSE mRNA levels were
lower in diabetics with neuropathy (mean HbA1c= 8.2%)
than in those without neuropathy (mean HbA1c= 6.6%)
[31]. Here, we also found significant lower levels of circulat-
ing ENO2 mRNA levels in G1 (mean HbA1c= 10.4%, poorly
controlled T2D) than in G2 (mean HbA1c=6.6%, well-
controlled T2D) (Figure 1(b)). We noticed from the 30
patients in each group that retinopathy affected 6 patients
in the G1 and 1 patient in the G2. Retinopathy was also
related to the poor glycemic control of T2D [34].

Still comparing G2 versus G1, the LGALS12 (lectin,
galactoside-binding, soluble 12) gene was upregulated in
G1. Genome-wide association studies (GWAS) available at:
http://www.gwascentral.org/study accessed (Aug. 24, 2016)
demonstrated the LGALS12 gene as risk loci of BMI
(HGVST308) and is associated with glycemic traits
(HGVST463). In spite of the validation of PPAP2B and
AGBL5 genes, demonstrated p values are not significant after
Bonferroni’s correction, and if we consider that it is not nec-
essary to correct for multiple tests to obtain p values of qPCR
analysis because each gene was independently investigated,
we can assume that these genes were also validated. Whether
we consider this, our results are in line with GWAS studies
which associated PPAP2B gene with T2D (HGVST3;
HGVST5), glycated hemoglobin levels (HGVST618), and
glycemic traits (HGVST463), while the AGBL5 was associ-
ated with GWAS of glycemic traits (HGVST463).

When comparing the well-controlled T2D (G2) patients
versus normoglycemics (G3), besides the aforementioned
HLA-DQB1 gene, we found that SEC13 and MCM4 genes
presented downregulation in both microarray and RT-
qPCR. Interestingly, SEC13 and MCM4 genes were also
associated with GWAS of glycemic traits (HGVST463) and
glycated hemoglobin (HGVST618). MCM4 participated in
the DNA replication in the early S phase, and altered expres-
sion and methylation of MCM4 gene were recently observed
in the zebrafish model of metabolic memory (MM). This was
defined as the persistence of diabetic (DM) complications
even after glycemic control was pharmacologically achieved
[35]. According to Leontovich et al., the results were consis-
tent with human diabetic epigenetic studies and provided

one explanation for the persistence of long-term tissue
complications as seen in diabetes [35]. Furthermore, in
agreement with the lower levels ofMCM4 gene in the PBMC
of well-controlled T2D (G2) patients (Figure 1(c)), decreased
expression of MCM4, leading to decreased DNA replication
of vascular smooth muscle cells, was demonstrated [36]. This
occurs by the overexpression of PGC-1β, which is upregu-
lated by metformin. Therefore, a functional role of MCM4
gene was presented in the context of vascular injury com-
monly found in diabetes [36].

Lastly, comparing G1 versus G3, we found an upregula-
tion of the PPIC gene in G1. PPIC gene was associated with
endometrial, kidney, and lung neoplasms. Some studies have
demonstrated an increase of malignant neoplasms in T2D
patients [37, 38]. In addition, the PPIC gene was associated
with GWAS of glycemic traits (HGVST463) and glycated
hemoglobin (HGVST618).

By using the candidate genes/RT-qPCR approach in a
well-evaluated cohort, we presented some DEGs in well-
and poorly controlled T2D patients. Although our findings
are relevant in the context of T2D, it is important to discuss
that the present study has some limitations. We agree that
there is a lack of a longitudinal study of data tracking of dis-
eases in our patients, and the blood analysis was made in a
unique time point, making it difficult and harming the best
diagnosis of a T2D patient as well as the poorly controlled.
In the present study, we did not assess the genes at the trans-
lational level; that is, we did not quantify the proteins
encoded by the genes investigated here. Certainly, further
studies could clinically follow up the patients enrolled here
and could focus on the translational levels of the genes
investigated in the present study. Proteomics studies could
ascertain the present mRNA findings or reveal different
results, since the gene regulation comprises very complex
processes. Because the expression profiling was investigated
in PBMC, we cannot exclude the possibility that gene expres-
sion could be influenced by proportions of the blood cell
types in the circulation, as inferred by Miranda et al. [39].
However, we assessed the amount of lymphocytes, neutro-
phils, eosinophils, and monocytes in each patient investi-
gated here and they were statistically similar among groups,
demonstrating that our findings were not influenced by a
specific cell type.

Despite the mentioned limitations, this study brings
functional information related to glycemic control on gene
expression, which was related to the immune response and
regulation of glycemic and lipid metabolism, as well as
DNA replication and damage. Even though the present study
is not the first evidence of the majority association of genes
investigated here with T2D, they could be thought as more
newness in the association with glycemic metabolism than
others, such as the HLA-DQA1, HLA-DQB1, VAMP2, and
ENO genes.

We concluded that some candidate genes potentially
associated with adequate glycemic control in T2D patients
were validated. Moreover, this study contributed to the
knowledge of how the glycemic control could systemically
influence gene expression. Further case-control studies and
meta-analysis approach with strict clinical selection of larger
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and ethnic diverse populations should be made to confirm
and strengthen our results.
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