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Abstract. Amorphous carbon-based thin films, a-C:H:Si:O:F, were obtained by plasma 

immersion ion implantation and deposition (PIIID) from mixtures of hexamethyldisiloxane, 

sulfur hexafluoride and argon. For PIIID the sample holder was biased with negative 25 kV 

pulses at 60 Hz. The main system parameter was the proportion of SF6 in the reactor feed, RSF. 

To allow comparison to growth without intentional ion implantation, some films were also 

grown by plasma enhanced chemical vapor deposition (PECVD). The objectives were to 

investigate the effects of fluorine incorporation and ion implantation on the film’s chemical 

structure, and principally on the surface contact angle, hardness and friction coefficient. Infra-

red and X-ray photo-electron spectroscopic analyses revealed that the films are essentially 

amorphous and polymer-like, and that fluorine is incorporated for any non-zero value of RSF. 

Choice of RSF influences film composition and structure but ion implantation also plays a role. 

Depending on RSF, hydrophilic or hydrophobic films may be produced. Ion implantation is 

beneficial while fluorine incorporation is detrimental to hardness. For ion implanted films the 

friction coefficient falls about one third as RSF is increased from 0 to 60%. Films prepared by 

PIIID without fluorine incorporation present fairly low friction coefficients and hardnesses 

greater than those of conventional polymers. 

1. Introduction 

 

There is at present a growing need for the development of nanoscale devices. The electronics industry 

fabricates miniaturized components from materials that match thin structures with specific electrical 

properties [1-3]. The production of microscopic three-dimensional structures, such as pistons, 

capacitors, transformers and gears, is another promising area with selected material requirements [4-

7]. The production of thin films of a specific material is, therefore, a first requisite for such 

technologies. Despite this, such films or layers are not only used for these ends. Indeed the greatest 

spectrum of studies in this area deals with surface modification of materials by coating [8-11] Thus the 

surface properties of  the material are modified while the bulk properties remain essentially 

unchanged. 
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The coating of computer hard discs is an application for which an extremely fine film is necessary to 

protect the device against wear but without changing its storage capacity [12, 13]. Another example of 

applications involves coatings that accelerate/inhibit cellular metabolism and the activity of fungi, 

which have a decisive role in the development of biomaterials [14-16]. Coating technology continues 

to be a growth area [17].  

Plasma enhanced chemical vapor deposition (PECVD) is a versatile technique for the production of 

thin films [18]. A key advantage is its ability to produce films simply and cheaply at ambient 

temperatures. Owing to its low energy consumption and production of clean by-products, the 

technique is considered environmentally friendly. By altering the chemical composition of the plasma, 

the applied power or its frequency, or the reactor geometry or substrate temperature, films with a wide 

range of properties may be produced [18]. 

A hybrid plasma deposition technique, which permits in situ alteration of the film properties is plasma 

immersion ion implantation and deposition PIIID [19]. In this method, simultaneously with plasma 

ignition, negative high voltage pulses are applied to the samples, thus attracting high energy positive 

ions from the discharge. The impacting ions induce a number of effects, including the scission of 

chemical bonds, thus producing unsaturated groups, the release of volatile group, such as CHx (x of 1 

to 3), and film compaction. Film stoichiometry may also be altered. In addition, the PIIID technique 

permits adjustment of the bombarding ion intensity during film deposition.  

The aims of this work were to determine the effect of ion bombardment during film growth as well as 

that of fluorine incorporation on the properties of the films produced by PIIID. To allow comparison 

with the PIIID films, some films were also produced by PECVD. Although the methods are distinct, 

variation of the system parameters often produces identical tendencies in the behavior of the material 

properties. The optimization of the treatment parameters is obtained through the analysis of the 

influence of each parameter on the performance of the material. 

 

2. Experimental 

The films were deposited in the system shown schematically in Figure 1. A cylindrical stainless steel 

vacuum chamber is connected to a pumping system capable of reducing the chamber pressure to about 

10-3 Pa. Gases are admitted via steel tubing through flowmeters and needle valves. Liquid monomers 

are retained in glass evaporation cells which are connected to the chamber via needle valves. 

A Tokyo Hy-Power radiofrequency (13.56 MHz) power supply (maximum power 300 W) allows the 

excitation of a discharge between internal, horizontal, circular, stainless-steel electrodes. To produce 

bombardment by positive ions from the plasma, the lower electrode is connected to a Carl Zeiss UBI2 

supply, which produces negative pulses (25 kV, 60 Hz). Greater details of this system are given 

elsewhere [20]. 
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Figure 1 – Details of the deposition system. 

Films were deposited from mixtures of hexamethyldisiloxane (HMDSO), sulfur hexafluoride (SF6) 

and argon (Ar). Before depositions the system was pumped to the base pressure and HMDSO 

introduced to produce a pressure of 0.26 Pa, which was maintained constant for all the depositions. 

The proportion of SF6 (RSF) in the feed was increased from 0 to 80% while that of Ar was 

correspondingly decreased, maintaining the total gas pressure at 1.3 Pa. The discharge was excited by 

the application of rf power to the upper electrode while the substrate holder was polarized with high 

voltage negative pulses (25 kV, 60 Hz). Deposition times of one hour were used and following each 

deposition the chamber was filled with nitrogen until atmospheric pressure was reached. The effects of 

these deposition conditions on the film properties were examined. 

Film thickness was measured from well-defined step-heights using a Veeco Dektak 150 profilometer. 

The molecular structure of films was analyzed by Infra Red Reflectance Absorbance Spectroscopy 

(IRRAS) using a Bomen MB-101 FT-IR spectrometer. The spectra were taken from samples prepared 

on aluminum-coated glass slides. X-ray Photoelectron Spectroscopy (XPS) was used to study the 

chemical composition of the surface of the films deposited onto stainless-steel substrates. The spectra 

were obtained with a SVW HA100 spectrometer using procedures described previously [21]. 

The affinity of the films for water was evaluated via measurement of the contact angle, , using a 

Ramé-Hart 100-00 goniometer. Substrates for these films were polished silicon wafers. At least three 

drops of deionized water of about 2 l volume were placed on different regions of the sample. The 

contact angle was measured at ambient temperature on each side of the drop (as seen in front 

elevation) ten times. The results presented are the arithmetic mean of these measurements (n = 60). 

Nanoindentation tests [22] using a Hysitron Triboindenter on films deposited onto polished silicon 

substrates were undertaken to determine film hardness. The indentation was measured as a function of 

the normal load applied to the diamond probe in the range from 800 to 10.000 N. At least eight 
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indentations per load were made. The hardness was calculated from curves of the indentation versus 

the applied force, according to the method developed by Oliver and Pharr [23]. Mean values and 

standard deviations are presented. 

Using the nanoindenter’s lateral-force device, scratch tests were undertaken on the same samples. At 

least five scans of 20 m were taken in different regions of the sample. A constant applied load of 300 

N and a velocity of 1.0 m s-1 were used. The tests were made without lubrification using as a 

tribological pair the sample and the diamond tip of the indenter, which has a diameter of about 100 

nm. Among other parameters, the lateral and normal forces on the tip were determined, permitting 

calculation of the friction coefficient of the samples. 

Topographic images of the sample surfaces were obtained using Scanning Atomic Force Microscopy 

(SAFM) in the image acquisition mode of the nanoindenter, employing the same samples as those 

submitted to nanoindentation and hardness tests. A constant force of 2.0 N was applied to the 

indenter tip and a scan undertaken over an area of 50 x 50 m2. From the images, it was possible to 

determine the mean roughness [24] (Ra) in regions established as representative of the samples.  

 

3. Results and Discussion 

3.1 Thickness, Molecular Structure and Chemical Composition 
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Figure 2 – The film thickness as a function of RSF 

Figure 2 shows the thicknesses of the films, which fall in the range 40 to 160 nm. Figure 3 shows the 

infrared spectra obtained from films deposited at different proportions of SF6 in the feed to the 
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chamber, RSF, during ionic bombardment and of those produced at RSF of 0 and 80% by conventional 

PECVD. 

The sample produced at 0% SF6 by PECVD presents absorption bands due to OH (3400 and 957 cm-1), 

C-H (2870 and 2920 cm-1), C=O and C=C (1600-1700 cm-1) and Si-O-Si (1100-1200 cm-1) groups. 

The latter peak may also contain a contribution from SiCH2Si groups, which are readily formed via 

plama reactions of methylsilyl groups [25-27]. A weak absorption at about 1270 cm-1, related to C-H 

in CH3Si groups, is also detected, demonstrating that the HMDSO molecule  - (CH3)3SiOSi(CH3)3 – is 

partially preserved. 

The presence of O-H in the structure may be attributed to the oxygen bound in the HMDSO molecule. 

As oxygen is not linked to hydrogen in this molecule, however, multiple-stage reactions must occur in 

the plasma phase to form O-H and, therefore, this mechanism is not considered the most important. 

Residual oxygen in the chamber may contribute more effectively to oxygen incorporation during 

deposition. In addition, post-deposition reactions between free radicals trapped from the plasma and 

water vapor and atmospheric oxygen are known to produce hydroxyl groups in the deposited material 

[28]. 
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 Figure 3  – Transmittance infrared spectra of films produced  

by PECVD and by PIIID at different RSF. 

 
The detection of absorptions due to C=C and C=O groups is interesting since neither is present in the 

monomer. These bonds are formed via reactions either in the plasma phase or on the film surface or 

both, but the constituents are derived from the fragmentation of the monomer molecule. Post-

deposition reactions between free radicals and atmospheric oxygen also contribute to the production of 

C=O. 
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The spectrum of the film prepared with RSF = 0% by PIIID presents the same absorptions as already 

mentioned, but with lower intensities in some cases. This effect may be observed by comparing the 

absorptions at 2970 and 3400 cm-1 (due to C-H and O-H, respectively). The fall in the intensity of 

these absorptions is associated with the different ion bombardment fluences produced in the two 

methods. In PIIID, the transfer of energy to surface species by collision with fast ions produces, 

among other effects, the fragmentation of chemical bonds. Species weakly bound to the solid, such as 

H, are preferentially emitted [29, 30], reducing the concentration of C-H and O-H groups. Additional 

evidence for this effect is the behavior of the absorption at 1270 cm-1, which derives from vibrations in 

C-H groups in CH3Si. When films are prepared by PIIID this band disappears, confirming the greater 

degree of molecular fragmentation in this process. 

Contrary to what is expected for films produced by plasma polymerization of HMDSO without SF6 in 

the feed [25-27], no absorbance peaked at around 2100 cm-1 and attributable to SiH is seen the the 

spectrum (film produced by PECVD without SF6 in the feed). Thus, under the conditions used here, 

hydrogen is preferentially bound to carbon or lost from the film or both. As already mentioned, the 

absence of strong absorptions owing to CH groups from all of the spectra, and the tendency of the 

films grown at high RSF to become ‘inorganic’, indicate a loss of hydrogen. 

The band between 1100 and 1200 cm-1, which appears in the spectra of both films deposited at RSF = 

0%, is attributed to the superposition of the absorptions due to CH and SiOSi. The process of 

dehydrogenation, however, does not affect the intensity of this band as occurs with the absorptions at 

2920 and 2870 cm-1, indicating that the contribution of C-H groups to this absorption is negligible.  

For RSF = 20%, absorptions in the film spectra appear due to fluorine-containing groups, such as CH3-

F (1436 cm-1) and C-F (1000-1400 cm-1). Atomic fluorine and CFx (x = 1 to 3) radicals are frequently 

observed in plasmas containing fluorinated gases [31-33] and are considered film precursors. As the 

chamber feed does not usually contain compounds in which carbon is bound to fluorine, multiple-

stage plasma reactions or plasma/surface reactions or both are necessary to produce these species. 

For RSF > 20%, there is a high proportion of atomic fluorine in the plasma which, together with ionic 

bombardment, contributes to the erosion of the film by etching. Therefore the deposition rate is 

determined by the balance between film growth and ablation. In PECVD the deposition rate tends to 

decrease (that is the film thickness decreases for a fixed deposition time) with increasing RSF, which 

accounts for the absence of absorptions in the spectra of films produced under these conditions. It is 

worthwhile observing the absorption at 650 cm-1 in the two spectra of samples prepared at RSF = 80%, 

which indicates the presence of sulfur. 

Table 1 shows the atomic ratios F/C, O/C and Si/C, determined from XPS spectra of the films 

deposited with ionic bombardment. The F/C ratio grows with increasing RSF, reaching a maximum of 

0.19 at RSF = 80% of SF6. This result may be the consequence of a decrease in the proportion of 

carbon, of the increase in the incorporation of fluorine or, more probably, both.  

 
Table 1. Atomic ratios F/C, O/C and Si/C in the PIIID films  

as a function of the proportion of SF6 in the feed, RSF. 

RSF(%) F/C O/C Si/C 

0 - 2.05 - 

20 0.02 0.35 0.10 

60 0.07 0.23 0.12 

80 0.19 0.81  0.04 

  

To clarify this problem, high resolution F1s spectra were deconvoluted, revealing a component at 

687.0 eV associated with C-F bonds, and a contribution at 684.0 eV, identified as ionic fluorine in 
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carbon structures [34], that is, free fluorine. The relative contribution (by area) of each component was 

calculated and the results are presented in Figure 4. 
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Figure 4 – Contribution of each component of the high resolution  

F1s peak as a function of RSF. 

 

The proportion of C-F groups is high in the sample prepared at RSF = 20% as shown by some bands in 

the infrared spectrum of this film. Despite this, when RSF increases, the proportion of C-F decreases in 

opposition to the increase in the proportion of free fluorine. 

The reduction in the quantity of C-F species is explained by the ablation of the film when the 

proportion of SF6 is increased, which leads to the removal of carbon and an increase in free fluorine, 

resulting in an increase in F/C. 

The O/C data, also represented in Table 1, reveal the incorporation of oxygen in the deposited 

material. It is known that when films are produced by PECVD from monomers that do not contain 

oxygen, some incorporation of oxygen is still observed. The ratio O/C is substantially reduced when 

RSF is increased from 0 to 20%, but the influence of greater RSF values is less pronounced. This result 

is attributed to a fall in the concentration of residual free radicals in the films at higher RSF. The 

intensity of ion bombardment is reduced with the reduced concentration of Ar in the plasma, thus 

reducing the absorption of oxygen-containing groups. 

Nitrogen was also detected, but only in the film deposited without SF6 in the chamber feed. Here it 

should be remembered that to reach atmospheric pressure following film deposition, the chamber was 

filled with nitrogen. Generally, the incorporation of nitrogen occurs to a lesser degree than is observed 

for oxygen, and its apparent absence at RSF > 0 is due to the lower proportion of free radicals in the 
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samples. As well as the physical effects of ion bombardment, competition between F, H and Si to form 

bonds with C contributes to a reduction in the concentration of free radicals. 

Another interesting behavior is that of Si/C. Silicon was not detected in the film deposited without SF6 

in the feed. This result differs from that obtained by infrared spectroscopy, in which a band arising 

from SiOSi groups (1100 to 1200 cm-1) was detected. In infrared spectroscopy, however, the beam 

passes completely through the width of the film, while XPS is a surface analysis technique. Thus the 

surface and bulk of the film may differ in chemical structure and composition, and this may be due to 

plasma-surface reactions. When the deposition is undertaken in the absence of F, the relatively high 

ionic bombardment removes species such as H and Si. This process may also induce the production of 

free radicals, thus contributing to the increased attachment of oxygen. As the proportion of F 

increases, ionic bombardment is reduced and the proportion of surface Si increases. At RSF  80%, 

however, etching of Si increases and the proportion of this species tends to decrease, so that Si/C 

decreases as F:C correspondingly increases. Thus the presence of Si on the surface is strongly 

dependent on plasma-surface interactions. 

Finally, it is worth noting that sulfur was detected in the samples prepared by PIIID with 60% and 

80% SF6 in the feed. Sulfur incorporation is expected in SF6 plasmas [35] and was confirmed by the 

infrared spectra. 

Considering the complete set of analyses undertaken it is concluded that the films deposited are 

amorphous carbon polymers. The material is already fluorinated when RSF = 20% is employed. At RSF 

greater than 20%, however, little fluorine is incorporated and there is a reduction in the proportions of 

C, O and Si, reducing the film deposition rate. Deposition together with ionic bombardment results in 

surfaces with structures and compositions distinct from those obtained with conventional PECVD.  

 
3.2 Wettability and Roughness  

The affinity of the surface of the films for water is illustrated in Figure 5, where the surface contact 

angle is shown as a function of RSF. The results obtained for films produced by PIIID reveal that  

increases with increasing RSF. 
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Figure 5 – Surface contact angle of the films produced  

by PECVD (○) and by PIIID () as a function of RSF. 
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According to the chemical composition, the surface prepared without the addition of fluorine to the 

discharge presented the greatest proportion of O and N. Such species, connected to carbon, form polar 

groups that attract water molecules electrostatically. The absence of Si contributes to the hydrophilic 

character of this sample (Table 1). On the other hand, when RSF = 20%, there is a decrease in the 

proportion of O that is compensated by the incorporation of F, which in moderate proportions, also 

contributes to the spread of the drop on the surface. At greater values of RSF, however, the greater 

incorporation of F and the presence of Si cause the formation of a hydrophobic film with  of about 

100 . 

Although the films deposited at RSF = 80% using the two techniques originated in plasmas with the 

same chemical composition, their surface wettabilities are distinct owing to ionic bombardment (or its 

absence).  

To complement the interpretation of the wettability, the mean roughness (Ra) of the surfaces was 

determined, as shown as a function of RSF in Figure 6. The pristine silicon substrate presented a 

roughness of 4.6 nm. Comparing this value with those obtained for films produced by PIIID, an 

increase in surface roughness is observed. There are no significant variations in Ra when RSF is 

increased from 0 to 60%. Only for RSF > 60% is there an increase in surface roughness. 
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Figure 6 – The roughness of the surfaces coated with films prepared by PECVD and by PIIID at 

different proportions of SF6 in the chamber feed. The roughness of the silicon substrate was 4.6 nm. 

 
In contrast, Ra is very similar to that obtained for the silicon substrate when the films are produced 

without fluorine by PECVD, but increases sharply when RSF is increased to 80%. Figure 7 shows the 

topographic images of the samples from which the roughness was determined. 
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Figure 7 – Topographic images of the silicon substrates coated with films prepared at different 

proportions of SF6 by PECVD and by PIIID. The scales are in m. 

 

Comparing the images of films obtained with RSF = 0% and RSF = 80% by PECVD, a clear difference 

is observed. This difference is attributed to the texturization of the silicon surface at the beginning of 

the deposition by attack by atomic F. Following the deposition of the first few monolayers, this 

phenomenon ceases and the film follows the topography of the substrate. 

On the other hand, when F is present in small proportions in the discharge in depositions with ion 

bombardment, fluorine ions are formed in the discharge by the rupture of SF6 molecules, and are also 
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implanted, decreasing their chemical effect on the surface of the silicon substrate at the beginning of 

the deposition process. At high RSF (80%), the abundance of F in the plasma induces both ion 

implantation and ablation of Si. The surface roughness is modified, but not in the same way as 

observed in samples prepared at the same RSF, but without high energy ionic bombardment. These 

results demonstrate the effect of the incorporation of F in the discharge and of ionic bombardment on 

the surface topography. In cases where fluorinated films without texturization are required, PIIID is 

the best choice. It should be remembered, however, that the effect of F on the texturization of the 

sample depends on the choice of both the plasma and the substrate.  

Comparing the results of Fig. 5 and Fig. 6 it is readily noticed that the slight growth in  in the 0 to 

60% RSF range is a chemical effect of fluorine incorporation since roughness remains unchanged in 

this region. For the highest RSF value, however, the factor determining  is roughness. 

 

3.3 Hardness and Friction Coefficient  

Table 2 shows the film hardness estimated from curves of hardness as a function of the penetration 

depth, and taken at about 15% of the film thickness. As the films were all < 200 nm thick, this is a 

crude calculation. The implanted films, however, show a tendency to soften with greater fluorine 

incorporation. Implanted films tend also to be harder than PECVD films grown under otherwise 

identical conditions. The films produced by PECVD with 0% and 80% SF6 in the feed were measured 

with a single load applied to the tip. In both cases, the hardness is a few tenths of a GPa, which is 

characteristic of polymeric materials. These results agree with literature reports, which demonstrate 

that the inclusion of fluorine in the structure of carbon films deposited in plasmas [36, 37] reduces 

their hardness. Owing to the thinness of the film produced by PIIID film at RSF = 60% it’s hardness 

could not be determined. 

 

Table 2. Film hardness of the PECVD and 

PIIID films as determined by 

nanoindentation 

Method RSF(%) H(GPa) 

PECVD   

 0 0.8 ± 0.1 

 

PIIID 

80 0.5 ± 0.5 

 0 1.6 ± 0.3 

 20 1.5 ± 0.1 

 60 - 

 80 0.8 ± 0.4 

 

 

The friction coefficient, , determined by scratch tests using the lateral force device of the 

nanonindenter, is presented as a function of  RSF in Figure 8. The films produced by PECVD have 

friction coefficients of less than 0.1 independently of RSF. From the images of Fig. 7 it may be seen 

that the topographic differences presented by the samples do not strongly influence . It should also be 

remembered that the diamond tip used as a tribological pair for the film has a diameter of about 100 

nm, which makes the dimensions and irregularities of the film prepared at RSF = 80% irrelevant to the 

interaction. 
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Figure 8 –Friction coefficient of the films produced by PECVD and by PIIID at different RSF. 

Values obtained with a normal load of 300 N applied to the tip for a 20 m scan. 

 

At RSF = 0%, the film deposited with ionic bombardment has a greater value of  than that produced 

by PECVD. The friction coefficient is reduced by 30% compared to the film without fluorine when 

RSF is increased from 0 to 60%. When RSF is further increased,  tends to increase further. 

Comparing the behaviors of the roughnesses (Fig. 6) and of the friction coefficient of the films 

produced by PIIID, it is observed they are similar only in the range of RSF from 60 to 80%. Otherwise, 

different tendencies are observed, indicating that the topography is not the dominant factor influencing 

. In this study, the incorporation of a highly electronegative species has a greater influence on the 

tribology than changes in the surface topography. Depending on the morphology and dimensions of 

the irregularities, they act together with the electronegative effect of fluorine. This may be seen in the 

sample deposited at the highest value of RSF, where, despite the increase in the proportion of F 

incorporated into this sample,  does not decrease. The tribological behavior of this system thus 

depends on the balance between these processes.  

 

4. Conclusions 

 

The results presented here show that the chemical composition and structure of the films deposited 

from plasmas of mixtures of hexamethyldisloxane, sulfur hexafluoride and argon depend on the 

proportion of gases used and the degree of ionic bombardment induced during film growth. Fluorine 

was incorporated even when only low proportions of SF6 were present in the discharge. Contamination 

of the films with oxygen and nitrogen, to degrees which depend on RSF, was also observed.  

Hydrophilic surfaces were obtained by PIIID for RSF = 0, 20 and 60%. Increasing RSF beyond 60%, 

resulted in hydrophobic films with contact angles of 100. The same rising tendency was observed in 

the contact angle of the films prepared by conventional PECVD, but with higher  values than were 

observed in the film prepared by PIIID. Thus the thermodynamic properties of the surface may be 
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controlled via the chemical composition of the discharge, but ionic bombardment is also of great 

importance.   

The hardnesses of non-fluorinated films were increased by ionic bombardment. Moreover, such films 

possessed hardnesses greater than those typical of similar conventional polymers. While fluorine 

incorporation (for RSF up to ~60%) tends to slightly improve tribological performance of the 

diamond/film pair, ionic bombardment has little effect.  The minimal improvement in  due to the 

incorporation of F does not justify the corresponding loss in mechanical resistance of the material. In 

summary, ionic bombardment produces some improvement in mechanical resistance of the film while 

maintaining the friction coefficient at levels acceptable for many applications. 
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