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Abstract. Biclustering involves the simultaneous clustering of objects
and their attributes, thus defining local two-way clustering models. Re-
cently, efficient algorithms were conceived to enumerate all biclusters in
real-valued datasets. In this case, the solution composes a complete set
of maximal and non-redundant biclusters. However, the ability to enu-
merate biclusters revealed a challenging scenario: in noisy datasets, each
true bicluster may become highly fragmented and with a high degree of
overlapping. It prevents a direct analysis of the obtained results. Aim-
ing at reverting the fragmentation, we propose here two approaches for
properly aggregating the whole set of enumerated biclusters: one based
on single linkage and the other directly exploring the rate of overlapping.
Both proposals were compared with each other and with the actual state-
of-the-art in several experiments, and they not only significantly reduced
the number of biclusters but also consistently increased the quality of the
solution.

Keywords: Biclustering, bicluster enumeration, bicluster aggregation,
outlier removal, metrics for biclusters.

1 Introduction

Biclustering techniques aim to simultaneously cluster objects and attributes of a
dataset. Each bicluster is represented as a tuple containing a subset of the rows,
and a subset of the columns, as long as they exhibit some kind of coherence
pattern. There are several kinds of coherence which can be found in a biclus-
ter, and they directly interfere on the mechanism of bicluster identification. As
finding all biclusters in a dataset is an NP-hard problem, several heuristics were
proposed, such as CC [1] and FLOC [2]. Such heuristics may miss important
biclusters, and may also return non-maximal biclusters (biclusters that can be
further augmented).

In the case of binary datasets, there are a plenty of algorithms for enumer-
ating all maximal biclusters. Some examples are Makino & Uno [3], LCM [4]
and In-Close2 [5]. The enumeration of all maximal biclusters in an integer or
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2 On bicluster aggregation and its benefits for enumerative solutions

real-valued dataset is a much more challenging scenario, but we already have
some proposals, such as RIn-Close [6] and RAP [7].

The drawback of enumerative algorithms, particularly in the context of noisy
datasets, is the existence of a large number of biclusters, due to fragmentation
of a much smaller number of true biclusters. This is exemplified in one of our
experiments, where we take artificial datasets, gradually increment the variance
of a Gaussian noise, and get the enumerative result. As shown in Fig. 2, with
enough noise, the enumerative results exhibit an strong increase on the quantity
of biclusters. This fragmentation leads to a challenging scenario for the analysis
of the results, which can become impractical even in small datasets. In fact,
the noise is responsible for fragmenting each true bicluster into many with high
overlapping, so that the aggregation of these biclusters is recommended [8] [9].

We propose a way of aggregating biclusters from a biclustering result that
shows a high overlapping among its components, as it is the case when enumer-
ating biclusters in noisy datasets. For this reason, in this paper we will focus
on enumerative results, but our proposal can be applied to the result of any
algorithm that returns biclusters with high overlapping among them. The for-
mulation is based on the fact that the high overlapping among biclusters may
indicate that they are fragments of a true bicluster that should be reconstructed.
We propose two different techniques to perform the aggregation, followed by a
step that removes elements that should not be part of a bicluster. We performed
experiments with three artificial datasets posing different challenges, and two
real datasets from distinct backgrounds. We compared our proposals with a bi-
cluster ensemble algorithm, and the merging/deleting steps of MicroCluster [9].
The experimental results show that the aggregation not only severely reduces
the quantity of biclusters, but also tends to increase the quality of the solution.

The paper is organized as follows. In Section 2, we give the main definitions
and discuss the related works in the literature. Section 3 outlines our proposals.
The metrics used to evaluate our proposals will be presented in Section 4. In
Section 5, we present the experimental procedure and the obtained results of
the experiments. Concluding remarks and future work are outlined in Section 6.

2 Definitions and Related Work

Consider a dataset A ∈ Rn×m, with rows X = {x1, x2, . . . , xn} and columns Y =
{y1, y2, . . . , ym}. We define a bicluster B = (Br, Bc), where Br ⊆ X and Bc ⊆ Y ,
such that the elements in the bicluster show a coherence pattern. A bicluster
solution is a set of biclusters represented by B̄ = {Bi}qi=1, containing q biclusters.
A bicluster is maximal if and only if we can not include any other object /
attribute without violating the coherence threshold. If a solution contains non-
maximal biclusters, the result is redundant because there will be biclusters which
are part of larger ones.

Madeira & Oliveira [10] categorized the types of biclusters according to their
similarity patterns. They also categorized the biclusters structure in a dataset
based on their disposition and level of overlapping. We highlight that biclusters
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with constant values, constant values on rows, or constant values on columns are
special cases of biclusters with coherent values, and we will focus our attention
on the latter, due to its generality. For a comprehensive survey of biclustering
algorithms, the reader may refer to [10] and [11].

The overlapping between two biclusters B and C is an important concept in
this work, and is defined as:

ov(B,C) =
|Br ∩ Cr ×Bc ∩ Cc|

min(|Br ×Bc|, |Cr × Cc|)
. (1)

Now we shall proceed to the aggregation proposals in the literature. It is im-
portant to highlight that, when aggregating two maximal biclusters, the coher-
ence threshold will be violated. Otherwise, the biclusters would not be maximal.

2.1 MicroCluster Aggregation

MicroCluster [9] is an enumerative proposal that has two additional steps after
the enumeration. These steps have the task of deleting or merging biclusters
which are not covering an area much different from other biclusters. The first
is the deleting step. If we find a bicluster such that the ratio of its area that
is not covered by any other bicluster, by its total area, is less than a threshold
η, it can be removed. The second step is the merging one. Let us consider two
biclusters and generate a third one with the union of rows and columns of the
previous two. If the ratio of the area of the third bicluster that is not covered
by any of the previous two, by its total area, is less than a threshold γ, we can
aggregate the two biclusters into this third one. In this method of aggregation,
non-maximal biclusters will be removed in the deleting step, thus not interfering
in the final result. For more details, please refer to Zhao & Zaki [9].

2.2 Aggregation Using Triclustering

Triclustering was proposed by Haczar & Nadif [13] as a biclustering ensemble
algorithm. First, they transform each bicluster into a binary matrix. After that,
they propose a triclustering algorithm to find the k most relevant biclusters. As
they were able to improve the biological relevance of biclustering for microarray
data [14], we will use this method as a contender in this paper. One major point
in ensemble is that we want to combine the results reinforcing the biclusters
that seem to be important for several components, and discarding the ones that
may come from noise. Due to the way the triclustering algorithm handles the
optimization step, non-maximal biclusters can interfere in the final results.

Bicluster aggregation is slightly different from bicluster ensemble. While on
ensemble tasks we discard biclusters that seem unimportant and combine the
ones that contribute the most for the solution, in bicluster aggregation we never
discard any bicluster. Given this characteristic, the bicluster ensemble solution
is expected to show a high Precision with an impacted Recall (see Section 4),
as it eliminates biclusters.
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2.3 Other Aggregation Methods

Gao & Akoglu [12] used the principle of Minimum Description Length to pro-
pose CoClusLSH, an algorithm that returns a hierarchical set of biclusters. The
hierarchical part can be seen as an aggregation step. This step is done based on
the LSH technique as a hash function. Candidates hashed to the same bucket
are then aggregated until no merging improves the final solution. Their work
is focused in finding biclusters in a checkerboard structure, that does not allow
overlapping, thus being not suitable for the kind of problem we are dealing with.

Liu et al. [8] proposed OPC-Tree, a deterministic algorithm to mine Order
Preserving Clusters (OP-Clusters), a general case of Order Preserving Sub Ma-
trices (OPSM) type of biclusters. They also have an additional step for creating
a hierarchical aggregation of the OP-Clusters. The Kendall coefficient is used to
determine which clusters should be merged and in which order the objects should
participate in the resultant OP-Cluster. The highest the Rank Correlation using
the Kendall coefficient, the highest the similarity between two OP-Clusters. The
merging is allowed according to a threshold that is reduced in a level-wise way.
OPC-Tree considers the order of the rows in the bicluster. In this work, we are
dealing with biclusters of coherent values. In this case, a perfect coherent values
bicluster keeps the order of its rows and the hierarchical step of OPC-Tree would
be able to be used in this case as well. But we are considering noisy datasets,
in which this assumption probably will not hold, thus the hierarchical step of
OPC-Tree is not suitable for the problem we are dealing with.

3 New Proposals for Aggregation

3.1 Aggregation with Single Linkage

Our first proposal receives as input a biclustering solution B̄, from enumeration
or from a result presenting high overlapping among its components. With this
solution, we transform each bicluster into a binary vector representation as fol-
lows: Given the dimensions of the dataset A ∈ Rn×m, each bicluster will be a
binary vector x of length n+m. For a bicluster B transformed into the binary
vector x, the first n positions represent the rows of the dataset A and if the
bicluster contains the ith row, xi = 1, otherwise xi = 0. The last m positions
represent the columns of the dataset A and if the bicluster contains the ith
column, xn+i = 1, otherwise xn+i = 0. After this transformation, we use the
Hamming distance to apply the single linkage clustering on the existing biclus-
ters. Notice that the Hamming distance on this transformation will just count
how many rows and columns are different among the two biclusters. In this case,
a non-maximal bicluster may be distant from the bicluster that covers its maxi-
mal area, thus impacting the quality of the results of this method of aggregation.
In this case, it is necessary that this proposal receives a biclustering solution B̄
containing only maximal biclusters.
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After choosing a cut on the dendrogram, we aggregate all biclusters that
belong to a junction using the function aggreg, defined as:

aggreg(B,C) = (Br ∪ Cr, Bc ∪ Cc), (2)

that is simply the union of rows / columns of the biclusters. It is important
to note that the aggreg function is associative, since it is based on the union
operation. Moreover, we want to highlight that the direct union of rows / columns
may include elements that should not be part of a bicluster. In Section 3.3 we
will present a way to remove rows / columns that may be interpreted as outliers.

3.2 Aggregation by Overlapping

It seems intuitive to aggregate the biclusters with an overlapping rate above
a defined threshold. This proposal is based on the aggregation by pairs: while
having two biclusters with an overlapping rate higher than a pre-determined
threshold th, we remove them from the set of biclusters, and include the re-
sult of the function aggreg, defined on Eq. 2, taking these two biclusters as the
arguments.

LetB,C,D, and E be biclusters. Note that forD = aggreg(B,C), ov(D,E) ≥
ov(B,E) and ov(D,E) ≥ ov(C,E). So, for all biclusters E where ov(B,E) ≥ th
or ov(C,E) ≥ th, we have ov(D,E) ≥ th. For this reason, the order of the
aggregation does not interfere on the final result. It is also important to note
that the new bicluster D can have ov(D,E) ≥ th, for some bicluster E where
ov(B,E) < th and ov(C,E) < th. In this aggregation proposal, maximal biclus-
ters will properly merge with non-maximal biclusters.

3.3 Outlier Removal

After aggregating the results, we need to process each final bicluster to look for
objects and / or attributes that may be interpreted as outliers. In this work,
this step will always be executed after the aggregation using any of our two
proposals.

Let B = (Br, Bc) be an aggregated bicluster, with |Br| = o, |Bc| = p. We
define a participation matrix P ∈ Zo×p, where each element pij indicates the
quantity of biclusters in which this element takes part in B. For example, if an
element is part of 15 biclusters that compose B, then its value on the P matrix
will be 15.

So, we will explain the process of outlier removal with the help of Figure 1. We
have two steps of outlier removal: one for the objects, the other for the attributes.
To remove possibly outlier objects, we take the mean and the standard deviation
of all columns on the participation matrix P. The left side of Figure 1 illustrates
this step. After that, we check the values of each element of the columns. If the
value is less than the mean minus one standard deviation, then we check this
element as a potential outlier. In Figure 1, we can see that the entire first row
was checked as potential outlier because 1 < 7.75− 4. If we mark the entire row
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Planilha1

Página 1

1 1 1 1 1 1 1 1
10 10 9 9 0 0 0 0
10 10 9 9 → 0 0 0 0
10 10 9 9 0 0 0 0

Mean 7.75 7.75 7 7
Std 4.5 4.5 4 4

(a) Calculating the mean 
and standard deviation of 

each column.

(b) All elements marked as 
potential outliers

Fig. 1: Example of outlier removal.

as a potential outlier, it is removed from the bicluster. In our example, that is
the case.

We execute the same process for the columns, calculating the mean, standard
deviation and checking for potential outliers on the rows. We remove the column
if it is entirely marked as a potential outlier.

4 Metrics for Biclustering

In this paper we will use only external metrics, except for the Gene Ontology
Enrichment Analysis (GOEA). External metrics compare a given solution with
a reference one. For an extensive comparison of external metrics for biclustering
solutions, the reader may refer to [15].

The Gene Ontology Project 1 (GO) is an initiative to develop a computational
representation of the knowledge of how genes encode biological functions at the
molecular, cellular and tissue system levels. The GOEA compares a set of genes
with known information. For example, given a set of genes that are up-regulated
under certain conditions, an enrichment analysis will find which GO terms are
over-represented (or under-represented) using annotations for that gene set2.
This method is commonly used to analyze results from biclustering techniques
on microarray gene expression datasets.

Precision, Recall and F-score are often used on information retrieval for
measuring binary classification [16]. If we take pairs of elements, we can extend
these metrics to evaluate clustering / biclustering solutions with overlapping. The
pairwise definition of Precision and Recall can be found in [18]. It is important to
highlight that these metrics do not consider the quantity of biclusters. Pairwise
Precision, or just Precision for simplicity, is the fraction of retrieved pairs that
are relevant; while Pairwise Recall, or just Recall for simplicity, is the fraction of
relevant pairs that are retrieved. The F-score is the harmonic mean of Precision
and Recall.

Clustering Error (CE ) is an external metric that considers the quantity of
biclusters in its evaluation. This metric severely penalizes a solution with more
biclusters than the reference, thus not being recommended for evaluating enu-
merative results. The definition and more details can be found in [15].

1 http://geneontology.org
2 http://geneontology.org/page/about Acessed on 2015, January, 16



On bicluster aggregation and its benefits for enumerative solutions 7

We propose the difference in coverage, that measures what the reference bi-
clustering solution covers and the found biclustering solution does not cover, and
vice versa. Although very similar, when compared with the pairwise definitions
of Precision and Recall, this metric gives a more intuitive idea of how two solu-
tions cover distinct areas of the dataset. It also can be computed much faster.
Let ∪B̄ =

⋃
Br

i ×Bc
i be the usual union set of a biclustering solution B̄. Let B̄

and C̄ be the found and the reference biclustering solutions, respectively. Then
the difference in coverage is given by:

dif cov(B̄, C̄) =
| ∪B̄ − ∪C̄ |+ | ∪C̄ − ∪B̄ |

m× n
. (3)

We will use this measure to verify how different an aggregated solution is
from the enumerative one.

5 Experiments

In our experiments, we employed three artificial datasets: art1, art2, and art3 ;
and two real datasets: GDS2587 and FOOD. We designed the artificial datasets
to present different scenarios with increasing difficulty. They have 1000 objects
and 15 attributes. Each entry is a random integer, drawn from a discrete uniform
distribution on the set {1, 2, ..., 100}. Then we inserted: 5 bicluster arbitrarily
positioned and without overlapping on art1 ; 5 bicluster arbitrarily positioned
and with a similar degree of overlapping on art2 ; and 15 bicluster arbitrarily
positioned and with different degrees of overlapping on art3.

For each bicluster, the quantity of objects was randomly drawn from the set
{50, . . . , 60}, and the quantity of attributes was randomly drawn from the set
{4, 5, 6, 7}. To insert a bicluster, we fixed the value of the first attribute and
obtained the values of the other attributes by adding a constant value to the
first column. This characterizes biclusters of coherent values. This constant value
was randomly drawn from the set {−10,−9, . . . ,−1, 1, . . . , 9, 10}.

GDS2587 3 is a microarray gene expression dataset, with 2792 genes and
7 samples, collected from the organism E. coli. We removed every gene with
missing data in any sample, and the data was normalized by mean centralization,
as usual in gene expression data analysis [19]. In this dataset we aim to validate
our contribution when devoted to microarray gene expression data analysis, as
it is considered a relevant application of biclustering methods.

FOOD4 is a dataset with 961 objects, which represent different foods, and
7 attributes, which represent nutritional information. As the values of each at-
tribute are in different ranges, we used the same pre-processing as Veroneze et al.
[6]. In this dataset our goal is to illustrate the usefulness of bicluster aggregation
in a different scenario and to verify if the aggregation leaves uncovered areas
that the enumeration has covered at first.

3 http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS2587
4 http://www.ntwrks.com/chart1a.htm
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5.1 Experiments on Artificial Datasets

Our goal is to verify the impact of noise in the enumeration of biclusters, and
how the aggregation can improve the quality of the final results. To this end, we
will add a Gaussian noise with µ = 0 and σ ∈ {0, 0.01, . . . , 1}, to each dataset,
and then run the RIn-Close algorithm. This procedure will be repeated for 30
times and all reported values will be the average of this 30 executions. We will
set RIn-Close to mine coherent values biclusters, with at least 50 rows and 4
columns. Also, we will use crescent values for ε due to the importance of the
parameter. If ε is too small, we may miss important biclusters expressing more
internal variance. If ε is too high, the biclusters may include unexpected objects
or attributes.

As we know the biclusters, we will use Precision, Recall and F-score to assess
the quality of the results after the enumeration. After that, we will perform the
aggregation on the results with the value of ε that led to an initial Precision
closest to 0.85. This value was chosen because if the Precision is too low, it
means that the ε value is allowing too many undesired objects or attributes in
the enumerated biclusters. In this case, the aggregation may not improve the
quality of the final results because their input is not of good quality. If the
Precision is too high, we will only be able to see improvements in the reduced
quantity of biclusters, but the aggregation may increase the Precision too.

We will consider the following algorithms as contenders:

Triclustering [13]. We set k to the true number of biclusters. The authors sup-
plied the code for this algorithm.

Merging and Deleting steps of MicroCluster [9]. To parameterize this algorithm,
we ran a grid search with the values in the set 0.15, 0.1, 0.05, getting 9 results
for each run. Also, as the aggregation step of the algorithm is composed of
two steps, merging and deleting, we ran each experiment twice: with the
merging step first (MD) and with the deleting step first (DM). Unless we
want to draw attention to some particular fact, we will report only the best
result. The authors supplied the code for this algorithm 5.

Single Linkage (see Section 3.1). We cut the dendrogram with the proper quan-
tity of biclusters: for art1 and art2, 5 biclusters; for art3, 15 biclusters.

Aggregation by Overlapping (see Section 3.2). We tested several values for the
rate of overlapping.

After getting the results for all executions of the listed algorithms, we will choose
the best result from each one and compare them using the CE metric.

Figure 2 shows the quantity of enumerated biclusters on the artificial datasets,
for several values of ε. In all datasets, for every value of ε, the behavior is the
same: as the noise increases the quantity of enumerated biclusters starts to in-
crease. In Figures 2a and 2b, we know that the real quantity of biclusters is 5,
but when the noise increases, the enumerated quantity reaches approximately
800 biclusters, depending on the value of ε. In Figure 2c, we can see that the

5 http://www.cs.rpi.edu/∼zaki/www-new/pmwiki.php/Software/Software
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0 0.2 0.4 0.6 0.8 1
0

200

400

600

700

σ

N
um

be
r 

of
 b

ic
lu

st
er

s

 

 

0.35

0.4

0.45

0.5

(b) art2

0 0.2 0.4 0.6 0.8 1
0

200

400

600

700

σ

N
um

be
r 

of
 b

ic
lu

st
er

s

 

 

0.2

0.25

0.3

0.35

(c) art3

Fig. 2: Quantity of enumerated biclusters by the variance of the Gaussian noise
in the artificial datasets. Each curve is parameterized by ε.

quantity of biclusters reaches high values too. At some level of noise, the number
of biclusters starts to decrease to a point that the algorithm is not able to find
any bicluster.
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(a) art1 Precision
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(d) art1 Recall
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(e) art2 Recall
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Fig. 3: Precision and Recall for the solutions of RIn-Close, with several values
of ε, by the variance of the Gaussian noise in the artificial datasets.

In Figure 3, we can see the quality of the enumeration without considering
the quantity of biclusters.

As we can see in Figure 3d, the noise has almost no interference in the recall
for art1. It means that this dataset has biclusters very well defined, that even
with some noise they are not missed. On the other hand, when the variance of
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the noise is too low, Figure 3a shows that the found biclusters contains more
elements than expected. It is happening because the parameter ε is high, allowing
some elements to be part of the biclusters even without being part of the original
solution. As the noise increases, less of these intruder elements are going to satisfy
the ε restriction to be thus included in some bicluster. In this dataset, the effect
of the noise were not so severe on the quality, given that the recall started to
decrease only when the variance of the noise was close to 1.

In dataset art2 the effect of noise can be better observed. Figure 3e shows
that the noise starts to affect the solutions very early. When ε = 3, the recall
starts to decrease very soon, with σ ≈ 0.5. However, for more relaxed values of
ε we can still see the decrease on the recall. Being the most difficult, dataset
art3 is the most affected by noise. Independently of the value of ε, the RIn-Close
was not able to find any biclusters after some levels of variance in the noise. For
example, when ε = 2, after σ ≈ 0.4 the Precision gets undefined. This happens
because the metric is not defined when the quantity of biclusters is zero. In
Figure 3f, we can see that the decline of the recall starts when σ ≈ 0.3 for ε = 2.

Now we will discuss the results of the aggregation with the previously listed
algorithms. As stated earlier, we will use the results from a value of ε that led to
an initial Precision close to 0.85. In this case, we have ε = 6, 4, 3 for art1, art2
and art3, respectively.
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Fig. 4: Solutions of aggregation as a function of the variance of the noise in
dataset art1. The scale on the right refers to quantity.

Figure 4a shows the quality of the aggregation with single linkage for dataset
art1. We can see that, with the proper number of biclusters, the aggregation
was able to get an almost perfect result. The same thing happened with the
aggregation by overlapping, reported in Figure 4b. Figure 4c shows the CE metric
for all solutions of aggregation. We can see that our proposals were capable of
producing the best performance on this dataset.

Figure 5a shows the quality of the aggregation with single linkage for the
dataset art2. This time, the solution was close to the maximum achievable per-
formance, but not so close as it was in art1. Figure 5b shows the quality of
the aggregation by overlapping for the same dataset. The quality of this solu-
tion is very similar to the one obtained with single linkage. Figure 5c shows the
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Fig. 5: Solutions of aggregation as a function of the variance of the noise in
dataset art2. The scale on the right refers to quantity.

CE metrics obtained by all the methods of aggregation. Again, our proposals
outperformed the other two algorithms.
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Fig. 6: Solutions of aggregation as a function of the variance of the noise in
dataset art3. The scale on the right refers to quantity.

Figures 6a and 6b show the quality of aggregation with single linkage and
by overlapping, respectively. We can see that this dataset is more challenging
than the previous ones. However, the aggregation was able to significantly re-
duce the quantity of biclusters, while keeping a good quality. Figure 6c shows
the CE metric for all aggregation methods. Initially MicroCluster had a better
performance, but our proposals were more robust to noise, getting a better result
when σ ' 0.4.

The aggregation was not only able to reduce the quantity of biclusters of the
enumeration, but also improve the quality of the final result. Now we are going
to verify the behavior of the aggregation in real datasets.

5.2 Experiments on Real Datasets

We will start with the GDS2587 dataset by running RIn-Close to enumerate its
coherent values biclusters. We set minRow = 50,minCol = 4. When ε < 2.8 no
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biclusters were found, and when ε = 3.0 the quantity of biclusters was already
huge. We found 23, 2.825 and 19.649 biclusters when ε = 2.8, 2.9, and 3.0,
respectively.
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Fig. 7: Dendrograms of the aggregation with single linkage on GDS2587 dataset.

Proceeding to the aggregation, Figure 7 shows the dendrograms of the aggre-
gation with single linkage. In this case, the cuts are straightforward, having 2, 4,
and 5 clusters respectively. The aggregation by overlapping with a rate of 75%
reached the same quantity of biclusters. We used these quantities to parameter-
ize the triclustering algorithm. The results of the aggregation with MicroCluster
were very similar, and they depended only on the γ parameter. We got 7, 8
and 11 biclusters when γ = 0.15, 0.1, and 0.05, respectively. We will now com-
pare the results with the gene ontology enrichment analysis. A bicluster is called
’enriched’ when any ontology term gets a p-value less than 0.01.

When ε = 2.8, except for triclustering (only the first bicluster was enriched),
all the algorithms returned only enriched biclusters. In fact, the four main en-
riched terms were always the same, sometimes on different orders but with very
close p-values.

Table 1: Enrichment analysis of one bicluster from the aggregation by overlap-
ping with rate of 70%, on GDS2587 dataset.

GO Term p-val counts definition
GO:0044464 0.00000000 39 / 774 Any constituent part of a cell, the basic structural

and functional unit of all organisms...
GO:0044444 0.00000011 19 / 608 Any constituent part of the cytoplasm, all of the

contents of a cell excluding the plasma membrane...
GO:0044424 0.00000350 19 / 578 Any constituent part of the living contents of a cell;

the matter contained within (but not including) the
plasma membrane...
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When ε = 2.9, all algorithms returned only enriched biclusters, including
triclustering. When ε = 3, all algorithms except for triclustering returned only
enriched biclusters. Triclustering returned 4 from 5 enriched biclusters.

Table 1 shows the main enriched terms of one bicluster from the aggregation
by overlapping after outlier removal, when ε = 2.8. In this case, the expert should
choose which solution fits better the goal of the data analysis.

We will now proceed to the analysis of the FOOD dataset. We are going to
verify how the aggregation changes the coverage of the dataset when compared
to the enumeration. As the aggregation will severely reduce the quantity of
final biclusters, it is important to see if it will leave uncovered areas that were
previously covered.

We replicated the experiment from Veroneze et al. [6] on this dataset and we
will use ε = 1.25 as recommended on that work. With minRow = 48,minCol =
2 and looking for coherent values biclusters, the quantity of enumerated biclus-
ters for ε = 1.25 is 8.676.
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Fig. 8: Dendrogram for the aggregation with single linkage when ε = 1.25 on
FOOD dataset.

Figure 8 shows the dendrogram of the aggregation with single linkage. We
can see that the cuts between 2 and 7 are acceptable. In fact, cutting in two
groups seems the best option, but it may be considered a small quantity of
biclusters. As from 4 to 5 the height is more pronounced, for the comparison
it seems acceptable to cut the dendrogram on 4 objects. The aggregation by
overlapping with a rate of 70% was also able to recover 4 aggregated biclusters.

MicroCluster with the deleting operation first was not able to properly ag-
gregate the biclusters, keeping more than 800 biclusters when η = 0.15. This
behavior is the opposite of what happened with the artificial datasets. There,
when the deleting operation came first the results were more effective. Here when
the merging operation came first, the aggregation was able to reach 13 to 27 bi-
clusters, depending on the γ parameter. As on the artificial datasets the best
parameters were η = γ = 0.15, for the comparison we will use this parameter-
ization with the merging operation occurring first, that gives us 13 biclusters.
For the triclustering algorithm we set k = 4, using insider information from the
aggregation by overlapping. Table 2 shows the comparison of difference in cover-
age (see Eq. 3) between the aggregated solutions with the enumerated solution
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Table 2: Difference in coverage of the solutions with the enumeration on FOOD
dataset.

Single Linkage MicroCluster Triclustering RIn-Close
By Ov. 12.50% 35.50% 70.31% 9.1%
Single Linkage - 46.60% 81.51% 20.17%
MicroCluster - - 45.73% 27.38%
Triclustering - - - 61.33%

from RIn-Close. We can see that the triclustering algorithm produces the most
distinct solution when compared with the enumerated solution obtained with
RIn-Close, exhibiting ≈ 61.33% of difference in coverage. The solutions from the
aggregation by overlapping and with single linkage are relatively close to each
other, as on the artificial datasets, showing a difference in coverage of ≈ 12.50%.
At the end, the closest solution to the RIn-Close results was the aggregation by
overlapping, with a difference in coverage of 9.1%. If we consider that this solu-
tion reduced the quantity of biclusters from 8.676 to 4 biclusters, the difference
in coverage of only 9.1% seems very promising.

6 Considering Remarks and Future Work

We have compared the performance of our proposals against the most similar
proposal in the literature, using artificial and real datasets. The artificial datasets
were characterized by a controlled structure of biclusters and were useful to show
that the aggregation can severely reduce the quantity of biclusters, while increas-
ing the quality of the final solution. Our proposals outperformed the compared
algorithms on the first two artificial datasets, and showed to be more robust to
noise on the third artificial dataset.

We also verified if the aggregation could get enriched biclusters in the case of
a gene expression dataset. For different values of ε on the RIn-Close algorithm,
we could see that the different methods of aggregation reached very similar
results. The main challenge of the aggregation with single linkage is to decide
where to cut the dendrogram, but as we could see, this task was straightforward
on the tested datasets. Except for the triclustering, all aggregations returned
only enriched biclusters. And finally, we applied the aggregation methods to the
FOOD dataset and analyzed how the aggregation changed the coverage area
when compared to the enumeration without aggregation. Triclustering led to
the most distinct result, and the aggregation by overlapping covered an area
very similar to the area covered by the enumeration.

We can conclude that the aggregation is strongly recommended when enu-
merating all biclusters from a dataset. The aggregation will not only significantly
reduce the quantity of biclusters, but will also reduce the fragmentation and in-
crease the quality of the final result. A post-processing step for outlier removal
brings additional robustness to the methodology. As a further step of the re-
search, we can adapt our proposals to work on an ensemble configuration. We
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can also extend this work to deal with time series biclusters, which require con-
tiguous attributes.

The authors would like to thank CAPES and CNPq for the financial support.

References

1. Y. Cheng and G. M. Church, “Biclustering of expression data.,” Proceedings of
International Conference on Intelligent Systems for Molecular Biology; ISMB. In-
ternational Conference on Intelligent Systems for Molecular Biology, vol. 8, pp. 93–
103, 2000.

2. Y. Jiong, H. Wang, W. Wang, and P. Yu, “Enhanced biclustering on expression
data,” in Bioinformatics and Bioengineering, 2003. Proceedings. Third IEEE Sym-
posium on, pp. 321–327, 2003.

3. K. Makino and T. Uno, “New algorithms for enumerating all maximal cliques.,”
in SWAT (T. Hagerup and J. Katajainen, eds.), vol. 3111 of Lecture Notes in
Computer Science, pp. 260–272, Springer, 2004.

4. T. Uno, M. Kiyomi, and H. Arimura, “Lcm ver. 2: Efficient mining algorithms for
frequent/closed/maximal itemsets,” in FIMI, vol. 126, 2004.

5. S. A., “In-close, a fast algorithm for computing formal concepts,” in the Seventeenth
International Conference on Conceptual Structures, 2009.

6. R. Veroneze, A. Banerjee, and F. J. V. Zuben, “Enumerating all maximal biclusters
in real-valued datasets,” arXiv:1403.3562v3, vol. abs/1403.3562, 2014.

7. G. Pandey, G. Atluri, M. Steinbach, C. L. Myers, and V. Kumar, “An associa-
tion analysis approach to biclustering,” in Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’09,
pp. 677–686, 2009.

8. J. Liu, J. Wang, and W. Wang, “Biclustering in gene expression data by tendency.,”
in CSB, pp. 182–193, IEEE Computer Society, 2004.

9. L. Zhao and M. J. Zaki, “Microcluster: Efficient deterministic biclustering of mi-
croarray data,” IEEE Intelligent Systems, vol. 20, no. 6, pp. 40–49, 2005.

10. S. C. Madeira and A. L. Oliveira, “Biclustering algorithms for biological data analy-
sis: A survey,” IEEE/ACM Trans. Comput. Biol. Bioinformatics, vol. 1, pp. 24–45,
Jan. 2004.

11. T. A., R. Sharan, and R. Shamir, “Biclustering algorithms: A survey,” in In Hand-
book of Computational Molecular Biology Edited by: Chapman & Hall/CRC Com-
puter and Information Science Series, 2005.

12. T. Gao and L. Akoglu, “Fast information-theoretic agglomerative co-clustering,”
in Databases Theory and Applications (H. Wang and M. A. Sharaf, eds.), vol. 8506
of Lecture Notes in Computer Science, pp. 147–159, Springer International Pub-
lishing, 2014.

13. B. Hanczar and M. Nadif, “Ensemble methods for biclustering tasks,” Pattern
Recognition, vol. 45, no. 11, pp. 3938 – 3949, 2012.

14. B. Hanczar and M. Nadif, “Improving the Biological Relevance of Biclustering for
Microarray Data in Using Ensemble Methods,” 2011 22nd International Workshop
on Database and Expert Systems Applications, pp. 413–417, Aug. 2011.

15. D. Horta and R. J. G. B. Campello, “Similarity measures for comparing bicluster-
ings,” Computational Biology and Bioinformatics, IEEE/ACM Transactions on,
vol. 11, pp. 942–954, Sept 2014.



16 On bicluster aggregation and its benefits for enumerative solutions

16. G. Salton, “Evaluation parameters,” The SMART Retrieval System, Experiments
in Automatic Document Processing, pp. 55–112, 1971.

17. C. J. van Rigsbergen, Information Retrieval. Englewood Cliffs: Prentice Hall, 1979.
18. D. Menestrina, S. E. Whang, and H. Garcia-Molina, “Evaluating entity resolution

results (extended version),” technical report, Stanford University, 2009.
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