
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Helena de Almeida Maia

Visual Rhythm-based Convolutional Neural Networks
and Adaptive Fusion for a Multi-stream Architecture

Applied to Human Action Recognition

Redes Neurais Convolucionais Baseadas em Ritmos
Visuais e Fusão Adaptativa para uma Arquitetura de
Múltiplos Canais Aplicada ao Reconhecimento de

Ações Humanas

CAMPINAS
2020

Helena de Almeida Maia

Visual Rhythm-based Convolutional Neural Networks and
Adaptive Fusion for a Multi-stream Architecture Applied to

Human Action Recognition

Redes Neurais Convolucionais Baseadas em Ritmos Visuais e
Fusão Adaptativa para uma Arquitetura de Múltiplos Canais

Aplicada ao Reconhecimento de Ações Humanas

Tese apresentada ao Instituto de Computação
da Universidade Estadual de Campinas como
parte dos requisitos para a obtenção do título
de Doutora em Ciência da Computação.

Thesis presented to the Institute of Computing
of the University of Campinas in partial
fulfillment of the requirements for the degree of
Doctor in Computer Science.

Supervisor/Orientador: Prof. Dr. Hélio Pedrini
Co-supervisor/Coorientador: Prof. Dr. Marcelo Bernardes Vieira

Este exemplar corresponde à versão final da
Tese defendida por Helena de Almeida Maia
e orientada pelo Prof. Dr. Hélio Pedrini.

CAMPINAS
2020

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Maia, Helena de Almeida, 1992-
 M28v MaiVisual rhythm-based convolutional neural networks and adaptive fusion for

a multi-stream architecture applied to human action recognition / Helena de
Almeida Maia. – Campinas, SP : [s.n.], 2020.

 MaiOrientador: Hélio Pedrini.
 MaiCoorientador: Marcelo Bernardes Vieira.
 MaiTese (doutorado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Mai1. Visão por computador. 2. Aprendizado de máquina. 3. Redes neurais

convolucionais. I. Pedrini, Hélio, 1963-. II. Vieira, Marcelo Bernardes. III.
Universidade Estadual de Campinas. Instituto de Computação. IV. Título.

Informações para Biblioteca Digital

Título em outro idioma: Redes neurais convolucionais baseadas em ritmos visuais e fusão
adaptativa para uma arquitetura de múltiplos canais aplicada ao reconhecimento de ações
humanas
Palavras-chave em inglês:
Computer vision
Machine learning
Convolutional neural networks
Área de concentração: Ciência da Computação
Titulação: Doutora em Ciência da Computação
Banca examinadora:
Hélio Pedrini [Orientador]
Rodrigo Luis de Souza da Silva
Tiago José de Carvalho
Esther Luna Colombini
Tiago Fernandes Tavares
Data de defesa: 27-10-2020
Programa de Pós-Graduação: Ciência da Computação

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0002-8253-9004
- Currículo Lattes do autor: http://lattes.cnpq.br/0942146941809337

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Helena de Almeida Maia

Visual Rhythm-based Convolutional Neural Networks and
Adaptive Fusion for a Multi-stream Architecture Applied to

Human Action Recognition

Redes Neurais Convolucionais Baseadas em Ritmos Visuais e
Fusão Adaptativa para uma Arquitetura de Múltiplos Canais

Aplicada ao Reconhecimento de Ações Humanas

Banca Examinadora:

• Prof. Dr. Hélio Pedrini
IC/Unicamp

• Prof. Dr. Rodrigo Luis de Souza da Silva
DCC/UFJF

• Prof. Dr. Tiago José de Carvalho
IFSP

• Profa. Dra. Esther Luna Colombini
IC/Unicamp

• Prof. Dr. Tiago Fernandes Tavares
FEEC/Unicamp

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 27 de outubro de 2020

You can tell a lot about a person from his
biography.

(Phill Dunphy, Phil’s-osophy)

Acknowledgements

This work was partially funded by the Coordination for the Improvement of Higher Edu-
cation Personnel (CAPES), Finance Code 001, and by the São Paulo Research Foundation
(FAPESP), grant #2017/09160-1. I thank NVIDIA for the donation of a GPU as part of
the GPU Grant Program.

I would like to thank the professors and staff from the Institute of Computing (IC)
at the University of Campinas (UNICAMP). In particular, I thank my advisor, Hélio
Pedrini, for guiding me during this Ph.D. stage and for being a dedicated and empathic
professor. I also thank Denise, Marcus and Wilson for being so helpful with the program
requirements. I thank my co-advisor from the Federal University of Juiz de Fora (UFJF),
Marcelo Bernardes, for his guidance since the Master’s stage and thorough proofreading
of my texts.

I am thankful to my colleagues from the Laboratory of Visual Informatics (LIV) and
from the Group for Computer Graphics, Image and Vision (GCG) for our collaborative
projects and technical discussions, especially Marcos, with whom is always easy to col-
laborate.

I am very thankful to my family. My parents for the support, my sisters, with whom
I talked almost every day during these five years, my lovely nieces Isadora and Elisa, and
my unborn nephew Apolo. I am grateful to my grandmother Ana for being by my side
when I decided to move to Campinas. I thank Aza for the privilege of being together with
a scientist who provided me many rich discussions and for being so supportive during
these years. I thank his mother, Vera, for encouraging me to travel to the conferences.

I thank my friends, Bel, Bruno, Carol, Dani, Laura, Leticia, Luiz, Ronaro, Sandra
and Weslley, for the oldest and invaluable friendship, and Caetano for the talks and
music sharing. I thank the DPG group for the gaming sessions. I thank my friends from
Campinas Carol, Fabi, Luís, Mari, Otávio, Peixe and Samuka for their friendship during
this time. I also thank my first friends from Campinas, my roommates from the first
house.

Resumo

A grande quantidade de dados de vídeos produzidos e divulgados todos os dias torna a
inspeção visual por um operador humano impraticável. No entanto, o conteúdo desses
vídeos pode ser útil para várias tarefas importantes, como vigilância e monitoramento
de saúde. Portanto, métodos automáticos são necessários para detectar e compreender
eventos relevantes em vídeos. O problema abordado neste trabalho é o reconhecimento
das ações humanas em vídeos que visa classificar a ação que está sendo realizada por
um ou mais atores. A complexidade do problema e o volume de dados de vídeo sugerem
o uso de técnicas baseadas em aprendizado profundo, no entanto, ao contrário de pro-
blemas relacionados a imagens, não há uma grande variedade de arquiteturas específicas
bem estabelecidas nem conjuntos de dados anotados tão grandes quanto aqueles baseados
em imagens. Para contornar essas limitações, propomos e analisamos uma arquitetura de
múltiplos canais composta de redes baseadas em imagens pré-treinadas na base ImageNet.
Diferentes representações de imagens são extraídas dos vídeos que servem como entrada
para os canais, a fim de fornecer informações complementares para o sistema. Neste tra-
balho, propomos novos canais baseados em ritmo visual que codificam informações de
mais longo prazo quando comparados a quadros estáticos e fluxo óptico. Tão importante
quanto a definição de aspectos representativos e complementares é a escolha de métodos
de combinação adequados que explorem os pontos fortes de cada modalidade. Assim,
nós também analisamos diferentes abordagens de fusão para combinar as modalidades.
Para definir os melhores parâmetros de nossos métodos de fusão usando o conjunto de
treinamento, temos que reduzir o sobreajuste em modalidades individuais, caso contrário,
as saídas 100% precisas não ofereceriam uma representação realista e relevante para o
método de fusão. Assim, investigamos uma técnica de parada precoce para treinar redes
individuais. Além de reduzir o sobreajuste, esse método também reduz o custo de treina-
mento, pois normalmente requer menos épocas para concluir o processo de classificação, e
se adapta a novos canais e conjuntos de dados graças aos seus parâmetros treináveis. Os
experimentos são realizados nos conjuntos de dados UCF101 e HMDB51, que são duas
bases desafiadoras no contexto de reconhecimento de ações.

Abstract

The large amount of video data produced and released every day makes visual inspection
by a human operator impracticable. However, the content of these videos can be useful for
various important tasks, such as surveillance and health monitoring. Therefore, automatic
methods are needed to detect and understand relevant events in videos. The problem
addressed in this work is the recognition of human actions in videos that aims to classify
the action that is being performed by one or more actors. The complexity of the problem
and the volume of video data suggest the use of deep learning-based techniques, however,
unlike image-related problems, there is neither a great variety of specific well-established
architectures nor annotated datasets as large as image-based ones. To circumvent these
limitations, we propose and analyze a multi-stream architecture containing image-based
networks pre-trained on the large ImageNet. Different image representations are extracted
from the videos to feed the streams, in order to provide complementary information for
the system. Here, we propose new streams based on visual rhythm that encode longer-
term information when compared to still frames and optical flow. As important as the
definition of representative and complementary aspects is the choice of proper combination
methods that explore the strengths of each modality. Thus, here we also analyze different
fusion approaches to combine the modalities. In order to define the best parameters of
our fusion methods using the training set, we have to reduce overfitting in individual
modalities, otherwise, the 100%-accurate outputs would not offer a realistic and relevant
representation for the fusion method. Thus, we investigate an early stopping technique to
train individual networks. In addition to reducing overfitting, this method also reduces the
training cost, since it usually requires fewer epochs to complete the classification process,
and adapts to new streams and datasets thanks to its trainable parameters. Experiments
are conducted on UCF101 and HMDB51 datasets, which are two challenging benchmarks
in the context of action recognition.

List of Figures

1.1 Examples of action recognition applications. 21
1.2 Examples of the “throw” class from HMDB51 dataset that present one

or more of the following challenges: cluttered background, severe camera
motion, poor lighting condition and poor clip quality. 21

1.3 Examples of the “smile” and “laugh” classes from HMDB51. The first ex-
ample shows a broad smile with head motion. The second one depicts a
soft laughing, whereas the third one shows a hard laughing involving more
movement. Note that grinning and soft laughing are difficult to differentiate. 22

1.4 Example of the “throw” class. Note that, although there is a skateboard in
the scene, the actor is not interacting with it. 23

2.1 Pair of consecutive frames from an HMDB51 video of the class “pushup”
and corresponding optical flow images using the TV-L1 method. 29

2.2 Examples of visual rhythm images generated for a video of the “Cricket-
Shot” class from the UCF101 dataset. The central row/column of each
frame becomes a slice in the resulting image. Adapted from [70]. 30

2.3 Visual rhythm construction using a zig-zag scheme. Extracted from [77] . . 31
2.4 Separating hyperplane with maximum margin in a two-dimensional space.

Thicker squares and circles represent the nearest samples or support vec-
tors. Adapted from [25]. 31

2.5 Inception V3 architecture and modules [123]. Blue, orange and gray
rounded rectangles represent convolutional, pooling and fully-connected
layers, respectively. 34

2.6 Two-stream architecture [113] composed of two parallel CNNs, the spatial
and temporal streams. 36

3.1 Visual rhythm of the action walking, adapted from [128]. The braided
pattern corresponds to the leg motion. 44

4.1 Examples of HMDB51 [55] class types. (a,b) General Facial Actions; (c,d)
Facial Actions with Object Manipulation; (e,f) General Body Movements;
(g,h) Body Movements with Object Interaction; (i,j) Body Movements for
Human Interaction. 52

4.2 Length frequency on HMDB51 dataset. 53
4.3 Examples of UCF101 [116] class types. (a,b) Human-Object Interaction;

(c,d) Body-Motion Only; (e,f) Human-Human Interaction; (g,h), Playing
Musical Instruments (g,h); (i,j) Sports. 54

4.4 Length frequency on UCF101 dataset. 55

4.5 Number of clips per class averaged over the splits for training and test sets
on UCF101. The horizontal brown line indicates the average number of
clips over the classes. 56

4.6 Number of clips per class in the training set of Kinetics-600. The horizontal
brown line indicates the average number of clips over the classes. 57

4.7 Examples of Kinetics-600 [13] class types. (a,b) Singular Person; (c,d)
Person-Person; (e,f) Person-Object. 58

5.1 Overview of our three-stream basic method for action recognition. Adapted
from [24]. 60

5.2 Examples of horizontal-mean and vertical-mean slices, extracted from [24].
The slices are defined as the average of columns/rows. They were resized
for illustration purposes. 61

5.3 Example of vertical-mean rhythm. The jth row of the vertical-mean rhythm
represents the evolution of the average value of the jth row in the video over
time. The slices were resized for illustration purposes. 61

5.4 A moving object considering two consecutive frames and horizontal-mean
slices. Parallel movement is better captured in the slice. Extracted from [24]. 62

5.5 Example of frame and rhythms from a Kinetics video of the “running on
treadmill” class. The horizontal-mean rhythm presents a wavy pattern that
better characterizes the action. Extracted from [70]. 63

5.6 Fragments from the UCF101 that show the significant variation in appear-
ance in the two halves of the videos. Each column contains a frame from the
first and the second halves of the same video, respectively. Major changes
are: the background change in the first video, different actors present in
each frame in the second one and the balls are not in the first frame from
the third video. Extracted from [24]. 64

5.7 Modalities used in our three-stream network. The object silhouette can be
seen in RGB image and optical flow, but not in visual rhythm. Extracted
from [70]. 65

5.8 Stacking: the vectors computed by the streams are fused using fully con-
nected layers to obtain the final prediction for each video. The sizes of
the input and output are based on the number of classes in the dataset.
Extracted from [70]. 66

6.1 LVR stream composed of two stacked CNNs. The first one computes a 1D
descriptor for each video frame. The second one predicts the action based
on the 2D concatenation of the descriptors. The output of the latter CNN
is an m-dimensional score vector, the final LVR response. Adapted from [72]. 70

6.2 An illustration of the three distinct positions considered to extract the
features in the Inception architecture (Figure 2.5). Each position represents
a different level of abstraction. These features compose the LVR0, LVR1

and LVR2 rhythms. 71

6.3 LVR extraction. (a) We produce 10 new samples from each frame i using
cropping and horizontal flipping techniques. The extractor CNN (CNN1)
receives each of these 10 samples as input at a time, generating three slices
per sample. (b) The corresponding slices (same technique and depth) are
combined to form a rhythm image. The dimensions of the rhythm are
modified to match the Inception input size. To deal with the disparity
between the rhythm height and width, we apply different techniques for
each dimension. This process generates 30 different rhythms per video to
be used in the second CNN. 73

7.1 Evolution of the stream-training accuracies throughout the epochs in the
first split of (a) UCF101 and (b) HMDB51. All streams were trained for
250 epochs. 79

7.2 List of the 5 easiest (highest scores) and 5 hardest (smallest scores) classes
for each modality on UCF101. We use the stream-test recall per class
(horizontal axis) averaged over all splits. 84

7.3 List of the 5 easiest (highest scores) and 5 hardest (smallest scores) classes
for each modality on HMDB51. We use the stream-test recall per class
(horizontal axis) averaged over all splits. 88

7.4 Interrater agreement for every possible r-combination of the 6 streams with
r ∈ {3, 4, 5, 6} on UCF101 and HMDB51. Vertical lines indicate the end
of each combination group with regards to r. 90

7.5 Class recall per stream on UCF101 averaged over all splits. The scores
were ordered according to the maximum recall in each class. UCF101 was
divided into two groups for illustration purposes, here we show the first 51
classes. 91

7.6 Class recall per stream on UCF101 averaged over all splits. The scores
were ordered according to the maximum recall in each class. UCF101 was
divided into two groups for illustration purposes, here we show the last 50
classes. 92

7.7 Class recall per stream on HMDB51 averaged over all splits. The scores
were ordered according to the maximum recall in each class. 93

7.8 Fusion methods on UCF101 and HMDB51 using every possible r-
combination of the 6 streams, where r ∈ {2, 3, 4, 5, 6}. Vertical lines in-
dicate the end of each combination group with regards to r. 95

7.9 Class recall for the combination RGB* + OF + AVR + LVR1 + LVR2

compared to the maximum recall among the streams on UCF101. The
scores were averaged over all splits. We follow the same order used in
Figure 7.5. UCF101 was divided into two groups for illustration purposes,
here we show the first 51 classes. Green bars indicate an increase in the
recall value from individual stream to the fusion. Red bars indicate a
decrease. 98

7.10 Class recall for the combination RGB* + OF + AVR + LVR1 + LVR2

compared to the maximum recall among the streams on UCF101. The
scores were averaged over all splits. We follow the same order used in
Figure 7.6. UCF101 was divided into two groups for illustration purposes,
here we show the last 50 classes. Green bars indicate an increase in the
recall value from individual stream to the fusion. Red bars indicate a
decrease. 99

7.11 Class recall for the combination RGB* + OF + AVR + LVR0 + LVR1 +
LVR2 compared to the maximum recall among the streams on HMDB51.
The scores were averaged over all splits. We follow the same order used
in Figure 7.7. Green bars indicate an increase in the recall value from
individual stream to the fusion. Red bars indicate a decrease. 100

List of Tables

2.1 Summary of some diversity measures adapted from [155]. “↑/↓” indicates
that the higher/lower the score, the higher the diversity. The “range” col-
umn indicates the measure interval and “pairwise” indicates whether it is
taken from pairs or from the entire ensemble. A brief description for each
measure is also presented in the table. 38

2.2 Hit-and-miss table [30]. 39

3.1 Taxonomy for action recognition approaches. The representation and clas-
sification stages are illustrated as green and red rectangles, respectively.
“HC” refers to handcrafted process and “ML” to machine learning-based
techniques. 42

4.1 Kinetics statistics. “Train”, “Validation” and “Test” columns represent the
number of clips per class assigned for each set. “Total” and “Classes” refer
to the total number of clips and number of classes in the corresponding
version. Adapted from [14]. 57

4.2 Summary of some popular datasets for action recognition. The table con-
tains the dataset name, release year, number of classes, number of distinct
videos, number of clip labels (single label)/temporal annotations (multil-
abel), whether is multilabel and trimmed, and the dataset keywords. 59

5.1 Results and comparison of different approaches used for each stream and
combinations. Cells on bold represents the overall highest accuracy rates,
whereas underlined cells consist of the best individual approaches. 67

5.2 AVR stream results using different pre-training datasets and the Inception
V3. 68

5.3 Different strategies for fusing the outputs of the three streams. 68

6.1 Inception V3 architecture with extra pooling layers to produce intermedi-
ate outputs. Magenta, yellow and green rows represents LVR0, LVR1 and
LVR2 feature vectors, respectively. The pooling layers do not affect original
connections. 71

6.2 Individual Results. Cells on bold represents the overall highest accuracy
rate. 74

6.3 Fusion of spatial, temporal and visual rhythm streams. Cells on bold rep-
resent the overall highest accuracy rate, whereas underlined cells consist of
combinations that present satisfactory results at a lower computational cost. 75

6.4 Fusion of visual rhythm approaches using arithmetic average. The top-3
combinations are highlighted in bold. The underlined values correspond to
the combination with a good trade-off between accuracy and computational
cost. 75

6.5 Fusion of the best visual rhythm combinations and the spatial and temporal
stream. 76

6.6 Comparison of accuracy rates (%) for UCF101 and HMDB51 datasets.
Cells on bold represents the overall highest accuracy rates, whereas under-
lined cells consist of the best results using only ImageNet to pre-train the
network. The works are ordered by their publication year. 77

7.1 Stream-training and stream-test accuracies (%) at the 250th epoch for each
dataset in Split 1. 78

7.2 Experiments on UCF101 dataset in Split 1 with different δ values. For
these experiments, we use a fixed patience s = 7. The column “e∗” shows
the best epoch found for each δ. The column “acc” contains the accuracy
of the training subset at e∗. Cells on bold represent the selected δ for each
modality. 80

7.3 Experiments on UCF101 dataset in Split 1 with different s values. For each
modality, we use the δ value highlighted in Table 7.2. Column “e∗” shows
the best epoch found for each s. Column “acc” contains the accuracy of
the training subset at e∗. Cells on bold represent the selected s for each
modality. 81

7.4 Experiments on HMDB51 dataset in Split 1 with different δ values. For
these experiments, we use a fixed patience s = 7. Column “e∗” shows the
best epoch found for each δ. Column “acc” contains the accuracy of the
training subset at e∗. Cells on bold represent the selected δ for each modality. 81

7.5 Experiments on HMDB51 dataset in Split 1 with different s values. For
each modality, we use the δ value highlighted in Table 7.4. Column “e∗”
shows the best epoch found for each s. Column “acc” contains the accuracy
of the training subset at e∗. Cells on bold represent the selected s for each
modality. 82

7.6 Individual results after retraining on UCF101 (left) and HMDB51 (right).
Column “(δ, s)” contains the parameters for the early stopping procedure
selected after the analysis in Split 1. “e∗” refers to the best epoch found
for each split. “Train” and “Test” refer to the training (training subset +
validation set) and test accuracy after the retraining. 83

7.7 Top-5 class confusion rates per stream on UCF101. “Confusion (%)” col-
umn represents the proportion of samples from “Ground Truth” class that
were classified as “Prediction” class. The percentage rates are given by the
average of the split rates. 86

7.8 Top-5 class confusion rates per stream on HMDB51. “Confusion (%)” col-
umn represents the proportion of samples from “Ground Truth” class that
were classified as “Prediction” class. The percentage rates are given by the
average of the split rates. 87

7.9 Pairwise complementarity Comp(ci, cj) (left) and kappa-statistic κp(ci, cj)
(right) on UCF101 dataset averaged over the splits. The stream in the
row corresponds to ci and cj is the stream in the column. Recall that the
complementarity is noncommutative, in contrast to the kappa-statistic. . . 89

7.10 Pairwise complementarity Comp(ci, cj) (left) and kappa-statistic κp(ci, cj)
(right) on HMDB51 dataset averaged over the splits. The stream in the
row corresponds to ci and cj is the stream in the column. Recall that the
complementarity is noncommutative, in contrast to the kappa-statistic. . . 89

7.11 Meta-test accuracy rates of the top-5 best combinations on UCF101 using
the SVM fusion. Column “(C,ms,k[, γ])” contains the SVM parameters
found with the grid search strategy, where “ms” and “k” refer to the multi-
class strategy and kernel type, respectively. For RBF kernel, we also show
the γ value. 96

7.12 Meta-test accuracy rates of the top-5 best combinations on HMDB51 using
the SVM fusion. Column “(C,ms,k[, γ])” contains the SVM parameters
found with the grid search strategy, where “ms” and “k” refer to the multi-
class strategy and kernel type, respectively. For RBF kernel, we also show
the γ value. 97

A.1 Toy example: cj gives an almost perfect set of predictions whereas ci fails
in most samples. 118

B.1 The complete list of HMDB51 classes with the corresponding indices. . . . 120
B.2 The complete list of UCF101 classes with the corresponding indices. 121
B.3 List of every r-combination (r ∈ {2, 3, 4, 5, 6}) with the corresponding in-

dices using the six streams. 122

List of Abbreviations and Acronyms

1D One-dimensional

2D Two-dimensional

3D Three-dimensional

ATUS American Time Use Survey

AVA Atomic Visual Actions

AVR Adaptive Visual Rhythm

BoF Bag of Features

C-SVC C-Support Vector Classification

C3D Three-dimensional Convolutional Network

CNN Convolutional Neural Network

DT Dense Trajectories

DTPP Deep networks with Temporal Pyramid Pooling

FC Fully Connected

FV Fisher-Vectors

GBH Gradient Boundary Histograms

HAR Human Action Recognition

HC HandCrafted

HMDB Human Motion DataBase

HOF Histogram of Optical Flow

HOG Histogram of Oriented Gradients

I3D Inflated 3D

iDT improved Dense Trajectories

LBP Local Binary Pattern

LSTM Long Short-Term Memory

LVR Learnable Visual Rhythm

MBH Motion Boundary Histogram

MBP Motion Binary Pattern

ML Machine Learning

MOMP Motion of Oriented Magnitude Pattern

OF Optical Flow

OvA One-versus-All

OvO One-versus-One

OvR One-versus-Rest

PCA Principal Component Analysis

RBF Radial Basis Function

ReLU Rectified Linear Unit

RGB Red-Green-Blue

RGB-D Red-Green-Blue-Depth

RoI Regions of Interest

SGD Stochastic Gradient Descent

STIP Space-Time Interest Point

SVM Support Vector Machine

TSN Temporal Segment Networks

TV Total Variation

VLAD Vector of Locally Aggregated Descriptors

VLBP Volume Local Binary Pattern

VR Visual Rhythm

VRTD Visual Rhythm Trajectory Descriptor

XOR eXclusive OR

Contents

1 Introduction 20
1.1 Problem and Motivation . 20
1.2 Scope and Delimitation . 22
1.3 Objectives and Contributions . 23
1.4 Research Questions . 24
1.5 Publications . 25
1.6 Text Organization . 26

2 Fundamentals 27
2.1 Action . 27
2.2 Optical Flow . 28
2.3 Visual Rhythm . 29
2.4 Support Vector Machine . 31
2.5 Convolutional Neural Network . 32
2.6 Early Stopping . 33
2.7 Multi-stream Architecture . 35
2.8 Stacking . 36
2.9 Diversity Measures . 37

3 Related Work 41
3.1 Traditional Approaches . 42
3.2 Representation Learning . 45
3.3 Summary . 50

4 Benchmarks 51
4.1 HMDB51 . 51
4.2 UCF101 . 54
4.3 Kinetics . 56
4.4 Other Datasets . 58

5 Adaptive Visual Rhythm 60
5.1 Adaptive Visual Rhythm . 60
5.2 Improved Spatial Stream . 64
5.3 Kinetics Pre-training . 64
5.4 Stacking . 65
5.5 Results . 66

6 Learnable Visual Rhythm 70
6.1 Learnable Visual Rhythm . 70
6.2 Results . 72

7 Analysis and Fusion 78
7.1 Overfitting . 78
7.2 Analysis . 82
7.3 Fusion . 94

8 Conclusions and Future Work 101

Bibliography 104

A Diversity Measures - Demonstration 118

B Reference Lists 120

20

Chapter 1

Introduction

In this chapter, we introduce the target problem and define the scope of our work. We
also present our main objectives, contributions and research questions. We conclude the
chapter with a list of publications and an outline of the remaining text.

1.1 Problem and Motivation

Over the past few years, a large amount of video data has been produced and released
due to the easy access to both devices for capturing new data such as video cameras
and mobiles, and streaming platforms such as YouTube for sharing. According to data
from 2019 [119], YouTube alone is responsible for an average of 500 hours of videos being
uploaded per minute, over twenty times higher than 2009. Since the analysis of this large
amount of data by human operators may be stressful and may involve sensitive content,
automatic procedures are needed to address related problems.

The problem addressed in this work is the recognition of human actions in videos
(HAR - Human Action Recognition) that aims to classify the action being performed
by one or more actors based on a set of learned classes. The understanding of human
activity has a wide range of applications, particularly due to the availability of digital
cameras in environments such as airports, train, stadiums, hospitals, among others. Some
applications, illustrated in Figure 1.1, are listed as follows:

• Intelligent surveillance systems [46,120]: use videos from security cameras to detect
unusual and undesired events, such as accidents or crimes. Analysis of the activi-
ties in the video can help distinguish between normal and anomalous events, and
potentially classify the type of anomaly.

• Human-computer interaction systems [36, 102]: must understand the interaction of
the users with itself to perform a specific procedure or provide some information,
such as directions or recommendations. Recognition of the users’ actions may be
crucial in determining the most appropriate response to the situation.

• Smart home security [3, 57, 63, 115]: allows the users to monitor and control their
houses through devices connected to the Internet. In particular, these systems
can be used for elderly healthcare monitoring to detect falls, reducing the interval

21

between the occurrence and help arrival. Once again, the classification of normal
and anomalous events is the key to this type of system.

Intelligent surveillance [120] - shooting Human-computer interaction [102] Fall detection [57]

Figure 1.1: Examples of action recognition applications.

Similar to other video-based problems, the recognition of human actions faces some
challenges related to difficult scene conditions, such as occlusions, background clutter,
camera motion and lighting changes, which affect how the actions are seen in the video
(Figure 1.2).

Figure 1.2: Examples of the “throw” class from HMDB51 dataset that present one or more
of the following challenges: cluttered background, severe camera motion, poor lighting
condition and poor clip quality.

The HAR problem also has three specific challenges: (i) the complexity of the action
concept, (ii) dealing with intra and inter-class variations and (iii) understanding person-
person and person-object interactions. These challenges are further detailed as follows:

(i) Complex concept: As we will discuss in Sections 1.2 and 2.1, the action definition
is very complex and may depend on the context. In fact, the definition seems to
gain a new perspective as new datasets are proposed and it is quite common to find
literature references that dedicate a section to define what is meant by the term
“action”, even in recent HAR surveys [42, 75, 94]. This abstract concept hampers
the definition of standard datasets for evaluation, such as the ImageNet for image
classification. As a consequence, it also difficults the generalization of findings.

(ii) Variations of the same action × very similar classes: The same action can be
performed at different paces and ways by different actors. On the other hand, there

22

are distinct classes that are difficult to differentiate, such as “laugh” and “smile”
(Figure 1.3). Therefore, the method must be able to discern what is an intra-class
variation and what is a distinct action.

“smile”

“laugh”

“laugh”

Figure 1.3: Examples of the “smile” and “laugh” classes from HMDB51. The first example
shows a broad smile with head motion. The second one depicts a soft laughing, whereas
the third one shows a hard laughing involving more movement. Note that grinning and
soft laughing are difficult to differentiate.

(iii) Understanding interactions: Some actions are characterized by the involvement
of two or more actors, or objects, such as “MilitaryParade” and “PlayingGuitar”.
The method has to identify, even if implicitly, that there is an interaction between
the actors and objects. The presence of the skateboard in the scene, for instance,
does not imply in a skateboarding action, as we can see in Figure 1.4. In fact, the
depicted example corresponds to the “throw” class.

1.2 Scope and Delimitation

An action can be defined as a sequence of movements performed to accomplish a specific
purpose. Nonetheless, it is still a quite vague definition, leaving room for various inter-

23

Figure 1.4: Example of the “throw” class. Note that, although there is a skateboard in
the scene, the actor is not interacting with it.

pretations. Therefore, an initial delimitation of what is considered an action in this work
and a consequent delimitation of our target problem are of paramount importance.

First, the spatial and temporal location of the action in the video are not part of our
scope. Our recognition is based only on RGB information, without depth (RGB-D) or
audio. We only consider trimmed and single-label videos and classify the entire scene
without any spatial segmentation. In addition to the action definition, another aspect
that diverges among different researches is the granularity of the action, that is, whether
it is as primitive as “raising the left arm” or as complex and composed as “playing soccer”.
This granularity is reflected in the average duration of the actions, although some of them
can be recognized in shorter time. Here, we consider a coarser granularity with actions
that take a few tens of seconds to be recognized.

We work with uncontrolled and realistic scenarios. As a consequence, actions may
include interactions with other actors or objects, and cluttered backgrounds. There is
no explicit limit to the number of actors involved, however, this research is not focused
on crowds. Both the involved actors/objects and the elements of the scene may be clues
to recognize the action. They compose the so-called scene structure. A more-in-depth
discussion regarding the definition of actions will be presented in the following chapters.

1.3 Objectives and Contributions

Deep networks have been widely explored for the action recognition problem in videos.
However, the higher cost of video-based deep networks and the absence of datasets as large
as image-based ones have led the researchers to explore image networks for the problem.

Following this trend, we propose a new image-based network inspired by the two-
stream architecture [113]. This architecture is composed of two parallel deep networks
working with different image modalities. Its central idea is to explore the strengths of
the image modalities by combining their respective stream decisions. Thus, our main
objective is to provide complementary information for both streams in order to capture
new aspects of the actions. As specific goals, we can mention (i) the evaluation of visual
rhythm approaches in the multi-stream framework, (ii) the analysis and reduction of
overfitting in the streams and (iii) the evaluation of the overfitting impact on trainable

24

fusions.
Our main contributions are listed as follows:

1. Multi-stream framework based on visual rhythm: The two-stream architec-
ture is based on appearance and motion, represented by a single RGB frame and
10 optical flow images, respectively. The combination of both improves the overall
performance. Our proposal introduces the Visual Rhythm (VR) modality into the
architecture, which consists of a compact 2D representation of the video constructed
by the concatenation of features extracted from each frame. With this new modal-
ity, we aim to provide longer-term information to the network. In contrast to RGB
and optical flow, the VR represents the entire video in a single image. Since the
VR has no temporal limit, very long videos result in equally wide VRs, generating
a memory bottleneck. However, since we are working with trimmed videos of a few
tens of seconds, it is possible to represent them with appropriately-sized VR images.

2. A novel method to construct visual rhythms: VR enables monitoring the
development of a particular feature throughout the time. The key for an adequate
VR is the choice of a proper feature according to the target problem. Generally,
these features are extracted in a handcrafted fashion, such as the diagonal or a color
histogram of each frame. Here, we propose a novel method called Learnable Visual
Rhythm (LVR) to extract frame-level features for the VR. It consists of a method
based on Convolutional Neural Networks (CNNs), which is able to capture complex
patterns in the frames.

3. Extensive study on individual performances and complementarity: We
carry out a detailed analysis on the individual behavior of the streams regarding the
action classes, showing their best/worst cases and the most frequent confusions. We
also analyze every possible combination of streams by exploring diversity measures.
Although these measures are not used to support structural decisions, it provides
insights about the complementarity of the streams.

4. Adaptive fusion: For our multi-stream architecture, we explore fusion methods
with trainable parameters. The major goal of this strategy is to adapt the fusion
to different datasets and combinations of streams. This adaptive fusion learns the
best weights for each stream based on the training set. Thus, it benefits from the
modality that is most suitable for a specific scenario. The overfitting of the streams
may be an obstacle to the adaptive fusion, as there would be a great disparity
between the training and test inputs that it has to combine. As such, we assess an
early stopping protocol for the streams to reduce the effect of overfitting.

1.4 Research Questions

Our central hypothesis is that a 2D deep network can be used to find patterns on an image
with heterogeneous dimensions, the visual rhythm. We guide our research by means of
the following investigative questions:

25

Q1. Can visual rhythm, as a longer-term feature, provide complementary information
to characterize the action in a multi-stream scenario?

Q2. Does the temporal concatenation of the outputs generated by an image CNN (Learn-
able VR) present relevant patterns to characterize an action?

Q3. Can the Learnable VR outperform our baseline Adaptive VR?

Q4. Can the early stopping protocol reduce the overfitting on individual streams and
improve the fusion performance?

1.5 Publications

The following papers were published since the beginning of our research. They are ordered
by the publication year. Papers 1 and 4 are further detailed in Chapter 5 and paper 3 in
Chapter 6.

1. D. T. Concha, H. A. Maia, H. Pedrini, H. Tacon, A. S. Brito, H. L. Chaves,
and M. B. Vieira. Multi-Stream Convolutional Neural Networks for Action
Recognition in Video Sequences Based on Adaptive Visual Rhythms. In
IEEE International Conference on Machine Learning and Applications,
Orlando, FL, USA, Dec. 2018. IEEE.

2. H. Tacon, A. S. Brito, H. L. Chaves, M. B. Vieira, S. M. Villela,
H. Almeida Maia, D. T. Concha, and H. Pedrini. Human Action Recogni-
tion Using Convolutional Neural Networks with Symmetric Time Exten-
sion of Visual Rhythms. In International Conference on Computational
Science and Its Applications, pages 351–366. Springer, 2019

3. H. A. Maia, M. R. Souza, A. Santos, H. Pedrini, H. Tacon, A. S. Brito,
H. L. Chaves, M. B. Vieira, and S. M. Villela. Learnable Visual Rhythms
Based on the Stacking of Convolutional Neural Networks for Action
Recognition. In IEEE International Conference on Machine Learning and
Applications, pages 1794–1799, Boca Raton, FL, USA, Dec. 2019. IEEE.

4. H. A. Maia, D. T. Concha, H. Pedrini, H. Tacon, A. S. Brito, H. L. Chaves,
M. B. Vieira, and S. M. Villela. Action Recognition in Videos Using Multi-
Stream Convolutional Neural Networks. In Deep Learning Applications,
pages 95–111. Springer, 2020.

5. A. C. S. Santos, H. A. Maia, M. R. Souza, M. B. Vieira, and H. Pedrini.
Fuzzy Fusion for Two-stream Action Recognition. In International Joint
Conference on Computer Vision, Imaging and Computer Graphics Theory
and Applications, volume 5, pages 117–123. INSTICC, SciTePress, 2020.

26

6. H. Tacon, A. S. Brito, H. L. Chaves, M. B. Vieira, S. M. Villela, H. Maia,
D. T. Concha, and H. Pedrini. Multi-stream Architecture with Symmet-
ric Extended Visual Rhythms for Deep Learning Human Action Recogni-
tion. In International Joint Conference on Computer Vision, Imaging and
Computer Graphics Theory and Applications, volume 5, pages 351–358.
INSTICC, SciTePress, 2020.

7. H. L. Chaves, K. S. Ribeiro, A. S. Brito, H. Tacon, M. B. Vieira, A. S.
Cerqueira, S. M. Villela, H. Maia, D. T. Concha, and H. Pedrini. Filter
Learning from Deep Descriptors of a Fully Convolutional Siamese Network
for Tracking in Videos. In International Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory and Applications, vol-
ume 4, pages 685–694. INSTICC, SciTePress, 2020.

8. M. R. Souza, H. A. Maia, M. B. Vieira, and H. Pedrini. Survey on Vi-
sual Rhythms: A Spatio-Temporal Representation for Video Sequences.
Neurocomputing, 402:409–422, 2020.

1.6 Text Organization

In this chapter, we introduced the problem of human action recognition in videos ad-
dressed in this work. The remaining text is organized as follows. In Chapter 2, we
present the main fundamentals of our work. The related approaches and benchmarks
available in the literature are presented in Chapter 3 and 4, respectively. In Chapter 5,
we present our first collaborative method, the Adaptive Visual Rhythm (AVR). This
chapter also includes the description of our general framework. In Chapter 6, we present
the Learnable Visual Rhythm (LVR), an evolution of the aforementioned AVR. We show
some analyses in Chapter 7 along with adaptable fusion methods for our multi-stream
network. Finally, Chapter 8 presents the concluding remarks and potential directions for
future research. Appendix A contains supplementary material for Section 2.9, whereas
Appendix B contains reference lists for Chapters 4 and 7.

27

Chapter 2

Fundamentals

This chapter presents fundamental concepts of our work. In Section 2.1, we give further
details about our main concept (action), including some definitions found in the literature.
Sections 2.2 and 2.3 describe two features that are used in our neural network architecture.
We present the Support Vector Machine classifier in Section 2.4 which is explored in the
fusion stage of the proposed method. Sections 2.5 to 2.8 contain deep learning-related
concepts and Section 2.9 introduces some metrics to evaluate the quality of the ensemble
methods.

2.1 Action

Action is a complex concept and its definition varies among the works in the literature.
A human action involves the movement of a single or multiple parts of the body to
accomplish a simple or complex goal, possibly with an object or person interaction.

Some works consider a hierarchical definition of actions according to their complexity.
Moeslund et al. [75] and Poppe [94] proposed a hierarchy in three groups: (i) action
primitive, (ii) action and (iii) activities. Action primitives are atomic movements, such
as limb-level motion. An action is composed of a sequence of primitives and can involve
the entire body. Activity is a complex event formed by several actions and can include
interactions and be dependent on the environmental context. However, there is not a
clear delimitation among these groups. For instance, Moeslund et al. considered “run
left” as an action primitive, whereas Poppe classified “running” as an action. Moeslund
et al. argued that the granularity of the primitives depends on the application.

Aggarwal and Ryoo [1] proposed a hierarchy of four levels for action categorization: (i)
gestures (ii) actions (iii) interactions and (iv) group activities. Similar to action primitives,
gestures are elementary limb-level movements, such as “stretching an arm”. The action
category matches the Moeslund et al.’s definition. Interactions are actions with two or
more agents and/or objects, such as “a person stealing a suitcase from another”, and group
activities involve conceptual groups performing an activity, such as “a group of people
marching”. Again, the boundaries of these groups are not well-defined, in particular, the
same action can fall under (iii) or (iv) according to the chosen description. For instance,
“three people having lunch” can be interpreted as a three-person interaction, whereas “a

28

group of people having lunch” can be seen as a group activity, although both represent
the same event.

When proposing new datasets, the authors should also be concerned with the action
definition. Caba et al. [29] argued that simply elaborate an activity list based on Word-
Net [74] verbs would generate many ambiguities and polysemism, much more than the
noun-object mapping made for the ImageNet [101]. For instance, the verb “play” can
be used for instruments, sports or games. To collect a large number of activity classes,
they built the ActivityNet dataset upon the American Time Use Survey (ATUS [85])
taxonomy, which contains a large and hierarchical list of daily human activities. For the
construction of the Atomic Visual Actions dataset (AVA [38]), on the other hand, Gu et
al. argued that listing all important high-level activities would be impractical. For this
reason, they focused on atomic and primitive actions with a finer temporal granularity
(about 3 seconds). Unlike the aforementioned hierarchical definitions, they considered
person-object and person-person interactions in their atomic classes.

In the absence of a precise action definition, here we follow a data-driven one, similar
to Santos [106]. That is, we considered all the classes available in the evaluated datasets,
even if they include actions from different complexity levels and temporal granularity,
such as “eat” and “FieldHockeyPenalty”.

2.2 Optical Flow

Optical flow consists of a vector field representing the pixel-level motion between two
frames, caused by object or camera movement. In general, the vectors are obtained by
the minimization of an error function based on pixel brightness/color [124]. In our work,
we use the pyramidal Lucas-Kanade and TV-L1 methods that are presented as follows.

The Lucas-Kanade method [10,69] generates a sparse field for a pair of images through
the comparison of small patches. The error function is based on the L2-norm and is
optimized using a gradient descent method. It assumes that the displacement within a
patch is small and homogeneous. Considering a pair of h×w images I and J , a given pixel
p = (y, x) and a h′ × w′ patch P centered on p, the method determines the displacement
vector ~d = (dy, dx) with respect to p through the minimization of the error function defined
in Equation 2.1. In the equation, q represents a pixel inside the patch and I(·) and J(·)
represent the pixel intensity or color in each image.

e(~d) =
∑
q∈P

[
I(q)− J(q + ~d)

]2

. (2.1)

The pyramidal version [10] computes the optical flow for different resolutions of the
image, from the lowest level of the pyramid (highest resolution) to the highest one (lowest
resolution). The final displacement vector ~d is obtained by the weighted combination of
each level output dL:

~d =
Lm∑
L=0

2L~dL, (2.2)

29

where the index Lm corresponds to the highest level. By maintaining the original resolu-
tion, it can capture more details. The insertion of lower resolutions allows the method to
deal with large motion displacements and to be robust to noise.

TV-L1 [151] is a variational method that computes dense optical flow fields. In varia-
tional approaches, the minimization considers the entire image instead of isolated patches,
assuming a smooth vector field [43]. In addition to the error criterion, the TV-L1 method
includes a Total Variation (TV) regularization, both based on the L1-norm, being robust
to illumination changes, occlusions and noise. The method estimates u that minimizes
the following function:

min
u

{∫
Ω

[λ |I(x)− J(x+ u(x))|+ |∇u|] dx

}
(2.3)

where Ω is the image domain and u : Ω → R2 is a mapping function from pixels to dis-
placement vectors. The term |I(x)− J(x+ u(x))| represents the data penalty similar to
the Lucas-Kanade method, whereas the term |∇u| corresponds to the TV regularization.
The parameter λ weights between penalty and regularization.

The horizontal and vertical components of the displacement vectors can be mapped
into a pair of grayscale images, representing the estimated motion for each direction.
Figure 2.1 shows examples of optical flow images extracted from a pair of consecutive
frames using the TV-L1 method.

(a) Frame i (b) Frame i+ 1 (c) Horizontal flow (d) Vertical flow

Figure 2.1: Pair of consecutive frames from an HMDB51 video of the class “pushup” and
corresponding optical flow images using the TV-L1 method.

2.3 Visual Rhythm

The visual rhythm [51,118] is a feature that encodes the entire video in a single image. The
resulting image is obtained by the concatenation of subsampled pixels or a predefined 1D
feature computed from each frame, which are called slices. By choosing proper slices, the
visual rhythm can contain rich information to detect and classify events in video. In the
literature, this feature is also referred to as temporal/spatio-temporal slices [84,89,99,153],
epipolar-plane image [9], or video tomography [2].

The formal definition used in our work is given by Maia et al. [70]. Let V =

{F1, F2, · · · , Ft} be a video with t frames Fi, where each frame is an h × w matrix.
Consider T (Fi) = Si an operation that maps a frame Fi into an n× 1 column vector Si,

30

either by subsampling or computing features from Fi. The visual rhythm for the entire
video V is given by the n× t matrix:

VR(V)=[T (F1) T (F2) · · · T (Ft)]=[S1 S2 · · · St]. (2.4)

Figure 2.2 shows examples of horizontal and vertical visual rhythms, where each slice
corresponds to the central row/column of a frame and is placed in a column of the resulting
image. The horizontal and vertical operations TH(·) and TV (·) are defined as follows:

TH(Fi) = [Fi (aH , 1) Fi (aH , 2) · · · Fi (aH , w)]T , (2.5)

TV (Fi) = [Fi (1, aV) Fi (2, aV) · · · Fi (h, aV)]T , (2.6)

where aH = h
2
, aV = w

2
and Fi(y, x) represents the pixel intensity/color at coordinate

(y, x). Considering the video as volume XYT, the resulting image can be seen as a plane
parallel to XT (horizontal) or YT (vertical).

S1

(a) Horizontal

S1

(b) Vertical

Figure 2.2: Examples of visual rhythm images generated for a video of the “CricketShot”
class from the UCF101 dataset. The central row/column of each frame becomes a slice
in the resulting image. Adapted from [70].

The visual rhythm can also be constructed by following a zig-zag scheme [77], as
illustrated in Figure 2.3. Compared to vertical and horizontal VRs, this one covers a
larger portion of the frame, but it consequently generates an image with a much greater
height. Due to the dimensions of the final image, such approach may not be suitable for
some scenarios, for instance, to be used without a severe reshape or cropping in a CNN
that requires a smaller input.

Another possible strategy is to explore operations that generate an 1D feature per
frame, such as the intensity histogram defined in Equation 2.7. The histogram represents
the entire frame with a smaller slice, but it loses spatial information.

T (Fi) =

[
w,h∑

x=1,y=1

1, if Fi(y, x) = k

]T
,∀k ∈ {0, 1, . . . , 255}. (2.7)

31

(a) Zig-zag scheme (b) Slice concatenation (c) Example

Figure 2.3: Visual rhythm construction using a zig-zag scheme. Extracted from [77]

2.4 Support Vector Machine

The main goal of a classifier is to predict the label of new samples after the training on
a labeled set. In binary problems (that is, problems with two possible labels), this is
usually carried out by estimating a hyperplane that separates the two groups of samples
according to their labels. If the resulting hyperplane is too close to any of the groups, the
method may fail in handling new samples. Therefore, it is desirable that the distances
among the separating hyperplane and the nearest samples from each group are as great as
possible. These distances are referred to as classification margins and the nearest samples
as support vectors (Figure 2.4).

optimal margin

optimal hyperplane

Figure 2.4: Separating hyperplane with maximum margin in a two-dimensional space.
Thicker squares and circles represent the nearest samples or support vectors. Adapted
from [25].

The margin maximization constraint is the central objective of the Support Vector
Machine method (SVM [25, 96]). Here, we consider the C-Support Vector Classification

32

(C-SVC [17]). Let xi ∈ Rn be a n-dimensional feature vector from the training set and
yi ∈ {−1, 1} its corresponding label, where i ∈ {1, · · · , ns} is the sample index and ns
is the total number of training samples. The C-SVC method is based on the following
optimization problem:

min
w,b,ξ

1

2
‖w‖2 + C

(
ns∑
i=1

ξi

)
,

subject to yi(w · xi + b) ≥ 1− ξi, i ∈ {1, · · · , ns},
ξi ≥ 0, i ∈ {1, · · · , ns},

(2.8)

where w and b are the hyperplane parameters, C is a regularization term and ξ allows
a soft-margin hyperplane. The greater the C, the smaller the margin and, consequently,
the weaker the regularization.

If a problem is nonlinear, that is, the samples cannot be correctly separated using a
hyperplane, the data can be mapped into a higher-dimensional space where the classes
become separable. However, this process can be expensive. A kernel function is used to
reduce the cost by computing a similarity between a pair of vectors in which the trans-
formation is made implicitly. This strategy is called the “kernel trick”. The Radial Basis
Function (RBF), also known as Gaussian kernel, is a commonly used kernel expressed in
one of the following forms:

K(xi, xj) = exp

(
−‖xi − xj‖

2

2α2

)
= exp

(
−γ ‖xi − xj‖2) , (2.9)

where γ = 1
2α2 .

There are two strategies to extend the binary C-SVC to multi-class problems: (i) One-
versus-One (OvO) and (ii) One-versus-Rest (OvR) or One-versus-All (OvA). In (i), one
classifier is constructed for each pair of classes ignoring the samples from the remaining
ones. Considering m the number of classes, in this strategy, m·(m−1)

2
binary classifiers will

be constructed. In (ii), one classifier is estimated for each class considering all the other
classes as a single one, resulting in m binary classifiers.

The regularization parameter C, the kernel type (linear or RBF), γ in case of RBF
kernel and the multi-class strategy (OvO or OvR) can be selected using a grid search
technique.

2.5 Convolutional Neural Network

Convolutional Neural Network (CNN) is a type of neural network that contains at least
one layer with convolutional kernels [35]. It is mostly used for images and grid-like data
that presents local relations. In contrast to the layers from traditional neural networks,
the convolutional ones present two important properties: (i) weight sharing and, as a
consequence, (ii) sparse connectivity. The sparsity is due to the kernel size, which is much
smaller than the input, to capture local patterns in the input such as edges. The kernels

33

slide across the entire input and, therefore, different regions share the same parameters.
The linear convolutional operation is usually followed by a nonlinear activation func-

tion. The most popular activations are logistic sigmoid, hyperbolic tangent and Rectified
Linear Units (ReLU) [80]. The first two are saturating units since most of their domain
are mapped to the same values (highest values are mapped to 1 and smallest values to
0) [35]. Krizhevsky et al. [54] showed that networks composed of the non-saturating ReLU
learn several times faster than using the saturating units. As such, the ReLU is a common
default choice for CNN architectures.

Other layers commonly found in CNN architectures are pooling ones that help to
reduce dimension and aggregate information, and fully-connected layers which are usually
placed at the end of the network, where the inputs are smaller, for classification purposes.
Two common operations used for pooling are the average and max. The pooling layers
can be either defined by the kernel size and stride (traditional pooling) or by the output
size (adaptive pooling). The stacking of several layers allows the gradual combination of
local information reaching a more global representation in the later layers. This is called
feature hierarchy [61,62], where the pattern complexity increases as the data goes deeper,
for instance, from edges to complete objects detection.

Several architectures have been proposed in the literature for the image classification
problem (AlexNet [54], VGG [114], ResNet [41], EfficientNet [127], among others). Here,
we are particularly interested in the Inception V3 architecture [123] (Figure 2.5). The
Inception V3 is a very deep network based on Inception modules with factorized convo-
lutions, being an efficient network with a low number of parameters. The factorization
involves the replacement of larger spatial filters by multiple layers of smaller ones, for
instance, replacing 5× 5 convolutions by two layers of 3× 3. This replacement leads to a
reduction in the number of parameters, in the example, from 25 to 18 parameters. The
modules also include the 1× 1 convolutions from GoogLeNet for dimensional reduction.

2.6 Early Stopping

A well-known problem in machine learning is the overfitting, when a model fits the training
set properly, but such performance is not reflected on new samples. A large difference
between training and test accuracies/loss is a strong indication of overfitting.

There are several strategies in the literature to deal with overfitting. Some of the
commonly used ones are: (i) replacement of the model by a simpler one with less trainable
parameters (ii) model regularization such as dropout layers (iii) increasing the number
of samples, perhaps using data augmentation techniques and (iv) training over a smaller
number of epochs using the early stopping. Next, we give further details about the last
strategy, which is explored in this work.

The key of the early stopping is the use of a validation set to estimate the general-
ization error, that is, the model behavior on an unknown set. The training stops when
the performance on the validation set starts to deteriorate. Prechelt [95] presented three
classes of criteria to define the stopping epoch. Here, we use the third class: the training
stops after s consecutive strips of no improvement, where a strip is a group of k con-

34

Po
ol

Li
ne
ar

3x
3

Po
ol

3x
3

3x
3

1x
1

3x
3

Po
ol

In
ce
pt
io
n-
A

In
ce
pt
io
n-
A

In
ce
pt
io
n-
A

R
ed
uc
tio

n-
A

In
ce
pt
io
n-
B

In
ce
pt
io
n-
B

In
ce
pt
io
n-
B

In
ce
pt
io
n-
B

R
ed
uc
tio

n-
B

In
ce
pt
io
n-
C

In
ce
pt
io
n-
C

(a) Inception architecture

3x3

Filter Concatenation

3x3 3x3 1x1

1x1 1x1 Pool 1x1

Base

(b) Inception-A

7x1

Filter Concatenation

1x7

7x1

1x1

7x1

1x7

Pool 1x1

Base

1x1

1x7

1x1

(c) Inception-B

Filter Concatenation

3x1

1x1

1x3

Pool 1x1

Base

1x1

3x3

1x1

3x11x3

(d) Inception-C

Filter Concatenation

3x3

3x3

Pool 3x3

Base

1x1

(e) Reduction-A

Filter Concatenation

7x1

1x7

Pool 1x1

Base

1x1

3x3

3x3

(f) Reduction-B

Figure 2.5: Inception V3 architecture and modules [123]. Blue, orange and gray rounded
rectangles represent convolutional, pooling and fully-connected layers, respectively.

secutive epochs. The s parameter is referred to as “patience”. For being qualified as an
improvement, the difference between the best evaluation and the current one must exceed
a third parameter δ. This method is presented in Algorithm 1.

The method EarlyStopping(l, e) is repeated at the end of each strip, using its last
epoch e. The input l corresponds to the validation loss at e. If there is an improvement
with regards to the best score l∗ found at the moment, l∗ and the best epoch e∗ are
updated. Otherwise, a counter is used to store the number of consecutive strips that
the performance has worsened. The counter is reset after any improvement. After s
deteriorations, the training process stops.

35

Algorithm 1 EarlyStopping(l, e)
Input

Current validation loss l;
Epoch e.

Output
stop {True or False}.

1: global l∗, e∗ . Best loss and epoch.
2: stop← False
3: if l∗ − l > δ then . Verify if there was an improvement.
4: l∗ ← l . Update best loss and epoch.
5: e∗ ← e
6: counter ← 0 . Reset the counter of consecutive strips with no improvement.
7: else . The performance has worsened.
8: counter ← counter + 1
9: if counter ≥ s then . Stop training after s strips with no improvement.
10: stop← True

11: return stop

The validation accuracy can also be used for monitoring the performance throughout
the epochs instead of the loss. In this case, the improvement condition becomes l− l∗ > δ

(line 2). The model obtained at the epoch e∗ is the one suggested by the early stopping
strategy. Optionally, the network can be retrained using both the training and validation
sets for e∗ epochs to obtain the final model.

2.7 Multi-stream Architecture

In contrast to image-related problems, methods involving videos do not have a great
variety of well-established specific architectures. Architectures for processing raw video
would have a prohibitive computational cost by sliding the filters along the temporal
dimension besides the usual spatial ones. Moreover, only in recent years, larger video
datasets have been released and are still considerably smaller than the ImageNet [101]
used for 2D CNNs. For this reason, many video-related approaches explore 2D CNNs
pre-trained on ImageNet, along with image representations containing spatio-temporal
information.

This is the case of the two-stream network [113] (Figure 2.6), that explores two com-
plementary image modalities inspired by the human visual system. Each modality is
processed by a 2D CNN (or stream) and the respective outputs are fused to generate the
final response. The first stream performs object recognition using a single RGB frame
randomly selected from the video. In this way, it captures elements that compose the
appearance of the action, such as the usual scenario, objects involved, among others.
For instance, recognizing a guitar may help to recognize a video from the PlayingGuitar
class. However, a green grass field or even the equipment may not be sufficient to distin-
guish between a CricketBowling and a CricketShot video. Therefore, some dynamics are
needed to complement the spatial information. This is carried out by the second stream
that receives 10 pairs of consecutive optical images in the form of a 20-channel image

36

Spatial Stream

single RGB frame

Temporal Stream

stacked optical flow

video

2D CNN

2D CNNRandom
choice

Optical flow
algorithm

class
score
fusion

...

classes (softmax)

...

classes (softmax)

Figure 2.6: Two-stream architecture [113] composed of two parallel CNNs, the spatial and
temporal streams.

representing the motion information. The 20-channel image is referred to as a stack of
optical flow images.

The streams are individually trained and fused in the test stage. Originally, only the
spatial one was pre-trained with the ImageNet dataset, since it is based on object classi-
fication. For the temporal stream, the authors proposed a multi-task learning, combining
multiple video datasets to circumvent the lack of a larger one. However, experiments from
Wang et al. [141] showed that the ImageNet pre-training improves the temporal training
as well. The authors also suggested the replacement of the CNN-M-2048 [18] network
used in the original two-stream by deeper architectures, such as VGG and GoogLeNet,
due to the complexity of the action recognition problem.

In the training stage, the data is augmented using random cropping, horizontal flip-
ping and RGB jittering. For testing, 25 frames/stacks of optical flow images are evenly
selected from each video and used to produce 10 new samples per frame/stack by cropping
and flipping techniques. Each sample is individually tested in the corresponding stream.
Finally, the class scores computed in each CNN are combined using a simple average and
linear SVM.

2.8 Stacking

The stacked generalization or stacking consists of placing a classifier on top of an ensemble
of base classifiers to combine their outputs. The base classifiers are called first-level
classifiers and the stacked one is called second-level classifier or meta-classifier [65,155].

In stacking, a new dataset is produced using the outputs of the original one generated
by the base classifiers. Each new sample receives the label of its corresponding original
sample. The original dataset is used to train the base classifiers, whereas the meta-
classifier is trained with the new one. The general method is shown in Algorithm 2.

To avoid overfitting, a k-fold cross-validation is recommended (Algorithm 3). The
original dataset D is divided into k subsets Dl (l ∈ {1, 2, · · · k}) and the base classifiers
are trained k times leaving the subset Dl out at the l-th iteration. The subset that was
set aside is used for generate a new subset D′l. In this version, the new dataset D′ is
formed by the union of the new subsets: D′ = D′1 ∪D′2 ∪ · · · ∪D′k. After the training step

37

of the meta-classifier with D′, the base classifiers can be retrained using the entire set
D. Although this version may reduce the overfitting, the process can be computationally
expensive since the base classifiers training step is repeated multiple times.

Algorithm 2 General stacking procedure adapted from [155].
Input

Training set D = {(x1, y1), (x2, y2), · · · , (xn, yn)}; . xi is the i-th input and yi its label.
Base classifiers C1, C2, · · · , Cm;
Meta-classifier C.

1: for all j ∈ {1, 2, · · · ,m} do: . Base classifier training.
2: Cj .fit(D)

3: D′ = ∅ . New training set.
4: for all i ∈ {1, 2, · · · , n} do:
5: for all j ∈ {1, 2, · · · ,m} do:
6: zij = Cj(xi) . Output generated by the classifier Cj for the input xi.
7: x′i = (zi1, zi2, · · · , zim)
8: D′ = D′ ∪ {(x′i, yi))}
9: C.fit(D′) . Train the meta-classifier using the new set.

Algorithm 3 Stacking with k-fold adapted from [65].
Input

Training set D = {(x1, y1), (x2, y2), · · · , (xn, yn)}; . xi is the i-th input and yi its label.
Base classifiers C1, C2, · · · , Cm;
Meta-classifier C.

1: F = {D1, D2, · · · , Dk} . Randomly split D into k equal-size subsets.
2: for all l ∈ {1, 2, · · · , k} do:
3: for all j ∈ {1, 2, · · · ,m} do: . Base classifier training.
4: Cj .fit(D \Dl)

5: D′l = ∅ . New training subset.
6: for all xi ∈ Dl do:
7: for all j ∈ {1, 2, · · · ,m} do:
8: zij = Cj(xi) . Output generated by the classifier Cj for the input xi.
9: x′i = (zi1, zi2, · · · , zim)
10: D′l = D′l ∪ {(x′i, yi))}
11: D′ = D′1 ∪D′2 ∪ · · · ∪D′k
12: C.fit(D′) . Train the meta-classifier using the new set.
13: for all j ∈ {1, 2, · · · ,m} do: . Base classifier retraining.
14: Cj .fit(D)

2.9 Diversity Measures

In order to improve individual results, a combination (also called an ensemble) must
contain classifiers that do not always agree on the predictions. Otherwise, some classifiers
would be redundant and the combination would be inefficient by increasing the cost

38

without any gain. This expected property is called ensemble diversity. Proper individual
performances are also desirable.

Table 2.1: Summary of some diversity measures adapted from [155]. “↑/↓” indicates that
the higher/lower the score, the higher the diversity. The “range” column indicates the
measure interval and “pairwise” indicates whether it is taken from pairs or from the entire
ensemble. A brief description for each measure is also presented in the table.

Measure ↑ / ↓ Range Pairwise Brief Description

Disagreement (DM) ↑ [0, 1] Y Proportion of different answers.

Q-statistic (Q) ↓ [−1, 1] Y
Degree of agreement. Positive values

indicate higher agreement and negative
values indicate higher disagreement.

Correlation coefficient (ρ) ↓ [−1, 1] Y Similar to Q-statistic.

Kappa-statistic (κp) ↓ [−1, 1] Y

Degree of agreement by chance. 1 means total
agreement, 0 means agreement-by-chance

and negative value means that the agreement
is lesser than expected by chance (rare).

Double-fault (df) ↓ [0, 1] Y Proportion of samples misclassified by both.

Complementarity [11] (Comp) ↑ [0, 1] Y Frequency that a classifier is correct
given that the other is incorrect.

Interrater agreement (κ) ↓ [−1, 1] N Similar to kappa-statistic.

Entropy 1 (entcc) ↑ [0, 1] N
Computes the Shannon entropy for every
instance considering the variety of labels

assigned for it by the classifiers.

Entropy 2 (entsk) ↑ [0, 1] N Similar to entropy 1, but it considers
the correctness of the classifiers.

Difficulty (θ) ↓ [0,∞) N
It is based on a probability mass function
that considers the proportion of classifiers

that correctly classify each sample.

Generalized diversity (gd) ↑ [0, 1] N
Based on the proportion of cases where the
failure of one classifier is accompanied by the

success of another one.

Coincident failure (cfd) ↑ [0, 1] N
Modified gd where the minimum value (0)
indicates higher agreement (simultaneous

fail or success).

Several diversity measures have been proposed to evaluate the quality of ensembles [30,
56, 155]. They can be pairwise, where the final score is given by the average measures
taken from every pair of classifiers, or non-pairwise, which takes a single score considering
the ensemble as a whole. Table 2.1 shows a summary of some diversity measures.

Experiments performed by Kuncheva [56] suggest that there is no clear relationship
between diversity metrics and accuracy. Therefore, they are not indicated to be used to
support decisions during the ensemble construction. However, they can be very useful for
analysis and visualization, once the combination is already defined.

The pairwise metrics are defined using the values of a hit-and-miss table [30] (Ta-
ble 2.2). The table compares two different classifiers ci and cj. Values a and d indicate

39

the number of samples in which both classifiers made a correct and incorrect prediction,
respectively. The value b indicates the number of cases where cj is correct and ci is incor-
rect, whereas c indicates the opposite. The sum of the four values is equals to the total
number of samples ns.

Table 2.2: Hit-and-miss table [30].

Hit ci Miss ci

Hit cj a b

Miss cj c d

The first four metrics measure the disagreement between the classifiers, but they do
not capture a disparity between the number of exclusive hits, that is, b � c or c � b.
In the worst case scenario, where one classifier gives an almost perfect set of predictions,
whereas the other fails in most samples (without loss of generality, a = 0, b = ns − 1,
c = 1 and d = 0), they assign their best score to the combination (see Appendix A).

It is worth mentioning that a simultaneous a = 0 and c = 0 is preventable by selecting
classifiers with good individual performance. The complementarity metric is capable of
detecting these disparities, since it generates two values per pair according to the classifier
order, but it fails with small values of d. The double-fault metric considers only the value
of d, therefore, it cannot detect either disparities or the combination of perfect classifiers
(that is, a = ns). Since all metrics have their own weaknesses, we decided to combine two
of them: (i) complementarity and (ii) kappa-statistic. We give further details on their
computation as follows.

The complementarity Comp(ci, cj) measures the percentage of ci misclassifications that
cj is capable of covering, that is, how much cj complements ci. It is defined as:

Comp(ci, cj) = 1− # of common errors
of ci errors

= 1− d

(b+ d)

=
b

(b+ d)
.

(2.10)

Comp(cj, ci) is given in Equation 2.11. Notice that, if b 6= c, then Comp(ci, cj) 6=
Comp(cj, ci).

Comp(cj, ci) = 1− # of common errors
of cj errors

=
c

(c+ d)
.

(2.11)

To obtain a unified score, we use a harmonic mean of both values given by Equa-
tion 2.12. Therefore, we examine whether there is a balance between the two contribu-

40

tions.
HM(ci, cj) =

2 · Comp(ci, cj) · Comp(cj, ci)

Comp(ci, cj) + Comp(cj, ci)
(2.12)

The kappa-statistic κp uses the agreement θ1 and agreement-by-chance θ2 measures,
defined as:

θ1 =
a+ d

ns

and
θ2 =

(a+ b)(a+ c) + (d+ b)(d+ c)

n2
s

.

Thus, κp is given by the following equation:

κp(ci, cj) =
θ1 − θ2

1− θ2
. (2.13)

A high agreement value results in a high κp (up to 1), whereas a higher agreement-
by-chance leads to a κp near to 0. A negative value is a rare case where the agreement is
less than expected by chance.

Concerning the non-pairwise measures, we select the interrater agreement, which is
similar to the kappa-statistic. Let m be the number of classifiers in the combination and
ns the total number of samples. The interrater agreement κ(c1, c2, · · · , cm) is defined as:

κ(c1, c2, · · · , cm) = 1−

1

m

ns∑
k=1

p(xk) · (m− p(xk))

ns · (m− 1) · p̄ · (1− p̄)
, (2.14)

where p(xk) is the number of classifiers that predicted the correct label for the sample xk,

p̄ =
1

m

m∑
i=1

acci and acci is the accuracy of the i-th classifier (ratio between the correctly

predicted samples and ns).

41

Chapter 3

Related Work

In this chapter, we briefly present some approaches available in the literature that focus
on the action recognition problem. The solutions generally involve the representation and
classification of the actions, although this division is not always explicit.

We can categorize the approaches into two groups based on the strategy used for each
of these tasks, according to the classification proposed by Goodfellow et al. [35]. The first
group consists of the traditional methods, where the representation is explicitly chosen
and the action recognition is defined under conventional machine learning algorithms.
The second group comprises the representation learning strategies that explore machine
learning techniques for both tasks.

Table 3.1 shows the two groups along with schematic diagrams and references from
each one. The representation learning approaches are further divided into three subgroups,
according to the depth of the machine learning portion during the representation stage.
The first subgroup comprises approaches that are not entirely based on machine learning
for representation, but they use it to provide a final descriptor from a set of handcrafted
features, for instance, dictionary-based methods [59,90,135]. As such, they are sometimes
referred to as shallow learning [18]. In contrast, approaches based on deep neural networks
are called deep learning strategies (second and third subgroups). Generally, deep networks
have many layers that perform successive refinements of the data, increasing the level of
abstraction during the process. The last subgroup is the extreme case where the entire
representation process is performed by a deep network fed with raw videos, a version
analogous to image-based networks. This type of approach present a high computational
cost thanks to the 3D convolutions and require a severe temporal cropping or frame
subsampling.

For the best of our knowledge, only the 3-dimensional convolutional network
(C3D [129]) and the slow fusion model [48] work purely with raw videos and spatio-
temporal convolutions. Even some approaches that deal with spatio-temporal volumes
and perform 3D convolutions include handcrafted features for the task, such as the two-
stream I3D [15] and the 3D CNN from Ji et al. [46].

Despite the decrease in approaches following the traditional and shallow strategies,
many recent deep learning proposals explore elements from both in order to preprocess
the data or aggregate information. These elements allow the methods to take advantage
of deep networks for images since the temporal information may be incorporated in a

42

Table 3.1: Taxonomy for action recognition approaches. The representation and classi-
fication stages are illustrated as green and red rectangles, respectively. “HC” refers to
handcrafted process and “ML” to machine learning-based techniques.

Group Representation Classification References

Traditional
Approaches

HC ML [4, 12,34,71,78,91,103,148]

Representation
Learning

HC MLML [6, 59,77,90,93,110,135,136]

HC MLML
deep

[5, 15,20,28,33,46,107]

[64,81,87,113,138,141,142]

[144,147,149,157,158]

MLML
deep

[48, 129]

two-dimensional form, instead of considering the video as a volume.
There are classical surveys for the action recognition problem [1, 94]. However, since

deep learning strategies are very recent, they are not covered in these papers. Some
interesting surveys that describe relevant concepts include [39,42,108,156].

3.1 Traditional Approaches

Many features have been proposed in the literature for representation in computer vision
problems. Here, we highlight four features that served as basis for many strategies to
represent human actions, even though they were not initially proposed for such purpose.
The chosen features are: local binary pattern, gradient, optical flow and visual rhythm
(or temporal slices). We also present some of the derived strategies. At the end of the
section, we present some methods for aggregating information.

Local Binary Pattern (LBP) is a feature proposed by Ojala et al. [86] to represent
the local texture of a static image. The local representation is given by the distribution
of texture patterns computed through a set of binary tests. LBP is simple, has a low
computational cost and is invariant to global illumination changes. Moreover, it was an
important precursor of several methods for videos based on binary/ternary information [4,
50,93,148,152].

Zhao and Pietikainen [152] proposed the Volume Local Binary Pattern (VLBP) as an
extension of the LBP for videos, applied to facial expression recognition. They compared
intensity values from regions of three frames with distance L between two adjacent frames,

43

resulting in a so-called dynamic texture as it incorporates motion information. Since more
pixels are compared in the VLBP, the number of possible texture patterns is larger than
that in LBP. According to Baumann et al. [4], this large variety of patterns may lead to
several ambiguities. Thus, they proposed the Motion Binary Pattern (MBP) to combine
binary patterns through an exclusive OR (XOR). Furthermore, they ignored weak motion
by filtering out some patterns with less than a certain proportion of motion.

Yeffet and Wolf [148] described ternary tests performed in sets of three evenly spaced
frames. The additional value (the third one) is assigned to regions where no significant mo-
tion was detected, that is, regions that present very similar intensities. Thus, the method
is able to overcome slight variations in illumination. To reduce the high computational
cost related to ternary digits, they converted each ternary string (that is, the result of a
sequence of ternary tests) into two binary ones, obtaining a smaller but efficient descrip-
tor containing two histograms. One local descriptor is computed for each spatio-temporal
cuboid of the video. The Motion of Oriented Magnitudes Pattern (MOMP [93]) feature
is inspired in this strategy. The main difference is that, instead of using color intensities,
MOMP is based on gradients, further increasing the robustness to illumination changes.

Dalal and Triggs [26] proposed the Histogram of Oriented Gradients (HOG) that en-
codes shape information. HOG represents the object local appearance by the distribution
of intensity gradients and, for this reason, it is robust to illumination changes. It was
originally proposed for human detection in static images based on two-dimensional gra-
dient vectors. However, several works have adapted this strategy to the human action
recognition problem by incorporating temporal information.

Klaser et al. [53] proposed an extended version of HOG for videos, known as HOG3D,
based on spatio-temporal gradients. Additionally, they proposed an efficient method for
computing the descriptor, extending integral images to integral videos. The proposed
version outperforms approaches from the same period in most of the evaluated datasets.
Many other HOG-based descriptors have been proposed in the literature [59,78,91,93,103,
110], achieving good rates and consolidating HOG as an important tool for the human
action recognition problem.

Another interesting strategy that explores gradient information is described by Shi
et al. [110]. They proposed the Gradient Boundary Histograms (GBH) descriptor to
reduce the dimensionality of HOG3D and its expensive quantization cost. Instead of
computing three-dimensional vectors, it calculates the spatial gradients followed by the
subtraction of two consecutive image gradients. Thus, it produces two images per frame
corresponding to each spatial coordinate that can be seen as a two-dimensional vector
field. The resulting images contain double edges in which their distances are proportional
to the moving speed of the human body parts. Additionally, the subtraction leads to a
reduction of background noise.

The third strategy for describing an action is through the estimation of the object
apparent motion, also know as optical flow. In addition to the Lucas-Kanade and TV-L1

methods presented in Section 2.2, there are other approaches on the literature to compute
optical flow, such as Horn-Schunck [43] and Farneback [31]. The methods compute dis-
placement vectors for pairs of consecutive frames, resulting in a sparse or dense vector field.
Vectors from consecutive pairs can be combined to form trajectories [12,135]. As gradients,

44

the distribution of displacement vectors or trajectories can be encoded into a representa-
tion called Histogram of Optical Flow (HOF) to explore local motion [59,78,135].

An alternative motion-based descriptor was presented by Maia et al. [71]. It is based
on the block matching method combined with a quad-tree algorithm that results in a
sparse vector field. Similar to HOG and HOF, a histogram of oriented vectors is built to
represent the action. The final descriptor has shown to be compact and fast to compute.

Souza et al. [118] presented a survey of works that employ visual rhythms for several
video-based problems. For instance, Ngo et al. [82,83] proposed a method for locating and
classifying video transitions through the analysis of the central row (horizontal), central
column (vertical) and the main diagonal subsampled from the frames. This is possible
because transitions in videos generally result in boundary lines in the 2D image. The shots
(that is, a video segment between two transition frames) are further subdivided according
to the camera motion also based on patterns found in temporal slices, but using horizontal
and vertical slices [84]. The authors argued that, compared with other spatio-temporal
features, temporal slices has the advantage of providing long-term information instead of
encoding only a few frames (two or three).

Valio et al. [133] proposed a method based on visual rhythm for detecting frames
containing captions. The slices are given by zig-zag curves to handle different orientations
and locations. Since captions remain static for a certain period of time, the locations
corresponding to these texts form rectangles in the visual rhythm. In addition to zig-
zag scans, other space-filling curves [104] are suggested by the authors to be explored in
methods based on visual rhythms.

Torres and Pedrini [128] explored visual rhythm images to address three computer
vision problems: abnormal event detection, human action recognition and hand gesture
recognition. Visual rhythm is used to estimate object trajectories throughout the video.
Slices that capture leg motion, for instance, produce an interesting braided pattern in
actions as walking (Figure 3.1). For the action recognition problem, high-pass filters are
applied, followed by the selection of Regions of Interest (RoI) to keep only the information
relating to the trajectory.

Figure 3.1: Visual rhythm of the action walking, adapted from [128]. The braided pattern
corresponds to the leg motion.

Moreira et al. [77] proposed two complementary methods based on visual rhythms:
the holistic Naïve VR and the patch-based VR Trajectory Descriptor (VRTD). They used
zig-zag rhythms in four directions, two diagonals, vertical and horizontal. The authors
argued that the objects are transferred to the rhythm as they cross the slices in the frames.
The appearance of the transferred object in the rhythm highlights some aspects of the
action, for instance, a flattened shape may indicate a high-speed movement. Thus, they

45

extracted texture and shape information from the rhythms to capture these aspects. They
also explored several image domains for this purpose, such as gradient of the frames and
optical flow images.

Most of the presented features are computed for a small set of frames or a region
of the video volume. Thus, once the features are extracted, the next concern would be
how to aggregate the information to represent the entire video. Many works use feature
concatenation to combine this local information and produce a single representation, or
even to combine different features to form a mixed descriptor [4, 12, 53, 78, 148, 152]. It
consists in concatenating the features one after another. The major drawback of this
strategy is that it does not consider the correlation among features and, therefore, it may
keep redundancies and produce large descriptors.

A region descriptor given by the covariance matrix was proposed by Tuzel et al. [131].
The authors proposed a fast way to compute it based on integral images. Covariance
matrix provides a natural way of combining feature vectors by exploring correlations, and
presents a smaller dimension when compared with raw data and concatenated histograms.
Additionally, the representation is partially invariant to rotation and scale according to
the chosen features, as the order and position of the points are not considered. Since co-
variance matrix does not lie on Euclidean space, it cannot be directly applied in traditional
machine learning methods. For this reason, the authors proposed an adapted version of
nearest neighbor, using a different distance metric. Several works in the literature have
been based on this region descriptor [6, 16,21,40,105,143,150].

A similar approach is used in other methods [12,34,71,78,91] exploring tensors. Tensors
are computed from local histograms and accumulated to generate a final representation
for the video. The shape of the tensor provides meaningful information about the motion.
Moreover, all videos are represented by a single and compact matrix regardless of the
number of features and frames.

An experimental study of different fusion techniques was presented by Patel et al. [88].
Their results demonstrated the importance of the fusion in the system performance. The
authors tested four methods for late fusion: (i) decision combination neural network, a
fully-connected layer that combines the score vectors from different classifiers, (ii) Cho-
quet fuzzy integral and (iii) decision template both based on fuzzy logic, and (iv) dynamic
weighting by averaged distances based on nearest neighbors. According to their experi-
ments, the Choquet method achieved superior results.

3.2 Representation Learning

In many cases, the number of feature vectors generated through the techniques presented
in Section 3.1 is very large and varies from one video to another, even within the same
dataset. This might increase the computational cost and make many fusion methods
unfeasible (for instance, concatenation).

In addition, the set of features might include redundant and irrelevant information
and compromise the classification performance. Thus, a group of methods, referred to
as shallow learning approaches, attempt to learn a proper representation from a set of

46

features. This group includes Bag of Features (BoF), Fisher-vectors (FV) [92] and Vector
of Locally Aggregated Descriptors (VLAD [45]), and has been successfully employed in
many works [6, 21, 40,59,77,90,93,110,135,136].

These methods find a collection of visual words or vectors that provide good discrim-
inability and represent the entire video according to them. The resulting descriptor can be
used in standard classification methods. Among the advantages of these methods, we can
mention the fixed length of the output as in tensor-based approaches and the reduction
of the descriptor dimensionality. Moreover, they are slightly less dependent on human
experts, since the action is represented through machine learning techniques.

Before the deep learning era, the state-of-the-art results on human action recognition
were achieved by the Dense Trajectories (DT) frameworks [90, 135, 136]. In fact, they
are still explored in combination with deep networks, improving their performance [44,
115, 134, 140]. Chapter 2 of the work described by Sintes [115] presents a good review of
DT papers. These methods are based on dense sampling at regular position in space and
time, in contrast to Space-Time Interest Point (STIP) detectors, using multiple spatial
scales.

The dense trajectory term comes from the dense optical flow methods used to extract
the trajectories. The trajectories are described using the aforementioned HOG and HOF,
and the Motion Boundary Histogram (MBH) which is based on the horizontal and vertical
components of the optical flow. These local descriptors are fused using a BoF approach.
This basic framework was first introduced by Wang et al. [135]. Afterwards, they proposed
the Improved Dense Trajectories (iDT [136]) method that estimates the camera motion
to correct the trajectories. They also show a comparison of the BoF (iDT + BoF) and FV
(iDT + FV) methods, and the latter achieves superior results. Peng et al. [90] proposed
a new fusion for the iDT combining different BoF methods called Hybrid SuperVector
(iDT + HSV).

Over the last years, deep learning has become a popular topic of researches in machine
learning and related areas due to its high performance in diverse applications and its
adaptability to different scenarios [54,114]. The evolution of optimization techniques and
hardware, associated with the availability of large datasets, has also contributed towards
deep learning development advances. Herath et al. [42] provided an interesting survey of
notable methods for human action recognition, including traditional and deep learning
strategies. By following the same categorization for deep learning approaches, our method
falls under the multiple stream group.

One of the pioneer works on deep learning is proposed by Lecun et al. [60]. They
presented some shortcomings of the traditional methods, such as the dependence of the
designer’s ability on choosing proper features. Moreover, the chosen features are generally
specific for the task. They argued that a system that learns patterns outperforms hand-
crafting methods. Thus, they proposed a multilayer neural network based on trainable
convolution filters called convolutional neural networks (CNN) used to understand the
image content. The deep architecture performs a set of successive refinements in the raw
data to extract complex and robust patterns. This strategy has been successfully applied
in several problems involving images [18,46,54,81,114].

Inspired by the image-based networks, Ji et al. [46] proposed a straightforward ex-

47

tension for videos, adding a third dimension to the convolution filters. In other words,
they proposed a single CNN designed to capture spatial and temporal information. The
foreground is extracted from videos resulting in one or several sets of bounding boxes,
according to the number of humans performing actions in the scene. Each set is converted
into an n-frame cube (5-7 frames) that is used as input to the network. Five different
versions of the cubes are produced in the first layer (hardwired layer): gray, horizontal
and vertical gradients, horizontal and vertical optical flows. The proposed architecture
achieved competitive results in controlled datasets and outperformed compared methods
in more realistic ones. However, according to Herath et al. [42], this strategy presents
some drawbacks. The fixed and small number of frames in the cubes does not take into
account the speed of the action, for instance, different actions may take different number
of frames to be completed. Moreover, 3D extensions generally increase the number of
parameters in the network, leading to a significant increase in the training cost.

Karpathy et al. [48] proposed four architectures for fusing temporal information across
video frames. Their experiments indicated that slow fusion outperforms the other three
architectures by gradually aggregating temporal information at different levels of the
network. In addition, they proposed a multi-resolution architecture consisting of two
streams: context stream that receives downsampled frames and fovea stream that receives
the central region of each frame at the original resolution. Both streams input has the same
spatial resolution (89×89 pixels), allowing parameter sharing and, therefore, reducing
training cost. In addition, this multi-resolution architecture achieved the best result
compared with the previous four.

Tran et al. [129] argued that the 2D convolutions lose temporal information, since
it encodes multiple images, represented as channels in the input, into a single channel
output. Therefore, even though networks such as the previous one [48] combine multiple
frames, the temporal information is completely collapsed after the first convolutional layer.
For this reason, Tran et al. proposed the C3D network that is based on 3D convolutions.
As pointed out by Carreira et al. [15], although the C3D seems to be a natural approach
for video modeling and shows promising results, it was surpassed by its 2D counterparts,
and a possible explanation is that it requires a larger dataset to be trained, since it cannot
be pre-trained on the ImageNet.

Some works explore techniques usually found in traditional and shallow approaches
for temporal fusion, using the deep network only as a frame-level feature extractor. This
strategy was used by Kahani et al. [47] for first-person activity recognition and is mo-
tivated by two characteristics of the problem: relatively small datasets containing a few
hundred of videos, and the requirement of real-time responses. In their framework, CNN
outputs are considered as a set of time series, and intra and inter-time relations are com-
puted through auto and cross-correlation, respectively. The final representation is given
by the concatenation of both intra and inter-time relations. Similarly, Ravanbakhsh et
al. [97] explored a 2D CNN as feature extractor. They built a hierarchical structure of
snippets (temporal segments) and compute a CNN flow for each snippet in order to cap-
ture coarse and fine motion. The remaining stages of the framework include Principal
Component Analysis (PCA) for dimensionality reduction, BoF and SVM for classification,
all widely explored in standard approaches.

48

Inspired by the human visual system, a multi-stream network was proposed by Si-
monyan and Zisserman [113] (Section 2.7), where one stream performs object recognition
(spatial stream) and the other recognizes the motion (temporal stream). Both streams
consist of a 2D CNN, however, spatial stream receives still frames as input, while tempo-
ral stream receives stacked optical flow images. Results from several training strategies
for each stream, evaluated separately, are presented in the work. Their results showed
that the combination outperformed individual models, suggesting that both streams are
complementary. Despite the complementarity, the short temporal extension (about 10
frames per video) is once more an issue. Nevertheless, this architecture gave rise to
a variety of state-of-the-art approaches that explore RGB frames and optical flow im-
ages [5, 15, 28,138,142,144,157].

Ye et al. [147] investigated the impact of several implementation details on the two-
stream network performance, such as backbone architectures, learning parameters and
fusion methods. In particular, the authors tested an SVM for classification, replacing
the last layer of the streams. The SVM is tested either for individual predictions and
fusion. In their experiments, the original last layer with an average fusion achieve better
results. Wang et al. [141] also proposed a list of good practices for the two-stream model
including pre-training the temporal stream with the ImageNet and new data augmentation
techniques. Most of their findings are still applied to recent multi-stream networks. Other
fusion methods are proposed on the literature to replace the average combination, either
fusing the predictions [107] as the original two-stream [113], or the feature vectors [33,64,
87] similar to Ye et al. [147].

Wang et al. [138] proposed a three-stream architecture, adding a third stream to the
two-stream network [113]. They suggested that the original network loses much appear-
ance details because it uses a single frame and a single group of optical flow images per
video. Thus, the additional stream is designed to combine appearance and motion in-
formation simultaneously for a longer period of time. This is accomplished through the
use of dynamic images that encodes temporal evolution of the frames. Dynamic images
encode information along 20 consecutive frames. Every combination of the three streams
is evaluated. They concluded that the complete combination achieves better results and
hence the new stream complements previous information. In addition, results suggest
that the temporal stream is crucial for the network, since combinations without it reach
inferior performance. Bilen et al. [5] proposed the use of dynamic images for both the
spatial and temporal streams, resulting in a four-stream network.

Ng et al. [81] argued that methods that explore the entire video achieve better results
than those using short segments. As such, they considered six different architectures
based on RGB and optical flow, placing pooling layers in different locations of the network
to obtain long-term motion information. They also proposed an architecture based on
Long Short-Term Memory (LSTM) cells for temporal fusion, referred to as two-stream
+ LSTM. The proposed architectures are capable of processing up to 120 frames per
video. A similar approach is proposed by Wang et al. [142], where multiple RGB frames
and stacks of optical flow are extracted to capture longer-term information. However, for
each input, this network outputs a preliminary prediction of the action classes instead
of features. The predictions are then fused using a segmental consensus function that

49

does not impose temporal limits. This architecture is called two-stream TSN (Temporal
Segment Networks).

Zhu et al. [158] proposed the gating ConvNet for the two-stream TSN fusion. Using
this new module, they can assign adaptive weights for the fusion based on feature maps
taken from the spatial and temporal streams, in contrast to the fixed-weight fusion. Chen
et al. [20] introduced a TSN-inspired consensus fusion to capture long-term information,
but they proposed a heterogeneous two-stream network, employing architectures that
better adapt each stream. Both versions [20, 158] outperformed the original two-stream
TSN [142] on the UCF101 dataset.

Yu et al. [149] and Kwon et al. [58] explored pooling operations to combine multiple
frame-level feature vectors from RGB and optical flow and obtain a video-level repre-
sentation. Both employed SVM classifiers to predict the final class from the video-level
descriptors. Diba et al. [28] proposed the Temporal Linear Encoding (TLE) to combine
short-term information (3 frames) in an end-to-end manner for each stream. For the
late fusion, they applied an average of the scores. TLE and the four-stream network [5]
achieved the highest scores on the UCF101 and HMDB51 datasets among the works
presented so far.

Carreira and Zisserman [15] proposed a new network by inflating state-of-the-art image
architectures into 3D CNNs. This method is also based on complementary information
and is called two-Stream Inflated 3D ConvNets (two-Stream I3D). Both the filters and
the parameters are replicated along the time dimension for the conversion into 3D. In
addition to the traditional ImageNet pre-training step, an additional one is performed
using a large video dataset (approximately 300k clips), the Kinetics [49]. This extra step
led to a considerable increase in accuracy rates, especially on the HMDB51 dataset.

In fact, the current best results on the UCF101 and HMDB51 datasets are achieved by
exploring the Kinetics to pre-train the network [15,22,130,139,157]. Choutas et al. [22] and
Wang et al. [139] used the I3D model combined with their own methods. The DTPP [157]
(Deep networks with Temporal Pyramid Pooling) is a method that aggregates frame-level
features in multiple levels to obtain a video-level representation. It is composed of a
fixed number of parallel image-based networks and a temporal pyramid pooling layer for
aggregation and is trained in an end-to-end manner, that is, all its components are trained
together. In order to perform spatio-temporal convolutions, Tran et al. [130] factorized
3D convolutional filters into spatial and temporal components (2+1D), achieving superior
results when compared to 2D CNN. All of these works improved their initial results by
pre-training their networks on Kinetics, or using the I3D, which is already pre-trained.
However, due to Kinetics size, this strategy required further computational resources.
Since 2019, we have also seen a trend in the literature towards using this dataset and
other larger ones, such as AVA [38] and Charades [112], for method evaluation [32,52,79,
145,146], although the HMDB51 still has room for improvement.

A recent approach that is evaluated on the UCF101 and HMDB51 datasets and
achieves good results without the Kinetics pre-training is the Temporal Excitation and
Aggregation (TEA) method. TEA is composed of a Motion Excitation (ME) module
that computes short-term information and a Multiple Temporal Aggregation (MTA) to
capture long-term evolution. The ME module integrates spatial and temporal informa-

50

tion, replacing the expensive computation of optical flow images. MTA is a hierarchical
residual architecture that reduces the loss of frames distant in time. Their experiments
showed that the method is very competitive and efficient, although it did not outperform
the methods pre-trained on Kinetics.

3.3 Summary

Optical flow generally plays a major role in the characterization of the actions, either to
estimate object trajectories in DT-based approaches [44, 90, 115, 134, 135, 136, 140], or to
be used as input to a 2D CNN like in the multi-stream architectures [5, 15, 28, 113, 138,
142,144,157].

The importance of the appearance information may be dependent on the target
dataset [67, 154]. For instance, on UCF101 [116] the appearance has shown to be funda-
mental to distinguish similar classes, whereas on Something-Something [37] the temporal
information seems to be more important. This was observed by Zhou et al. [154], who
classified the videos from both datasets in the original and shuffled order. They noted that
the shuffling affected the Something-Something dataset rather more than the UCF101.
In fact, the latter presented no difference in performance between the two versions.

The combination of complementary information, either features or entire methods,
usually leads to better performance. This can be seen in multi-stream networks and
methods combined with the iDT [136] or I3D [15]. How to balance between the sources
is a difficult matter that is recurrently discussed in the literature works.

Deep networks are employed in most of the current works. However, there is no
consensus regarding the use of 2D/3D convolutions or recurrent networks (e.g. LSTM)
to capture temporal relations. Although 3D CNNs and LSTM cells seem to be more
appropriate for the problem, many methods achieve good results exploring frame-level
information.

Another important issue for the action recognition problem is the temporal extension
of the method, and it is also dependent on the dataset. On datasets like KTH [109], a small
number of frames might be sufficient, since it contains a few cyclic actions (“boxing”, “hand
clapping”, “hand waving”, “jogging”, “running”, “walking”). However, the UCF101 might
require more frames to distinguish between “Basketball” and “BasketballDunk” [157], for
instance.

In our work, we proposed a multi-stream architecture based on spatial and temporal
streams [113]. Similar to Wang et al. [138] and Bilen et al. [5], we included new streams
to provide complementary information to the original ones. For the new streams, we
explored the visual rhythm that works as a frame-level aggregation in the form of an
image. As such, unlike the aggregation methods presented here, we can explore 2D CNNs
to capture long-term information through the identification of temporal patterns in the
visual rhythms. We also provided a study of adaptable fusion methods for multi-stream
architectures to avoid fixed weights that are specific to the involved streams and datasets.

51

Chapter 4

Benchmarks

Over the last years, we have seen an increasing interest in more realistic and larger datasets
with video samples obtained in less controlled scenarios. From this group, we selected
HMDB51 [55], UCF101 [116] and Kinetics [49] datasets. The sequences from them were
not recorded specifically for the human action recognition problem; they were extracted
from different sources, such as movies and YouTube. For this reason, they present a great
variety of scene conditions: different illumination conditions, cameras, actors, quality and
points of view, indoor/outdoor videos, among others. The actions in these datasets may
involve multiple actors and other objects, and there may be other events occurring in the
background.

4.1 HMDB51

By the time the HMDB51 (Human Motion DataBase [55]) was publicly released, many
methods from the literature had already achieved almost perfect scores on the datasets
that were more popular back then, such as KTH [109] and Weizmann [7]. For this reason,
the main goal of the authors was to propose a challenging and rich dataset with complex
actions that require more than just static information such as pose and silhouette to be
recognized.

The HMDB51 is composed of 6766 sequences extracted from various sources, mostly
from movies. Since it combines commercial and non-commercial sources, it presents a
rich variety of sequences, including blurred videos or with lower quality and actions from
different points of views. The samples are categorized into 51 action classes with at least
101 clips each. The actions can be one out of five types: (i) General Facial Actions,
(ii) Facial Actions with Object Manipulation, (iii) General Body Movements, (iv) Body
Movements with Object Interaction and (v) Body Movements for Human Interaction.
Figure 4.1 presents some examples of HMDB51 classes. The complete list of action classes
along with their respective indices used here is given in Appendix B.

The authors provide a recommended split of the samples, where each split contains
exactly 70 samples for training and 30 for testing per action class. They also provided a
clip-level annotation, or meta-tags, that indicates the main characteristics of the videos.
Five aspects are considered in this annotation:

52

(a) Smile (b) Talk (c) Drink (d) Eat

(e) Sit (f) Wave (g) Kick Ball (h) Shoot Bow

(i) Hug (j) Shake Hands

Figure 4.1: Examples of HMDB51 [55] class types. (a,b) General Facial Actions; (c,d)
Facial Actions with Object Manipulation; (e,f) General Body Movements; (g,h) Body
Movements with Object Interaction; (i,j) Body Movements for Human Interaction.

1. Visible body part: head, upper body, full body, lower body;

2. Camera motion: moving or static camera;

3. Camera view point (relative to the actor): front, back, left or right;

4. Number of people involved in the action: single, two or three;

5. Clip quality: high, medium or low.

These aspects were considered in order to generate balanced sets. Moreover, they
are useful for a qualitative analysis of the methods. A stabilized version of HMDB51 (i.e.
without camera motion) is also available, but it is not used in our research. Approximately
60% of the videos in the original version contain camera motion, which represents an
important challenge for the action recognition methods. Most of the current datasets
include this challenge and, by taking it into account, we can produce more robust and
realistic methods.

The HMDB51 clips were normalized so that all of them have a fixed height of 240
pixels and 30 fps. The width was scaled accordingly to maintain the aspect ratio. The
clip lengths vary from 17 to 1061 frames, with an average of 92 frames per video (about
3 seconds, considering 30 fps). Figure 4.2 shows the distribution of lengths on HMDB51,
including the distribution among the classes.

53

[0,50] [51,100] [101,300] [301,500] [501,1060]
Length

0

20

40

60

80

100

Fr
eq

ue
nc

y

(a) Overall Distribution

0 10 20 30 40 50
Classes

0

20

40

60

80

100

Fr
eq

ue
nc

y

Length
[0,50] [51,100] [101,300] [301,500] [501,1060]

(b) Class-level Distribution

Figure 4.2: Length frequency on HMDB51 dataset.

From Figure 4.2a, we can see that a significant part of clips (almost 80%) contains fewer
than 100 frames, and 20% does not exceed even 50 frames. The class-level distribution
(Figure 4.2b) shows that this proportion varies considerably throughout the classes. For
instance, in the classes 2 and 17 (corresponding to the Catch and Hit actions, respectively),
the clips are predominantly short. The class Brush Hair (0), on the other hand, contains
longer clips, with about 95% of the videos having more than 100 frames.

54

4.2 UCF101

UCF has proposed some datasets for human action recognition collected from YouTube
(UCF Sports [100], UCF11 [68], UCF50 [98], UCF101 [116]). Each one is an extended
version of the previous. The latest one is the UCF101, which contains 13320 sequences
divided into 101 classes. Appendix B also contains a complete list of UCF101 classes.
There are 5 types of classes on UCF101: (i) Human-Object Interaction, (ii) Body-Motion
Only, (iii) Human-Human Interaction, (iv) Playing Musical Instruments and (v) Sports.
Some examples of each type are illustrated in Figure 4.3.

(a) Mixing (b) Writing On Board (c) Baby Crawling (d) Body Weight Squats

(e) Band Marching (f) Salsa Spin (g) Playing Piano (h) Playing Violin

(i) Cricket Shot (j) Diving

Figure 4.3: Examples of UCF101 [116] class types. (a,b) Human-Object Interaction; (c,d)
Body-Motion Only; (e,f) Human-Human Interaction; (g,h), Playing Musical Instruments
(g,h); (i,j) Sports.

The samples are not evenly distributed among the classes. Every action class contains
25 groups of 4-7 clips that share some features, resulting in 100-175 clips per class. The
samples have a fixed resolution of 320×240 pixels, frame rate of 25 fps and lengths ranging
from 1.06 to 71.04 seconds, with an average length of 7.21s (about 180 frames) per clip.
The charts in Figure 4.4 illustrate the distribution of lengths on UCF101. In contrast
to HMDB51, almost 72% of UCF101 clips have between 101 and 300 frames and the
proportion of very short and very large videos are negligible (less than 1% each), as
shown in Figure 4.4a. Although the purple color is predominant in the second chart

55

(Figure 4.4b), many classes present a considerable number of clips lying in the interval
[51, 100] (for instance, classes 8 - Basketball Dunk and 46 - Jumping Jack), whereas other
classes present a significant percentage in the interval [301, 500] (e.g. 47 - JumpRope and
73 - Rock Climbing Indoor).

[0,50] [51,100] [101,300] [301,500] [501,1774]
Length

0

20

40

60

80

100

Fr
eq

ue
nc

y

(a) Overall Distribution

0 10 20 30 40 50 60 70 80 90 100
Classes

0

20

40

60

80

100

Fr
eq

ue
nc

y

Length
[0,50] [51,100] [101,300] [301,500] [501,1774]

(b) Class-level Distribution

Figure 4.4: Length frequency on UCF101 dataset.

The dataset also includes recommended splits into approximately 70-30 for training
and testing, respectively, without validation set. Figure 4.5 shows the average of clips
over the splits for each class. The classes have an average of 94.9 clips for training and 37
for test. In both sets, the largest class is about 1.7 times greater than the smallest. The
number of clips per class lies in the interval [72, 120] for training and [28, 48] for test.

Additional annotation is provided to allow qualitative analysis of the methods. It

56

0 10 20 30 40 50 60 70 80 90 100
Classes

0.0

20.0

40.0

60.0

80.0

100.0

120.0

94.9

Nu
m
be

r o
f s

am
pl
es

(a) Training set

0 10 20 30 40 50 60 70 80 90 100
Classes

0

20

40
37

Nu
m
be

r o
f s
am

pl
es

(b) Test set

Figure 4.5: Number of clips per class averaged over the splits for training and test sets
on UCF101. The horizontal brown line indicates the average number of clips over the
classes.

consists of 115 class-level attributes manually defined, for instance, “Number of People”
and “Body Parts Used”. The clips of 51 classes contain the original audio, but this
information is not used in our research.

4.3 Kinetics

With the purpose of supplying the absence of large datasets to train video-based deep
networks, Kay et al. proposed the challenging DeepMind Kinetics datasets in three ver-
sions: Kinetics-400 [49], Kinetics-600 [13] and Kinetics-700 [14]. Each version is almost
a superset of the previous, except for some class removals to avoid action redundancies
and splits into more specific labels. The main goal was to introduce a dataset for action
recognition comparable to the ImageNet for image classification.

57

The clips were extracted from YouTube and, consequently, they consist of amateur
videos that present realistic and potentially challenging conditions. Each clip is around
10-second long, with various resolutions and frame rates.

Table 4.1 contains some statistics of the three versions. The number of samples may
vary according to the video availability on the YouTube. We can see that the total number
of videos in all versions is considerably larger than on HMDB51 and UCF101 datasets.
Moreover, every Kinetics clip is taken from a distinct YouTube video, so it comprises a
wider variety of scenarios.

Table 4.1: Kinetics statistics. “Train”, “Validation” and “Test” columns represent the
number of clips per class assigned for each set. “Total” and “Classes” refer to the total
number of clips and number of classes in the corresponding version. Adapted from [14].

Version Train Validation Test Total Classes

Kinetics-400 [49] 250–1000 50 100 306245 400
Kinetics-600 [13] 450–1000 50 100 495547 600
Kinetics-700 [14] 450–1000 50 100 650317 700

The number of clips per class in the training set of Kinetics-600 is shown in Figure 4.6.
Kinetics-600 has an average of 624 clips per class, and the largest class is about 2.7 times
greater that the smallest.

0 50 100 150 200 250 300 350 400 450 500 550 600
Classes

0

250

500

750

1000

624

Nu
m
be

r o
f s
am

pl
es

Figure 4.6: Number of clips per class in the training set of Kinetics-600. The horizontal
brown line indicates the average number of clips over the classes.

There are three types of actions illustrated in Figure 4.7: (i) Singular Person, (ii)
Person-Person and (iii) Person-Object. The third type includes actions of the same verb
with different object such as “Reading Book” and “Reading Newspaper”, and different
verbs with the same object, such as “Playing Guitar” and “Tapping Guitar”. The classes
are also categorized into groups according to the action purpose or scenario, for instance,
“Communication” and “Snow + Ice” are two superclasses of Kinetics. This categorization
is non-exclusive, that is, the same class can belong to multiple groups. The class “Getting
a Tattoo”, for example, belongs to “Arts and Crafts” and “Makeup”.

58

(a) Hugging Baby (b) Shaking Hands (c) Reading a Book (d) Talking on Cellphone

(e) Laughing (f) Stretching Arm

Figure 4.7: Examples of Kinetics-600 [13] class types. (a,b) Singular Person; (c,d) Person-
Person; (e,f) Person-Object.

4.4 Other Datasets

Several other datasets were proposed for the action recognition problem. Table 4.2
presents a summary of some popular ones. The first three (KTH, Weizmann and Holly-
wood2) were widely used before the deep learning era. However, due to the reduced num-
ber of samples and the lack of realism, especially on KTH and Weizmann, these datasets
became deprecated, giving place to larger datasets such as HMDB51 and UCF101.

For our research, we consider only the datasets with trimmed clips and a single la-
bel per clip. Since we are working with deep networks, large and realistic datasets
are also preferable. Therefore, Something-Something, Epic Kitchens and Moments in
Time would match our requirements, as well as HMDB51, UCF101 and Kinetics-600.
However, Something-Something and Epic-Kitchens comprise more restricted scenarios
(human-object and cooking-related actions, respectively), and Moments in Time includes
non-human actions.

59

Table 4.2: Summary of some popular datasets for action recognition. The table contains
the dataset name, release year, number of classes, number of distinct videos, number
of clip labels (single label)/temporal annotations (multilabel), whether is multilabel and
trimmed, and the dataset keywords.

Dataset Year
#

Multilabel Trimmed Keywords
Classes Videos Labels

KTH [109] 2004 6 599 2.4K N Y Controlled
actions

Weizmann [7] 2005 10 93 93 N Y Controlled
actions

Hollywood2 [73] 2009 12 69 1.7K N Y Movies

HMDB51 [55] 2011 51 – 6.8K N Y Movies

UCF101 [116] 2012 101 – 13.3K N Y YouTube

Sports1M [48] 2014 487 1.1M 1.1M Y N Sports

ActivityNet [29] 2015 203 27.8K 39.2K Y N Activity
variety

Charades [112] 2016 157 10K 67K Y Y Daily
activities

Something-Something [37] 2017 174 108.5K 108.5K N Y Human-object
interaction

AVA [38] 2018 80 430 1.6M Y Y Atomic
actions

Epic Kitchens [27] 2018 149 432 39.6K N Y Cooking

Kinetics-600 [13] 2018 600 500K 500K N Y ImageNet-inspired

Moments in Time [76] 2019 339 1M 1M N Y Event
understanding

60

Chapter 5

Adaptive Visual Rhythm

Our basic method consists of a three-stream architecture composed of the spatial, tem-
poral and VR-based streams (Figure 5.1). Each stream consists of an image-based CNN.
The first two are based on the two-stream network [113]. They work with RGB frames
to capture appearance information and optical flow images to capture short-term motion.
The third stream is the main contribution of our work and is based on a long-term fea-
ture, the visual rhythm. Each stream is individually trained and their m-dimensional
score vectors are fused during the test stage, where m is the number of classes. We con-
sidered different approaches to our proposed stream and for fusion that are described in
this chapter and in the following ones.

Spatial Stream

single RGB frame

Temporal Stream

stacked optical flow

T=1 2D CNN

video

VR-based Stream

single visual rhythm image

2D CNN

2D CNNRandom
choice

Optical flow
algorithm

Visual
rhythm

algorithm

class
score
fusion

...

classes (softmax)

...

classes (softmax)

...

classes (softmax)

Figure 5.1: Overview of our three-stream basic method for action recognition. Adapted
from [24].

5.1 Adaptive Visual Rhythm

Our first strategy for the visual rhythm stream is called AVR (Adaptive Visual Rhythm).
It was the result of a collaborative project published on the ICMLA 2018 [24] and was
part of Concha’s [23] Master’s thesis.

61

In the AVR strategy, the rhythms for a given video V = {F1, F2, · · · , Ft} are hand-
crafted images based on the following operations proposed by Souza [117] (recall the visual
rhythm definition in Section 2.3):

TH′(Fi) =

[∑
y Fi(y, 1)

h

∑
y Fi(y, 2)

h
· · ·

∑
y Fi(y, w)

h

]T
(5.1)

TV ′(Fi) =

[∑
x Fi(1, x)

w

∑
x Fi(2, x)

w
· · ·

∑
x Fi(h, x)

w

]T
. (5.2)

For the frame Fi, the VR slices SH′,i = TH′(Fi) and SV ′,i = TV ′(Fi) are defined as the
average of the columns/rows intensities (Figure 5.2).

Vertical-mean

Horizontal-mean

Figure 5.2: Examples of horizontal-mean and vertical-mean slices, extracted from [24].
The slices are defined as the average of columns/rows. They were resized for illustration
purposes.

... ...

Frame i Frame i+1 Frame i+2Si Si+1 Si+2

Vertical-mean rhythm

Figure 5.3: Example of vertical-mean rhythm. The jth row of the vertical-mean rhythm
represents the evolution of the average value of the jth row in the video over time. The
slices were resized for illustration purposes.

62

Each slice is a w× 1 (SH′,i) or a h× 1 (SV ′,i) vector. The resulting rhythms are w× t
and h× t images formed by the concatenation of the slices and are called horizontal-mean
and vertical-mean:

VRH′(V) = [TH′(F1) TH′(F2) · · · TH′(Ft)] (horizontal-mean), (5.3)

VRV ′(V) = [TV ′(F1) TV ′(F2) · · · TV ′(Ft)] (vertical-mean). (5.4)

Note that the slices are placed in the columns of the rhythms, regardless of the opera-
tion used, as mentioned in Section 2.3. As such, the horizontal-mean slice from Figure 5.2
is rotated to be used. Differently from the traditional horizontal and vertical rhythms,
the slices in these two use the information of the entire frame.

The jth row in the rhythm image represents the evolution of the average value of the re-
spective jth column/row in the video over time (Figure 5.3). Considering a VR directionD
(D = H ′ or D = V ′), this evolution row is defined as the set {SD,1(j), SD,2(j) · · · , SD,t(j)}
for a fixed column/row j, and is perpendicular to the slices in the rhythm. If the average
remains constant for the column/row j, the jth row in the rhythm will form a line with
homogeneous intensity, which indicates little or no movement in the corresponding region
throughout the video.

Suppose, without loss of generality, that we are working with horizontal-mean slices.
If a given object moves vertically (that is, orthogonally to the slice direction) between
two frames, it is very likely that the mean color of the corresponding column remains
the same (Figure 5.4). However, a horizontal movement affects the average color of all
columns spanned by the object. Therefore, movements parallel to the slice direction tend
to produce more distinctive patterns.

F
i

F
i+1

S
i

S
i+1

(a) orthogonal movement

F
i

F
i+1

S
i

S
i+1

(b) parallel movement

Figure 5.4: A moving object considering two consecutive frames and horizontal-mean
slices. Parallel movement is better captured in the slice. Extracted from [24].

Based on this observation, we proposed a method for adaptively deciding the best
visual rhythm direction for each action according to the predominant movement. For
estimating the predominant direction of movement, we use the pyramidal version of
Lucas-Kanade point-tracker [10] and the points of interest indicated by the Shi-Tomasi
method [111]. The absolute horizontal and vertical displacement estimated by the tracker
are accumulated over the frames, and the highest value defines the rhythm direction.
Therefore, we choose the horizontal-mean rhythm, if horizontal movement is predomi-
nant in the class and the vertical-mean otherwise. This process is only performed once,

63

and the determined directions are used for every posterior training.

Algorithm 4 AVR-Decision(V) [24]
Input Video V = {F1, F2, · · · , Ft}.
Output Visual rhythm direction {1: vertical-mean; 2: horizontal-mean}.
1: H ← 0 . Initialize the accumulated horizontal displacement.
2: V ← 0 . Initialize the accumulated vertical displacement.
3: Pa ← goodFeaturesToTrack(F1) . Find key points in F1.
4: for all Fi ∈ V \ {F1} do:
5: Pb, St← PyrLK(Fi−1, Fi, Pa) . Pyramidal Lucas-Kanade point tracking.
6: Pa, Pb ← SelectGoodPoints(Pa, Pb, St) . Select good points

7: H ← H +

n∑
j=1

|Pb[j].x− Pa[j].x| . n = size of Pa.

8: V ← V +

n∑
j=1

|Pb[j].y − Pa[j].y|

9: Pa ← Pb
10: if H ≤ V then
11: return 1 . Vertical movement is predominant.
12: else
13: return 2 . Horizontal movement is predominant.

Algorithm 4 presents the steps of the proposed decision method. The function good-
FeaturesToTrack() [111] determines the key points in the first frame that are used for
tracking in the following ones. For each pair of consecutive frames, the PyrLK() [10]
method is used to estimate the new locations of the key points, and it also returns flags
indicating whether the points were found. The horizontal and vertical displacements are
accumulated in H and V, respectively. The key points set is updated using the Select-
GoodPoints() function, based on the flags returned by PyrLK(). Finally, the method
decides the predominant direction according to H and V. This method is repeated for
every video.

(a) frame (b) horizontal-mean (c) vertical-mean

Figure 5.5: Example of frame and rhythms from a Kinetics video of the “running on tread-
mill” class. The horizontal-mean rhythm presents a wavy pattern that better characterizes
the action. Extracted from [70].

Figure 5.5 shows a frame and the visual rhythms extracted from a Kinetics video of
the “running on treadmill” class. This action is predominantly horizontal due to the leg
motion. For this reason, the horizontal rhythm presents more relevant patterns for the
classification. As can be observed in the example, the horizontal rhythm contains a wavy

64

pattern that represents the leg movements, whereas the vertical one is composed of quite
homogeneous lines.

5.2 Improved Spatial Stream

A second contribution of the AVR paper [24] is an improved spatial stream. Instead of
collecting a single RGB frame per video, we collect two, one in each half of the video. This
approach is justified by the fact that the appearance of the scene may change significantly
over time, either by scene conditions as lighting and occlusions or by the variety of poses,
objects and background in the video (Figure 5.6). Therefore, a single appearance may
not be sufficient to describe the action, since the elements that characterize it may not
be apparent in the frame. The improved spatial stream continues to receive one RGB
frame at a time, but it is trained with twice as many samples as proposed in the original
to capture variations in appearance.

Figure 5.6: Fragments from the UCF101 that show the significant variation in appearance
in the two halves of the videos. Each column contains a frame from the first and the second
halves of the same video, respectively. Major changes are: the background change in the
first video, different actors present in each frame in the second one and the balls are not
in the first frame from the third video. Extracted from [24].

Testing protocol remains the same in this stream (Section 2.7): we use 25 frames evenly
sampled from each testing video, and 10 new samples are produced from them. Each
sample is individually tested, and all the 250 computed outputs are combined through
the average of the scores to obtain the m-dimensional vector of the spatial stream.

5.3 Kinetics Pre-training

Many of the state-of-the-art approaches achieve great results by pre-training their net-
works with a large video dataset, the Kinetics [49]. However, due to Kinetics size, this
strategy requires further computational resources to pre-train the three streams, especially
to compute the inputs and train the temporal one. The temporal stream already achieves
good results using only the ImageNet for pre-training, perhaps because the optical flow
maintains a certain level of object shape.

65

Our visual rhythm, on the other hand, is based on operations that extract a global
feature from each frame (Equations 5.1 and 5.2) and so, it does not maintain the sil-
houettes of the actors and objects (Figure 5.7). It is worth mentioning that not all VR
operations completely deform the silhouettes. For instance, recall that in Section 3.2 we
presented a work from Moreira et al. [77]. In their work, they noted that the object is
transferred from video to VR since they use the diagonal of each frame as slice. However,
we prefer the horizontal-mean and vertical-mean approaches since they are not dependent
on the object location and represent the entire frame. Due to this deformation, the VR
is very different from natural images and so its corresponding stream may take greater
benefit from the additional pre-training step using the same modality, in addition to the
ImageNet initialization. Therefore, we developed a different pre-training procedure for
the third stream using rhythms computed from Kinetics, improving the original AVR
results. This work was accepted as a chapter of the Deep Learning Applications book
(DLAPP2019) [70] composed of expanded versions of ICMLA 2018 selected papers.

RGB Optical flow Visual rhythm

Figure 5.7: Modalities used in our three-stream network. The object silhouette can be
seen in RGB image and optical flow, but not in visual rhythm. Extracted from [70].

5.4 Stacking

In our experiments, we noticed that an improvement in the individual streams does not
necessarily imply in an improvement in their combination through the multi-stream strat-
egy. For this reason, a good fusion strategy is fundamental for the method effectiveness.

In the extension of the AVR paper [70], in addition to the simple and weighted average
fusion [24,113,141], we explore another fusion strategy using external fully connected (FC)
layers as a meta-classifier. Thus, the network automatically defines how much the features
contribute to the final prediction. The external network is trained using the same training
set as the 2D CNNs, but using the features computed by them as input (Figure 5.8). This
combination of classifiers is called stacking.

The training procedure is divided into two stages: (1) 2D CNNs and (2) meta-classifier
training. The input to the meta-classifier is formed by the concatenation of the streams
outputs. The output is an m-dimensional vector with the class scores.

The idea behind this proposal is to learn misclassification patterns from the streams
combined with the others. That is, if two classes are poorly discriminated in a given
stream, but well classified in another one, the external network may capture this pattern.
The main advantage of this method is the automatic weight assignment that adapts to
the inclusion of new streams and modifications in the approaches.

66

Spatial
Stream

...

Temporal
Stream

...

VR-based
Stream

...
3*m

...

...

...

...

m

Meta-classifier2D CNNs

Final
Prediction

Tr
ai

ni
ng

 S
et

Figure 5.8: Stacking: the vectors computed by the streams are fused using fully connected
layers to obtain the final prediction for each video. The sizes of the input and output are
based on the number of classes in the dataset. Extracted from [70].

Our first meta-classifier proposal consists of a single FC layer. It is composed of m
neurons corresponding to the classes. The operation in each neuron can be seen as a
weighted average of the 3 · m scores with trainable parameters, followed by a Rectified
Linear Unit (ReLU) activation. Differently from the weighted average, in this approach all
the classes predictions are considered to compute each score. In total, the layer contains
3 ·m2 trainable weights.

5.5 Results

The baseline for our work was provided by Zhu [160], which is a public implementation of
the very deep two-stream network [141] using PyTorch framework. The Inception V3 [123]
architecture was adopted as CNN for our three streams using the ImageNet parameters
for initialization provided by PyTorch. We report the results of the AVR stream with
and without the extra pre-training on the Kinetics dataset, performed after the ImageNet
initialization.

The networks are trained using the Stochastic Gradient Descent (SGD) optimizer
with Nesterov momentum [122] and the cross-entropy loss. For either the pre-training on
Kinetics and training on UCF101/HMDB51, we use 250 epochs and learning rate of 0.001.
Since the Kinetics contains a validation set, we use it to determine the best pre-trained
model for the posterior UCF101/HMDB51 training. According to our experiments, the
best pre-trained model was the one at the 50-th epoch. The UCF101 and HMDB51
datasets, on the other hand, do not provide a validation set, and so we use the model of
the last epoch for testing.

All experiments were performed on a machine with an Intel R© CoreTM i7-3770K
3.50GHz processor, 32GB of memory, an NVIDIA GeForce R©GTX 1080 GPU and Ubuntu
16.04.

The results reported on the AVR paper [24] are shown in Table 5.1. The table includes

67

different approaches for each stream and every combination of the best approaches. The
approaches were tested on UCF101 and HMDB51, using the Inception V3. Note that, the
improved spatial stream (RGB*) outperformed the original approach (RGB) in the two
cases. Regarding the VR-based stream, we tested four approaches: using each direction
separately, using both directions stacked in a 2-channel image and the AVR. AVR pre-
sented the best results. It is worth mentioning that the combination of both directions
achieves the lowest accuracies, even compared to individual ones. Although each video
is better represented by a specific direction, in the stacked version the presence of the
second one had an adverse effect on the efficacy. Due to the rhythms constructions, the
pixels at the same position of horizontal-mean and vertical-mean images do not represent
the same video region. Thus, the stacked image associates pixels that are not related
through the channels, which may explain the decrease in accuracy compared to individ-
ual results. AVR improves the performance using only one chosen direction per video. In
both datasets, the temporal stream achieves the best individual results, as in the original
two-stream network.

Table 5.1: Results and comparison of different approaches used for each stream and com-
binations. Cells on bold represents the overall highest accuracy rates, whereas underlined
cells consist of the best individual approaches.

Stream Approach UCF101 HMDB51

Spatial
RGB image 86.09 50.76
RGB* images 86.61 51.77

Temporal Optical flow 86.95 59.91

VR-based

Horizontal - mean 62.37 35.57
Vertical - mean 55.16 30.27
Stacked 48.65 29.74
AVR 64.39 39.63

Combination
RGB* images + AVR 90.74 61.31
RGB* images + optical flow 92.94 66.43
Optical flow + AVR 89.23 65.45
RGB* image + optical flow + AVR 93.74 69.98

For the weighted average fusion, we use the weights 2 for the spatial, 3 for the temporal
and 1 for the AVR stream, based on the individual performances. Note that RGB* + AVR
and optical flow + AVR outperform individual RGB* and optical flow. Therefore, AVR
provides complementary information for the network by encoding long-term dynamics.
The worst results were achieved by the combination of two temporal features (optical flow
+ AVR), suggesting that appearance is very relevant for the recognition. The combination
of the three streams outperforms the others, therefore, all the three features contribute
to the recognition process.

Results for the AVR stream with (AVR-K) and without (AVR) the pre-training on
Kinetics are shown in Table 5.2. The extra pre-training step improves the results in both

68

datasets, especially HMDB51 that has an increase of 9.28%. This may be explained by
the dataset size: since HMDB51 is half the size of UCF101 and is more challenging, it
takes greater benefit from the pre-training.

Table 5.2: AVR stream results using different pre-training datasets and the Inception V3.

Approach Pre-training Dataset UCF101 (%) HMDB51 (%)
AVR ImageNet 64.74 39.63
AVR-K ImageNet+Kinetics 66.68 48.91

In Table 5.3, we show the results for each of the three streams separately and every
combination of them using different fusion strategies. For the combination, we consider the
simple and weighted averages of the output vectors, and stacking with a meta-classifier.
In the weighted average, we maintained the weights 2, 3 and 1 for the spatial, temporal
and VR-based stream, respectively. Our meta-classifier is composed of a single FC layer
that receives the concatenation of the stream vectors as input, and returns a vector with
the scores for each class.

Table 5.3: Different strategies for fusing the outputs of the three streams.

Approach Streams UCF101 (%) HMDB51 (%)

Individual
RGB* Images 86.61 51.77
Optical Flow 86.95 59.91
AVR-K 66.68 48.91

Simple Average

RGB* + Optical Flow 93.08 65.03
RGB* + AVR-K 87.37 62.00
Optical Flow + AVR-K 82.66 61.55
RGB* + Optical Flow + AVR-K 91.97 67.65

Weighted Average

RGB* + Optical Flow 93.06 65.80
RGB* + AVR-K 90.73 63.12
Optical Flow + AVR-K 88.52 66.43
RGB* + Optical Flow + AVR-K 93.91 70.07

Stacking

RGB* + Optical Flow 92.35 65.05
RGB* + AVR-K 88.58 61.70
Optical Flow + AVR-K 85.79 60.13
RGB* + Optical Flow + AVR-K 91.94 67.14

Concerning the two-stream combinations, most of them surpass the individual results,
except for optical flow + AVR-K with simple average and stacking on the UCF101. In
these two cases, the combinations perform worse than optical flow alone. In general, the
presence of the spatial stream boosts the accuracies in comparison with optical flow +
AVR-K, which again suggests the importance of appearance information for the recogni-
tion.

For the HMDB51, the three-stream versions outperform all other combinations,
whereas for the UCF101 this can only be verified for the weighted average fusion. How-
ever, the gain on the challenging HMDB51 (approximately +3%) is more significant than

69

the loss on the UCF101 (approximately −1%). We can conclude from this table that
the weighted average of the three outputs outperforms the other fusion strategies. A
comparison with the state-of-the-art is shown in Table 6.6 at the end of Chapter 6.

Although the table shows that the stacking approach did not achieve good results, it
still has room for improvement since there are other architectures and hyperparameters
to be explored. In addition, among all fusion methods, the stacking is the only train-
able one and, therefore, it is the most affected by stream overfitting. In other words, it
cannot estimate good weights if the individual streams achieve 100% training accuracy.
Overfitting will be further discussed in Chapter 7.

70

Chapter 6

Learnable Visual Rhythm

In this chapter, we introduce a new VR-based stream called Learnable Visual Rhythm
(LVR). We present three versions of the LVR referred to as LVR0, LVR1 and LVR2, all
of them are described in Section 6.1. These versions can be used in the multi-stream
network from Figure 5.1. In Section 6.2, we present our results using these streams and
a comparison to some state-of-the-art methods.

6.1 Learnable Visual Rhythm

Image-based networks have achieved great results for image classification, describing ob-
jects and appearance. For this reason, they are good tools for obtaining frame-level
descriptors. Therefore, in our second proposal, we use a 2D CNN as the operation T (·)
to produce the rhythm slices. This VR-based stream is called Learnable Visual Rhythm
(LVR), thanks to their trainable operation. In addition to this feature-extractor CNN,
the LVR stream is composed of a second one that predicts the action from the produced
rhythm, similar to the CNN from AVR. Each CNN consists of an Inception V3 network
pre-trained on ImageNet, and only the second one is fine-tuned on each video dataset.
Figure 6.1 illustrates the LVR stream.

CNN1

Frame i Vector i

CNN2

LVR stream

m

video

Repeat for every frame

...

Figure 6.1: LVR stream composed of two stacked CNNs. The first one computes a 1D
descriptor for each video frame. The second one predicts the action based on the 2D
concatenation of the descriptors. The output of the latter CNN is an m-dimensional
score vector, the final LVR response. Adapted from [72].

71

To generate the slices, we consider three distinct points of the Inception network,
called LVR0, LVR1 and LVR2 (Figure 6.2). Each level results in a different VR image.
The three positions are also shown in Table 6.1, along with the corresponding input and
feature vector sizes. This strategy enables the analysis of different abstraction levels, from
the lowest LVR0 to the highest LVR2.

3x
3

Po
ol

3x
3

3x
3

1x
1

3x
3

Po
ol

In
ce

pt
io

n-
A

In
ce

pt
io

n-
A

In
ce

pt
io

n-
A

R
ed

uc
tio

n-
A

In
ce

pt
io

n-
B

In
ce

pt
io

n-
B

In
ce

pt
io

n-
B

In
ce

pt
io

n-
B

R
ed

uc
tio

n-
B

In
ce

pt
io

n-
C

In
ce

pt
io

n-
C

Pool Pool Pool

First Output: LVR0 Second Output: LVR1 Third Output: LVR2

Figure 6.2: An illustration of the three distinct positions considered to extract the features
in the Inception architecture (Figure 2.5). Each position represents a different level of
abstraction. These features compose the LVR0, LVR1 and LVR2 rhythms.

Table 6.1: Inception V3 architecture with extra pooling layers to produce intermediate
outputs. Magenta, yellow and green rows represents LVR0, LVR1 and LVR2 feature
vectors, respectively. The pooling layers do not affect original connections.

Type Input Size Feature Vector Size

conv 299×299×3 -
conv 149×149×32 -
conv 147×147×32 -
pool 147×147×64 -
conv 73×73×64 -
conv 73×73×80 -
pool 71×71×192 -
3×Inception-A 35×35×192 -
pool 35×35×288 3528
Reduction-A 35×35×288 -
4×Inception-B 17×17×768 -
pool 17×17×768 3468
Reduction-B 17×17×768 -
2×Inception-C 8×8×1280 -
pool 8×8×2048 2048

Average pooling layers and reshape method are used to reduce the size of the inter-
mediate images and collapse it into one dimension. The connections between the original

72

layers are maintained, therefore, the extra pooling layers do not affect the results of the
following ones. The resulting feature vectors are normalized using min-max normalization,
which helps mapping them into a grayscale image.

The rationale for using intermediate outputs is that networks trained for image classi-
fication tend to be invariant to the object position and poses at the latter layers, but this
information is rather relevant to distinguish actions. The former outputs, on the other
hand, represent less refined information. Since the three outputs can be computed in a
single forward propagation through the network, they can be combined at a minimum
extra computational cost for the extractions.

The first CNN is initialized with ImageNet parameters and frozen to be used as feature
extractor. We use the same 10 data augmentation techniques from spatial test in the
inputs to this CNN, that is, 5 crops (4 corners + 1 center crop) with and without horizontal
flipping. The cropping width and height are both equal to 299, the Inception input size.
Thus, for each abstraction level, we produce 10 distinct slices, resulting in 30 slices per
frame. The corresponding slices, that is, the slices with common data augmentation
technique and Inception depth, are concatenated to form 30 different visual rhythms per
video.

Each rhythm is f pixels high and t pixels wide, where f is the size of the feature
vector and t is the number of video frames. These rhythms are individually used as
input to the second CNN of the LVR stream, which is responsible for action classification.
For matching the second CNN input dimension, we apply an external adaptive average
pooling along the vertical axis and a resize method along the horizontal one. The adaptive
average pooling is a type of pooling that generates outputs of fixed size, regardless of the
input size. We apply distinct methods for the axes because the rhythm height is much
greater than its width (about 10 times greater). The entire process of VR extraction is
depicted in Figure 6.3.

The main purpose of the classification network is to find temporal patterns in the
rhythm images. As the first one, it is initialized with ImageNet weights, but fine-tuned
on the video dataset. Random horizontal flipping is applied in this training step, in
addition to the 10 data augmentation techniques applied in the first CNN. The training
and testing processes consider a single abstraction level for the inputs at a time, that is,
LVR0, LVR1 and LVR2 are trained/tested separately. For test, the same 10 techniques
are used to augment the number of samples.

6.2 Results

To obtain the LVR slices, we apply a 2D average pooling with kernel size of 10 for LVR0

and of 8 for both LVR1 and LVR2. Considering t the number of frames in a given video,
LVR dimensions become 3528×t, 3468×t and 2048×t, respectively (recall Table 6.1).
These dimensions are reduced through an adaptive pooling operation along the vertical
axis and resizing along the horizontal one, resulting in a 299×299 image that matches the
input size of Inception V3.

Table 6.2 shows the stream results separately and includes different approaches using

73

Frame i

DA CNN1

One at
a time

5.6

6.6

-1,8

...

-2.0

5.3

-2.3

...

7.2

-1.0

-1,8

...

LVR0

LVR1

LVR2

Min-Max

Min-Max

Min-Max

10 new samples

Repeat for every frame

3528

3468

2048

(a) Slice Extraction

...

...

...

3528 x t

3468 x t

2048 x t

Reshape

Reshape

Reshape

299 x 299

299 x 299

299 x 299

t slices

LVR0

LVR1

LVR2

(b) Visual Rhythm Construction

Figure 6.3: LVR extraction. (a) We produce 10 new samples from each frame i using
cropping and horizontal flipping techniques. The extractor CNN (CNN1) receives each
of these 10 samples as input at a time, generating three slices per sample. (b) The
corresponding slices (same technique and depth) are combined to form a rhythm image.
The dimensions of the rhythm are modified to match the Inception input size. To deal
with the disparity between the rhythm height and width, we apply different techniques
for each dimension. This process generates 30 different rhythms per video to be used in
the second CNN.

74

visual rhythm images. We can see that the temporal stream still outperforms the others
on both datasets. Among the rhythm approaches, LVR1 presents the best accuracies,
considerably exceeding the AVR approach, which suggests that deep features may be
more representative than handcrafted ones.

Table 6.2: Individual Results. Cells on bold represents the overall highest accuracy rate.

Modality UCF101 HMDB51

RGB* 86.61 51.77
Optical Flow 86.95 59.91

AVR 64.74 39.63
LVR0 63.64 35.06
LVR1 81.26 51.94
LVR2 78.75 45.53

These results also indicate the superiority of the intermediate depth in providing good
frame descriptions for action recognition. Since the Inception is originally trained for the
object recognition problem, later layers may produce features more invariant to poses
and positions. Hence, the classification CNN that works with LVR2 images might face
difficulties in capturing the temporal evolution and distinguishing the actions. LVR0, on
the other hand, may lack information about the scene structure. This last observation is
reinforced by the fact that the handcrafted AVR outperforms LVR0. Moreover, compared
to the other depths, this image undergoes a significant reduction in size to feed the CNN.

In our second experiment (Table 6.3), we combine the visual rhythm approaches with
the improved spatial (RGB*) and temporal (OF) streams. In the combination, we assign
weight equal to 2 to the RGB*, 3 to the OF, and 1 to any of the rhythm approaches
based on individual results. We can see that all the combinations outperform individual
versions, suggesting that the streams complement each other in some levels.

Concerning the RGB* combinations, the AVR surpasses all the LVR approaches. A
possible explanation is that the feature computed in the spatial network is already em-
bedded into the LVR images, since the feature-extractor CNNs are very similar to the
spatial stream. As such, they may present redundant information. In contrast, the OF
stream benefits most from LVR information. The three-stream combinations reach the
highest accuracies, except for the RGB* + OF + LVR0 on HMDB51. In all cases, the
contribution of the LVR0 is lower, in line with individual results. The combination RGB*
+ OF + LVR2 achieves the best result on UCF101, whereas RGB* + OF + AVR has
the best performance on HMDB51. However, OF + LVR1 and OF + LVR2 present good
results at a lower computational cost, since they are composed of two streams.

From Table 6.3, we notice that AVR and LVR seem to provide different contributions
to the overall network. Therefore, in our third experiment (Table 6.4), we combine the
visual rhythm approaches to assess their complementarity. For this experiment, we use an
arithmetic average to fuse the outputs, that is, every rhythm stream receives 1 as weight.
It is possible to observe that the presence of the AVR and LVR1 streams tends to increase
the accuracy rates. For instance, LVR0 + LVR1 increases from 82.49% and 51.85% to

75

87.59% and 60.09% with AVR + LVR0 + LVR1; AVR + LVR2 increases from 85.54% and
56.54% to 89.34% and 62.16%, after the inclusion of the LVR1. In fact, the combination
AVR + LVR1 presents sufficient competitive results compared to the top combinations in
this table.

Table 6.3: Fusion of spatial, temporal and visual rhythm streams. Cells on bold represent
the overall highest accuracy rate, whereas underlined cells consist of combinations that
present satisfactory results at a lower computational cost.

Combination UCF101 HMDB51

RGB* + AVR 90.74 61.31
RGB* + LVR0 86.97 53.99
RGB* + LVR1 89.29 57.30
RGB* + LVR2 88.90 56.88

OF + AVR 89.23 65.45
OF + LVR0 89.71 63.16
OF + LVR1 91.59 66.49
OF + LVR2 92.15 65.56

RGB* + OF + AVR 93.74 69.98
RGB* + OF + LVR0 93.04 65.66
RGB* + OF + LVR1 93.47 67.28
RGB* + OF + LVR2 94.00 66.71

Table 6.4: Fusion of visual rhythm approaches using arithmetic average. The top-3 com-
binations are highlighted in bold. The underlined values correspond to the combination
with a good trade-off between accuracy and computational cost.

Combination UCF101 HMDB51

AVR + LVR0 79.75 51.48
AVR + LVR1 86.52 59.78
AVR + LVR2 85.54 56.54
LVR0 + LVR1 82.49 51.85
LVR0 + LVR2 82.48 50.59
LVR1 + LVR2 85.47 55.93

AVR + LVR0 + LVR1 87.59 60.09
AVR + LVR0 + LVR2 87.55 59.46
AVR + LVR1 + LVR2 89.34 62.16
LVR0 + LVR1 + LVR2 86.31 56.99

AVR + LVR0 + LVR1 + LVR2 89.47 62.68

We select the top-3 combinations of the visual rhythm approaches from Table 6.4 for
the following experiment, along with the lower-cost AVR + LVR1. These combinations

76

are fused with the spatial and temporal streams. As in the second experiment, we assign
the weights 2 and 3 to RGB* and OF streams, respectively, and 1 to each visual rhythm
approach. The results are shown in Table 6.5.

Table 6.5: Fusion of the best visual rhythm combinations and the spatial and temporal
stream.

Combination UCF101 HMDB51

RGB* + AVR + LVR1 91.87 64.12
RGB* + AVR + LVR0 + LVR1 91.47 64.12
RGB* + AVR + LVR1 + LVR2 92.20 64.64
RGB* + AVR + LVR0 + LVR1 + LVR2 91.90 64.47

OF + AVR + LVR1 92.31 70.02
OF + AVR + LVR0 + LVR1 92.75 70.20
OF + AVR + LVR1 + LVR2 93.59 70.85
OF + AVR + LVR0 + LVR1 + LVR2 93.72 70.46

RGB* + OF + AVR + LVR1 94.30 70.70
RGB* + OF + AVR + LVR1 + LVR2 94.37 70.33
RGB* + OF + AVR + LVR0 + LVR1 94.43 70.96
RGB* + OF + AVR + LVR0 + LVR1 + LVR2 94.49 69.91

The behavior of the combinations is very similar to the ones shown in Table 6.3, that
is, most combinations using only the OF outperform those using only RGB*, however,
both together surpass others. The combinations using RGB* and OF present very similar
accuracy rates on UCF101. From the top-2, for instance, the difference is only 0.06%

(from 94.43% to 94.49%), at a cost of a new stream. Since the five-stream RGB* + OF
+ AVR + LVR0 + LVR1 presents the highest accuracy on HMDB51, it might be the best
option. The four-stream RGB* + OF + AVR + LVR1 also presents satisfactory results
at a even lower computational cost. Therefore, we select both approaches to compare
against state-of-the-art methods (Table 6.6).

In Table 6.6, we separate the methods according to the pre-training strategy. Some
of them are not based on deep networks and so they do not have a pre-training step. We
highlight the overall highest accuracies and the highest that do not pre-train on Kinetics
dataset. The works pre-trained with both have an advantage over those trained only with
ImageNet, since the Kinetics is one of the largest and most varied dataset for the action
recognition problem, and generates more robust networks. For this reason, these methods
achieve considerable higher results. Considering the first group, we achieve the 6th best
accuracy on UCF101 and the 5th best on HMDB51, both with the five-stream LVR.

77

Table 6.6: Comparison of accuracy rates (%) for UCF101 and HMDB51 datasets. Cells
on bold represents the overall highest accuracy rates, whereas underlined cells consist of
the best results using only ImageNet to pre-train the network. The works are ordered by
their publication year.

Method Year Pre-training Dataset UCF101 HMDB51

iDT + FV [136,137] 2013 — 85.9 57.2
iDT + HSV [90] 2016 — 87.9 61.1

Two-stream + SVM [113] 2014 ImageNet 88.0 59.4
Two-stream + LSTM [81] 2015 ImageNet + Sports-1M 88.6 —
TDD + iDT [140] 2015 ImageNet 91.5 65.9
KVMDF [159] 2016 ImageNet 93.1 63.3
Two-stream fusion + iDT [33] 2016 ImageNet 93.5 69.2
Two-stream TSN [142] 2016 ImageNet 94.0 68.5
Three-stream TSN [142] 2016 ImageNet 94.2 69.4
Recurrent hybrid network [149] 2017 ImageNet 93.2 71.8
L2STM [121] 2017 ImageNet 93.6 66.2
Three-stream [138] 2017 ImageNet 94.1 70.4
STP [144] 2017 ImageNet 94.6 68.9
TLE [28] 2017 ImageNet 95.6 71.1
Two-stream LTC + iDT [134] 2018 Sports-1M 92.7 67.2
Gated TSN [158] 2018 ImageNet 94.5 —
Four-stream + iDT [5] 2018 ImageNet 96.0 74.9
Heterogeneous two-stream [20] 2019 ImageNet 94.4 67.2
Two-stream Choquet [107] 2020 ImageNet 92.9 65.9
TEA [66] 2020 ImageNet 96.9 73.3

Two-Stream I3D [15] 2017 ImageNet+Kinetics 97.9 80.2
SVMP + I3D [139] 2018 ImageNet+Kinetics — 81.3
R(2+1)D-TwoStream [130] 2018 Kinetics 97.3 78.7
DTPP [157] 2018 ImageNet+Kinetics 98.0 82.1
I3D+PoTion [22] 2018 ImageNet+Kinetics 98.2 80.9
TAV [8] 2020 ImageNet+Kinetics 97.1 77.0

Our methods (Chapters 5 and 6)

AVR (three-stream) [24] 2018 ImageNet 93.7 69.9
LVR (four-stream) [72] 2019 ImageNet 94.3 70.7
LVR (five-stream) [72] 2019 ImageNet 94.4 71.0
AVR-K (three-stream) [70] 2020 ImageNet 93.9 70.1

78

Chapter 7

Analysis and Fusion

In this chapter, we show an analysis of individual streams and their combinations. Based
on these analyses and the experiments described in Chapter 5, we propose some modifi-
cations on the streams aiming at the reduction of overfitting. After that, we revisit the
trainable fusions introduced in Section 5.4 to assess the impact of the new streams in
these methods. It is worth recalling that the stacking training is divided into (1) CNN
training and (2) meta-classifier training. Henceforth, we refer to (1) as stream-training
and (2) as meta-training. Analogously, the testing steps are referred to as stream-test
(individual test) and meta-test (combination test).

7.1 Overfitting

As mentioned at the end of Chapter 5, overfitting might be a problem for trainable fusions,
since the vectors received in the meta-training do not accurately represent the meta-test
inputs. In particular, if the streams achieve perfect training scores, many combinations
of the vectors can reach high fusion scores, hampering parameter estimation.

Table 7.1: Stream-training and stream-test accuracies (%) at the 250th epoch for each
dataset in Split 1.

Stream
UCF101 HMDB51

Training Test Training Test

RGB* 99.77 85.86 99.14 50.33
OF 95.87 85.36 86.48 58.69
AVR 99.84 63.49 99.76 38.04
LVR0 99.99 65.61 99.96 38.76
LVR1 99.98 79.43 99.95 50.52
LVR2 99.97 79.20 99.95 45.16

To show the overfitting in individual streams, we train them for 250 epochs in Split 1
of UCF101 and HMDB51 datasets. Stream-training and stream-test accuracies at the last
epoch are shown in Table 7.1. The large differences between both scores might indicate

79

overfitted models. On HMDB51, the overfitting is even worse, reaching a difference of
61.72 percentage points in AVR.

0 25 50 75 100 125 150 175 200 225 250
Number of epochs

0

20

40

60

80

100

Ac
cu

ra
cy

Modality
RGB*
OF
AVR
LVR0
LVR1
LVR2

(a) UCF101

0 25 50 75 100 125 150 175 200 225 250
Number of epochs

0

20

40

60

80

100

Ac
cu

ra
cy

Modality
RGB*
OF
AVR
LVR0
LVR1
LVR2

(b) HMDB51

Figure 7.1: Evolution of the stream-training accuracies throughout the epochs in the first
split of (a) UCF101 and (b) HMDB51. All streams were trained for 250 epochs.

Figure 7.1 shows the evolution of the training accuracy rates throughout the epochs
in Split 1 of both datasets for every modality. The behavior is very similar in the two
datasets: RGB* and the three versions of LVR present the fastest growth, followed by the
AVR and finally the OF. On UCF101, the four fastest modalities reach 90% of accuracy
before the 12th epoch. On HMDB51, this growth is slightly slower, but the curves cross
the 90% mark around the 25th epoch, only 10% of the total number of epochs. AVR also

80

crosses this mark around the epoch 25 on UCF101 and around the epoch 50 on HMDB51.
These five modalities end with an almost perfect score on both datasets. Unlike the
others, the OF takes more than 100 epochs to reach the 90% mark on UCF101 and it
completes the training process under this value on HMDB51. As we will show later, this
behavior is propitious for improvements by the early stopping strategy. Although the OF
growth is slower, it reaches a high final training accuracy of 95.87% on UCF101.

In order to reduce overfitting, we train the streams with an early stopping strategy.
We consider a strip length of 1 (k = 1), that is, the validation set is evaluated at every
epoch. We use the validation loss to verify the improvement condition (l− l∗ > δ). Since
the datasets do not include a validation set, we randomly separate 20% of the training
set for validation. For the best of our knowledge, there is no specific strategy for selecting
the parameters δ and patience s. However, they can be selected through the analysis
of the accuracy/loss curve and by following some guidelines. Greater s is more suitable
for models that present a noisy curve with frequent deteriorations and improvements
in the training accuracy/loss. Models that present a fast training improvement may
require a higher δ, which implies in a stricter improvement condition. We perform this
analysis in Split 1 from the two datasets and replicate the selected values for the other
splits. We test different values for delta (δ ∈ {0.00, 0.05, 0.10, 0.15, 0.20}) and patience
(s ∈ {1, 2, 3, 4, 5, 6, 7}).

In our analysis, to support the parameter decision, we consider (i) the epochs when
the curves from Figure 7.1 cross the 90% marker and (ii) the stream-training accuracy
obtained in the early stopping procedure. We seek a training accuracy that is below the
perfect score, but not so smaller that could lead to an underfitting. It is worth highlighting
that the training accuracy during the early stopping procedure is related to the subset
with 80% of the original training samples. We refer to this subset as training subset.

Table 7.2: Experiments on UCF101 dataset in Split 1 with different δ values. For these
experiments, we use a fixed patience s = 7. The column “e∗” shows the best epoch found
for each δ. The column “acc” contains the accuracy of the training subset at e∗. Cells on
bold represent the selected δ for each modality.

δ
RGB* OF AVR LVR0 LVR1 LVR2

e∗ acc e∗ acc e∗ acc e∗ acc e∗ acc e∗ acc

0.00 35 98.55 57 78.56 43 95.45 26 99.49 28 99.60 41 99.60
0.05 13 94.37 35 67.68 32 90.56 12 91.60 12 96.45 19 96.65
0.10 10 92.13 34 67.57 22 80.21 15 95.73 9 93.05 15 92.28
0.15 10 92.13 26 60.59 21 79.88 10 86.12 12 96.45 13 88.60
0.20 5 81.53 20 53.45 17 72.63 14 94.98 9 93.05 12 85.43

Tables 7.2 and 7.3 show the experiments on UCF101 using Split 1. In the first table,
we test different values of δ with a fixed patience s = 7. The table shows the training
subset accuracy at the corresponding epoch. Since the OF presents the slowest growth,
we select the lowest and most flexible value for δ, in such a way that any improvement is
considered in the stop condition. Even with the less strict parameter setting, its training

81

Table 7.3: Experiments on UCF101 dataset in Split 1 with different s values. For each
modality, we use the δ value highlighted in Table 7.2. Column “e∗” shows the best epoch
found for each s. Column “acc” contains the accuracy of the training subset at e∗. Cells
on bold represent the selected s for each modality.

s
RGB* OF AVR LVR0 LVR1 LVR2

e∗ acc e∗ acc e∗ acc e∗ acc e∗ acc e∗ acc

1 4 76.93 17 48.72 15 68.17 7 70.90 3 44.44 8 65.56
2 6 85.13 35 67.68 19 74.72 12 91.60 6 81.35 12 85.43
3 6 85.13 35 67.68 25 83.73 12 91.60 9 93.05 15 92.28
4 10 92.13 35 67.68 25 83.73 12 91.60 9 93.05 15 92.28
5 10 92.13 57 78.56 25 83.73 12 91.60 9 93.05 15 92.28
6 10 92.13 57 78.56 25 83.73 12 91.60 9 93.05 15 92.28
7 10 92.13 57 78.56 32 90.56 12 91.60 9 93.05 15 92.28

accuracy is below 80%. For AVR and LVR0, we use δ = 0.05, because the corresponding
accuracy rates are close to 90%. The accuracy for the AVR drops sharply for greater δ
values, whereas for the LVR0 the accuracy oscillates. RGB*, LVR1 and LVR2 still present
higher accuracies with δ = 0.05, so δ = 0.10 seems more appropriate for them. Using
these selected δ’s, we tested different values for the patience s (Table 7.3). Unlike the δ, a
change in s does not greatly affect the accuracy. Most of them remain the same for s ≥ 3.
In this way, we select s = 5 for all streams, except AVR that uses the default s = 7.

Table 7.4: Experiments on HMDB51 dataset in Split 1 with different δ values. For these
experiments, we use a fixed patience s = 7. Column “e∗” shows the best epoch found for
each δ. Column “acc” contains the accuracy of the training subset at e∗. Cells on bold
represent the selected δ for each modality.

δ
RGB* OF AVR LVR0 LVR1 LVR2

e∗ acc e∗ acc e∗ acc e∗ acc e∗ acc e∗ acc

0.00 19 78.84 90 58.12 34 67.04 13 68.46 15 82.42 24 77.82
0.05 13 69.76 52 45.08 29 60.88 13 68.46 15 82.42 20 66.56
0.10 13 69.76 35 33.00 29 60.88 11 61.13 12 73.22 18 61.67
0.15 9 61.00 32 33.32 24 54.60 12 64.89 12 73.22 19 64.18
0.20 9 61.00 26 27.60 16 41.08 9 52.41 14 79.5 21 70.34

The same experiments for the HMDB51 dataset are shown in Tables 7.4 and 7.5, again
using Split 1. With the lowest δ (Table 7.4), all streams present an adequate accuracy,
far from the perfect score. Therefore, we select δ = 0.00 for all of them. Similar to
UCF101, there is almost no variation in the accuracy as we change the patience (Table 7.5),
especially for RGB* and LVR versions. We choose s = 5 for all streams, the exact value
in which the last stabilization occurs (OF).

We use these selected parameters to train all the streams in the other splits with the
early stopping strategy. The best epoch found in each experiment is used to retrain the

82

Table 7.5: Experiments on HMDB51 dataset in Split 1 with different s values. For each
modality, we use the δ value highlighted in Table 7.4. Column “e∗” shows the best epoch
found for each s. Column “acc” contains the accuracy of the training subset at e∗. Cells
on bold represent the selected s for each modality.

s
RGB* OF AVR LVR0 LVR1 LVR2

e∗ acc e∗ acc e∗ acc e∗ acc e∗ acc e∗ acc

1 11 64.94 32 33.32 21 49.16 9 52.41 6 41.86 16 55.26
2 19 78.84 48 42.00 29 60.88 13 68.46 15 82.42 21 70.34
3 19 78.84 55 43.52 29 60.88 13 68.46 15 82.42 24 77.82
4 19 78.84 73 54.48 29 60.88 13 68.46 15 82.42 24 77.82
5 19 78.84 90 58.12 34 67.04 13 68.46 15 82.42 24 77.82
6 19 78.84 90 58.12 34 67.04 13 68.46 15 82.42 24 77.82
7 19 78.84 90 58.12 34 67.04 13 68.46 15 82.42 24 77.82

streams with the entire training set (training subset and validation set). In Table 7.6, we
show the selected parameters, the best epoch found and the stream-training and stream-
test accuracy after the retraining. We can see that the difference between the training and
testing accuracy rates were reduced, especially for the HMDB51 (as shown in Table 7.1).
The early stopping strategy was particularly effective for the OF stream on both datasets.
Oddly, in some cases, the testing accuracy was even greater than the training one, but
the values are quite close.

Despite the good reduction in the accuracy differences, the early stopping strategy had
a negative impact on the test accuracies. Comparing the averages from Table 7.6 with the
results reported in Table 6.2, we can see that most of the current scores are approximately
1.5 percentage points below. This is a small reduction, considering that we also reduced
the training epochs significantly, in addition to the accuracy differences. However, AVR
and LVR1 lost around 4.0 percentage points, which can affect the combinations that
include them. The only stream that benefited from the early stopping method with
respect to the test accuracy was the LVR2 on HMDB51, presenting an increase of 1.27

points.

7.2 Analysis

With the models obtained after the early stopping retraining, we analyze the behavior
of the new streams inspired by the analysis of the Kinetics paper [49]. Figure 7.2 shows
the 5 easiest and 5 hardest classes for each modality on UCF101. To generate these lists,
we considered the stream-test class recall1 averaged over the splits. Only the “Billiards”
class appears in all lists as an easy class. None of the classes are in the easiest list of one

1Some works use the so-called class accuracy metric [49, 132] for a class-level analysis. However,
accuracy is a classifier-level metric. For the best of our knowledge, class accuracy matches the class recall
definition, although no formal definition was provided. Therefore, here we use the term recall defined as
R(c) = tpc

nc
, where c is a given class, tpc is the number of samples from c that were correctly classified

and nc is the total number of c samples.

83

Table 7.6: Individual results after retraining on UCF101 (left) and HMDB51 (right).
Column “(δ, s)” contains the parameters for the early stopping procedure selected after
the analysis in Split 1. “e∗” refers to the best epoch found for each split. “Train” and
“Test” refer to the training (training subset + validation set) and test accuracy after the
retraining.

Stream (δ, s) Split e∗ Train Test

RGB* (0.10, 5)

1 10 93.88 85.73
2 8 91.16 84.68
3 11 94.16 85.88

Avg 85.43

OF (0.00, 5)

1 57 79.78 83.51
2 63 81.65 86.02
3 87 86.47 85.85

Avg 85.13

AVR (0.05, 7)

1 32 92.81 60.43
2 30 91.94 60.95
3 23 86.69 58.93

Avg 60.10

LVR0 (0.05, 5)

1 12 95.27 59.53
2 13 95.05 61.62
3 17 98.36 63.93

Avg 61.69

LVR1 (0.10, 5)

1 9 94.46 77.58
2 12 97.28 78.44
3 8 91.98 77.33

Avg 77.78

LVR2 (0.10, 5)

1 15 95.26 76.90
2 15 94.94 78.33
3 15 95.26 76.46

Avg 77.23

Stream (δ, s) Split e∗ Train Test

RGB* (0.00, 5)

1 19 81.25 51.96
2 18 80.38 49.22
3 21 84.60 49.41

Avg 50.20

OF (0.00, 5)

1 90 61.40 56.60
2 88 60.68 57.71
3 67 53.12 58.37

Avg 57.56

AVR (0.00, 5)

1 34 75.76 35.03
2 38 79.12 36.93
3 32 69.28 36.54

Avg 36.17

LVR0 (0.00, 5)

1 13 72.71 37.25
2 15 75.84 32.09
3 18 83.72 31.83

Avg 33.72

LVR1 (0.00, 5)

1 15 81.64 50.33
2 14 80.73 47.12
3 12 74.60 46.41

Avg 47.95

LVR2 (0.00, 5)

1 24 83.24 45.42
2 24 83.99 46.67
3 23 81.37 48.30

Avg 46.80

stream and the hardest list of another one.
Concerning the RGB* stream, its easiest classes generally involve specific objects such

as “PlayingGuitar” and “HorseRiding”. On the other hand, its hardest classes present
common scenarios (“CricketShot” and “CricketBowling”, “JavelinThrow” and “Shotput”)
that may have affected the appearance recognition. “CricketBowling” and “Nunchucks”
reached lower scores in most streams. The majority of the easiest classes of the OF
list present large and characteristic movements involving the entire body (for instance,
“IceDancing”), in contrast with the hardest ones that contain more subtle motions (for
instance, “BrushingTeeth”). In addition to “Billiards”, other two classes are present in the
easiest list of every VR-based modality: “BasketBallDunk” and “IceDancing”. “IceDanc-
ing” is also common to the OF stream, perhaps because it requires temporal information

84

0 20 40 60 80 100

Nunchucks
Shotput
JavelinThrow
CricketShot
CricketBowling
Billiards
Knitting
HorseRiding
SumoWrestling
PlayingGuitar

Hardest
Easiest

(a) RGB*

0 20 40 60 80 100

PizzaTossing
Hammering
CricketBowling
BrushingTeeth
ShavingBeard
PlayingTabla
PommelHorse
Diving
IceDancing
Billiards

Hardest
Easiest

(b) OF

0 20 40 60 80 100

PlayingViolin
HandstandWalking
Nunchucks
Hammering
Haircut
HorseRace
Bowling
BasketballDunk
IceDancing
Billiards

Hardest
Easiest

(c) AVR

0 20 40 60 80 100

Nunchucks
HandstandWalking
Archery
BodyWeightSquats
CricketBowling
ParallelBars
IceDancing
Billiards
BasketballDunk
VolleyballSpiking

Hardest
Easiest

(d) LVR0

0 20 40 60 80 100

Nunchucks
CricketShot
HandstandWalking
BodyWeightSquats
RopeClimbing
HorseRiding
HorseRace
IceDancing
BasketballDunk
Billiards

Hardest
Easiest

(e) LVR1

0 20 40 60 80 100

HandstandWalking
CricketShot
Nunchucks
CricketBowling
Lunges
HorseRiding
IceDancing
BasketballDunk
BenchPress
Billiards

Hardest
Easiest

(f) LVR2

Figure 7.2: List of the 5 easiest (highest scores) and 5 hardest (smallest scores) classes
for each modality on UCF101. We use the stream-test recall per class (horizontal axis)
averaged over all splits.

85

to be distinguished. A significant number of videos from the “BasketBallDunk” (8) class
have between 51 to 100 frames (Figure 4.4). It was expected that the reshape process,
regarding the Inception input size, would distort the rhythm, causing a negative impact
in the scores, but it was not the case. A possible explanation is that the CNN learned
the distortion, since the majority of the “BasketBallDunk” clips fall in the same length
interval ([51, 100]). which implies that many short videos were available during the train-
ing stage. However, it is not the only factor, because these streams do not achieve good
results in other classes predominantly short such as “JumpingJack” (46), as shown ahead
in Figure 7.6. Considering the hardest classes, “Nunchucks” and “HandStandWalking” are
common to the four VR-based streams. The confusion analysis can provide new insights
about the stream behavior.

Table 7.7 shows a list of the 5 ordered pairs of classes that reached the highest con-
fusion rates on the UCF101 dataset. Each row contains the percentage of samples from
one class that was predicted as the second one. Most of the pairs present at least one
of the following situations: (i) similar scenarios (for instance, “CricketShot” and “Crick-
etBowling”), (ii) similar poses (for instance, “HammerThrow” and “ThrowDiscus”) and
(iii) similar motion involving the same parts of the body (for instance, “PlayingGuitar”
and “PlayingSitar”). On the other hand, a few confusions are not so easy to explain,
for instance, “JavelinThrow” and “HighJump”. Among the streams, the OF presents the
smallest confusion rates, whereas the LVR0 presents the highest ones.

The top 5 hardest and easiest classes on HMDB51 are shown in Figure 7.3. The “golf”
class was effectively recognized by every stream, whereas all of them achieved low scores for
the classes “swing_baseball”, “throw” and “wave”. Each hardest list contains exactly one
class involving swords (“sword”, “sword_exercise” and “draw_sword”). Table 7.8, which
contains the top 5 confusion rates for HMDB51, shows that the pair “sword_exercise” and
“draw_sword” achieved high rates for every stream. This might indicate some ambiguity
in these two classes. There is a significant overlap between the hardest/easiest list from
the RGB*, LVR1 and LVR2 streams. Their lists of the most confused pairs are also quite
similar. Therefore, a complementarity analysis is required to assess whether these three
streams can be combined or are redundant.

Tables 7.9 and 7.10 show the pairwise complementarity and kappa-statistic (agreement
rate) on UCF101 and HMDB51, respectively. The complementarity rates indicate a target
accuracy for the pair after the insertion of the second stream. For instance, for the spatial
stream on UCF101, we have an average accuracy of 85.43%, which means that 14.57% of
the samples were misclassified. Since the average complementarity rate of the pair RGB*
+ OF is Comp(RGB∗, OF) = 0.631, the potential accuracy of the combination is 94.62%

(= 85.43 + 0.631 · 14.57). Two factors can influence the combination accuracy. First, the
ability of the fusion method to select the best output, which can negatively affect the
final accuracy. Second, since the fusion method combines score vectors and not labels, it
can find the correct prediction from incorrect ones, positively affecting the accuracy. For
instance, suppose a 3-class problem, two classifiers ci and cj and an arithmetic average
fusion. Consider that ci outputs the score vector [0.30, 0.00, 0.20] for a given sample xi,
that is, it votes on class 0 for xi. The classifier cj outputs the vector [0.00, 0.30, 0.20]

for the same sample, that corresponds to the class 1. Based on both vectors, the fusion

86

Table 7.7: Top-5 class confusion rates per stream on UCF101. “Confusion (%)” column
represents the proportion of samples from “Ground Truth” class that were classified as
“Prediction” class. The percentage rates are given by the average of the split rates.

Stream Ground Truth Prediction Confusion (%)

RGB*

CricketShot CricketBowling 37.54
CricketBowling CricketShot 31.48
JavelinThrow HighJump 25.77
HammerThrow ThrowDiscus 21.22
ThrowDiscus HammerThrow 21.07

OF

PlayingGuitar PlayingSitar 19.54
BrushingTeeth ShavingBeard 18.90
BalanceBeam FloorGymnastics 18.35
SoccerPenalty FieldHockeyPenalty 17.74
ShavingBeard Haircut 15.63

AVR

BreastStroke FrontCrawl 32.64
StillRings ParallelBars 32.49

ApplyLipstick ApplyEyeMakeup 22.83
FrontCrawl BreastStroke 21.31

MilitaryParade BandMarching 21.27

LVR0

ApplyLipstick ApplyEyeMakeup 52.21
CricketBowling CricketShot 45.19
Nunchucks JugglingBalls 43.74
HighJump JavelinThrow 37.69

ApplyEyeMakeup ApplyLipstick 29.80

LVR1

CricketShot CricketBowling 40.94
CricketBowling CricketShot 36.80
ShavingBeard BrushingTeeth 27.02
BrushingTeeth ShavingBeard 24.78
MilitaryParade BandMarching 17.64

LVR2

CricketShot CricketBowling 34.82
BrushingTeeth ShavingBeard 25.33
Nunchucks JugglingBalls 19.44

CricketBowling CricketShot 18.30
BreastStroke FrontCrawl 17.36

generates the final vector [0.15, 0.15, 0.2], corresponding to the class 2, different from the
two predictions. If one of the classifiers was correct (that is, the true label is either 0 or
1), the fusion method failed to select it (factor 1). If both were incorrect (that is, the true
label is 2), the fusion was able to produce a correct prediction, despite the misleading
inputs. Therefore, the complementarity measure is used for analytical purposes only.

Table 7.9 shows that all streams present more than 0.272 of complementarity and up
to 0.411 of agreement rates on UCF101. It is worth mentioning that if cj complements

87

Table 7.8: Top-5 class confusion rates per stream on HMDB51. “Confusion (%)” column
represents the proportion of samples from “Ground Truth” class that were classified as
“Prediction” class. The percentage rates are given by the average of the split rates.

Stream Ground Truth Prediction Confusion (%)

RGB*

swing_baseball throw 50.00
stand sit 40.00

sword_exercise draw_sword 34.44
cartwheel flic_flac 31.11
shoot_ball dribble 28.89

OF

sword_exercise draw_sword 25.56
drink eat 24.44
eat drink 23.33

smoke eat 18.89
sword fencing 17.78

AVR

drink stand 31.11
draw_sword sword_exercise 28.89
cartwheel flic_flac 25.56
ride_bike ride_horse 25.56
pullup pushup 20.00

LVR0

shoot_bow pick 36.67
handstand cartwheel 32.22

swing_baseball throw 30.00
kick fall_floor 26.67

sword_exercise draw_sword 24.44

LVR1

swing_baseball throw 32.22
sword_exercise draw_sword 32.22

stand sit 31.11
handstand cartwheel 30.00

sit stand 30.00

LVR2

swing_baseball throw 52.22
drink eat 33.33

sword_exercise draw_sword 30.00
stand sit 27.78

flic_flac cartwheel 26.67

ci much more than the opposite, i.e. Comp(ci, cj) � Comp(cj, ci), the stream ci is not
being very useful for the pair. For this reason, we use the harmonic mean introduced by
Equation 2.12. We can see that the pair RGB* and OF presents a balanced complemen-
tarity with harmonic mean HM(RGB*,OF) = 0.635. The LVR versions present higher
complementarity rates combined with the OF stream rather than in the RGB* combi-
nations, reaching HM(OF,LVR2) = 0.611, whereas the AVR better complements the
RGB* (HM(RGB*,AVR) = 0.506). The pair RGB* + AVR also presents the smallest

88

0 20 40 60 80 100

swing_baseball
wave
throw
stand
sword_exercise
pour
shoot_bow
kiss
dribble
golf

Hardest
Easiest

(a) RGB*

0 20 40 60 80 100

throw
wave
hit
sword
swing_baseball
situp
shoot_bow
clap
pullup
golf

Hardest
Easiest

(b) OF

0 20 40 60 80 100

swing_baseball
throw
wave
sword
pick
stand
pushup
golf
climb
brush_hair

Hardest
Easiest

(c) AVR

0 20 40 60 80 100

wave
swing_baseball
kick
throw
draw_sword
ride_bike
climb
brush_hair
kiss
golf

Hardest
Easiest

(d) LVR0

0 20 40 60 80 100

swing_baseball
throw
sword_exercise
pick
wave
ride_horse
ride_bike
shoot_bow
pour
golf

Hardest
Easiest

(e) LVR1

0 20 40 60 80 100

swing_baseball
wave
jump
throw
sword_exercise
ride_bike
dribble
pour
golf
shoot_bow

Hardest
Easiest

(f) LVR2

Figure 7.3: List of the 5 easiest (highest scores) and 5 hardest (smallest scores) classes
for each modality on HMDB51. We use the stream-test recall per class (horizontal axis)
averaged over all splits.

89

Table 7.9: Pairwise complementarity Comp(ci, cj) (left) and kappa-statistic κp(ci, cj)
(right) on UCF101 dataset averaged over the splits. The stream in the row corresponds to
ci and cj is the stream in the column. Recall that the complementarity is noncommutative,
in contrast to the kappa-statistic.

Complementarity

RGB* OF AVR LVR0 LVR1 LVR2

RGB* 0.000 0.631 0.376 0.272 0.355 0.365
OF 0.640 0.000 0.299 0.369 0.525 0.541
AVR 0.772 0.738 0.000 0.463 0.663 0.656
LVR0 0.722 0.755 0.441 0.000 0.598 0.609
LVR1 0.579 0.683 0.395 0.308 0.000 0.450
LVR2 0.594 0.701 0.398 0.343 0.463 0.000

Kappa-statistic

RGB* OF AVR LVR0 LVR1 LVR2

RGB* 1.000 0.254 0.153 0.242 0.405 0.385
OF 0.254 1.000 0.210 0.176 0.246 0.222
AVR 0.153 0.210 1.000 0.258 0.206 0.208
LVR0 0.242 0.176 0.258 1.000 0.316 0.286
LVR1 0.405 0.246 0.206 0.316 1.000 0.411
LVR2 0.385 0.222 0.208 0.286 0.411 1.000

agreement rate of 0.153. The highest agreements were achieved by the pairs involving the
RGB*, LVR1 and LVR2, all of them reaching about 0.4 of agreement. Despite this, they
were able to complement each other with harmonic means of approximately 0.45. Al-
though the agreement rates of the LVR0 were small, it has little contribution to the other
streams. Even the AVR, which reached the lowest individual accuracy rates, achieves
better scores with the diversity metrics.

On HMDB51 (Table 7.10), all pairs achieved at least 0.184 of complementarity and
at most 0.442 of agreement rates. In contrast to UCF101, the OF stream complements
the RGB* more than the other way around (HM(RGB*,OF) = 0.358). The RGB* con-
tribution to OF was similar to LVR1 and LVR2. The LVR1 complementarity rates were
higher than the other VR-based to both the RGB* and OF streams. However, the pair
RGB* + LVR1 presents a high agreement. As on UCF101, the pairs containing the RGB*,
LVR1 and LVR2 present good scores, despite their similar behavior on the easiest/hardest
classes analysis. In conclusion, we can see that every pair presents a promising contri-
bution and a lower agreement rate on both datasets. Even the combinations between
VR-based streams achieved good scores, although the LVR0 shows inferior results.

Table 7.10: Pairwise complementarity Comp(ci, cj) (left) and kappa-statistic κp(ci, cj)
(right) on HMDB51 dataset averaged over the splits. The stream in the row corresponds to
ci and cj is the stream in the column. Recall that the complementarity is noncommutative,
in contrast to the kappa-statistic.

Complementarity

RGB* OF AVR LVR0 LVR1 LVR2

RGB* 0.000 0.416 0.230 0.184 0.268 0.246
OF 0.314 0.000 0.203 0.205 0.312 0.308
AVR 0.399 0.470 0.000 0.239 0.384 0.366
LVR0 0.387 0.491 0.267 0.000 0.361 0.369
LVR1 0.300 0.439 0.244 0.186 0.000 0.272
LVR2 0.294 0.448 0.239 0.214 0.288 0.000

Kappa-statistic

RGB* OF AVR LVR0 LVR1 LVR2

RGB* 1.000 0.319 0.263 0.307 0.422 0.442
OF 0.319 1.000 0.259 0.214 0.282 0.268
AVR 0.263 0.259 1.000 0.275 0.247 0.265
LVR0 0.307 0.214 0.275 1.000 0.319 0.267
LVR1 0.422 0.282 0.247 0.319 1.000 0.408
LVR2 0.442 0.268 0.265 0.267 0.408 1.000

The interrater agreement is shown in Figure 7.4. The chart presents the interrater score
for every possible r-combination using the 6 streams, except the pairs. Refer to Table B.3
in Appendix B for the index-combination mapping. We can see that the dataset curves in
the figure present similar behavior, that is, their increases and decreases are aligned over

90

most of the interval. However, the UCF101 agreement rates are lower. On both datasets,
the combinations that include any two streams from the group RGB*, LVR1 and LVR2

present higher agreement rates. They cause local maxima on the curves, for instance, the
combinations RGB* + LVR1 + LVR2 (25) and OF + LVR1 + LVR2 (31). Combinations
including the pair AVR and LVR0, on the other hand, cause local minima, such as RGB*
+ AVR + LVR0 (20) and RGB* + OF + AVR + LVR0 (36). The best combination in
terms of agreement rate was RGB* + OF + AVR on UCF101 (16) and OF + AVR +
LVR0 (26) on HMDB51.

16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56
Combination

0.15

0.20

0.25

0.30

0.35

0.40

0.45

In
te
rra

te
r a

gr
ee

m
en

t

UCF101
HMDB51

Figure 7.4: Interrater agreement for every possible r-combination of the 6 streams with r ∈
{3, 4, 5, 6} on UCF101 and HMDB51. Vertical lines indicate the end of each combination
group with regards to r.

Figures 7.5, 7.6 and 7.7 show the class recall per stream on UCF101 and HMDB51
averaged over the splits. The classes were ordered according to the maximum score
obtained among the streams. On UCF101 (Figures 7.5 and 7.6), we can see that the
RGB* and OF achieved the highest scores in most classes. However, in many classes, the
LVR1 and LVR2 reached close results. The most interesting cases are those in which the
first stream achieved results considerably higher than the second one. For instance, in
the “Typing” class, the RGB* has a clear lead. This suggests that the aspect captured
in that stream was crucial for the class. Although the VR-based streams reach the first
place in some classes, none of them were by a wide margin. This suggests, in turn, that
their complementarity might be in an intra-class level.

Unlike UCF101, superior scores from VR-based streams are more frequent on
HMDB51. In some of them, there is a significant difference between the first and sec-
ond recall rates, such as in “punch” and “stand” classes. These charts also show that the
RGB*, LVR1 and LVR2 have different behavior on the datasets, although some of their
best and worst cases have coincided, according to the easiest/hardest analysis. The RGB*
outperformed the OF more frequently on UCF101 than on HMDB51, which may indicate
that the UCF101 classes are better recognized by the appearance, whereas the HMDB51
requires temporal information.

91

Billiards

HorseRiding

Knitting

BenchPress

Typing

PlayingDhol

PlayingGuitar

PlayingPiano

PlayingSitar

PlayingTabla

Biking

SumoWrestling

PlayingDaf

IceDancing

BasketballDunk

Diving

HorseRace

PommelHorse

CuttingInKitchen

Bowling

WritingOnBoard

VolleyballSpiking

ParallelBars

StillRings

PoleVault

Rafting

SalsaSpin

BodyWeightSquats

CliffDiving

Mixing

BoxingPunchingBag

FloorGymnastics

HulaHoop

Swing

Surfing

GolfSwing

Drumming

BreastStroke

PlayingFlute

Rowing

JumpRope

Fencing

BabyCrawling

UnevenBars

HammerThrow

Skijet

PlayingCello

TrampolineJumping

SkateBoarding

BandMarching

BalanceBeam

02040608010
0

Recall

RG
B*

OF AV
R

LV
R0

LV
R1

LV
R2

F
ig
ur
e
7.
5:

C
la
ss

re
ca
ll
pe

r
st
re
am

on
U
C
F
10

1
av
er
ag
ed

ov
er

al
ls
pl
it
s.

T
he

sc
or
es

w
er
e
or
de
re
d
ac
co
rd
in
g
to

th
e
m
ax

im
um

re
ca
ll
in

ea
ch

cl
as
s.

U
C
F
10

1
w
as

di
vi
de
d
in
to

tw
o
gr
ou

ps
fo
r
ill
us
tr
at
io
n
pu

rp
os
es
,h

er
e
w
e
sh
ow

th
e
fir
st

51
cl
as
se
s.

92

RockClimbingIndoor

MilitaryParade

BoxingSpeedBag

TableTennisShot

PlayingViolin

SkyDiving

SoccerPenalty

BlowingCandles

RopeClimbing

JugglingBalls

CleanAndJerk

WalkingWithDog

Punch

FrisbeeCatch

ApplyEyeMakeup

HandstandPushups

Skiing

Kayaking

BlowDryHair

TennisSwing

ApplyLipstick

SoccerJuggling

ThrowDiscus

PullUps

HeadMassage

BaseballPitch

JumpingJack

WallPushups

PushUps

FrontCrawl

Archery

FieldHockeyPenalty

MoppingFloor

Haircut

Nunchucks

Basketball

CricketShot

YoYo

ShavingBeard

TaiChi

HighJump

HandstandWalking

LongJump

JavelinThrow

Hammering

Lunges

BrushingTeeth

Shotput

CricketBowling

PizzaTossing

02040608010
0

Recall

RG
B*

OF AV
R

LV
R0

LV
R1

LV
R2

F
ig
ur
e
7.
6:

C
la
ss

re
ca
ll
pe

r
st
re
am

on
U
C
F
10

1
av
er
ag
ed

ov
er

al
ls
pl
it
s.

T
he

sc
or
es

w
er
e
or
de
re
d
ac
co
rd
in
g
to

th
e
m
ax

im
um

re
ca
ll
in

ea
ch

cl
as
s.

U
C
F
10

1
w
as

di
vi
de
d
in
to

tw
o
gr
ou

ps
fo
r
ill
us
tr
at
io
n
pu

rp
os
es
,h

er
e
w
e
sh
ow

th
e
la
st

50
cl
as
se
s.

93

golf

shoot_bow

dribble

kiss

pullup

pour

clap

ride_bike

situp

brush_hair

ride_horse

climb

catch

pushup

sit

shake_hands

flic_flac

talk

laugh

hug

chew

fencing

drink

stand

cartwheel

somersault

dive

push

handstand

punch

hit

fall_floor

climb_stairs

run

jump

eat

smile

kick_ball

shoot_gun

shoot_ball

turn

smoke

draw_sword

walk

sword

kick

pick

sword_exercise

swing_baseball

wave

throw

02040608010
0

Recall

RG
B*

OF AV
R

LV
R0

LV
R1

LV
R2

F
ig
ur
e
7.
7:

C
la
ss

re
ca
ll
pe

r
st
re
am

on
H
M
D
B
51

av
er
ag

ed
ov
er

al
l
sp
lit
s.

T
he

sc
or
es

w
er
e
or
de
re
d
ac
co
rd
in
g
to

th
e
m
ax

im
um

re
ca
ll
in

ea
ch

cl
as
s.

94

7.3 Fusion

We explore three fusion methods for the combination of the score vectors: (i) weighted
average, (ii) fully connected layer and (iii) SVM classifier. Their parameters are estimated
using the training set and, for this reason, are better adapted to different datasets and
stream-combinations. The fusion methods are further detailed as follows. For the meth-
ods, consider r the number of parallel streams (after the early stopping retraining) in the
combination and m the number of classes.

Weighted Average (WA): Unlike the weighted average described in Chapters 5 and 6,
for this one we explore a grid search strategy to select the weights. For each weight, we
tested every value from 1 to 10 with step 1. It is worth mentioning that the arithmetic
average is also covered with this parameter interval. For the weight selection, we consider
only the training samples. The weight set that achieves the highest accuracy is used in
the meta-test stage.

Fully Connected Layer (FC): The same FC layer introduced in Section 5.4 is tested
here, the difference is that it includes more streams and they are trained with the early
stopping strategy. The layer is still composed of m neurons, but the size of the input is
r ·m, which corresponds to the concatenation of the streams score vectors. It has a total
of r · m2 trainable weights. The fusion network is also trained using an early stopping
protocol, with δ = 0, s = 7, and the same training-validation division from the stream-
training. The score vectors are standardized, that is, they have zero mean and are scaled
by the standard deviation. Both the mean and the standard deviation are computed from
the training subset and replicated for the other sets.

Support Vector Machine (SVM): We train an SVM classifier for fusion using the
C-SVC approach. As in the weighted average, we perform a grid search for selecting the
SVM parameters, that is, the regularization factor C, the kernel type with γ and the
multi-class strategy. For C and γ, we consider the set {10−4, 10−3, · · · , 104}. We test
linear and RBF kernels, and the γ parameter is only used for the RBF kernel. The multi-
class strategy can be either OvO or OvR. The grid search is performed over the training
set with a 3-fold cross-validation, and the accuracy is used for the selection. The score
vectors are also standardized using the mean and standard deviation from the training
set.

Figure 7.8 shows a comparison of the three methods in the first split of UCF101
and HMDB51. For comparison, we use the accuracy of every r-combination of streams
r ∈ {2, 3, 4, 5, 6} (Table B.3). The results were similar, but SVM outperforms the others in
most combinations on UCF101 and the FC on HMDB51. The weighted average presents
a greater variation on accuracy across the combinations and its results are inferior to the
other two in many cases. We select the SVM fusion, because in addition to being the best
method on UCF101, it achieves comparable results on HMDB51.

Tables 7.11 and 7.12 show the 5 combinations that achieve the highest accuracy rates
on each dataset. The best combination on UCF101 is the five-stream RGB* + OF + AVR

95

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55
Combination

50

60

70

80

90

100
Ac
cu
ra
cy

Method
WA
FC
SVM

(a) UCF101

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55
Combination

50

60

70

80

90

100

Ac
cu
ra
cy

Method
WA
FC
SVM

(b) HMDB51

Figure 7.8: Fusion methods on UCF101 and HMDB51 using every possible r-combination
of the 6 streams, where r ∈ {2, 3, 4, 5, 6}. Vertical lines indicate the end of each combina-
tion group with regards to r.

+ LVR1 + LVR2 with 93.39% of accuracy. On HMDB51, the six-stream version outper-
forms the others, achieving 69.98%. Some four-stream combinations achieve comparable
performance on UCF101, which involve a lower computational cost. For the HMDB51,
the top-5 combinations present at least five streams. Considering other options with lower
computational cost, we have the RGB* + OF + AVR and RGB* + OF on UCF101 that
reach the 8th and 16th place with 92.66% and 91.80% of accuracy, respectively, and the

96

Table 7.11: Meta-test accuracy rates of the top-5 best combinations on UCF101 using
the SVM fusion. Column “(C,ms,k[, γ])” contains the SVM parameters found with the
grid search strategy, where “ms” and “k” refer to the multi-class strategy and kernel type,
respectively. For RBF kernel, we also show the γ value.

Combination Split (C,ms,k[, γ]) Test

RGB* + OF + AVR + LVR1 (37)

1 (10−3, ovr, linear) 93.21
2 (10−3, ovr, linear) 93.41
3 (10−3, ovr, linear) 92.48

Avg 93.03

RGB* + OF + AVR + LVR0 + LVR1 + LVR2 (57)

1 (10−4, ovr, linear) 92.68
2 (10−3, ovr, linear) 93.44
3 (10−3, ovr, linear) 93.15

Avg 93.09

RGB* + OF + AVR + LVR0 + LVR2 (52)

1 (10−4, ovr, linear) 92.36
2 (10−3, ovr, linear) 93.65
3 (10−3, ovr, linear) 93.7

Avg 93.24

RGB* + OF + AVR + LVR2 (38)

1 (10−3, ovr, linear) 92.62
2 (10−3, ovr, linear) 93.36
3 (10−2, ovr, linear) 93.86

Avg 93.28

RGB* + OF + AVR + LVR1 + LVR2 (53)

1 (10−3, ovr, linear) 93.31
2 (10−3, ovr, linear) 93.57
3 (10−3, ovr, linear) 93.29

Avg 93.39

OF + AVR + LVR1 and RGB* + OF on HMDB51 that achieve 65.90% (11th) and 61.26%

(34th). The OF stream presents the highest computational cost, since it computes 250
optical flow fields using the dense TV-L1. The best combination that excludes the OF is
the five-stream RGB* + AVR + LVR0 + LVR1 + LVR2 that achieves 91.14% on UCF101
and 65.80% on HMDB51.

Although the differences between the stream-training and stream-test accuracy rates
were reduced with the early stopping strategy, the final results with the approach pre-
sented in this chapter are slightly lower than those shown in Table 6.6, losing approxi-
mately 1 percentage point on both datasets. This might be caused by a decrease in the
stream-test accuracy rates after the early stopping. However, the reductions in the meta-
test scores were smaller than in the stream-test ones, especially if considering the 4-point
reduction in the AVR and LVR1. Moreover, the current approach has some advantages
compared to the previous one, such as the reduced stream-training cost thanks to the
early stopping protocol and the fusion adaptability to other datasets and streams. In
particular, the reduction in the stream-training cost facilitates the use of larger datasets,
such as the Kinetics. Both the early stopping and the adaptable fusion can also be applied

97

Table 7.12: Meta-test accuracy rates of the top-5 best combinations on HMDB51 using
the SVM fusion. Column “(C,ms,k[, γ])” contains the SVM parameters found with the
grid search strategy, where “ms” and “k” refer to the multi-class strategy and kernel type,
respectively. For RBF kernel, we also show the γ value.

Combination Split (C,ms,k[, γ]) Test

RGB* + OF + AVR + LVR1 + LVR2 (53)

1 (10−1, ovr, linear) 67.58
2 (102, ovr, rbf, 10−4) 68.10
3 (10, ovr, rbf, 10−3) 69.41

Avg 68.37

RGB* + OF + AVR + LVR0 + LVR1 (51)

1 (10, ovr, rbf, 10−3) 69.87
2 (10−2, ovr, linear) 68.95
3 (10, ovr, rbf, 10−3) 68.17

Avg 69.00

RGB* + OF + AVR + LVR0 + LVR2 (52)

1 (10−1, ovr, linear) 69.15
2 (102, ovr, rbf, 10−3) 68.95
3 (10−2, ovr, linear) 69.15

Avg 69.08

OF + AVR + LVR0 + LVR1 + LVR2 (56)

1 (10, ovr, rbf, 10−3) 70.00
2 (10−2, ovr, linear) 68.95
3 (10−2, ovr, linear) 68.30

Avg 69.08

RGB* + OF + AVR + LVR0 + LVR1 + LVR2 (57)

1 (10, ovr, rbf, 10−3) 71.24
2 (10−1, ovr, linear) 69.02
3 (10−2, ovr, linear) 69.67

Avg 69.98

to other multi-stream architectures, such as two-stream TSN and two-stream I3D.
Figures 7.9, 7.10 and 7.11 show a comparison of the class recall from the best combi-

nations and the maximum recall among the individual streams. The scores are averaged
over the splits. We indicate whether there is an increase or decrease through the bar color.
Green bars mean that the corresponding classes are better recognized by the combination
than by the stream with the best score. Otherwise, the bar is colored red. We can see
that the increases are more frequent and more significant than the decreases on both
datasets, especially in the most difficult classes. The classes with the highest decreases,
“CricketShot” on UCF101 and “swing_baseball” on HMDB51, are in the top-5 confusions
of various streams (Tables 7.7 and 7.8). Furthermore, only the OF achieves good results
for them, presenting scores significantly higher than the other streams (Figures 7.5, 7.6
and 7.7). Therefore, the SVM might be negatively affected by the frequency of incorrect
score vectors that it receives.

98

Billiards

HorseRiding

Knitting

BenchPress

Typing

PlayingDhol

PlayingGuitar

PlayingPiano

PlayingSitar

PlayingTabla

Biking

SumoWrestling

PlayingDaf

IceDancing

BasketballDunk

Diving

HorseRace

PommelHorse

CuttingInKitchen

Bowling

WritingOnBoard

VolleyballSpiking

ParallelBars

StillRings

PoleVault

Rafting

SalsaSpin

BodyWeightSquats

CliffDiving

Mixing

BoxingPunchingBag

FloorGymnastics

HulaHoop

Swing

Surfing

GolfSwing

Drumming

BreastStroke

PlayingFlute

Rowing

JumpRope

Fencing

BabyCrawling

UnevenBars

HammerThrow

Skijet

PlayingCello

TrampolineJumping

SkateBoarding

BandMarching

BalanceBeam

Cl
as

s

02040608010
0

Recall

F
ig
ur
e
7.
9:

C
la
ss

re
ca
ll
fo
r
th
e
co
m
bi
na

ti
on

R
G
B
*
+

O
F
+

AV
R

+
LV

R
1
+

LV
R

2
co
m
pa

re
d
to

th
e
m
ax

im
um

re
ca
ll
am

on
g
th
e
st
re
am

s
on

U
C
F
10

1.
T
he

sc
or
es

w
er
e
av
er
ag

ed
ov
er

al
ls

pl
it
s.

W
e
fo
llo

w
th
e
sa
m
e
or
de
r
us
ed

in
F
ig
ur
e
7.
5.

U
C
F
10

1
w
as

di
vi
de
d
in
to

tw
o
gr
ou

ps
fo
r
ill
us
tr
at
io
n
pu

rp
os
es
,h

er
e
w
e
sh
ow

th
e
fir
st

51
cl
as
se
s.

G
re
en

ba
rs

in
di
ca
te

an
in
cr
ea
se

in
th
e
re
ca
ll
va
lu
e
fr
om

in
di
vi
du

al
st
re
am

to
th
e
fu
si
on

.
R
ed

ba
rs

in
di
ca
te

a
de
cr
ea
se
.

99

RockClimbingIndoor

MilitaryParade

BoxingSpeedBag

TableTennisShot

PlayingViolin

SkyDiving

SoccerPenalty

BlowingCandles

RopeClimbing

JugglingBalls

CleanAndJerk

WalkingWithDog

Punch

FrisbeeCatch

ApplyEyeMakeup

HandstandPushups

Skiing

Kayaking

BlowDryHair

TennisSwing

ApplyLipstick

SoccerJuggling

ThrowDiscus

PullUps

HeadMassage

BaseballPitch

JumpingJack

WallPushups

PushUps

FrontCrawl

Archery

FieldHockeyPenalty

MoppingFloor

Haircut

Nunchucks

Basketball

CricketShot

YoYo

ShavingBeard

TaiChi

HighJump

HandstandWalking

LongJump

JavelinThrow

Hammering

Lunges

BrushingTeeth

Shotput

CricketBowling

PizzaTossing

Cl
as
s

02040608010
0

Recall

F
ig
ur
e
7.
10

:
C
la
ss

re
ca
ll
fo
r
th
e
co
m
bi
na

ti
on

R
G
B
*
+

O
F
+

AV
R

+
LV

R
1
+

LV
R

2
co
m
pa

re
d
to

th
e
m
ax

im
um

re
ca
ll
am

on
g
th
e
st
re
am

s
on

U
C
F
10

1.
T
he

sc
or
es

w
er
e
av
er
ag

ed
ov
er

al
ls

pl
it
s.

W
e
fo
llo

w
th
e
sa
m
e
or
de
r
us
ed

in
F
ig
ur
e
7.
6.

U
C
F
10

1
w
as

di
vi
de
d
in
to

tw
o
gr
ou

ps
fo
r
ill
us
tr
at
io
n
pu

rp
os
es
,
he
re

w
e
sh
ow

th
e
la
st

50
cl
as
se
s.

G
re
en

ba
rs

in
di
ca
te

an
in
cr
ea
se

in
th
e
re
ca
ll
va
lu
e
fr
om

in
di
vi
du

al
st
re
am

to
th
e
fu
si
on

.
R
ed

ba
rs

in
di
ca
te

a
de
cr
ea
se
.

100

golf

shoot_bow

dribble

kiss

pullup

pour

clap

ride_bike

situp

brush_hair

ride_horse

climb

catch

pushup

sit

shake_hands

flic_flac

talk

laugh

hug

chew

fencing

drink

stand

cartwheel

somersault

dive

push

handstand

punch

hit

fall_floor

climb_stairs

run

jump

eat

smile

kick_ball

shoot_gun

shoot_ball

turn

smoke

draw_sword

walk

sword

kick

pick

sword_exercise

swing_baseball

wave

throw

Cl
as
s

02040608010
0

Recall

F
ig
ur
e
7.
11

:
C
la
ss

re
ca
ll
fo
r
th
e
co
m
bi
na

ti
on

R
G
B
*
+

O
F

+
AV

R
+

LV
R

0
+

LV
R

1
+

LV
R

2
co
m
pa

re
d
to

th
e
m
ax

im
um

re
ca
ll
am

on
g

th
e
st
re
am

s
on

H
M
D
B
51

.
T
he

sc
or
es

w
er
e
av
er
ag

ed
ov
er

al
ls

pl
it
s.

W
e
fo
llo

w
th
e
sa
m
e
or
de
r
us
ed

in
F
ig
ur
e
7.
7.

G
re
en

ba
rs

in
di
ca
te

an
in
cr
ea
se

in
th
e
re
ca
ll
va
lu
e
fr
om

in
di
vi
du

al
st
re
am

to
th
e
fu
si
on

.
R
ed

ba
rs

in
di
ca
te

a
de
cr
ea
se
.

101

Chapter 8

Conclusions and Future Work

Human action recognition is a challenging and attractive problem due to the wide range
of possible applications. Although much effort has been made in this research field, there
is no generic methodology for solving the problem and many questions remain open. The
perception of the problem itself evolves as new datasets are released.

Throughout this text, we presented our research achievements for HAR in videos.
The central issue of any application involving video analysis is the definition of a proper
spatio-temporal representation that describes the event of interest. We explored deep
learning strategies for this task that learns complex visual patterns from data. To mini-
mize the high training cost of video-based deep networks, we follow the trend of exploring
non-trainable elements from traditional methods in image-based ones. Thus, we used
handcrafted inputs that encode the input video in an image form. Our proposed archi-
tecture is based on the multi-stream architecture [113], exploring complementary image
modalities. In addition to the original spatial and temporal streams, here we introduced
new ones that work with visual rhythms. Visual rhythms handle different video lengths
and encode long-term information.

Our first approach, the Adaptive Visual Rhythm (AVR), was part of a collaborative
project. The corresponding stream receives the horizontal-mean or vertical-mean rhythm
as input, which represents the movement of objects by means changes in intensity over
time. We proposed a method to adaptively decide the best direction for each video.
We compared the accuracies of this stream with (AVR-K) and without (AVR) a pre-
training on the large Kinetics. Although the AVR-K significantly outperformed the AVR
in individual results, the increase was not reflected in the fusion. The accuracy rates
were approximately 0.2% higher with the AVR-K in the combination, despite increases of
1.94% (UCF101) and 9.28% (HMDB51) in individual results.

The handcrafted AVR evolved into a learnable one (Learnable Visual Rhythm) com-
posed of a feature-extractor and classification CNNs. We showed that the LVR achieves
higher scores in both the individual and the combined scenarios. We also showed a
comparison of the proposed methods against state-of-the-art approaches. Although our
method achieves competitive results compared to those pre-trained only on ImageNet, we
are behind those pre-trained on both ImageNet and Kinetics.

We tested new fusion methods by stacking a meta-classifier on top of the streams.
Our initial experiments suggested that the trainable fusion was affected by overfitting.

102

Thus, we carried out a study on overfitting in the streams and tested an early stopping
protocol to reduce it. We showed that the overfitting occurs at early epochs of every
stream-training, except in the temporal one. Based on this behavior, we tested different
parameters making the early stopping protocol more restricted or more flexible according
to the stream.

We showed an extensive analysis of the stream performances regarding the dataset
classes. We also assessed how much they contribute to the combinations, using pairwise
and non-pairwise measures.

We tested three fusion methods with trainable parameters: (i) weighted average (ii)
fully connected layer and (iii) SVM classifier. We selected the SVM based on its results in
the split 1 of the datasets. We showed the top-5 combinations using the SVM for the three
splits. The best combinations reached higher scores than the best stream for most of the
classes, including the most difficult ones. We also showed lower cost combinations that
achieved satisfactory results, in particular some that do not include the expensive temporal
stream, which may be indicated for scenarios with limited computational resources.

The action recognition datasets usually contain a wide range of classes in different
scenarios. Thus, the knowledge acquired by the networks may be useful to related prob-
lems. For instance, the HMDB51 contain classes such as “clap” and “wave” that may be
interesting for human-computer interaction systems, whereas “punch” and “run” may be
used to detect anomalous events. Therefore, a transfer learning strategy may be employed
to address these related problems, as proposed by Leite et al. [63].

With the experiments presented here, we are now able to answer the research questions
formulated in Chapter 1.

Q1. Can visual rhythm, as a longer-term feature, provide complementary
information to characterize the action in a multi-stream scenario?

Answer: Through the experiments described in Sections 7.2 and 7.3, we showed that
the AVR and LVR versions were able to provide complementary information for the
spatial and temporal streams. The AVR tends to better complement the spatial
stream, whereas the LVR achieves higher scores combined with the temporal one.
Furthermore, we showed that the two VR-based approaches can even complement
each other.

Q2. Does the temporal concatenation of the outputs generated by an im-
age CNN (Learnable VR) present relevant patterns to characterize the
action?

Answer: From the experiments reported in Chapter 6, we showed that the LVR
versions achieved effective results on both datasets, especially the LVR1 and LVR2

that reached scores comparable to the spatial stream.

Q3. Can the Learnable VR outperform our baseline Adaptive VR?

Answer: The LVR1 and LVR2 achieved significantly higher results than the AVR.
This was not the case for LVR0. We suspect that the LVR0 may lack information
about the scene structure, since it was extracted from earlier layers of the CNN.
These results were discussed in Chapter 6.

103

Q4. Can the early stopping protocol reduce the overfitting on individual
streams and improve the fusion performance?

Answer: The early stopping strategy brought some benefits to the architecture, such
as the considerable reduction in the number of training epochs. However, in our
experiments, it was not able to reduce overfitting, since it affected the test accuracy,
although it reduced the difference between training and test accuracies (Section 7.1).
It is necessary to test other strategies to reduce overfitting and evaluate its impact
on the fusion performance.

The work presented here can be extended in several ways. In the following, we outline
some potential directions for future research:

• Explore other strategies to prevent overfitting, such as the use of CNNs other than
the Inception V3.

• Test an end-to-end multi-stream architecture, training all the streams simultane-
ously.

• Pre-train the LVR with the Kinetics and combine the resulting stream with the I3D
architectures.

• Test the data augmentation technique proposed by Tacon et al. [125], which is
proper for visual rhythms in LVR.

• Employ a cross-dataset training to test the generalization power of the proposed
features.

• Apply the proposed method to other related problems, such as abnormal event de-
tection, hand gesture recognition and fall detection. Since the datasets for these
problems are usually smaller than the human action recognition ones, the CNN
parameters obtained with the HAR training may be useful to initialize the archi-
tectures for related problems.

104

Bibliography

[1] J. K. Aggarwal and M. S. Ryoo. Human Activity Analysis: A Review. ACM
Computing Surveys, 43(3), 2011.

[2] A. Akutsu and Y. Tonomura. Video Tomography: An Efficient Method for Camer-
awork Extraction and Motion Analysis. In International Conference on Multimedia,
pages 349–356, San Francisco, California, USA, 1994. ACM.

[3] S. M. Amiri, M. T. Pourazad, P. Nasiopoulos, and V. C. Leung. Non-intrusive
Human Activity Monitoring in a Smart Home Environment. In International Con-
ference on e-Health Networking, Applications and Services, pages 606–610. IEEE,
2013.

[4] F. Baumann, J. Lao, A. Ehlers, and B. Rosenhahn. Motion Binary Patterns for Ac-
tion Recognition. In International Conference on Pattern Recognition Applications
and Methods, pages 385–392, 2014.

[5] H. Bilen, B. Fernando, E. Gavves, and A. Vedaldi. Action Recognition with Dynamic
Image Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence,
40(12):2799–2813, 2017.

[6] P. Bilinski and F. Bremond. Video Covariance Matrix Logarithm for Human Action
Recognition in Videos. In International Joint Conference on Artificial Intelligence,
2015.

[7] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri. Actions as Space-
Time Shapes. In International Conference on Computer Vision, pages 1395–1402,
Beijing, China, 2005.

[8] Y. Bo, Y. Lu, and W. He. Few-Shot Learning of Video Action Recognition Only
Based on Video Contents. In IEEE/CVF Winter Conference on Applications of
Computer Vision, March 2020.

[9] R. Bolles and H. Baker. Epipolar-Plane Image Analysis: A Technique for Analyzing
Motion Sequences. In IEEE Workshop on Computer Vision, Representation, and
Control, pages 168–178. IEEE, Oct. 1985.

[10] J.-Y. Bouguet. Pyramidal Implementation of the Affine Lucas Kanade Feature
Tracker Description of the Algorithm. Intel Corporation, 5(1-10):4, 2001.

105

[11] E. Brill and J. Wu. Classifier Combination for Improved Lexical Disambiguation.
In 36th Annual Meeting of the Association for Computational Linguistics and 17th
International Conference on Computational Linguistics, volume 1, pages 191–195,
1998.

[12] F. A. Caetano, M. B. Vieira, and R. L. Souza da Silva. A Video Descriptor using
Orientation Tensors and Shape-based Trajectory Clustering. International Journal
of Image and Graphics, 16(04), 2016.

[13] J. Carreira, E. Noland, A. Banki-Horvath, C. Hillier, and A. Zisserman. A Short
Note about Kinetics-600. arXiv preprint arXiv:1808.01340, 2018.

[14] J. Carreira, E. Noland, C. Hillier, and A. Zisserman. A Short Note on the Kinetics-
700 Human Action Dataset. arXiv preprint arXiv:1907.06987, 2019.

[15] J. Carreira and A. Zisserman. Quo Vadis, Action Recognition? A New Model
and the Kinetics Dataset. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 4724–4733. IEEE, 2017.

[16] J. Cavazza, A. Zunino, M. S. Biagio, and V. Murino. Kernelized Covariance for
Action Recognition. In International Conference on Pattern Recognition, pages
408–413, 2016.

[17] C.-C. Chang and C.-J. Lin. LIBSVM: A Library for Support Vector Machines. ACM
Transactions on Intelligent Systems and Technology, 2(3):1–27, 2011.

[18] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the Devil
in the Details: Delving Deep into Convolutional Nets. In British Machine Vision
Conference. BMVA Press, 2014.

[19] H. L. Chaves, K. S. Ribeiro, A. S. Brito, H. Tacon, M. B. Vieira, A. S. Cerqueira,
S. M. Villela, H. Maia, D. T. Concha, and H. Pedrini. Filter Learning from Deep
Descriptors of a Fully Convolutional Siamese Network for Tracking in Videos. In In-
ternational Joint Conference on Computer Vision, Imaging and Computer Graphics
Theory and Applications, volume 4, pages 685–694. INSTICC, SciTePress, 2020.

[20] E. Chen, X. Bai, L. Gao, H. C. Tinega, and Y. Ding. A Spatiotemporal Heteroge-
neous Two-stream Network for Action Recognition. IEEE Access, 7:57267–57275,
2019.

[21] S. Cheng, J. Yang, Z. Ma, and M. Xie. Action Recognition Based on Spatio-temporal
Log-Euclidean Covariance Matrix. International Journal of Signal Processing, Im-
age Processing and Pattern Recognition, 9(2):95–106, 2016.

[22] V. Choutas, P. Weinzaepfel, J. Revaud, and C. Schmid. PoTion: Pose MoTion
Representation for Action Recognition. In IEEE Conference on Computer Vision
and Pattern Recognition, 2018.

106

[23] D. T. Concha. Multi-Stream Convolutional Neural Networks for Action Recogni-
tion in Video Sequences Based on Spatio-Temporal Information. Master’s thesis,
Institute of Computing, University of Campinas, Campinas, Brazil, 2019.

[24] D. T. Concha, H. A. Maia, H. Pedrini, H. Tacon, A. S. Brito, H. L. Chaves, and
M. B. Vieira. Multi-Stream Convolutional Neural Networks for Action Recognition
in Video Sequences Based on Adaptive Visual Rhythms. In IEEE International
Conference on Machine Learning and Applications, Orlando, FL, USA, Dec. 2018.
IEEE.

[25] C. Cortes and V. Vapnik. Support-Vector Networks. Machine Learning, 20, 1995.

[26] N. Dalal and B. Triggs. Histograms of Oriented Gradients for Human Detection. In
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
volume 1, pages 886–893. IEEE, 2005.

[27] D. Damen, H. Doughty, G. M. Farinella, S. Fidler, A. Furnari, E. Kazakos, D. Molti-
santi, J. Munro, T. Perrett, W. Price, and M. Wray. Scaling Egocentric Vision: The
Epic-kitchens Dataset. In European Conference on Computer Vision, pages 720–
736, 2018.

[28] A. Diba, V. Sharma, and L. Van Gool. Deep Temporal Linear Encoding Networks.
In IEEE conference on Computer Vision and Pattern Recognition, pages 2329–2338,
2017.

[29] B. G. Fabian Caba Heilbron, Victor Escorcia and J. C. Niebles. ActivityNet: A
Large-Scale Video Benchmark for Human Activity Understanding. In IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 961–970, 2015.

[30] F. A. Faria. A Framework for Pattern Classifier Selection and Fusion. PhD thesis,
Institute of Computing, University of Campinas, Campinas, Brazil, 2014.

[31] G. Farnebäck. Two-Frame Motion Estimation Based on Polynomial Expansion. In
Scandinavian Conference on Image Analysis, pages 363–370. Springer, 2003.

[32] C. Feichtenhofer, H. Fan, J. Malik, and K. He. SlowFast Networks for Video Recog-
nition. In IEEE International Conference on Computer Vision, pages 6202–6211,
2019.

[33] C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional Two-stream Network
Fusion for Video Action Recognition. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 1933–1941, 2016.

[34] A. M. Figueiredo, H. A. Maia, F. L. Oliveira, V. F. Mota, and M. B. Vieira. A Video
Tensor Self-Descriptor Based on Block Matching. In International Conference on
Computational Science and Its Applications, pages 401–414. Springer, 2014.

[35] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

http://www.deeplearningbook.org

107

[36] I. Gori, J. K. Aggarwal, L. Matthies, and M. S. Ryoo. Multitype Activity Recogni-
tion in Robot-Centric Scenarios. IEEE Robotics and Automation Letters, 1(1):593–
600, Jan. 2016.

[37] R. Goyal, S. E. Kahou, V. Michalski, J. Materzynska, S. Westphal, H. Kim,
V. Haenel, I. Fruend, P. Yianilos, M. Mueller-Freitag, F. Hoppe, C. Thurau, I. Bax,
and R. Memisevic. The “Something Something” Video Database for Learning and
Evaluating Visual Common Sense. In IEEE International Conference on Computer
Vision, Oct 2017.

[38] C. Gu, C. Sun, D. A. Ross, C. Vondrick, C. Pantofaru, Y. Li, S. Vijayanarasimhan,
G. Toderici, S. Ricco, R. Sukthankar, C. Schmid, and J. Malik. AVA: A Video
Dataset of Spatio-Temporally Localized Atomic Visual Actions. In IEEE Conference
on Computer Vision and Pattern Recognition, June 2018.

[39] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang,
J. Cai, and T. Chen. Recent Advances in Convolutional Neural Networks. Pattern
Recognition, 77:354–377, 2017.

[40] K. Guo, P. Ishwar, and J. Konrad. Action Recognition from Video Using Feature
Covariance Matrices. IEEE Transactions on Image Processing, 22(6):2479–2494,
June 2013.

[41] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning for Image Recognition.
In IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778,
2016.

[42] S. Herath, M. Harandi, and F. Porikli. Going Deeper into Action Recognition: A
Survey. Image and Vision Computing, 2017.

[43] B. K. Horn and B. G. Schunck. Determining Optical Flow. Artificial Intelligence,
17(1-3):185–203, 1981.

[44] M. Ilyes Lakhal, A. Clapés, S. Escalera, O. Lanz, and A. Cavallaro. Residual Stacked
RNNs for Action Recognition. In European Conference on Computer Vision, pages
534–548, 2018.

[45] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating Local Descriptors into
a Compact Image Representation. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 3304–3311. IEEE, 2010.

[46] S. Ji, W. Xu, M. Yang, and K. Yu. 3D Convolutional Neural Networks for Hu-
man Action Recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(1):221–231, 2013.

[47] R. Kahani, A. Talebpour, and A. Mahmoudi-Aznaveh. A Correlation Based Fea-
ture Representation for First-Person Activity Recognition. Multimedia Tools and
Applications, 78(15):21673–21694, 2019.

108

[48] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-
Scale Video Classification with Convolutional Neural Networks. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 1725–1732, 2014.

[49] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Vi-
ola, T. Green, T. Back, P. Natsev, M. Suleyman, and A. Zisserman. The Kinetics
Human Action Video Dataset. arXiv preprint arXiv:1705.06950, 2017.

[50] V. Kellokumpu, G. Zhao, and M. Pietikäinen. Human Activity Recognition using a
Dynamic Texture Based Method. In British Machine Vision Conference, volume 1,
page 2, 2008.

[51] H. Kim, J. Lee, J.-H. Yang, S. Sull, W. M. Kim, and S. M.-H. Song. Visual Rhythm
and Shot Verification. Multimedia Tools and Applications, 15(3):227–245, 2001.

[52] J. Kim, S. Cha, D. Wee, S. Bae, and J. Kim. Regularization on Spatio-Temporally
Smoothed Feature for Action Recognition. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12103–12112, 2020.

[53] A. Klaser, M. Marszałek, and C. Schmid. A Spatio-Temporal Descriptor Based on
3D-Gradients. In British Machine Vision Conference, pages 275–1. British Machine
Vision Association, 2008.

[54] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep
Convolutional Neural Networks. In Advances in Neural Information Processing
Systems, pages 1097–1105, 2012.

[55] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: A Large
Video Database for Human Motion Recognition. In International Conference on
Computer Vision, 2011.

[56] L. I. Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. John
Wiley & Sons, 2004.

[57] B. Kwolek and M. Kepski. Human Fall Detection on Embedded Platform Us-
ing Depth Maps and Wireless Accelerometer. Computer Methods and Programs in
Biomedicine, 117(3):489–501, 2014.

[58] H. Kwon, Y. Kim, J. S. Lee, and M. Cho. First Person Action Recognition via
Two-stream Convnet with Long-term Fusion Pooling. Pattern Recognition Letters,
112:161–167, 2018.

[59] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld. Learning Realistic Hu-
man Actions from Movies. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–8. IEEE, 2008.

[60] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based Learning Applied
to Document Recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov. 1998.

109

[61] Y. LeCun, K. Kavukcuoglu, and C. Farabet. Convolutional Networks and Applica-
tions in Vision. In IEEE International Symposium on Circuits and Systems, pages
253–256. IEEE, 2010.

[62] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. Convolutional Deep Belief Networks
for Scalable Unsupervised Learning of Hierarchical Representations. In International
Conference on Machine Learning, pages 609–616, 2009.

[63] G. Leite, G. Silva, and H. Pedrini. Fall Detection in Video Sequences Based on
a Three-Stream Convolutional Neural Network. In IEEE International Conference
On Machine Learning And Applications, pages 191–195. IEEE, 2019.

[64] H. Li, J. Chen, and R. Hu. Multiple Feature Fusion in Convolutional Neural
Networks for Action Recognition. Wuhan University Journal of Natural Sciences,
22(1):73–78, 2017.

[65] Y. Li, J. Gao, Q. Li, and W. Fan. Ensemble Learning. In Data Classification:
Algorithms and Applications, pages 483–509. Chapman and Hall/CRC, 1st edition,
2014.

[66] Y. Li, B. Ji, X. Shi, J. Zhang, B. Kang, and L. Wang. TEA: Temporal Excitation
and Aggregation for Action Recognition. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 909–918, 2020.

[67] J. Lin, C. Gan, and S. Han. TSM: Temporal Shift Module for Efficient Video
Understanding. In IEEE International Conference on Computer Vision, pages 7083–
7093, 2019.

[68] J. Liu, J. Luo, and M. Shah. Recognizing Realistic Actions from Videos “In the
Wild”. In IEEE Conference on Computer Vision and Pattern Recognition, pages
1996–2003. IEEE, 2009.

[69] B. D. Lucas and T. Kanade. An Iterative Image Registration Technique with an
Application to Stereo Vision. In International Joint Conference on Artificial Intel-
ligence, volume 2, pages 674–679. Vancouver, BC, Canada, 1981.

[70] H. A. Maia, D. T. Concha, H. Pedrini, H. Tacon, A. S. Brito, H. L. Chaves, M. B.
Vieira, and S. M. Villela. Action Recognition in Videos Using Multi-Stream Convo-
lutional Neural Networks. In Deep Learning Applications, pages 95–111. Springer,
2020.

[71] H. A. Maia, A. M. O. Figueiredo, F. L. M. Oliveira, V. F. Mota, and M. B. Vieira.
A Video Tensor Self-Descriptor Based on Variable Size Block Matching. Journal of
Mobile Multimedia, 11(1&2):090–102, 2015.

[72] H. A. Maia, M. R. Souza, A. Santos, H. Pedrini, H. Tacon, A. S. Brito, H. L. Chaves,
M. B. Vieira, and S. M. Villela. Learnable Visual Rhythms Based on the Stacking
of Convolutional Neural Networks for Action Recognition. In IEEE International

110

Conference on Machine Learning and Applications, pages 1794–1799, Boca Raton,
FL, USA, Dec. 2019. IEEE.

[73] M. Marszałek, I. Laptev, and C. Schmid. Actions in Context. In IEEE Conference
on Computer Vision & Pattern Recognition, 2009.

[74] G. A. Miller. WordNet: A Lexical Database for English. Communications of the
ACM, 38(11):39–41, 1995.

[75] T. B. Moeslund, A. Hilton, and V. Krüger. A Survey of Advances in Vision-based
Human Motion Capture and Analysis. Computer Vision and Image Understanding,
104(2-3):90–126, 2006.

[76] M. Monfort, A. Andonian, B. Zhou, K. Ramakrishnan, S. A. Bargal, T. Yan,
L. Brown, Q. Fan, D. Gutfreund, and C. Vondrick. Moments in Time Dataset:
One Million Videos for Event Understanding. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 42(2):502–508, 2019.

[77] T. P. Moreira, D. Menotti, and H. Pedrini. Video Action Recognition Based on
Visual Rhythm Representation. Journal of Visual Communication and Image Rep-
resentation, page 102771, 2020.

[78] V. F. Mota, E. A. Perez, L. M. Maciel, M. B. Vieira, and P. H. Gosselin. A Tensor
Motion Descriptor Based on Histograms of Gradients and Optical Flow. Pattern
Recognition Letters, 39:85–91, 2014.

[79] A. Nagrani, C. Sun, D. Ross, R. Sukthankar, C. Schmid, and A. Zisserman.
Speech2Action: Cross-modal Supervision for Action Recognition. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 10317–10326, 2020.

[80] V. Nair and G. E. Hinton. Rectified Linear Units Improve Restricted Boltzmann
Machines. In International Conference on Machine Learning, page 807–814, Madi-
son, WI, USA, 2010. Omnipress.

[81] J. Y.-H. Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and
G. Toderici. Beyond Short Snippets: Deep Networks for Video Classification. In
IEEE Conference on Computer Vision and Pattern Recognition, pages 4694–4702,
2015.

[82] C.-W. Ngo, T.-C. Pong, and R. T. Chin. Camera Break Detection by Partitioning of
2D Spatio-Temporal Images in MPEG Domain. In IEEE International Conference
on Multimedia Computing and Systems, volume 1, pages 750–755. IEEE, 1999.

[83] C.-W. Ngo, T.-C. Pong, and R. T. Chin. Detection of Gradual Transitions through
Temporal Slice Analysis. In IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition, volume 1, pages 36–41. IEEE, 1999.

111

[84] C.-W. Ngo, T.-C. Pong, and H.-J. Zhang. Motion Analysis and Segmentation
through Spatio-Temporal Slices Processing. IEEE Transactions on Image Process-
ing, 12(3):341–355, 2003.

[85] U. D. of Labor. American Time Use Survey. https://www.bls.gov/tus/, 2020
(Last access: September 01, 2020).

[86] T. Ojala, M. Pietikäinen, and D. Harwood. A Comparative Study of Texture Mea-
sures with Classification Based on Featured Distributions. Pattern Recognition,
29(1):51–59, 1996.

[87] E. Park, X. Han, T. L. Berg, and A. C. Berg. Combining Multiple Sources of
Knowledge in Deep CNNs for Action Recognition. In IEEE Winter Conference on
Applications of Computer Vision, pages 1–8. IEEE, 2016.

[88] C. I. Patel, S. Garg, T. Zaveri, A. Banerjee, and R. Patel. Human Action Recog-
nition using Fusion of Features for Unconstrained Video Sequences. Computers &
Electrical Engineering, 2016.

[89] S.-L. Peng. Temporal Slice Analysis of Image Sequences. In IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pages 283–288. IEEE,
1991.

[90] X. Peng, L. Wang, X. Wang, and Y. Qiao. Bag of Visual Words and Fusion Methods
for Action Recognition: Comprehensive Study and Good Practice. Computer Vision
and Image Understanding, 150:109–125, 2016.

[91] E. A. Perez, V. F. Mota, L. M. Maciel, D. Sad, and M. B. Vieira. Combining
Gradient Histograms using Orientation Tensors for Human Action Recognition. In
International Conference on Pattern Recognition, pages 3460–3463. IEEE, 2012.

[92] F. Perronnin and C. Dance. Fisher Kernels on Visual Vocabularies for Image Cat-
egorization. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 1–8. IEEE, 2007.

[93] H.-H. Phan, N.-S. Vu, V.-L. Nguyen, and M. Quoy. Motion of Oriented Magnitudes
Patterns for Human Action Recognition. In International Symposium on Visual
Computing, pages 168–177. Springer, 2016.

[94] R. Poppe. A Survey on Vision-based Human Action Recognition. Image and Vision
Computing, 28(6):976–990, 2010.

[95] L. Prechelt. Early Stopping - But When? In Neural Networks: Tricks of the Trade,
pages 55–69. Springer, 1998.

[96] S. Raschka. Python Machine Learning. Packt Publishing, 2015.

[97] M. Ravanbakhsh, H. Mousavi, M. Rastegari, V. Murino, and L. S. Davis. Action
Recognition with Image based CNN Features. arXiv preprint arXiv:1512.03980,
2015.

https://www.bls.gov/tus/

112

[98] K. K. Reddy and M. Shah. Recognizing 50 Human Action Categories of Web Videos.
Machine Vision and Applications, 24(5):971–981, 2012.

[99] Y. Ricquebourg and P. Bouthemy. Real-Time Tracking of Moving Persons by Ex-
ploiting Spatio-Temporal Image Slices. IEEE Transactions on Pattern Analysis &
Machine Intelligence, 22(8):797–808, 2000.

[100] M. D. Rodriguez, J. Ahmed, and M. Shah. Action Mach a Spatio-temporal Maxi-
mum Average Correlation Height Filter for Action Recognition. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 1–8. IEEE, 2008.

[101] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Vi-
sual Recognition Challenge. International Journal of Computer Vision, 115(3):211–
252, 2015.

[102] M. S. Ryoo and L. Matthies. First-Person Activity Recognition: Feature, Temporal
Structure, and Prediction. International Journal of Computer Vision, 119(3):307–
328, Sept. 2016.

[103] D. Sad, V. F. Mota, L. M. Maciel, M. B. Vieira, and A. A. Araujo. A Tensor Motion
Descriptor Based on Multiple Gradient Estimators. In Conference on Graphics,
Patterns and Images, pages 70–74. IEEE, 2013.

[104] H. Sagan. Space-Filling Curves. Springer Science & Business Media, 2012.

[105] A. Sanin, C. Sanderson, M. T. Harandi, and B. C. Lovell. Spatio-Temporal Co-
variance Descriptors for Action and Gesture Recognition. In IEEE Workshop on
Applications of Computer Vision, pages 103–110. IEEE, 2013.

[106] A. C. S. Santos. Spatio-Temporal Representation Based on Autoencoder for Video
Action Recognition. PhD thesis, Institute of Computing, University of Campinas,
Campinas, Brazil, 2019.

[107] A. C. S. Santos, H. A. Maia, M. R. Souza, M. B. Vieira, and H. Pedrini. Fuzzy Fusion
for Two-stream Action Recognition. In International Joint Conference on Computer
Vision, Imaging and Computer Graphics Theory and Applications, volume 5, pages
117–123. INSTICC, SciTePress, 2020.

[108] A. B. Sargano, P. Angelov, and Z. Habib. A Comprehensive Review on Hand-
crafted and Learning-based Action Representation Approaches for Human Activity
Recognition. Applied Sciences, 7(1):110, 2017.

[109] C. Schuldt, I. Laptev, and B. Caputo. Recognizing Human Actions: A Local SVM
Approach. In International Conference on Pattern Recognition, volume 3, pages
32–36. IEEE, 2004.

113

[110] F. Shi, R. Laganiere, and E. Petriu. Gradient Boundary Histograms for Action
Recognition. In IEEE Winter Conference on Applications of Computer Vision,
pages 1107–1114. IEEE, 2015.

[111] J. Shi and C. Tomasi. Good Features to Track. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 593–600. IEEE, 1994.

[112] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev, and A. Gupta. Hol-
lywood in Homes: Crowdsourcing Data Collection for Activity Understanding. In
European Conference on Computer Vision, pages 510–526. Springer, 2016.

[113] K. Simonyan and A. Zisserman. Two-Stream Convolutional Networks for Action
Recognition in Videos. In Advances in Neural Information Processing Systems,
pages 568–576, 2014.

[114] K. Simonyan and A. Zisserman. Very Deep Convolutional Networks for Large-Scale
Image Recognition. In Y. Bengio and Y. LeCun, editors, International Conference
on Learning Representations, 2015.

[115] A. C. Sintes. Learning to Recognize Human Actions: from Hand-crafted to Deep-
learning Based Visual Representations. PhD thesis, Departament de Matemàtiques
i Informàtica, Universitat de Barcelona, Barcelona, Spain, 2018.

[116] K. Soomro, A. R. Zamir, and M. Shah. UCF101: A Dataset of 101 Human Actions
Classes from Videos in the Wild. arXiv preprint arXiv:1212.0402, 2012.

[117] M. R. Souza. Digital Video Stabilization: Algorithms and Evaluation. Master’s
thesis, Institute of Computing, University of Campinas, Campinas, Brazil, 2018.

[118] M. R. Souza, H. A. Maia, M. B. Vieira, and H. Pedrini. Survey on Visual Rhythms:
A Spatio-Temporal Representation for Video Sequences. Neurocomputing, 402:409–
422, 2020.

[119] Statista. Hours of Video Uploaded to YouTube Every Minute
as of May 2019. https://www.statista.com/statistics/259477/
hours-of-video-uploaded-to-youtube-every-minute/, 2020 (Last access:
March 25, 2020).

[120] W. Sultani, C. Chen, and M. Shah. Real-world Anomaly Detection in Surveillance
Videos. In IEEE Conference on Computer Vision and Pattern Recognition, pages
6479–6488, 2018.

[121] L. Sun, K. Jia, K. Chen, D. Y. Yeung, B. E. Shi, and S. Savarese. Lattice Long Short-
Term Memory for Human Action Recognition. In IEEE International Conference
on Computer Vision, pages 2166–2175, 2017.

[122] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the Importance of Initial-
ization and Momentum in Deep Learning. In International Conference on Machine
Learning, pages 1139–1147, 2013.

https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/
https://www.statista.com/statistics/259477/hours-of-video-uploaded-to-youtube-every-minute/

114

[123] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the Incep-
tion Architecture for Computer Vision. In IEEE Conference on Computer Vision
and Pattern Recognition, pages 2818–2826, 2016.

[124] R. Szeliski. Computer Vision: Algorithms and Applications. Springer Science &
Business Media, 2010.

[125] H. Tacon, A. S. Brito, H. L. Chaves, M. B. Vieira, S. M. Villela, H. Almeida Maia,
D. T. Concha, and H. Pedrini. Human Action Recognition Using Convolutional
Neural Networks with Symmetric Time Extension of Visual Rhythms. In Interna-
tional Conference on Computational Science and Its Applications, pages 351–366.
Springer, 2019.

[126] H. Tacon, A. S. Brito, H. L. Chaves, M. B. Vieira, S. M. Villela, H. Maia, D. T.
Concha, and H. Pedrini. Multi-stream Architecture with Symmetric Extended Vi-
sual Rhythms for Deep Learning Human Action Recognition. In International Joint
Conference on Computer Vision, Imaging and Computer Graphics Theory and Ap-
plications, volume 5, pages 351–358. INSTICC, SciTePress, 2020.

[127] M. Tan and Q. Le. EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks. In K. Chaudhuri and R. Salakhutdinov, editors, International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 6105–6114, Long Beach, California, USA, 09–15 Jun 2019. PMLR.

[128] B. S. Torres and H. Pedrini. Detection of Complex Video Events through Visual
Rhythm. The Visual Computer, pages 1–21, 2016.

[129] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. Learning Spatiotem-
poral Features with 3D Convolutional Networks. In IEEE International Conference
on Computer Vision, pages 4489–4497, 2015.

[130] D. Tran, H. Wang, L. Torresani, J. Ray, Y. LeCun, and M. Paluri. A Closer Look
at Spatiotemporal Convolutions for Action Recognition. In IEEE Conference on
Computer Vision and Pattern Recognition, pages 6450–6459, 2018.

[131] O. Tuzel, F. Porikli, and P. Meer. Region Covariance: A Fast Descriptor for De-
tection and Classification. In European Conference on Computer Vision, pages
589–600. Springer, 2006.

[132] A. Ullah, J. Ahmad, K. Muhammad, M. Sajjad, and S. W. Baik. Action Recognition
in Video Sequences using Deep Bi-Directional LSTM With CNN Features. IEEE
Access, 6:1155–1166, 2018.

[133] F. B. Valio, H. Pedrini, and N. J. Leite. Fast Rotation-Invariant Video Caption
Detection Based on Visual Rhythm. In Iberoamerican Congress on Pattern Recog-
nition, pages 157–164. Springer, 2011.

115

[134] G. Varol, I. Laptev, and C. Schmid. Long-Term Temporal Convolutions for Action
Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,
40(6):1510–1517, 2018.

[135] H. Wang, A. Kläser, C. Schmid, and C.-L. Liu. Action Recognition by Dense
Trajectories. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 3169–3176. IEEE, 2011.

[136] H. Wang and C. Schmid. Action Recognition with Improved Trajectories. In IEEE
International Conference on Computer Vision, pages 3551–3558. IEEE, 2013.

[137] H. Wang and C. Schmid. LEAR-INRIA Submission for the THUMOS Workshop.
In Workshop on Action Recognition with a Large Number of Classes, 2013.

[138] H. Wang, Y. Yang, E. Yang, and C. Deng. Exploring Hybrid Spatio-Temporal
Convolutional Networks for Human Action Recognition. Multimedia Tools and Ap-
plications, 76(13):15065–15081, 2017.

[139] J. Wang, A. Cherian, F. Porikli, and S. Gould. Video Representation Learning
Using Discriminative Pooling. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1149–1158, 2018.

[140] L. Wang, Y. Qiao, and X. Tang. Action Recognition with Trajectory-Pooled Deep-
Convolutional Descriptors. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 4305–4314, 2015.

[141] L. Wang, Y. Xiong, Z. Wang, and Y. Qiao. Towards Good Practices for very Deep
Two-Stream Convnets. arXiv preprint arXiv:1507.02159, 2015.

[142] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool. Tem-
poral Segment Networks: Towards Good Practices for Deep Action Recognition. In
European Conference on Computer Vision, pages 20–36. Springer, 2016.

[143] L. Wang, J. Zhang, L. Zhou, C. Tang, and W. Li. Beyond Covariance: Feature
Representation with Nonlinear Kernel Matrices. In IEEE International Conference
on Computer Vision, pages 4570–4578, 2015.

[144] Y. Wang, M. Long, J. Wang, and P. S. Yu. Spatiotemporal Pyramid Network for
Video Action Recognition. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 2097–2106. IEEE, 2017.

[145] C. Yang, Y. Xu, J. Shi, B. Dai, and B. Zhou. Temporal Pyramid Network for
Action Recognition. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 591–600, 2020.

[146] Z. Yang, L. Zhu, Y. Wu, and Y. Yang. Gated Channel Transformation for Visual
Recognition. In IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pages 11794–11803, 2020.

116

[147] H. Ye, Z. Wu, R.-W. Zhao, X. Wang, Y.-G. Jiang, and X. Xue. Evaluating Two-
stream CNN for Video Classification. In ACM on International Conference on
Multimedia Retrieval, pages 435–442, 2015.

[148] L. Yeffet and L. Wolf. Local Trinary Patterns for Human Action Recognition. In
IEEE International Conference on Computer Vision, pages 492–497. IEEE, 2009.

[149] S. Yu, Y. Cheng, L. Xie, Z. Luo, M. Huang, and S. Li. A Novel Recurrent Hybrid
Network for Feature Fusion in Action Recognition. Journal of Visual Communica-
tion and Image Representation, 49:192–203, 2017.

[150] Y. Yun, I. Y.-H. Gu, and H. Aghajan. Riemannian Manifold-based Support Vec-
tor Machine for Human Activity Classification in Images. In IEEE International
Conference on Image Processing, pages 3466–3469. IEEE, 2013.

[151] C. Zach, T. Pock, and H. Bischof. A Duality Based Approach for Realtime TV-L1
Optical Flow. In Joint Pattern Recognition Symposium, pages 214–223. Springer,
2007.

[152] G. Zhao and M. Pietikainen. Dynamic Texture Recognition using Local Binary
Patterns with an Application to Facial Expressions. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29(6), 2007.

[153] F. Zheng, S. Li, H. Wu, and J. Feng. Anchor Shot Detection with Diverse Style
Backgrounds Based on Spatial-Temporal Slice Analysis. In International Conference
on Multimedia Modeling, pages 676–682. Springer, 2010.

[154] B. Zhou, A. Andonian, A. Oliva, and A. Torralba. Temporal Relational Reasoning
in Videos. In European Conference on Computer Vision, pages 803–818, 2018.

[155] Z.-H. Zhou. Ensemble Methods: Foundations and Algorithms. CRC press, 2012.

[156] F. Zhu, L. Shao, J. Xie, and Y. Fang. From Handcrafted to Learned Representations
for Human Action Recognition: A Survey. Image and Vision Computing, 55:42–52,
2016.

[157] J. Zhu, Z. Zhu, and W. Zou. End-to-End Video-level Representation Learning for
Action Recognition. In International Conference on Pattern Recognition, pages
645–650. IEEE, 2018.

[158] J. Zhu, W. Zou, and Z. Zhu. Two-stream Gated Fusion Convnets for Action Recog-
nition. In International Conference on Pattern Recognition, pages 597–602. IEEE,
2018.

[159] W. Zhu, J. Hu, G. Sun, X. Cao, and Y. Qiao. A Key Volume Mining Deep Frame-
work for Action Recognition. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 1991–1999. IEEE, 2016.

117

[160] Y. Zhu. PyTorch Implementation of Popular Two-Stream Frameworks for Video
Action Recognition. https://github.com/bryanyzhu/two-stream-pytorch, 2018
(Last access: September 24, 2020).

https://github.com/bryanyzhu/two-stream-pytorch

118

Appendix A

Diversity Measures - Demonstration

In Section 2.9, we argued that four of the pairwise diversity metrics (disagreement, Q-
statistic, correlation coefficient and kappa-statistic) cannot capture disparities between b
and c. We mentioned a toy example where all of them achieve the perfect (or almost per-
fect) score. Here, we demonstrate this fact. Considering the situation given in Table A.1,
we show the formulas and resulting score for each measure.

Table A.1: Toy example: cj gives an almost perfect set of predictions whereas ci fails in
most samples.

Hit ci Miss ci

Hit cj a b

Miss cj c d

Hit ci Miss ci

Hit cj 0 ns − 1

Miss cj 1 0

• Disagreement (DM(ci, cj)):

DM(ci, cj) =
b+ c

ns
=

(ns − 1) + 1

ns
= 1

• Q-statistic (Q(ci, cj)):

Q(ci, cj) =
a · d− b · c
a · d+ b · c

=
0 · 0− (ns − 1) · 1
0 · 0 + (ns − 1) · 1

= −1

• Correlation coefficient (ρ(ci, cj)):

ρ(ci, cj) =
a · d− b · c

|
√

(a+ b) · (a+ c) · (b+ d) · (c+ d) |

=
0 · 0− (ns − 1) · 1

|
√

(0 + (ns − 1)) · (0 + 1) · ((ns − 1) + 0) · (1 + 0) |

=
−(ns − 1)

|
√

(ns − 1)2 |
= −1

119

• Kappa-statistic (κp(ci, cj)):

κp(ci, cj) =
θ1 − θ2

1− θ2

(1) θ1 =
a+ d

ns
=

0 + 0

ns
= 0

(2) θ2 =
(a+ b) · (a+ c) + (b+ d) · (c+ d)

n2
s

=
(0 + (ns − 1)) · (0 + 1) + ((ns − 1) + 0) · (1 + 0)

n2
s

=
2 · (ns − 1)

n2
s

κp(ci, cj) =

0− 2 · (ns − 1)

n2
s

n2
s

n2
s

− 2 · (ns − 1)

n2
s

=
−2 · (ns − 1)

n2
s − 2 · (ns − 1)

≈ 0

120

Appendix B

Reference Lists

In this appendix, we provide the reference lists containing the indices used in this text.
Tables B.1 and B.2 contain the list of HMDB51 and UCF101 classes, respectively. Ta-
ble B.3 contains the list of every r-combination using the six streams, the spatial RGB*,
the temporal OF and the four VR-based versions AVR, LVR0, LVR1 and LVR2, from
Chapter 7.

Table B.1: The complete list of HMDB51 classes with the corresponding indices.

HMDB51

0 brush_hair 17 hit 34 shoot_ball
1 cartwheel 18 hug 35 shoot_bow
2 catch 19 jump 36 shoot_gun
3 chew 20 kick 37 sit
4 clap 21 kick_ball 38 situp
5 climb 22 kiss 39 smile
6 climb_stairs 23 laugh 40 smoke
7 dive 24 pick 41 somersault
8 draw_sword 25 pour 42 stand
9 dribble 26 pullup 43 swing_baseball
10 drink 27 punch 44 sword
11 eat 28 push 45 sword_exercise
12 fall_floor 29 pushup 46 talk
13 fencing 30 ride_bike 47 throw
14 flic_flac 31 ride_horse 48 turn
15 golf 32 run 49 walk
16 handstand 33 shake_hands 50 wave

121

Table B.2: The complete list of UCF101 classes with the corresponding indices.

UCF101

0 ApplyEyeMakeup 34 Hammering 68 PommelHorse
1 ApplyLipstick 35 HammerThrow 69 PullUps
2 Archery 36 HandstandPushups 70 Punch
3 BabyCrawling 37 HandstandWalking 71 PushUps
4 BalanceBeam 38 HeadMassage 72 Rafting
5 BandMarching 39 HighJump 73 RockClimbingIndoor
6 BaseballPitch 40 HorseRace 74 RopeClimbing
7 Basketball 41 HorseRiding 75 Rowing
8 BasketballDunk 42 HulaHoop 76 SalsaSpin
9 BenchPress 43 IceDancing 77 ShavingBeard
10 Biking 44 JavelinThrow 78 Shotput
11 Billiards 45 JugglingBalls 79 SkateBoarding
12 BlowDryHair 46 JumpingJack 80 Skiing
13 BlowingCandles 47 JumpRope 81 Skijet
14 BodyWeightSquats 48 Kayaking 82 SkyDiving
15 Bowling 49 Knitting 83 SoccerJuggling
16 BoxingPunchingBag 50 LongJump 84 SoccerPenalty
17 BoxingSpeedBag 51 Lunges 85 StillRings
18 BreastStroke 52 MilitaryParade 86 SumoWrestling
19 BrushingTeeth 53 Mixing 87 Surfing
20 CleanAndJerk 54 MoppingFloor 88 Swing
21 CliffDiving 55 Nunchucks 89 TableTennisShot
22 CricketBowling 56 ParallelBars 90 TaiChi
23 CricketShot 57 PizzaTossing 91 TennisSwing
24 CuttingInKitchen 58 PlayingCello 92 ThrowDiscus
25 Diving 59 PlayingDaf 93 TrampolineJumping
26 Drumming 60 PlayingDhol 94 Typing
27 Fencing 61 PlayingFlute 95 UnevenBars
28 FieldHockeyPenalty 62 PlayingGuitar 96 VolleyballSpiking
29 FloorGymnastics 63 PlayingPiano 97 WalkingWithDog
30 FrisbeeCatch 64 PlayingSitar 98 WallPushups
31 FrontCrawl 65 PlayingTabla 99 WritingOnBoard
32 GolfSwing 66 PlayingViolin 100 YoYo
33 Haircut 67 PoleVault

122

Table B.3: List of every r-combination (r ∈ {2, 3, 4, 5, 6}) with the corresponding indices
using the six streams.

2-combinations

1 RGB* + OF
2 RGB* + AVR
3 RGB* + LVR0

4 RGB* + LVR1

5 RGB* + LVR2

6 OF + AVR
7 OF + LVR0

8 OF + LVR1

9 OF + LVR2

10 AVR + LVR0

11 AVR + LVR1

12 AVR + LVR2

13 LVR0 + LVR1

14 LVR0 + LVR2

15 LVR1 + LVR2

3-combinations

16 RGB* + OF + AVR
17 RGB* + OF + LVR0

18 RGB* + OF + LVR1

19 RGB* + OF + LVR2

20 RGB* + AVR + LVR0

21 RGB* + AVR + LVR1

22 RGB* + AVR + LVR2

23 RGB* + LVR0 + LVR1

24 RGB* + LVR0 + LVR2

25 RGB* + LVR1 + LVR2

26 OF + AVR + LVR0

27 OF + AVR + LVR1

28 OF + AVR + LVR2

29 OF + LVR0 + LVR1

30 OF + LVR0 + LVR2

31 OF + LVR1 + LVR2

32 AVR + LVR0 + LVR1

33 AVR + LVR0 + LVR2

34 AVR + LVR1 + LVR2

35 LVR0 + LVR1 + LVR2

4-combinations

36 RGB* + OF + AVR + LVR0

37 RGB* + OF + AVR + LVR1

38 RGB* + OF + AVR + LVR2

39 RGB* + OF + LVR0 + LVR1

40 RGB* + OF + LVR0 + LVR2

41 RGB* + OF + LVR1 + LVR2

42 RGB* + AVR + LVR0 + LVR1

43 RGB* + AVR + LVR0 + LVR2

44 RGB* + AVR + LVR1 + LVR2

45 RGB* + LVR0 + LVR1 + LVR2

46 OF + AVR + LVR0 + LVR1

47 OF + AVR + LVR0 + LVR2

48 OF + AVR + LVR1 + LVR2

49 OF + LVR0 + LVR1 + LVR2

50 AVR + LVR0 + LVR1 + LVR2

5-combinations

51 RGB* + OF + AVR + LVR0 + LVR1

52 RGB* + OF + AVR + LVR0 + LVR2

53 RGB* + OF + AVR + LVR1 + LVR2

54 RGB* + OF + LVR0 + LVR1 + LVR2

55 RGB* + AVR + LVR0 + LVR1 + LVR2

56 OF + AVR + LVR0 + LVR1 + LVR2

6-combinations

57 RGB* + OF + AVR + LVR0 + LVR1 + LVR2

	Introduction
	Problem and Motivation
	Scope and Delimitation
	Objectives and Contributions
	Research Questions
	Publications
	Text Organization

	Fundamentals
	Action
	Optical Flow
	Visual Rhythm
	Support Vector Machine
	Convolutional Neural Network
	Early Stopping
	Multi-stream Architecture
	Stacking
	Diversity Measures

	Related Work
	Traditional Approaches
	Representation Learning
	Summary

	Benchmarks
	HMDB51
	UCF101
	Kinetics
	Other Datasets

	Adaptive Visual Rhythm
	Adaptive Visual Rhythm
	Improved Spatial Stream
	Kinetics Pre-training
	Stacking
	Results

	Learnable Visual Rhythm
	Learnable Visual Rhythm
	Results

	Analysis and Fusion
	Overfitting
	Analysis
	Fusion

	Conclusions and Future Work
	Bibliography
	Diversity Measures - Demonstration
	Reference Lists

