
Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Rafael Mendonça Soares

Discovering Phase Behavior Through Time-Varying

Microarchitecture Independent Characteristics

Clustering

Descobrindo o Comportamento de Fases Através do

Agrupamento de Características Independentes de

Microarquitetura Variantes no Tempo

CAMPINAS

2020

Rafael Mendonça Soares

Discovering Phase Behavior Through Time-Varying
Microarchitecture Independent Characteristics Clustering

Descobrindo o Comportamento de Fases Através do
Agrupamento de Características Independentes de

Microarquitetura Variantes no Tempo

Dissertação apresentada ao Instituto de
Computação da Universidade Estadual de
Campinas como parte dos requisitos para a
obtenção do título de Mestre em Ciência da
Computação.

Dissertation presented to the Institute of
Computing of the University of Campinas in
partial ful�llment of the requirements for the
degree of Master in Computer Science.

Supervisor/Orientador: Prof. Dr. Rodolfo Jardim de Azevedo

Este exemplar corresponde à versão �nal da
Dissertação defendida por Rafael Mendonça
Soares e orientada pelo Prof. Dr. Rodolfo
Jardim de Azevedo.

CAMPINAS

2020

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca do Instituto de Matemática, Estatística e Computação Científica
Ana Regina Machado - CRB 8/5467

 Soares, Rafael Mendonça, 1992-
 So11d SoaDiscovering phase behavior through time-varying microarchitecture

independent characteristics clustering / Rafael Mendonça Soares. – Campinas,
SP : [s.n.], 2020.

 SoaOrientador: Rodolfo Jardim de Azevedo.
 SoaDissertação (mestrado) – Universidade Estadual de Campinas, Instituto de

Computação.

 Soa1. Arquitetura de computador. 2. Avaliação de desempenho. I. Azevedo,

Rodolfo Jardim de, 1974-. II. Universidade Estadual de Campinas. Instituto de
Computação. III. Título.

Informações para Biblioteca Digital

Título em outro idioma: Descobrindo o comportamento de fases através do agrupamento
de características independentes de microarquitetura variantes no tempo
Palavras-chave em inglês:
Computer architecture
Performance evaluation
Área de concentração: Ciência da Computação
Titulação: Mestre em Ciência da Computação
Banca examinadora:
Rodolfo Jardim de Azevedo [Orientador]
Edson Borin
Luiz Cláudio Villar dos Santos
Data de defesa: 29-06-2020
Programa de Pós-Graduação: Ciência da Computação

Identificação e informações acadêmicas do(a) aluno(a)
- ORCID do autor: https://orcid.org/0000-0001-9498-7405
- Currículo Lattes do autor: http://lattes.cnpq.br/9428121514232352

Powered by TCPDF (www.tcpdf.org)

Universidade Estadual de Campinas
Instituto de Computação

INSTITUTO DE
COMPUTAÇÃO

Rafael Mendonça Soares

Discovering Phase Behavior Through Time-Varying
Microarchitecture Independent Characteristics Clustering

Descobrindo o Comportamento de Fases Através do
Agrupamento de Características Independentes de

Microarquitetura Variantes no Tempo

Banca Examinadora:

• Prof. Dr. Rodolfo Jardim de Azevedo
IC/UNICAMP

• Prof. Dr. Edson Borin
IC/UNICAMP

• Prof. Dr. Luiz Cláudio Villar dos Santos
INE/UFSC

A ata da defesa, assinada pelos membros da Comissão Examinadora, consta no
SIGA/Sistema de Fluxo de Dissertação/Tese e na Secretaria do Programa da Unidade.

Campinas, 29 de junho de 2020

Agradecimentos

A Claudia, Paulo e Eduardo. Vocês são a base de tudo em minha vida. Vocês me deram
as melhores condições para iniciar o meu entendimento sobre a computação. A minha
gratidão e admiração por vocês são sem limites.

Aos meus amigos de Campinas, em especial, ao meu grande amigo Tiago, que dividiu
comigo a moradia durante grande parte deste mestrado.

À minha amada namorada Thais, que sempre me apoiou em todos os momentos dessa
jornada.

Aos meus colegas de laboratório, pelos debates técnicos e momentos de descontração.
Em especial, agradeço àqueles que cuidaram e cuidam voluntariamente da infraestrutura
do laboratório.

Ao CNPq, por prover o suporte �nanceiro que possibilitou este estudo.
Ao meu orientador Rodolfo, por todas as nossas conversas e por contribuir imensa-

mente ao aprimoramento do meu pensamento cientí�co.

Resumo

A análise de fases provou-se uma técnica e�ciente para diminuir o tempo necessário para
executar simulações detalhadas de microarquitetura. O objetivo deste estudo é solucionar
duas di�culdades do estado da arte: (i) a maioria das abordagens feitas na análise de fases
adota uma estratégia de granularidade �na, que em alguns casos pode ser interferida por
ruídos temporários e não levar em conta um contexto mais amplo; e (ii) a interpretação
da assinatura de cada fase de programa é uma tarefa difícil, dado que muitas vezes são
empregadas assinaturas de alta dimensão.

Para a problemática (i) adotamos a análise de fases de programas em dois níveis, cada
qual com uma granularidade diferente (nível 1 � método de agrupamento de subsequên-
cias de séries temporais multivariadas; nível 2 � k-means). No entanto, concluímos que
essa abordagem alcançou uma precisão comparável aos trabalhos anteriores. Chegamos
então ao estado da arte de forma alternativa, mas com a vantagem de trazer subsídios
para uma potencial solução para a problemática (ii), pois com o método empregado, as
fases passaram a ter uma assinatura (MRF) muito mais interpretável, além de alinhada ao
comportamento dos programas. Demonstramos a e�cácia dessa interpretação usando uma
medida de centralidade para identi�car as principais características de uma fase de pro-
grama, contribuindo assim para o uso dessas assinaturas de fases em estudos posteriores.

Abstract

Phase analysis has been shown to be an e�cient technique to decrease the time needed
to execute detailed micro-architectural simulations. Our study aimed to overcome two
limitations of current methods that can be de�ned as follows: (i) most approaches adopt
a �ne-grained strategy, which in some cases can be interfered with temporary noises and
do not account for a broader context; and (ii) interpreting the resulting program phases
is often di�cult since it is hard to draw meaningful conclusions from high-dimensional
phase signatures.

Regarding (i), we adopted a two-level phase analysis, each with di�erent granular-
ity (level 1 � method of subsequence clustering of multivariate time series; level 2 � k
-means). However, we found that, on average, this sampling approach achieved compa-
rable accuracy in phase classi�cation to prior work. Thus, we achieved state-of-the-art
precision with a potential solution to the problem (ii), since with the method employed,
the phases started to have a much more interpretable signature (MRF), in addition to be
closely aligned with the behavior of a program. We demonstrated the e�ectiveness of such
interpretation using a centrality measure to identify the most important characteristics
within a program phase.

List of Figures

1.1 Time-varying graph for bzip2-source . 14

2.1 Time-varying behavior for gcc-166 . 18
2.2 Overview of SimPoint pro�ling . 19
2.3 Overview of partial simulation approaches 21
2.4 Overview of SimPoint clustering . 24

3.1 Overview of the TICC method segmentation 32
3.2 An example of an MRF with its corresponding block Toeplitz adjacency

matrix . 33
3.3 Subsequences extracted from a time series 34

4.1 Example of an order-2 Markov predictor [7] 39
4.2 Variations of PPM . 39
4.3 MICA pro�ling for gcc-166 . 42
4.4 Time-varying graph for gcc-166 . 43
4.5 The relationship between the coarse-grained and �ne-grained clustering

methods . 46
4.6 Overview of Experimental setup . 48
4.7 Overview of our phase classi�cation approach 50

5.1 Coarse-grained phases for gcc with input 166 (403.gcc.1) 54
5.2 Coarse-grained phases for bzip2 with input source (401.bzip2.1) 55
5.3 Coarse-grained phases for astar with input rivers.cfg (473.astar.2) 56
5.4 Heatmap of the CoV produced by candidate TICC parameters 58
5.5 Dynamic instruction count of SPEC CPU 2006 integer benchmarks 59
5.6 Sampled simulation results with cMaxK = 5 61
5.7 Sampled simulation results with cMaxK = 10 61
5.8 Sampled simulation results with cMaxK = 15 62
5.9 Parameters with less than 1500 simulation points and error less than 6% . 62
5.10 Average sampling error and simulation points with �xed λ: 0.1 64
5.11 Average sampling error and simulation points with �xed λ: 0.2 65
5.12 Average sampling error and simulation points with �xed λ: 0.3 66
5.13 CoV and weighted standard deviation (along with standard deviation) for

multiple TICC con�guration along with prior works with the same number
of simulation points . 70

5.14 CoV and weighted standard deviation (along with standard deviation) of
all SPECint 2006 programs. TICC parameters are w = 12, β = 2000, and
λ = 0.1 . 71

5.15 Time-varying graph for gcc.166 with phase identi�er on top 75

5.16 Time-varying graph for bzip2.chicken with phase identi�er on top 75
5.17 Callgraphs for bzip2.chicken of the complete execution (a) and for each

compresses/decompress round (b) to (d) 77

List of Tables

2.1 Phase analysis summary . 26
2.2 E�cient simulation summary . 27

4.1 Sampled MICA features . 44

5.1 Baseline simulation model . 51
5.2 Set of TICC parameters investigated (336 con�gurations) 53
5.3 Ratio of unique behavior to overall execution for the SPECint 2006 bench-

marks . 59
5.4 Maximum number of clusters and BIC score investigated for TICC and

k-means . 63
5.5 Set of TICC parameters investigated for the sampling simulation results

(486 con�gurations) . 63
5.6 Average CoV across gcc benchmarks for di�erent TICC settings 68
5.7 Two sets of programs used for comparison 69
5.8 Betweenness centrality for each MICA feature in gcc.166 73
5.9 Betweenness centrality for each MICA feature in bzip2.chicken 74

Contents

1 Introduction 13
1.1 Contributions . 16
1.2 Organization . 16

2 Background and Related Work 17
2.1 Phase Behavior Characterization . 17

2.1.1 Related Work . 18
2.2 E�cient Simulation . 20

2.2.1 Reduced Benchmark . 21
2.2.2 Reduced Input . 22
2.2.3 Reduced Instruction Trace . 23
2.2.4 Reduced Design Space Search . 24

2.3 Summary . 26
2.4 Relation to This Work . 27

3 Toeplitz Inverse Covariance-based Clustering 28
3.1 Introduction to Probabilistic Graphical Models 28

3.1.1 Undirected Graphical Models . 29
3.1.2 Gaussian Markov Random Fields 29

3.2 Time Series De�nitions . 30
3.3 Toeplitz Inverse Covariance-Based Clustering 31

3.3.1 Block Toeplitz Inverse Covariance Matrix 32
3.3.2 Problem formulation . 33
3.3.3 TICC Algorithm . 35

3.4 Summary . 36

4 Phase Classi�cation 37
4.1 Microarchitecture-Independent Characterization of Applications (MICA) . 37
4.2 Phase Classi�cation Formulation . 40

4.2.1 MICA as Time Series . 41
4.2.2 Dimension Reduction . 43
4.2.3 MICA segmentation (Level 1) . 43
4.2.4 Sampling points per phase (Level 2) 45

4.3 Experimental Setup . 46
4.4 Summary . 49

5 Evaluation 51
5.1 Evaluation Methodology . 51
5.2 Metrics for Evaluating Phase Classi�cation 51
5.3 Coarse-grained (TICC) Program Phases 52

5.3.1 TICC Parameter Exploration . 53
5.3.2 The Ratio of Unique Behavior to Overall Execution 57

5.4 Sampled Simulation . 60
5.4.1 Appropriate Number of Coarse-grained and Fine-grained Phases . . 60
5.4.2 Evaluation . 60
5.4.3 Other Clustering Algorithms Comparison 67

5.5 Phase Interpretability . 72
5.5.1 Case study: bzip2.chicken . 72

5.6 Summary . 78

6 Conclusion and Future Work 79
6.1 Publications . 81
6.2 Future Work . 81

Bibliography 82

13

Chapter 1

Introduction

Performance evaluation in computer architecture research and development is heavily
based on simulation. In order to have meaningful insights and conduct research to correct
decisions, simulators that model cycle level behavior of processors are often employed,
which is extremely time-consuming. As a result, it is often infeasible to navigate the
search space with complete benchmark executions.

Sampled simulation is a popular technique for e�cient simulation. The key idea of
sampled simulation is to infer performance metrics by simulating only a very small fraction
(e.g., 1-2%) of a program. The main challenge involved in the use of this technique is to
�nd which portions of code best represent the full execution. A popular choice is based
on the fact that programs often exhibit repeating behaviors, which are known as program
phases. Figure 1.1 illustrates the basic intuition. It shows the execution of SPEC2006
bzip2 's benchmark for a set of performance metrics varying over its execution and two
program phases (green and red).

Given such structured behavior, the main idea is to simulate samples of each unique
repetitive behavior to arrive at an overall performance metric, instead of running the full
execution in a cycle-accurate manner. The set of samples, one or more for each distinct
program phase, is known as simulation points and indicate points in the program to start
execution at. Only the selected simulation points are simulated in cycle-accurate detail.
This can be achieved using checkpoints [54, 66] or fast-forwarding through the remaining
execution [67, 64]. Finally, the performance of the complete execution can be predicted
by weighting the performance data with the coverage of their phase.

Conventional phase analysis techniques divide a program's execution into �xed-length
intervals (e.g., a section of continuous execution), for each interval collect a hardware-
independent signature, and then group similar intervals with clustering techniques. The
goal is to achieve clusters with intervals that have similar behavior across architecture
metrics (e.g., IPC and cache miss), as this will directly impact accuracy (i.e., the error
between the predicted value from the partial execution and the actual value).

The time scale at which time-varying program behavior is being observed has a great
impact on sampled simulation accuracy. Programs exhibit phase behavior at many dif-
ferent granularities [44]. Some programs exhibit phase behavior at various time scales
and, in some cases, they exhibit a hierarchical behavior, i.e., a phase at a time scale that
consists of stably distributed �ne-grained phases [69], as illustrated by the green phase

14

1 1 12 2 2Phase ID

Branch
correct

Cycles

L1-D

L2

L3

48 96 144 192 240 288 336 384
Instructions Executed (in Billions)

Figure 1.1: Time-varying graph for bzip2-source

(Phase ID 2) in Figure 1.1.
Most phase analysis approaches adopt �xed-length intervals, which can result in a

phase classi�cation that is out of sync with actual periodic behavior of the program, as
they do not account for the change in periodicity of program behavior throughout the
execution [44]. Also, most approaches adopt a �ne-grained strategy, which in some cases
can be interfered with temporary noises and do not account for a broader context [69].

Another limitation of current phase analysis methods is that interpreting the resulting
phases is hard, especially when the data is high-dimensional. A large body of phase
analysis methods focuses on giving the location of each program phase (i.e., the start of
unique behaviors). However, there still exists a lack of making the explanation of the
classi�cation understandable. In other words, to have a representation of a phase that
explains why such a slice of the program is indeed a phase � a unique behavior (state) of
the program. This representation should answer the question: what are the key factors
and relationships that characterize each phase?

This representation can bene�t problems in which the location of each program phase
alone is not enough information. Knowing �the why� (e.g., phase's requirements) can
better help, for instance, hardware resource adaptability, the study of application balance
in benchmarks, and design space exploration. Another advantage of interpretability is
that we can learn previously unknown properties of a workload runtime behavior. Fi-
nally, by knowing only the resulting segmentation, it is often hard to check if the metric
contributions to the resulting classi�cation are aligned with the architectural metric of
interest.

This dissertation has the goal of improving the representativeness of the simulation
points and achieving some degree of interpretability of the program phases. We tackle
these by treating phase classi�cation as a problem of subsequence clustering of multivariate
time series. The metrics we use were originally proposed by Hoste et al. [30] and it is a large
set of microarchitecture-independent metrics (e.g., instruction mix, data and instruction

15

working set sizes, and more), which we refer to as MICA. We sample these features per
interval of dynamic instructions, which gives us a multivariate time series, where each
time-stamped observation consists of readings for a set of microarchitecture-independent
metric. This representation is used to discover repeated patterns (or program phases).

We achieve this by segmenting the multivariate data into sequences of states using
a recently proposed method by Hallac et al. [27] for multivariate time series clustering
called Toeplitz Inverse Covariance-based Clustering (TICC). Our goal with this method
is to express a program's execution as a timeline of a few hidden states, which correspond
to the program behavior pattern of subjects. TICC represents each of these states by a
correlation structure, or Markov random �eld (MRF).

Our solution to achieve well-formed clusters consists of a two-level sampling strategy
of the MICA characteristics. The �rst level is the segmentation given by TICC; the second
level further breaks down each phase found by TICC into smaller phases using k-means.
We employ k-means clustering applied to the set of intervals of each phase. Each cluster
found by k-means is referred to as a �ne-grained phase, and it is a set of intervals within a
program's execution that have similar MICA, which consequently tends to exhibit similar
architectural behavior [15]. Finally, we simulate a single representative from each cluster
outputted by k-means to arrive at an estimated metric (weighting the performance by the
size of each cluster).

The MICA set of metrics was originally proposed with a focus on �nding benchmark
similarity [57], later also used for discovering program phases [15]. However, they cluster
each observation in isolation, which can still incur in the aforementioned problems of a �ne-
grained and single granularity strategy, since they are a vector of execution frequencies,
and a few elements may have an implicit notion of time within it (i.e., size of stride). Our
phase classi�cation also uses MICA as a metric; however, we cluster each observation in
the context of a short window of observations in the time series.

Our hypothesis was that the use of TICC as the �rst clustering strategy (coarse-
grained phases) would better capture the overall program behavior and would separate
similar MICA signatures that behaved di�erently into di�erent clusters. However, we
found that on average, for an interval size of 160M and a single architecture of study, the
phases detected by our approach have a behavior homogeneity comparable to the phases
detected by the popular SimPoint clustering algorithm [64] or applying k-means directly
to the MICA features [15].

Finally, we achieved phase interpretability using the hidden states inferred from the
time series using TICC, as they provide a meaningful interpretation of the raw, high-
dimensional MICA data. TICC provides means of having interpretable phases, as an
MRF provides information of direct dependencies between variables and, therefore, gives
interpretable insights as to precisely what the key factors and relationships are that char-
acterize each cluster [27].

We demonstrated the e�ectiveness of such interpretation using network analytics over
the MRF representation. More speci�cally, we used a centrality measure to identify the
most important characteristics within a program phase for some SPEC 2006 benchmarks.
Another advantage of interpretability is that we can learn previously unknown properties
of a workload runtime behavior. We believe that with further research this could unlock

16

new optimization in both software and hardware design.

1.1 Contributions

The main contributions of this dissertation are:

• A detailed study on the use of a method of clustering multivariate time series subse-
quences for characterizing the time-varying behavior of programs. To our knowledge,
this is the �rst work that employs such a strategy.

• The use of a correlation structure for program phases that is highly interpretable.
Most techniques transform the original data into a new representation, which may
not have an interpretable solution, or �nds a subset of the original features, which
may lead to a suboptimal set.

1.2 Organization

This dissertation is organized as follows:

• Chapter 2 describes the basic concepts and related work regarding e�cient simu-
lation and phase behavior. It also shows how phase behavior is used for e�cient
simulation.

• Chapter 3 describes the method of subsequence clustering of multivariate time series
we used for segmenting a program's execution pro�le. It also describes basic concepts
on probabilistic graphical models and time series.

• Chapter 4 describes our method of phase analysis for e�cient simulation.

• Chapter 5 evaluates the e�ectiveness of our analysis.

• We draw the dissertation conclusion in Chapter 6.

17

Chapter 2

Background and Related Work

This chapter is divided into two sections. First, we explain the concept of program phases.
Second, we make a brief overview of e�cient simulation techniques and show how phase
behavior is used for simulation acceleration.

2.1 Phase Behavior Characterization

It is well known that programs exhibit phase behavior [64, 65, 36]. Sheewwood et al. [65]
stated that �the way a program's execution changes over time is not totally random; in

fact, it often falls into repeating behaviors, called phases�. Two popular de�nitions of
phases are: (i) a unit of a stable (uniform) behavior [65]; and (ii) a unit of repeating be-
havior [62]. The goal of phase analysis is to automatically segment a program's execution
into a sequence of phases based on some observed features.

Phase behavior can be observed over many di�erent features of a program. The
choice of features can be di�erent for di�erent purposes. For example, it is desirable to
have features that are microarchitecture independent for an analysis that will be used
across microarchitectures. Phase analysis has been mainly exploited for simulation ac-
celeration [65], power reduction [36, 33, 33], cache optimization [2, 62], and compiler
optimization [47].

We use Figure 2.1 to better describe de�nitions (i) and (ii). It shows the execution
of gcc with input 166 for a set of three performance metrics varying over the program's
execution. Each point on the graph is an average of 160 million instructions. These
graphs have been segmented into 10 phases (shown in di�erent colors). In Figure 2.1a the
segmentation follows the de�nition (i), which results in phases with intervals that have
similar behavior. In Figure 2.1b each phase represents a recurring behavior, which follows
de�nition (ii). It is possible to notice some intervals that are split into multiple phases
in Figure 2.1a and considered a single-phase in Figure 2.1b.

Simpoint [64] is the most well-known technique for phase analysis. Simpoint's general
concept of a phase is a period of execution in which the program exhibits a stable be-
havior, which follows de�nition (i). To �nd each period of stable behavior, the dynamic
instructions of the program are divided into intervals � instruction sequences of the same
length. SimPoint's authors argue that there exists a strong correlation between the paths

18
C
yclesL

1-D
L
2

L
3

0 8 16 24 32 40 48 56 64 72
Instructions Executed (in Billions)

M
et
ri
c

(a) Stable behavior phase

C
yclesL

1-D
L
2

L
3

0 8 16 24 32 40 48 56 64 72
Instructions Executed (in Billions)

M
et
ri
c

(b) Repeating behavior phase

Figure 2.1: Time-varying behavior for gcc-166

taken by the program and the expected architectural behavior. Thus, the key idea is to
group intervals that execute similar code. This similarity is found by using a structure
known as Basic Block Vector (BBV). A BBV shows the frequency of execution of basic
blocks, it has one entry for every static basic block in the program. Each set of intervals
with similar BBV makes up a phase.

Figure 2.2 gives an overview of the methodology: the upper portion represents the
source code that de�nes an order of N basic blocks, and the lower portion shows the
division of the program's execution into intervals with their corresponding phase. Each
interval has a BBV signature of size N , such that each position stores the number of times
each corresponding basic block was executed.

2.1.1 Related Work

Di�erent researchers have come up with di�erent approaches to partitioning a program's
execution into phases. We will discuss related work on phase analysis from three di�erent
aspects.

Phase Metrics. Programs exhibit repetitive behavior over di�erent metrics. The
representation should be de�ned according to the purpose of the phase analysis. Phase
metrics are usually divided into two main categories: microarchitecture-dependent and
microarchitecture-independent characterization.

Balasubramonian et al. [2] uses phase analysis to change cache con�gurations, in or-

19

A B C B C A

BBV interval i = (#bb1, #bb2, #bb3 , ... , #bbN)

code

bb1

...

bbN

interval i

...dynamic
instructions

phase:

basic block:

Figure 2.2: Overview of SimPoint pro�ling

der to improve performance and save power, based on cache miss rates and branch fre-
quencies collected through hardware counters. Also in the context of adaptive systems,
Duesterwald et al. [14] uses metrics derived from hardware counter � IPC, data cache
miss rates, instruction mix, and branch prediction accuracy. Isci and Martonosi [36] iden-
tify program power behavior using the concept of power vectors, which represents power
values for several processor components of each sampled execution point. Although these
microarchitecture-dependent metrics �nd program phase behavior, they do not allow the
resulting phase classi�cation to be used across di�erent hardware designs.

Another approach is to infer phase behavior from microarchitecture-independent met-
rics. Simpoint [64] views a program's execution as a sequence of Basic Block Vector
(BBV). Dhodapkar et al. [12] does the analysis based on the program's working set.
Hu�mire and Sherwood [34] employ memory addresses. Shen et al. [62] �nds patterns
on data reuse distances. Eeckhout et al. [15] uses a collection of program characteristics
such as instruction mix, register dependency distance, and memory access patterns. Lau
et al. [47] represents a program's execution using a hierarchical procedure call and loop
graph. Huang et al. [33] examines the procedure calls via a call stack.

Phase Classi�cation. Given a representation of a program's execution, the second
aspect concerns how to partitioning this representation into phases. One common way,
as previously seen in SimPoint approach, is to break down a program's execution into
intervals (usually of �xed length), for each interval collect a signature, and then cluster
intervals with similar signature into phases. Common clustering algorithms include k-
means [64, 15] and multinomial clustering [59].

Some work �nds phase limits that match the procedure call and loop structure of
programs. In [47] intervals are aligned with procedure call, return and loop transition
boundaries. Each variable-length interval is represented by BBV. In [33] phases are found
based on a call stack to apply hardware adaptations at the granularity of subroutines.

Some work relies on signal processing techniques such as Fourier transformation or

20

wavelet analysis. Shen et al. [62] views a sequence of data reuse as a signal and use
wavelet as a �lter to expose abrupt changes in the reuse pattern. They partition this
�ltered trace and �nd the basic blocks in the code that mark the start of each phase.
In [63] a Fourier transform is applied over Basic Block Vectors.

Some works combine clustering algorithms and signal processing techniques. They
are based on the aforementioned approach of breaking down a program's execution into
intervals, collect a signature for each interval, and cluster these signatures. However,
before running a clustering algorithm over each signature, the signature is transformed
into the wavelet domain and the wavelet coe�cients of each program execution interval
are used as the input to the clustering algorithms. Some signature includes a 2D matrix
of the memory accesses [34] or vector of performance counters [10].

Dhodapkar and Smith [12] employ a simple threshold rule to indicate a phase change.
They de�ne a working set ratio between two intervals of execution. If the ratio is more
than some threshold, a working set change (phase change) is registered. If not, the phase
is stable.

Pro�ling Granularity. The last aspect is the granularity at which time-varying pro-
gram behavior is being observed. Many programs exhibit repeating behavior at di�erent
time scales [47]. For example, one can think of a level as an innermost loop body or
a coarser level such as an outer-most loop body. Prior work has shown that programs
exhibit repeating behavior at a portion of execution of 100K instructions [2, 12], 1M-
10M instructions [45, 47], 10-100M instruction [64], or even 100M-1B instructions [53].
Some work observes time-varying program behavior at di�erent time scales at the same
time. Zhang et al. [69] observed that coarse-grained intervals belonging to the same phase
usually consist of stably distributed �ne-grained phases.

2.2 E�cient Simulation

Simulation plays a critical role in computer architecture. Simulators, usually a soft-
ware tool, are used to estimate processor behaviors. Compared to building hardware
prototypes, they allow inexpensively and �exibly future generation hardware design eval-
uation [16]. For example, one can explore multiple cache organizations (e.g. size, as-
sociativity, and block size) by simply changing some of the simulator's parameters. As
performance evaluation guides computer architecture research in making decisions in large
space design, simulations became a popular evaluation tool.

Simulators are a model of a processor, and as in any model, it is built based on the
purpose of its application. Simulators come in di�erent levels of abstraction, each repre-
senting a di�erent trade-o� in accuracy (when compared to the real hardware), evaluation
time, development time, and the fraction of the design space it allows to explore [20]. A
popular trade-o� in both academia and industry is the cycle-accurate simulation model [6],
or detailed simulation, which models the behavior of the microarchitecture and the timing
behavior of each instruction.

A commonly used evaluation approach consists of executing a realistic benchmark over
cycle-accurate simulators. However, not only do newer computational systems grow more

21

Partial

Simulation

Reduced

Benchmark

Reduced

Input
Reduced

Instruction Trace

Reduced Design

Space Search

Phase-behavior

sampling

Statistical

Sampling

Statistical Sim-

ulation

Figure 2.3: Overview of partial simulation approaches

complex each year but also benchmarks grow in complexity and size. These factors have an
unsatisfactory e�ect on designers' productivity when we consider the higher time needed to
obtain simulation results. A full cycle-accurate simulation of a modern benchmark suite
on some candidate con�gurations can require months of simulation time. This section
gives an overview of several solutions that have been proposed to remedy this problem.

The required simulation time critically depends on the speed of cycle-accurate simu-
lators and the total number of instructions to be simulated (e.g., number of workloads
and size of the design space the architect is willing to explore). The former can be miti-
gated by enhanced simulators and it is out of the scope of this work; the latter by partial
simulation.

The next section gives a brief overview of four commonly used techniques for partial
simulation, which are summarized in Figure 2.3. The �rst selects a representative set of
benchmarks from a larger set of benchmarks. The second reduces simulation time with
reduced input sets size. The third simulates short instruction trace instead of the full
instruction trace. The last approach simulates a small number of architectures rather
than the whole design space.

2.2.1 Reduced Benchmark

A key aspect to obtain a microprocessor design that is optimal for the target domain
of operation is to �nd a representative workload of that environment of operation. In
order to make unbiased decisions, architects pick a broad set of applications. However,
due to a limited time for simulation and the aforementioned slow speed of architectural
simulations, architects may simulate only a subset of those benchmarks. A bad subset
would yield an incorrect conclusion. Ideally, we would like to pick the best representative
subset of the target environment that attends time requirements on available simulation
time. Several approaches have been proposed to subset a benchmark suite.

Eeckhout et al. [19] uses Principal Components Analysis (PCA) and cluster analysis.
They collect a set of p program characteristics of the complete execution for each program-
input pair. These characteristics are viewed as a point in a p-dimensional space. Then,
they apply PCA to transform the data into a q-dimension space (with q � p). The
transformed space allows better interpretation and has uncorrelated dimensions. Finally,

22

cluster analysis is used to group similar program-input pairs and a representative program
is chosen from each cluster.

The characteristics used in [19] are a collection of microarchitecture-dependent (e.g.,
instruction mix) and microarchitecture-independent characteristics (e.g., branch predic-
tion accuracy and cache miss rates). However, the microarchitecture-dependent character-
istics may incorrect guide decisions of the microprocessor design, as two programs might
behave di�erently on other designs [30]. As an alternative, some works [30, 57] apply
the same idea as in [19] but only use a set of important microarchitecture-independent
characteristics.

Yi et al. [68] classi�es programs based on how they stress the microarchitecture of
a design space. Two benchmarks are similar if they stress the same components of the
processor to similar degrees. The measurement of how each component is stressed is ob-
tained by Plackett and Burman (PB) design of experiment, which for a design space with
N parameters, requires about N simulations, instead of all combinations of con�gura-
tions. These N microarchitecture con�gurations are corner cases in the microarchitecture
design space [16]. This results in a ranking of performance bottlenecks. The similarity
between two benchmarks is measured by the euclidian distance of their ranks.

2.2.2 Reduced Input

Prior section looked into representative benchmarks selection; another approach is to use
reduced benchmark inputs. The well known SPEC CPU benchmark is one example of a
suite that has multiple inputs for each application. Additionally, each has di�erent sizes
of input: test, train, and ref. The test is the smallest input set and it is used for testing
that an executable is functional, while the train gives an intermediate-length run. The ref
input set is the largest input size and is used to give a complete evaluation of the target
environment [41].

MinneSPEC [41] provides reduced input sets for the SPEC CPU 2000 benchmark suite
that match the ref inputs. The reduced inputs are manually constructed by changing
di�erent command-line arguments, truncating the original inputs �les or, in few cases,
creating new input �les. They quantify the di�erence of the reduced inputs to the SPEC
programs when executed with ref inputs in terms of function-level execution patterns,
instruction mix, and memory behavior [41].

Breughe et al. [4] presents four methods for selecting representative inputs: (i) ran-
dom selection, (ii) microarchitecture-independent selection, (iii) �ltered Selection, and
(iv) Min-Median-Max selection. In (i) a number of inputs are selected at random out
of the available benchmark inputs; in (ii) BBVs are used to compare similarities among
inputs; in (iii) the idea is to explore a very small subspace of a design space and �lter
out inputs that greatly di�ered from the optimum design point in terms of Energy-Delay
Product (EDP). In (iv), instead of evaluating a complete subspace, they run all inputs on
a single design point and pick the inputs that have the minimum, median, and maximum
CPI.

23

2.2.3 Reduced Instruction Trace

This category of approaches concentrates on generating a short instruction trace of a
given program-input pair. The �rst two approaches focus on �nding regions within a
benchmark's execution that are representative of the entire benchmark execution. They
are known as sampled simulation and their core idea is to simulate only small fractions of
a program and extrapolate the results for the entire workload execution. Phase-behavior
sampling and statistical sampling are the two main ways to select those sampling units.
The third approach, known as statistical simulation, �nds a short trace by producing a
synthetic workload that mimics the behavior of the original program.

Phase-behavior sampling. Phase-behavior sampling uses the techniques described
in Section 2.1 to segment a program's execution into phases. In this context, a phase
is usually de�ned as a set of intervals within a program's execution that have similar
behavior, regardless of temporal adjacency [65]. As a result, it is enough to pick a sampling
unit for each unique phase, and then weigh each sampling unit to provide an overall
performance number.

SimPoint [65] is the most well-known approach to select those samples. As stated in
the previous section, SimPoint divides the dynamic instructions into intervals (e.g., 100M
instructions), characterizes each interval by a BBV and cluster these intervals based on its
BBV signature. Each cluster, also referred to as a phase, corresponds to a set of intervals
with similar behavior. The main idea behind this approach is the strong correlation be-
tween code and performance metrics [65]. Simpoint then chooses a representative interval
(simulation point) from each phase by �nding the interval closest to the cluster's center
(centroid). Finally, detailed simulation is performed only at the simulation points and
the performance is weighted by the size (number of intervals) in its corresponding cluster.
Figure 2.4 gives an overview of the approach.

Zhang et al. [69] proposes a method that combines two levels of granularity for sampling
simulation. The �rst level is coarse-grained and is found by segmenting a program's
execution at boundaries of a procedure call and loop structure of programs, with an
approach similar to [47]. Each coarse-grained interval is clustered based on its BBV and a
single simulation point is chosen for each cluster. Then, they apply a �ne-grained sampling
to those coarse-grained simulation points. They use 10M instructions as the length for
a �ne-grained interval and also do a BBV based clustering. The �ne-grained simulation
points are only used to represent the selected coarse-grained simulation points.

Statistical Sampling. Wunderlich et al. [67] present the SMARTS methodology in
which representative intervals are selected based on theories of the statistical sampling
�eld. The advantage of this methodology is to obtain values of performance metrics
within a desired con�dence interval. A program with N instructions and samples of size
M has a total of N

M
samples. According to the sampling theory, the con�dence interval

can be calculated based on the number of samples collected from the total N
M

[24]. In
addition, if the simulated samples do not meet the con�dence interval, more samples
can be selected until the appropriate level is reached. In SMARTS, samples are selected
periodically during program execution, which is a good approximation for the simple
random sampling applied to the microarchitecture simulation �eld [67].

24

A B C A C B

spC

spA

spB

Figure 2.4: Overview of SimPoint clustering

Statistical simulation. Statistical simulation produces a small synthetic workload
that is representative for long-running benchmarks based on the statistical pro�les of the
complete execution [17, 18]. The statistical pro�le consists of a set of characteristics that
are independent of the microarchitecture (e.g., instruction mix, instruction dependencies,
control �ow behavior) along with a set of microarchitecture-dependent characteristics
(typically locality events such as cache and branch prediction miss rates) [16]. With
this statistical pro�le, a synthetic trace with the same statistical properties is generated.
Finally, this synthetic trace is simulated on a trace-driven statistical simulator to obtain
metric values of interest.

2.2.4 Reduced Design Space Search

Due to the high cost of simulations and a large design space, it is often impractical to
do an exhaustive search of the entire design space to �nd the Pareto curve for a speci�c
computer system. The last category of approaches focuses on reducing the number of
simulated architectures with the use of predictive models and heuristic search.

Predictive modeling. This class of approach uses machine learning models to
quickly predict the processor response (e.g. performance and power) of unseen archi-
tecture con�gurations. The key idea is to build a model with the simulation results
of a small number of con�gurations in the design space and apply this model, without
additional simulations, to all candidate architectures.

Program-based approaches build a predictive model for each program. The relation-

25

ship between processor con�guration and its corresponding response is captured using
linear regression [37], radial basis function (RBF) [38], spline functions [48], arti�cial neu-
ral network (ANN) [35], and genetic programming (GP) [11]. Most of the existing DSE
methods randomly sample training datasets from the entire design space to train the
regression models.

In the aforementioned schemes, whenever a new program is considered, a new pre-
dictor must be built. Khan et al. [40] and Dubach et al. [13] proposed cross-program
predictive models to reduce the required time whenever a designer wants to consider a
new program (e.g. compile with a di�erent optimization level). Dubach et al. [13] argues
that the behavior of the architecture space on a new program can be modeled as a linear
combination of their behavior on previously seen programs. Khan et al. [40] uses the
results of previously seen programs to train ANN models.

Characteristic-based approach [25] incorporates program characteristics to the training
data. They �nd a mapping from a processor con�guration and program characteristics to
processor response. These characteristics are a subset of the ones described in Section 4.1.
The key intuition is that workloads with similar characteristics to the programs used in
the training data should have similar reactions to the design space.

All mentioned regression models focus on predicting the response of an architecture
con�guration to guide decisions in DSE. Chen et al. [8] formulates DSE as a ranking
problem to predict which of any two architecture con�gurations performs best � the model
feedback is not an architecture response but the prediction of which of two con�gurations
is the best.

Heuristic searching. The overall goal of heuristic search is to minimize the number of
simulations during the DSE. Simulations results can be obtained using the aforementioned
predictive models or detailed simulation. Thus, heuristic approaches are exploited in
orthogonality to predictive models.

In [23] the design space is divided into clusters, where each cluster is a set of depen-
dent parameters. They use an exhaustive algorithm for calculating the Pareto-optimal
con�gurations for each of the clusters. The global Pareto-optimal con�gurations are re-
constructed from the merged Pareto-optimal con�gurations from each cluster.

Palermo et al. [68] solves DSE for embedded systems as a multi-objective optimization
(e.g. performance, power, delay) and use three searching algorithms: simulated annealing,
reactive taboo search, and random search. The idea is to compute an approximated Pareto
set of con�gurations.

In [1] evolutionary algorithms and fuzzy systems are combined to simultaneously re-
duce the number of system con�gurations to be simulated and the time required to eval-
uate each con�guration. They employ Multi-objective Evolutionary Algorithms as an
optimization technique and Fuzzy Systems for the estimation of the performance of each
con�guration.

26

2.3 Summary

In this chapter, we discussed prior work in two main areas related to this dissertation:
phase analysis and e�cient simulation. We summarize them in Tables 2.1 and 2.2.

Author Metric Classi�cation Granularity Usage

Balasubramoni et al. [2] Hardware counters Threshold Fine-grained
Dynamic cache re-
con�guration

Duesterwald et al. [14] Hardware counters
Statistical and Table-
based history predic-
tors

Fine-grained E�cient simulation

Isci and Martonosi [36] Power vectors
First Pivot Cluster-
ing and Agglomerative
Clustering

Fine-grained Power reduction

Sherwood et al. [64] BBV k-means Fine-grained E�cient simulation

Dhodapkar et al. [12] Working set Threshold Fine-grained
Dynamic cache re-
con�guration

Hu�mire and Sherwood [34] Memory addresses Wavelets Fine-grained Phase analysis

Shen et al. [62] Data reuse distances Wavelets and Sequitur Fine-grained
Cache resizing and
memory remapping

Eeckhout et al. [15]
Collection of pro-
gram characteristics

k-means Fine-grained E�cient simulation

Lau et al. [47]
Hierarchical proce-
dure call and loop
graph

Loop or procedure
boundaries

Fine-grained
Cache recon�gura-
tion and E�cient
simulation

Huang et al. [33] Call stack Fine-grained Power reduction
Sanghai el al. [59] BBV Multinomial clustering Fine-grained E�cient simulation

Sherwood, et al. [63] BBV Fourier transform Fine-grained
Phase analysis and
E�cient simulation

Cho and Li [10]
Performance coun-
ters

Wavelets and k-means Fine-grained Phase analysis

Zhang et al. [69]
Hierarchical proce-
dure call and loop
graph

Loop or procedure
boundaries

Both
Cache recon�gura-
tion and E�cient
simulation

Table 2.1: Phase analysis summary

27

Author Category Subcategory

Eeckhout et al. [19]
Reduced BenchmarkEeckhout and Hoste [30, 57]

Yi et al. [68]
KleinOsowski and Lilja [41]

Reduced Input
Breughe et al. [4]
Sherwood et al. [65]

Reduced Instruction Trace
Phase-behavior samplingZhang et al. [69]

Lau et al. [47]
Wunderlich et al. [67] Statistical Sampling
Eeckhout et al. [17, 18]. Statistical simulation
Joseph and Thazhuthaveetil [37]

Reduced Design Space Search

Predictive modeling

Joseph, et al. [38]
Lee and Brooks [48]
Ïpek et al. [35]
Cook and Skadron [11]
Guo et al. [25]
Chen et al. [8]
Givargis et al. [23]

Heuristic searchingPalermo et al. [68]
Ascia et al. [1]

Table 2.2: E�cient simulation summary

2.4 Relation to This Work

Our work consists of a method for e�cient simulation in the category of reduced in-
struction trace with phase-behavior sampling. We �nd program phases by inspecting a
collection of program characteristics such as instruction mix, ILP, and memory access pat-
terns [15]. Our approach consists of a two-level sampling strategy of those characteristics.
The �rst uses a multivariate time-series clustering method to �nd coarse-grained phases
that follow the de�nition of �a unit of repeating behavior� [62]. The second level fur-
ther re-sample each coarse-grained phase into �ne-grained phases using k-means. These
�ne-grained phases are a set of intervals within a coarse-grained phase that have similar
behavior. This second-level sampling is heavily based on the work of [15].

The closest work in terms of combing di�erent phase granularity levels is the work
proposed Zhang et al. [69]. However, they identify a coarse-grained interval according to
the outermost loop or frequently invoked functions. They use BBV to compare intervals
and k-means for both levels.

Concerning hierarchical phase analysis, some approaches focus on �nding phase tran-
sitions that match the procedure call and loop structure of programs [47]. However, as
stated before, phase classi�cation using program code structures lacks interpretability.
Other approaches have been proven useful to a single metric such as data reuse distance
(locality phases) [62], however, they explore a priori knowledge of memory access patterns
of the applications.

28

Chapter 3

Toeplitz Inverse Covariance-based

Clustering

This Chapter describes the method we used to segment a program's execution into a
sequence of phases. It is known as Toeplitz Inverse Covariance-Based Clustering (TICC)
and is heavily based on probabilistic graphical models. For further understanding, we
begin in Section 3.1 giving a brief introduction on the subject. It starts by introducing
the necessary notation and describing the central concept of conditional independence.
Undirected Graphical Models and Gaussian Markov Random Field (GMRF) are then
de�ned and studied in more detail. In Section 3.2 time-series are de�ned. In Section 3.3,
we give a detailed discussion of the TICC method.

3.1 Introduction to Probabilistic Graphical Models

Probabilistic graphical models are a way to represent probability distributions over graphs.
One can think of the union of graph theory and probability theory. In this graphical
representation, the vertices correspond to random variables and the edges to the condi-
tional dependence among the random variables. Graphical models exploit independencies
present in probability distributions to compactly represent distributions in a factorized
form [42].

Conditional independence is the fundamental concept that graphical models rely on
to compactly represent a probability distribution. Two random variables X and Y are
said to be conditionally independent given random variable Z, denoted by X⊥Y |Z, if
and only if their joint conditional distribution factorizes according to:

P (X,Y|Z) = P (X|Z)P (Y|Z)

There are essentially two families of graphical representations of distribution. The
�rst is called Bayesian networks and uses a directed graph as its representation; the
second, Markov networks, uses an undirected graph. In both families, the graph structure
gives a compact representation of a set of independencies that hold in the distribution
and show how the corresponding probability distributions factorize. They di�er in the
independencies they can encode and in the factorization of the distribution that they

29

induce [42]. In this work, we shall focus on the key aspects of undirected graphical
models as needed for our phase analysis.

3.1.1 Undirected Graphical Models

An undirected graphical model, also known as Markov random �eld (MRF), represents a
set of random variables having a Markov property by an undirected graph G = (V,E).
Consider a collection of random variables x = (x1, x2, ..., xn) with associated joint prob-
ability distribution p(x). Each vertex in V corresponds to one of the random variables
in x, that is, V = (p | xp ∈ x). Additionally, the edges in E should satisfy the following
Markov property:

• Global Markov property: Let A,B,C be three disjoint subsets of V , and the
notation XA denotes all random variables corresponding to vertices included in the
set A. If C separates A from B then the random variables xA, xC are conditionally
independent given the variables xC

xA⊥xB |xC

The global Markov property is one of the three commonly used Markov properties for
undirected graphs. The remaining two properties are:

• Pairwise Markov property: two vertices are conditionally independent given the
rest if there is no direct edge between them

xi⊥xj |xij if (i, j) /∈ E and i 6= j

• Local Markov property: Given its neighbors, each vertex is independent of all
other variables

xi⊥xV−N(i) |xN(i)

The global Markov implies local Markov which implies pairwise Markov [42]. How-
ever, for a positive probability (p(x) > 0), the three properties are equivalent [42]. The
importance of this result is that in some situations, as we will see in the next section, it
is easier to assess some property than the other.

Theorem 1. For positive distributions,

Global Markov ⇐⇒ Local Markov ⇐⇒ Pairwise Markov

Proof. See Corollary 4.1 from Koller and Friedman [42].

3.1.2 Gaussian Markov Random Fields

A popular instance of undirected graphical models is the Gaussian Markov Random Field
(GMRF). A GMRF is a Markov random �eld of a multivariate Gaussian distribution. A
multivariate Gaussian distribution over random variables x = (x1, ..., xn) is characterized

30

by an n-dimensional mean vector µ, and a symmetric n × n covariance matrix Σ; the
density function is most often de�ned as:

N (x;µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
(3.1)

where |Σ| is the determinant of Σ. We use x ∼ N (µ, Σ) to denote that x follows a
multivariate normal distribution.

The inverse covariance matrix term Σ−1 is called information matrix (or precision
matrix). In the rest of the text we shall denote Σ−1 = Θ. If Θi,j = 0, then random
variables xi and xj in Θ are conditionally independent (given the values of all other
variables) [27].

Theorem 2. Let x = (x1, ..., xn) be normal distributed with mean µ and inverse covari-
ance matrix Θ > 0. Then for i 6= j,

xi⊥xj|x_ij ⇐⇒ Θij = 0

Proof. See Theorem 2.2 from Rue and Held [58].

A Gaussian distribution over x = (x1, ..., xn) can be expressed as a Markov random
�eld with respect to a graph G = (V,E). We use Theorem 2 to build a GRMR by
letting the inverse covariance matrix Θ de�ne the adjacency matrix of G. The missing
edges in E correspond to zeros in Θ. This means that G has no edge between vertex i
and vertex j if and only if xi⊥xj |x_ij � the pairwise Markov property is satis�ed.
Because a Gaussian density is a positive distribution then Global Markov property is
also satis�ed (by Theorem 1). Thus, random variables x make up a valid Markov random
�eld with respect to the graph G.

The formal de�nition of a GMRF is given by [58].

De�nition 1. (GMRF) A random vector x = (x1, ..., xn)T ∈ Rn is called a GMRF with
respect to a labelled graph G = (V,E) with mean µ and covariance matrix Σ > 0, i� its
density has the form

π(x) =
1

(2π)n/2|Σ|1/2
exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
(3.2)

and

Σ−1
i,j 6= 0 ⇐⇒ {i, j} ∈ E,∀i 6= j (3.3)

3.2 Time Series De�nitions

Time series is a set of observations collected sequentially in time. Formally

De�nition 2. (Time series) A time series S of size T is an ordered sequence of real-value
data, xi ∈ Rn, where S = (x1, x2, · · · , xT).

31

A univariate time series refers to a time series that only one variable is varying over
time (n = 1). A multivariate time series has multiple variables varying over time (n > 1).

Another notation we shall use throughout the text is the concept of time series sub-
sequence.

De�nition 3. (Time series subsequence) A subsequence of length m ending at the i-th
observation of time series S is de�ned as Si,m = (xi−m+1, · · · , xi−1, xi).

3.3 Toeplitz Inverse Covariance-Based Clustering

Our phase analysis is based on time-series clustering. We view a program's execution as
an ordered sequence of inherent program observations, as will be described in Section 4.1.
Such data is interpreted as multivariate time-series, where each variable is an inherent
program feature. We partition this time series into a sequence of program phases, where
each phase is a unique state (behavior) of the program and may repeat itself across the
execution. This approach requires simultaneous segmentation and clustering of the time
series. To achieve that, we use a recently proposed method of time-series clustering and
segmentation called Toeplitz Inverse Covariance-based Clustering (TICC)[27].

In TICC's terminology, a time-series is segmented into a sequence of clusters (which we
interpret as a program phase). Each cluster has a signature described by a Markov ran-
dom �eld (MRF). This MRF characterizes the conditional dependence structure between
di�erent variables of the time-series inside a short window (subsequence) of observations.
It can be viewed as a multi-layer network, with one layer for each observation (time step)
of the subsequence. The edges inside a layer show an intra time correlation, and the
edges between layers show a cross-time correlation. Any window of observations inside a
cluster will have the same MRF signature, no matter which subsequence of a cluster we
are looking at � it is a time-invariant correlation structure.

We use Figure 3.1 to illustrate the basic intuition of TICC. It shows a time series
segmented into clusters A, B, and C. A three-layer MRF characterizes each cluster, each
having a di�erent dependency structure. Any subsequence of size 3 inside a segment will
have the same MRF, as illustrated by the two highlighted subsequences of cluster A: both
have the same MRF, even though they start at a di�erent position. Intra-layer edges are
represented by solid lines and inter-layer edges by dashed lines

Another example can be data from an automobile with three sensors: steering wheel
angle, Lateral (Y-)Acceleration, and brake pedal [27]. This data can be interpreted as
a sequence of actions: turning, speeding up, slowing down, and going straight. In an
MRF corresponding to turning : the intra time correlation (inside one layer) might show
how the steering wheel angle in�uences the Lateral (Y-)Acceleration; the cross-time edges
(across layers) may show how the brake pedal at time t might a�ect the steering wheel
angle at time t + 1. The time-invariant property can be thought of as: no matter which
subsequence of the cluster we are looking at, in a �car turn� the brake pedal at time t will
always a�ect the steering wheel angle at time t+ 1 [27].

Recall from Section 3.1.2 that we can learn an MRF representation by estimating a
sparse Gaussian inverse covariance matrix Θ = Σ−1, which de�nes a graph structure by

32

1

2

n

x1x2
xn

A AB B C

MRF cluster A

x3

MRF cluster B MRF cluster C

...

Figure 3.1: Overview of the TICC method segmentation

de�ning the adjacency matrix of the MRF dependency network. Thus, TICC learns each
cluster's MRF by estimating Θ. The time-invariant correlation is learned by imposing a
block Toeplitz matrix structure on the inverse covariance matrix.

3.3.1 Block Toeplitz Inverse Covariance Matrix

Let w be the size of the subsequence that each cluster MRF is characterized over. To
ensure that each cluster's MRF has the aforementioned time-invariant correlation, TICC
imposes that Θ has a block Toeplitz matrix structure. A block matrix is a matrix that is
interpreted as being partitioned into submatrices. A Toeplitz matrix is a matrix whose
entries are constant along the diagonals. Then, a block Toeplitz matrix is a block matrix
whose blocks are repeated down the diagonals of the matrix. Given a time series with n
variables, the inverse covariance matrix Θ de�ning each cluster is of the form

Θ =

A0 AT1 AT2 ATw−1

A1 A0 AT1
. . .

...

A2 A1
.

...
...

. AT1 AT2
...

. . . A1 A0 AT1
Aw−1 · · · · · · A2 A1 A0

∈ Rnw×nw

with blocks Ai ∈ Rn×n. Each block Θi,j de�nes the edges between time steps i and j.
For i = j (block A0) we have the adjacency matrix of the edges within each layer. On the
other hand, for i 6= j (blocks A1, A2, · · · , Aw−1), we have �cross-time� edges.

33

Returning to the example in Figure 3.1, let's suppose it is a time series with n = 5

variables. In this case, the inverse covariance matrix Θ over a window of size 3 de�ning
cluster A has the following form:

1

2

3

4
5

w

xi xi + 1 xi + 2

ΘA =

A0 AT1 AT2
A1 A0 AT1
A2 A1 A0

Layer 1 Layer 2 Layer 3

Figure 3.2: An example of an MRF with its corresponding block Toeplitz adjacency matrix

All layers have the same intra time correlation ΘA(1, 1) = ΘA(2, 2) = ΘA(3, 3) = A0.
The edges between layer 1 and layer 2 must also exist between layers 2 and 3, that is,
ΘA(1, 2) = ΘA(2, 3) = A1. Each block is of the form

A0 =

1 2 3 4 5

1 ∗ ∗ 0 0 0

2 ∗ ∗ ∗ 0 0

3 0 ∗ ∗ ∗ ∗
4 0 0 ∗ ∗ 0

5 0 0 ∗ 0 ∗

, A1 =

1 2 3 4 5

1 ∗ 0 0 0 0

2 0 ∗ 0 0 0

3 0 0 ∗ 0 0

4 0 0 0 ∗ 0

6 0 0 0 0 0

, A2 =

1 2 3 4 5

1 0 0 0 0 0

2 0 ∗ 0 0 0

3 0 0 0 0 0

4 0 0 0 0 0

5 0 0 0 0 0

with edges corresponding to the non-zero entries.

3.3.2 Problem formulation

Let (x1, x2, ..., xT) be a time series, where xt ∈ Rn is the t-th multivariate observation. The
goal of TICC is to partition these observations into a prede�ned number of clusters, K.
Let P = {P1, ..., PK} be such a partition. TICC clusters each observation xt based on the
MRF de�ned over the subsequence St,w, that is, a subquence of size w ending at xt. Each
subsequence Si,m = (xi−m+1, · · · , xi−1, xi) forms a nw-dimensional vector and is simply
referred to as Xt. Rather than clustering observations (x1, x2, ..., xT), TICC's approach
instead consists of clustering the subsequences (X1, X2, ..., XT). Figure 3.3 elucidates the
general skeleton of each subsequence.

Each cluster i is represented as an MRF having Θi ∈ Rnw×nw as its adjacency matrix.
Thus, each subsequence belongs to a cluster i with a Gaussian distribution that has the
inverse covariance matrix Θi. The objective of TICC is to �nd a partitionP = {P1, ..., PK}
of (X1, X2, ..., XT) and the corresponding MRF structure of each cluster Θ = {Θ1, ...,ΘK}
by solving the following optimization problem:

34

x1 x2 x3 xw xw+1 xw+2

Time series

X1 = S(1, w)

x1 x2 x3

x2 x3 xw

...

...

...

xw

xw+1

X2 = S(2, w)

X3 = S(3, w)

... xn

x3 xw xw+1... xw+2

...

Xn = S(n,w)

...

Figure 3.3: Subsequences extracted from a time series

argmin
Θ∈T , P

K∑
i=1

 ‖λ ◦Θi‖1︸ ︷︷ ︸
(iii) sparsity

− logL(Θi|Pi)︸ ︷︷ ︸
(i) log-likelihood

+
∑
Xt∈Pi

β1{Xt−1 /∈ Pi}︸ ︷︷ ︸
(ii) temporal consistency

 (3.4)

In the rest of the section, we will go into details about terms (i), (ii), and (iii). We
will arrive at Equation (3.4) by adding one term at a time.

(i) Log-likelihood. Given a set of subsequences X = (Xi, ..., XT), let {P1, ..., PK}
be a partition of X with K clusters. TICC assumes that each subsequence Xt ∈ Pi ∼
N (µi, Θi) . Let L(Pi|Θi) denote the likelihood that Pi came from cluster i. By de�nition:

L(Θi|Pi) =
∏
Xt∈Pi

N (Xt; Θi) (3.5)

As the natural logarithm of the likelihood function is more convenient to work with,
we have:

logL(Θi|Pi) =
∑
Xt∈Pi

logN (Xt; Θi)

=
∑
Xt∈Pi

log

(
|Θi|1/2

(2π)m/2
exp

(
−1

2
(Xt − µi)

TΘi(Xt − µi)

))
=
∑
Xt∈Pi

−m
2

log(2π)− 1

2
log |Θi| −

1

2
(Xt − µi)

TΘi(Xt − µi)

where µi is the empirical mean of cluster i and |Θi| is the determinant of Θi.
Let T be the set of symmetric block Toeplitz nw×nw matrices. We want to maximize

the log-likelihood of each cluster in P with constraints that the inverse covariance matrix

35

is block Toeplitz, that is, Θ ∈ T

argmax
Θ∈T , P

K∑
i=1

logL(Θi|Pi)

As TICC is a minimization problem, we convert the above objective into an equivalent
minimization problem as follows

argmin
Θ∈T , P

K∑
i=1

− logL(Θi|Pi)

So far, the problem is to minimize the negative log-likelihood.

(ii) Temporal consistency. When TICC is assigning the data to clusters, it makes
an additional goal of temporal consistency. The idea is that neighboring points are en-
couraged to belong to the same cluster. Let β ∈ R, and 1{Xt−1 /∈ Pi} an indicator
function as follows:

1{Xt−1 /∈ Pi} =

{
0, Xt−1 ∈ Pi
1, Xt−1 /∈ Pi

TICC imposes a penalty of summing β every time we �nd an adjacent point that does
not belong to the same cluster. So, our augmented objective is to minimize the negative
log-likelihood and enforce temporal consistency.

argmin
Θ∈T , P

K∑
i=1

(
− logL(Θi|Pi) +

∑
Xt∈Pi

β1{Xt−1 /∈ Pi}

)

(iii) Sparsity penalty. The last penalty TICC adds is what is called a sparsity
penalty. Sparsity reduces the tendency of over�tting and increases the interpretability
of each cluster's MRF [27]. It is achieved by imposing ‖λ ◦Θi‖1 to the optimization
problem: the `1-norm of the element-wise product of the inverse covariance matrix Θi

and the regularization parameter λ ∈ Rnw×nw.
Even though λ is a nw× nw matrix, the authors of TICC suggest to set all its values

to a single constant, reducing the search space to just one parameter. With that, we
arrive at Equation (3.4) with the goal of minimizing the negative log-likelihood, enforcing
temporal consistency and making sure Θi is sparse.

argmin
Θ∈T , P

K∑
i=1

(
‖λ ◦Θi‖1 − logL(Θi|Pi) +

∑
Xt∈Pi

β1{Xt−1 /∈ Pi}

)

3.3.3 TICC Algorithm

In order to solve problem 3.4 TICC uses a variation of the expectation maximization (EM)
algorithm to alternate between (i) assigning points to clusters and then (ii) updating the

36

cluster parameters.
(i) Assign points to cluster (E-step): assign points to clusters by �xing the value

of Θ and solving the following combinatorial optimization problem for P = {P1, ..., PK}:

mimize
K∑
i=1

(
− logL(Θi|Pi) +

∑
Xt∈Pi

β1{Xt−1 /∈ Pi}

)
(3.6)

TICC uses dynamic programming for solving this problem, which allows learning the
optimal assignments in time O(KT).

(ii) Update cluster parameters (M-step): Given the point assignments P , the
next task is to update the cluster parameters Θ1, ...,ΘK by solving Equation (3.4) while
holding P constant. The goal is to �nd Θi that mostly explains the assignments of points
in P . TICC solves for each Θ in parallel. The log-likelihood of Equation (3.5) can be
expressed as:

logL(Θi|Pi) =
∑
Xt∈Pi

−m
2

log(2π)− 1

2
log |Θi| −

1

2
(Xt − µi)

TΘi(Xt − µi)

= −|Pi|(log det θi + tr(Siθi)) + C

where |Pi| is the number of points in cluster i, Si is the empirical covariance of points in
Pi, tr is the trace of a matrix, and C is a constant that does not depend on Θi. Using
this notation in Equation (3.4), for each Θi, the problem becomes:

minimize − log det θi + tr(Siθi) +
1

|Pi|
‖λ ◦Θi‖1

subject to θi ∈ τ
(3.7)

Problem 3.7 is a variation of the graphical lasso problem [22] with the block Toeplitz
constraint on the inverse covariance. TICC solves this problem using an algorithm based
on the alternating direction method of multipliers (ADMM).

A Python implementation for TICC's algorithm is available in [26].

3.4 Summary

In this chapter, we described the core method we used in this work to �nd repeated
patterns in the execution of a program. It is built upon probabilistic graphical models
and it is a method of subsequence clustering of multivariate time series. Each cluster
in TICC is described by a Markov random �eld (MRF). This MRF characterizes the
conditional dependence structure between di�erent variables of the time-series inside a
short window (subsequence) of observations [27]. As we will show in the next chapter,
the information we extract from each program's execution makes up a multivariate time-
series of inherent program observations, which makes TICC suitable for our problem. We
used TICC's segmentation as the �rst stage of a two-stage sampling strategy and to learn
interpretable program phases.

37

Chapter 4

Phase Classi�cation

In this chapter, we present our method of phase classi�cation for e�cient simulation. In
Section 4.1 we describe the input necessary to our phase analysis. This information is
a set of microarchitecture independent characteristics dynamically extracted from each
program's execution, which we refer to as MICA [30]. In Section 4.2 we present our
method to �nd samples for simulation. The core idea is to detect patterns in MICA
characteristics using the TICC method described in the previous chapter. This results in
a sequence of program phases, each de�ned by an MRF, which provides an interpretable
structure. Then, we use k-means to select representative samples of each phase found by
TICC. This results in simulation points that are used to represent the select phases instead
of the entire program execution. Our experimental setup is described in Section 4.3.

4.1 Microarchitecture-Independent Characterization of

Applications (MICA)

Eeckhout et al. [30] proposed a set of characteristics used to characterize applications in
a microarchitecture-independent manner. This set of characteristics has been used for
benchmark subsetting [20], �nd program phases [15], measure similarity among bench-
marks [39], performance prediction [32, 13], performance optimization [61], and compiler
optimization [9].

In this work, we analyze the time-varying behavior of these characteristics to �nd
unique repetitive patterns. The reason we consider microarchitecture independent char-
acteristics instead of microarchitecture dependent characteristics is that they are not
biased towards a speci�c hardware implementation, and thus needs to be collected once
and can be used in any processor con�guration. However, these are not instruction set
architecture (ISA) or compiler independent.

We now describe the MICA set of characteristics:

Instruction mix Instruction category counters.

Instruction-level Parallelism (ILP) Amount of ILP for di�erent instruction window
sizes. This is measured by assuming perfect caches, perfect branch prediction, etc.
The only limitations are the instruction window size and the data dependencies.

38

Register tra�c characteristics Several characteristics concerning registers [21]:

• Average number of register input operands per instruction

• Average degree of use (number of times a register is used by other instructions)

average degree of use =
total number of register instance uses

total number of register instances created
(4.1)

• Distribution of register dependency distance, that is, the number of instructions
between the production and consumption of a register instance.

Working set The number of unique 64-byte blocks and 4KB memory touched for both
instruction and data accesses.

Data stream strides Distribution of global and local strides for loads and stores:

• Local stride is the di�erence in the memory address of two consecutive memory
access by the same static instruction � pro�ler needs to keep track of last
address for every load and store.

• Global stride is the di�erence in the memory address of any consecutive memory
access � pro�ler needs to keep track of the last load and store address.

The strides are presented as a histogram and are computed separately for loads and
stores, resulting in four histograms: local load stride, local store stride, global load
stride, global store stride.

Branch predictability Branch predictability is characterized using the Prediction by

Partial Matching (PPM) predictor [7].

A Markov predictor of order j predicts the next branch outcome based upon the
j preceding branch outcomes. It outputs the most likely branch outcome given
the last j outcomes. To do so, it records the number of times a �taken� (T) or
�not taken� (N) occurred after every j possible outcomes. Figure 4.1 illustrates
how a Markov predictor works. It shows the state of an order 2 Markov predictor
given that the sequence seen so far is N, T,N, T,N, T, T,N, T . The next branch
direction is predicted based on the two immediately preceding bits, that is, N, T .
The predictor predicts the next direction to be N with a probability of 2/3.

A PPM predictor is built upon the combination of multiple Markov predictors. An
m-order PPM predictor consists of (m + 1) Markov predictors of orders 0 up to
m. The PPM predictor checks if the m-length history appeared in the m-th order
Markov predictor (the pattern has a non-zero frequency count). If so, it predicts
the next outcome using this mth-order Markov predictor as described previously.
If not, it checks if the (m-1)-length history appeared in the (m-1)-th order Markov
predictor. If it is not present, then uses the (m-2)-length history to index the (m-
2)-th order Markov prediction, and so on. Finally, the PPM updates the Markov
predictor that made the prediction and all its higher order Markov predictors.

39

N,T,N,T,N,T,T,N,T
Branch history:

Prediction:

pattern next
outcome

frequency
count

N,N

N,T

T,N

T,T

N
T
N
T
N
T
N
T

0
0
2
1
0
3
1
0

N

Figure 4.1: Example of an order-2 Markov predictor [7]

In this work, we consider four variations of a PPM predictor: GAg, PAg, GAs, and
PAs. `G' means a global branch history for all static branches and `P' a separate
branch history for each static branch. `g' means a PPM predictor for all static
branches and `s' means a PPM predictor for each static branch. Figure 4.2 illustrates
these variations.

PPM0

GAs

Global PPM

GAg

Branch address

PAg PAs

Global PPM

PPM

PPMN

Branch address
Branch address

Prediciton Prediciton

Prediciton Prediciton

Global branch
history

Global branch
history

Local branch
history

Local branch
history

Figure 4.2: Variations of PPM

Additionally, the branch taken rate and branch transition rate are also being mea-
sured.

Memory reuse distances The number of distinct memory locations accessed between
two memory references to the same location [30]. The reuse distances are reported in
a histogram. The i-th bin contains the number of memory reads with reuse distance
[2i, 2i+1). There is also a special bin to the number of cold misses.

40

In this work, we use a total of 97 characteristics (Table 4.1) divided across the 7
categories we described above.

4.2 Phase Classi�cation Formulation

Our phase-analysis approach for accelerating architectural simulation consists of a two-
level sampling strategy. The �rst level follows the phase de�nition by [62] which states
that �a phase is a unit of repeating behavior rather than a unit of uniform behavior�. The
inherent program characteristics described in Section 4.1 reveal patterns in the program's
execution. We automatically found these recurring patterns using TICC applied over the
set of characteristics described in the previous section, viewed as multivariate time-series.
We refer to the phases found by TICC as coarse-grained phases.

We give a simple example of such phases in Figure 4.3, which shows the time-varying
behavior of 97 MICA features of one program from the SPEC 2006 benchmark suite, gcc
with input 166. Each interval of 160M dynamic instructions is a point in the graph. The
�rst thing we can notice is that although these MICA features vary over time, they show
repeated patterns. Di�erent colors indicate di�erent patterns found by TICC. Another
important point to notice is the correlation with the performance metrics, which is shown
in Figure 4.4 (as discussed in [15]).

The second sampling level consists of running k-means clustering algorithm on each
coarse-grained phase. Each cluster found by k-means is referred to as a �ne-grained
phase, and it is a set of intervals within a program's execution that have similar MICA,
which consequently tends to exhibit similar behavior similar [15]. We then pick a single
representative interval from each �ne-grained phase. These intervals are used to represent
the selected coarse-grained phase.

The coarse-grained phases found by TICC could be used for accelerating simulation.
However, as discussed in Section 5.3.2, regarding the total SPECint 2006 dynamic instruc-
tions, that would still require a large proportion of 45% to 55% to be simulated. On the
other hand, with the second-level sampling, this number goes down to 1% to 2%, while
still getting accurate results.

In summary, our approach consists of a two-level sampling strategy over the MICA set
of characteristics. The �rst uses TICC to �nd coarse-grained phases � units of repeating
behavior. The second level further re-sample each coarse-grained phase into �ne-grained
phases using k-means. These �ne-grained phases are a set of intervals within a coarse-
grained phase that have similar behavior. The following steps summarize our phase
classi�cation approach, and the following sections explain each step in detail:

Phase classi�cation (needs to be run once for a program/input pair):

1. Pro�le a set of microarchitecture-independent characteristics (MICA) per interval
of dynamic instructions.

2. Reduce the dimension of the MICA data using PCA.

3. Run Toeplitz Inverse Covariance-based Clustering (TICC) on the lower-dimensional
data for several number of clusters: from 1 to cMaxK, where cMaxK is the maximum

41

number of coarse-grained phases to be discovered.

4. Use BIC score to choose the clustering with the smallest number of clusters, such
that its BIC score is at least cBIC percent of the best score.

5. For each cluster outputted by TICC, run k-means clustering on the MICA represen-
tation of the intervals belonging to the same cluster for several number of clusters:
from 1 to fMaxK, where fMaxK the maximum number of �ne-grained phases to use.

6. Use BIC score to choose the clustering with the smallest number of clusters, such
that its BIC score is at least fBIC percent of the best score.

7. Pick the center interval of each cluster outputted by k-means as a simulation point.

For each design point of interest:

1. Do detailed simulation on each simulation point.

2. Combine results of each simulation point to get the result of the overall execution.

4.2.1 MICA as Time Series

The representation in which our analysis is based on is the set of MICA characteristics.
These are collected in terms of instructions executed. We use SimPoint's [65] model of
breaking a program's execution into a set of contiguous non-overlapping intervals. We use
interval size at the granularity of 100M. The interval size de�nes the sampling period of our
time-series. Thus, we use the term �interval size� and �sampling period� interchangeable
in the rest of the work. The MICA characteristics are collected for each interval of
execution, and the state of each MICA feature is reset at the end of each interval. We
consider 97 microarchitecture-independent characteristics in this work (n = 97), which
are fully described in Table 4.1.

The MICA pro�ler we used outputs absolute values. A further o�ine conversion
is needed to produce the proportional metrics stated in Section 4.1. For instance, the
pro�ler outputs the total branch count, transition count and taken count, which are used
to produce a branch taken rate and branch transition rate. Similarly, the pro�ler outputs
the total number of register instance uses and register instances created which can be
used to derive the register average degree of use (Equation (4.1)).

Empirically, we discovered that running TICC on the raw values outputted by the
MICA pro�ler produced better results when compared to the converted MICA features.
The raw MICA features sum up to 97, while the converted metrics, 91.

Formally, let xi = (mica1, ...,mican) be a n-dimensional vector of readings for nMICA
characteristics in the i-th sample over the execution of the program sample. Also let
(x1, x2, ..., xT) be a multivariate time series of T sequential MICA observations.

42

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

0 8 16 24 32 40 48 56 64 72

Instructions Executed (in Billions)

M
IC
A
C
ha
ra
ct
er
is
ti
cs

Figure 4.3: MICA pro�ling for gcc-166

43
B
ranch

C
ycles

L
1-D

L
2

L
3

0 8 16 24 32 40 48 56 64 72

M
et
ri
cs

Figure 4.4: Time-varying graph for gcc-166

4.2.2 Dimension Reduction

This step and the following are only used when aiming for sampled simulation. When
aiming for phase interpretation we consider the raw MICA features. A representation
of lower dimensionality of the MICA representation is found in order to speed up the
processing time of the clustering algorithms we used (TICC and k-means) and to prevent
the features to su�er from the curse of dimensionality, which refers to the fact that it
becomes extremely hard to cluster data as the number of dimensions increases.

Formally, given an observation xi = (mica1, ...,mican) of our MICA time-series, this
step aims to �nd a representation of lower dimensionality zi = (z1, .., zp) with p < n which
preserves the information content of the original data, as much as possible, according to
some criterion.

There are basically two approaches for dimensionality reduction [30]: feature extrac-
tion and feature selection. The former transforms the original data into a new representa-
tion, which may not have an interpretable solution, thus complicates the understandability
of the lower-dimensional workload space; the latter �nds a subset of the original features.

We consider principal components analysis (PCA) for dimensionality reduction, which
is a feature extraction method. It transforms the original data into a new representation,
a set of non-correlated principal components. The input to PCA is a T × m matrix in
which the rows are the T MICA observations and columns are the m microarchitecture-
independent characteristics. The output is a T × p matrix data in which the rows are the
T observations the columns are the p retained principal components.

4.2.3 MICA segmentation (Level 1)

We run Toeplitz Inverse Covariance-based Clustering (TICC) to discover repeated pat-
terns on the sequential MICA data. These patterns are interpreted as coarse-grained
program phases. Besides, each phase is de�ned by a correlation network, or Markov ran-
dom �eld (MRF), characterizing the interdependencies between di�erent observations in
a short subsequence of that phase. This gives the ability to have �interpretable program
phases�, such that we can determine key factors and relationships that characterize each

44

Category no. Description

ILP

1 32-entry window
2 64-entry window
3 128-entry window
4 256-entry window

Instruction
mix

5 memory read
6 memory write
7 control �ow
8 arithmetic
9 �oating-point
10 pop/push instructions (stack usage)
11 shift instructions (bitwise)
12 string
13 MMX/SSE instructions
14 system
15 nop
16 other

Branch
predictability

17 GAg PPM predictor (4 bits)
18 PAg PPM predictor (4 bits)
19 GAs PPM predictor (4 bits)
20 PAs PPM predictor (4 bits)
21 GAg PPM predictor (8 bits)
22 PAg PPM predictor (8 bits)
23 GAs PPM predictor (8 bits)
24 PAs PPM predictor (8 bits)
25 GAg PPM predictor (12 bits)
26 PAg PPM predictor (12 bits)
27 GAs PPM predictor (12 bits)
28 PAs PPM predictor (12 bits)
29 Total branch count
30 Total branch transition
31 Total branch taken

Register
tra�c

32 Number of reg. operands
33 Reg. instances created
34 Reg. instance uses
35 Total reg. dependency distance
36 Reg. dependency distance = 20

37 Reg. dependency distance ≤ 21

38 Reg. dependency distance ≤ 22

...
42 Reg. dependency distance ≤ 26

Category no. Description

Memory
footprint

43 Num. of 64-byte blocks data
44 Num. of 4KB pages data
45 Num. of 64-byte blocks instr.
46 Num. of 4KB pages instr.

Memory reuse
distances

47 Memory access count
48 Cold references count
49 Reuse distance [0, 21)
50 Reuse distance [21, 22)

...
67 Reuse distance [218, 219)

Data stream
strides

68 Memory read count
69 Local load stride ≤ 81

...
75 Local load stride ≤ 86

76 Global load stride ≤ 81

...
82 Global load stride ≤ 86

83 Memory write count
84 Local store stride ≤ 81

...
90 Local store stride ≤ 86

91 Global store stride ≤ 81

...
97 Global store stride ≤ 86

Table 4.1: Sampled MICA features

phase [27].
Formally, let (x1, ..., xT) and (z1, .., zT) be T original and lower-dimension sequential

MICA observations of a given program, respectively. Also let (Z1, ..., ZT) be the sequence
where each Zi consists of observations zt−w+1, ..., zt. The goal of TICC is to cluster
observations (Z1, ..., ZT) into K phases. Each phase i is de�ned by a Gaussian inverse
covariance Θi ∈ Rnw×nw, which de�nes the correlation network the phase.

TICC's overall optimization problem is to �nd a partition P = {P1, ..., PK} of
(Z1, Z2, ..., ZT) and the corresponding MRF structure of each cluster Θ = {Θ1, ...,ΘK}
by solving the following optimization problem:

argmin
θ∈τ,P

K∑
i=1

[
‖λ ◦Θi‖1 +

∑
Zt∈Pi

(−``(Zt, θi) + β1{Zt−1 /∈ Pi})

]
(4.2)

45

A detailed description of each symbol from the above equation and TICC method is
found in Section 3.3.

In this work, we �nd the correct choice of K via Bayesian information criterion
(BIC) [56]. We run TICC for a range of values and pick the clustering with the smallest
K, such that its BIC score is at least X percent of the best score [65]. The importance
of this threshold is to avoid often choosing the clustering with the most clusters, as the
BIC score often increases as the number of clusters increase [28]. As we also use the
BIC score for the next step, we shall refer to the BIC threshold from this step as cBIC
(coarse-grained BIC). The range of values we run TICC is based on a variable called
cMaxK (coarse-grained maximum K), which de�nes a range of values from 1 to cMaxK.

4.2.4 Sampling points per phase (Level 2)

The next step in our analysis is to select a set of representative intervals from each
coarse-grained phase, which will be the �nal intervals picked for simulation. These are
found by running k-means on each partition (or phase) Pi ∈ {P1, ..., PK} outputted by
TICC. Running k-means in each coarse-grained phase Pi outputs a new partition Qi =

{Q1,i, ..., QK′
i,i
}. We refer to each element of Qi,j as a �ne-grained phase. More precisely,

it is a �ne-grained phase j extracted from the coarse-grained phase i. In summary, we
re-partition each coarse-grained phase into multiple �ne-grained phases.

The correct choice on the number of clusters for k-means � the number of �ne-grained
phases � is also found via BIC. We run k-means for a range from 1 to fMaxK (�ne-
grained maximum K) and pick the clustering with at least fBIC percent of the best
score. We refer to K ′i as the number of phases in which a coarse-grained phase i was
partition into, that is, the number of resulting �ne-grained phases of i.

We use SimPoint's [64] model of picking the center of each cluster as the representive
interval for simulation, which is known as a simulation point, or SimPoint for short.
Formally, for each �ne-grained phase Qi,j we pick the interval closest to the cluster center
(centroid) for simulation, let qi,j be this point. Detailed simulation is performed at the
simulation points and the metric of each interval will be the metric value of all in the
intervals in the phase. In our context, each interval qi,j is a simulation point. Each result
of the execution metric of qi,j is weighted by wi,j according to the phase coverage size,
i.e.,

wi,j =
|Qi,j|
T

(4.3)

where T is the number of MICA observations (intervals) of a given program.
If we take, for instance, CPI as a metric to be evaluated, the CPI of the complete

execution can be estimated by the following equation:

46

P1 P2 P3 P1 P2 P3

z1

1

p

zT...

(a) Coarse-grained phases

z1

1

p

zT

Q1,1 Q2,1 Q3,2Q1,2Q1,3 Q2,1 Q3,1Q2,2 Q2,2 Q3,3 Q1,1 Q2,1 Q3,2Q1,2Q1,3 Q2,1 Q3,1Q2,2 Q2,2 Q3,3

...

(b) Fine-grained phases

Figure 4.5: The relationship between the coarse-grained and �ne-grained clustering meth-
ods

CPI ≈ w1,1 × CPI (q1,1) + w1,2 × CPI (q1,2) + ...+ w1,k′1
× CPI (q1,k′1

)+

w2,1 × CPI (q2,1) + w2,2 × CPI (q2,2) + ...+ w2,k′2
× CPI (q2,k′2

)+

...

wK,1 × CPI (qK,1) + wK,2 × CPI (qK,2) + ...+ wK,k′K × CPI (qK,k′K)

(4.4)

In summary, Figure 4.5a illustrates the second level of sampling with an example of
three coarse-grained phases, shown in colors green, yellow, and blue. Figure 4.5b further
re-sample each coarse-grained phase into �ne-grained, shown by the di�erent tones of the
same color.

4.3 Experimental Setup

Our setup is built upon the Pin dynamic binary instrumentation system [49]. It is used to
pro�le the microarchitecture independent characteristics (MICA) and guarantee repeata-
bility. Our analysis requires a program to be run twice. One pass is needed to pro�le
the microarchitecture independent characteristics (MICA). After the pro�le analysis, an-
other pass is needed to generate the traces of each simulation point. The problem in
this approach is that two runs of the same binary may be di�erent as non-determinism
should arise from internal sources of the program (e.g., order of shared memory access

47

and system calls) [54]. This may cause a region description (e.g., instruction count start)
to be misaligned from the run used to collect the MICA pro�le.

PinPlay [54] kit is used to overcome this problem. Pinplay is a tool based on Pin
to guarantee deterministic execution of programs. Its main purpose is to overcome non-
determinism in parallel programs. Pinplay comprises two Pin tools called logger and
replayer. The logger records minimal runtime behavior of a given program execution in
a set of �les collectively called pinball. The replayer uses the pinball to reproduce the
captured execution. A pinbal can be created for either the entire execution of a program
(a whole-program pinball) or for any region of interest (a region pinball) [54].

The region pinballs allow direct simulation of the regions, instead of fast-forwarding to
a given point in execution and then starting the simulation from there. Lastly, the region
pinballs selected by our multilevel analysis are run in a Pin-based simulator. Figure 4.6
presents an overview of our proposed framework composed of the following �ve steps:

Trace File Generation � Whole Program Pinball We use the PinPlay logger to cap-
ture the whole program pinball.

MICA Pro�le Collection The MICA features are collected using Pin [50] with the
whole-program pinball captured in the previous step. A Pin tool for collecting
MICA is available in [29]. We modi�ed it to support pinballs. The pin tool dumps
the MICA state per interval of I dynamic instructions. The states of the inter-
val structures are reset for every interval. The output resulted in this step is a
�le with a T -by-n matrix, where T is the number of intervals and n is the num-
ber microarchitecture-independent characteristic collected per interval of I dynamic
instructions. Specifying the parameters of the microarchitecture-independent char-
acteristics is done using a con�guration �le. Our con�guration has n = 97 charac-
teristics, as described in Table 4.1.

Discovering Coarse-grained Phases with TICC A Python implementation for the
TICC algorithm is available in [26]. It takes as input the T -by-n data matrix
generated in the previous step and outputs an array of k cluster assignments for
each time point in the form of a dictionary with keys being the cluster assignments
(from 0 to k-1) and the values being the cluster MRFs. TICC also returns the
BIC score for the resulting clustering. We wrote an application to run TICC for
a di�erent number of clusters, from 1 to cMaxK, and pick the clustering with the
smallest number of clusters, such that its BIC score is at least cBIC percent of the
best score.

We specify only the three main parameters of TICC: w, which determines the sub-
sequence size, λ, which determines the sparsity level in the MRFs characterizing each
cluster, and β, the smoothness penalty that encourages adjacent sub-sequences to be
assigned to the same cluster [27]. If necessary, TICC solver also takes as a parameter
the maximum number of iterations of the TICC algorithm before convergence and
the convergence threshold.

Discovering Fine-grained Phases with k-means We wrote a python application to
do the �ne-grained analysis. We use the Sklearn [55] library to provide k-means. In

48

program + input

Whole-program pinball

T -by-n matrix (T observations, each ∈ Rn)

Parameterization

Cluster ID for each interval and cluster MRFs

k intervals IDs

k region pinballs

Performance metrics

Pin relogger

<β>
<λ>

<Window size>
<cBIC>
<cMaxK>

Sniper
simulator

Simulation point selection
with k-means

Replayer +
MICA pintool

<Interval size>
<MICA con�guration �le>

<fBIC>
<fMaxK>

<Num. of center
initalization>

<Interval size>
<Warmup length>

<Microarchitectural
con�guration>

TICC
segmentation

Pin logger

Figure 4.6: Overview of Experimental setup

this work, it takes the MICA pro�le for all the intervals and the TICC segmentation
from previous steps and outputs the interval index for the selected simulation points
and weights.

We try a di�erent number of clusters: from 1 to fMaxK, where fMaxK the maximum
number of phases to split each coarse-grained phase. We also use the BIC score to
choose the clustering with the smallest number of clusters, such that its BIC score
is at least fBIC percent of the best score. Last, we pick the center interval of
each cluster outputted by k-means as a simulation point. Our BIC algorithm was
based on the implementation used by pyxmeans [31]. Another parameter we need to
specify is the number of random initializations to try for clustering each k. k-means
algorithm has a local minima problem, thus di�erent initial centers of clusters may
produce di�erent results. One solution is to run k-means repeatedly with di�erent

49

centroid seeds.

Trace Simulation Points The last step in the phase classi�cation process (required
once for a program/input pair) is to generate instructions traces of each simulation
point. We �rst take the interval index from the previous step and generate the in-
struction counts for each region, which is the region description required by Pinplay.
We then use the Pinplay kit to trace the selected regions into region pinballs. Pin-
play takes the region description and relogges the whole-program pinball to selective
log just the regions of interest.

As region pinballs allow checkpoint-based simulation, it also desirable to specify
a number of extra instructions to be included before each region, also known as
warmup length.

Simulation and Whole-program Behavior Prediction We used the Sniper simula-
tor [6] in our experiments. It is Pin-based cycle-accurate x86 simulator and allows
the execution of pinballs. We wrote a python application to compute the weighted
average of the simulation points, which gives the metric of interest estimate of the
complete execution for a program/input pair.

4.4 Summary

In this chapter, we presented our method of phase program classi�cation with a focus on
e�cient simulation. We summarize the main steps of our method in Figure 4.7.

50

dynamic instruction stream

interval i

A B C

MRF cluster A MRF cluster B MRF cluster C

A B C

A1 A2B1B2B3 C1 C2 A1 A2B1B2B3 C1 C2

D Selection of
simulation points

A MICA
pro�ling

B TICC
segmenation

C K-means
clustering

1
2

n
...

Figure 4.7: Overview of our phase classi�cation approach

51

Chapter 5

Evaluation

In this chapter, we evaluate our method for automatically characterizing time-varying
behavior in programs.

5.1 Evaluation Methodology

We evaluate our proposal using SPEC 2006int benchmarks with reference inputs (34
program-input pairs). The MICA features are sampled at every 160 million instructions.
We standardized the features by removing the mean and scaling to unit variance (mean
value 0 and standard deviation of 1). For our experiments with PCA, we retain the
principal components which explained 90% of the original data set's total variance.

The performance metrics were extracted assuming a perfect warm-up, as the focus
in this chapter is on the error derived from sampling. The baseline micro-architectural
model used was nehalem-lite, which is included along with the Sniper simulator. This
baseline allowed us to sample the metric we needed for every interval of execution so that
we could e�ciently get the required metric values for every interval outputted by our
phase analysis.

Processor Nehalem-lite
Dispatch Width 4
Window Size 128
L1 I-Cache 32 KB, 4-way set-associative
L1 D-Cache 32 KB, 8-way set-associative
L2 Cache 256 KB, 8-way set-associative
L3 Cache 8 MB, 16-way set-associative
Branch predictor Pentium M, 8 cycles penalty

Table 5.1: Baseline simulation model

5.2 Metrics for Evaluating Phase Classi�cation

The metrics used in our study are:

52

Number of coarse-grained phases: The number of phases found by TICC.

Average phase length: The average number of dynamic instructions per phase.

Number of �ne-grained phases: Number of �ne-grained phases used to characterize
each TICC phase. Each �ne-grained phase has a corresponding simulation point,
which directly relates to simulation time.

Coe�cient of Variation (CoV): Coe�cient of Variation (CoV) is a commonly used
metric for evaluating phase classi�cation techniques [46]. If a phase is a set of
intervals within a program's execution with similar behavior, then it is expected
that all intervals in a phase behave similarly (e.g., IPC, cache miss rates, branch
miss rates). CoV quanti�es the variability of interval performance behavior inside
a phase � the homogeneity of the phases.

To compute the CoV of a metric of interest, we �rst calculate, for each phase, the
average and the standard deviation in the metric of all intervals in the phase. We
then divide the standard deviation by the average to get the per-phase CoV. Finally,
the whole program CoV is computed as the weighted average of the per-phase CoVs,
which is formally de�ned in Equation (5.1):

CoV =
∑

p∈phases

σp
µp
intervalsp

totalintervals
(5.1)

One issue about CoV is that when the mean value is close to zero, it will approach
in�nity. As we are measuring L3 misses, we often found phases with an average
number of misses less than one. This problem is discussed in [34] and they suggested
the use of weighted standard deviation, which is the metric we used for L3 misses
and it is calculated using the formula in Equation (5.3).

σweighted =
∑

p∈phases

σpintervalsp
totalintervals

(5.2)

Mean relative error (MRE): The percent di�erence between predicting a metric using
only simulation points and the true metric value of the complete execution of the
program:

Approximation error =
True Metric Value− Estimated Metric Value

True Metric Value
(5.3)

5.3 Coarse-grained (TICC) Program Phases

We �rst present a graphical visualization of the coarse-grained phases for three di�erent
programs from SPEC 2006: gcc, bzip2 and astar. The top part of Figures 5.1 to 5.3 shows
the time-varying of these programs for several architectural metrics: number of cycles,

53

Parameter Value
Number of clusters K 5 and 10
Window size w 1, 2, 4, 8, 16, 32
β regularization 0, 256, 512, 1024, 2048, 4096, 8192
λ regularization 0.1, 0.2, 0.4, 0.8

Table 5.2: Set of TICC parameters investigated (336 con�gurations)

branch miss rate, L1-D, L2, and L3 cache miss rate; the bottom part shows the values for
the principal components retained with explained variance greater than 90% applied to
the MICA characteristics. Each interval of 160M dynamic instructions is a point in the
graph. The color represents the cluster assignment from TICC algorithm. These graphs
clearly show that TICC is able to �nd phase as a unit of repeating behavior rather than a
unit of uniform behavior. We can also notice a correlation between MICA characteristics
and overall performance. The parameters used for TICC are window size of 16, β = 3000,
and λ = 0.2.

We made available online1 all the plots for all the TICC parameters described in Ta-
ble 5.5 and SPECint program/input pairs.

5.3.1 TICC Parameter Exploration

Here, we present an investigation into the parameters of TICC for phase classi�cation. As
discussed in Chapter 3, TICC method has three main parameters: w, which determines
the sub-sequence size, λ, the sparsity level in the MRFs characterizing each cluster, and
β, the smoothness penalty that encourages adjacent sub-sequences to be assigned to the
same cluster [27]. We performed a grid search for these parameters to �nd a pseudo-
optimal set of con�guration points. Our goal is to �nd parameters that result in a fairly
homogeneous set of phases. The values we varied are shown in Table 5.2.

We evaluate each set of parameters with the Coe�cient of Variation (CoV) of the
resulting TICC segmentation, as the goal of our phase classi�cation is to have segments
belonging to the same cluster (program phase) with similar behavior. We measure this
similarity by analyzing the overall performance of each segment belonging to a cluster.
If all segments in the same phase have precisely the same value of performance, then the
CoV will be zero. The formula for computing CoV is shown in Equation (5.4):

CoV =
∑

p∈phases

σp
µp
segmentsp

phases
(5.4)

We examine the CoV of the number of cycles, branch miss rate, L1-D, L2, and L3 cache
miss rate for gcc.166 with 5 and 10 clusters. The output CoV for each TICC con�guration
is shown in Figure 5.4, with normalized values between 0 and 1 with respect to the �min�
and �max� values. A larger value of CoV corresponds to a poorer segmentation result. The
gray cells are values where TICC could not converge to a solution. This happens because
TICC is a non-convex problem, so there is no way to guarantee to reach the globally

1http://students.ic.unicamp.br/~ra191069/mica/

http://students.ic.unicamp.br/~ra191069/mica/

54
B
ranch

correct
B
ranch

incorrect C
ycles

L
1-D

L
2

L
3

8 16 24 32 40 48 56 64 72

M
et
ri
cs

P
C
1

P
C
2

P
C
3

P
C
4

P
C
5

P
C
6

P
C
7

P
C
8

P
C
9

P
C
10

P
C
11

P
C
12

8 16 24 32 40 48 56 64 72
Instructions Executed (in Billions)

P
C
A

Figure 5.1: Coarse-grained phases for gcc with input 166 (403.gcc.1)

55
B
ranch

correct
B
ranch

incorrect
C
ycles

L
1-D

L
2

L
3

48 96 144 192 240 288 336 384

M
et
ri
cs

P
C
1

P
C
2

P
C
3

P
C
4

P
C
5

P
C
6

P
C
7

P
C
8

48 96 144 192 240 288 336 384
Instructions Executed (in Billions)

P
C
A

Figure 5.2: Coarse-grained phases for bzip2 with input source (401.bzip2.1)

56
B
ranch

correct
B
ranch

incorrect
C
ycles

L
1-D

L
2

L
3

88 176 264 352 440 528 616 704 792

M
et
ri
cs

P
C
1

P
C
2

P
C
3

P
C
4

88 176 264 352 440 528 616 704 792
Instructions Executed (in Billions)

P
C
A

Figure 5.3: Coarse-grained phases for astar with input rivers.cfg (473.astar.2)

57

optimal solution, and occasionally it gets stuck in a local minimum that it cannot get out
of it [27]. This also suggests that those parameters are not good con�guration candidates.

Empirically, we discover that TICC is robust to the selection of λ and the w. Instead,
the critical parameters are β and the number of clusters K. The value of CoV decreases
as we increase β. However, this increases the probability of not converging to a solution
when w is smaller. Similarly, higher values of λ increase the probability of converging to
a solution. Based on these results, we found that β between 2048 and 4096, window size
between 8 and 16 yield a good set of candidate con�gurations.

5.3.2 The Ratio of Unique Behavior to Overall Execution

Here we analyze the proportion of unique behavior of a program. The main question we
are trying to answer is: if we took a single segment (one occurrence of the phase) from
each program phase found by TICC, how much of the complete execution that would
represent? As stated earlier, a program's execution is partitioned into a sequence of
program phases, where each phase is a unique state (behavior) of the program and may
repeat itself across the execution.

We de�ne the size of a coarse-grained program phase as the average number of dynamic
instructions of the segments belonging to that phase. We arrive at an average proportion
of unique behavior in each program by summing up the program phase sizes, and then
dividing by the total number of dynamic instructions of the complete execution. This
results in an overall metric that shows the level of repetition of the program phases. Ta-
ble 5.3 show this analysis for all the SPECint CPU2006 benchmarks. The columns are
the range of BIC score from 0.1 to 1. Each cell value shows the average proportion of
the whole program execution. The parameters used for TICC are window size of 12,
β = 2000, and λ = 0.2.

Higher values indicate that the phases of such a program do not reoccur. Returning
to Figures 5.1 to 5.3, the segmentation of astar.rivers in Figure 5.3 did not result in
any reoccurring phase (all phases occur once), which is shown in Table 5.3 by a value
close to 100%. On the other hand, each phase in gcc.166 occur twice, which results in
approximately 50% of the whole program execution.

If we were to pick a single representative instance (or segment) of each program phase
found by TICC for sampled simulation, those values would represent the proportion of the
whole program execution needed for simulation. In other words, the last line of Table 5.3
gives the average proportion of the SPECint 2006 to be simulated if we were to pick a single
instance of each coarse-grained phase. Thus, it would be necessary for the simulation of
45% to 55% of the total dynamic instructions, which represent, in absolute values, a high
number of 9906 to 12698 trillion instructions. Figure 5.5 shows the dynamic instruction
count of each program in the SPECint CPU 2006 suite.

As the focus of this work is on e�cient simulation, this also motivates the need for
a method to represent each coarse-grained phase with fewer instructions, which is solved
by our second-level sampling strategy (Section 4.2.4). We focus again on the analysis
of coarse-grained phases in Section 5.5, where we focused on interpreting each program
phase based on its MRF structure.

58

λ: 0.1 λ: 0.2 λ: 0.4 λ: 0.8

B
ranch

m
isprediction

C
ycles

L
1-D

L
2

L
3

0 1 2 4 8 1632 0 1 2 4 8 1632 0 1 2 4 8 1632 0 1 2 4 8 1632

0
256
512
1024
2048
4096
8192

0
256
512
1024
2048
4096
8192

0
256
512
1024
2048
4096
8192

0
256
512
1024
2048
4096
8192

0
256
512
1024
2048
4096
8192

Window

B
et
a

0.00

0.25

0.50

0.75

1.00
CoV

(a) K = 5

λ: 0.1 λ: 0.2 λ: 0.4 λ: 0.8

B
ranch

m
isprediction

C
ycles

L
1-D

L
2

L
3

0 1 2 4 8 1632 0 1 2 4 8 1632 0 1 2 4 8 1632 0 1 2 4 8 1632

0
256
512
1024
2048
4096
8192

0
256
512
1024
2048
4096
8192

0
256
512
1024
2048
4096
8192

0
256
512
1024
2048
4096
8192

0
256
512
1024
2048
4096
8192

Window

B
et
a

0.00

0.25

0.50

0.75

1.00
CoV

(b) K = 10

Figure 5.4: Heatmap of the CoV produced by candidate TICC parameters

59

10
60
.5

37
4
67
5.
4

42
1.
2

17
8.
8

30
2.
5 54
6.
1

59
3.
9

33
7.
2

77
.4 15
1.
1

13
8.
7

10
2.
8

11
3.
2

15
3.
9

18
3.
3

17
0.
6

35
6.
3

23
4.
7 62

3.
3

32
3.
1

23
5.
3

33
7.
6

90
4.
2

19
15
.1 23

02
.8

22
93
.7

50
8.
8

34
1.
8

30
51
.9

57
1.
7

42
3.
2
86
9.
9

10
82

0

1000

2000

3000

40
0.
pe
rl
be
nc
h.
1

40
0.
pe
rl
be
nc
h.
2

40
0.
pe
rl
be
nc
h.
3

40
1.
bz
ip
2.
1

40
1.
bz
ip
2.
2

40
1.
bz
ip
2.
3

40
1.
bz
ip
2.
4

40
1.
bz
ip
2.
5

40
1.
bz
ip
2.
6

40
3.
gc
c.
1

40
3.
gc
c.
2

40
3.
gc
c.
3

40
3.
gc
c.
4

40
3.
gc
c.
5

40
3.
gc
c.
6

40
3.
gc
c.
7

40
3.
gc
c.
8

42
9.
m
cf
.1

44
5.
go
bm

k.
1

44
5.
go
bm

k.
2

44
5.
go
bm

k.
3

44
5.
go
bm

k.
4

44
5.
go
bm

k.
5

45
6.
hm

m
er
.1

45
6.
hm

m
er
.2

45
8.
sj
en
g.
1

46
2.
lib
qu
an
tu
m
.1

46
4.
h2
64
re
f.1

46
4.
h2
64
re
f.2

46
4.
h2
64
re
f.3

47
1.
om

ne
tp
p.
1

47
3.
as
ta
r.
1

47
3.
as
ta
r.
2

48
3.
xa
la
nc
bm

k.
1

In
st
ru
ct
io
ns

(b
ill
io
ns
)

Figure 5.5: Dynamic instruction count of SPEC CPU 2006 integer benchmarks

Program/BIC score 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

400.perlbench.1 10.0 10.0 10.0 10.0 10.0 11.0 11.0 13.0 13.0 13.0
400.perlbench.2 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9 18.9
400.perlbench.3 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 17.6

401.bzip2.1 59.7 55.8 55.8 55.8 65.1 39.8 39.8 39.8 62.2 62.2
401.bzip2.2 74.5 76.5 76.5 76.5 76.5 86.9 91.1 91.1 83.0 83.0
401.bzip2.3 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0
401.bzip2.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 33.4 83.7
401.bzip2.5 46.7 46.7 46.7 46.7 46.7 46.7 46.7 46.7 46.7 46.7
401.bzip2.6 14.7 14.7 14.7 15.6 14.3 14.3 16.1 16.5 25.0 25.0
403.gcc.1 37.7 37.7 51.4 54.1 49.4 49.4 63.4 63.4 67.3 67.3
403.gcc.2 54.0 55.2 55.2 76.0 51.1 65.6 84.1 84.1 81.1 81.1
403.gcc.3 44.4 44.4 46.7 55.7 55.7 68.1 66.0 67.1 71.2 72.8
403.gcc.4 53.9 49.7 49.7 49.7 74.0 74.0 74.0 67.1 67.1 71.5
403.gcc.5 41.3 48.3 47.9 58.3 61.3 62.7 75.4 76.6 76.5 83.5
403.gcc.6 31.4 42.4 52.3 52.5 52.5 74.1 74.8 76.6 72.0 77.9
403.gcc.7 39.8 39.8 45.7 71.1 78.2 77.9 77.9 80.1 80.4 85.1
403.gcc.8 33.9 33.9 33.9 53.8 53.8 59.1 69.6 70.9 72.3 74.3
429.mcf.1 20.0 20.0 20.0 20.2 20.2 20.2 20.2 20.2 28.3 36.1

445.gobmk.1 29.5 29.5 53.4 55.3 55.3 55.3 50.1 54.1 74.6 74.6
445.gobmk.2 18.3 18.3 31.1 31.1 39.6 43.3 51.9 53.2 60.6 60.6
445.gobmk.3 39.9 43.1 46.6 40.1 40.1 51.5 57.5 57.5 57.6 58.7
445.gobmk.4 27.4 52.1 64.8 63.6 53.3 53.3 57.5 62.4 62.4 62.4
445.gobmk.5 38.8 44.8 60.6 53.6 54.9 69.8 57.6 57.6 74.9 74.9
456.hmmer.1 20.6 20.6 20.6 20.6 20.6 20.6 20.6 33.6 33.6 33.1
456.hmmer.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
458.sjeng.1 17.5 17.5 31.7 31.7 20.9 20.9 20.9 20.9 20.9 20.9

462.libquantum.1 99.7 46.6 99.7 99.7 99.7 99.8 100.0 100.0 100.0 100.0
464.h264ref.1 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
464.h264ref.2 50.5 50.5 50.5 50.5 50.5 50.5 50.5 50.5 50.5 50.5
464.h264ref.3 1.4 1.4 1.4 1.4 1.4 1.5 1.5 1.5 1.5 1.9

471.omnetpp.1 99.1 99.1 99.1 99.5 99.5 99.5 99.5 99.5 100.0 100.0
473.astar.1 50.0 90.3 90.3 90.7 90.7 99.4 99.4 99.4 99.4 99.4
473.astar.2 80.8 80.8 80.8 80.8 80.8 99.8 99.6 99.6 99.6 99.6

483.xalancbmk.1 91.2 55.1 55.1 55.1 64.1 64.4 63.4 63.4 63.4 63.4
Coverage (%) 47.0% 40.9% 49.1% 49.6% 49.2% 50.7% 51.2% 52.0% 53.3% 55.2%

Table 5.3: Ratio of unique behavior to overall execution for the SPECint 2006 benchmarks

60

5.4 Sampled Simulation

This section presents results guided by the sampling error of our method. We begin by
exploring the appropriated proportion of coarse-grained and �ne-grained phases. Then
we present the results we gathered from applying our sampled simulation methodology to
the SPECint programs for a set of TICC parameters and BIC con�gurations. Finally, we
compare our work with two other sampled simulation techniques.

5.4.1 Appropriate Number of Coarse-grained and Fine-grained

Phases

One of the main parameterization issues in our work is to �nd the appropriate number
of cluster K on both clustering algorithms TICC (�rst stage of sampling) and k-means
(second stage of sampling). As stated in the previous chapter, we use the Bayesian
Information Criterion (BIC) score to pick the value of K in both stages. In summary, we
look at the BIC score for a range of K's and select the one with a score that achieves
some percentage, or BIC threshold, of this range. This results in four parameters to be
manually de�ned:

• cMaxK : The maximum number of clusters in TICC.

• cBIC : The BIC threshold of TICC.

• fMaxK : The maximum number of clusters in k-means.

• fBIC : The BIC threshold of k-means.

We show the e�ect of changing these four parameters on the error and weighed stan-
dard deviation for L3, and the resulting number of simulation points. For the coarse-
grained phases, we examine values for the maximum number of clusters of 5, 10, 15 and
examine BIC thresholds of 10% to 100%. For �ned-grained phases, we examine the values
for the maximum number of clusters 10, 20, 30, and 40, with BIC threshold of 70%, 80%,
and 90%. Table 5.4 summarizes the search space. For this experiment, we used a TICC
con�guration with w = 12, β = 2000, and λ = 0.2.

Figures 5.6 to 5.8 plot the results for each value of cMaxK. Each point is an average
of 20 executions for all the SPECint 2006 programs. In both levels, the number of sim-
ulation points increases as the BIC threshold increases, and similarly the average error
and weighted deviation decreases. In order to �nd a subset of parameters in Table 5.4
that result in a good trade-o� between accuracy and simulation speed, in Figure 5.9 we
aggregate the results across all parameters that resulted in a maximum of 1500 simulation
points and reported L3 error of less than 6%.

5.4.2 Evaluation

In Sections 5.3.1 and 5.4.1 we explored, respectively, two main parametrizations in our
method: the TICC parameters and the appropriated number of coarse-grained and �ne-
grained phases. In this section, we present the main evaluation of our phase analysis for the

61

fBIC 0.7 fBIC 0.8 fBIC 0.9

E
rror

(%
)

W
eighed

SD
#

sim
ulation

p
oints

0.10.20.30.40.50.60.70.80.91.0 0.10.20.30.40.50.60.70.80.91.0 0.10.20.30.40.50.60.70.80.91.0

4

6

8

10

6e+04

8e+04

1e+05

1000

2000

3000

cBIC

fMaxK 10 20 30 40

Figure 5.6: Sampled simulation results with cMaxK = 5

fBIC 0.7 fBIC 0.8 fBIC 0.9

E
rror

(%
)

W
eighed

SD
#

sim
ulation

p
oints

0.10.20.30.40.50.60.70.80.91.0 0.10.20.30.40.50.60.70.80.91.0 0.10.20.30.40.50.60.70.80.91.0

2

4

6

8

4e+04
6e+04
8e+04
1e+05

1000
2000
3000
4000
5000

cBIC

fMaxK 10 20 30 40

Figure 5.7: Sampled simulation results with cMaxK = 10

62

fBIC 0.7 fBIC 0.8 fBIC 0.9

E
rror

(%
)

W
eighed

SD
#

sim
ulation

p
oints

0.10.20.30.40.50.60.70.80.91.0 0.10.20.30.40.50.60.70.80.91.0 0.10.20.30.40.50.60.70.80.91.0

2

4

6

8

2e+04
4e+04
6e+04
8e+04
1e+05

2000

4000

6000

cBIC

fMaxK 10 20 30 40

Figure 5.8: Sampled simulation results with cMaxK = 15

fBIC 0.7 fBIC 0.8 fBIC 0.9

E
rror

(%
)

W
eighed

SD
#

sim
ulation

p
oints

0.10.20.30.40.50.60.70.80.91.0 0.10.20.30.40.50.60.70.80.91.0 0.10.20.30.40.50.60.70.80.91.0

4.8

5.2

5.6

7e+04

8e+04

9e+04

1e+05

800

1000

1200

1400

cBIC

cMaxK 10 15 5 fMaxK 10 20 30 40

Figure 5.9: Parameters with less than 1500 simulation points and error less than 6%

63

Parameters Values
cMaxK 5, 10, 15
cBIC 0.1 to 1.0
fMaxK 10, 20, 30, and 40
fBIC 0.7, 0.8, and 0.9

Table 5.4: Maximum number of clusters and BIC score investigated for TICC and k-means

Parameters Values
cMaxK 5
cBIC 0.8, 0.9, 1.0
fMaxK 10, 20
fBIC 0.8, 0.9, 1.0
w 8, 12, 16
β 2000, 3000, 4000
λ 0.1, 0.2, 0.3

Table 5.5: Set of TICC parameters investigated for the sampling simulation results (486
con�gurations)

parameters found in those sections. In Figures 5.10 to 5.12 we present the mean relative
error for cycles, L1-D, L2, and L3, and the number of simulation points chosen. Each
plot shows a single value of λ. Inside the �gures, each group of bars represents a di�erent
con�guration of w and β. Each bar (color) represents a value of cBIC, fMaxK, fBIC,
and its value is the arithmetic mean of 20 executions of the SPECint 2006 programs. All
the parameters we vary in this study are shown in Table 5.5.

Picking K in Second-stage Sampling Proportional to Phase Size and Disper-

sion

One drawback of the second-stage sampling is that since it uses k-means, it requires the
number of clusters K beforehand. So far, we run k-means for several values of K, and
then picked values based on a measure of goodness of �t (e.g., BIC). One consequence
of this approach is that, for a given TICC segmentation, the greater the BIC score, the
more simulation points will be chosen. However, we observed that in some situations, this
does not necessarily imply a signi�cant increase in accuracy. This may happen because
some times we are giving more simulation points to a coarse-grained that does not have
a great impact on the estimation of the whole metric execution.

We now present a preliminary study on an alternative strategy to pick the number
of �ne-grained clusters. We improved this situation by picking a value of K on a per-
phase basis, proportional to the coarse-grained phase homogeneity and size. We measured
the homogeneity using the interquartile range of the �rst principal component of the
MICA features. The basic idea is that a homogeneous and small phase should get fewer
simulation points than a bigger and more heterogeneous phase.

We used this information to control the threshold of fBIC with respect to the coarse-
grained phase i as follows:

64

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0

1000

2000

3000

w
:8
β

:2
00
0
λ

:0
.1

w
:8
β

:3
00
0
λ

:0
.1

w
:8
β

:4
00
0
λ

:0
.1

w
:1
2
β

:2
00
0
λ

:0
.1

w
:1
2
β

:3
00
0
λ

:0
.1

w
:1
2
β

:4
00
0
λ

:0
.1

w
:1
6
β

:2
00
0
λ

:0
.1

w
:1
6
β

:3
00
0
λ

:0
.1

w
:1
6
β

:4
00
0
λ

:0
.1

C
yc
le
s

L
1-
D

L
2

L
3

Si
m
ul
at
io
n
p
oi
nt
s

cBIC:0.8 fMaxK:10 fBIC:0.8

cBIC:0.8 fMaxK:10 fBIC:0.9

cBIC:0.8 fMaxK:10 fBIC:1.0

cBIC:0.8 fMaxK:20 fBIC:0.8

cBIC:0.8 fMaxK:20 fBIC:0.9

cBIC:0.8 fMaxK:20 fBIC:1.0

cBIC:0.9 fMaxK:10 fBIC:0.8

cBIC:0.9 fMaxK:10 fBIC:0.9

cBIC:0.9 fMaxK:10 fBIC:1.0

cBIC:0.9 fMaxK:20 fBIC:0.8

cBIC:0.9 fMaxK:20 fBIC:0.9

cBIC:0.9 fMaxK:20 fBIC:1.0

cBIC:1.0 fMaxK:10 fBIC:0.8

cBIC:1.0 fMaxK:10 fBIC:0.9

cBIC:1.0 fMaxK:10 fBIC:1.0

cBIC:1.0 fMaxK:20 fBIC:0.8

cBIC:1.0 fMaxK:20 fBIC:0.9

cBIC:1.0 fMaxK:20 fBIC:1.0

Figure 5.10: Average sampling error and simulation points with �xed λ: 0.1

65

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0

1000

2000

3000

w
:8
β

:2
00
0
λ

:0
.2

w
:8
β

:3
00
0
λ

:0
.2

w
:8
β

:4
00
0
λ

:0
.2

w
:1
2
β

:2
00
0
λ

:0
.2

w
:1
2
β

:3
00
0
λ

:0
.2

w
:1
2
β

:4
00
0
λ

:0
.2

w
:1
6
β

:2
00
0
λ

:0
.2

w
:1
6
β

:3
00
0
λ

:0
.2

w
:1
6
β

:4
00
0
λ

:0
.2

C
yc
le
s

L
1-
D

L
2

L
3

Si
m
ul
at
io
n
p
oi
nt
s

cBIC:0.8 fMaxK:10 fBIC:0.8

cBIC:0.8 fMaxK:10 fBIC:0.9

cBIC:0.8 fMaxK:10 fBIC:1.0

cBIC:0.8 fMaxK:20 fBIC:0.8

cBIC:0.8 fMaxK:20 fBIC:0.9

cBIC:0.8 fMaxK:20 fBIC:1.0

cBIC:0.9 fMaxK:10 fBIC:0.8

cBIC:0.9 fMaxK:10 fBIC:0.9

cBIC:0.9 fMaxK:10 fBIC:1.0

cBIC:0.9 fMaxK:20 fBIC:0.8

cBIC:0.9 fMaxK:20 fBIC:0.9

cBIC:0.9 fMaxK:20 fBIC:1.0

cBIC:1.0 fMaxK:10 fBIC:0.8

cBIC:1.0 fMaxK:10 fBIC:0.9

cBIC:1.0 fMaxK:10 fBIC:1.0

cBIC:1.0 fMaxK:20 fBIC:0.8

cBIC:1.0 fMaxK:20 fBIC:0.9

cBIC:1.0 fMaxK:20 fBIC:1.0

Figure 5.11: Average sampling error and simulation points with �xed λ: 0.2

66

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0

1000

2000

3000

w
:8
β

:2
00
0
λ

:0
.3

w
:8
β

:3
00
0
λ

:0
.3

w
:8
β

:4
00
0
λ

:0
.3

w
:1
2
β

:2
00
0
λ

:0
.3

w
:1
2
β

:3
00
0
λ

:0
.3

w
:1
2
β

:4
00
0
λ

:0
.3

w
:1
6
β

:2
00
0
λ

:0
.3

w
:1
6
β

:3
00
0
λ

:0
.3

w
:1
6
β

:4
00
0
λ

:0
.3

C
yc
le
s

L
1-
D

L
2

L
3

Si
m
ul
at
io
n
p
oi
nt
s

cBIC:0.8 fMaxK:10 fBIC:0.8

cBIC:0.8 fMaxK:10 fBIC:0.9

cBIC:0.8 fMaxK:10 fBIC:1.0

cBIC:0.8 fMaxK:20 fBIC:0.8

cBIC:0.8 fMaxK:20 fBIC:0.9

cBIC:0.8 fMaxK:20 fBIC:1.0

cBIC:0.9 fMaxK:10 fBIC:0.8

cBIC:0.9 fMaxK:10 fBIC:0.9

cBIC:0.9 fMaxK:10 fBIC:1.0

cBIC:0.9 fMaxK:20 fBIC:0.8

cBIC:0.9 fMaxK:20 fBIC:0.9

cBIC:0.9 fMaxK:20 fBIC:1.0

cBIC:1.0 fMaxK:10 fBIC:0.8

cBIC:1.0 fMaxK:10 fBIC:0.9

cBIC:1.0 fMaxK:10 fBIC:1.0

cBIC:1.0 fMaxK:20 fBIC:0.8

cBIC:1.0 fMaxK:20 fBIC:0.9

cBIC:1.0 fMaxK:20 fBIC:1.0

Figure 5.12: Average sampling error and simulation points with �xed λ: 0.3

67

fBICi = min (1, coverage(phasei) + 2 ∗ IQR(phasei) + 0.4) (5.5)

where coverage(phasei) is the percentage of execution that the coarse-grained phase i
accounts for, and IQR(phasei) is the interquartile range of the �rst principal component
of phase i. The constant ensures a minimum fBIC threshold of 0.4.

For this preliminary study, we took the best TICC segmentation with a maximum
number of cluster of 10 (cMaxK = 10 and cBIC = 1) and fMaxK of 10. We evaluate
this approach on the 8 gcc benchmarks. Table 5.6 lists in gray the results for the same
set of TICC con�gurations used in the previous section. For comparison, we also list the
CoV for the approach using a �xed value of fBIC that produced simulations points in
the same range (between 498 and 545 simulation points). The results are sorted by the
CoV. The proportional fBIC approach resulted in the lowest L3 CoV.

5.4.3 Other Clustering Algorithms Comparison

We now compare our work with the simulation points obtained using the popular Sim-
Point [64] and the work done by Eeckhout et al. [15]. In [15], they build on SimPoint
to �nd simulation points using MICA as an interval signature instead of BBV. This is
essentially our second level of sampling aplied to whole program observations. For conve-
nience, we shall refer to the approach in [15] as a single level approach, also denoted as
MICA-SL, and our approach as a multilevel approach, or MICA-ML.

The three methods use k-means, which requires the number of cluster K to be pre-
viously de�ned. We set the value of K for SimPoint and MICA-SL with the number of
simulation points resulted in the MICA-ML approach. Thus, the comparison across the
three methods is done with the same number of simulation points. For the coarse-grained
phases of MICA-ML, we set a cMaxK of 10 clusters with cBIC of 1; and for �ne-grained
phases, we set a fMaxK of 10 and for the fBic we employ the per-phase approach in
Section 5.4.2. The BBV and MICA signatures are sampled per interval of 160M dynamic
instructions.

We perform the comparison for the SPECint 2006 benchmarks and use the CoV in
cycles, L1-D, and L2 estimation for all benchmarks. In the L3 misses, we used two di�erent
evaluation metrics, one for each subset of benchmarks. As previously stated, computing
the CoV involves dividing by the average, which is a problem in the cases of a long phase
with almost no L3 misses. For this reason, we used CoV for a set of programs without
mean value is close to zero, and weighted standard deviation for the others. Table 5.7
shows the program used in each metric for the L3 comparison.

Figure 5.13 shows the average of 20 execution across all programs for multiple TICC
con�guration. There is one bar for each TICC baseline con�guration presented in Ta-
ble 5.5. The CoV of cycles, L1-D, and L2 show that MICA-SL achieves a slightly higher
accuracy than SimPoint and MICA-ML. For the L3-CoV results, both SimPoint and
MICA-SL perform the same, with a slightly better result thanMICA-SL. For L3-Weighted
SD, MICA-SL and MICA-ML signi�cantly outperform SimPoint. This suggested that ob-
serving phase behavior via MICA features may be suitable for applications where memory
usage is not well aligned to the program code execution.

68

TICC Con�guration Parameter for choosing # of clusters L3 CoV # Simulation

Points

w :12 β :2000 λ :0.2 cMaxK :10 cBIC :1 fMaxK :10 fBIC prop. 0.64 542
w :12 β :2000 λ :0.1 cMaxK :10 cBIC :1 fMaxK :10 fBIC prop. 0.65 516
w :16 β :4000 λ :0.2 cMaxK :10 cBIC :1 fMaxK :10 fBIC prop. 0.65 538
w :12 β :3000 λ :0.1 cMaxK :10 cBIC :1 fMaxK :10 fBIC prop. 0.66 529
w :12 β :3000 λ :0.2 cMaxK :10 cBIC :1 fMaxK :10 fBIC prop. 0.66 535
w :12 β :4000 λ :0.1 cMaxK :10 cBIC :1 fMaxK :10 fBIC prop. 0.66 537
w :8 β :2000 λ :0.3 cMaxK :10 cBIC :1 fMaxK :10 fBIC prop. 0.66 502
w :8 β :3000 λ :0.2 cMaxK :10 cBIC :1 fMaxK :10 fBIC prop. 0.66 519
w :12 β :2000 λ :0.3 cMaxK :10 cBIC :1 fMaxK :10 fBIC prop. 0.67 536
w :8 β :3000 λ :0.3 cMaxK :10 cBIC :1 fMaxK :10 fBIC prop. 0.67 528
w :12 β :3000 λ :0.3 cMaxK :10 cBIC :1 fMaxK :10 fBIC prop. 0.68 528
w :12 β :4000 λ :0.3 cMaxK :10 cBIC :1 fMaxK :10 fBIC prop. 0.68 527
w :16 β :2000 λ :0.3 cMaxK :10 cBIC :1 fMaxK :10 fBIC prop. 0.68 523
w :16 β :4000 λ :0.3 cMaxK :10 cBIC :1 fMaxK :10 fBIC prop. 0.68 543
w :16 β :2000 λ :0.1 cMaxK :10 cBIC :1 fMaxK :10 fBIC prop. 0.71 519
w :16 β :2000 λ :0.2 cMaxK :10 cBIC :1 fMaxK :10 fBIC prop. 0.71 527
w :16 β :3000 λ :0.1 cMaxK :10 cBIC :1 fMaxK :10 fBIC prop. 0.72 526
w :16 β :3000 λ :0.3 cMaxK :10 cBIC :1 fMaxK :10 fBIC prop. 0.72 525
w :8 β :2000 λ :0.2 cMaxK :10 cBIC :1 fMaxK :10 fBIC prop. 0.72 501
w :8 β :4000 λ :0.1 cMaxK :10 cBIC :1 fMaxK :10 fBIC prop. 0.74 500
w :16 β :2000 λ :0.2 cMaxK :4 cBIC :0.9 fMaxK :20 fBIC :0.9 0.77 522
w :16 β :2000 λ :0.2 cMaxK :4 cBIC :1.0 fMaxK :20 fBIC :0.9 0.77 522
w :8 β :2000 λ :0.2 cMaxK :5 cBIC :0.9 fMaxK :20 fBIC :0.9 0.77 538
w :12 β :4000 λ :0.2 cMaxK :10 cBIC :1 fMaxK :10 fBIC prop. 0.78 540
w :8 β :4000 λ :0.3 cMaxK :10 cBIC :1 fMaxK :10 fBIC prop. 0.78 521
w :16 β :3000 λ :0.2 cMaxK :5 cBIC :0.8 fMaxK :20 fBIC :0.8 0.79 511
w :16 β :3000 λ :0.2 cMaxK :5 cBIC :0.9 fMaxK :20 fBIC :0.8 0.79 511
w :16 β :4000 λ :0.1 cMaxK :10 cBIC :1 fMaxK :10 fBIC prop. 0.79 506
w :16 β :3000 λ :0.2 cMaxK :10 cBIC :1 fMaxK :10 fBIC prop. 0.81 516
w :8 β :2000 λ :0.2 cMaxK :5 cBIC :0.8 fMaxK :20 fBIC :0.9 0.81 524
w :12 β :4000 λ :0.1 cMaxK :4 cBIC :0.8 fMaxK :20 fBIC :1.0 0.82 540
w :16 β :2000 λ :0.1 cMaxK :4 cBIC :0.9 fMaxK :20 fBIC :0.9 0.82 507
w :16 β :2000 λ :0.2 cMaxK :5 cBIC :1.0 fMaxK :20 fBIC :0.8 0.82 516
w :16 β :2000 λ :0.3 cMaxK :5 cBIC :0.8 fMaxK :20 fBIC :0.9 0.82 543
w :8 β :3000 λ :0.2 cMaxK :5 cBIC :0.9 fMaxK :20 fBIC :0.9 0.82 526
w :8 β :3000 λ :0.2 cMaxK :5 cBIC :1.0 fMaxK :20 fBIC :0.9 0.82 525
w :8 β :4000 λ :0.1 cMaxK :5 cBIC :0.9 fMaxK :20 fBIC :0.9 0.82 531
w :12 β :4000 λ :0.1 cMaxK :4 cBIC :0.9 fMaxK :20 fBIC :1.0 0.83 540
w :16 β :2000 λ :0.1 cMaxK :4 cBIC :1.0 fMaxK :20 fBIC :0.9 0.83 508
w :8 β :3000 λ :0.1 cMaxK :5 cBIC :0.8 fMaxK :20 fBIC :0.9 0.83 514
w :8 β :3000 λ :0.1 cMaxK :5 cBIC :0.9 fMaxK :20 fBIC :0.9 0.83 524
w :8 β :4000 λ :0.1 cMaxK :5 cBIC :0.8 fMaxK :20 fBIC :0.9 0.83 521
w :16 β :3000 λ :0.3 cMaxK :4 cBIC :1.0 fMaxK :20 fBIC :0.9 0.85 516
w :16 β :4000 λ :0.1 cMaxK :5 cBIC :0.9 fMaxK :20 fBIC :0.8 0.85 542
w :16 β :4000 λ :0.1 cMaxK :5 cBIC :1.0 fMaxK :20 fBIC :0.8 0.85 543
w :8 β :2000 λ :0.3 cMaxK :5 cBIC :0.9 fMaxK :20 fBIC :0.9 0.85 512
w :8 β :4000 λ :0.2 cMaxK :5 cBIC :0.8 fMaxK :20 fBIC :0.9 0.85 542
w :16 β :2000 λ :0.3 cMaxK :4 cBIC :0.9 fMaxK :20 fBIC :0.9 0.86 501
w :16 β :3000 λ :0.2 cMaxK :4 cBIC :0.9 fMaxK :20 fBIC :0.9 0.86 510
w :16 β :3000 λ :0.2 cMaxK :4 cBIC :1.0 fMaxK :20 fBIC :0.9 0.86 510
w :16 β :2000 λ :0.2 cMaxK :5 cBIC :0.9 fMaxK :20 fBIC :0.8 0.87 505
w :16 β :2000 λ :0.3 cMaxK :4 cBIC :1.0 fMaxK :20 fBIC :0.9 0.87 501
w :16 β :3000 λ :0.2 cMaxK :5 cBIC :1.0 fMaxK :20 fBIC :0.8 0.87 527
w :16 β :4000 λ :0.1 cMaxK :4 cBIC :1.0 fMaxK :20 fBIC :0.9 0.87 505
w :8 β :2000 λ :0.3 cMaxK :5 cBIC :0.8 fMaxK :20 fBIC :0.9 0.87 500
w :16 β :2000 λ :0.2 cMaxK :4 cBIC :0.8 fMaxK :20 fBIC :0.9 0.88 505
w :8 β :2000 λ :0.3 cMaxK :5 cBIC :1.0 fMaxK :20 fBIC :0.9 0.88 528
w :12 β :4000 λ :0.1 cMaxK :5 cBIC :0.8 fMaxK :20 fBIC :0.9 0.89 537
w :16 β :3000 λ :0.1 cMaxK :4 cBIC :1.0 fMaxK :20 fBIC :0.9 0.89 505
w :16 β :4000 λ :0.3 cMaxK :5 cBIC :1.0 fMaxK :20 fBIC :0.9 0.93 528
w :8 β :3000 λ :0.3 cMaxK :5 cBIC :0.8 fMaxK :20 fBIC :0.9 0.94 530
w :16 β :2000 λ :0.1 cMaxK :5 cBIC :1.0 fMaxK :20 fBIC :0.8 0.95 519
w :16 β :4000 λ :0.1 cMaxK :5 cBIC :0.8 fMaxK :20 fBIC :0.8 0.95 510
w :8 β :4000 λ :0.3 cMaxK :5 cBIC :0.8 fMaxK :20 fBIC :0.9 0.95 540
w :8 β :3000 λ :0.1 cMaxK :4 cBIC :0.8 fMaxK :20 fBIC :1.0 0.98 537
w :16 β :3000 λ :0.3 cMaxK :5 cBIC :1.0 fMaxK :20 fBIC :0.8 1.05 507

Table 5.6: Average CoV across gcc benchmarks for di�erent TICC settings

69

Set 1 (CoV) Set 2 (Weighted Standard Deviation)

400.perlbench.1, 400.perlbench.2, 400.perlbench.3,
403.gcc.1, 403.gcc.2, 403.gcc.3, 403.gcc.4, 403.gcc.5,
403.gcc.6, 403.gcc.7, 403.gcc.8, 429.mcf.1, 445.gobmk.1,
445.gobmk.2, 445.gobmk.3, 445.gobmk.4, 445.gobmk.5,
458.sjeng.1, 462.libquantum.1, 464.h264ref.3, 471.om-
netpp.1, 473.astar.1, 483.xalancbmk.1

401.bzip2.1, 401.bzip2.2, 401.bzip2.3, 401.bzip2.4,
401.bzip2.5, 401.bzip2.6, 456.hmmer.1, 456.hmmer.2,
464.h264ref.1, 464.h264ref.2, 473.astar.2

Table 5.7: Two sets of programs used for comparison

In Figure 5.14 we expand the results of a single TICC con�guration (w = 8, β = 2000,
and λ = 0.2) to show the results of accuracy for each individual benchmark. We plot the
CoV and weighted standard deviations along with the corresponding standard deviations
of MICA-ML and previous approaches.

On the gcc benchmarks, our multilevel approach can reduce CoV by 35% of the single
level clustering and 10% on SimPoint. For L3-Weighted SD, MICA-SL and MICA-ML

signi�cantly outperform SimPoint. Particularly, on the bzip2 benchmarks, our multilevel
approach can signi�cantly reduce the weighted SD by 89% of the SimPoint method.

70

0.00

0.01

0.02

0.03

0.04

0.05

0.00

0.05

0.10

0.15

0.0

0.1

0.2

0.3

0.0

0.2

0.4

0.6

0

10000

20000

w
:8
β

:4
00
0
λ

:0
.1

w
:8
β

:2
00
0
λ

:0
.2

w
:8
β

:3
00
0
λ

:0
.2

w
:8
β

:2
00
0
λ

:0
.3

w
:8
β

:3
00
0
λ

:0
.3

w
:8
β

:4
00
0
λ

:0
.3

w
:1
2
β

:2
00
0
λ

:0
.1

w
:1
2
β

:3
00
0
λ

:0
.1

w
:1
2
β

:4
00
0
λ

:0
.1

w
:1
2
β

:2
00
0
λ

:0
.2

w
:1
2
β

:3
00
0
λ

:0
.2

w
:1
2
β

:4
00
0
λ

:0
.2

w
:1
2
β

:2
00
0
λ

:0
.3

w
:1
2
β

:3
00
0
λ

:0
.3

w
:1
2
β

:4
00
0
λ

:0
.3

w
:1
6
β

:2
00
0
λ

:0
.1

w
:1
6
β

:3
00
0
λ

:0
.1

w
:1
6
β

:4
00
0
λ

:0
.1

w
:1
6
β

:2
00
0
λ

:0
.2

w
:1
6
β

:3
00
0
λ

:0
.2

w
:1
6
β

:4
00
0
λ

:0
.2

w
:1
6
β

:2
00
0
λ

:0
.3

w
:1
6
β

:3
00
0
λ

:0
.3

w
:1
6
β

:4
00
0
λ

:0
.3

C
yc
le
s

L
1-
D

L
2

L
3
(C
oV

)
L
3
(W

ei
gh
te
d
SD

)

MICA Single Level MICA Multilevel SimPoint

Figure 5.13: CoV and weighted standard deviation (along with standard deviation) for
multiple TICC con�guration along with prior works with the same number of simulation
points

71

0.00

0.05

0.10

0.15

0.0

0.1

0.2

0.3

0.4

0.00

0.25

0.50

0.75

1.00

0.0

0.5

1.0

1.5

2.0

0

20000

40000

60000

40
0.
pe
rl
be
nc
h.
1

40
0.
pe
rl
be
nc
h.
2

40
0.
pe
rl
be
nc
h.
3

40
1.
bz
ip
2.
1

40
1.
bz
ip
2.
2

40
1.
bz
ip
2.
3

40
1.
bz
ip
2.
4

40
1.
bz
ip
2.
5

40
1.
bz
ip
2.
6

40
3.
gc
c.
1

40
3.
gc
c.
2

40
3.
gc
c.
3

40
3.
gc
c.
4

40
3.
gc
c.
5

40
3.
gc
c.
6

40
3.
gc
c.
7

40
3.
gc
c.
8

42
9.
m
cf
.1

44
5.
go
bm

k.
1

44
5.
go
bm

k.
2

44
5.
go
bm

k.
3

44
5.
go
bm

k.
4

44
5.
go
bm

k.
5

45
6.
hm

m
er
.1

45
6.
hm

m
er
.2

45
8.
sj
en
g.
1

46
2.
lib
qu
an
tu
m
.1

46
4.
h2
64
re
f.1

46
4.
h2
64
re
f.2

46
4.
h2
64
re
f.3

47
1.
om

ne
tp
p.
1

47
3.
as
ta
r.
1

47
3.
as
ta
r.
2

48
3.
xa
la
nc
bm

k.
1

C
yc
le
s
(C
oV

)
L
1-
D
(C
oV

)
L
2
(C
oV

)
L
3
(C
oV

)
L
3
(W

ei
gh
te
d
SD

)

MICA Single Level MICA Multilevel SimPoint

Figure 5.14: CoV and weighted standard deviation (along with standard deviation) of all
SPECint 2006 programs. TICC parameters are w = 12, β = 2000, and λ = 0.1

72

5.5 Phase Interpretability

In this section, we demonstrate how TICC can be used to learn interpretable clusters in
real-world applications. Although PCA reduces the data set's dimensionality e�ectively,
the fact that each principal component is a linear combination of the original workload
characteristics complicates the understandability of the lower-dimensional workload space.
For this reason, we run this analysis on all the 97 MICA characteristics described in Ta-
ble 4.1.

We use a centrality measure to show how important each MICA characteristic is, and
more speci�cally how much it directly a�ects the other MICA characteristics. This analy-
sis is done over the MRF network de�ning each program phase. In short, the betweenness
centrality (BC) score of a node v is calculated as the fraction of all the shortest paths
between all node pairs that pass through v [52]. More precisely, the BC of a node v is
given by [3]

CB(v) =
∑

s 6=t6=v∈V

σst(v)

σst
(5.6)

where σst is the total number of shortest paths from node s to node t and σst(v) is the
number of shortest paths from s to t going through v.

We used the NetworkX [60] Python package to calculate the centrality scores. Ta-
bles 5.8 and 5.9 show the betweenness centrality score of each MICA feature of two dif-
ferent programs from SPEC 2006 gcc.166 and bzip2.chicken. We normalize each cluster
centrality score to [0,10] range. We colored each cell based on the betweenness central-
ity of each feature from least (white) to greatest (black). Figures 5.15 and 5.16 show
the time-varying of some architectural metrics colored accordingly to the resulting TICC
segmentation. The numbers on top are the phase identi�ers of each column in the be-
tweenness centrality score tables. For example, phase 3 of gcc.166 in Table 5.8 is the
green one in Figure 5.15. The parameters used for TICC are window size of 4, β = 4000,
and λ = 1.

We see that each program phase has a unique characterization (betweenness centrality
signature) representing its behavior of the program. We also see that each microarchitecture-
independent characteristic in�uences each phase di�erently.

5.5.1 Case study: bzip2.chicken

The bzip2 �le compressor works with data in blocks of size between 100 kB and 900
kB. Block size acts as compression level (1 to 9) with 1 giving the lowest compression
and 9 the highest. SPEC2006's bzip2 compresses and decompresses the data three times,
at compression levels 5, 7, and 9, with the result of the process being compared to the
original data after each decompression step.

We used Valgrid [51] with its internal tool Callgrind to produce a call-graph for the
complete execution of bzip2 with input chicken, depicted in Figure 5.17a. As expected,
the main function has three calls to both compressStream and uncompressStream (a
pair for each compression level). Callgrind also allows dumping counters at enter/leave of

73

MICA feature Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6
ILP 32-entry window 0 0 0 0 0 0
ILP 64-entry window 0 5 0 0 0 0
ILP 128-entry window 0 3 0 0 0 0
ILP 256-entry window 0 2 0 0 0 0

mem-read 0 0 0 0 0 0
mem-write 0 0 0 0 0 0
control-�ow 0 0 0 3 0 0
arithmetic 0 0 0 0 2 0

�oating-point 0 0 0 0 0 0
pop/push instructions (stack usage) 0 0 1 0 10 0

shift instructions (bitwise) 0 0 0 0 0 0
string 0 0 0 2 0 0

MMX/SSE instructions 7 0 0 0 0 0
other 0 0 0 0 0 1
nop 0 0 0 0 0 0

other1 0 7 0 0 0 0
GAg PPM predictor (4 bits) 0 0 0 0 0 0
PAg PPM predictor (4 bits) 0 0 0 0 0 0
GAs PPM predictor (4 bits) 0 0 0 0 0 0
PAs PPM predictor (4 bits) 0 0 0 0 0 0
GAg PPM predictor (8 bits) 0 0 0 0 0 0
PAg PPM predictor (8 bits) 0 0 0 0 0 0
GAs PPM predictor (8 bits) 0 0 0 0 0 0
PAs PPM predictor (8 bits) 0 0 0 0 0 0
GAg PPM predictor (12 bits) 0 0 0 0 0 0
PAg PPM predictor (12 bits) 0 0 0 0 0 0
GAs PPM predictor (12 bits) 0 0 0 0 0 0
PAs PPM predictor (12 bits) 0 0 0 0 0 0

Branch count 0 0 0 2 0 0
Branch transition 0 0 0 0 0 0
Branch taken count 0 0 0 0 0 0

Number of reg. operands 0 0 0 0 0 0
Reg. instances created 0 0 0 0 4 0
Reg. instance uses 0 0 1 0 0 0

Total reg. dependency distance 0 0 0 0 0 0
Reg. dependency distance ≤ 20 0 0 7 0 0 0
Reg. dependency distance ≤ 21 0 0 1 0 0 0
Reg. dependency distance ≤ 22 0 0 0 0 1 0
Reg. dependency distance ≤ 23 0 0 0 0 0 0
Reg. dependency distance ≤ 24 0 0 0 0 0 0
Reg. dependency distance ≤ 25 0 0 0 0 0 0
Reg. dependency distance ≤ 26 0 0 0 0 0 0
Instruction Footprint 64-byte 7 0 0 0 0 0
Instruction Footprint 4kB 0 0 0 0 0 0
Data Footprint 64-byte 0 0 0 10 0 0
Data Footprint 4kB 0 0 0 4 0 0

Total number of memory accesses 0 0 0 0 0 0
Reuse distance [0, 21) 0 0 1 0 0 0
Reuse distance [21, 22) 0 0 0 0 0 0
Reuse distance [22, 23) 0 0 7 0 0 0
Reuse distance [23, 24) 0 0 0 0 0 0
Reuse distance [24, 25) 0 10 0 0 0 0
Reuse distance [25, 26) 0 0 0 0 6 0
Reuse distance [26, 27) 0 0 0 0 0 0
Reuse distance [27, 28) 0 0 0 0 0 0
Reuse distance [28, 29) 0 0 0 0 0 0
Reuse distance [29, 210) 0 0 0 0 0 0
Reuse distance [210, 211) 0 0 0 0 0 0
Reuse distance [211, 212) 0 0 0 1 0 0
Reuse distance [212, 213) 0 0 0 2 0 0
Reuse distance [213, 214) 0 0 0 0 0 0
Reuse distance [214, 215) 0 0 0 1 0 0
Reuse distance [215, 216) 0 0 0 0 0 0
Reuse distance [216, 217) 0 0 0 0 0 2
Reuse distance [217, 218) 0 0 0 0 0 10
Reuse distance [218, 219) 10 0 0 0 0 0
Reuse distance [219,∞) 5 0 0 0 0 0
Memory read count 0 0 0 0 0 0
Local load stride ≤ 80 0 0 0 0 0 0
Local load stride ≤ 81 0 0 0 0 0 0
Local load stride ≤ 82 0 0 0 0 0 0
Local load stride ≤ 83 0 0 0 0 0 0
Local load stride ≤ 84 0 0 0 0 0 0
Local load stride ≤ 85 0 0 0 0 0 0
Local load stride ≤ 86 0 0 0 0 0 0
Global load stride ≤ 80 0 0 0 0 0 0
Global load stride ≤ 81 0 0 0 0 0 0
Global load stride ≤ 82 0 0 1 0 0 0
Global load stride ≤ 83 0 0 1 0 0 0
Global load stride ≤ 84 0 0 1 0 0 0
Global load stride ≤ 85 0 0 1 0 0 0
Global load stride ≤ 86 0 0 1 0 0 0
Memory write count 0 0 0 0 0 0
Local store stride ≤ 80 0 0 0 1 0 0
Local store stride ≤ 81 0 0 0 0 0 0
Local store stride ≤ 82 0 0 0 0 0 0
Local store stride ≤ 83 0 0 0 0 0 0
Local store stride ≤ 84 0 0 0 0 0 0
Local store stride ≤ 85 0 0 0 0 0 0
Local store stride ≤ 86 0 0 0 0 0 0
Global store stride ≤ 80 0 0 10 0 0 0
Global store stride ≤ 81 0 0 0 0 7 0
Global store stride ≤ 82 0 0 0 0 0 0
Global store stride ≤ 83 0 0 0 0 0 0
Global store stride ≤ 84 0 0 0 0 0 0
Global store stride ≤ 85 0 0 0 0 0 0

Table 5.8: Betweenness centrality for each MICA feature in gcc.166

74

MICA feature Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6
ILP 32-entry window 0 0 0 0 0 0
ILP 64-entry window 0 0 0 0 0 0
ILP 128-entry window 0 0 0 0 0 0
ILP 256-entry window 0 0 0 0 0 0

mem-read 0 0 0 0 0 0
mem-write 0 0 0 0 0 0
control-�ow 0 0 0 0 0 0
arithmetic 0 0 0 0 0 0

�oating-point 0 0 0 0 0 0
pop/push instructions (stack usage) 0 0 10 0 1 0

shift instructions (bitwise) 0 1 0 1 0 0
string 0 0 0 0 0 0

MMX/SSE instructions 0 0 0 0 0 0
other 0 2 0 0 0 0
nop 0 0 0 0 0 0

other1 0 0 0 0 0 0
GAg PPM predictor (4 bits) 0 0 0 0 0 0
PAg PPM predictor (4 bits) 0 1 0 1 0 0
GAs PPM predictor (4 bits) 0 0 0 0 0 0
PAs PPM predictor (4 bits) 0 1 0 1 0 0
GAg PPM predictor (8 bits) 0 0 0 0 0 0
PAg PPM predictor (8 bits) 0 1 0 0 0 0
GAs PPM predictor (8 bits) 0 0 0 0 0 0
PAs PPM predictor (8 bits) 0 1 0 1 0 0
GAg PPM predictor (12 bits) 0 0 0 0 0 0
PAg PPM predictor (12 bits) 0 0 0 0 0 0
GAs PPM predictor (12 bits) 0 3 0 0 0 0
PAs PPM predictor (12 bits) 0 0 0 1 0 0

Branch count 0 0 0 0 0 0
Branch transition 0 0 0 0 0 0
Branch taken count 0 7 0 10 0 0

Number of reg. operands 0 0 0 0 0 0
Reg. instances created 0 0 1 0 0 0
Reg. instance uses 0 2 0 3 0 0

Total reg. dependency distance 0 0 0 0 0 0
Reg. dependency distance ≤ 20 0 0 0 0 0 0
Reg. dependency distance ≤ 21 0 0 0 0 0 0
Reg. dependency distance ≤ 22 0 1 0 0 0 0
Reg. dependency distance ≤ 23 0 4 0 1 0 0
Reg. dependency distance ≤ 24 0 2 0 1 0 0
Reg. dependency distance ≤ 25 0 10 0 4 0 0
Reg. dependency distance ≤ 26 0 5 0 4 0 0
Instruction Footprint 64-byte 6 0 0 0 0 0
Instruction Footprint 4kB 0 0 0 0 0 8
Data Footprint 64-byte 0 0 0 0 3 0
Data Footprint 4kB 0 0 0 0 0 0

Total number of memory accesses 0 0 0 0 0 0
Reuse distance [0, 21) 0 0 0 0 0 0
Reuse distance [21, 22) 0 5 0 0 0 0
Reuse distance [22, 23) 0 3 0 2 0 0
Reuse distance [23, 24) 0 0 7 0 0 0
Reuse distance [24, 25) 0 0 0 0 0 0
Reuse distance [25, 26) 0 0 0 0 0 0
Reuse distance [26, 27) 0 0 0 0 0 0
Reuse distance [27, 28) 0 0 0 0 0 0
Reuse distance [28, 29) 0 0 0 0 0 0
Reuse distance [29, 210) 0 6 0 1 0 0
Reuse distance [210, 211) 0 1 0 1 0 0
Reuse distance [211, 212) 0 0 0 0 0 0
Reuse distance [212, 213) 0 0 0 0 0 0
Reuse distance [213, 214) 0 0 0 0 3 0
Reuse distance [214, 215) 0 0 0 0 0 0
Reuse distance [215, 216) 0 0 0 0 0 0
Reuse distance [216, 217) 10 0 0 0 0 0
Reuse distance [217, 218) 0 1 0 3 0 0
Reuse distance [218, 219) 0 0 0 0 0 0
Reuse distance [219,∞) 0 0 0 0 0 0
Memory read count 0 0 0 0 0 0
Local load stride ≤ 80 0 0 0 0 0 0
Local load stride ≤ 81 0 0 1 0 0 0
Local load stride ≤ 82 0 3 0 2 0 0
Local load stride ≤ 83 0 1 0 1 0 0
Local load stride ≤ 84 0 1 0 1 0 0
Local load stride ≤ 85 0 1 0 0 0 0
Local load stride ≤ 86 0 1 0 0 0 0
Global load stride ≤ 80 0 0 0 0 0 0
Global load stride ≤ 81 0 0 0 0 0 0
Global load stride ≤ 82 0 0 0 0 0 0
Global load stride ≤ 83 0 0 0 0 0 0
Global load stride ≤ 84 0 0 0 0 0 0
Global load stride ≤ 85 0 0 0 0 0 0
Global load stride ≤ 86 0 0 0 0 0 0
Memory write count 0 0 0 0 0 0
Local store stride ≤ 80 0 0 0 0 0 0
Local store stride ≤ 81 0 0 0 0 0 0
Local store stride ≤ 82 0 0 0 0 0 0
Local store stride ≤ 83 0 0 0 0 0 0
Local store stride ≤ 84 0 0 0 0 0 0
Local store stride ≤ 85 0 0 0 0 0 0
Local store stride ≤ 86 0 0 0 0 0 0
Global store stride ≤ 80 0 0 0 0 10 0
Global store stride ≤ 81 0 0 0 0 0 0
Global store stride ≤ 82 0 0 0 0 0 0
Global store stride ≤ 83 0 0 0 0 0 0
Global store stride ≤ 84 0 0 0 0 0 0
Global store stride ≤ 85 0 0 0 0 0 0

Table 5.9: Betweenness centrality for each MICA feature in bzip2.chicken

75

1 12 23 34 45 56 6Phase:

B
ranch

correct
B
ranch

incorrect
C
ycles

L
1-D

L
2

L
3

0 24 48 72
Instructions Executed (in Billions)

M
et
ri
c

Figure 5.15: Time-varying graph for gcc.166 with phase identi�er on top

1 12 23 45 6Phase:

B
ranch

correct
B
ranch

incorrect
C
ycles

L
1-D

L
2

L
3

0 24 48 72 96 120 144 168
Instructions Executed (in Billions)

M
et
ri
c

Figure 5.16: Time-varying graph for bzip2.chicken with phase identi�er on top

76

speci�ed functions. We used it to dump counters after each compress/uncompress round
to produce a seperate call-graph for each iteration, as show in Figures 5.17b to 5.17d.

The instruction counts of each iteration align with the phase segmentation in Fig-
ure 5.16 in a way that each phase represents a compression or decompression operation.
Thus we have the following relationship with the source code:

C U C U C U

Phase 5 Phase 6 Phase 3 Phase 1 Phase 2,4,2 Phase 1

16.7% 5.8% 17.0% 6.0% 6.4%48.2%

compression level 5 compression level 7 compression level 9

where (C) is a compression step and (U) an uncompress step. The diagram above
and the call graphs follow the same color scheme as in Figure 5.16 (i.e., blue for phase 5,
purple for phase 6, and so forth).

These graphs show that TICC was able to produce regions that align with procedures
and loops, each alternating between the compression and decompression steps.

We can also observe that each phase has unique centrality scores representing its
behavior of the program. To complete the analysis we make the following observations:

• Both decompress phases 6 and 1 have a non-zero score on the instruction foot-
print characteristic. However, for phase 1, the bin [216, 217) in the reuse distance
distribution (unique address accesses that occur between two accesses to the same
address) has much greater importance. This change in locality might explain a
poorer performance to phase 1 for the particular simulation model.

• Among the compress phases (2, 3, 4, and 5), phase 3 has the largest score in the stack
usage characteristic. When looking at the proportion of execution of the mainGtU

function, the compression level 7 (phase 3) has 41M calls to it, against 1M calls at
compression level 9 (phases 2 and 4). Additionally, it is negligible (0.85% relative
cost to the complete compress/uncompress step) at compression level 5 (phase 5).
This di�erence in the number of function calls might be related to the importance
given to the push/pop instruction mix feature in phase 3 (e.g., push/pop into stack-
frame).

• Phase 2 and 4 have a pretty similar signature, as well as the performance metrics.
The segmentation into two phases might be related to a poor value given to the
TICC's temporal consistency penalty (β) that encourages neighboring samples to
be assigned to the same cluster [27].

• At compression level 9 (phase 2 and 4), a large amount of time (43.50%) is spent
in function fallbackSort. bzip2 uses a fallback sort when the main sort takes too
much time. The source code states that it is �kind-of an exponential radix sort� [5].
Considering that radix sort tends to exhibit poor cache locality [43], it might explain
the relatively poor cache performance to the simulation results. It is interesting to
observe the centrality scores between the phases using only the main sort (phases 5
and 3) and fallback sort (phases 2 and 4).

77

m
a
in

1
7
9
,2

0
0
,9

7
9
,3

0
0
 i

n
st

ru
ct

io
n
s

1
0
0
.0

0
%

u
n

co
m

p
re

ss
S

tr
ea

m
1
7
.9

2
%

3
x

co
m

p
re

ss
S

tr
ea

m
8
1
.9

6
%

3
x

b
sW

1
.4

8
%

B
Z

2
_
b
zR

ea
d

1
7
.8

7
%

1
8
8
7
6
x

B
Z

2
_
b
zD

ec
o
m

p
re

ss
1
7
.8

2
%

3
6
4
1
1
x

B
Z

2
_
d
ec

o
m

p
re

ss
1
6
.5

0
%

B
Z

2
_
b
zW

ri
te

C
lo

se
6
4

1
.1

3
%

B
Z

2
_
b
zC

o
m

p
re

ss
8
1
.8

6
%

3
5

9
x

h
an

d
le

_
co

m
p
re

ss
8
1
.8

6
%

3
6
3
4
5
x

fa
ll

b
ac

k
S

o
rt

2
3
.4

9
%

3
x

B
Z

2
_

b
zW

ri
te

8
0
.7

7
%

1
8
8
7
6
x

3
5
9
8
6
x

B
Z

2
_
co

m
p
re

ss
B

lo
ck

7
8
.5

6
%

9
9
9
8
4
1
8
1
x

B
Z

2
_
b
lo

ck
S

o
rt

4
1
.4

6
%

1
4

3
x

3
4

x

m
a
in

S
o

rt
1
7
.7

8
%

1
4

1
x

1
7
6
8
1
x

m
a
in

G
tU

1
3
.5

6
%

8
0
0
1
9
9
5
9
x

1
4

3
x

(a
)
C
o
m
p
le
te

ex
ec
u
ti
o
n

m
a
in

4
0
,3

3
0
,6

3
7
,4

8
8
 i

n
st

ru
ct

io
n
s

1
0
0
.0

0
%

co
m

p
re

ss
S

tr
ea

m
7
4
.8

2
%

1
x

u
n

co
m

p
re

ss
S

tr
ea

m
2
5
.0

9
%

1
x

B
Z

2
_

b
zW

ri
te

7
3
.7

5
%

6
2
9
2
x

B
Z

2
_
b
zC

o
m

p
re

ss
7
3
.6

7
%1
2
4
3
0
x

h
an

d
le

_
co

m
p
re

ss
7
3
.6

7
%

1
2
3
5
1
x

B
Z

2
_
b
lo

ck
S

o
rt

9
.4

0
%

m
a
in

S
o

rt
9
.1

1
%6
2

x

B
Z

2
_
co

m
p
re

ss
B

lo
ck

6
8
.7

4
%

6
2

x

6
2

x

B
Z

2
_
b
zR

ea
d

2
5
.0

1
%

6
2
9
2
x

B
Z

2
_
b
zD

ec
o
m

p
re

ss
2
4
.9

3
%

1
2
5
5
3
x

B
Z

2
_
d
ec

o
m

p
re

ss
2
2
.9

7
%

6
3
2
5
x

(b
)
C
o
m
p
re
ss
io
n
le
v
el
5

m
a
in

4
1
,8

6
9
,4

7
4
,9

6
6
 i

n
st

ru
ct

io
n
s

1
0
0
.0

0
%

co
m

p
re

ss
S

tr
ea

m
7
2
.8

4
%

1
x

u
n

co
m

p
re

ss
S

tr
ea

m
2
7
.0

8
%

1
x

B
Z

2
_

b
zW

ri
te

7
1
.3

7
%

6
2
9
2
x

B
Z

2
_
b
zC

o
m

p
re

ss
7
1
.3

0
%

h
an

d
le

_
co

m
p
re

ss
7
1
.3

0
%

1
2
1
2
3
x

1
2
2
3
2
x

B
Z

2
_
co

m
p
re

ss
B

lo
ck

6
6
.6

3
%

B
Z

2
_
b
lo

ck
S

o
rt

1
3
.3

8
%

4
4

x

m
a
in

S
o

rt
1
3
.1

1
%

4
4

x

m
a
in

G
tU

4
.6

2
%4
1
6
3
6
3
1
9
x

4
4

x

B
Z

2
_
b
zR

ea
d

2
7
.0

0
%

6
2
9
2
x

B
Z

2
_
b
zD

ec
o
m

p
re

ss
2
6
.9

2
%

1
2
3
7
7
x

B
Z

2
_
d
ec

o
m

p
re

ss
2
5
.0

4
%

6
1
3
1
x

(c
)
C
o
m
p
re
ss
io
n
le
v
el
7

m
a
in

9
6
,9

7
4
,6

3
9
,9

8
1
 i

n
st

ru
ct

io
n
s

1
0
0
.0

0
%

co
m

p
re

ss
S

tr
ea

m
8
8
.9

5
%

1
x

u
n

co
m

p
re

ss
S

tr
ea

m
1
1
.0

1
%

1
x

B
Z

2
_

b
zW

ri
te

8
7
.8

3
%

6
2
9
2
x

m
a
in

S
o

rt
2
3
.4

3
%

m
a
in

G
tU

2
2
.6

2
%

1
2
8
4
4
2
0
x

B
Z

2
_
b
lo

ck
S

o
rt

6
7
.0

5
%

3
5

x

fa
ll

b
ac

k
S

o
rt

4
3
.5

0
%

3
4

x

B
Z

2
_
b
zC

o
m

p
re

ss
8
7
.8

0
%

h
an

d
le

_
co

m
p
re

ss
8
7
.8

0
%

1
1
3
2
9
x

B
Z

2
_
co

m
p
re

ss
B

lo
ck

8
5
.8

8
%

3
5

x

3
5

x

1
1
3
2
4
x

B
Z

2
_
b
zR

ea
d

1
0
.9

8
%

6
2
9
2
x

B
Z

2
_
b
zD

ec
o
m

p
re

ss
1
0
.9

5
%

1
1
4
8
1
x

B
Z

2
_
d
ec

o
m

p
re

ss
1
0
.1

3
%

5
2
2
5
x

(d
)
C
o
m
p
re
ss
io
n
le
v
el
9

F
ig
ur
e
5.
17
:
C
al
lg
ra
ph
s
fo
r
bz
ip
2.
ch
ic
ke
n
of

th
e
co
m
pl
et
e
ex
ec
ut
io
n
(a
)
an
d
fo
r
ea
ch

co
m
pr
es
se
s/
de
co
m
pr
es
s
ro
un
d
(b
)
to

(d
)

78

5.6 Summary

In this chapter, we explored our method for automatically characterizing time-varying
behavior in programs with two focuses: the main parameters that in�uence our two-level
sampled simulation and on the interpretability of an MRF multilayer signature. Our
sampled simulation analysis focused on the error derived from sampling. We presented
a graphical visualization of the coarse-grained phases found by TICC for some popular
benchmarks, in which we graphically observed a proper segmentation. We then presented
an investigation into the parameters of TICC along with k-means for phase classi�cation
and compared it with two previous approaches in sampled simulation. As the �nal contri-
bution in this chapter, we showed that TICC can learn interpretable clusters in real-world
applications by breaking down the large scale behavior of several complex programs into
a clear sequence of states, and abstract to most important features.

79

Chapter 6

Conclusion and Future Work

This dissertation presented a method for characterizing time-varying program behavior
with the main purpose to accelerate microarchitecture simulation. Cycle-accurate simula-
tors typically allow performance evaluation to be done with great �exibility and relatively
low cost [16]. However, due to the complexity of modern processors and benchmarks, they
are extremely slow, which makes it unfeasible to have full detailed simulation. A popular
solution for accelerating detailed simulation is to explore the fact that many applications
exhibit a phasic behavior, and by simulating only each unique behavior, it is possible to
infer performance metrics with a much shorter time and appropriate accuracy. A second
goal of this work was to provide interpretable insights on the key factors and relationships
that characterize each program phase.

We observed program phases via a set of important microarchitecture-independent
characteristics [30]. We used a set of 97 characteristics, each falling into one of 7 possi-
ble categories: ILP, instruction mix, branch predictability, register tra�c, memory foot-
print, memory reuse distance, and data stream. Our approach comprises a two-level sam-
pling strategy of these characteristics. The �rst uses a multivariate time-series clustering
method known as TICC; the second level further re-sample each phase using k -means. To
our knowledge, this is the �rst work to treat phase analysis as a subsequence time series
clustering problem.

TICC has four main parameters: β, λ, window size and the number of clusters. Em-
pirically, we discovered that TICC is robust to the selection of λ and w. Instead, the
critical parameters are β and the number of clusters K. We also discovered that fewer
clusters and a smaller β can decrease the probability of achieving local minima.

Our �rst step in this work was to visually analyze TICC's segmentation for multiple
combinations of parameters (β: 2000, 3000, and 400; window size: 8, 12, and 16; and λ:
0.1, 0.2, and 0.3). We analyzed the segmentation of all the 34 SPECint 2006 programs
for a range of up to 25 clusters for each program. Overall, the plots indicate a strong
correlation between MICA and performance metrics, and also a good segmentation. In
most cases, for larger values of K, TICC could not converge to a solution. We made
available online1 the entire segmentation resulted from this exploration.

From the TICC segmentation for features sampled at every 160 million instructions, we

1http://students.ic.unicamp.br/~ra191069/mica/

http://students.ic.unicamp.br/~ra191069/mica/

80

observed a large factor of phasic behavior. We found a ratio of unique behavior to overall
execution close to 50%. This result was obtained by summing up the program phase sizes
and then dividing by the total number of dynamic instructions of the complete execution.
Apart from the workload analysis side, this strengthened the use of �ner granularity
sampling, since our focus was on e�cient simulation through sampled simulation.

We analyzed the e�ect on the number of cluster K and the BIC threshold on both
clustering algorithms TICC (�rst stage of sampling), and k-means (second stage of sam-
pling). We showed the results of accuracy and number simulations points when varying
these four parameters altogether. Depending on the architect's objective, these results
help to decide on the tradeo� between simulation time and accuracy.

We found that the greater the BIC score, the more simulation points are chosen.
However, this does not necessarily result in a great improvement in accuracy. In particular,
given a TICC segmentation, our initial approach was to use the same value of fBIC for all
phases. Empirically, we discovered that such approach may give unnecessary simulation
points to a coarse-grained phase that accounts for a tiny fraction of execution, which does
not have a great impact on overall estimation. We proposed an alternative method to
pick the value of K for k-means on a per-phase basis proportional to the coarse-grained
phase size and homogeneity.

We evaluated our sampled simulation method for 486 con�gurations of K and BIC on
both clustering levels, and the main TICC parameters. Our experiments on the SPECint
CPU2006 workloads showed that for con�gurations resulting in about 1500 ± 50 simula-
tions points (1.1% of the complete execution), the average cycles and L3 (easiest to the
most di�cult) estimate error is 0.77% (min. 0.60% and max. 0.92%), and 6.23% (min.
5.20% and max. 7.64%) respectively. If willing to trade some speed accuracy for accuracy,
those error estimates dropped to 0.63% (min. 0.53% and max. 0.69%) and 4.65% (min.
4.01% and max. 5.54%) for an average of 2000 ± 50 simulations points (1.45% of total
execution). It should be noted that all the interval metrics assume a perfect warmup, as
we focused on the representativeness of the sampled points.

Our experiments showed that, on average, the phases detected by our approach have
behavior homogeneity comparable to the phases detected by SimPoint [64] or clustering
MICA signatures over the entire program execution [15] (single-level approach). Thus, for
sampled simulation, our multilevel approach did not outperform the single-level approach.
It is worth noting that for the 8 gcc program-input pairs our method reduced L3 CoV by
32% on average. Lastly, we found a MICA based signature clustering to be more e�ective
on metrics loosely correlated with code (L3 in our experiments).

We also showed that TICC can be used to �nd meaningful insights into program
phases through the analysis of the multilayer MRF network it produces. In particular,
we used a measure of centrality in a graph to show, for each program phase, how signi�-
cant each MICA characteristic is for a program phase and how much it a�ects the other
characteristics. We were able to have a much cleaner interpretation of high-dimensional
data.

81

6.1 Publications

The following publication was produced during the development of this dissertation:

• R. Soares, L. Antonioli, E. Francesquini and R. Azevedo. �Phase Detection and
Analysis among Multiple Program Inputs�. 2018 Symposium on High Performance
Computing Systems (WSCAD), São Paulo, Brazil, 2018, pp. 155-161.

6.2 Future Work

Phase analysis has unlocked many optimizations including simulation acceleration, power
reduction, cache optimization, and compiler optimization. We hope that TICC phases
may unlock many other optimizations. The list of possible future work on TICC-based
phase classi�cation includes:

• Explore how phase's MRF can be used to improve or discover compiler optimiza-
tions.

• Characterize modern industry-standard programs.

• Evaluate benchmark suites balance using the MRF representation provided by
TICC.

• Measure cross-program and cross-input similarities among benchmark suites.

• Explore how TICC can help to improve sampled simulation of multi-threaded ap-
plications.

• Use MRF as a signature for predictive modeling.

The list of possible work with the main focus on our multi-level sampled simulation
includes:

• Evaluate other clustering algorithms for second-level sampling other than k-means.

• Evaluate the tradeo� between di�erent interval granularities at both clustering lev-
els. Also, evaluate the e�ectiveness of combining di�erent interval granularities.

• Evaluate the e�ectiveness of a TICC-segmentation on smaller sampling granularities.

• Explore other heuristics of choosing the appropriate number of clusters on both
levels of clustering. Our initial attempt was to pick a value of K on a per-phase
basis proportional to its homogeneity and size.

• Evaluate a hybrid approach combing a single-level and two-level � �nd a way to
decide which one performs better for a speci�c program. In some situations, one
may achieve the same accuracy with fewer simulation points.

• Explore if the MRF information can give insights on the appropriate interval size
for a particular program. Also, if it can help to determine the warm-up size for an
interval extracted from a TICC phase.

82

Bibliography

[1] Giuseppe Ascia, Vincenzo Catania, Alessandro G. Di Nuovo, Maurizio Palesi, and
Davide Patti. E�cient design space exploration for application speci�c systems-on-
a-chip. J. Syst. Archit., 53(10):733�750, October 2007.

[2] Rajeev Balasubramonian, David Albonesi, Alper Buyuktosunoglu, and Sandhya
Dwarkadas. Memory hierarchy recon�guration for energy and performance in general-
purpose processor architectures. In Proceedings of the 33rd Annual ACM/IEEE In-

ternational Symposium on Microarchitecture, MICRO 33, pages 245�257, New York,
NY, USA, 2000. ACM.

[3] Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of Mathematical

Sociology, 25:163�177, 2001.

[4] Maximilien B. Breughe and Lieven Eeckhout. Selecting representative benchmark
inputs for exploring microprocessor design spaces. ACM Trans. Archit. Code Optim.,
10(4):37:1�37:24, December 2013.

[5] bzip2. bzip2. https://sourceware.org/git/bzip2.git, 2005. Version 1.0.3.

[6] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: Exploring the level
of abstraction for scalable and accurate parallel multi-core simulation. In Proceed-

ings of 2011 International Conference for High Performance Computing, Networking,

Storage and Analysis, SC '11, pages 52:1�52:12, New York, NY, USA, 2011. ACM.

[7] I-Cheng K. Chen, John T. Co�ey, and Trevor N. Mudge. Analysis of branch predic-
tion via data compression. In Proceedings of the Seventh International Conference on

Architectural Support for Programming Languages and Operating Systems, ASPLOS
VII, pages 128�137, New York, NY, USA, 1996. ACM.

[8] Tianshi Chen, Qi Guo, Ke Tang, Olivier Temam, Zhiwei Xu, Zhi-Hua Zhou, and
Yunji Chen. Archranker: A ranking approach to design space exploration. In Pro-

ceeding of the 41st Annual International Symposium on Computer Architecuture,
ISCA '14, pages 85�96, Piscataway, NJ, USA, 2014. IEEE Press.

[9] Yang Chen, Yuanjie Huang, Lieven Eeckhout, Grigori Fursin, Liang Peng, Olivier
Temam, and Chengyong Wu. Evaluating iterative optimization across 1000 datasets.
In Proceedings of the 31st ACM SIGPLAN Conference on Programming Language

Design and Implementation, PLDI '10, pages 448�459, New York, NY, USA, 2010.
ACM.

https://sourceware.org/git/bzip2.git

83

[10] C. Cho and T. Li. Using wavelet domain workload execution characteristics to im-
prove accuracy, scalability and robustness in program phase analysis. In 2007 IEEE

International Symposium on Performance Analysis of Systems Software, pages 136�
145, April 2007.

[11] Henry Cook and Kevin Skadron. Predictive design space exploration using genetically
programmed response surfaces. In Proceedings of the 45th Annual Design Automation

Conference, DAC '08, pages 960�965, New York, NY, USA, 2008. ACM.

[12] Ashutosh S. Dhodapkar and James E. Smith. Managing multi-con�guration hardware
via dynamic working set analysis. In Proceedings of the 29th Annual International

Symposium on Computer Architecture, ISCA '02, pages 233�244, Washington, DC,
USA, 2002. IEEE Computer Society.

[13] Christophe Dubach, Timothy Jones, and Michael O'Boyle. Microarchitectural de-
sign space exploration using an architecture-centric approach. In Proceedings of the

40th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 40,
pages 262�271, Washington, DC, USA, 2007. IEEE Computer Society.

[14] Evelyn Duesterwald, Calin Cascaval, and Sandhya Dwarkadas. Characterizing and
predicting program behavior and its variability. In Proceedings of the 12th Interna-

tional Conference on Parallel Architectures and Compilation Techniques, PACT '03,
pages 220�, Washington, DC, USA, 2003. IEEE Computer Society.

[15] L. Eeckhout, J. Sampson, and B. Calder. Exploiting program microarchitecture inde-
pendent characteristics and phase behavior for reduced benchmark suite simulation.
In IEEE International. 2005 Proceedings of the IEEE Workload Characterization

Symposium, 2005., pages 2�12, Oct 2005.

[16] Lieven Eeckhout. Computer Architecture Performance Evaluation Methods. Morgan
& Claypool Publishers, 1st edition, 2010.

[17] Lieven Eeckhout, Robert H. Bell Jr., Bastiaan Stougie, Koen De Bosschere, and
Lizy K. John. Control �ow modeling in statistical simulation for accurate and e�cient
processor design studies. In Proceedings of the 31st Annual International Symposium

on Computer Architecture, ISCA '04, pages 350�, Washington, DC, USA, 2004. IEEE
Computer Society.

[18] Lieven Eeckhout, Sebastien Nussbaum, James E. Smith, and Koen De Bosschere.
Statistical simulation: Adding e�ciency to the computer designer's toolbox. IEEE

Micro, 23(5):26�38, September 2003.

[19] Lieven Eeckhout, Hans Vandierendonck, and Koen De Bosschere. Quantifying the
impact of input data sets on program behavior and its applications. Journal of

Instruction-Level Parallelism, 5:1�33, 2003.

84

[20] Lieven Eeckhout, Hans Vandierendonck, and Koenraad De Bosschere. Workload
design: Selecting representative program-input pairs. In Proceedings of the 2002 In-

ternational Conference on Parallel Architectures and Compilation Techniques, PACT
'02, pages 83�94, Washington, DC, USA, 2002. IEEE Computer Society.

[21] M. Franklin and G. S. Sohi. Register tra�c analysis for streamlining inter-operation
communication in �ne-grain parallel processors. In [1992] Proceedings the 25th An-

nual International Symposium on Microarchitecture MICRO 25, pages 236�245, Dec
1992.

[22] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance
estimation with the graphical lasso. Biostatistics, 9(3):432�441, 12 2007.

[23] Tony Givargis, Frank Vahid, and Jörg Henkel. System-level exploration for pareto-
optimal con�gurations in parameterized systems-on-a-chip. In Proceedings of the

2001 IEEE/ACM International Conference on Computer-aided Design, ICCAD '01,
pages 25�30, Piscataway, NJ, USA, 2001. IEEE Press.

[24] Qi Guo, Tianshi Chen, Yunji Chen, and Franz Franchetti. Accelerating architectural
simulation via statistical techniques: A survey. Trans. Comp.-Aided Des. Integ. Cir.

Sys., 35(3):433�446, March 2016.

[25] Qi Guo, Tianshi Chen, Yunji Chen, Ling Li, and Weiwu Hu. Microarchitectural
design space exploration made fast. Microprocess. Microsyst., 37(1):41�51, February
2013.

[26] David Hallac, Sagar Vare, Stephen Boyd, and Jure Leskovec. TICC. https://

github.com/davidhallac/TICC, 2017.

[27] David Hallac, Sagar Vare, Stephen Boyd, and Jure Leskovec. Toeplitz inverse
covariance-based clustering of multivariate time series data. In Proceedings of the

23rd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, KDD '17, pages 215�223, New York, NY, USA, 2017. ACM.

[28] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. Simpoint 3.0: Faster
and more �exible program analysis. In Journal of Instruction Level Parallelism, 2005.

[29] Kenneth Hoste and Lieven Eeckhout. MICA. https://github.com/boegel/MICA,
2007.

[30] Kenneth Hoste and Lieven Eeckhout. Microarchitecture-independent workload char-
acterization. IEEE Micro, 27(3):63�72, May 2007.

[31] Kenneth Hoste and Lieven Eeckhout. pyxmeans. https://github.com/boegel/

MIC://github.com/mynameisfiber/pyxmeans/, 2015.

[32] Kenneth Hoste, Aashish Phansalkar, Lieven Eeckhout, Andy Georges, Lizy K. John,
and Koen De Bosschere. Performance prediction based on inherent program simi-
larity. In Proceedings of the 15th International Conference on Parallel Architectures

https://github.com/davidhallac/TICC
https://github.com/davidhallac/TICC
https://github.com/boegel/MICA
https://github.com/boegel/MIC://github.com/mynameisfiber/pyxmeans/
https://github.com/boegel/MIC://github.com/mynameisfiber/pyxmeans/

85

and Compilation Techniques, PACT '06, pages 114�122, New York, NY, USA, 2006.
ACM.

[33] Michael C. Huang, Jose Renau, and Josep Torrellas. Positional adaptation of pro-
cessors: Application to energy reduction. In Proceedings of the 30th Annual Interna-

tional Symposium on Computer Architecture, ISCA '03, pages 157�168, New York,
NY, USA, 2003. ACM.

[34] Ted Hu�mire and Tim Sherwood. Wavelet-based phase classi�cation. In Proceed-

ings of the 15th International Conference on Parallel Architectures and Compilation

Techniques, PACT '06, pages 95�104, New York, NY, USA, 2006. ACM.

[35] Engin Ïpek, Sally A. McKee, Rich Caruana, Bronis R. de Supinski, and Martin
Schulz. E�ciently exploring architectural design spaces via predictive modeling.
In Proceedings of the 12th International Conference on Architectural Support for

Programming Languages and Operating Systems, ASPLOS XII, pages 195�206, New
York, NY, USA, 2006. ACM.

[36] C. Isci and M. Martonosi. Phase characterization for power: evaluating control-�ow-
based and event-counter-based techniques. In The Twelfth International Symposium

on High-Performance Computer Architecture, 2006., pages 121�132, Feb 2006.

[37] P. J. Joseph and M. J. Thazhuthaveetil. Construction and use of linear regression
models for processor performance analysis. In The Twelfth International Symposium

on High-Performance Computer Architecture, 2006., pages 99�108, Feb 2006.

[38] P. J. Joseph, Kapil Vaswani, and Matthew J. Thazhuthaveetil. A predictive per-
formance model for superscalar processors. In Proceedings of the 39th Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 39, pages 161�
170, Washington, DC, USA, 2006. IEEE Computer Society.

[39] Ajay Joshi, Aashish Phansalkar, Lieven Eeckhout, and Lizy Kurian John. Measuring
benchmark similarity using inherent program characteristics. IEEE Trans. Comput.,
55(6):769�782, June 2006.

[40] Salman Khan, Polychronis Xekalakis, John Cavazos, and Marcelo Cintra. Using
predictive modeling for cross-program design space exploration in multicore systems.
In Proceedings of the 16th International Conference on Parallel Architecture and

Compilation Techniques, PACT '07, pages 327�338, Washington, DC, USA, 2007.
IEEE Computer Society.

[41] A J KleinOsowski and David J. Lilja. Minnespec: A new spec benchmark workload
for simulation-based computer architecture research. IEEE Comput. Archit. Lett.,
1(1):7�7, January 2002.

[42] Daphne Koller and Nir Friedman. Probabilistic Graphical Models: Principles and

Techniques. The MIT Press, 2009.

86

[43] Anthony LaMarca and Richard E Ladner. The in�uence of caches on the performance
of sorting. Journal of Algorithms, 31(1):66 � 104, 1999.

[44] J. Lau, E. Perelman, G. Hamerly, T. Sherwood, and B. Calder. Motivation for
variable length intervals and hierarchical phase behavior. In Proceedings of the IEEE

International Symposium on Performance Analysis of Systems and Software, 2005,
ISPASS '05, pages 135�146, Washington, DC, USA, 2005. IEEE Computer Society.

[45] J. Lau, S. Schoemackers, and B. Calder. Structures for phase classi�cation. In
Proceedings of the 2004 IEEE International Symposium on Performance Analysis of

Systems and Software, ISPASS '04, pages 57�67, Washington, DC, USA, 2004. IEEE
Computer Society.

[46] J. Lau, S. Schoemackers, and B. Calder. Structures for phase classi�cation. In
IEEE International Symposium on - ISPASS Performance Analysis of Systems and

Software, 2004, pages 57�67, March 2004.

[47] Jeremy Lau, Erez Perelman, and Brad Calder. Selecting software phase markers
with code structure analysis. In Proceedings of the International Symposium on Code

Generation and Optimization, CGO '06, pages 135�146, Washington, DC, USA, 2006.
IEEE Computer Society.

[48] Benjamin C. Lee and David M. Brooks. Accurate and e�cient regression modeling for
microarchitectural performance and power prediction. SIGPLAN Not., 41(11):185�
194, October 2006.

[49] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geo�
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building
customized program analysis tools with dynamic instrumentation. SIGPLAN Not.,
40(6):190�200, June 2005.

[50] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geo�
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building
customized program analysis tools with dynamic instrumentation. In Proceedings of

the 2005 ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation, PLDI '05, pages 190�200, New York, NY, USA, 2005. ACM.

[51] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. SIGPLAN Not., 42(6):89�100, June 2007.

[52] M. E. J. Newman. A measure of betweenness centrality based on random walks.
arXiv e-prints, pages cond�mat/0309045, Sep 2003.

[53] Harish Patil, Robert Cohn, Mark Charney, Rajiv Kapoor, Andrew Sun, and Anand
Karunanidhi. Pinpointing representative portions of large intel R©itanium R©programs
with dynamic instrumentation. In Proceedings of the 37th Annual IEEE/ACM In-

ternational Symposium on Microarchitecture, MICRO 37, pages 81�92, Washington,
DC, USA, 2004. IEEE Computer Society.

87

[54] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James Cownie.
Pinplay: A framework for deterministic replay and reproducible analysis of parallel
programs. In Proceedings of the 8th Annual IEEE/ACM International Symposium

on Code Generation and Optimization, CGO '10, pages 2�11, New York, NY, USA,
2010. ACM.

[55] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825�2830, 2011.

[56] Dan Pelleg and Andrew W. Moore. X-means: Extending k-means with e�cient
estimation of the number of clusters. In Proceedings of the Seventeenth International

Conference on Machine Learning, ICML '00, pages 727�734, San Francisco, CA,
USA, 2000. Morgan Kaufmann Publishers Inc.

[57] A. Phansalkar, A. Joshi, L. Eeckhout, and L. K. John. Measuring program similarity:
Experiments with spec cpu benchmark suites. In IEEE International Symposium on

Performance Analysis of Systems and Software, 2005. ISPASS 2005., pages 10�20,
March 2005.

[58] Havard Rue and Leonhard Held. Gaussian Markov Random Fields: Theory And

Applications (Monographs on Statistics and Applied Probability). Chapman &
Hall/CRC, 2005.

[59] Kaushal Sanghai, Ting Su, Jennifer Dy, and David Kaeli. A multinomial clustering
model for fast simulation of computer architecture designs. In Proceedings of the

Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data

Mining, KDD '05, pages 808�813, New York, NY, USA, 2005. ACM.

[60] Daniel A. Schult. Exploring network structure, dynamics, and function using net-
workx. In In Proceedings of the 7th Python in Science Conference (SciPy, pages
11�15, 2008.

[61] Daniel Shelepov, Juan Carlos Saez Alcaide, Stacey Je�ery, Alexandra Fedorova,
Nestor Perez, Zhi Feng Huang, Sergey Blagodurov, and Viren Kumar. Hass: A
scheduler for heterogeneous multicore systems. SIGOPS Oper. Syst. Rev., 43(2):66�
75, April 2009.

[62] Xipeng Shen, Yutao Zhong, and Chen Ding. Locality phase prediction. In Proceedings
of the 11th International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, ASPLOS XI, pages 165�176, New York, NY, USA,
2004. ACM.

[63] Timothy Sherwood, Erez Perelman, and Brad Calder. Basic block distribution anal-
ysis to �nd periodic behavior and simulation points in applications. In Proceedings of

the 2001 International Conference on Parallel Architectures and Compilation Tech-

niques, PACT '01, pages 3�14, Washington, DC, USA, 2001. IEEE Computer Society.

88

[64] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automatically
characterizing large scale program behavior. SIGOPS Oper. Syst. Rev., 36(5):45�57,
October 2002.

[65] Timothy Sherwood, Erez Perelman, Greg Hamerly, Suleyman Sair, and Brad Calder.
Discovering and exploiting program phases. IEEE Micro, 23(6):84�93, November
2003.

[66] Michael Van Biesbrouck, Lieven Eeckhout, and Brad Calder. E�cient sampling
startup for sampled processor simulation. In Tom Conte, Nacho Navarro, Wen-
mei W. Hwu, Mateo Valero, and Theo Ungerer, editors, High Performance Embedded

Architectures and Compilers, pages 47�67, Berlin, Heidelberg, 2005. Springer Berlin
Heidelberg.

[67] Roland E. Wunderlich, Thomas F. Wenisch, Babak Falsa�, and James C. Hoe.
Smarts: Accelerating microarchitecture simulation via rigorous statistical sampling.
In Proceedings of the 30th Annual International Symposium on Computer Architec-

ture, ISCA '03, pages 84�97, New York, NY, USA, 2003. ACM.

[68] Joshua J. Yi, David J. Lilja, and Douglas M. Hawkins. A statistically rigorous
approach for improving simulation methodology. In Proceedings of the 9th Interna-

tional Symposium on High-Performance Computer Architecture, HPCA '03, pages
281�, Washington, DC, USA, 2003. IEEE Computer Society.

[69] Weihua Zhang, Jiaxin Li, Yi Li, and Haibo Chen. Multilevel phase analysis. ACM

Trans. Embed. Comput. Syst., 14(2):31:1�31:29, March 2015.

	Introduction
	Contributions
	Organization

	Background and Related Work
	Phase Behavior Characterization
	Related Work

	Efficient Simulation
	Reduced Benchmark
	Reduced Input
	Reduced Instruction Trace
	Reduced Design Space Search

	Summary
	Relation to This Work

	Toeplitz Inverse Covariance-based Clustering
	Introduction to Probabilistic Graphical Models
	Undirected Graphical Models
	Gaussian Markov Random Fields

	Time Series Definitions
	Toeplitz Inverse Covariance-Based Clustering
	Block Toeplitz Inverse Covariance Matrix
	Problem formulation
	TICC Algorithm

	Summary

	Phase Classification
	Microarchitecture-Independent Characterization of Applications (MICA)
	Phase Classification Formulation
	MICA as Time Series
	Dimension Reduction
	MICA segmentation (Level 1)
	Sampling points per phase (Level 2)

	Experimental Setup
	Summary

	Evaluation
	Evaluation Methodology
	Metrics for Evaluating Phase Classification
	Coarse-grained (TICC) Program Phases
	TICC Parameter Exploration
	The Ratio of Unique Behavior to Overall Execution

	Sampled Simulation
	Appropriate Number of Coarse-grained and Fine-grained Phases
	Evaluation
	Other Clustering Algorithms Comparison

	Phase Interpretability
	Case study: bzip2.chicken

	Summary

	Conclusion and Future Work
	Publications
	Future Work

	Bibliography

