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SUMMARY 

 
 An ideal malaria vaccine platform should potently induce protective immune 

responses and block parasite transmission from mosquito to human, and it should maintain 

these effects for an extended period. Here, we have focused on vaccine development based 

on adeno-associated virus serotype 1 (AAV1), a viral vector widely studied in the field of 

clinical gene therapy that is able to induce long-term transgene expression without causing 

toxicity in vivo. We generated a series of recombinant AAV1s and human Adenovirus type 5 

(AdHu5) expressing either Plasmodium falciparum circumsporozoite protein (PfCSP) or P25 

(Pfs25) protein, and demonstrated the potential utility of AAV1 vectors as an extremely 

potent booster vaccine to induce long-lasting immunity when combined with an Ad-priming 

vaccine in a rodent malaria model. In addition, we generated a multi-stage vaccine targeting 

both antigens, as it will greatly reduce the cost of administration of several single-target 

vaccines necessary to achieve reductions in the disease burden and transmission.  

 Here I show that heterologous two-dose vaccination with AdHu5-prime and AAV1-

boost (AdHu5-AAV1) elicited robust and long-lasting PfCSP- or Pfs25-specific antibody 

over 280 days. Regarding its protective efficacy, AdHu5-AAV1 PfCSP achieved high sterile 

protection (up to 80% protection rate) against challenge by transgenic Plasmodium berghei 

sporozoites expressing PfCSP (PbPfCSP). Regarding its transmission-blocking (TB) efficacy, 

immunization with AdHu5-AAV1 Pfs25 maintained TB activity in vivo against transgenic P. 

berghei expressing Pfs25 (PbPfs25DR3) for 287 days (99% reduction in oocyst intensity; 

TRA and 85% reduction in oocyst prevalence; TBA). For the multi-stage vaccines, sustained 

high titer of antigen-specific antibodies were also elicited in mice. In addition, complete 

protection was obtained after intravenous sporozoite challenges and a long-term 

transmission-blocking (99 % of TRA and 81% of TBA). The protection and TRA level are 

not significantly different compared with the mixture of single-antigen vaccines.  

Our data indicate that AAV1-based malaria vaccines can confer potent and durable 

protection as well as TB efficacy when administered following a AdHu5-priming vaccine, 

supporting the further evaluation of this regimen in clinical trials as a next-generation malaria 

vaccine platform. I propose that the multi-stage malaria vaccine regimen will be a powerful 

tool for malaria eradication while providing a greater overall protection and cost-

effectiveness than single-target vaccines. 
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INTRODUCTION 

 

In response to the threat posed by emerging resistance to artemisinin-based 

chemotherapy and insecticide-treated bed nets, efforts to develop potent malaria vaccines as a 

complementary tool in eradicating the disease have recently been intensified (1). The most 

advanced Plasmodium falciparum malaria vaccine candidate, RTS,S/AS01 (also known as 

Mosquirix™), based on pre-erythrocytic stage targeting the P. falciparum circumsporozoite 

protein (PfCSP), showed a limited vaccine efficacy of 36.3% against clinical malaria among 

children aged 5 to 17 months and of 25.9% in young infants aged 6 to 12 weeks, which 

declined to 4.4% over 7 years of follow-up in phase III clinical trials in several sub-Saharan 

countries (2, 3). Besides its limited and short-term efficacy, RTS,S raised some safety 

concerns and practical deployment challenges with its four-dose regimen in target age groups 

at high risk of malaria (4). Because of the moderate efficacy of the RTS,S vaccine, the 

malaria vaccine technology roadmap has updated their strategic goals from the development 

of vaccines with 80% protective efficacy against P. falciparum by 2020 to the development 

of second-generation malaria vaccines for malaria elimination in multiple settings that are 

highly efficacious against the disease by 2030 (1, 5). Achieving this goal would require new 

interventions of vaccine development to complement current control strategies, such as the 

development of transmission-blocking (TB) vaccines (TBVs). 

Malaria in human is caused by Plasmodium spp parasites which undergo a complex 

life cycle (6).  The parasites are transmitted by Anopheles mosquitoes by injection of 

sporozoites during bloodmeal into the subcutaneous tissue from which they migrate to the 

liver and invade hepatocytes, mature to a schizont containing merozoites that invade red 

blood cells to commence the erythrocytic cycle. Some merozoites differentiate into 

gametocytes which are ingested by the female mosquitoes, recombining into ookinetes that 

develop into oocysts in the mosquito midgut containing a large number of sporozoites 

migrating to salivary gland to repeat the cycle in the next host. The antigenic characteristics 

of the parasites change throughout the life cycle and most antigens (Ag) are not expressed at 

all stages of the parasite's life cycle. Consequently malaria vaccines have been developed by 

targeting different stages ; pre-erythrocytic stage, erythrocytic stage, and sexual stage (7). 

Pre-erythrocytic (PE) stage is a prime target for intervention efforts because immunity 

against this stage would be sterilizing by preventing sporozoites from invading hepatocytes 

or liver-stage parasites from developing to maturity and releasing infective merozoites, thus 
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eventually preclude the development of disease and the transmission of malaria (7, 8). This 

stage has been the target of RTS,S/AS01 which acts through the induction of high levels of 

both anti-circumsporozoite (CSP) antibodies (Ab) and CSP- specific CD4+
 T cells, with the 

Ab response having a greater role (9). In recent years, there has been an increased focus on 

the development of vaccines to break the cycle of Plasmodium by targeting the sexual stages 

(TBV), some of which has entered clinical trials (1, 10, 11). Both vaccines, the PE and TBV, 

are categorized as vaccines that interrupt malaria transmission (VIMT) to support malaria 

elimination (12). Hence, malaria vaccines have been considered amongst the most important 

modalities for potential prevention of the disease and transmission reduction. 

TBVs targeting the Ag expressed in the sexual stages of malarial parasites are 

considered one promising strategy for blocking transmission of the parasite from mosquitoes 

to humans. However, one potential limitation of TBVs is limited activity as the specific Ab 

(Ab) against the Ag, particularly with the mosquito-stage Ag Pfs25, cannot be boosted by 

natural infection so the titer gradually falls over time (13, 14). Hence, the development of a 

TBV capable of inducing long-term TB immunity for at least one transmission season (~6 

months), in addition to effective pre-erythrocytic vaccines (PEVs), would be an advantageous 

strategy (13). 

In 2013, the malaria vaccine technology roadmap set two strategic goals to be met 

by 2030; namely, vaccines that are highly efficacious in preventing clinical malaria and 

vaccines that prevent transmission to accelerate malaria parasite elimination (1). An 

efficacious vaccine must either be completely effective against a stage, by eliminating the 

parasite or dramatically reducing parasite numbers, or else be targeted at multiple stages of 

the parasite's life cycle (7). Since such an effective vaccine has not been available yet, 

combining partially effective vaccines of different anti-parasitic classes is a powerful way to 

achieve the goals. It has been demonstrated by a recent study that  partially efficacious 

interventions targeting the pre-erythrocytic and the sexual stage have synergistic impact in 

eliminating malaria from a population over multiple generations (15). Several studies have 

investigated the application of a mixture or co-administration of vaccines targeting different 

stages (16-20) including the most recent combination of RTS,S/AS01 and Pfs25-IMX313, the 

most leading candidate of transmission-blocking vaccines  (21) with some promising results.  

In any case, a multi-stage vaccine will provide a more cost-effective solution than 

vaccinating with mixtures of multiple single-stage vaccines. Also, it will be more convenient 

than co-administration of multiple vaccines for people who get vaccinated. Unfortunately, 

development of such vaccine has been a minority (10). Several studies investigating the 
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potential of multi-stage malaria vaccines have demonstrated generally poor Ab responses and 

limited efficacies (22-25). However,  a chimeric of P falciparum (Pf) glutamate-rich protein 

(GLURP), an Ag expressed in all stages of parasites (26),  fused in frame to a correctly 

folded fragment of Pfs48/45, a sexual stage Ag, have shown induction of specific individual 

antibodies with transmission blocking activity in the standard membrane feeding assay 

(SMFA) and functional activity against asexual stages in the Ab-dependent cellular inhibition 

assay (27), denoting a potential of development of multi-stage malaria vaccines. 

The progress of viral vectored vaccines for malaria through the clinical development 

pathway has accelerated considerably (28).  Adeno-associated virus (AAV), one of widely 

used viral vector, is a member of the family Parvoviridae. It can infect a wide variety of 

human and nonhuman cells and is not associated with any known disease or adverse clinical 

effects. A key advantage of AAV vectors is their capability to mediate long-term transgene 

expression without causing toxicity in vivo (29, 30). These safety and durability profiles have 

made AAV an attractive vector for gene therapy; it has been tested in around 100 clinical 

trials (31, 32). Recently, AAV vectors have also emerged as the frontrunner in vectored 

immunoprophylaxis (VIP), an active approach to substitute passive immunization by 

facilitating the secretion of neutralizing Abs (NAbs) by human cells as AAV delivers genes 

encoding the NAb (33, 34). Intramuscular (i.m.) injection of VIP vectors in mice and 

macaques elicits long-lived Ab or Ab-related immunoadhesin production at levels sufficient 

to protect against HIV, simian immunodeficiency virus, and influenza A virus infection (35-

38). Since both VIP and gene therapy rely on the low immunogenicity of AAV to permit 

durable expression of the transgene, utilization of AAV in the field of vaccination is minimal 

(39). Of its few investigated applications, an AAV-based malaria blood-stage vaccine has 

been developed but did not confer any protection against malaria parasite challenge in a 

mouse model when being used as a single vaccine regimen or as a booster following a prime 

with DNA or another AAV serotype (40, 41). 

Here, we investigated the potential efficacy of AAV-vectored vaccines harboring 

either the pfcsp, pfs25, or fusion of both genes by applying a heterologous prime-boost 

vaccination regimen with other viral-vectored or protein-in-adjuvant vaccines. Transgenic P. 

berghei expressing either the pfcsp or pfs25 genes was used to evaluate protective and TB 

efficacies in a murine model.  Our results demonstrated that prime-boost delivery of P. 

falciparum pre-erythrocytic and sexual stage Ag by human adenovirus 5 (AdHu5) followed 

by adeno-associated virus serotype 1 (AAV1) is capable of inducing sustained high titer of 

Ab responses. In addition, I propose that, our vaccine regimen, especially the Ad-prime-
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AAV-boost of the fusion Ag (multivalent vaccines) has the potential to fulfill the landmark 

goal of the malaria vaccine technology roadmap, by achieving sterile protection and long-

term transmission blocking efficacies.  
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AIMS OF THE STUDY 

 

 The overall aim of this thesis was to examine the potential of adeno-associated virus 

serotype 1 (AAV1) as viral vector for malaria vaccines. In addition, the specific aims of the 

study were: 

- To investigate whether AAV1 could drive the expression of malaria Ags in 

mammalian cells 

- To study whether the AAV1 could induce Ag specific immune responses in mice 

model 

- To identify the most immunogenic prime-boost regimen using AAV1 

- To check the durability of immune responses conferred by AAV1 vaccination 

- To evaluate the protective efficacy of vaccine regimen using AAV1 expressing PfCSP 

and multi-stage Pfs25-PfCSP 

- To assess the transmission blocking efficacy of vaccine regimen using AAV1 

expressing Pfs25 and multi-stage Pfs25-PfCSP 
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MATERIALS AND METHODS 

Ethics statement 

All animal care and handling procedures were approved by the Animal Care and Use 

Committee of Kanazawa University (No. AP-163700) and by the Guidelines for Animal Care 

and Use prepared by Jichi Medical University (No. 09193). All efforts were made to 

minimize suffering in the animals. 

Parasites and animals  

Transgenic P. berghei Pfs25DR3 used for TB assays was kindly donated by Andrew 

Blagborough from Imperial College London (42). Transgenic P. berghei expressing PfCSP 

(PfCSP-Tc/Pb) for the protective efficacy study was described previously (43, 44). Both 

transgenic parasites were maintained in the Laboratory of Vaccinology and Applied 

Immunology, Kanazawa University. Anopheles stephensi mosquitoes (SDA 500 strain) were 

infected with the transgenic parasites by allowing them to feed on parasite-infected 6-week-

old ddY mice. All other animal experiments used 6-week-old BALB/c mice. 

In vivo bioluminescent imaging 

AAV1 expressing luciferase (AAV1-Luc) was administered into the right medial 

thigh muscles of BALB/c mice (n = 3; 1×1011 viral genomes [vg]/mouse) on day 0, and D-

Luciferin (15 mg/mL; OZ Biosciences, Marseille, France) was administered intraperitoneally 

(i.p.; 150 µL/mouse) at the appropriate timepoints. Luciferase expression was detected as 

described previously (44, 45). The accumulated emissions were calculated, and their 

intensities were expressed in a color heat map. 

Viral vector construction 

To generate AAV1-PfCSP-G(−) and AAV1-PfCSP-G(+), the gene cassette 

encoding the mouse IgGκ signal peptide, FLAG tag, and WPRE was first synthesized and 

cloned into pUC57-Simple, to construct pUC57-Simple-SP-FLAG-WPRE (GenScript, 

Piscataway, NJ, USA) (Figure 1). The codon-optimized gene encoding a GPI anchor-lacking 

PfCSP (Leu19–Val377) was excised from pENTR-CAG-sPfCSP2-G2-sWPRE by digestion 

with EcoRI and XmaI and then inserted into the MunI and XmaI sites of pUC57-Simple-SP-

FLAG-WPRE to construct pUC57-sPfCSP2-WPRE. Next, the gene cassette encoding SP-

FLAG-sPfCSP2-WPRE was excised from pUC57-sPfCSP2-WPRE, by digestion with EcoRI 

and XhoI and then inserted into the EcoRI and XhoI sites of pAAV-MCS under the control of 
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the CMV promoter sequence to construct pAAV-CMV-sPfCSP2-G(−). The gene encoding 

PfCSP with VSV-G was excised from pENTR-CAG-sPfCSP2-G2-sWPRE by digestion with 

BamHI and XhoI and then inserted into the BamHI and XhoI sites of pAAV-CMV-sPfCSP2-

G(−) to construct pAAV-CMV-sPfCSP2-G(+). These plasmids, pAAV-CMV-sPfCSP2-G(−) 

and pAAV-CMV-sPfCSP2-G(+), were used to produce the AAV1-PfCSP-G(−) and AAV1-

PfCSP-G(+), respectively, in HEK293 cells as described elsewhere (29).  

To generate AdHu5-Pfs25, the codon-optimized genes encoding Pfs25 and G6S 

hinge were first synthesized and cloned into pUC57-Simple to construct pUC57-Simple-

sPfs25-hinge (GenScript) (Figure 1). The pfs25 gene fragment was then excised from 

pUC57-Simple-sPfs25-hinge by digestion with EcoRI and AgeI and inserted into the EcoRI 

and XmaI sites of pENTR-CAG-sPfCSP2-G2-sWPRE to construct pENTR-CAG-sPfs25-G2-

sWPRE. This plasmid, pENTR-CAG-sPfs25-G2-sWPRE, was cloned into the shuttle vector 

pAd/PL-DEST (Invitrogen, Carlsbad, CA, USA) using the LR recombination reaction. The 

resulting adenovirus was purified and titrated using the Fast-Trap Adenovirus Purification 

and Concentration Kit (Millipore, Temecula, CA, USA) and the Adeno-X™ Rapid Titer Kit 

(Clontech, Palo Alto, CA, USA), respectively, according to the manufacturers’ protocols. 

AdHu5-PfCSP has been described previously (46). 

To generate AAV1-Pfs25, the gene cassette encoding SP-FLAG-sPfs25-WPRE was 

first excised from pENTR-CAG-sPfs25-G2-sWPRE by digestion with EcoRI and XhoI and 

then inserted into the EcoRI and XhoI sites of pAAV-MCS under the control of the CMV 

promoter sequence, to construct pAAV-CMV-Pfs25. This plasmid, pAAV-CMV-Pfs25, was 

subsequently used to produce AAV1-Pfs25 in HEK293 cells as described elsewhere (29). 

For generation of AdHu5-Pfs25-PfCSP, the gene encoding Pfs25 and Gly6Ser hinge 

was excised from pUC57-Simple-sPfs25-hinge (Figure 1) by digestion with EcoRI/MefI and 

then inserted into the EcoRI site of pENTR-D-sPfCSP2-G2-sWPRE (47) to construct 

 
Figure 1: Construct of plasmids for generation of the viral-vectored vaccines. 
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pENTR-D-sPfs25-sPfCSP-WPRE; The gene cassette encoding the

fusion Pfs25-PfCSP was excised by digestion of pENTR-D-sPfs25-sPfCSP-WPRE with 

EcoRI/XmaI and then inserted into EcoRI/XmaI sites of pENTR-CAG-sPfCSP2-G2-sWPRE 

(paper in submission) to construct pENTR-CAG-sPfs25-sPfCSP2-G2-sWPRE which was 

subsequently cloned into the shuttle vector pAd/PL-DEST (Invitrogen, Carlsbad, CA, USA) 

using LR recombination reaction. The adenovirus was purified and titrated as described 

previously (46). For generation of AAV1-Pfs25-PfCSP, the gene cassette encoding the fusion 

Pfs25-PfCSP was excised from pENTR-CAG-sPfs25-sPfCSP2-G2-sWPRE by digestion with 

KpnI and XhoI and then inserted into the KpnI and XhoI sites of pAAV-CMV-sPfs25 (paper 

in submission). The resulting plasmid, pAAV-CMV-sPfs25-sPfCSP2 was used to generate 

AAV1-Pfs25-PfCSP in HEK293 cells as described elsewhere (29). 

Immunoblotting 

HEK293T cells were transduced with the Ad vaccines at a multiplicity of infection 

(MOI) of 3 or 10 or with the AAV1 vaccines at an MOI of 105 or 106 at 24 h after being 

seeded into plates. Cell lysates were collected using Laemmli buffer at 48 h post-infection 

and subjected to immunoblotting. The cell lysates were electrophoresed on 10% sodium 

dodecyl sulfate polyacrylamide (SDS-PAGE) gels under reducing conditions for PfCSP and 

under non-reducing conditions for Pfs25. Samples were transferred electrophoretically onto 

an Immobilon FL® PVDF membrane (Merck Millipore, Tokyo, Japan). The membranes were 

blocked for up to 1 h using 5% skim milk in PBS containing 0.1% Tween 20 (PBS-T), then 

incubated for 1 h at room temperature with the monoclonal Ab (mAb) anti-PfCSP 2A10 or 

mAb anti-Pfs25 4B7, diluted 1:10,000 in 5% skim milk. After washing with PBS-T, blots 

were probed with the secondary Ab, goat anti-mouse conjugated to IRDye 800 (Rockland 

Immunochemicals, Limerick, PA, USA), diluted 1:20,000 in 5% skim milk. The membrane 

was visualized using an Odyssey infrared imager (LI-COR, Lincoln, NE, USA). The 

molecular weight predictions were performed using the ExPASy server. 

Immunofluorescence assay (IFA) 

For IFA of protein expression, HEK293T cells were infected with the Ad vaccines 

or AAV1 vaccines on an 8-well chamber slide at an MOI of 10 or 105, respectively. Cells 

were fixed with 100% methanol or 4% paraformaldehyde for 30 min at 24 h post-infection. 

To visualize the expression of the Ag, the cells were incubated for 1 h at room temperature 

with Alexa Fluor 488-conjugated 2A10 or Alexa Fluor 596-conjugated 4B7, diluted 1:100. 

For IFA of the sporozoite and ookinete, the sporozoites isolated from mosquito salivary 



 9 

glands were loaded onto glass slides and fixed with acetone/methanol (1:1) while the 

ookinete isolated from infected blood were fixed with 4% paraformaldehyde. Slides were 

blocked with 10% normal goat serum before incubated with sera from immunized mice (1:80 

dilution) for 1 h, followed by incubation with FITC conjugated goat anti-mouse IgG for 1 h. 

VECTASHIELD® containing 4, 6-diamidino-2-phenylindole was used for nuclei staining. 

For positive control, ookinetes and sporozoites were stained with Alexa Fluor 596-conjugated 

4B7 and 2A10, respectively. A BZ-X710 fluorescence microscope (Keyence Corp, Tokyo, 

Japan) was used for image acquisition of all IFA experiments. 

Immunization 

All vaccines were administered intramuscularly in 100 µL of PBS. Ad vaccines 

were administered at a dose of 5×107 plaque-forming units (PFU), while AAV1 vaccines 

were administered at a dose of 1011 vg per mouse. Insect baculovirus expressing PfCSP (BV-

PfCSP) was administered at 108 PFU and recombinant full-length PfCSP (rPfCSP) was 

administered at 10 µg in Imject® Alum (Thermo Scientific, Waltham, MA, USA). 

Immunization was done with 3 week- or 6 week-interval between prime and boost. For 

mixture regimen, AdHu5-PfCSP (5×107 PFU) and AdHu5-Pfs25 (5×107 PFU) were mixed in 

a syringe as a prime, while AAV1-PfCSP (1011 vg) and AAV1-Pfs25 (1011 vg) were mixed as 

a boost. The negative control was injected with either PBS or AdHu5 expressing luciferase 

(AdHu5-Luc)-prime/AAV1-Luc-boost (AdHu5-AAV1 Luc). 

ELISA 

PfCSP- or Pfs25-specific Ab levels were quantified by ELISA as previously 

described (44). The Pfs25 Ag, constructed using the same pfs25 gene used in viral vectored 

vaccines, was produced using wheat germ cell-free (WGCF) protein expression system 

(CellFree Sciences, Matsuyama, Japan)(48), whereas the PfCSP Ag was produced using E 

coli expression system. Sera from immunized mice were collected from tail vein blood 

samples one day before boost and one day before the challenge, or weekly up to 280 days 

post-boost for monitoring. Pre-coated Costar® EIA/RIA polystyrene plates (Corning Inc, NY, 

USA) with 400 ng/well of PfCSP or 200 ng/well of Pfs25 were blocked with 1% bovine 

serum albumin (BSA) in PBS and then incubated with serially diluted sera samples, as well 

as with negative and positive controls (mAb 2A10 or mAb 4B7, respectively). An anti-mouse 

IgG conjugated with horseradish peroxidase (HRP) (Bio-Rad Lab, Inc, Tokyo, Japan) was 

used as a secondary Ab. Endpoint titers were expressed as the reciprocal of the last dilution 
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that gave an optical density at 414 nm of 0.15 U above the values of the negative controls 

(<0.1). All mice used in our experiments were seronegative before immunization. 

Intracellular cytokine staining (ICS) and ex vivo interferon (IFN)-γ ELISPOT assay 

ICS and ELISPOT were performed using splenocytes as described previously (46). 

For ICS, the splenocytes were stimulated with a final concentration of 1 µg/mL of the 

immunodominant CD8+ T-cell epitope NYDNAGTNL (PfCSP39–47) and 1 µg/mL of 

GolgiPlug™ (BD Biosciences, Tokyo, Japan) in a 96-well U-bottom tissue culture plate 

(Corning Inc.) for 6 h. The cells were then surface stained with anti-mouse CD16/32 Ab, 

Pacific Blue™-conjugated anti-mouse CD4 Ab, and PerCP/Cy5.5-conjugated anti-mouse 

CD8α Ab, and the cytokine was stained with fluorescein isothiocyanate (FITC)-conjugated 

anti-mouse IFN-γ Ab or a FITC-conjugated rat IgG1κ isotype control Ab. Data were acquired 

with a BD FACSVerse™ Flow Cytometer (BD Biosciences) and analyzed with FlowJo (Tree 

Star, Ashland, OR, USA). All Abs were purchased from BioLegend (San Diego, CA, USA). 

For ELISPOT, splenocytes were cultured for 20–24 h on an ELISPOT microplate 

(Perkin Elmer, Yokohama, Japan) with the H-2Kd-restricted PfCSP T-cell epitope 

(NYDNAGTNL, PfCSP39–47; final concentration, 1 µg/mL) or the PfCSP-overlapping 

peptide pool (final concentration, 5 µg/mL). Results are expressed as IFN-γ spot-forming 

units (SFU) per million splenocytes. 

Parasite challenge test 

Mice were intravenously challenged with PfCSP-Tc/Pb sporozoites resuspended in 

RPMI-1640 media (Gibco, Life Technologies, Tokyo, Japan). Each mouse was injected with 

100 μL of media containing 1,000 or 500 sporozoites via the tail vein. Infection was 

monitored from day 4 to 14 by Giemsa staining of thin blood smears obtained from the tail. 

Protection was defined as the complete absence of blood-stage parasitemia on day 14 post-

challenge. Protective efficacy was calculated using the following formula: % protective 

efficacy = [1 − [(number of infected mice in the vaccine group/total number of mice in the 

vaccine group)/(number of infected mice in the non-immunized group/total number of mice 

in the non-immunized group)]] × 100. The time required to reach 1% parasitaemia was 

determined as described previously (49).  

TB assays 

TB was assessed using direct-feeding assays (DFAs). At 35 or 287 days after boost, 

mice were treated with phenylhydrazine (PHZ) and then infected i.p. with 106 PbPfs25DR3-
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parasitized red blood cells (pRBCs) three days later. At 3 days post-infection, at least 50 

starved A. stephensi mosquitoes were allowed to feed on each infected mouse. At 5–6 h post-

feeding, any unfed mosquitoes were removed. Mosquitoes were then maintained on fructose 

[8% (w/v) fructose, 0.05% (w/v) p-aminobenzoic acid] at 19–22 °C and 50–80% relative 

humidity. On day 10–12 post-feeding, the mosquito midguts were dissected, and oocyst 

prevalence and intensity were recorded. For each mouse, the number of oocysts was counted, 

and the mean oocyst intensity was calculated. For inhibition calculations, these numbers were 

compared with those of mice immunized with AdHu5-AAV1 Luc control. Percent (%) 

inhibition of mean oocyst intensity (transmission-reducing activity; TRA) was calculated as 

follows: 100 × [1 − (mean number of oocysts in the test group/mean number of oocysts in the 

control groups)]. Similarly, the % inhibition of oocyst prevalence (transmission-blocking 

activity; TBA) was evaluated as 100 × [1 − (proportion of mosquitoes with any oocysts in the 

test group)/(proportion of mosquitoes with any oocysts in the control group)](50). 

Statistical analysis 

For all statistical analyses, GraphPad Prism version 7.0 for Mac OS was used. 

Depending on the data distribution, a Student’s t-test, Mann-Whitney rank test, or Wilcoxon 

matched-pairs signed rank test was used for comparing two groups. For the analysis of 

differences among immunization groups, a Kruskal-Wallis test with Dunn’s correction for 

multiple comparisons or Tukey’s multiple comparison was used. All ELISA end-point titers 

were log10 transformed before analysis. The protection level was analyzed by a Fisher’s 

exact test. The proportion of mice not reaching 1% parasitemia was analyzed using Kaplan-

Meier log-rank (Mantel-Cox) test. The significance of TRA and TBA was assessed using the 

Mann-Whitney U test and Fisher’s exact probability test, respectively. A p-value of <0.05 

was considered statistically significant. 
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RESULTS 

 

Long-lasting luciferase expression by AAV1-Luc at the injection site  

 It has been shown that AAV vectors are capable of expressing a transgene for a long 

time and of transducing skeletal muscle efficiently with minimal inflammatory response (29, 

51). To examine the transduction efficacy and long-lasting transgene expression of our 

AAV1, AAV1-Luc was administered into the right medial thigh muscles of BALB/c mice 

(1011 vg/mouse; n = 3) on day 0. Luciferase expression was monitored with bioluminescence 

imaging (Figure 2A), and the data for the total flux (Figure 2B) at different timepoints were 

normalized against that at day 1. The luminescence signal increased gradually from day 0 to 

day 7, reaching the peak within ten days (1010 p/s/cm2/sr); as expected, robust luciferase 

expression persisted for up to 260 days (Figures 2A,B). This result indicates that our AAV1 

vector system can efficiently transduce muscle cells and achieve sustained expression of the 

transgene product in mouse muscle, consistent with other studies showing a high level and 

stable transgene expression after an i.m. injection of AAV serotype 1 or 2, lasting for 1 to 5 

years (52-54). 

 

 

 
Figure 2: Long-term transgene expression after muscle transduction with AAV1-Luc. (A) 

Luciferase expression at different timepoints, detected by using the IVIS Lumina LT Series III 

in vivo imaging system. AAV1-Luc was administered into the right medial thigh muscles of 

BALB/c mice (n = 3; 1×1011 vg/mouse) on day 0. Luciferase expression remained high up to 

252 days post-administration of AAV1-Luc. The heat map images visible in the mice represent 

the total flux of photons (p/s/cm2) in that area. Rainbow scales are expressed in radiance 

(p/s/cm2/sr). (B) The mean total flux of photons is shown as a region of interest (ROI) from day 

0 to day 252 after administration of AAV1-Luc 
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Construction of AAV1-PfCSP-G(−) vaccine 

 For the construction of pre-erythrocytic vaccine (PEV), we generated AAV1-PfCSP-

G(−) harboring the gene cassette encoding a GPI anchor-lacking PfCSP (Leu19–Val377), 

followed by a wpre sequence, under the control of the CMV immediate-early enhancer-

promoter (Figure 3A). AAV1-PfCSP-G(−) was designed to allow PfCSP to be secreted from 

infected cells, which is a similar construction to that used in VIP. Immunoblotting revealed 

that the expression level of PfCSP in HEK293 cells increased gradually until 6 days after 

infection without any cytopathic effect (Figures 3B, 4); this is consistent with the expression 

pattern of luciferase shown in Figure 1. An IFA analysis showed that PfCSP was 

accumulated in the cytoplasm but not on the surface of infected cells (Figure 3C). 

Unexpectedly, no trace of PfCSP expression was detected in the cell medium (data not 

shown). These data indicate that PfCSP was not secreted from cells transduced with AAV1-

PfCSP-G(−). 

 
Figure 3: Functional activity of AAV1-PfCSP-G(−). (A) Construction of AAV1-PfCSP-G(−). 

Expression of the pfcsp gene cassette was driven by the CMV promoter. S, signal sequence; F, 

FLAG epitope tag. (B) Expression of PfCSP in HEK293T cells transduced with AAV1-PfCSP-

G(−) (MOI = 105), as assessed by immunoblotting with anti-PfCSP mAb 2A10. M, molecular 
marker. (C) Localization of PfCSP expression in transduced cells. HEK293T cells were 

transduced with AAV1-PfCSP-G(−) (MOI = 105) as determined by IFA. After 48 h, cells were 

fixed with methanol (permeabilized) or paraformaldehyde (non-permeabilized) and incubated 

with Alexa-Fluor-488-conjugated mAb 2A10 (green). Cell nuclei were visualized with 4ʹ,6-

diamidino-2-phenylindole (DAPI; blue). Original magnification, ×400. Bars = 50 µm. 
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Boosting with AAV1-PfCSP-G(−) following AdHu5-PfCSP priming induces potent and 

durable anti-PfCSP immune responses 

 We have previously generated rPfCSP in adjuvant vaccine capable of inducing 

protective immune responses as well as AdHu5-PfCSP and BV-PfCSP (25). To determine the 

optimal regimen of AAV1 immunization, we investigated several heterologous prime-boost 

immunization regimens using AAV1-PfCSP-G(−) in combination with these vaccines, in 

addition to the homologous AAV1, and we compared the induction of PfCSP-specific 

humoral and cellular immune responses. Mice were immunized with 3-week interval between 

prime and boost (n=3). At two weeks post-boost, their sera were collected for ELISA and 

their splenocytes were isolated for ICS and ELISPOT. The highest anti-PfCSP IgG titer was 

induced by the AdHu5-PfCSP-prime/AAV1-PfCSP-G(−)-boost heterologous regimen 

(AdHu5-AAV1 PfCSP) (Figure 5A). ICS assays revealed that AdHu5-AAV1 PfCSP induced 

 
Figure 4: Cytopathic effect of AdHu5-PfCSP and AAV1-PfCSP-G(-). HEK293T cells were 

transduced with AdHu5-PfCSP (MOI = 1) or with AAV1-PfCSP-G(-) (MOI = 105). Interference 

pictures were taken up to 6 days post infection. Original magnification, ×200 
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the highest IFN-γ production by CD8+
 T cells after stimulation with the CSP-derived H-2Kd 

peptide (Figure 5B). ELISPOT assays also showed that AdHu5-AAV1 PfCSP induced the 

highest frequency of IFN-γ-secreting cells, with an average of 2,252.22 SFU compared with 

<1,000 SFU per million splenocytes induced by other regimens (Figure 5C). Thus, although 

these experiments were not powered to detect statistically significant differences in immune 

 
Figure 5: Kinetics of humoral and cellular immune responses. (A) Anti-PfCSP IgG antibody 

responses. BALB/c mice (n = 3) were immunized with the indicated regimens at a 3-week 

interval. Two weeks after boosting, serum samples were collected from each mouse, and their 

anti-PfCSP IgG titers were determined by ELISA. AdHu5-PfCSP, BV-PfCSP, AAV1-PfCSP-

G(−), and rPfCSP protein are shown as AdHu5, BV, AAV1, and protein, respectively. Bars and 

error bars indicate the means and SD of the values, respectively (B,C) PfCSP-specific cellular 

immune responses. BALB/c mice were immunized as described in (A). At 2 weeks post-boost, 

splenocytes were stimulated with the synthetic PfCSP-specific CD8+ T-cell epitope. (B) An ICS 

assay was performed on the splenocytes. Percentages of IFN-γ-secreting cells in the CD8+CD4− 

T-cell population are shown after the subtraction of the percentages of cells stained with an 

isotype control antibody. (C) An ex vivo ELISpot assay was performed on splenocytes from the 

same mice. The IFN-γ SFU that reacted with the PfCSP-specific CD8+ T-cell epitope per million 

splenocytes are shown. (D) Monitoring of anti-PfCSP IgG antibody responses. Groups of 

BALB/c mice (n = 5) were immunized with an AdHu5-PfCSP -prime and AAV1-PfCSP-G(−)-

boost regimen at a 3-week or 6-week interval. Serum samples were collected from each mouse 1 

day before boost and weekly after boost. Anti-PfCSP IgG titers were determined by ELISA and 

monitored for 224 days after booster injection.  
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responses, the cellular immune responses demonstrated the same trend as seen in the humoral 

responses. Accordingly, we used the Ad-prime/AAV1-boost (AdHu5-AAV1) regimen for 

further vaccine evaluation. Ab monitoring showed that sustained high titer of anti-PfCSP IgG 

was induced for 224 days (Figure 5D). 

To assess the protective efficacy of heterologous prime-boost regimens using AdHu5-

PfCSP and AAV1-PfCSP-G(−), immunized mice were challenged with PfCSP-Tc/Pb 

sporozoites two weeks post-boost, and the presence of blood infection was evaluated up to 14 

days post-challenge. For comparison, we also performed challenges with homologous 

AdHu5-PfCSP (Ad-Ad), homologous AAV1-PfCSP-G(−) (AAV-AAV), and heterologous 

prime-boost of AAV1-PfCSP-G(−)-prime/AdHu5-PfCSP-boost (AAV-Ad). The AdHu5-

AAV1 immunization regimen conferred only a moderate sterile protection rate (37.5%), but 

this rate was the highest among the four tested regimens (Table 1, experiment 1). 

 

Table 1. Protective efficacies of heterologous prime and boost regimens using AdHu5 

and AAV1 vaccines against sporozoite challengea 

Prime Boost Protected/challenged (% protective efficacyb) 

(Exp. 1)   

PBS PBS 2/10 (0) 

AAV1-G(−) AAV1-G(−) 2/10 (0) 

AAV1-G(−) AdHu5 2/10 (0) 

AdHu5 AAV1-G(−) 5/10 (37.5) 

AdHu5 AdHu5 3/10 (12.5) 

   

(Exp. 2)   

PBS PBS 0/10 (0) 

AdHu5 AAV1-G(−) 2/10 (20) 

AdHu5 AAV1-G(+) 8/10 (80)c 

aAdHu5-PfCSP, AAV1-PfCSP-G(−), and AAV1-PfCSP-G(+) are shown as AdHu5, AAV1-

G(−), and AAV1-G(+), respectively. Immunized mice were intravenously challenged with 

1,000 (Exp. 1) or 500 (Exp. 2) PfCSP-Tc/Pb sporozoites and checked for blood-stage 

infections by microscopic examination of Giemsa-stained thin smears of tail blood. Protection 

was defined as the complete absence of blood-stage parasitemia on day 14 post-challenge. 

bProtective efficacy was calculated as described in the Materials and Methods. 

cSignificant difference with the PBS group as determined using a Fisher’s exact probability 

test (p < 0.001) 
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Construction of AAV1-PfCSP-G(+) vaccine 

In an effort to improve the protective efficacy, we generated AAV1-PfCSP-G(+), 

which anchors PfCSP on the surface of infected cells via the VSV-G protein membrane 

anchor (Figures 6A). The glycoprotein G of VSV is a 70-kDa glycoprotein containing two 

asparagine-linked complex oligosaccharides and is positioned such that almost 90% of the 

polypeptide chain is external to the lipid bilayer, forming spikes on the surface of the virion   

(55, 56). Thus, fusing an Ag to VSV-G allows a more efficient display of the Ag on 

transduced cells (56). Transduction by AAV1-PfCSP-G(+) demonstrated the same expression 

pattern on the cell surface (Figures 6C) as that by AdHu5-PfCSP (46). Immunoblotting with 

a quantification analysis showed that the amount of PfCSP expressed following transduction 

by AAV1-PfCSP-G(+) at MOI = 105 (PfCSP-VSV-G: predicted Mr of 53.3 kDa;) was three 

times higher than that following transduction by AAV1-G(−) (PfCSP: predicted Mr of 43.9 

kDa) (Figure 6B, lanes 3 and 2, respectively), which was similar to the amount of PfCSP 

induced by AdHu5-PfCSP (MOI = 3, lane 1).  

 
Figure 6: Functional activity of AAV1-PfCSP-G(+). (A) Constructs of AAV1-PfCSP-G(+) 

and AdHu5-PfCSP-G(+). Expression of the pcsp gene cassette in AAV1 and AdHu5 was driven 

by a CMV promoter and CAG promoter, respectively. G, VSV-G. (B) Expression of PfCSP in 

HEK293T cells transduced with AdHu5-PfCSP (lane 1, MOI = 3), AAV1-PfCSP-G(−) (lane 2, 

MOI = 105), or AAV1-PfCSP-G(+) (lane 3, MOI = 105), as assessed by immunoblotting with 

mAb 2A10 at 48 h post-transduction. (C) Localization of PfCSP expression in HEK293T cells 

transduced with AAV1-PfCSP-G(+) (MOI = 105) and AdHu5-PfCSP (MOI = 10), as determined 

by IFA conducted as described in Figure 3C. 
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Importantly, boosting with AAV1-G(+) following an AdHu5-prime evoked 

significantly higher anti-PfCSP IgG titers than did boosting with AAV1-G(−) (1.15106 vs 

4.03106, p < 0.05) (Figure 7). This result indicates that anchoring PfCSP through VSV-G 

enhanced not only the PfCSP expression level but also the humoral immune responses.  

We then compared the boosting effects of AAV1-PfCSP-G(−) and AAV1-PfCSP-

G(+) on protective efficacy. Mice immunized with a boost of either AAV1-PfCSP-G(−) or 

AAV1-PfCSP-G(+) following an AdHu5-PfCSP prime at 6-week interval were challenged 

with PfCSP-Tc/Pb sporozoites 5 weeks after boost. A significantly higher level of sterile 

immunity was achieved by AAV1-G(+) (80%) than by AAV1-G(−) (20%) (Table 1, 

Experiment 2). These results indicate that the display of PfCSP on the infected cells 

effectively enhanced the protective efficacy with the induction of a higher anti-PfCSP Ab 

response. 

 

Construction and expression of AAV1-Pfs25 and AdHu5-Pfs25 vaccines 

The ability of the AdHu5-AAV1 regimen to induce long-lasting high titer Abs led us 

to further explore this immunization regimen for the development of a TBV. With this aim, 

we generated AAV1-Pfs25 and AdHu5-Pfs25 expressing the pfs25 gene cassette fused to the 

VSV-G sequence (Figure 8A), which share similar construction with AAV1-PfCSP-G(+) 

and AdHu5-PfCSP, respectively. To examine the expression of conformationally dependent 

Pfs25 TB epitopes, Pfs25-VSV-G in HEK293T cells infected with AAV1-Pfs25 or AdHu5-

 

Figure 7: Anti-PfCSP IgG antibody responses. Groups of BALB/c mice (n = 10) were 

immunized with the indicated regimen at a 6-week interval. At 4 weeks post-boost, serum 

samples were collected from each mouse, and their anti-PfCSP IgG titers were determined by 

ELISA. AdHu5-PfCSP, AAV1-PfCSP-G(−), and AAV1-PfCSP (G+) are shown as AdHu5, 

AAV1-G(−), and AAV1-G(+), respectively. Bars and error bars indicate the means and SD of 

the values, respectively. Between-group differences were assessed with a Mann–Whitney U-test 

(*p < 0.05). 
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Pfs25 was analyzed by immunoblotting under non-reduced conditions using anti-Pfs25 mAb 

(4B7), which recognizes a conformation-dependent epitope of Pfs25 (57). 4B7 mAb reacted 

with Pfs25-VSV-G in cells infected with either virus as a ladder of bands with relative Mr of 

33–48 kDa (Figure 8B, lanes 1 and 2). We hypothesize that these multiple bands may be due 

to post-translational modifications because there are two potential N-linked glycosylation 

sites in the predicted amino acid sequence of Pfs25-VSV-G. IFA analysis showed that Pfs25-

VSV-G in cells infected with either virus was expressed not only in the cytoplasm but also on 

the surface of the cells (Figure 8C). These results suggest that the Pfs25-VSV-G on the 

surface of the infected cells might retain the three-dimensional structure of the native Pfs25 

protein, which is essential for the induction of Abs with TB functionality (58).  

The AdHu5-AAV1 Pfs25 immunization regimen induces potent and durable anti-Pfs25 

Ab responses 

Since AdHu5-AAV1 PfCSP could induce long-lasting anti-PfCSP Ab responses for 280 days, 

we addressed whether AdHu5-AAV1 Pfs25 also possess this critical characteristic of a TBV. 

Anti-Pfs25 Ab responses in immunized mice were monitored for 280 days. Consistent with 

the response induced by AdHu5-AAV1 PfCSP, immunization with AdHu5-AAV1 Pfs25 

 
Figure 8: Functional activity of AdHu5-Pfs25 and AAV1-Pfs25. (A) Constructs of AdHu5-

Pfs25 and AAV1-Pfs25. Expression of the pfs25 gene cassette in AAV1 and AdHu5 was driven 

by a CMV promoter and CAG promoter, respectively. (B) Expression of Pfs25 in HEK293T 

cells transduced with AdHu5-Pfs25 (lane 1, MOI = 10) or AAV1-Pfs25 (lane 2, MOI = 106), as 

assessed by western blotting using anti-Pfs25 mAb 4B7. (C) Localization of Pfs25 expression in 

HEK293T cells transduced with AAV1-Pfs25 (MOI = 105) and AdHu5-Pfs25 (MOI = 10), as 

determined by IFA using Alexa-Fluor-594-conjugated 4B7 (red). 

 



 20 

similarly maintained high anti-Pfs25 IgG titers over 280 days (Figure 9) 

 

The AdHu5-AAV1 Pfs25 regimen elicits a long-lasting TB effect for 287 days 

It has been widely accepted that the efficacy of transmission blockade relates 

directly to anti-Pfs25 Ab titers (59). To evaluate the functional activity of the anti-Pfs25 Ab 

induced by the immunization regimen, we assessed TB efficacies at 35 days (short-term) and 

287 days (long-term) after boost by performing DFAs, which have been suggested to be 

about twice as effective at measuring TB as the standard membrane-feeding assay (SMFA) 

(60). 

 Groups of five mice were infected i.p. with 106 PbPfs25DR3-pRBCs. At three days 

after infection, three of the five mice were chosen for DFA by parasitemia (>2%) and 

gametocytemia (>0.05%) (Figure 10). A. stephensi mosquitoes were allowed to feed on each 

infected mouse, and the oocyst intensity and prevalence were recorded at 10–12 days post-

feeding. Reduction in intensity and prevalence in the AdHu5-AAV1 Pfs25-immunized mice 

were calculated with respect to the AdHu5-AAV1 Luc-immunized controls. 

A critical study suggested that TB assays should only be analyzed when controls 

have at least 35 oocysts per mosquito to obtain more reproducible data (61). In the short-term 

study, mosquitoes that fed on the three control mice displayed an average intensity of 125.17 

oocysts/midgut. Following AdHu5-AAV1 Pfs25 immunization, the mean intensity was 

reduced to 0.20 oocysts/midgut, achieving a reduction (referred to as TRA) of 99.84% (p < 

0.0001). Correspondingly, the mean infection prevalence was reduced from 97.18% to 

 
Figure 9: Monitoring of the anti-Pfs25 IgG titer. BALB/c mice (n = 5–10) were immunized 

with the indicated regimens at a 6-week-interval. Serum samples were collected from each 

mouse at 1 day before boost and weekly after boost. Anti-Pfs25 IgG titers were determined by 

ELISA and monitored for 280 days after booster injection. Right and left down arrows indicate 

prime and boost injections, respectively. 
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10.41%, achieving a significant reduction (referred to as TBA) of 89.28% (p < 0.0001) 

(Table 2, Figure 10A). 

 

Table 2. Transmission-blocking activity of AdHu5-Pfs25-prime/AAV1-Pfs25-boost 

immunization regimen  

Group 

Mean intensity 

 SEM 

(oocysts per 

midgut) 

Mean prevalence 

 SEM 

(% infected 

mosquitoes) 

TRA 

(%)a 

TBA 

(%)b 

Short-term (35 days)     

AdHu5-AAV1 Pfs25 0.20  0.04 10.41  3.51 99.84* 89.28* 

AdHu5-AAV1 Luc 125.17  49.84 97.18  2.15   

     

Long-term (287 days)     

AdHu5-AAV1 Pfs25 0.24  0.03 12.72  1.53 99.73* 85.97* 

AdHu5-AAV1 Luc 87.24  31.86 90.63  5.67   

 

aTransmission-reducing activity (TRA) was calculated by comparison with the control group, 

and significant differences were assessed using a Mann-Whitney U test (*p < x0.0001) 

bTransmission-blocking activity (TBA) was calculated by comparison with the control group, 

and significant differences were assessed using a Fisher’s exact probability test (*p < 0.0001) 

 
Figure 10: Transmission-blocking efficacy of the AdHu5-Pf25-prime and AAV1-Pfs25-

boost regimen. (A–B) Groups of BALB/c mice (n = 3) were immunized with the indicated 

regimen at a 6-week interval and infected with Pfs25DR3 at 35 days (A) or 287 days (B) after 

boost. Mosquitoes were allowed to feed on the infected mice for a DFA. At day 10–12 post-

feeding, the mosquito midguts were dissected, and oocyst intensity and prevalence were 

determined (Table 2). Each datapoint represents a single mosquito blood-fed on each mouse. 

The x-axis points represent individual mice. Horizontal lines indicate the mean numbers of 

oocysts observed ( standard errors of the means [SEM]). 
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In the long-term study, although the mean IgG titer was reduced to about 20% 

compared with that at day 35, long-term TRA did not significantly decline over 287 days. 

Mosquitoes that fed on the three control mice displayed an average intensity of 87.24 

oocysts/midgut, whereas the mean intensity following AdHu5-AAV1 Pfs25 immunization 

was reduced to 0.24 oocysts/midgut, achieving a TRA of 99.72% (p < 0.0001). 

Correspondingly, the mean infection prevalence was reduced from 90.63% to 12.72%, 

achieving a significant TBA of 85.97% (p < 0.0001) (Table 2, Figure 10B) 

 

Both AdHu5-Pfs25-PfCSP and AAV1-Pfs25-PfCSP vaccines expressed Pfs25-PfCSP 

fusion Ag on the surface of mammalian cells in vitro 

 

Expression of the pfs25-pfcsp fusion gene was driven by CAG and CMV promoter 

in AdHu5 and AAV1, respectively (Figure 11A). Immunoblotting revealed that the 

expression level of the Pfs25-PfCSP fusion Ag in the cells infected with AdHu5 (MOI = 10, 

 
Figure 11: Construction of viral-vectored vaccines. (A) Expression of the pfcsp and pfs25 gene 

cassette was driven by CMV promoter in AAV1, and by CAG promoter in AdHu5. S, signal 

sequence; F, FLAG epitope tag; H, Hinge G6S, G, VSV-G transmembrane protein. (B) Analysis of 

expression of PfCSP and Pfs25 in HEK293T cells transduced with AdHu5-Pfs25-PfCSP (MOI = 
10) or AAV1-Pfs25-PfCSP (MOI = 106). Cells were lysed and loaded onto a 10% SDS-PAGE and 

immunoblotted with anti-PfCSP mAb 2A10 and anti-Pfs25 mAb 4B7. (C,D) Localization of PfCSP 
and Pfs25 expression in mammalian cells after transduction with AdHu5-Pfs25-PfCSP (C) or with 

AAV1-Pfs25-PfCSP (D). After 24 h, the cells were fixed with paraformaldehyde (NP; non-

permeabilized) or methanol (P; permeabilized) and blocked with 10% NGS. After blocking, cells 

were incubated with Alexa-Fluor-488-conjugated anti- PfCSP mAb (green) and Alexa-Fluor-594-

conjugated anti-Pfs25 mAb (red). Cell nuclei were visualized with 4′,6-diamidino-2-phenylindole 

(DAPI; blue). Original magnification, ×400. Bars = 50 μm. 
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lane 1) is equal with that of infected with AAV1 (MOI = 106, lane 2) with relative Mr of 71.5 

kDa (Figure 11B). The mAb 4B7 recognizes a conformation-dependent epitope of Pfs25, 

demonstrated that thePfs25-PfCSP fusion Ag maintain the correctly folded Pfs25 protein. 

IFA analysis showed that both Pfs25 and PfCSP epitopes were expressed in the cytoplasm 

and also on the surface of infected cells (Figure 11C,D). These results suggest that, similar 

with the Pfs25-VSV-G in the AdHu5-Pfs25 and AAV1-Pfs25, the Pfs25-PfCSP fusion Ag on 

the surface of the infected cells might retain the three-dimensional structure of the native 

Pfs25 protein, which is essential for the induction of Abs with TB functionality (58). 

  

The AdHu5 prime-AAV1 boost induces potent and durable anti-PfCSP and anti-Pfs25 

immune responses 

To investigate the immunogenicity of the immunization regimen, first we 

determined the PfCSP- and Pfs25-specific Ab responses induced by the fusion vaccines 

compared with the mixture of single-Ag vaccines. Mice were immunized with a 6-week 

interval between prime and boost (n=15-28 for PfCSP analysis; n=5-8 for Pfs25 analysis). At 

four weeks post-boost, their sera were collected for ELISA. Both anti-PfCSP and anti-Pfs25 

IgG titer were induced by the AdHu5-Pfs25-PfCSP-prime/AAV1-Pfs25-PfCSP-boost 

heterologous regimen (AdHu5-AAV1 Pfs25-PfCSP), comparable with those induced by the 

mixture of single-Ag vaccines (Figure 12A). Ab monitoring showed that the titers did not 

considerably reduce after 280 days (Figure 12B). IFA result demonstrated that immune sera 

from mice vaccinated with the AdHu5-AAV1 Pfs25-PfCSP reacted with the transgenic 

sporozoites (Figure 12C) and ookinetes (Figure 12D), as strong as that from mice 

immunized with the mixture of single-Ag vaccines. 

 

The AdHu5-AAV1 Pfs25-PfCSP confers complete protection against transgenic P 

berghei expressing PfCSP 

To assess the protective efficacy of the AdHu5-AAV1 Pfs25-PfCSP, immunized 

mice were challenged with PfCSP-Tc/Pb sporozoites four weeks post-boost, and the presence 

of blood infection was evaluated up to 14 days post-challenge. For comparison, we also 

performed challenges to the mice immunized with the mixture regimen. The AdHu5- AAV1 

Pfs25-PfCSP conferred 57% protection, comparable with that of the mixture regimen (Figure 

13). The protection level reached 100% in another challenge experiment. 
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Figure 12: Immunogenicity of AdHu5-AAV1 Pfs25-PfCSP. (A,B) Comparison of antibody 

responses induced by the multi-antigen vaccine and the mixture of single antigen vaccine. 

BALB/c mice were immunized with the indicated regimen. Individual sera were collected 4 
weeks after boost and antibody titers against PfCSP (A) and Pfs25 (B) were measured using 

ELISA. Data are represented as mean ± SEM. AdHu5-Pfs25-PfCSP-prime and AAV1-Pfs25-

PfCSP-boost are shown as Pfs25-PfCSP; the mixture of AdHu5-Pfs25 and AdHu5-PfCSP prime 

and a mixture of AAV1-Pfs25 and AAV1-PfCSP boost are shown as Pfs25+PfCSP mix. Bars 

and error bars indicate the means and SD of the values, respectively. Differences between 

groups were assessed with Mann-Whitney U test; *p<0.05. (C,D) Monitoring of antibody 

responses. BALB/c mice (n = 5-10) were immunized with the AdHu5-AAV1 Pfs25-PfCSP at 6-

week interval. Individual sera were collected a day before boost and weekly after the boost up to 

280 days. Antibody titers against PfCSP (C) and Pfs25 (D) were measured using ELISA. Data 

are represented as mean ± SD. (E,F) Reactivity of immune sera with the transgenic parasites. 

The transgenic PfCSP-Tc/Pb sporozoite (E) and ookinete of Pfs25DR3 Pb (F) were fixed and 

incubated with sera from immunized mice in (A,B) and stained with FITC conjugated goat anti-

mouse IgG (green) for IFA. The sporozoites and ookinetes were incubated with Alexa-594-

conjugated 2A10 and 4B7 for positive controls, respectively. Cell nuclei were visualized with 

4,6-diamidino-2-phenylindole (DAPI; blue). Original magnification, ×1000. Bars = 10 μm. 
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The AdHu5-AAV1 Pfs25-PfCSP regimen elicits a long-lasting TB efficacy for 287 days 

It has been widely accepted that the efficacy of transmission blockade relates 

directly to anti-Pfs25 Ab titers (59), thus we expected a high TB efficacies of the regimen. To 

evaluate the functional activity of the anti-Pfs25 Ab, we assessed TB efficacies at 35 days 

(short-term) and 287 days (long-term) after boost by performing DFAs. Groups of five mice 

were infected i.p. with 106 PbPfs25DR3-pRBCs. At three days after infection, three of the 

five mice were chosen for DFA by parasitaemia (>2%) and gametocytemia (> 0.05%) 

(Figure 14). A. stephensi mosquitoes were allowed to feed on each infected mouse, and the 

oocyst intensity and prevalence were recorded at 10–12 days post-feeding. Reduction in 

intensity and prevalence in the AdHu5-AAV1 Pfs25-PfCSP immunized mice were calculated 

with respect to the AdHu5-AAV1 Luc-immunized controls. 

First, we evaluated the short-term TB efficacy of the dual Ag vaccines compared 

with the mixture of single-Ag vaccines (Table 3 Exp.1, Figure 14A). In this experiment, 

mosquitoes that fed on the three control mice displayed an average intensity of 61.87 

oocysts/midgut. Following AdHu5-AAV1 Pfs25-PfCSP immunization, the mean intensity 

was reduced to 0.29 oocysts/midgut, achieving a reduction (referred to as TRA) of 99.53% (p 

< 0.0001), compared with 0.16 oocysts/midgut in the mixture group (TRA of 99.74%, p < 

0.0001). Correspondingly, the mean infection prevalence was reduced from 83.59% to 6.94% 

 
Figure 13: Protective efficacy after immunization with AdHu5-AAV1 Pfs25-PfCSP. 

BALB/c mice (n = 10) were immunized at 6-week-interval and challenged with an intravenous 

injection of 500 transgenic PfCSP-Tc/Pb sporozoites 4 weeks after boost. Parasitaemia was 

monitored for 3 consecutive days, starting from day 4 after challenge, and a model predicting the 

time to reach 1% parasitaemia was generated. The absence of blood-stage parasites in the 

animals was confirmed on day 14 after challenge. The statistical analysis was performed with 

Kaplan-Meier survival curves, and p values were calculated with a Kaplan-Meier log-rank 

(Mantel-Cox) test. ****p < 0.0001, ***p < 0.001, **p < 0.01 compared with control groups 
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and 5.91% in the AdHu5-AAV1 Pfs25-PfCSP group and the mixture group, respectively, 

achieving a significant reduction (referred to as TBA) of 91.70% (p  < 0.0001) and 92.93% (p  

< 0.0001). These results demonstrated that there are no significant differences in the TRA 

and TBA between the dual Ag group and the mixture group (p = 0.67 and p = 0.82, 

respectively). 

Next, to re-confirm the TB efficacy of the AdHu5-AAV1 Pfs25-PfCSP, we 

performed another short-term study (Table 3 Exp.2, Figure 14B). In this experiment, 

mosquitoes that fed on the three control mice displayed an average intensity of 125.17 

oocysts/midgut and infection prevalence of 97.18%. The mean intensity was 0.29 

oocysts/midgut in the immunized group, gaining a TRA of 99.77% (p < 0.0001), and the 

mean infection prevalence was 8.04%, gaining a TBA of 91.73% (p < 0.0001). These result 

are comparable with those of exp 1. 

Finally, we evaluated the long-term TB efficacy of the AdHu5-AAV1 Pfs25-PfCSP 

after 287 days of the booster injection (Table 3 Exp3, Figure 14C). The experiment revealed 

that TRA did not significantly decline over 287 days. The mean oocyst intensity in the 

immunized group was 0.42 oocysts/midgut compared to 87.24 oocysts/midgut of the control 

group, reaching a TRA of 99.52% (p < 0.0001), whereas the mean infection prevalence was 

16.44 % compared to 90.63% of the control group, reaching a TBA of 81.87% (p < 0.0001). 

 

Table 3. Transmission-blocking activity of AdHu5-Pfs25-PfCSP prime/AAV1-Pfs25-

PfCSP boost immunization regimen  

Group 

Mean intensity  

SEM 

(oocysts per 

midgut) 

Mean prevalence  

SEM 

(% infected 

mosquitoes) 

TRA 

(%)a,b 

TBA 

(%)c,d 

Exp.1.Short-term 

(35 days) 
    

AdHu5-AAV1 Pfs25-

PfCSP 
0.29(0.07) 6.94 (2.47) 99.53* 91.70* 

AdHu5-AAV1 Pfs25 

+ 

Ad- AAV PfCSP mix 

0.16 (0.05) 5.91 (1.98) 99.74* 92.93* 

AdHu5-AAV1 Luc 61.87 (26.92) 83.59 (11.21)   

     

Exp.2. Short-term 

(35 days) 
    

AdHu5-AAV1 Pfs25-

PfCSP 
0.291 (0.04) 8.037 (1.00) 99.77* 91.73* 

AdHu5-AAV1 Luc 125.2 (49.84) 97.18 (2.15)   
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Exp.3. Long-term 

(287 days) 
    

AdHu5-AAV1 Pfs25-

PfCSP 
0.42 (0.19) 16.44 (4.90) 99.52* 81.87* 

AdHu5-AAV1 Luc 87.24 (31.86) 90.63 (5.67)   

a Transmission reducing activity (TRA) was calculated by comparison with the control 

(AdHu5-AAV1 Luc) group, and significant differences were assessed using Mann-Whitney 

U test (*p < 0.0001) 

b No significant difference between TRA of Pfs25-PfCSP and Pfs25+PfCSP mix (p = 

0.6720) in exp 1 

cTransmission blocking activity (TBA) was calculated by comparison with the control group, 

and significant differences were assessed using a Fisher’s exact probability test (*p < 

0.0001) 

d No significant difference between TBA of Pfs25-PfCSP and Pfs25+PfCSP mix (p = 0.8171) 

in exp 1 

 

Collectively, our data demonstrate that AAV1 is an excellent booster vaccine vector 

following an AdHu5 prime to induce a high level of humoral immune responses and to 

achieve a high level of protective immunity and TB immunity against the malaria parasite. In 

addition, AdHu5-AAV1 Pfs25-PfCSP is an effective multi-stage malaria vaccines to induce a 

high level of PfCSP- and Pfs25- specific Ab immune responses and to achieve a high level of 

protective immunity and long-term TB immunity against the malarial parasites. 
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Figure 14: Transmission-blocking efficacy against Pfs25DR3 by AdHu5-AAV1 Pfs25-PfCSP. 

BALB/c mice were immunized with the indicated regimen at 6 week-interval (n = 3) and infected 

with Pfs25DR3 Pb 35 days (A,B) and 287 days (C) after boost. AdHu5-Pfs25-PfCSP-prime/AAV1-

Pfs25-PfCSP-boost is shown as Pfs25-PfCSP; AdHu5-Pfs25 mixture with AdHu5-PfCSP 

prime/AAV1-Pfs25 mixture with AAV1-PfCSP boost is shown as Pfs25+PfCSP mix. Mosquitoes 

were allowed to feed on the infected mice by a direct-feeding assay. At day 10-12 post-feeding, 

mosquito midguts were dissected, and oocyst intensity and prevalence were determined [Table 1, 

exp 1(A), exp 2 (B), and exp 3(C)]. Each data point represents a single mosquito blood-fed on each 

mouse. X-axis points represent individual mice. Horizontal lines indicate the mean numbers of 

oocysts observed ( standard errors of the means [SEM]). 
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DISCUSSION 

 
In this study, we demonstrated durable PfCSP- and Pfs25-specific humoral 

responses elicited by a heterologous AdHu5-prime and AAV1-boost immunization regimen. 

We evaluated the efficacies of these immunizations by using transgenic P. berghei parasites 

expressing either PfCSP or Pfs25 in a murine model, which facilitates the optimization of 

vaccine immunogenicity in vivo (62). The regimen targeting pre-erythrocytic stage Ag PfCSP 

elicited a high level of complete protection against sporozoite challenge. In the same way, the 

regimen targeting the mosquito-stage Ag Pfs25 conferred excellent TB activity as assessed 

using DFAs. Most notably, the TB activity was sustained up to 287 days after booster 

injection, with a TRA of 99%, fulfilling the requirement for an ideal TBV. Thus, AAV-based 

booster vaccines possess remarkable characteristics of inducing long-lasting Ab responses to 

major malaria vaccine candidate Ags following their administration after an AdHu5-priming 

vaccine.   

It has been suggested that anti-CSP Ab titers are surrogate markers of protection for 

the magnitude and duration of RTS,S/AS01 efficacy (63). Waning anti-CSP Ab titers predict 

the duration of efficacy against clinical malaria. RTS,S/AS01 has shown reduced efficacy 

from 36.3% to 4.45% over a seven-year follow-up (2, 3). Therefore, to achieve more durable 

protective efficacy, it is necessary to develop vaccines capable of inducing sustained anti-

CSP Abs. In the present study, we showed that using an AAV1-boost after an Ad-prime 

evoked a long-term high titer of anti-PfCSP. In addition, the regimen consists of only two 

doses, rather than the three doses needed for RTS,S; this reduced requirement will improve 

overall adherence to the vaccination schedule. 

Regarding the use of this modality as a TBV, we demonstrated that the two-dose 

regimen of AdHu5-AAV1 Pfs25 elicited durable anti-Pfs25 Ab with a high level of TB 

efficacy over 287 days after booster injection. Pfs25, a 25-kDa surface Ag of zygotes and 

ookinetes, is currently the most developed TBV candidate that has been tested in human 

clinical trials (64). However, using this Ag for the development of TBVs is challenging, as 

the Ab titer cannot be boosted by natural infection (13, 14). Furthermore, a high 

concentration of anti-Pfs25 IgG is required to achieve significant blocking (64). Cheru et al. 

found that the Ab concentration needed to reduce the number of oocysts by 50% in a SMFA 

was 85.6 µg/mL (65). Conjugation of Pfs25 to Pseudomonas aeruginosa exoprotein A (EPA) 

with Alhydrogel (66) improved the immunogenicity of the vaccine and induced a geometric 
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mean of 88 µg/mL of anti-Pfs25 Ab in the highest dose group at two weeks after the fourth 

vaccination in a Phase I trial (67). However, the Ab levels declined to near baseline within 1 

year of vaccination. As the TBA of anti-Pfs25 Abs correlates with the Ab titer, it is necessary 

for a TBV candidate to induce a sustained high titer of anti-Pfs25 IgG. In the present study, 

our AdHu5-AAV1 Pfs25 immunization regimen achieved this highly desirable attribute. 

An earlier AAV-based malaria vaccine development failed to achieve a sufficient 

Ab titer for malaria protection, even when the AAV was used for boosting after a prime with 

another AAV serotype or with a DNA (40). Our strategy to combine the vaccine with an Ad-

based vaccine in a heterologous prime-boost regimen revealed that AAV has the potential to 

induce Ab against the encoded Ag, particularly when administered as a boost, but not when 

administered as the prime. Although both AdHu5 and AAV1 have been shown to be safe in 

human trials (31, 68), a potential area of concern in their application as a vehicle for vaccines 

is the pre-existing immunity in the human population due to previous exposure from natural 

infections, in particular to Ad. It has been reported that the transgene product-specific Ab 

response was completely inhibited in humans after the administration of an AdHu5 vaccine 

vector (69), even with moderate titers of pre-existing NAb against AdHu5. A high prevalence 

of AdHu5-specific NAb was detected in both Gambian (84.67%) and South African 

(79.87%) populations (70). Nonetheless, in a phase 2 trial of AdHu5 vector-based Ebola 

vaccine in Sierra Leone, it was shown that a vaccine dose of 8.0×1010 viral particles was safe 

and highly immunogenic in healthy Sierra Leonean adults, inducing specific Ab responses 

from day 14 onwards, which peaked at day 28, but declined quickly in the following months 

(71). Thus, to maintain Ab responses against the transgene, we have shown that an AAV1 

boost might be a solution. AAV1 has lower seroprevalence compared with AAV2, the 

prototype of AAV (72). Moreover, it has minimal cross-reactivity against pre-existing NAbs 

against AAV2 (73). The seroprevalence against other serotypes of AAV, such as AAV5, 

AAV6, or AAV8, are even lower; thus, the development of malaria vaccines based on other 

serotypes will be an exciting future goal (74). 

Furthermore, in this study, we demonstrated a generation of AdHu5- and AAV1-

based multi-stage malaria vaccines harboring the gene encoding PfCSP fused with the Pfs25. 

Similar to the AdHu5-AAV1 Pfs25, the AdHu5-AAV1 Pfs25-PfCSP evoked  high level of 

Ab titers against both Ags that are sustained for at least one transmission season, the desired 

ideal feature of malaria vaccine (13). Besides, the vaccines achieve both protection and TB 

immunity in a murine model, fulfilling the urgent need for an effective second-generation 

malaria vaccine which reduces transmission and incidence, rather than merely reducing 
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morbidity and mortality of the disease (75, 76). Moreover, it may meet the set strategic goals 

of the malaria vaccine technology roadmap by 2030 (1).  

The Malaria Eradication Research Agenda Consultative Group on Vaccines 

(malERACGoV) required that a VIMT must primarily mitigate malaria transmission (12). A 

highly effective PEV that prevents erythrocytic stage infection will obviously reduce 

transmission. However, as previously mentioned, RTS,S/AS01 confers only 36.3% protection 

(77, 78). On the other hand, it has been suggested that a successful TBV would ideally be 

combined with a PEV or a blood stage vaccine (79). Hence, mixing both PEV and TBV 

might be a solution to achieve an effective VIMT. This regimen may also increase the 

adherence to the vaccination program for malaria elimination as people who get vaccinated 

will prefer a shot that also provides protection from the disease. A recent study has 

investigated the potential of mixing the RTS,S/AS01 with Pfs25-IMX313/AS01 in one 

formulation or co-administering both vaccines (21). The authors found that the combination 

of both vaccines elicited similar Ab titers against both PfCSP and Pfs25 as that of the single-

Ag vaccines. Using in vitro assays, they also showed that the combination of vaccines 

exhibited similar functional activity in transmission blocking and sporozoite inhibition. Using 

in vivo assays, our result of the mixture of single-Ag formulation has been in line with this 

study, contrasting with several other studies demonstrating immune interference or reduced 

efficacies of the combination of several malaria vaccines (17, 80, 81). 

However, mixing two or more vaccines in one formulation will result in higher 

vaccination cost. Development of a multi-valent vaccine harboring different Ags from 

different stages of parasite might be the best solution to reduce the vaccination cost. 

Addressing this issue, we employed the multi-stage AdHu5-AAV1 Pfs25-PfCSP and 

demonstrated similar efficacies of this regimen as those of the mixture of single-Ag 

formulation in both protection and transmission blocking. More remarkably, this multi-stage 

vaccine regimen exhibited a long-term transmission blocking, up to 9 months, with a 

sustained high titer of antibodies against Pfs25 exceeding one transmission season. These 

results are in contrast with previous development of multi-stage malaria vaccines 

demonstrating generally poor Ab responses (22-25). In the current study, we have focused on 

the pre-erythrocytic Ag, rather than blood-stage Ag, to combine with the mosquito-stage Ag. 

This combination might be the most efficient in reducing malaria prevalence as shown in a 

malaria model analysis of pathogen virulence evolution predicting that blood-stage vaccines 

select for higher virulence, while PEVs select for lower parasite virulence, which may 

increase the population-level benefits of vaccination (82) . 
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To conclude, AAV1 is a potential viral vector for PfCSP,  Pfs25, and the fusion of 

both Ags as a booster vaccine following Ad-prime. With a 99% TRA, the AdHu5-AAV1 

Pfs25 and AdHu5-AAV1 Pfs25-PfCSP vaccination regimen appear to be promising tools for 

achieving malaria eradication, as it has been shown that even a TRA of only 32% could 

reduce the basic reproduction number of the parasite by 20% and eliminate Plasmodium from 

mosquito and mouse populations at low transmission intensities in a laboratory model (83).  

Future studies should be directed to investigate the long-term protective efficacy of 

the AdHu5-AAV1 Pfs25-PfCSP. However, even with lower protective efficacy, this regimen 

will be a great tool in supporting malaria elimination program as it has been shown that anti-

sporozoite and anti-transmission interventions powerfully act synergistically to accelerate 

malaria elimination efforts over multiple generations (15). Moreover, additional TB 

immunity to the pre-erythrocytic immunity conferred by this multi-valent regimen is an 

improvement to the RTS,S/AS01 for next-generation vaccine (84).  

Thus, these immunization regimen deserve further evaluation in clinical trials, where 

it can be used without safety concerns because Ad and AAV have been previously applied in 

humans as vaccine and gene therapy vectors, respectively. 

 

  



 33 

REFERENCES 

 
1. Moorthy VS, Newman RD, & Okwo-Bele J-M (2013) Malaria vaccine technology 

roadmap. Lancet 382(9906):1700-1701. 

2. Olotu A, et al. (2016) Seven-Year Efficacy of RTS,S/AS01 Malaria Vaccine among 

Young African Children. N Engl J Med 374(26):2519-2529. 

3. Anonymous (2015) Efficacy and safety of RTS,S/AS01 malaria vaccine with or 

without a booster dose in infants and children in Africa: final results of a phase 3, 

individually randomised, controlled trial. Lancet 386(9988):31-45. 

4. Greenwood B & Doumbo OK (2016) Implementation of the malaria candidate 

vaccine RTS,S/AS01. Lancet 387(10016):318-319. 

5. The mal ERACGoD (2011) A Research Agenda for Malaria Eradication: Drugs. 

PLoS Med 8(1):e1000402. 

6. Igweh JC (2012) Biology of Malaria Parasites. Malaria Parasites, ed Okwa DO 

(InTech). 

7. Doolan DL & Hoffman SL (1997) Multi-gene vaccination against malaria: A 

multistage, multi-immune response approach. Parasitol Today 13(5):171-178. 

8. Doolan DL & Martinez-Alier N (2006) Immune responses to pre-erythrocytic stages 

of malaria parasites. Current molecular Medicine 6:169-185. 

9. White MT, et al. (2013) The Relationship between RTS,S Vaccine-Induced 

Antibodies, CD4+ T Cell Responses and Protection against Plasmodium falciparum 

Infection. PLOS ONE 8(4):e61395. 

10. Birkett AJ (2015) Building an effective malaria vaccine pipeline to address global 

needs. Vaccine 33(52):7538-7543. 

11. WHO (Malaria Vaccine Rainbow Tables. 

12. Birkett AJ, Moorthy VS, Loucq C, Chitnis CE, & Kaslow DC (2013) Malaria vaccine 

R&D in the Decade of Vaccines: Breakthroughs, challenges and opportunities. 

Vaccine 31:B233-B243. 

13. Kappe SHI, Vaughan AM, Boddey JA, & Cowman AF (2010) That Was Then But 

This Is Now: Malaria Research in the Time of an Eradication Agenda. Science 

328(5980):862. 

14. Good MF & Yanow SK (2017) A whole parasite transmission-blocking vaccine for 

malaria: an ignored strategy. Emerging Topics in Life Sciences 1(6):547. 

15. Sherrard-Smith E, et al. (2018) Synergy in anti-malarial pre-erythrocytic and 



 34 

transmission-blocking antibodies is achieved by reducing parasite density. Elife 7(7). 

16. Forbes EK, et al. (2011) Combining liver- and blood-stage malaria viral-vectored 

vaccines: investigating mechanisms of CD8+ T cell interference. J Immunol 

187(7):3738-3750. 

17. Sheehy SH, et al. (2012) ChAd63-MVA–vectored Blood-stage Malaria Vaccines 

Targeting MSP1 and AMA1: Assessment of Efficacy Against Mosquito Bite 

Challenge in Humans. Molecular Therapy 20(12):2355-2368. 

18. Sedegah M, et al. (2011) Adenovirus 5-Vectored P. falciparum Vaccine Expressing 

CSP and AMA1. Part A: Safety and Immunogenicity in Seronegative Adults. PLOS 

ONE 6(10):e24586. 

19. Tamminga C, et al. (2011) Adenovirus-5-Vectored P. falciparum Vaccine Expressing 

CSP and AMA1. Part B: Safety, Immunogenicity and Protective Efficacy of the CSP 

Component. PLOS ONE 6(10):e25868. 

20. Chuang I, et al. (2013) DNA Prime/Adenovirus Boost Malaria Vaccine Encoding P. 

falciparum CSP and AMA1 Induces Sterile Protection Associated with Cell-Mediated 

Immunity. PLOS ONE 8(2):e55571. 

21. Brod F, et al. (2018) Combination of RTS,S and Pfs25-IMX313 Induces a Functional 

Antibody Response Against Malaria Infection and Transmission in Mice. Frontiers in 

Immunology 9(2780). 

22. Porter DW, et al. (2011) A human Phase I/IIa malaria challenge trial of a polyprotein 

malaria vaccine. Vaccine 29(43):7514-7522. 

23. Tine JA, et al. (1996) NYVAC-Pf7: a poxvirus-vectored, multiantigen, multistage 

vaccine candidate for Plasmodium falciparum malaria. Infect Immun 64(9):3833-

3844. 

24. Ockenhouse CF, et al. (1998) Phase I/IIa safety, immunogenicity, and efficacy trial of 

NYVAC-Pf7, a pox-vectored, multiantigen, multistage vaccine candidate for 

Plasmodium falciparum malaria. J Infect Dis 177(6):1664-1673. 

25. Spiegel H, et al. (2015) The stage-specific in vitro efficacy of a malaria antigen 

cocktail provides valuable insights into the development of effective multi-stage 

vaccines. Biotechnology Journal 10(10):1651-1659. 

26. Borre MB, et al. (1991) Primary structure and localization of a conserved 

immunogenicPlasmodium falciparum glutamate rich protein (GLURP) expressed in 

both the preerythrocytic and erythrocytic stages of the vertebrate life cycle. Molecular 

and Biochemical Parasitology 49(1):119-131. 



 35 

27. Theisen M, et al. (2014) A multi-stage malaria vaccine candidate targeting both 

transmission and asexual parasite life-cycle stages. Vaccine 32(22):2623-2630. 

28. Ewer KJ, et al. (2015) Progress with viral vectored malaria vaccines: A multi-stage 

approach involving “unnatural immunity”. Vaccine 33(52):7444-7451. 

29. Xin K-Q, et al. (2006) Induction of Robust Immune Responses against Human 

Immunodeficiency Virus Is Supported by the Inherent Tropism of Adeno-Associated 

Virus Type 5 for Dendritic Cells. Journal of Virology 80(24):11899. 

30. Kuck D, et al. (2006) Intranasal Vaccination with Recombinant Adeno-Associated 

Virus Type 5 against Human Papillomavirus Type 16 L1. J Virol. 80(6):2621. 

31. Mingozzi F & High KA (2011) Therapeutic in vivo gene transfer for genetic disease 

using AAV: progress and challenges. Nat Rev Genet. 12:341. 

32. Vandamme C, Adjali O, & Mingozzi F (2017) Unraveling the Complex Story of 

Immune Responses to AAV Vectors Trial After Trial. Hum Gene Ther 28(11):1061-

1074. 

33. Sanders JW & Ponzio TA (2017) Vectored immunoprophylaxis: an emerging adjunct 

to traditional vaccination. Tropical diseases, travel medicine and vaccines 3:3-3. 

34. Huyghe J, Magdalena S, & Vandekerckhove L (2017) Fight fire with fire: Gene 

therapy strategies to cure HIV. Expert Rev Anti Infect Ther 15(8):747-758. 

35. Balazs AB, Bloom JD, Hong CM, Rao DS, & Baltimore D (2013) Broad protection 

against influenza infection by vectored immunoprophylaxis in mice. Nat Biotechnol 

31:647. 

36. Balazs AB, et al. (2011) Antibody-based protection against HIV infection by vectored 

immunoprophylaxis. Nature 481:81. 

37. Balazs AB, et al. (2014) Vectored immunoprophylaxis protects humanized mice from 

mucosal HIV transmission. Nat Med 20:296. 

38. Deal C, et al. (2014) Vectored antibody gene delivery protects against Plasmodium 

falciparum sporozoite challenge in mice. Proc Natl Acad Sci U S A. 111(34):12528. 

39. Nieto K & Salvetti A (2014) AAV Vectors Vaccines Against Infectious Diseases. 

Front Immunol 5:5. 

40. Logan GJ, et al. (2007) AAV vectors encoding malarial antigens stimulate antigen-

specific immunity but do not protect from parasite infection. Vaccine 25(6):1014-

1022. 

41. Goschnick MW, Black CG, Kedzierski L, Holder AA, & Coppel RL (2004) 

Merozoite Surface Protein 4/5 Provides Protection against Lethal Challenge with a 



 36 

Heterologous Malaria Parasite Strain. Infect Immun 72(10):5840. 

42. Goodman AL, et al. (2011) A Viral Vectored Prime-Boost Immunization Regime 

Targeting the Malaria Pfs25 Antigen Induces Transmission-Blocking Activity. PLoS 

One 6(12):e29428. 

43. Iyori M, et al. (2013) Protective Efficacy of Baculovirus Dual Expression System 

Vaccine Expressing Plasmodium falciparum Circumsporozoite Protein. PLoS One 

8(8):e70819. 

44. Iyori M, et al. (2017) DAF-shielded baculovirus-vectored vaccine enhances 

protection against malaria sporozoite challenge in mice. Malar J 16(1):390. 

45. Yamamoto DS, et al. (2013) Visualization and live imaging analysis of a mosquito 

saliva protein in host animal skin using a transgenic mosquito with a secreted 

luciferase reporter system. Insect Molecular Biology 22(6):685-693. 

46. Yoshida K, et al. (2018) Adenovirus-prime and baculovirus-boost heterologous 

immunization achieves sterile protection against malaria sporozoite challenge in a 

murine model. Sci Rep. 8(1):3896. 

47. Iyori M, et al. (2017) Protective efficacy of an IL-12-expressing baculoviral malaria 

vaccine. Parasite Immunology 39(12):e12498. 

48. Miura K, et al. (2013) Functional comparison of Plasmodium falciparum 

transmission-blocking vaccine candidates by the standard membrane-feeding assay. 

Infect Immun 81(12):4377-4382. 

49. Epstein JE, et al. (2011) Live attenuated malaria vaccine designed to protect through 

hepatic CD8 T cell immunity. Science 334(6055):475-480. 

50. Miura K, et al. (2016) Transmission-blocking activity is determined by transmission-

reducing activity and number of control oocysts in Plasmodium falciparum standard 

membrane-feeding assay. Vaccine 34(35):4145-4151. 

51. Louboutin J-P, Wang L, & Wilson JM (2004) Gene transfer into skeletal muscle using 

novel AAV serotypes. J Gene Med 7(4):442-451. 

52. Fisher KJ, et al. (1997) Recombinant adeno-associated virus for muscle directed gene 

therapy. Nat Med 3:306. 

53. Xiao X, Li J, & Samulski RJ (1996) Efficient long-term gene transfer into muscle 

tissue of immunocompetent mice by adeno-associated virus vector. J Virol. 

70(11):8098. 

54. Mueller C, et al. (2016) Sustained Expression with Partial Correction of Neutrophil 

Defects 5 Years After Intramuscular rAAV1 Gene Therapy for Alpha-1 Antitrypsin 



 37 

Deficiency. Mol Ther 24:S11-S12. 

55. Rose JK, Welch WJ, Sefton BM, Esch FS, & Ling NC (1980) Vesicular stomatitis 

virus glycoprotein is anchored in the viral membrane by a hydrophobic domain near 

the COOH terminus. Proc Natl Acad Sci U S A 77(7):3884-3888. 

56. Zhou J & Blissard GW (2008) Display of Heterologous Proteins on gp64 null 

Baculovirus Virions and Enhanced Budding Mediated by a Vesicular Stomatitis Virus 

G-Stem Construct. J Virol. 82(3):1368. 

57. Gregory JA, et al. (2012) Algae-Produced Pfs25 Elicits Antibodies That Inhibit 

Malaria Transmission. PLoS One 7(5):e37179. 

58. Scally SW, et al. (2017) Molecular definition of multiple sites of antibody inhibition 

of malaria transmission-blocking vaccine antigen Pfs25. Nat Commun. 8(1):1568. 

59. Miura K, et al. (2007) Transmission-blocking activity induced by malaria vaccine 

candidates Pfs25/Pvs25 is a direct and predictable function of antibody titer. Malar J 

6(1):107. 

60. Diallo M, et al. (2008) Evaluation and optimization of membrane feeding compared 

to direct feeding as an assay for infectivity. Malar J 7(1):248. 

61. Van Der Kolk M, et al. (2005) Evaluation of the standard membrane feeding assay 

(SMFA) for the determination of malaria transmission-reducing activity using 

empirical data. Parasitology 130(1):13-22. 

62. Mlambo G & Kumar N (2008) Transgenic Rodent Plasmodium berghei Parasites as 

Tools for Assessment of Functional Immunogenicity and Optimization of Human 

Malaria Vaccines. Eukaryot Cell 7(11):1875. 

63. White MT, et al. (2015) Immunogenicity of the RTS,S/AS01 malaria vaccine and 

implications for duration of vaccine efficacy: secondary analysis of data from a phase 

3 randomised controlled trial. Lancet Infect Dis 15(12):1450-1458. 

64. Draper SJ, et al. (2015) Recent advances in recombinant protein-based malaria 

vaccines. Vaccine 33(52):7433-7443. 

65. Cheru L, et al. (2010) The IC50 of anti-Pfs25 antibody in membrane-feeding assay 

varies among species. Vaccine 28(27):4423-4429. 

66. Shimp RL, et al. (2013) Development of a Pfs25-EPA malaria transmission blocking 

vaccine as a chemically conjugated nanoparticle. Vaccine 31(28):2954-2962. 

67. Talaat KR, et al. (2016) Safety and Immunogenicity of Pfs25-EPA/Alhydrogel®, a 

Transmission Blocking Vaccine against Plasmodium falciparum: An Open Label 

Study in Malaria Naïve Adults. PLoS One 11(10):e0163144. 



 38 

68. Schuldt NJ & Amalfitano A (2012) Malaria vaccines: focus on adenovirus based 

vectors. Vaccine 30(35):5191-5198. 

69. McCoy K, et al. (2007) Effect of Preexisting Immunity to Adenovirus Human 

Serotype 5 Antigens on the Immune Responses of Nonhuman Primates to Vaccine 

Regimens Based on Human- or Chimpanzee-Derived Adenovirus Vectors. J Virol. 

81(12):6594. 

70. Nwanegbo E, et al. (2004) Prevalence of Neutralizing Antibodies to Adenoviral 

Serotypes 5 and 35 in the Adult Populations of The Gambia, South Africa, and the 

United States. Clin Diagn Lab Immunol. 11(2):351. 

71. Zhu F-C, et al. (2017) Safety and immunogenicity of a recombinant adenovirus type-

5 vector-based Ebola vaccine in healthy adults in Sierra Leone: a single-centre, 

randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 389(10069):621-

628. 

72. Calcedo R, Vandenberghe LH, Gao G, Lin J, & Wilson JM (2009) Worldwide 

Epidemiology of Neutralizing Antibodies to Adeno-Associated Viruses. J Infect Dis 

199(3):381-390. 

73. Sen D, et al. (2013) Improved adeno-associated virus (AAV) serotype 1 and 5 vectors 

for gene therapy. Sci Rep 3(1832). 

74. Boutin S, et al. (2010) Prevalence of Serum IgG and Neutralizing Factors Against 

Adeno-Associated Virus (AAV) Types 1, 2, 5, 6, 8, and 9 in the Healthy Population: 

Implications for Gene Therapy Using AAV Vectors. Hum Gene Ther 21(6):704-712. 

75. Menon V, et al. (2018) Assessment of Antibodies Induced by Multivalent 

Transmission-Blocking Malaria Vaccines. Frontiers in Immunology 8:1998. 

76. Moorthy VS, Newman RD, & Okwo-Bele J-M (2013) Malaria vaccine technology 

roadmap. The Lancet 382(9906):1700-1701. 

77. Olotu A, et al. (2016) Seven-Year Efficacy of RTS,S/AS01 Malaria Vaccine among 

Young African Children. New England Journal of Medicine 374(26):2519-2529. 

78. RTS SCTP (2015) Efficacy and safety of RTS,S/AS01 malaria vaccine with or 

without a booster dose in infants and children in Africa: final results of a phase 3, 

individually randomised, controlled trial. Lancet 386(9988):31-45. 

79. Good MF & Yanow SK (2017) A whole parasite transmission-blocking vaccine for 

malaria: an ignored strategy. Emerg Top Life Sci 1(6):547. 

80. Elias SC, et al. (2013) Assessment of Immune Interference, Antagonism, and 

Diversion following Human Immunization with Biallelic Blood-Stage Malaria Viral-



 39 

Vectored Vaccines and Controlled Malaria Infection. The Journal of Immunology 

190(3):1135. 

81. Bowyer G, et al. (2018) CXCR3(+) T Follicular Helper Cells Induced by Co-

Administration of RTS,S/AS01B and Viral-Vectored Vaccines Are Associated With 

Reduced Immunogenicity and Efficacy Against Malaria. Frontiers in immunology 

9:1660-1660. 

82. Gandon S, Mackinnon MJ, Nee S, & Read AF (2001) Imperfect vaccines and the 

evolution of pathogen virulence. Nature 414:751. 

83. Blagborough AM, et al. (2013) Transmission-blocking interventions eliminate 

malaria from laboratory populations. Nat Commun 4:1812. 

84. Draper SJ, et al. (2018) Malaria Vaccines: Recent Advances and New Horizons. Cell 

Host & Microbe 24(1):43-56. 

 


	ACKNOWLEDGMENT
	SUMMARY
	LIST OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABBREVIATIONS
	INTRODUCTION
	AIMS OF THE STUDY
	MATERIALS AND METHODS
	Ethics statement
	Parasites and animals
	In vivo bioluminescent imaging
	Viral vector construction
	Immunoblotting
	Immunofluorescence assay (IFA)
	Immunization
	ELISA
	Intracellular cytokine staining (ICS) and ex vivo interferon (IFN)-γ ELISPOT assay
	Parasite challenge test
	TB assays
	Statistical analysis

	RESULTS
	DISCUSSION

