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Abstract

This paper introduces the first differentiable simulator

of event streams, i.e., streams of asynchronous brightness

change signals recorded by event cameras. Our differ-

entiable simulator enables non-rigid 3D tracking of de-

formable objects (such as human hands, isometric sur-

faces and general watertight meshes) from event streams

by leveraging an analysis-by-synthesis principle. So far,

event-based tracking and reconstruction of non-rigid ob-

jects in 3D, like hands and body, has been either tackled

using explicit event trajectories or large-scale datasets. In

contrast, our method does not require any such process-

ing or data, and can be readily applied to incoming event

streams. We show the effectiveness of our approach for

various types of non-rigid objects and compare to existing

methods for non-rigid 3D tracking. In our experiments, the

proposed energy-based formulations outperform competing

RGB-based methods in terms of 3D errors. The source code

and the new data are publicly available1.

1. Introduction

Template-based non-rigid 3D tracking using a single

monocular RGB camera is a well-studied and challenging

problem [16, 13, 30], due to the ambiguities associated with

the monocular setting (i.e., occlusions, lost depth informa-

tion and many-to-one mapping from the 3D space to the

2D image plane). In contrast, 3D tracking non-rigidly de-

forming shapes from a single monocular event camera is an

emerging research field. To the best of our knowledge, there

has been no method shown in the literature so far which

can track general objects in 3D from a single event stream

and without prior knowledge of the observed object class (in

contrast to EventCap [29] which assumes human bodies).

While conventional cameras record images syn-

chronously, i.e., at regular intervals (e.g., every 33 ms)
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and full or partial resolution of the physical pixel matrix,

event cameras react to brightness changes asynchronously

in space and time. Each signal, called an event, reports a

change of the per-pixel brightness by a certain threshold;

it contains the pixel coordinates of the event occurrence, a

timestamp and polarity. Thanks to the asynchronous op-

erational principle, timestamp resolution of modern event

cameras reaches 1 µs. Polarity is a binary flag showing

whether the brightness at a given pixel has increased or

decreased. Advantages of event cameras include high

dynamic range, ultra-high temporal resolution and lower

data throughput than the throughput of high-speed RGB

cameras recording fast moving and deforming objects.

Thus, compared to the monocular RGB-based case, 3D

tracking from an event camera poses additional challenges.

Not only because the colour information is lost but also

due to the different data modality, the existing methods for

monocular template-based 3D reconstruction cannot be ap-

plied to event streams. While some principles developed

over the decades for the RGB-based setting can be extrap-

olated to event streams in order to make the problem well-

posed (e.g., the assumptions of isometric deformations and

volume preservation), entirely new techniques are required

to guide the reconstruction. Talking about energy-based

methods, this means that the data term and geometric reg-

ularisers have to be questioned and re-invented for the new

and more challenging setting and data modality.

This paper proposes a new differentiable event stream

simulator for problems on event streams involving non-

rigidly deforming objects. The core idea of our technique

is to correlate a synthetically generated event stream pat-

tern with an observed one. We combine computer graph-

ics rendering techniques with the event stream formation

model in a differentiable way and obtain a novel analysis-

by-synthesis approach. Assuming the initial 3D shape state

is known and accurately projects to the image plane—which

is the assumption of many monocular template-based non-

rigid 3D tracking methods [30]—we iteratively update the

3D geometry until the induced event stream pattern strongly

correlates with the observed event stream pattern.



One of the advantages of such an approach is that it

is correspondence-free, i.e., it does not rely on spatio-

temporal event association, unlike [29]. Second, it works

entirely in the event space and does not require complemen-

tary greyscale images, unlike [29]. Third, our component

can be readily used in modern neural approaches and, po-

tentially, other problems involving event streams. To sum-

marise, the main contributions of this paper are as follows:

• The first differentiable event stream simulator for prob-

lems on event streams using analysis-by-synthesis and

event stream correlation approach.

• The first energy-based method for template-based

tracking of deformable surfaces in 3D from a single

event stream relying on our differentiable event stream

simulator. We show variants of its energy function for

parametric shapes and general meshes. Our method is

fully unsupervised and does not require training data.

In the experiments with three types of non-rigid objects

(hands, thin surfaces and watertight meshes), we demon-

strate that our method reaches 3D tracking accuracy compa-

rable to what is achievable by modern RGB-based methods.

The proposed approach is more accurate at tracking fast de-

formations, which cause motion blur when recorded with

a conventional RGB camera. Moreover, in several cases,

our event-based formulation also outperforms RGB-based

methods in the case of moderately evolving surfaces.

2. Related Work

Monocular 3D Non-Rigid Tracking. Methods for 3D re-

construction of non-rigid surfaces from monocular videos

can be classified into non-rigid structure from motion

(NRSfM) and template-based approaches. NRSfM relies on

correspondences across the input views relative to a single

keyframe, which are factorised into camera poses and non-

rigid shapes for every input frame. Whereas earlier meth-

ods focused on the factorisation of sparse tracked keypoints

[1, 27], recent methods support dense optical flow as in-

put [5, 12, 8, 26]. Template-based methods assume that an

accurate initial 3D state for one sequence frame is known

[9, 23, 16, 14, 13, 30]. Several recent methods encode tem-

plates in weights of neural networks, which are trained to

regress 3D surfaces directly from 2D images [25, 28].

Event-Based 3D Reconstruction. Since event cameras be-

came accessible for the broad research community, they

were applied to various low- and mid-level computer vi-

sion tasks [6]. Several methods have been proposed for

3D reconstruction and tracking of rigid objects in 3D

[24, 10, 20, 18]. In contrast, 3D reconstruction of non-rigid

objects from a single event stream remains a starkly under-

explored problem in the literature. Calabrese et al. [3] pro-

pose a method for 3D human pose estimation from multi-

ple synchronous event streams. EventCap of Xu et al. [29]

is a hybrid approach that relies on deblurred greyscale im-

ages recorded at usual frame rates and an event stream from

DAVIS240C to track a rigged 3D model of an actor.

The recent work of Rudnev et al. [22] proposes

EventHands, i.e., a neural method for 3D hand reconstruc-

tion from a single event stream. In contrast to EventHands,

our method does not require large corpora of training data,

and works for general non-rigid objects with hands only be-

ing one example object. All in all, we propose a new way

of solving tracking problems from a single event stream in

an analysis-by-synthesis fashion, which can be potentially

used for other problems than 3D tracking in future.

Our event correlation approach relates to the method

of Bryner et al. [2], who determine an event camera pose

with respect to a rigid 3D reconstruction of an environment.

Their objective function minimises the difference between

the measured (i.e., obtained by integration of real events)

and predicted (i.e., obtained by rendering the 3D map) in-

tensity images. In contrast, we compare event frames, i.e.,

observed and predicted, and support deformable objects.

While there are existing event stream simulators such as

ESIM [19], we implement own lightweight component that

is fully differentiable and easily customisable for target non-

rigid 3D tracking and reconstruction applications. Note that

we do simulate individual events, which are then accumu-

lated in windows for comparisons. On the other hand—and

as our experiments show—the implemented level of event

synthesis fidelity is sufficient for our target applications.

3. Event Generation Model and Event Frame

Event Generation Model. In contrast to RGB cameras

which record absolute brightness, event cameras record rel-

ative brightness changes in form of asynchronous events.

At a given pixel x, an event is triggered if the absolute value

of the difference between the incoming brightness received

at that pixel and the current brightness stored at that pixel,

exceeds a certain threshold called the contrast sensitivity of

the event camera. The pixels are triggered independently,

resulting in an asynchronous stream of events, when

|L(x, t)− L(x, t−∆t)| ≥ C , (1)

where L represents the brightness, t represents the current

timestamp and C represents the event camera threshold.

Event Frame. An event is an indicator of brightness change

at a given pixel at a particular instant of time. It is usually

represented as a tuple e = (x, y, t, p), where x and y denote

the pixel coordinates, t the timestamp and p ∈ {−1, 1} the

polarity which indicates whether there has been a positive or

negative change in brightness. Since individual events carry

little information, we accumulate several events over a span

of time. Let S = {ei = (xi, yi, ti, pi)} be the set of events

that occurred within a time window T . We consolidate these



events into a single event frame

E(x) =
∑

ei∈S

pi δ((xi, yi)− x) , (2)

where δ is the impulse function. T is set such that there is

enough information per event frame and the high temporal

resolution property of the event camera is not compromised.

The event frames are normalised in the range [−1, 1].

4. Overview

Our goal is 3D tracking of non-rigid objects from event

streams. Since our differentiable event simulator is inde-

pendent of the exact parameterisation of the object of inter-

est, it can be used with parametric 3D morphable models

as well as general 3D meshes. For each event frame, we

aim to estimate the current 3D geometry and global rigid

transform, consisting of translation t and rotation R, such

that the generated event frame is aligned with the incoming

event frame. For a parametric model (e.g., hands [21, 17]),

the 3D geometry is controlled by the pose parameters θ,

yielding the set of parameters Θ = (θ, t, R). For general 3D

meshes, we assume the availability of a template mesh and

express the 3D geometry as displacement field of the ver-

tices. In this scenario, the set of parameters we optimise is

Θ = (V, t, R), where V = {vi}
N
i=1 are the 3D coordinates

of mesh vertices and N is the total number of vertices.

Given the input event frames and the parametric model

or a mesh, we start from an initial parameter set Θ and ren-

der an image of the mesh. Our goal is to find a parameter

set such that the events generated by an event generation

model (see Sec. 3) match the incoming events. We optimise

the unknown parameters by minimising the objective func-

tion in a frame-wise manner, see (5) and (10). After we have

found the optimised parameters for the first event frame, we

use them as an initialisation for the next event frame and

proceed in a similar manner for subsequent frames.

In our experiments, we use the DAVIS 240C event cam-

era which captures both intensity images as well as event

streams of 240×180 pixels with temporal resolution in the

microsecond range. The intrinsic camera parameters are

known. Note that our method is purely based on the asyn-

chronous event stream input, and hence we do not use the

complementary greyscale images of DAVIS 240C.

5. Method

An overview of our framework is given in Fig. 1. We

want to find the optimal parameters Θ∗ by comparing the

event frame generated with the current parameter hypoth-

esis Θ to the input event frame. First, we use a differ-

entiable renderer to render two images using the meshes

from the current and previous timestamps. We then calcu-

late the per-pixel differences and threshold them according

to the event generation model. To ensure the differentia-

bility of the thresholding process, we use a differentiable

approximation of the staircase function. Finally, the gener-

ated events are used in objective function terms which com-

pare the incoming events with the generated events (i.e., by

means of signal correlation).

5.1. Differentiable Event Simulator

The main component of our framework is the differen-

tiable event simulator which generates the event frame cor-

responding to the current parameter hypothesis Θ. This syn-

thesised event frame is later used for optimising an analysis-

by-synthesis objective function. To obtain the event frame,

we render two greyscale images, one corresponding to the

mesh at the previous time stamp and one corresponding to

the mesh at the current parameter hypothesis Θ. We make

use of differentiable rendering such that the images are dif-

ferentiable with respect to the parameters Θ controlling the

mesh deformations. We normalise the rendered images in

the range [0, 1], which is based on an empirical observation

and leads to stable gradients. We assume that the object’s

surface is Lambertian and the lighting conditions are con-

stant. The rendering is followed by the subtraction of the

previously rendered image from the current one. Finally, the

difference image is thresholded using the smooth threshold-

ing function discussed below, resulting in a generated event

frame.

Thresholding Function. We approximate the inequality

operation in the event generation model in the form of a

smooth threshold function which is a trade-off between the

hyperbolic tangent function and the staircase function:

g(x) =

(

x+ ǫ

|x|+ ǫ

)(

1

1 + e−w|x|+wC

)

, (3)

where x represents the difference image, w denotes the

weight that controls the smoothness of the curve, C repre-

sents the threshold or contrast sensitivity of the event cam-

era and ǫ is the tolerance which ensures stable gradients.

In general, all the aforementioned steps involved in event

frame generation can be mathematically formulated as

e(Θt−1,Θt) = g(Π(M(Θt))−Π(M(Θt−1))), (4)

where e is the generated event frame; Θt and Θt−1 represent

the current parameter set and the parameters estimated for

the last frame, respectively; M is the parametric model or

generic mesh; Π denotes the image rendering operation and

g is the smooth threshold function defined in (3). The gen-

erated and input event frames are then fed into an optimisa-

tion framework minimising objective functions—which we

describe in Secs. 5.2 and 5.3—to estimate the unknown op-

timal parameters Θ∗ in a frame-wise manner.
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Figure 1. Our non-rigid 3D tracking framework. We propose a new differentiable event simulator to generate event frames for the current

pose hypothesis Θ. We then optimise the parameters Θ by comparing the generated event frame to the input event frame in an analysis-by-

synthesis optimisation framework. The positive and negative events of the input stream are shown in green and red, respectively.

5.2. Objective Function: Parametric Model

In the case of a parametric model like hands (we use

MANO [21]), the objective comprises of two main terms,

i.e., a data term and a regularisation term:

E(Θ) = Edata(Θ) + λEreg(Θ) , (5)

where λ is a regularisation hyperparameter and Θ =
(θ, t, R) (see Sec. 4) represents the set of all parameters,

consisting of model parameters for pose θ and the rigid

transform defined by translation t and rotation R.

5.2.1 Data Term

To account both for the occurred and missing changes in the

observed 3D shape, we split the data term into an event and

a no-event terms:

Edata(Θ) = Eevent(Θ) + λ1Eno-event(Θ) , (6)

where λ1 balances the two data terms.

Event Term: The event term penalises the difference be-

tween the input event frame E and the generated event frame

(Eq. 4), at only those pixel locations where an event is

present in the input event frame.

Eevent(Θ) =
∑

x∈Ω

(γ(x)
(

E(x)− e(Θt−1,Θ)(x))
)2

, (7)

where Ω denotes the spatial image domain and γ(·) is an

indicator function that yields 1 if an event occurred at pixel

x in the input event frame and 0 otherwise.

No-Event Term: On the contrary, the no-event term pe-

nalises any non-zero value present in the generated event

frame at the corresponding locations in the input event

frame where an event is absent:

Eno-event(Θ) =
∑

x∈Ω

(

γ̄(x)(e(Θt−1,Θ)(x))
)2

, (8)

where γ̄(x) = 1− γ(x) indicates pixels where no event oc-

curred in the input event frame. Note that without Eno-event,

the tracked 3D shape would not be sufficiently constrained.

5.2.2 Regularisation Term

The regularisation term ensures temporal smoothness by pe-

nalising large parameter changes between the current and

the previous event frame. This helps to reduce flickering of

the estimated mesh between adjacent frames:

Ereg(Θ) = ‖Θ−Θt−1‖22, (9)

where Θ is the current parameter set and Θt−1 is the param-

eter set estimated for the previous frame.

5.3. Objective Function: Meshes

Instead of a parametric model, here we are provided with

a generic mesh parameterised by Θ = (V, t, R) where V is

the set of mesh vertices, t is global translation, and R is

global rotation (see Sec. 4). The objective function com-

prises of the following terms:

E(Θ) = Edata(Θ) + λtopEtop(Θ) + λisoEiso(Θ)

+ λgeoEgeo(Θ) + λregEreg(Θ), (10)

where λtop, λiso, λgeo and λreg are scalar weights. The data

term is further split into an event term and a silhouette term:

Edata(Θ) = Eevent(Θ) + λsilEsil(Θ), (11)



where λsil is another hyperparameter that balances the im-

portance of each term. The event and regularisation terms

remain the same as in (7) and (9), respectively. We now

discuss the new terms of the objective function in detail.

5.3.1 Silhouette Term

The silhouette term matches the relevant events with the 2D

projection of the nearest visible mesh vertices. The near-

est vertices are calculated based on the shortest Euclidean

distance between an event and the vertices in the 2D image:

Esil(Θ) =
∑

eb∈Ê

||π(vb)− (xb, yb)||
2
2, (12)

where vb is the 3D mesh vertex closest to the event eb in

the 2D space, (xb, yb) represents the 2D location of eb, π

denotes the 3D-to-2D projection and Ê stands for the set of

relevant events in the current event frame. The noisy events

are filtered out by taking a 5×5 neighbourhood around each

event in the event frame and then removing them if the num-

ber of events present in this region is below some threshold.

5.3.2 Topology-Preserving Term

The topology-preserving term demands that the relative po-

sitions of the current mesh vertices with respect to their

neighbours remain the same as those of the template mesh,

i.e., it ensures spatial smoothness of the surface:

Etop(Θ) =
N
∑

i=1

∑

j∈Ni

||(vi − vj)− (vi − vj)||
2
2, (13)

where N represents the total number of mesh vertices, vi
denotes the i-th vertex of the current mesh, vi is the i-th

vertex of the template mesh and j ∈ Ni indexes the points

in the neighbourhood of the i-th vertex.

5.3.3 Isometric and Geodesic Terms

We consider isometric shape deformations, i.e., that the area

of the mesh or the distance between any two points on the

surface of the mesh remain unchanged. Thus, the isometric

term ensures that the mesh edge length between neighbour-

ing vertices is preserved with respect to the template. The

geodesic term, similarly, ensures that the distance between

any two non-neighbouring vertices on the mesh surface re-

mains preserved with respect to the template. Since com-

puting this distance for all possible combinations of vertices

can be computationally very expensive, we, therefore, uni-

formly sample vertex points on the template mesh surface

in a coarse manner (we take every tenth point) and compute

the geodesic loss for this grid of sparse points only:

Eiso(Θ) =

N
∑

i=1

∑

j∈Ni

(

||vi − vj || − ||vi − vj ||
)2
, (14)

Egeo(Θ) =
∑

i∈Ω

∑

j∈Ω,
j 6=i

(

d(vi, vj)− d(vi, vj)
)2
, (15)

where Ω denotes the grid of sub-sampled vertices and d de-

notes the geodesic distance between two points.

5.4. Initialisation

Depending on whether we have a generic mesh or a mor-

phable model, we either initialise with the template mesh or

the mean shape of the model. For the initial frame, we start

from a known position. Regarding subsequent event frames,

we initialise with the estimated parameters of the previous

frame and optimise for all the parameters. For each frame,

we first perform rigid fitting, i.e., optimising for t and R

only keeping the rest of the parameters fixed, and thereafter

we optimise for the other parameters.

5.5. Implementation Details

We implement our method in PyTorch [15]. The opti-

miser used is Adam [11] with step size of 5 · 10−4. The

method takes ≈1.5 minutes per frame on NVIDIA V100

GPU. We balance the various energy terms with λ =
10, λ1 = 0.1, λsil = 0.01, λtop = 1, λiso = 1, λgeo = 1,
and λreg = 10.

6. Experimental Results

In this section, we report our experiments with the pro-

posed non-rigid tracking methods using our differentiable

event stream simulator. We consider three types of non-

rigid objects in our experiments: a hand mesh, a deformable

sheet (paper) and a spherical watertight mesh (ball). For

hands, we use a 3D morphable hand model [21]. We com-

pare to several existing state-of-the-art methods for RGB-

based non-rigid tracking, including template-based meth-

ods of Tien Ngo et al. [13] and Direct-Dense-Deformable

(DDD) [30], learning-based method Isometric Monocular

GAN (IsMo-GAN) [25] and HandGraphCNN of Ge et al.

[7] for 3D hand shape reconstruction. To ensure accurate

initialisation for template-based methods (i.e., in the first

frames), we perform manual adjustment, if required.

6.1. Evaluation Metrics

For hands, we use the average 3D joint error as our met-

ric for quantitative evaluation:

ejoint3D =
1

N

N
∑

i=1

∥

∥J i
GT − J i

rec

∥

∥

F
∥

∥J i
GT

∥

∥

F

, (16)

where N is the number of frames and ‖·‖F denotes Frobe-

nius norm; JGT and Jrec denote the ground-truth and re-

constructed 3D joint locations, respectively. For meshes,

we employ average e3D which differs from ejoint3D in



Figure 2. Results produced by our technique on the real hand (left) and real ball (right) sequences.

Figure 3. Results on the real paper. Ours produces more feasible reconstructions and fewer surface artefacts in the comparisons.

that it compares the dense reconstructed meshes Srec with

ground-truth meshes SGT instead of sparse sets of joints.

Both ejoint3D and e3D are reported after Procrustes align-

ment of the shapes, i.e., with the resolved translational and

rotational components.

6.2. Real Sequences

We record real sequences of the three classes of 3D ob-

jects: hands, paper (deformable sheet) and ball. Our setup

comprises of DAVIS 240C for recording events and an ad-

ditional RGB sensor (Sony RX0) that records coloured in-

tensity images at 50 fps. The coloured intensity images are

used for the methods being compared against our approach,

since they are RGB image-based methods. We calibrate the

cameras together and compute the extrinsics. For synchro-

nisation, we use a flash. For a 36-seconds-long recording of

a scene with significant motion, the events take up around

23 MB of storage space as compared to the corresponding

video which takes up around 110 MB of space. We record a

20-seconds-long video for fast hand motion comprising of

around 1500 event frames; another short 10-seconds video

demonstrating the deformation of a volleyball, comprising

of around 400 event frames and another 50-seconds-long

video of a deforming sheet of paper with printed texture,

comprising of 1100 event frames. The spatial resolution of

event as well as intensity frames is set to 240×240 pixels.

We use T = 800 events for hand and T = 2000 events for

paper and ball, see (2), and set C = e0.5 for real data on the

[0, 255] scale. Figs. 2–3 show results of various methods on

the real sequences. Our technique produces realistic results

that overlap well with the input event stream, whereas re-

sults of competing methods evince various surface artefacts

and folding which are not observed in the input images.



Figure 4. Results of our technique on the synthetic hand sequence.

6.3. Controlled Experiments

We prepare synthetic data with 3D ground truth for quan-

titative analysis. We render synthetic RGB image sequences

and event stream data for each object. In the case of hands,

we sample the pose parameter space using adaptive sam-

pling similarly to Rebecq et al. [19], see our supplement for

the details. and render the corresponding intensity images.

For the generic meshes, we deform the meshes in Blender

[4] and render the intensity images at 50 fps. Then, we gen-

erate synthetic event data from two consecutive images by

subtracting them, followed by thresholding the difference

image. The sequences contain 306 (hand), 250 (paper) and

200 (ball) frames. We use the following values for the time

window T in (2): 400 events for hand and 1200 events for

paper and ball, and set C = 10 for synthetic data.

For the synthetic hand sequence, we report ejoint3D in

Table 1. Our method achieves approximately twice as lower

error as HandGraphCNN [7]. The latter is a learning-based

approach operating on RGB images, on each frame individ-

ually, that does not assume accurate shape initialisation for

one of the frames. Considering that the images, on which

HandGraphCNN has been trained, are different from our

rendered images which leads to domain gap, it is conceiv-

able that HandGraphCNN does not outperform our method.

Note that we cannot retrain HandGraphCNN on our data,

because we render only a few hundreds of images (our

method is unsupervised). Nevertheless, the strength of our

approach comes from its use of the data term which is ca-

pable of tracking such highly articulated objects as human

hands. The visual performance of our technique on the syn-

thetic hand sequence is shown in Fig. 4.

For the synthetic paper sequence, the 3D reconstruction

error is reported in Table 2. Our method is ranked first and

we slightly outperform the method of Tien Ngo et al. [13]

in e3D. Both DDD and IsMo-GAN are not able to track the

observed surfaces accurately, though DDD shows a slightly

worse accuracy compared to [13]. Note that both Tien Ngo

et al. [13] and DDD [30] do not suffer from domain gap of

learning-based methods. On the other hand, IsMo-GAN is

positioned as a generalisable approach, due to the powerful

silhouette term, which allows it to reconstruct surfaces that

are significantly different from those observed in the train-

ing set. Fig. 5 shows visualisations of the results obtained

by the tested methods on the synthetic paper sequence.

For the synthetic ball sequence, we report e3D in Ta-

ble 3. We compare to DDD [30] which supports watertight

meshes. On average, we outperform DDD by ≈30% and

our reconstructions reflect the deformations in the occluded

parts more faithfully. The qualitative improvement in the

results of our approach over DDD is shown in Fig. 6.

Method ejoint3D std. deviation

HandGraphCNN [7] 0.191 ±0.055

Ours 0.074 ±0.027

Table 1. Quantitative results on the synthetic hand sequence.

Method e3D std. deviation

DDD [30] 0.266 ±0.12

Tien Ngo et al. [13] 0.235 ±0.158

IsMo-GAN [25] 0.384 ±0.092

Ours 0.232 ±0.135

Table 2. Quantitative results on the synthetic paper sequence.

Method e3D std. deviation

DDD [30] 0.656 ±0.151

Ours 0.47 ±0.31

Table 3. Quantitative results on the synthetic ball sequence.

6.4. Ablation Study

We perform an ablation study for the proposed energy-

based method for non-rigid 3D tracking. The summary of

the attained e3D is provided in Table 4. Here, we evaluate

on the same synthetic sequences used in Sec. 6.3. We ob-

serve that using all terms produces the best results. Leaving

out any of the energy terms leads to an accuracy drop. For

the ball sequence, leaving out the silhouette term or both the

isometric and topology preserving terms leads to the most

significant accuracy drop. For the hand sequence, leaving

out the no-event term leads to a significant accuracy drop.

Please note that processing each of these sequences requires

different energy terms (see Sec. 5.2 and Sec. 5.3).

7. Conclusion

We introduced the first differentiable event stream sim-

ulator which enables non-rigid 3D tracking of deformable

objects. In contrast to previous event-based tracking tech-

niques, our tracking approach does not require large train-

ing datasets or computation of explicit event trajectories.



Figure 5. Results on the synthetic paper sequence. Our technique outperforms existing methods quantitatively (see Table 2).

Figure 6. Results on the synthetic ball sequence. Our technique outperforms existing methods quantitatively (see Table 3).

Method e3D std. deviation

Ball

All terms 0.467 ±0.312

w/o Silhouette term 0.571 ±0.326

w/o Topological term 0.564 ±0.307

w/o Isometric terms 0.546 ±0.303

w/o Top + Iso terms 0.579 ±0.293

Hand
All terms 0.074 ±0.027

w/o No-Event term 0.141 ±0.055

Table 4. Ablative analysis on the synthetic ball and hand.

Instead, we leverage the differentiability of our event sim-

ulator in an analysis-by-synthesis optimisation framework.

We demonstrated the generality of our method by perform-

ing quantitative and qualitative evaluation of our method for

different deformable objects. Future work can address im-

proving the processing speed and making it real-time.

One important conclusion which we draw from the ex-

periments is that events not only pose additional challenges

and add complexity for non-rigid 3D tracking, but they also

can improve the tracking accuracy compared to the RGB-

based methods. This is because events represent a more

abstract data modality compared to RGB images, which we

leverage with appropriate novel data terms and regularis-

ers. We believe the proposed framework can be used for

other tasks in event-based vision such as 2D tracking and

gesture recognition. It can also be used as a differentiable

component in supervised learning methods. We hope our

framework inspires more future work in event-based vision.
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