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We define two dual tensor network representations of the (3+1)d toric code ground state subspace.
These two representations, which are obtained by initially imposing either family of stabilizer
constraints, are characterized by different virtual symmetries generated by string-like and membrane-
like operators, respectively. We discuss the topological properties of the model from the point of view
of these virtual symmetries, emphasizing the differences between both representations. In particular,
we argue that, depending on the representation, the phase diagram of boundary entanglement degrees
of freedom is naturally associated with that of a (2+1)d Hamiltonian displaying either a global or a
gauge Z2-symmetry.

Sec. I | Introduction

Tensor networks have proven very powerful as a numerical
as well as analytical framework for the study of strongly
correlated quantum many-body systems. They provide
a description of complex global entanglement patterns
in terms of local tensors, which carry both physical and
virtual entanglement degrees of freedom. The global quan-
tum correlations are then built up by contracting the
entanglement degrees of freedom of the individual tensors
following a pattern dictated by a lattice. This ability
to describe complex quantum correlations makes tensor
networks particularly suited for the study of systems that
exhibit topological order [1–7], i.e. where an interacting
spin system does not order magnetically but rather in its
long-range entanglement [8, 9]. Models of topological or-
der display a variety of unconventional phenomena, such
as topology-dependent ground state degeneracy and exci-
tations with exotic anyonic statistics [10], making them
prime candidates for quantum memories and quantum
computing platforms [11–13]. Nevertheless, topological or-
der in two dimensions is not robust to finite temperature
due to the resulting doping with point-like excitations
that drives the system to a trivial phase [12, 14, 15].

In (2+1)d, topological order in a tensor network wave
function manifests itself in an entanglement symmetry, i.e.
a symmetry acting solely on the virtual degrees of free-
dom. In the case of (untwisted) gauge models [11], whose
input data are finite groups, this symmetry amounts to
an invariance under the action of a group representation
on all entanglement degrees of freedom. Equivalently, it
can be phrased as a so-called pulling through condition,
stating that a string of symmetry operators on the en-
tanglement level can be pulled through a tensor, making
such a string freely deformable [1, 3, 4]. Remarkably, this
simple property can be exploited to encode the ground

∗ clement.delcamp@mpq.mpg.de
† norbert.schuch@mpq.mpg.de

state subspace, the anyonic excitations and their statis-
tics, as well as to understand topological corrections to
the entanglement and the structure of renormalization
group flows. It turns out that this description remains
valid as one considers deformations, allowing to capture
physical excitations away from the renormalization group
fixed point. However, a sufficiently strong deformation
might drive the system into a trivial phase—even though
it respects the virtual symmetry—through the mechanism
of anyon condensation [16, 17]. Once more, this can be
understood solely from the point of view of the virtual
symmetry. Indeed, given an open network, the boundary
inherits the symmetry of the tensors, so that the boundary
state (or entanglement spectrum) can order in different
ways with respect to this symmetry. These ‘entangle-
ment phases’, which can be both symmetry-broken and
symmetry-protected, correspond to the different ways the
topological order can be modified, as characterized by the
behavior of the corresponding anyons [18–21].

Although it is not a sufficient condition, the entangle-
ment symmetry is a necessary property for topological
order in (2+1)d. Indeed, perturbations of the tensors
that break this symmetry were shown to immediately
destroy the topological order [22–24]. This can be un-
derstood from the fact that such perturbations induce
an immediate condensation of the corresponding point-
like excitations, or alternatively, that the perturbation
strength grows linearly under renormalization.

Given a self-dual model in (2+1)d, such as the toric code,
where electric and magnetic excitations can be swapped,
the tensor network representation breaks the duality. In-
deed, at the entanglement level, one of the excitations is
represented by a string-like symmetry operator, whereas
the other is described as a point-like operator that trans-
forms as an irreducible representation. Depending on
the way we assign these two kinds of virtual operators to
the physical excitations, we arrive at two different tensor
network representations. However, due to the self-duality
of the model, these are equivalent up to swapping the ex-
citations together with a Fourier transform on the virtual
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level. We recover this self-duality at the boundary—in
essence, the (1+1)d Ising self-duality—such that the map-
ping preserves the symmetry but exchanges the symmetric
and symmetry-broken phases. Similarly, these two repre-
sentations respond dually under uniform perturbations of
the tensors that break the virtual symmetry, leading to a
doping with electric or magnetic excitations, respectively,
which breaks the topological order either way.

What happens to this scenario as we turn to (3+1)d?
What is the entanglement symmetry structure of the
(3+1)d toric code tensor network that allows us to under-
stand its topological features in a way akin to (2+1)d?
As before, we should be able to construct two tensor
network representations, which satisfy virtual symmetry
conditions, such that allowed operator insertions break-
ing these symmetries correspond to electric or magnetic
physical excitations, respectively. Given that the model
is no longer self-dual, such that electric and (bulk) mag-
netic excitations are point-like and loop-like, respectively,
we expect these two tensor network representations to
be inequivalent and characterized by distinct symmetry
conditions. This raises the question, how will the differ-
ence in symmetry structure manifests itself in the study
of the topological model? Furthermore, given that mag-
netic excitations possess a loop tension preventing them
from proliferating, shall we expect the two representations
to exhibit different robustness under symmetry-breaking
perturbations?

The purpose of this manuscript is to construct explic-
itly these two dual tensor network representations of the
(3+1)d toric code and study their properties: we iden-
tify their relevant virtual symmetries; we explain how
these can be used to parametrize the ground space and
the anyonic excitations; we construct renormalization
group transformations through their action on the virtual
symmetries; we discuss how these virtual symmetries are
inherited by the boundary, and in which way the resulting
boundary phases determine the condensation of anyons.

The first representation we construct has a global en-
tanglement symmetry, such that the tensor is invariant
under a simultaneous symmetry action on all entangle-
ment degrees of freedom. In other words, every tensor
satisfies a pulling through condition with respect to a vir-
tual membrane-like operator that remains identical under
blocking. Ground states and magnetic excitations are ob-
tained from membrane-like symmetry operators, whereas
point-like irreducible representations act as the dual elec-
tric particles. The symmetry is inherited at the boundary
as a global symmetry so that the entanglement spectrum
exhibits symmetry-breaking phases in close analogy to
that of the (2+1)d toric code, now detected by point-like
order parameters and membrane-like disorder parameters.

The second representation is more interesting, as it
fundamentally differs from the (2+1)d paradigm. It satis-
fies local entanglement symmetries associated with every
elementary loop of virtual indices. This corresponds to
pulling through conditions with respect to string-like op-
erators, such that the number of independent symmetries

increases under blocking as the number of loops at the
boundary of a region grows with its size. This requires in
particular a more involved renormalization scheme, which
we present in detail. With this representation, ground
states and electric excitations are parametrized by string-
like symmetry operators, whereas magnetic excitations
correspond to loops of irreducible representations. The
symmetries of the tensors give rise to a gauge symmetry
at the boundary, where the behavior of the anyons now
probes the confined and deconfined phase of the gauge
theory, respectively.

Given that the first (3+1)d representation shares a lot
of characteristics with the (2+1)d ones—as illustrated, for
instance, by its boundary phase diagram—one anticipates
it to respond similarly to perturbations that break the
entanglement symmetry. Indeed, we know that the bound-
ary theory is unstable to such perturbations. Moreover, we
expect these modifications to induce a condensation of the
point-like electric excitations, which would in turn break
the topological order, and similarly, that the perturbation
acquire a linearly increasing strength under renormaliza-
tion. On the contrary, following the same line of argument,
it is plausible that the second (3+1)d representation is
stable to perturbations. Firstly, symmetry-breaking per-
turbations now amount to a breaking of a gauge symmetry
at the boundary, which in virtue of Elitzur’s theorem [25]
suggests a stronger robustness. Secondly, such pertur-
bations now result in a doping with loop-like magnetic
fluxes, which, given that the tension favors small loops,
make accidental braiding processes through them unlikely.
Thirdly, as local virtual constraints rule out independent
breaking of certain symmetries, the growing number of
loops may increase robustness against small perturbations
under renormalization. These aspects further motivate
the study carried out in this manuscript.

After reviewing the definition of the toric code and dif-
ferent parametrizations of its ground state subspace in
sec. II, we provide in sec. III a thorough account of the
tensor network approach to the (2+1)d toric code in order
to introduce the relevant notions and concepts, empha-
sizing in particular the manifestations of the self-duality.
The tensor network analysis of the (3+1)d toric code is
presented in sec. IV, where both representations and the
corresponding duality mapping are discussed in detail.

Sec. II | Toric code

In this section, we briefly present the toric code and review
some of its most notable features.

II.A. Lattice Hamiltonian

Let Σ be a closed d-dimensional surface endowed with
a cellulation ΣΥ. We denote the plaquettes, edges and
vertices of ΣΥ by p, e and v, respectively. To every edge
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e ⊂ ΣΥ, we assign a qubit degree of freedom such that
the microscopic Hilbert space of the model reads

H[ΣΥ] :=
⊗

e⊂ΣΥ

C2 . (1)

The lattice Hamiltonian is defined in terms of two collec-
tions of operators. To every vertex v ⊂ ΣΥ, and to every
plaquette p ⊂ ΣΥ, we assign operators

Av :=
⊗
e⊃v

Ze and Bp :=
⊗
e⊂∂p

Xe , (2)

respectively, where Z and X are the usual Pauli matrices.
All these operators commute so that the Hamiltonian
defined as

H[ΣΥ] := −
∑

v⊂ΣΥ

Av −
∑

p⊂ΣΥ

Bp (3)

is exactly solvable. The ground state subspace is spanned
by states |ψ〉 ∈ H[ΣΥ] satisfying the stabilizer constraints
Av|ψ〉 = |ψ〉 and Bp|ψ〉 = |ψ〉, at every v, p ⊂ ΣΥ. The
Hamiltonian projector explicitly reads

PΣΥ :=
∏

v⊂ΣΥ

1
2(id + Av)

∏
p⊂ΣΥ

1
2(id + Bp) . (4)

When Σ is chosen to be the d-torus Td and ΣΥ ≡ Td�
a d-cubic lattice with periodic boundary conditions, the
resulting model is habitually referred to as the (d+1)-
dimensional toric code [11].

II.B. Ground states and anyonic excitations

Let us focus for now on the (2+1)d toric code. Denoting
by |0〉 and |1〉 the eigenvectors of Z with eigenvalues +1
and −1, respectively, we consider the basis of H[T2

�] ob-
tained by assigning one such vector to every edge of T2

�.
Every vector in this basis is in one-to-one correspondence
with a Z2-valued singular 1-chain in C1(T2

�,Z2), that is
an assignment of Z2 group variables to every edge of the
cellulation. The stabilizer constraints Av|ψ〉 = |ψ〉 impose
that an even number of |0〉 or |1〉 states must meet at a
every vertex so that chains of |0〉 or |1〉 states must form
closed loops. These define the group of singular 1-cycles
Z1(T2

�,Z2). Since X|0〉 = |1〉 and X|1〉 = |0〉, the second
set of stabilizer constraints, viz. Bp|ψ〉 = |ψ〉, enforce
that 1-cycles are defined up to Z2-multiplication by 1-
boundaries in B1(T2

�,Z2), i.e. 1-cycles that bound plaque-
ttes of T2

�. Putting everything together, we obtain the first
homology group H1(T2

�,Z2) = Z1(T2
�,Z2)/B1(T2

�,Z2) of
T2

� over Z2. The ground state subspace of the toric code
is thus spanned by functions from homology classes in
H1(T2

�,Z2) to C. But H1(T2
�,Z2) = Z2 ⊕ Z2, so that

the ground state degeneracy of the (2+1)d toric code is
22 = 4 [10, 26]. Naturally the same computation could
be carried out in the X basis instead in terms of the

eigenvectors |+〉 and |−〉. The same reasoning applies, at
the difference that the Z2-valued singular chains are now
defined along the edges of the dual cellulation T2

�∨ .
Let us now consider the (3+1)d toric code and repeat

the analysis above. Starting with the Z basis of H[T3
�],

the derivation is identical to the (2+1)d case so that
the ground state subspace is spanned by functions from
H1(T3

�,Z2) to C. We now have H1(T3
�,Z2) = Z2 ⊕ Z2 ⊕

Z2, and thus the ground state degeneracy of the toric code
in (3+1)d is 23 = 8. Interestingly, the computation in
the X basis proceeds differently. Basis vectors of H[T3

�]
are now in one-to-one correspondence with Z2-valued
singular 2-chains in C2(T3

�∨ ,Z2), i.e. assignments of Z2-
group variables to every plaquette of the dual cubic lattice.
States satisfying the stabilizer constraints Bp|ψ〉 = |ψ〉
correspond to closed membrane configurations, i.e. 2-
cycles in Z2(T3

�∨ ,Z2). Stabilizer constraints Av|ψ〉 = |ψ〉
then yield H2(T3

�∨ ,Z2) so that the ground state subspace
is spanned by functions from classes in H2(T3

�∨ ,Z2) to C.
Equivalence between the two bases is ensured by the fact
that H2(T3

�∨ ,Z2) = H1(T3
�,Z2). Our goal is to explore

these two parametrizations of the ground state sector
from a tensor network viewpoint.

Before discussing tensor network representations of the
ground state subspace, let us briefly recall the excitation
content of the model. By definition, excited states are ob-
tained by violating some of the stabilizer constraints. Vi-
olations of Av|ψ〉 = |ψ〉 are referred to as electric charges,
whereas violations of Bp|ψ〉 = |ψ〉 are referred to as mag-
netic fluxes. Given a 1-path γ along the edges of the direct
lattice, and a (d–1)-path σ along the (d–1)-cells of the
dual lattice, excitations can be created at the boundary
of the following operators

WX(γ) =
∏
e⊂γ

Xe and WZ(σ) =
∏

e∨⊂σ
Ze . (5)

These definitions are valid both in (2+1)d and (3+1)d.
Although both types of operators are string-like in (2+1)d,
they are string-like and membrane-like in (3+1)d, respec-
tively. This naturally relates to the two parametrizations
of the ground state subspace we discussed previously. Cor-
respondingly, in (3+1)d, electric charges are point-like,
whereas magnetic fluxes are loop-like.

Sec. III | Tensor network representations in
(2+1)d

In order to introduce the formalism and review basic no-
tions, we present in this section the tensor network repre-
sentations of the toric code in (2+1)d.

III.A. Basic definitions

The tensor network approach consists in expressing the
ground state wave functions in terms of so-called Pro-
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jected Entangled-Pair States (PEPSs). The merit of this
formulation then stems from the fact that the global or
topological behavior of the model, here the (2+1)d toric
code, can be encoded into the local symmetries of a single
PEPS tensor.

Let us start with some basic definitions. Given a set
{Ai}i=1,...,n of (χ×χ)-matrices, we call a Matrix Product
State (MPS) an element in (Cn)⊗L of the form

|MPS(A)〉 :=
∑

i1,...,iL

tr[Ai1 · · ·AiL ] (|i1〉 ⊗ · · · ⊗ |iL〉) ,

where |i〉, i ∈ 1, . . . , n, is an orthonormal basis of Cn. For
conciseness, we shall often use the notation |i1, . . . , iL〉 :=
|i1〉 ⊗ · · · ⊗ |iL〉. The integer χ is referred to as the bond
dimension of the MPS. It is convenient to define the
rank-three tensor A ∈ Cn ⊗ (Cχ)⊗2 as

A :=
∑

i=1,...,n
Ai ⊗ |i〉 =

∑
i=1,...,n

a1,a2=1,...,χ

(Ai)a1a2 |a1〉〈a2| ⊗ |i〉 ,

where we distinguish the virtual indices a1 and a2 from the
physical index i. By definition the network underlying the
definition of |MPS(A)〉 is one-dimensional. Naturally, this
definition can be generalized to two-dimensional networks.
Given for instance a set {Ai}i=1,...,d of (χ×4)-tensors, we
write the rank-five tensor A ∈ Cn ⊗ (Cχ)⊗4 as

B :=
∑

i=1,...,n
a1,...,a4=1,...,χ

(Bi)a1a2a3a4 |a1, a2〉〈a3, a4| ⊗ |i〉 ,

and depict it graphically as

B ≡
∑

i=1,...,n
a1,...,a4=1,...,χ

Ba1 a4

a2

a3

i

,

where the black dot, which is labelled by the physical
index, stands for an additional leg sticking out of the
paper plane towards the reader. Note that in the situation
where the black dot is labelled by a physical index that
can be written as a tensor product, we shall often write
as many black dots accordingly. We then call a Projected
Entangled-Pair State (PEPS) an element in (Cn)⊗(L2) of
the form

|PEPS(B)〉 :=

B B

B B

B

B

BB B

,

where connected legs translate into tensor contractions
along the corresponding indices. Generalizations, where

the underlying tensor network is not a square lattice or
higher-dimensional, function similarly.

In the following, we shall also need so-called Projected
Entangled-Pair Operators (PEPOs) that are the operator
analogues to PEPSs. These are defined in terms of tensors
of the form

C :=
∑

i,j=1,...,n
a1,...,a4=1,...,χ

(Cij)a1a2a3a4 |a1, a2〉〈a3, a4| ⊗ |i〉〈j| .

Graphically, we shall make use of the notation

C ≡
∑

i,j=1,...,n
a1,a2,a3,a4=1,...,χ

Ca1 a4

a2

a3

i,j

,

where the symbol , labelled by the physical indices i and
j, stands for two additional legs sticking out of the paper
plane towards and away from the reader, respectively.

III.B. PEPS building blocks

Let us now derive the PEPS representations of the (2+1)d
toric code. More specifically, we shall distinguish two rep-
resentations that correspond to the Z and X bases of the
ground state subspace discussed in sec. II. Since we have
access to the Hamiltonian projector (4), ground states can
be simply found by projecting any 1-chains in C1(T2

�,Z2)
onto the ground state subspace. In practice, we find it
more convenient to first pick a state that manifestly satis-
fies one of the two sets of stabiliser constraints, and then
project with respect to the second set of constraints. In
other words, we pick a state that corresponds to either
a 1-cycle in Z1(T2

�,Z2) or a 1-cycle in Z1(T2
�∨ ,Z2) and

then apply the relevant part of the Hamiltonian projector,
e.g.

|ψ〉g.s. =
∏

v⊂T2
�

1
2(id + Av)|+,+, . . . ,+〉 (6)

|ψ〉g.s. =
∏

p⊂T2
�

1
2(id + Bp)|0, 0, . . . , 0〉 . (7)

Let us now derive the two tensor network representations
that correspond to the two choices illustrated above. In
order to do so, we first need to express the components of
the Hamiltonian projector in terms of PEPOs. We shall
describe the latter case in detail and deduce the former
one by analogy.

Given a plaquette p ⊂ T2
�, the projector 1

2 (id +Bp) can
be written as the contraction of two PEPO tensors as

with
a

≡ 1
2 1

2

{
1⊗ 1 if |a〉 = |0〉
X ⊗X if |a〉 = |1〉

,
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where the dotted square represents the plaquette p. This
operator needs to be applied to every plaquette of T2

�.
We choose to do so according the following pattern

,

where it is understood that two PEPO tensors are con-
tracted along one of their physical indices at every qubit
location. Acting with such operators on the kinematical
state |0, 0, . . . , 0〉 yields a ground state wave function. We
are interested in the tensor TX2d that results from blocking
four PEPO tensors around a vertex v ⊂ T2

�, and acting
on the state |0, 0, 0, 0〉, i.e.1

a2a1

a4a3

. |0〉|0〉

|0〉

|0〉
=:

a2a1

a4a3

T X
2d .

Going through the derivation, we find that

TX2d ∝
∑
{a=0,1}

|a1, a2〉〈a3, a4|

⊗ |a1 + a2, a2 + a4, a1 + a3, a3 + a4〉

≡
∑
{a=0,1}

a2a1

a4a3

a1+a3

a1+a2

a2+a4

a3+a4

. (8)

Putting everything together, we obtain that |PEPS(TX2d)〉
is a tensor network description of a ground state of the
(2+1)d toric code. This can be confirmed graphically
using the following properties

X

= X X ,
Z

= Z = Z . (9)

Let us now investigate some properties of this PEPS
tensor. First of all, let us introduce a lighter notation for
TX2d:

a2a1

a4a3

T X
2d ≡

a2a1

a4a3

, (10)

1 The symbol . indicates that the operator acts (from the left) on
the microscopic state via matrix multiplication along the physical
indices.

where physical indices are now omitted. Moreover, vir-
tual indices are now supported on edges of the square.
Inspecting the definition of TX2d, we notice immediately
that it satisfies a Z2-symmetry condition, which in terms
of the notation we have just introduced reads:

X

X

X

X = ⇔ X

X

=
X

X . (11)

The symmetry condition presented above is the only one,
and thus it fully specifies the support of the tensor on the
virtual degrees of freedom. Moreover, let P(TX2d) be the
tensor that maps the virtual indices of TX2d to its physical
ones. Given the definition (8), it reads

P(TX2d) ∝
∑
{a=0,1}

|a1+a2, a2+a4, a1+a3, a3+a4〉〈{an}4n=1| ,

where 〈{an}4n=1| ≡ 〈a1, . . . , a4|. A simple computation
then shows that

E(TX2d) := P(TX2d
ᵀ)P(TX2d) ∝ 1

2(1⊗4 +X⊗4) , (12)

so that E(TX2d) performs a group averaging, and hence
defines a projector onto the Z2-invariant subspace. It
follows that when restricting to the Z2-invariant subspace,
P(TX2d

ᵀ) is the unitary left-inverse of P(TX2d). By applying
this unitary inverse to the physical indices of TX2d, we
obtain the following isomorphism2

TX2d '
1
2(1⊗4 +X⊗4) = 1

2
∑
a=0,1

(Xa)⊗4 , (13)

which indicates that the tensor TX2d is itself a projector
onto the Z2-invariant subspace. Crucially, this isomor-
phism renders explicit the fact that there is a one-to-one
correspondence between physical and virtual degrees of
freedom up to a Z2-symmetry. This implies that it is
enough to focus on operations at the virtual level, hence
justifying the notation (10). In the following, it will be
very convenient to use the isomorphism (13) in order to
carry out computations.

The other tensor network representation, i.e. associated
with (6), is derived following exactly the same procedure.
Given a vertex v ⊂ T2

�, the projector 1
2 (id + Av) can be

written as the contraction of two PEPO tensors as

with
α

≡ 1
2 1

2

{
1⊗ 1 if |α〉 = |+〉
Z ⊗ Z if |α〉 = |−〉

.

2 Although we use the same notation for (12) and (13), these are
strictly speaking distinct objects. Whereas the matrices appearing
in the definition of the former tensor are solely between virtual
states, the ones appearing in the definition of the latter are
between virtual and physical states. Nevertheless, physical and
virtual vector spaces happen to be isomorphic, which justifies our
notation.
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The PEPS tensor then results from blocking four such
PEPO tensors around a plaquette p ⊂ T2

�, and acting on
the state |+,+,+,+〉, i.e.

α2α1

α4α3

. |+〉|+〉

|+〉

|+〉

=:

α2α1

α4α3

TZ
2d ,

so that

TZ2d ∝
∑
{α=±}

|α1, α2〉〈α3, α4| ⊗ |α1α2, α2α4, α1α3, α3α4〉 .

We can confirm that this tensor network state is in the
ground state sector of the model using the following prop-
erties

Z

= Z Z ,
X

= X = X . (14)

As before, we introduce a lighter notation for TZ2d:

α2α1

α4α3

TZ
2d ≡

α2α1

α4α3

, (15)

where physical indices are omitted. Note that this nota-
tion purposefully differs from the one of TX2d. Although,
this distinction might seem a little bit artificial at this
point, it will turn out to be very useful when generalizing
to (3+1)d. Inspecting the definition of TZ2d, we find that
it satisfies the same symmetry condition as TX2d but with
respect to Pauli-Z operators, i.e.

=
Z

Z

ZZ ⇔
Z

Z =
Z

Z .

Finally, repeating the previous analysis yields the isomor-
phism

TZ2d '
1
2(1⊗4 + Z⊗4) ,

so that TZ2d is itself a projector onto the Z2-invariant
subspace.

III.C. Ground state subspace and excitations

We derived above a PEPS tensor TX2d such that
|PEPS(TX2d)〉 defines a ground state of the (2+1)d toric
code. Since this tensor has the geometry of a square such
that virtual indices are supported on edges, contraction
along a virtual index is now performed for two squares
sharing a common edge, and thus |PEPS(TX2d)〉 has the
geometry of a square tesselation.

As mentioned above, the tensor TX2d satisfies a Z2-
symmetry condition under X⊗4. Such symmetry along
the virtual indices of the tensor is a crucial feature of the
topological order. Indeed, it is immediate to check that
this Z2-invariance is stable under concatenation of several
such tensors:

X

X X

X X

X = X

X X

X X

X
X

X (11)= ,

where we used the fact that X2 = 1, and thus any loop of
X operators along a contractible 1-cycle of the manifold,
i.e. 1-boundaries, can be removed. Similarly, any string
of X operators can be pulled through the PEPS tensors,
as illustrated on the r.h.s of (11), making the bulk of
such strings locally undetectable. Interestingly, a closed
loop of X operators along any of the non-contractible
1-cycles does have a global effect, namely to introduce a
non-trivial flux in the wave function, hence allowing to
map one ground state to another. This yields yet another
way of phrasing that the ground state degeneracy of the
model is 22.

Although the symmetry condition (11) is a salient fea-
ture of the topological order, it is not a sufficient condi-
tion. Indeed, we can easily engineer tensors that display
such symmetry conditions, but these do not necessar-
ily parametrize the ground state of the same topological
model. This implies in particular that by simply fixing
a symmetry condition for the PEPS tensors, we do not
fully specify a topological phase, and thus we can a priori
explore different topological phases and the corresponding
phase transitions. That being said, the fact that the ten-
sor is itself a projector onto the Z2 invariant subspace, as
seen from (13), is characteristic of the topological order.

Crucially, anyonic (physical) excitations can also be
studied in terms of virtual operators. Pairs of point-like
electric excitations labelled by e can be conveniently cre-
ated at the endpoints of an open string of X operators
along the virtual indices of the PEPS tensors. As men-
tioned above, away from its endpoints, such string can be
freely deformed by pulling it through the tensors. Pairs
of point-like magnetic excitations labelled by m can be
created by inserting a pair of Z operators at virtual in-
dices of the network, which violate the local symmetries
of the tensors sharing this virtual index:

e e

X

X X

X

Z
m

Z
m

. (16)

Notice that there is no ‘string’ connecting the Z operators,
as such we could be tempted to consider a single magnetic
excitation by inserting a single Z operator. However, there
is no operation on the physical indices that would induce
such a configuration. This follows from the fact that a
single plaquette operator is equal to the product of all the
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plaquette operators but the one considered. This PEPS
formulation of the excitations can be used to recover the
fusion rules of the model, namely e×e = m×m = ε×ε = 1,
e×m = ε, e× ε = m and m× ε = e, where ε denotes the
fermionic composite excitation. Furthermore, both types
of excitations can be moved over the network via local
unitary operators [1].

As reviewed below, the tensor TX2d encodes the renor-
malization group fixed point of the phase. Importantly,
the virtual operators defined above still describe excita-
tions when deforming the tensor away from the fixed point
via an invertible physical operation. In the following, this
will enable us to construct order parameters for detecting
phase transitions.

Before pursuing our analysis, let us mention that the
other tensor network representation behaves identically
except that a pair of electric charges is now obtained
by inserting of pair of X operators, whereas a pair of
magnetic fluxes can be created at the endpoints of an
open string of Z operators across the virtual indices.
These two tensor network representations are related via
a duality map, which we could write explicitly in terms
of Hadamard matrices. In sec. III F, we shall discuss
how we can define mixed tensor network representations,
involving both TX2d and TZ2d.

III.D. Renormalization group fixed point

Generally, gapped phases of matter can be defined as equiv-
alence classes of physical systems displaying a spectral
gap above the ground state that persists in the thermo-
dynamic limit. It is believed—although not proven—that
such gapped phases admit in the infra-red limit an ef-
fective description in terms of topological quantum field
theories. In this terminology, the toric code constitutes a
concrete realization of a gapped phase described in the
infra-red limit by Z2-BF theory.

Such definition implies that two gapped ground states
belong to the same phase if they can be related by an
adiabatic evolution that does not close the energy gap.
More practically, such evolution may be implemented by
means of local unitary transformations. But these local
transformations can typically be arranged in order to
implement a (real space) renormalization group flow, so
that the task of finding equivalence classes of states with
respect to these transformations boils down to finding
fixed points of the corresponding flow. It is expected that
such fixed points capture the long-range entanglement
of the system, which is a defining feature of (intrinsic)
topological order [9]. We shall now illustrate this remark
by implementing a renormalization group flow at the level
of the tensor network, and confirm that the PEPS tensor
indeed describe fixed points of such a flow.

Let us investigate the renormalization of |PEPS(TX2d)〉.
Since we are dealing with a homogeneous tensor network,
it is enough to understand the renormalization of two
neighboring tensors. Let us consider the following con-

catenation of tensors:

TX2dT
X
2d ≡

2 3

4

65

1 , (17)

where the numbers identify the different edges/bonds. As
mentioned above, this block of two tensors still satisfies
the Z2-symmetry condition. Crucially, the isomorphism
property (13) is also stable under concatenation. This
can be shown by following the same approach as before.
Applying the map P((TX2dT

X
2d)ᵀ) to TX2dT

X
2d, we find

TX2dT
X
2d '

1
4

∑
a1,a2=0,1

(Xa1)⊗3 tr(Xa1Xa2) (Xa2)⊗3

= 1
2(1⊗6 +X⊗6) , (18)

where we used the fact that tr(Xa1Xa2) = 2δa1,a2 . Using
this isomorphism, let us now demonstrate that the tensor
TX2d is a fixed point of the renormalization group flow.
In order to prove this statement, we need to show (i)
that the tensor TX2dT

X
2d is equal, up to isomorphisms, to

a tensor product between TX2d and another term, and
(ii) that the second term describes purely short-range
correlations so that it can be discarded as we focus on
non-local properties.

In light of the isomorphism (18), we understand that
it is enough to know how to perform the desired factor-
ization at the level of the symmetry operators. Given
two neighboring bonds, we have Xa ⊗ Xa ' Xa ⊗ 1.
This isomorphism can be physically implemented via the
controlled NOT gate cX

cXe1,e2 : |a1, a2〉e1,e2 ≡ |a〉e1 ⊗ |a2〉e2 7→ |a1, a1 + a2〉e1,e2 ,

such that

cX†(Xa ⊗Xa) cX = Xa ⊗ 1 , (19)

where e1 and e2 refer to the bonds/edges along which it
is applied. Considering (17), we apply cX2,3 to the pair
of physical indices 2,3 and (cX2,3)† to the corresponding
pair of indices belonging to the upper neighbor. Similarly,
we apply cX5,6 and (cX5,6)† to the tensor TX2dT

X
2d and its

lower neighbor, respectively. By further inserting the res-
olutions of the identity cX2,3(cX2,3)† and cX5,6(cX5,6)†
along the virtual indices between TX2dT

X
2d and its neigh-

bors, we can apply equation (19) twice. We obtain that
the controlled NOT gates act as disentanglers, which in
virtue of (18) induce the isomorphism

TX2dT
X
2d ' TX2d ⊗

( ∑
a1,a2=0,1

|a1〉〈a1| ⊗ |a2〉〈a2|
)

≡ ⊗ , (20)
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where the second term on the r.h.s is a tensor product of
tensors that map one-to-one the physical system to the
virtual one, representing maximally entangled states at
the interface between neighboring PEPS tensors. Simi-
larly, we find that the blocking of four neighboring TX2d
tensors satisfies

' ⊗ . (21)

Since we are only interested in the long-range informa-
tion, the short-range maximally entangled states can be
safely discarded, hence confirming that the PEPS tensors
do appear as fixed points of the renormalization group
flow. The same reasoning would apply with the other
tensor network representation, but the physical opera-
tions would be expressed in terms of the controlled gates
(H ⊗H)† cX (H ⊗H), with H the Hadamard matrix.

Before concluding this part, let us comment briefly
about the entanglement entropy. Given a connected and
topologically trivial region Ω of the tensor network, the
corresponding reduced density matrix has a degenerate
spectrum. Moreover, we count |Z2||∂Ω|−1 dominant sin-
gular values, where |∂Ω| is the length of the boundary, as
defined by the number of tensor bonds along the boundary.
The ‘−1’ in the previous formula amounts to the overall
Z2-symmetry condition of Ω. Considering the region de-
fined by the configuration on the left-hand side of (21),
we know that the corresponding entanglement entropy is
equal to 7log(2). Since each maximally entangled state
on the right-hand side contributes by a factor log(2), we
check that the isomorphism preserves the entanglement
entropy as expected.

III.E. Transfer operator and edge physics

Let us now briefly review how the topological order of
the (2+1)d toric code can be analysed from the point of
view of the transfer operator [2, 18], which turns out to
be a precious tool when performing numerical simulations.
Let us first consider N ×N ′ copies of the PEPS tensor
TX2d and contract them on a cylinder S1 × I with I ≡ [0, 1]
such that the cylinder has circumference N and length N ′.
The resulting tensor possesses two sets of open virtual
indices, at which we can assign boundary conditions |ψL〉
and |ψR〉. There is a natural action of X⊗N on both
sides of the cylinder. Furthermore, it follows from the
symmetry condition of TX2d that the tensor network on
the cylinder remains invariant under X⊗N ⊗X⊗N .

Recall that the four degenerate ground states on the
torus can be obtained by inserting strings of Xg operators,
g ∈ {0, 1}, along both non-contractible 1-cycles. An
alternative basis of the ground state subspace is obtained
by inserting a string of Xg operators along one of the
non-contractible 1-cycles, and a string of Pρ := 1

2 (1+ρX)

operators, ρ = ±1, along the other one. The operators P+
and P− correspond to the projectors onto the even and
odd sectors, respectively. Going back to the cylinder, we
distinguish four (minimally-entangled) topological sectors,
which we identify in a similar way. On the one hand, we
have the possibility of inserting a string of Xg operators
along the cylinder. On the other hand, we have the
possibility of inserting a string of Pρ operators around
the cylinder. But using the symmetry conditions of the
individual PEPS tensors, such a string can be moved
to the boundary, at which point it can act on one of
the boundary conditions, projecting it to the even or
the odd sector. The symmetry under X⊗N ⊗X⊗N then
enforces that both boundary conditions must be in the
same sector. Putting everything together, we obtain that
the topological sectors on the cylinder are identified by the
possibility of inserting a string of Xg operators along the
cylinder and a choice of boundary conditions identified
by an irreducible representation ρ = ±1 : a 7→ (±1)a
of Z2. These topological sectors correspond to the four
quasi-particles of the model and can be depicted as

〈ψρ|
Xg Xg Xg

|ψρ〉 .

These are by construction in one-to-one correspondence
with the four degenerate ground states of the model on the
torus. Recall that these four quasi-particles can be created
by acting on the ground state subspace with a string of
Xg operators along a path γ with endpoints Zρ ≡ |0〉〈0|+
ρ|1〉〈1| that transform like an irreducible representation of
Z2. We denote by Rg,ρ(γ) the combined operator and by
|g, ρ〉 ≡ |Rg,ρ(γ)(PEPS)〉 the corresponding excited state.

Let us now consider the eight-valent tensor E(TX2d)
defined in (12). The symmetry of the tensor TX2d in-
duces the same Z2-symmetry independently in the ‘bra’
and ‘ket’ layers of E(TX2d). We consider N copies of
E(TX2d) and contract them on a ring. The resulting
matrix is the so-called transfer operator denoted by
T(TX2d). The symmetry conditions on E(TX2d) implies
[T(TX2d), X⊗N ⊗ 1

⊗N ] = [T(TX2d),1⊗N ⊗ X⊗N ] = 0,
where we introduced the notation ⊗ to indicate that the
tensor product is with respect to the bra and ket layers of
T(TX2d). Therefore, T(TX2d) carries a representation (ρ, ρ′)
of Z2×Z2. Moreover, we have as before the possibility of
inserting a string of Xg operators between neighboring
tensors at a given position in the bra and/or ket layers.
As such, the transfer operator decomposes a priori into
16 blocks denoted by Tg,ρg′,ρ′(TX2d).

From the explicit definition of E(TX2d) and using the
fact that tr(XgXg′) = 2δg,g′ , we obtain Tgg′(TX2d) =
1
2 (1⊗N ⊗ 1

⊗N + X⊗N ⊗ X⊗N ) δg,g′ . For g = g′, this
transfer operator has two degenerate fixed points, which,
using tr(XgXg′) = 2δg,g′ , can be found to be spanned by
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the product states 1⊗N and X⊗N . Overall, we obtain
four degenerate fixed points that correspond to the four
non-vanishing blocks Tg,ρg,ρ(TX2d). We thus find that the
number of degenerate fixed points of the transfer operator
equals the ground state degeneracy of the Hamiltonian,
as expected.3

The doubly degenerate fixed point described above is
invariant under the action of X⊗N ⊗ X⊗N , but breaks
the symmetry of the transfer operator with respect to
1
⊗N ⊗ X⊗N or X⊗N ⊗ 1

⊗N . In other words, the sym-
metry group Z2 × Z2 of the transfer operator is broken
down to its diagonal subgroup diag(Z2 × Z2) ∼= Z2 at
the fixed points. As a matter of fact, acting with either
X⊗N ⊗ 1

⊗N or 1⊗N ⊗ X⊗N has the effect of mapping
one fixed point to the other. It turns out that this sym-
metry structure of the fixed points is characteristic of the
renormalization group fixed point. We mentioned earlier
that the virtual symmetry satisfied by the tensors is not
in one-to-one correspondence with the topological order.
We can thus ask, which phases can we encounter as we
move away from the renormalization group fixed point
within the space of Z2 symmetric tensors? This question
can be answered by monitoring the symmetry pattern
of the transfer operator fixed points [18, 19]. In order
to understand this mechanism, we must first emphasize
what the fixed point structure of the transfer operator
indicates regarding the excitation content of the theory.
The transfer operator effectively computes the overlap
between topological sectors on the cylinders. The fixed
point structure we found, or equivalently the fact that
only the blocks Ta,ρa,ρ(TX2d) are non-vanishing, implies that

〈g′, ρ′|g, ρ〉 =
{

1 if g = g′ and ρ = ρ′

0 otherwise

in the thermodynamic limit. This indicates that all the
quasi-particle states are orthogonal among themselves,
and in particular all the non-trivial excited states are
orthogonal to the vacuum state |0,+〉.

As we deform the model away from the renormalization
group fixed point, these virtual operators still encode
physical excitations. Nevertheless, as we keep increasing
the deformations, we may encounter a phase transition,
at which point a given virtual operator might encode
a different physical excitation. In particular, the corre-
sponding physical excitation might now be identified with
the vacuum sector. As alluded earlier, these condensates
are associated with different symmetry breaking patterns
in the fixed point sector.

Starting from our tensor network ansatz for the (2+1)d
toric code, we distinguish three different symmetry pat-
terns in the fixed point sector. The first scenario is

3 Note that we should in principle consider left and right fixed
points of the transfer operator, but these are the same since
T(TX2d) is Hermitian.

the one that we already described, where the symmetry
group is diag(Z2 × Z2). The second possibility corre-
sponds to breaking all the symmetries, i.e. the symmetry
with respect to X⊗N ⊗ X⊗N is also broken, which can
be detected via the local order parameter Z ⊗ 1 since
XZ = −ZX. The fixed points are of the form (|a〉〈a′|)⊗N
in this case. The third possibility corresponds to having
fixed points that are also invariant under X⊗N ⊗ 1

⊗N

and 1
⊗N ⊗ X⊗N , which can be probed via the local

order parameter Z ⊗ Z, so that the symmetry group is
Z2×Z2. This scenario arises when applying the projector
(1+X)⊗4 to the physical indices so that the (unique) fixed
point of the transfer operator is equal to (|+〉〈+|)⊗N .

In order to make the relation between these symmetry
patterns and the condensation of the bulk excitations
explicit, it is convenient to rephrase our analysis on the
half-infinite plane instead of the cylinder, by making the
circumference of the cylinder infinite and cutting it open.
At this point, it is possible to use the symmetry conditions
of the PEPS tensors in order to pull through the string
of Xg operators as follows:

Xg

→
Xg

(11)−−→ Xg

Xg

,

such that one of the endpoints of the string is sent to
infinity. Consequently, excited states with a non-trivial
electric charge e now correspond to 0d domain wall excita-
tions of the transfer operator. Crucially, we can evaluate
the overlap 〈Rg′,ρ′(γ)(PEPS)|Rg,ρ(γ)(PEPS)〉 of excited
states as the expectation value

〈R†g′,ρ′ ⊗ Rg,ρ〉f.p. ≡ 〈f.p.|R†g′,ρ′ ⊗ Rg,ρ|f.p.〉

of the corresponding operators between the fixed points
|f.p.〉 of the transfer operator, where we assume
〈f.p.|f.p.〉 = 1. We obtain that if the magnetic fluxes
condense into the ground state such that 〈0, ρ′|0, ρ〉 6= 0
for ρ 6= ρ′, then the symmetry with respect to X∞ ⊗ X∞
must be broken. Indeed, as long as the symmetry is
satisfied, i.e. (X∞ ⊗ X∞)|f.p〉 = |f.p.〉, we have

〈Z〉PEPS = 〈Z ⊗ 1〉f.p. = 〈f.p.|Z ⊗ 1|f.p.〉 (22)
= 〈f.p.|X∞Z ⊗ X∞|f.p.〉
= −〈f.p.|ZX∞ ⊗ X∞|f.p.〉 = −〈Z ⊗ 1〉f.p. = 0 .

Similarly, as long as the Z2 × Z2 symmetry is preserved,
the electric excitations condense into the ground states
such that 〈g,+|g′,+〉 6= 0 for g 6= g′. In summary, we
have the following correspondence between symmetry
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structures of the fixed point of the transfer operator and
phases in the bulk:

Fixed point T(TX2d) Phase Condensate
Z2 × Z2 trivial electric

diag(Z2 × Z2) ∼= Z2 toric code –
broken trivial magnetic

.

Carrying out the same analysis using the other tensor
network representation would yield the same relation
between symmetry breaking and condensation except
that the symmetry broken phase would now be associated
with the condensation of the electric excitations, and vice
versa.

A related question pertains to the existence of boundary
Hamiltonians encoding the dynamics of the virtual degrees
of freedom. Let us consider an open tensor network cut
out of |PEPS(TX2d)〉 such that the virtual indices along
the boundary are left uncontracted. Setting a value for
each uncontracted virtual index amounts to defining an
entanglement state on the boundary. The PEPS then
defines a linear map from the one-dimensional Hilbert
space of boundary states to a subspace of physical states.
Using the one-to-one correspondence between virtual and
physical degrees of freedom along the boundary, parent
Hamiltonians for the edge states can be engineered. But
the virtual symmetry on the boundary that is inherited
form the bulk tensors imposes a global parity constraint.
This implies that the boundary is anomalous since only
parity-preserving Hamiltonian can be defined [27, 28].

The boundary theory is protected against symmetry
breaking under local perturbations by the topological
order in the bulk, unless a phase transition takes place.
The phase diagram of such a one-dimensional model is
in bijection with the gapped boundary conditions of the
(2+1)d toric code. In (2+1)d, we distinguish two such
gapped boundary conditions, characterized by the conden-
sation of the electric or magnetic excitations, respectively.
By tuning parameters at the boundary, we could drive
the toric code to either condensate. Going from one con-
densate to the other, our previous analysis suggests that
the system will undergo a (second order) phase transition
involving a Z2-symmetry breaking, which can be checked
to be in the same universality class as the Ising model
[27–32]. The phase transition between the two gapped
boundaries, which are identified by a choice of condensate,
closes the gap giving rise to a gapless edge at criticality.

III.F. Intertwining MPO and duality on the
boundary

We derived above two tensor network representations
for the (2+1)d toric code. These two representations
turn out to display the same Z2-symmetry. As we shall
see later, this situation is specific to (2+1)d where the
toric code is self-dual. So far we have been considering
each representation separately, raising the question as

to whether these can be combined in order to define
mixed tensor network representations of the ground state
subspace.

Let us consider a patch of the square lattice with the
following choice of 1-chain in C1(T2

�,Z2):

|+〉 |+〉 |+〉 |+〉

|+〉

|+〉 |+〉 |0〉|0〉

|+〉

|+〉 |+〉 |0〉|0〉

|+〉

|+〉 |+〉 |0〉|0〉

|+〉

|+〉

|+〉

|+〉

|+〉

|+〉

|0〉 |0〉 |0〉 |0〉

|0〉 |0〉 |0〉

|0〉 |0〉

|0〉

|0〉

|0〉|0〉

where we identify a diagonal strip of vertex and plaquette
operators where both |+〉 and |0〉 states meet. Away
from this diagonal strip, we fall within one of the two
configurations considered earlier so that the stabilizer
constraints can be enforced by means of the same PEPO
operators, i.e.

,

where we introduced the following complex-valued tensors
along the diagonal strip:

a1

a2

a3 ≡

{
1 if a1 = a2 = a3
0 otherwise

,

α1

α2

α3 ≡

{
1 if α1 = α2 = α3
0 otherwise

,

(23)

denoted by δZ and δX tensors, respectively. It is un-
derstood in the definitions above that {a = 0, 1} and
{α = ±} label eigenstates of Z and X, respectively, so
that the following symmetry conditions are satisfied:

X X

X

= Z

Z

= Z

Z

= , (24)
Z Z

Z

= X

X

= X

X

= . (25)

Contracting these tensors along a line as depicted above,
we obtain a so-called Matrix Product Operator (MPO),
which is the operator analogue of an MPS. This MPO
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plays the role of an intertwiner between the two PEPS
representations. We shall now demonstrate that this
MPO, together with its neighboring PEPOs, does enforce
the stabilizer constraints at the vertices and plaquettes
along the diagonal strip. We shall focus on the plaquette
constraints and deduce the vertex ones by duality. We
need to confirm the relation:

X

X

X

X . = , (26)

where

:= . |+〉

|+〉

|0〉

|0〉 . (27)

Using the symmetry conditions satisfied by the delta
tensors introduced above, together with the symmetry
conditions satisfied by PEPS tensors appearing above,
one has

X

X

X

X
(9,14)=

X

X

X (28)

(25)=
X

X
X

(24)= ,

as required. The fact that the stabilizer constraints at
the vertices are enforced follows by duality. Putting
everything together, we obtain that the following PEPS
is a (mixed) tensor network representation of the ground
state subspace:4

.

4 Notice that we started from a very specific configuration of micro-
scopic states, with the purpose of deriving the intertwining MPO
and study its properties. Following the same idea, we could derive
more general mixed representations, but due to the geometry of
the problem, additional PEPS tensors would typically have to be
defined.

Moreover, the MPO behaves as expected with respect to
excitation-creating operators. Indeed, we can check that
it maps a string of X operators on the TX2d-side of the
diagonal strip to a pair of X operators on the TZ2d-side:

X X X X

= X X X X X X X X

=
X X

.

Similarly, a string of Z operators on the TZ2d-side would
be mapped to a pair of Z-operators on the TX2d-side.

It is worth emphasizing that the MPO considered in this
section does not represent a topological defect. Indeed, it
merely acts as an ‘intertwiner’ between different tensor
network representations, and as such preserves excitations
that go through it. By adding some Hadamard matrices
to its definition, we could turn this MPO into a topological
duality defect, which would perform the permutation of
anyons e ↔ m [7, 33]. In order to make the distinction
between both scenarios explicit, we briefly present such
duality defect in app. A. But, instead of deriving the
corresponding MPO, we design new PEPS tensors that
parametrize the ground state subspace along the diagonal
strip.

Finally, we explained earlier that given a state
|PEPS(TX2d)〉 on an open manifold, we could define an
Ising-like Hamiltonian on the one-dimensional Hilbert
space of virtual indices that are left uncontracted. Ap-
plying the intertwining MPO that we have just defined
would map the model to its dual. Indeed, the inter-
twining MPO performs in particular the identifications
ZiZi+1 ↔ Z∨i+1/2 and Z∨i−1/2Z

∨
i+1/2 ↔ Zi. Self-duality

of the (1+1)d Ising model is then reflected in the fact
that both tensor network representations have the same
symmetry structure.

Sec. IV | Tensor network representations in
(3+1)d

In this section, we define and analyze two canonical tensor
network representations of the (3+1)d toric code, which
are the higher-dimensional analogues of the ones defined
in the previous section. Some features of the (3+1)d model
are similar to (2+1)d, in which case we shall be brief and
invoke the results of the previous section.

IV.A. PEPS building blocks

We distinguish two tensor network representations, which
are obtained following the same approach as in sec. III B
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for the (2+1)d model. Given a plaquette p ⊂ T3
�, the

projector 1
2 (id + Bp) is the same as before, and so is its

tensor network representation in terms of PEPO tensors.
These PEPO tensors need to be applied to every plaquette
p ⊂ T3

�. We do so according to a pattern akin to (2+1)d
such that PEPOs are organized by blocks around every
other vertex of the lattice. Acting with such operators
on the kinematical state |0, 0, . . . 0〉 yields a ground state
wave function for the (3+1)d toric code. We are interested
in the tensor TX3d that results from blocking twelve PEPO
tensors around a vertex v ⊂ T3

�, and acting on the state
|0〉⊗6, i.e.

a8

a12
a10

a6

a2

a4

a9

a1

a5
a7

a11

a3

. |0〉|0〉

|0〉

|0〉

|0〉

|0〉

=:
a8

a12
a10

a6

a2

a4

a9

a1

a5
a7

a11

a3

T X
3d . (29)

Before writing explicitly what the tensor TX3d is, let us in-
troduce right away a different notation that is reminiscent
of the one used in (2+1)d for TX2d:

a8

a12
a10

a6

a2

a4

a9

a1

a5
a7

a11

a3

T X
3d ≡ a6

a8

a2

a10

a1 a4

a12a9

a5
a7

a3

a11

, (30)

where physical indices are omitted and virtual indices
are supported on the edges of the octahedron. With this
notation in mind, we have the explicit formula:

TX3d ∝
∑
{a=0,1}

⊗
e∈{1,...,6}

|ae〉
⊗

e∈{7,...,12}
〈ae|

⊗
v⊂

∣∣∑
e⊃v

ae
〉
,

(31)

where the labels e, v ⊂ now refer to edges and vertices
of the underlying octahedron, respectively. Putting ev-
erything together, we obtain that |PEPS(TX3d)〉 is a tensor
network description of a ground state of the (3+1)d toric
code.

Let us now investigate some properties of this PEPS
tensor. By inspecting definition (31), or alternatively
using the properties (9), we notice that the tensor remains

invariant under the following virtual Z2-actions:

X

X X

= X

X
X

= X
X

X
X

=

X
X

X
X

= . . . = ,

or equivalently

X

X

=
X

X

= . . . =
X

X

X

.

More precisely, we have a symmetry condition for every
closed loop of X operators along the virtual indices of TX3d.
For instance, every loop around a triangular face of the
octahedron yields a symmetry condition. But we notice
that the product of all such operators is equal to the iden-
tity map, so that we distinguish 8− 1 = 7 independent
symmetry conditions. This redundancy implicitly follows
from the fact that plaquette operators along 2-boundaries
of T3

� multiply to the identity. More generally, generating
sets of symmetry conditions are in one-to-one correspon-
dence with generating sets of loops along the edges of the
octahedron.

Note that the tensor TX3d does not display any additional
symmetry, hence the ones displayed above fully specify
its support on the virtual degrees of freedom. Moreover,
let P(TX3d) be the tensor that maps the virtual indices of
TX3d to its physical ones. A straightforward computation
shows that

E(TX3d) := P(TX3d
ᵀ)P(TX3d) (32)

∝ 1
27

∑
{a=0,1}

⊗
e⊂

( ∏
4⊃e
46=40

X
a4
e
)

∝ 1
27

∏
4⊂
46=40

(∑
a4

⊗
e⊂4

X
a4
e
)
,

where 40 is a fixed triangle in the octahedron. Dissecting
this formula, we understand that E(TX3d) is a projector
onto the subspace of states that are invariant under the
symmetry actions at every triangular face of the octahe-
dron. More generally, we have

E(TX3d) ∝ 1
2|L( )|

∏
`∈L( )

( ∑
a`=0,1

⊗
e⊂`

Xa`
e

)
, (33)

where L( ) is a generating set of loops of virtual indices
on the octahedron, and the tensor product is over the
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edges/indices e included in the loop `. When restricting
to the invariant subspace, we obtain that P(TX3d

ᵀ) is the
unitary left-inverse of P(TX3d). Acting with this map on
the physical vector space of TX3d, we obtain the following
isomorphic PEPS tensor:

TX3d '
∏

`∈L( )

P+,` with P+,` := 1
2
∑
a`=0,1

⊗
e⊂`

Xa`
e .

(34)

Notice that we can choose any generating set of loops in
order to write this isomorphism. Going from one choice
to another simply amounts to a relabelling of summation
variables. These isomorphisms make explicit the fact that
there is a one-to-one correspondence between physical and
virtual degrees of freedom up to a (local) Z2-symmetry
at every triangle. As in (2+1)d, this implies that it is
enough to focus on operations at the virtual level, hence
justifying the simplified notation (30).

The fact that TX3d is isomorphic to a product of projec-
tors may be surprising since the tensor, as initially defined
in (31), does not have the same number of virtual and
physical indices. We already discussed that we distinguish
seven independent symmetry conditions along the virtual
indices of TX3d so that there are only five independent vir-
tual degrees of freedom. But, TX3d is defined by projecting
a microscopic state centered around a vertex at which the
stabilizer constraint is satisfied. Therefore, only 6− 1 = 5
physical indices are independent. Virtual and physical
indices having the same bond dimension, this confirms
that the virtual and physical vector spaces are isomorphic.

Let us now construct the second tensor network represen-
tation. Interestingly, because we are now dealing with a
cubic cellulation of the three-torus, the vertex operators
defer from the (2+1)d ones. Indeed, they now involve
six qubit degrees of freedom instead of four. This implies
that new PEPO tensors must be defined.

Given a vertex v ⊂ T3
�, the projector 1

2 (id +Av) can be
written as the following contraction of two PEPO tensors:

with
α

≡ 1
2 1

2

{
1⊗ 1⊗ 1 if |α〉 = |+〉
Z ⊗ Z ⊗ Z if |α〉 = |−〉

.

This operator needs to be applied to every vertex of T3
�.

We do so according to pattern akin to (2+1)d such that
PEPO tensors are organized by blocks around every other
cube of the lattice. The PEPS tensor then results from

blocking eight such PEPO tensors around a cube c ⊂ T3
�,

and acting on the state |+〉⊗12, i.e.

α5
α6

α1 α2

α4α3

α8α7

.

|+〉

|+〉

|+〉|+〉

|+〉

|+〉

|+〉
|+〉

|+〉

|+〉 |+〉

|+〉

=:
α5

α6

α1 α2

α4α3

α8α7

TZ
3d .

We notice immediately that both the number of virtual
and physical indices differ from the other representation.
Going through the derivation, we find the following ex-
plicit formula

TZ3d ∝
∑
{α=±}

⊗
v∈{1,...,4}

|αv〉
⊗

v∈{5,...,8}
〈αv|

⊗
e

∣∣ ∏
v⊂∂e

αv
〉
,

(35)

where the labels v, e ⊂ T3
� here refer to vertices and edges

of the original cubic lattice, respectively. Henceforth, we
shall use the following simplified notation

α5
α6

α1 α2

α4α3

α8α7

TZ
3d ≡

α5
α6

α1 α2

α4α3

α8α7

,

that mimics the one of TZ2d. Using the properties of the
PEPO tensors, we find that the tensor TZ3d satisfies the
following symmetry property

Z

Z
Z

Z

Z

Z

Z

Z

= ,

or
Z

Z Z
Z

=
Z

ZZ
Z

.

The tensor does not display any additional symmetry
condition so that its support on the virtual degrees of
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freedom is fully specified by the one above. Following
the same steps as in (2+1)d, we obtain the following
isomorphism:

TZ3d '
1
2(1⊗8 + Z⊗8) , (36)

which indicates that there is a one-to-one correspondence
between physical and virtual degrees of freedom up to a
(global) Z2-symmetry. As for the other representation,
we can check this is compatible with the dimension of the
virtual and physical vector spaces of TZ3d, as initially de-
fined in (35). Since there is a unique symmetry condition,
we have 8− 1 = 7 independent virtual degrees of freedom.
But, TZ3d is defined by projecting a kinematical state cen-
tred around a cube such that the stabilizer constraints are
satisfied at every plaquette. Since the plaquette operators
around a cube multiply to the identity, one stabilizer con-
straint is redundant, and thus 12− (6− 1) = 7 physical
indices are independent, as expected.

IV.B. Ground state subspace and excitations

We derived above two tensors TX3d and TZ3d such that
both |PEPS(TX3d)〉 and |PEPS(TZ3d)〉 define ground states
of the (3+1)d toric code. These tensors are the three-
dimensional analogues of TX2d and TZ2d, respectively. In
sec. III, we explained that in (2+1)d, both tensors have
the same virtual symmetry—up to a change of basis—so
that they yield the same parametrization of the ground
state subspace. We shall now explain that this is no longer
the case in (3+1)d, as anticipated from our discussion in
sec. II.

Let us first focus on the parametrization of the ground
state subspace provided by TX3d. Recall that TX3d has the
geometry of an octahedron such that contractions along
virtual indices are performed for two octahedra sharing
a common edge, and thus the tensor network we obtain
has the geometry of a tetrahedral-octahedral honeycomb:

.

As explained in detailed above, TX3d satisfies as many
symmetry conditions as the number of independent loops
of virtual indices (or edges) on the octahedron. It is
immediate to check that the same statement holds when
considering the concatenation of several such tensors. But,
we now find that the number of symmetry conditions is
extensive.

Although we now have several symmetry conditions
per PEPS tensor, these are of the same nature as those

appearing in (2+1)d. Consequently, this tensor network
representation yields a parametrization of the ground state
subspace that is similar to the (2+1)d one. Any closed
loop of X operators can be removed using these symmetry
conditions, unless it goes along one of the three non-
contractible 1-cycles in T3

�, in which case it introduces a
non-trivial flux in the wave function, mapping one ground
state to another. This confirms the eight-fold degeneracy
of the ground state. As usual, the symmetry conditions
satisfied by TX3d are a crucial feature of the topological
order, but these are not enough to fully characterize it.
This implies in particular that by working within the
space of tensors satisfying such symmetry conditions, we
may be able to explore different topological phases. The
fact that the tensor is itself a projector onto the invariant
subspace at every closed loop is however characteristic of
the (3+1)d toric code.

Analogously to (2+1)d, point-like electric charges are
created at the endpoints of an open string of X opera-
tors, the symmetry conditions making the bulk of such
strings undetectable, whereas loop-like flux excitations
are obtained by inserting loops of Z operators on the vir-
tual indices that break some of the symmetry conditions.
Note that these loops of Z operators are not along the
one-skeleton of the tetrahedral-octahedral honeycomb but
rather its dual, e.g.

Z
X

X

X

X

Z

Z

Z

Z Z

Z Z

e

e

m

. (37)

Let us explain this scenario more carefully by emphasizing
the interplay between physical and virtual degrees of
freedom. Let us consider a single tensor:

,

where we also represented the cellulation T3
�. Recall that

a loop-like excitation is created at the boundary of a
membrane of Z operators along the dual lattice. Let us
consider the smallest type of membrane operator, which
intersects a single edge of the direct lattice. We apply
such membrane operator to the configuration above so
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that a single Z operator acts on the state in the middle.
It follows from properties (9) that

Z

=
Z Z

Z

Z

,

which yields the corresponding operator on the virtual
level. We can now confirm that such an excitation cor-
responds to the violation of the stabilizer constraints
at the four plaquettes surrounding the edge considered.
Combining such operators, we can obtain a configura-
tion like the one depicted in (37). Note that because of
the redundancies between the virtual symmetry condi-
tions, only virtual operators resulting from the procedure
described above may be inserted, otherwise the tensor
network would contract to zero. Notice further that it is
not possible to violate a single symmetry condition for a
given octahedron.

As anticipated in sec. II, the parametrization of the ground
state subspace yielded by the PEPS tensor TZ3d is notice-
ably different. First of all, it follows from the construction
and the choice of notation that |PEPS(TZ3d)〉 has the ge-
ometry of a body-centered cubic lattice. Moreover, as
in (2+1)d, TZ3d displays a unique symmetry condition.
However, this symmetry condition is of a different na-
ture. Indeed, due to the geometry of the tensor, we
now have that any closed surface of Z operators along
a contractible 2-cycle of the manifold can be removed.
Equivalently, given a membrane of Z operators, it can be
pulled through the PEPS tensors making it locally unde-
tectable. The ground state subspace is thus parametrized
in terms of closed membranes going along one of the three
non-contractible 2-cycles of the three-torus, which have a
global effect that maps one ground state to another.

Furthermore, string-like flux excitations are now created
at the boundary of an open membrane of Z operators,
while pairs of point-like charge excitations can be created
by inserting locally X operators, e.g.

X
e

X
e

m

Z ZZ Z
Z ZZ Z

Z ZZ Z
Z ZZ Z

.

Remark that, using the symmetry conditions of the PEPS
tensors, we can pull the bulk of the open membrane
operator through one of the point-like charge excitations.
This process is equivalent to the braiding between the
point-like charge and the loop-like flux. The condition
XZ = −ZX yields the phase associated with this process.

As in (2+1)d, the virtual operators we have just defined
still encode physical excitations as we deform the tensors
TX3d and TZ3d, which, as we demonstrate below, define
renormalization group fixed points.

IV.C. Renormalization group fixed point

Let us now derive the renormalization group flow in the
space of tensors, with respect to which the PEPS tensors
derived above are fixed points. As before, the tensor
network being homogeneous, it is enough to understand
the renormalization of a few neighboring tensors.

Let us start with the PEPS representation provided
by the tensor TZ3d. Since TZ3d satisfies a unique symmetry
condition, regardless of the fact that it is with respect to
a (closed) membrane operator instead of a string-like one,
the renormalization of |PEPS(TZ3d)〉 proceeds analogously
to (2+1)d. Indeed, the isomorphism property (36) can be
shown, following exactly the same steps as in (2+1)d, to be
stable under concatenation, and the physical operations
implementing the renormalization can be expressed in
terms of (H ⊗H)† cX (H ⊗H) gates. The only difference
is that due to the geometry of the underlying network, it
is now necessary to act on six pairs of physical indices.
Correspondingly, more maximally entangled states at the
interface between neighboring tensors will be discarded.

The TX3d representation has a much more interesting be-
havior upon renormalization. We consider the following
concatenation of two neighboring tensors

TX3dT
X
3d ≡

1
2

3
4

10 11
12

16 18

0
5

6
7

8

9
13 14

15 17
19 21

20 22

, (38)

where the numbers are used to identify the different
edge/indices of the block of two tensors. We need to
imagine that every pair of neighboring tensors in the
same direction are blocked together. But this blocking
can be done following different patterns. We choose a zig-
zag pattern such that the faded tensors above represent
two neighboring blocks of tensors. More precisely, the
block TX3dT

X
3d of tensors we consider is contracted to its

upper-back-right neighbor along the virtual indices {2},
{3} and {4}. Similarly, it is contracted to its lower-back-
right neighbors along the virtual indices {16}, {17} and
{18}. The remaining neighboring blocks are not repre-
sented but for instance the upper-back-left neighbor is
contracted to TX3dT

X
3d along the virtual index {1}. The

front neighboring blocks follow the same pattern. The
asymmetry in the contraction pattern is partly responsible
for making the renormalization flow of this representation
more exotic.
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Let us study the symmetry conditions satisfied by the
block of tensors depicted in (38). As we mentioned earlier,
the number of symmetries is now extensive and grows as
we consider blocks of more and more tensors. However,
independent symmetries can always be identified via a set
of independent loops along the virtual indices. For the
configuration at issue, we distinguish 13 such symmetries.
We consider the generating set of symmetry conditions
defined as

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

a1 X X X X – – – – – X X – – – – – – – – – – –
a2 – – – – X X X X – – – – X X – – – – – – – –
a3 – – – – – – – – – X X – – – X X X X – – – –
a4 – – – – – – – – – – – – X X – – – – X X X X

a5 – X X X – X X X – – – X – – – – – – – – – –
a6 – – – – – – – – – – – X – – – X X X – X X X

a7 X – – – X – – – X – – – – – – – – – – – – –
a8 – X X – – X X – – – – – – – – – – – – – – –
a9 – – – – – – – – – – – – – – – X X – – X X –
a10 – – X X – – – – – – X – – – – – – – – – – –
a11 – – – – – – – – – – X – – – – – X X – – – –
a12 – – – – – – X X – – – – – X – – – – – – – –
a13 – – – – – – – – – – – – – X – – – – – – X X

with every horizontal line corresponding to a symmetry
condition identified with a variable a, such that an ‘X’
indicates that we act with the Pauli X operator on the
virtual index indicated by the column. For instance, the
second line in the table corresponds to the symmetry
condition

X

X X

X

X X

= .

The set of loops associated with these symmetry condi-
tions is denoted by L( ). For convenience, we high-
lighted sets of bonds that satisfy the same pattern of
symmetry conditions, which reflects our choice of concate-
nation pattern. The choice of colours is in concordance
with (38).

Crucially, the isomorphism property (34) is also sta-
ble under concatenation. More precisely, we can find an
isomorphism of the form (34) for TX3dT

X
3d associated with

the set of symmetry conditions described above. In order
to show this, let us start by applying the isomorphism
property to each tensor in (38), where the sets of indepen-
dent loops are provided by seven of the eight triangles,
respectively. More specifically, we choose to express the
l.h.s and r.h.s tensors, respectively, as

TX3d|l.h.s '
1
2

( ∏
4⊂
{0}6⊂4

P+,4
) ∑
a=0,1

⊗
e⊂{0,2,6}

Xa
e

TX3d|r.h.s '
1
2

( ∏
4⊂
{0}6⊂4

P+,4
) ∑
a=0,1

⊗
e⊂{0,3,7}

Xa
e ,

where ‘{0}’ in the products above refers to the bond
along which the concatenation is performed, so that the
products are over all the triangles in the octahedra that
do not contain the edge {0}. Given these isomorphisms,
let us apply the map P((TX3dT

X
3d)ᵀ) to the physical space

of TX3dT
X
3d. We find

TX3dT
X
3d '

1
4

( ∏
4⊂

P+,4
)

×
∑
a1,a2

(Xa1
2 ⊗X

a1
6 ) tr(Xa1

0 Xa2
0 ) (Xa2

3 ⊗X
a2
7 )

= 1
2

( ∏
4⊂

P+,4
)∑

a

⊗
e⊂{2,3,6,7}

Xa
e , (39)

where we used the fact that tr(Xa1Xa2) = 2δa1,a2 . It is
understood in the formulae above that the virtual bond
along the edge {0} is summed over so that the triangles
4 containing {0} are not included in . Moreover,
notice that the redundant symmetry condition for is
associated with the plaquette labelled by {16, 17, 20, 21},
and as such it is not enforced in the formula above. A
simple relabelling of the summation variables finally yields

TX3dT
X
3d '

∏
`∈L( )

P+,` . (40)

Using this isomorphism, let us now demonstrate that
TX3d is a fixed point of the renormalization group flow.
Recall that in order to prove such statement, we have two
requirements, which we repeat here for convenience: (i)
Show that the tensor TX3dT

X
3d is equal, up to isomorphisms,

to a tensor product between TX3d and another term, and
(ii) that the second term describes purely short-range
correlations so that it can be discarded as we focus on
non-local properties.

As in (2+1)d, we wish to implement isomorphism (i)
via a unitary physical operation. Let us consider the
following product of disentangling maps

Uren. := U2,3,4 ⊗ U6,7,8 ⊗ U16,17,18 ⊗ U20,21,22

⊗ cX10,11 ⊗ cX13,14 ,

where we defined Ue1,e2,e3 = cXe3,e1cXe1,e2cXe2,e3 such
that

Ue1,e2,e3 : |a1, a2, a3〉e1,e2,e3

7→ |a1 + a2 + a3, a1 + a2, a2 + a3〉e1,e2,e3 .

This map Uren. is applied to the physical indices of TX3dT
X
3d,

whereas the map U†ren. is applied to the corresponding
physical indices of the neighboring tensors. In virtue of
the isomorphism (40), it is enough to check that this
physical operation performs the desired factorization at
the level of the projectors P+,`, for every ` ∈ L( ).
This will then induce the corresponding factorization at
the level of the tensors. Since we can insert the resolution
of the identity U†ren.Uren. = 1 between TX3dT

X
3d and its
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surrounding neighbors along the virtual indices, we simply
need to confirm that the map Uren. satisfies

Uren.

( ∏
`∈L( )

P+,`

)
U†ren. =

∏
`∈L( )

P+,`
∏

`′∈L(corr.)

P+,`′ ,

(41)

where L(corr.) refers to a set of collections of legs for
which there is a symmetry. Although we use the same
notation, note that elements in L(corr.) do not typically
correspond to loops along the virtual indices anymore.
For instance, one has

U2,3,4(Xa1+a5+a8
2 ⊗Xa1+a5+a8+a10

3 ⊗Xa1+a5+a10
4 )U†2,3,4

= Xa1+a5
2 ⊗Xa10

3 ⊗Xa8
4 ,

for all a1, a5, a8, a10 = 0, 1, such that the nomenclature is
the one of the previous table. Using our notation, this
can be rewritten more visually as follows:5

U2,3,4 :

2 3 4

a1 X X X

a5 X X X

a8 X X –
a10 – X X

7→

2 3 4

a1 X – –
a5 X – –
a8 – – X

a10 – X –

. (42)

Performing this computation for every linear map entering
the definition of Uren. yields the l.h.s of (41). Instead of
writing the result explicitly, we shall indicate for every
symmetry condition as depicted in the previous table
what it is mapped to upon application of Uren.:

1 2 5 6 9 10 12 13 15 16 19 20 3 4 7 8 11 14 17 18 21 22

a1 X X – – – X – – – – – – – – – – – – – – – –
a2 – – X X – – – X – – – – – – – – – – – – – –
a3 – – – – – X – – X X – – – – – – – – – – – –
a4 – – – – – – – X – – X X – – – – – – – – – –
a5 – X – X – – X – – – – – – – – – – – – – – –
a6 – – – – – – X – – X – X – – – – – – – – – –
a7 X – X – X – – – – – – – – – – – – – – – – –
a8 – – – – – – – – – – – – – X – X – – – – – –
a9 – – – – – – – – – – – – – – – – – – – X – X

a10 – – – – – – – – – – – – X – – – X – – – – –
a11 – – – – – – – – – – – – – – – – X – X – – –
a12 – – – – – – – – – – – – – – X – – X – – – –
a13 – – – – – – – – – – – – – – – – – X – – X –

such that the nomenclature is the same as above. Note
that we preserved the order of the rows so that the sym-
metry condition written in the nth row of the previous
table is mapped to the symmetry condition written in
the nth row of this new table, but columns have been
reorganized for convenience.

We distinguish immediately two disjoint sets of sym-
metry conditions. The first set contains 7 symmetries

5 Turning these tables of symmetry operators into Z2-valued ma-
trices, we can compute the action of the maps U via matrix
multiplication.

associated with 12 edges, whereas the second one contains
6 symmetries associated with 10 edges. Furthermore, by
inspecting the structure of the symmetry conditions in
the first set, we identify that these precisely correspond to
the symmetries of a single tensor TX3d with respect to a set
of independent loops L( ). In virtue of the isomorphism
(40) computed above, this factorization at the level of the
symmetry operators induces the following isomorphism
of tensors

(43)

' ⊗ ,

where the second tensor on the right-hand side is defined
as the tensor product

≡

( )⊗2

⊗

( )⊗2

, (44)

such that sets of connected bold lines in the tensor product
above represent PEPS tensors that act as projectors onto
the subspace of states satisfying the following symmetry
conditions:

X

X

= X

X

= and X X = .

The set of collection of legs for which such symmetry
conditions occur was the one notated via L(corr.) in (41).
Note that two such PEPS tensors are contracted along a
virtual index when they share a common edge/bond, in a
way akin to the TX3d tensors.

In (2+1)d, the analogues of the states depicted above
corresponded to maximally entangled states at the in-
terface between two neighboring PEPS tensors. As such
these could easily be contracted away. The same does
not immediately happen in (3+1)d. Indeed, we must
confirm that these tensors represent purely short-range
correlations. In other words, we must ensure that these
do not combine in such way as to form long-range chains.
In order to verify this condition, it is necessary to consider
the renormalization of a larger block of tensors. More
specifically, we must repeat the analysis carried out above
for the pairs of tensors that are adjacent to the one con-
sidered. Although we apply the same disentangling map
to a given block and its neighbors, the asymmetry in the
contraction pattern implies that the tensors will trans-
form differently, slightly changing the geometry of the
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resulting tensors. We leave it to the reader to perform
this analysis and shall merely indicate the result. In order
to confirm that the correlations remain short-range, it
is enough to consider the isomorphism of the following
block of tensors:

(45)

' ⊗ ,

where the bonds represented by dotted bold lines happen
to be summed over. In the middle of the second term
in the tensor product, we notice a five-valent tensor that
is traced over, which is the contraction of the same four
tensors appearing in (44) that result from the individual
factorization of the four pairs of tensors on the l.h.s. of
(45). By considering a larger block of tensors, we would
notice that the remaining tensors always get contracted
away following a similar pattern. This confirms that they
only represent purely short-range information and can
thus be safely discarded as we are interested in the long-
range information. Hence, the PEPS tensor TX3d indeed
appears as the fixed point of a renormalization group flow.

As a consistency check, let us to confirm that the en-
tanglement entropy is preserved throughout this process.
We consider the region Ω defined by the block of tensors
represented on the l.h.s of (45). The corresponding re-
duced density matrix has a degenerate spectrum with
|Z2||∂Ω|−|L(Ω)| dominant singular values, where |∂Ω| is
the area of the boundary, as defined by the number of
uncontracted bonds, and |L(Ω)| the number of indepen-
dent loops along the virtual indices on the boundary.6
We thus find that the entanglement entropy associated

6 The same scaling is obtained when performing the computation
in terms of basis states that diagonalize the plaquette operators.
In this basis, the entanglement entropy for a connected region Ω
reads S(Ω) = log|G|/(|GΩ||GΩ̄|), where G is the group generated
by all the plaquette operators on T3

�, while GΩ and GΩ̄ are the

with region Ω is 23log(2). On the other hand, the entan-
glement entropy of the first term on the r.h.s. of (45) is
equal to 15log(2). Furthermore, each tensor in the second
term contributes by a factor of log(2) since the number
of independent symmetry conditions subtracted from the
number of bonds is always equal to one. We count eight
such tensors (nine minus the one that is traced over), and
thus the entanglement entropy is preserved, as expected.

IV.D. Transfer operator

We explained in the previous section how the (2+1)d
toric code could be analysed from the point of view of the
transfer operator. More specifically, we showed that the
number of degenerate fixed points of the transfer operator
equals the ground state degeneracy of the Hamiltonian,
and discussed how the symmetry structure of the fixed
points reflects the topological order. Furthermore, we
emphasized how for both representations the same two
trivial phases could be obtained by condensing either type
of bulk excitations, which was reflected in the symmetry
structure of the fixed point sector. We shall now examine
how these statements generalize to three dimensions.

Let us first focus on the PEPS representation in terms
of the tensor TZ3d. We consider several copies of TZ3d that
we contract on the manifold T2 × I. It follows from the
symmetry condition satisfied by TZ3d that the tensor net-
work remains invariant under the simultaneous action of
two membranes of Zg operators at both ends of T2 × I.
Mimicking the (2+1)d scenario, we identify eight mini-
mally entangled topological sectors on T2 × I. These can
be distinguished by: (i) the possibility of inserting two
membranes of Zg and Zh operators as depicted below:

, Zh , Zg , Zg
Zh .

where we represented T2 × I as a hollow cylinder whose
inner and outer cylinders are identified, and (ii) the possi-
bility of inserting a torus-like membrane of Pρ := 1

2 (1+ρZ)

subgroups generated by the plaquette operators within Ω and its
complement, respectively. Denoting by �0 the number of vertices
in T3

�, we find |G| = 22(�0−1). This follows from: (i) there
are 3�0 plaquettes in T3

�, (ii) the product of all the plaquettes
operators around any cube or along any of three non-contractible
2-cycles is the identity, (iii) the product of all the plaquette
operators around every cube but one is the same as the product
of the operators around this cube. Following similar rules, we
compute |GΩ| and |GΩ̄| so that S(Ω) = (�∂Ω

2 −�∂Ω
3 + 1)log(2),

where �∂Ω
2 and �∂Ω

3 denote the number of plaquettes and cubes
shared by Ω and its complement, respectively [34].
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operators across the I ≡ [0, 1] direction. Using the symme-
try conditions of the PEPS tensors, the latter membrane
can be moved to the boundary where it projects the bound-
ary conditions onto the even or odd sector, respectively.
The global parity constraint ensures that both boundary
conditions are in the same sector. Putting everything
together, we obtain that states on T2× I are parametrized
by the possibility of inserting two membranes of Z opera-
tors and a choice of boundary conditions labelled by an
irreducible representation of the group Z2 generated by
the torus-like membrane of Z operators. By construction,
these topological sectors are in bijection with the ground
states on the three-torus T3.

Recall that the (3+1)d toric code Hamiltonian yields
electric and magnetic excitations that are point-like and
loop-like, respectively. The topological sectors on T2 × I
described above classify a special configuration of two
magnetic fluxes and an electric charge. More precisely,
we should interpret these topological sectors as a loop-like
flux excitation to which a charge is attached, while being
threaded by another flux. Loop-like excitations can then
only fuse and braid if they are threaded by the same
flux, giving rise in particular to the so-called three-loop
braiding statistics [35–41]. Furthermore, for more general
models where the input group could be any finite group,
the threading flux would have the effect of constraining
the magnetic flux and electric charge quantum numbers
of the loop-like excitation [36, 42–44].

The analysis of the transfer operator proceeds very
similarly to (2+1)d. We define T(TZ3d) by contracting
several copies of the tensor E(TZ3d) ∝ 1

2 (1⊗8 + Z⊗8) on a
single slice of T2 × I. The symmetry condition satisfied
by TZ3d induces the same global Z2-symmetry in the bra
and ket layers of E(TZ3d). It follows that the transfer
operator T(TZ3d) commutes with a torus-like membrane
of Z operators in both the bra and ket layers. As such,
it is labelled by a representation (ρ, ρ′) of Z2 × Z2 that
decomposes the symmetry action. Moreover, as depicted
above, we have the possibility of inserting cylinder-like
membranes of Zg and Zh operators along two directions,
in both the bra and the ket layers. Therefore, the transfer
operator decomposes a priori into 64 blocks denoted by
Tg,h,ρg′,h′,ρ′(TZ3d). From the definition of TZ3d, we obtain that
only the blocks satisfying g = g′ and h = h′ are non-
vanishing, in which case the transfer operator has two
degenerate fixed points labelled by ρ = ρ′ = ±1. The
eight degenerate ground states of the models are therefore
in one-to-one correspondence with the eight non-vanishing
blocks Tg,h,ρg,h,ρ(TZ3d) of the transfer operator. The fact that
only these blocks are non-vanishing indicates that none
of the excitations is condensed.

Let us now study the tensor network representation in
terms of TX3d. We consider several copies of TX3d that we
contract on the manifold T2 × I. A double layer of the
resulting translational invariant operator can be depicted

as7

(46)

with periodic boundary conditions such that opposite
horizontal edges are identified. We should keep in mind
that the same pattern of tensors can be repeated both
horizontally and vertically. As usual, this tensor network
inherits from TX3d some symmetry conditions so that any
loop of X operators along any contractible 1-cycle can be
traced away. Seen from the top, the uncontracted bonds
of the tensor network under consideration form a square
lattice, i.e.

X X X X X X

X

X

X

X

∧ ∧∧ ∧∧∧

∧ ∧∧ ∧∧∧

///

//

/

///

//

/

, (47)

where the densely dotted lines represent bonds that are
contracted. Henceforth, we shall denote this effective
square lattice formed by the upper uncontracted bonds
of the network by T2

� . For every plaquette of T2
� , there

is a Z2-symmetry condition under the action of a loop
of X operators as depicted for instance at the top of
(47). Loops of X operators along one of the two non-
contractible 1-cycles, as depicted at the bottom of (47),
have a global effect. Naturally, such operators can be
moved across T2

� by using the symmetry conditions at
every plaquette. Note that seen from the bottom, the
uncontracted bonds of the tensor network (46) form an
analogous effective square lattice, on which the same
properties hold. It follows from the symmetry conditions
in the bulk of the network that acting with two loops
of X operators along a given non-contractible 1-cycle at
the top and at the bottom of (46) is a symmetry of the
system.

We still identify eight topological sectors on this man-
ifold, which can be distinguished by: (i) the possibility
of inserting a string of Xg operators ‘vertically’ along

7 Because of the geometry of the tensor network, the translation
invariance is with respect to two layers of tensors.
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T2 × I, and (ii) the possibility of inserting two loops of
Pρ := 1

2 (1 + ρX) operators along both non-contractible
1-cycles, which project the boundary conditions onto the
even or odd sectors with respect to the non-contractible
loops of X operators. These eight topological sectors rep-
resent the same configuration of quasi-particles as before.

Let us now consider the transfer operator T(TX3d) ob-
tained by contracting copies of the tensor E(TX3d) accord-
ing to the pattern depicted in (46), i.e. two ‘horizontal’
layers of tensors E(TX3d) with periodic boundary conditions.
Henceforth, we shall refer to the underlying tesselation as
T2

� × I. The symmetry conditions discussed in the previ-
ous paragraphs are now independently satisfied in the bra
and ket layers of T(TX3d). It follows from the definition of
E(TX3d) that, when working in the |±〉 basis, bra and ket
layers of the transfer operator can be identified. As such,
we can couple them by contracting each pair of virtual
indices in the bra and ket layers with the three-valent
tensor δX defined in (23). Let us work this operation out
explicitly. First, let us rewrite E(TX3d) as

E(TX3d) = 1
2|L( )|

∏
`∈L( )

( ∑
a`=0,1

⊗
e⊂`

Xa`
e

)
= 1

2|L( )|

∑
{a}

⊗
e⊂

( ∏
`∈L( )
`⊃e

Xa`
e

)

= 1
2|L( )|

∑
{a}

⊗
e⊂

Xae
e , (48)

where we introduced the notation

ae :=
∑

`∈L( )
`⊃e

a` . (49)

We then define the new C-valued tensor

diag(E)(TX3d) := 1
2|L( )|

∑
{a}

⊗
e⊂

Xae
e , (50)

where we made use for δX of the graphical notation in-
troduced in (23). It follows from

Xa = Xa = |+〉+ (−1)a|−〉 (51)

that diag(E)(TX3d) boils down to

diag(E)(TX3d) = 1
2|L( )|

∑
{a}

⊗
e⊂

( ∑
αe=±

αae
e |αe〉

)
= 1

2|L( )|

∑
{a}

∑
{α}

⊗
e⊂

( ∏
`∈L( )
`⊃e

αa`
e

)
|αe〉

= 1
2|L( )|

∑
{α}

(⊗
e⊂
|αe〉
) ∏
`∈L( )

(∑
a`

∏
e⊂`

αa`
e

)
=

∑
{α=±1}

( ∏
`∈L( )

δ(α`)
)⊗

e⊂
|αe〉 , (52)

where we introduced the notation

α` :=
∏
e⊂`

αe . (53)

We can now construct the transfer operator diag(T)(TX3d)
obtained by contracting several copies of the on-site term
diag(E)(TX3d) according to the pattern depicted in (46).
We shall demonstrate that it corresponds to the ground
state projector of the (2+1)d toric code on T2

� . In order
to be able to construct diag(T)(TX3d) from diag(E)(TX3d),
we need to specify whether the bonds correspond to vector
or co-vectors, which boils down to choosing an orientation
convention for the edges of the underlying octahedron.
Naturally, opposite edges must have opposite conventions
and we choose the four top edges to correspond to co-
vectors. It follows that the transfer operator reads

diag(T)(TX3d) ∝
∑
{α}

( ∏
`∈L(T2

�
×I)

δ(α`)
) ⊗
e⊂T2

�
×{0}
|αe〉

⊗
e⊂T2

�
×{1}
〈αe|

and amounts to the map that the Z2-BF theory assigns
to the cobordism T2

� × I.
Let H[T2

� ] =
⊗

e⊂T2
�
C[Z2] be the microscopic Hilbert

space associated with the top uncontracted indices of
(46). Since the transfer operator includes a delta func-
tion for every plaquette p ⊂ T2

� , it projects out every
state |ψ〉 ∈ H[T2

� ] that does not fulfil the stabilizer con-
straints Bp|ψ〉 = |ψ〉, where Bp was defined in sec. II. In
other words, the transfer operator acts on plaquettes as∏

p⊂T2
�

1
2 (id + Bp).

Let us now show how the transfer operator acts on the
vertices of T2

� . Considering the upper horizontal layer of
tensors in diag(T)(TX3d), we realize that a given tensor in
this layer can be thought as a map from the Hilbert space
of states defined by the top uncontracted indices to that
of the bottom indices, whose action is given by∣∣∣∣∣ α4

α2
α1

α3

〉
7→ 1

2
∑
κ=±1

∣∣∣∣∣ κα4

κα2
κα1

κα3

〉
,

i.e. this single tensor acts on a given state in C[Z2]⊗4 ⊂
H[T2

� ] as 1
2 (id + Av), with v the top vertex of the octahe-

dron. Inspecting carefully the contraction pattern of (46),
we notice that the upper horizontal layer of the trans-
fer operator includes one such projector for every other
vertex of T2

� . The lower horizontal layer of tensors then
performs the same projection on the remaining vertices.
Combining our results, we find that

diag(T)(TX3d) =
∏

v⊂T2
�

1
2(id + Av)

∏
p⊂T2

�

1
2(id + Bp) , (54)

i.e. it is equal to the Hamiltonian projector of the (2+1)d
toric code. It follows immediately that the transfer oper-
ator has four degenerate fixed points. Finally, since we
have the possibility of inserting a string of Xg operators
along the transfer operator, we have twice as many fixed
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points in total. Putting everything together, this confirms
the eight-fold degeneracy of the fixed point sector.

Let us now consider deforming the system so as to flow
towards different phases, which should then be reflected
in the fixed point structure of the transfer operator. In
(2+1)d, the different phases we encountered were charac-
terized by different symmetry structures of the fixed point
sector of the transfer operator. Phase transitions then
involved symmetry breaking patterns, which could be de-
tected using local order parameters. Crucially, these local
order parameters turned out to be related to excitation-
creating operators, drawing a correspondence between the
phase diagram in the fixed point of the transfer operator
and the condensation of excitations. We shall now de-
rive the analogue of these results for our tensor network
representations of the (3+1)d toric code.

As in (2+1)d, the fixed points of the transfer operator
in the TZ3d representation break the Z2 × Z2-symmetry
of the transfer operator down to its diagonal subgroup
diag(Z2 × Z2) ∼= Z2. Furthermore, we distinguish two
other symmetry patterns which correspond to the conden-
sation of the electric charges or the magnetic fluxes, respec-
tively. Making this last statement more explicit requires
emphasizing the relation between symmetry breaking and
expectation values of excitation-creating operators. To do
so, we shall consider the transfer operator associated with
the half-infinite space, generalizing what we did in (2+1)d,
so that expectation values can be conveniently evaluated
between the fixed points of the transfer operator. In
this context, excitations with a non-trivial magnetic flux
correspond to 1d domain wall excitations of the transfer
operator. Condensing such loop-like flux excitations thus
requires the fixed points to be symmetric under Z2 × Z2.
Conversely, if the point-like charges are condensed, then
all the symmetry conditions must be broken. Overall, the
TZ3d representation features the same correspondence as
in (2+1)d between symmetry structure of the fixed points
and condensation of the excitations.

What about the TX3d representation? Given that we
now have ‘local’ virtual symmetries and the fact that
both excitation-creating operators are one-dimensional
instead of zero- and two-dimensional, respectively, as for
the other representation, we do not expect the previous
analysis to apply here. We have already found that in
this representation, the (3+1)d toric code phase is char-
acterized by the fact that the fixed point sector of the
transfer operator diag(T)(TX3d) corresponds to the ground
state subspace of the (2+1)d toric code on T2

� . Using
a slightly abusive notation, we shall thus refer to this
phase as the diag(TC2d × TC2d) ∼= TC2d one. Relaxing
the identification between bra and ket layers, we obtain a
fixed point sector that describes two independent copies
of the (2+1)d toric code phase in the bra and ket lay-
ers, respectively. The corresponding phase is denoted by
TC2d × TC2d ≡ TC×2

2d . Assuming the system has been
deformed towards such a phase, let us now examine what

it means for the excitations. Let us consider the operator

Wρ(σ) :=
∏

e∨⊂σ
(Zρ)e (55)

that creates a loop-like flux excitation, where Zρ =
|0〉〈0|+ρ|1〉〈1| and σ is a closed loop along the dual of the
effective square lattice T2

� . As before, we can compute
〈Wρ(σ)〉PEPS as the expectation value 〈Wρ(σ) ⊗ id〉f.p.
between the fixed points of the transfer operator associ-
ated with the half-infinite space. Recall that we use the
notation ⊗ to indicate that the tensor product is be-
tween the bra and ket layers of the transfer operator. But
〈Wρ(σ)〉TC2d 6= 0, and thus 〈Wρ(σ) ⊗ id〉f.p. 6= 0, which
implies that the loop-like flux excitations of the (3+1)d
toric code are condensed. We thus identify this phase as
the magnetic condensate. Furthermore, considering the
electric operator

Rg(γ) =
∏
e⊂γ

Xg
e , (56)

where γ is path along the edges of T2
� , we find that

〈Rg(γ)(PEPS)|Rg(γ)(PEPS)〉 = 〈Rg(γ)† ⊗ Rg(γ)〉f.p. =
0 since bra and ket layers of the fixed point correspond to
independent copies of TC2d. This implies that the electric
charge excitations are confined.

Let us now suppose that we drive the system towards a
third phase such that the bra and ket layers of the trans-
fer operators are still identified, but instead of projecting
onto the ground state sector the (2+1)d toric code, it
projects onto that of the topologically trivial phase. In
this scenario, the fixed point of the transfer operator at
the renormalization group fixed point is unique and given
by |+, . . . ,+〉. As long as bra and ket layers of the trans-
fer operator are identified, we can express 〈Rg(γ)〉PEPS
between the fixed points of diag(T)(TX3d) as〈( )⊗∞

Rg(γ) ⊗ id
( )⊗∞〉

f.p.

= 〈+, . . . ,+|Rg(γ)|+, . . .+〉
= 〈+, . . . ,+|+, . . . ,+〉 = 1 , (57)

where we used the fact that

X

= X (58)

between the first and second line. This indicates that
electric excitations must be condensed. Similarly, since

Z

= 0 , (59)

it is not possible for loop-like excitations to condense as
long as both layers of the transfer operator are identified.
We thus identify this phase with the electric condensate.
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In summary, we have the following correspondence be-
tween the fixed point sector of the transfer operator and
the phase in the bulk:8

F.p. T(TX3d) F.p. T(TZ3d) Phase Condensate

TC×2
2d Z2

2 trivial magnetic
diag(TC×2

2d ) diag(Z2
2) TC3d –

diag(triv.×2) broken trivial electric

,

where we also included for comparison what we obtained
with the other representation. Crucially, the same bulk
phases manifest themselves differently in the fixed point
sector of the transfer operator depending on the represen-
tation we use.

As in (2+1)d, the electric and the magnetic condensates
provide two gapped boundary conditions for the (3+1)d
toric code. Note however that these do not exhaust all the
possible choices of gapped boundaries. Indeed, given the
magnetic condensate, we have for instance the possibility
to further append a topological state in the double semion
phase along the boundary, which is defined in terms of
the group Z2 and the non-trivial cohomology class in
H3(Z2,U(1)) [47–49].

IV.E. Edge physics

Rephrasing the previous arguments, we shall now argue
that the duality between the two representations for the
bulk phase induces a duality relation at the boundary.

Let us first consider the tensor network state
|PEPS(TZ3d)〉 with open virtual indices. Similarly to
(2+1)d, we can define a Hamiltonian at the edge of the ten-
sor network that is invariant under an anomalous global
Z2 symmetry condition. Given that the charge and flux
operators play the role of order and disorder parameters
at the boundary, respectively, driving the system from one
condensate to the other along the edge, we expect a phase
transition in the same universality class as that of the
(2+1)d Ising model, such that the electric and the mag-
netic condensates are identified with the ferromagnetic
and the paramagnetic phases, respectively [46, 50].

Let us now consider the tensor network state
|PEPS(TX3d)〉 with open virtual indices. Given the vir-
tual symmetry conditions satisfied by TX3d, we find that
the tensor network now hosts Z2 gauge theories at the
boundary, where it is understood that the Gauß constraint
is enforced at every plaquette of the boundary lattice. In
this context, the operatorsWρ(σ) generating the loop-like
flux excitations correspond to Wilson operators for the
boundary theory, whereas the string operators Rg(γ) are
identified with the so-called monopole operators. When

8 Alternatively, we can identify the Z2 topologically ordered phase
TC2d with a 1-form Z2 symmetry spontaneously broken phase,
where the Wilson loopWρ(σ) plays the role of a generalized order
parameter [45, 46].

all the gauge fields fluctuations are cancelled, the bound-
ary Z2 gauge theory boils down to the (2+1)d toric code.
Slightly driving the system away from the renormalization
group fixed point amounts to inserting small fluctuations
of the gauge field so that the expectation value of Wρ(σ)
obeys a perimeter law, i.e. the energy cost grows accord-
ing to the length of σ. In this case, the ground states of
the boundary topological order are no longer degenerate
but separated by a gap that decays exponentially with
some characteristic dimension of the boundary manifold.
This corresponds to the so-called deconfined phase of the
Z2 gauge theory [51–54]. The expectation value of Wρ(σ)
being non-zero up to local counter-terms that depend on
the geometry, this translates into the condensation of the
flux excitations for the bulk theory. Conversely, when
the fluctuations of the gauge field dominate, the Wilson
loop operator obeys an area law, so that the expectation
value vanishes when taken to be infinitely large. This is
the confining phase of the Z2 gauge theory. Furthermore,
this phase corresponds to a condensate of monopole exci-
tations [51–54], which amounts to a condensation of the
electric excitations for the bulk toric code.

By tuning parameters at the edge, we can drive the
(3+1)d toric code from one gapped boundary condition
to another, each arising from the condensation of the
point-like charges or the loop-like fluxes. In light of the
dictionary spelt out in the previous paragraph between the
virtual operators of the tensor network state |PEPS(TX3d)〉
and that of the boundary gauge theory, we expect the
corresponding phase transition to be in the universality
class of the (2+1)d Z2 gauge theory.

Comparing the two descriptions of the boundary phase
diagram of the (3+1)d toric code encoded by the TX3d
and TZ3d representations, respectively, we recover the well-
known duality between the (2+1)d Ising model and the
(2+1)d Z2 gauge theory. More specifically, the symme-
try broken phase of the Ising model corresponds to the
confining phase of the gauge theory, such that the order
parameter and the 1d domain wall operator of the former
are mapped to the monopole and the Wilson loop opera-
tors of the latter, whereas the symmetry preserving phase
is the analogue of the deconfined phase.

IV.F. Intertwining PEPO and duality on the
boundary

Mimicking the (2+1)d study, we shall now define a PEPO
that intertwines the two tensor network representations
defined in this section. In particular, this intertwining
PEPO is required to map the operators of one representa-
tion to that of the other. As a consequence of the analysis
above, we shall find that this PEPO also performs the
duality mapping at the boundary. Given |PEPS(TX3d)〉, let
us consider for instance a diagonal slice that supports a
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loop-like flux excitation:

ZZ ZZ

Z

Z Z Z Z

Z

Z

Z Z

Z

Z

Z Z

Z

. (60)

In the other tensor network representation, the same exci-
tation would be obtained at the boundary of a membrane
of Z-operators. The PEPO that intertwines the two rep-
resentations is obtained as the contraction of δZ and δX
tensors according to the following pattern:

,

where and indicate physical indices sticking out of
the paper plane towards and away from the reader, re-
spectively. Let us now check that this PEPO maps a
membrane of Z operators on one side to a loop of Z
operators on the other side:

Z Z

Z Z Z

Z Z

=

ZZ
Z

Z

Z

Z

ZZ
Z

Z

Z

Z

ZZ
Z

Z

Z

Z

ZZ
Z

Z

Z

Z

ZZ
Z

Z

Z

Z
ZZ

Z

Z

Z

Z
ZZ

Z

Z

Z

Z
,

where we used the symmetry conditions (25) of the δX
tensors. Using now the symmetry conditions (24) of the
δZ tensors, we find

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z

Z Z ,

which is precisely the operator that was depicted in (60).
Similarly, we would find that a string of X operators on

one side is mapped to a pair of X operators on the other
side. As expected, this intertwiner PEPO is also the map
that sends the (2+1)d Ising model to its dual Z2 gauge
theory [55].

Sec. V | Discussion

We have shown that the toric code admits two canonical
tensor network representations that differ in the order ac-
cording to which the two families of stabilizer constraints
are enforced. In (2+1)d, both representations are equiva-
lent and display the same form of virtual symmetry, and as
such they encode the properties of the model in a similar
fashion. In contrast, in (3+1)d, the two representations
are inequivalent and are characterized by distinct sym-
metry conditions: whereas one representation displays a
unique global virtual symmetry condition with respect to
a membrane-like operator, the other one displays several
local virtual constraints with respect to string-like oper-
ators. The manifestations of these different symmetry
structures was the subject of study of this manuscript.

Although we focused exclusively on the toric code, we
could have almost as easily described the case where
the group Z2 is replaced by any finite abelian group.
More generally, it was established in [1–7] that in (2+1)d
topological order can be characterized by the ability of
pulling MPOs throughout the tensor network along the
virtual degrees of freedom. For the (2+1)d toric code, the
strings of Pauli operators play the role of these MPOs.
Moreover, closed MPOs can be shown to satisfy algebras,
Morita equivalence classes of which yields a classifying
tool for non chiral topological phases in (2+1)d. It follows
that there exist as many tensor network representations
of a given phase as the number of representatives in the
corresponding Morita class [56]. This tensor network
classification encompasses in particular string net models
[57–59], whose input data are spherical fusion categories.
For these models, the algebra satisfied by the MPOs
is the fusion algebra of the category and the different
tensors in play are found to be expressible in terms of
the basis elements of the associator associated with this
algebra. In this terminology, the fact that both tensor
network representations of the (2+1)d toric code have
the same virtual symmetry follows from the fact that the
corresponding closed MPOs are identified with the simple
objects of categories that are monoidally equivalent.

A similar classification in terms of tensor networks is
expected to hold in (3+1)d, and our study of the toric
code reveals certain features that should persist in the
more general case. In (3+1)d, string net models are re-
placed by membrane net models whose input data are
so-called spherical fusion 2-categories [60]. In this sce-
nario, PEPS tensors should now evaluate to some 10j-
symbols that characterize the monoidal pentagonator of
the 2-category [61]. Our study suggests that there should
be two distinguishable ways of generalizing the (2+1)d
construction in terms of pulling-through conditions with
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respect to membrane-like or string-like PEPOs, respec-
tively. Closed PEPOs should in turn define two different
category theoretical-like structures, which we expect to
be related via some higher categorical version of Morita
equivalence.

Let us finally touch upon a concrete application of the
ideas presented in this paper. We mentioned in the intro-
duction that, given their distinct symmetry properties, we
naturally expect the two tensor network representations
we constructed to respond differently under arbitrary per-
turbations. It turns out that—in close analogy with the
(2+1)d scenario, where tensor network representations of
topological order are unstable to perturbations breaking
the entanglement symmetry [22, 24]—the TZ3d represen-
tation can be shown to be unstable. The underlying
mechanism is the same as in (2+1)d, namely that oper-
ator insertions that break the entanglement symmetry
lead to a condensation of the point-like electric excita-
tions, which in turn drives the system to the trivial phase.
However, the TX3d representation happens to be stable to
arbitrary perturbations, including those that break the
entanglement symmetry. We proposed some heuristic ar-
guments in favor of this novel feature in the introduction,
but this can be rigorously demonstrated by showing that
the phases encoded by the perturbed tensor network map
to those of a specific classical statistical model with a
non-zero finite temperature phase transition [62].

We would like to thank Markus Hauru, Mohsin Iqbal and
David Stephen for stimulating discussions, as well as
Frank Verstraete and especially Dominic Williamson for
collaboration on the closely related project [62]. This
project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020
research and innovation programme through the ERC
Starting Grant WASCOSYS (No. 636201) and the ERC
Consolidator Grant SEQUAM (No. 863476), as well as
the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germany’s Excellence Strategy
– EXC-2111 – 390814868.

App. A | Duality defects

We derived in the main text two tensor network represen-
tations of the (2+1)d toric code. Both representations
display the same Z2-symmetry, which implicitly follows
from the self-duality of the model. The duality can be
further probed by inserting topological defects lines that
shift the lattice and modify accordingly some of the terms
in the Hamiltonian [63, 64]. It is well-known that this
defect has the effect of swapping electric and magnetic
point-like excitations. We could realize such a topological
defect by means of an MPO that is reminiscent of the
one introduced in sec. III F. Instead, we shall introduce
a new PEPS tensor that parametrizes the ground state
subspace along the defect.

Let us consider the square lattice with a horizontal
topological defect along which qubit degrees of freedom
have been removed:

|+〉 |+〉 |+〉 |+〉 |+〉 |+〉

|+〉 |+〉 |+〉 |+〉 |+〉 |+〉

|+〉 |+〉 |+〉 |+〉 |+〉

|+〉 |+〉 |+〉 |+〉 |+〉

|0〉 |0〉 |0〉 |0〉 |0〉 |0〉

|0〉 |0〉 |0〉

|0〉 |0〉 |0〉

|0〉 |0〉 |0〉 |0〉 |0〉 |0〉

X X

X

Z X X

X

Z

Z Z

Z

Z

X X

X

X

,

where we illustrated how the plaquette terms are modified
in the vicinity of the topological defect. We also depicted
a specific choice of 1-chain in C1(T2

�,Z2). This choice
of 1-chain is such that all the stabilizer constraints with
respect to the vertex operators are satisfied in the upper-
half, whereas all the stabilizer constraints with respect
to the plaquette operators are verified in the lower-half.
Consequently, it remains to enforce the plaquette con-
straints above the defect line, including the ones modified
due to the presence of the defect, as well as the vertex
constraints below the defect line. These constraints are
enforced by means of the PEPO operators introduced
in the main text, with the exception of the ones in the
vicinity of the defect line that require new tensors:

,
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where we introduced the new type of PEPO tensors:

a

≡ 1
2 1

2

{
1⊗ 1 if |a〉 = |0〉
X ⊗ Z if |a〉 = |1〉

, (A1)

a

≡ 1
2 1

2

{
1⊗ 1 if |a〉 = |0〉
Z ⊗X if |a〉 = |1〉

. (A2)

We then define a new type of PEPS tensors that results
from blocking four PEPO tensors across the defect line,
and acting on the state |+,+,+, 0〉, i.e.

a2a1

α2α1

.
|+〉|+〉

|+〉

|0〉

=:

α2α1

a2a1

D2d
,

where the notation descends from the one used to define
TX2d and TZ2d. Going through the derivation, we find

D2d ∝
∑
{a=0,1}
{α=±}

|a1, a2〉〈α1, α2|

⊗ |(−1)a1α1, α1α2, (−1)a2α2, a1 + a2〉 .

Putting everything together, we obtain the following
PEPS obtained as the contraction of tensors TX2d, TZ2d
and D2d:

.

By inspecting the defining formula of D2d, we find that it
satisfies the following mixed Z2-symmetry:

X X

Z Z

= ⇔
X X

=

Z Z

.

Crucially, this Z2-symmetry implements the electric-
magnetic duality taking place at the defect line. Indeed,
consider a closed loop of X operators along a 1-boundary
above the defect line. Using the Z2-invariance of TX2d, this
loop can be freely deformed and moved towards the de-
fect line, at which point the symmetry of the D2d tensors

can be used to push the loop of operators through the
defect line. In the process of going through the defect line,
operators are swapped so that we end up with a closed
loop of Z operators. Considering open string of operators,
the same mechanism shows that electric excitations are
transformed into magnetic excitations while crossing the
defect line, and vice versa. Indeed, take an open string of
X operators in the upper half, at the endpoints of which
a pair of electric charge excitations is created. One of
the excitations can be moved towards the defect line by
means of local unitary transformations. When moving the
excitation across the defect line, the string of operators
must now be made out of Z matrices so that it can still
be freely deformed away from its endpoints, ensuring that
it remains locally undetectable.

Following a similar approach, we could consider disloca-
tions in (3+1)d that probe the duality between the toric
code model and the so-called 2-form model [45, 65, 66].
This model, which has a 2-form Z2 gauge theory interpre-
tation, is characterized by loop-like electric excitations
and point-like magnetic excitations. In this context, the
duality defect would swap a magnetic excitation of the
toric code with an electric excitation of the 2-form model,
which are both loop-like, and similarly for the point-like
ones.
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“Peps as ground states: Degeneracy and topology,” Annals
of Physics 325, 2153 – 2192 (2010).

[2] Norbert Schuch, Didier Poilblanc, J. Ignacio Cirac, and
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