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Generative modeling using samples drawn from the probability distribution constitutes a powerful
approach for unsupervised machine learning. Quantum mechanical systems can produce probability
distributions that exhibit quantum correlations which are difficult to capture using classical models. We
show theoretically that such quantum-inspired correlations provide a powerful resource for generative
modeling. In particular, we provide an unconditional proof of separation in expressive power between a
class of widely used generative models, known as Bayesian networks, and its minimal quantum-inspired
extension. We show that this expressivity enhancement is associated with quantum nonlocality and
quantum contextuality. Furthermore, we numerically test this separation on standard machine-learning
data sets and show that it holds for practical problems. The possibility of quantum-inspired enhancement
demonstrated in this work not only sheds light on the design of useful quantum machine-learning
protocols but also provides inspiration to draw on ideas from quantum foundations to improve purely
classical algorithms.
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I. INTRODUCTION

Over the past three decades, the field of machine learning
has achieved remarkable success. A variety of powerful
models and algorithms have been developed and deployed
for broad applications ranging from computer vision and
natural language processing to autonomous vehicles [1–3].
Unsupervised learning, involving the task of learning from
unlabeled data sets, is among the frontier areas of machine-
learning research. This task is typically much more
challenging than supervised learning. The most common
approach to tackle unsupervised learning problems is
generative modeling, where one attempts to construct
and train models with efficient representations for high-
dimensional probability distributions. One of the most
important aspects of any generative model is its expressive
power, which, together with associated training algorithms,
primarily determines the model performance. Models with
high expressive power can capture complex correlations
in the target probability distribution while upholding the

standard wisdom of Occam’s razor by keeping the structure
simple (typically corresponding to a simple connectivity
structure or limited number of parameters).
Quantum systems are known to produce complex prob-

ability distributions that are hard to capture with classical
generative models [4–7]. For this reason, quantum models
are believed to be more powerful in tackling unsupervised
learning tasks. Consequently, over the past few years,
quantum machine learning has emerged as a promising
approach to enhance machine-learning performance [8–15].
However, apart from abstract computational complexity
arguments [16–19], any potential quantum advantage in
quantum machine-learning models and its physical origin is
not well understood. Motivated by these considerations, in
this work, we explore the role of quantum correlations
associated with nonlocality and contextuality [20–23], both
of which are known to be the key resource for quantum
advantages in many quantum information processing tasks
[24–28] and are expected to play a role in machine
learning [11].
Specifically, we focus on a class of standard generative

models, known as Bayesian networks, and show that
quantum correlations can be used to achieve provable
separation between such models and their minimal quan-
tum-inspired extension described by a corresponding class
of tensor networks. Focusing on sequential models,
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we compare subclasses of Bayesian networks with the
corresponding 1D tensor networks described by matrix
product states (MPSs) and show that MPSs feature more
expressive power compared to traditional machine-learning
models [29–34]. Since the 1D models can be efficiently
evaluated on a classical computer, we also numerically test
the models on real-world data sets and find an improvement
in generative modeling using MPSs. These results provide
new insights into the power of MPS-based machine-
learning algorithms and open a fruitful direction to use
ideas from quantum foundations to design new quantum
and quantum-inspired machine-learning algorithms.
Our paper is organized as follows. In the next section, we

provide an outline of the main results and discuss their
implications. In Sec. III, we review Bayesian networks
and their quantum circuit interpretation, and introduce our
minimal quantum extension of Bayesian networks and its
relation with tensor networks. In Sec. IV, we prove
separations in expressivity between the two classes of
models in learning sequential data sets. In Sec. V, we give
numerical evidence that this separation often holds not only
in theory but also in practice by showing separations on a
variety of standard machine-learning data sets. Finally, in
Sec. VI, we discuss the implications of our results and
consider future lines of research.

II. SUMMARY OF RESULTS AND THEIR
IMPLICATIONS

Bayesian networks, associated with a class of generative
models based on directed graphs, have a wide range of
applications [35]. Probability distributions described by
Bayesian networks are known to have an equivalent formu-
lation in the computational basis measurements of a class of
quantum circuits known as Bayesian quantum circuits (see
Fig. 1 and Ref. [36]). By extending this class to allow local
measurement beyond the computational basis, we define a
class of quantum-inspired models dubbed BBQCs, which
are a special class of tensor networks that inherit the graph
structure of their corresponding Bayesian networks.
In this work, we construct BBQCs that have uncondi-

tional expressivity separations compared to their classical
counterparts, i.e., Bayesian networks on the same directed
graphs. Instead of requiring an exact representation, we
relax the comparison criterion to allow for any finite error
in the forward and backward Kullback-Leibler (KL)
divergence. This is equivalent to the condition

qðxÞ ¼ 0 ⇔ pðxÞ ¼ 0; ∀ x: ð1Þ

where p and q are the two comparison distributions.
However, this error model is still not practical enough;
for instance, when qðxÞ ¼ 0 and pðxÞ is very small, the
exact KL divergence is infinite. In this paper, we adopt
this error model to obtain rigorous proofs, but we show
numerically that there exists a finite separation in KL

divergence even when, in practical training, qðxÞ does not
have exact zero probabilities for any x. KL divergence is a
widely used error model in unsupervised machine learning.
As a toy example, we first analyze the implications of

quantum nonlocality for a so-called k-gram model, a very
successful Bayesian network model used in natural lan-
guage processing [see Fig. 1(a)] [37]. In practice, k is
limited to be a constant since the number of model
parameters, and hence the time and space resources, grow
exponentially with k.
We introduce a basis-enhanced 2-gram model, shown in

Fig. 2 (where the left is the BBQC and the right is the
corresponding Bayesian network) and prove that any
k-gram model for k < bðn − 1Þ=2c cannot approximate
its probability distribution under finite KL divergence. The
proof is inspired by the mathematical structure of the
nonlocal correlations present in measuring a Greenberger–
Horne–Zeilinger state (GHZ state) that cannot be described
by local hidden variable models [38]. We extend this
argument to a cluster state where the qubits are measured
either in the X or Y basis. This state can be represented by a
basis-enhanced 2-gram model but not a local hidden
variable model; thus, basis-enhanced 2-gram models
exhibit correlations that share the mathematical structure
of the quantum nonlocality present in the systems. For the
corresponding k-gram model, however, the conditional
probability distribution factorizes and can be described
by a local hidden variable model. This result is summarized
as the following theorem:
Theorem 1. (k-gram models and quantum nonlocality)

There exists a family of basis-enhanced 2-gram models
with generated probability distribution q such that any
classical k-gram models with k ¼ oðnÞ (where n is the
length of the 2-gram model) cannot approximate q to the
error model in Eq. (1). This separation originates from
quantum-inspired nonlocality present in the basis-enhanced
model that is not present in the classical k-gram model.
We note that quantum-inspired correlations and

quantum-inspired nonlocality (and later, contextuality)
refer to the models that inherit the mathematical structure
of the correlations present in quantum nonlocality and
contextuality, but not the physical scenarios such as space-
like separation; our proofs only rely on the mathematical
properties of these quantum correlations. Since k-gram
models can only capture local correlations, we also inves-
tigate a more expressive class of models, hidden Markov
models [HMMs, shown in Fig. 1(b)], which are widely
used in reinforcement learning and temporal pattern rec-
ognition. HMMs extend k-gram models by introducing
hidden variables as memory to capture long-range corre-
lations, and they are the most generic sequential generative
models, including both feedforward and recurrent neural
networks (given finite precision) as specific instances. We
focus on the HMMs in the so-called translation form, with
input and output regarded as original and target languages,

GAO, ANSCHUETZ, WANG, CIRAC, and LUKIN PHYS. REV. X 12, 021037 (2022)

021037-2



respectively, as shown in Fig. 1(b). Basis-enhanced ver-
sions of such HMMs correspond to a special instance of
matrix product operators (MPOs). We show that MPOs
exhibit correlations that share the mathematical structure of
quantum contextuality present in the represented quantum
systems. We directly show that the presence of this
correlation gives rise to an expressivity separation between
classical HMMs and their basis-enhanced counterparts.
Specifically, we prove the following theorem:
Theorem 2. (Hidden Markov models and quantum

contextuality) There exists a family of basis-enhanced
2-gram models, with a state space of dimensionality D,
that cannot be approximated, in the sense of Eq. (1), by any
classical hidden Markov models in the translation form
[Fig. 1(b)], with a number of hidden units fewer than
DΩðlogDÞ. This separation originates from quantum-inspired

contextuality present in the basis-enhanced model that is
not present in the classical HMM.
Here, the quantum-enhanced model is based on a 2-gram

model [Fig. 5(c)], which is a special case of a HMM.
The corresponding quantum circuit representation is shown
in Figs. 5(a) and 5(b), with D ¼ 2n, where n is the number
of qubits.
This result can be understood by considering the 1D

structure of the models as a time dimension, as shown in
Fig. 1(b). The state of the HMM (or the corresponding
basis-enhanced 2-gram model) is encoded as a probability
distribution pjψ ti (quantum state jψ ti) over the hidden states
of the HMM (virtual bond of the MPO) at the tth time step.
The number of hidden states (bond dimension) corresponds
to the memory of the system, of which the logarithm is the
number of bits (qubits) of memory required to store the

21
(b)

(a)

(c)

BQC
Basis enhancement

Hidden units

Visible units

Control unitTarget unit

General form Translation form

Input

Output

Time direction

k-gram
MPS

Memory:

FIG. 1. Bayesian network and its quantum circuit. (a) k-gram model and its basis enhancement. The leftmost diagram is a 4-gram
model as the transition probability takes the form pðxljxl−1; xl−2; xl−3Þ, involving four variables. All of the variables are visible. The
middle diagram is a basis-enhanced Bayesian quantum circuit (BBQC). The blue dashed box contains a Bayesian quantum circuit
(BQC) of the corresponding Bayesian network since measuring the output qubits in the computational basis results in the same
probability distribution. The basic elements of BQCs are uniformly controlled gates for which control units and target units are labeled.
The BBQC is a special case of tensor networks. In this case, the BBQC can be written as a MPS as shown in the rightmost diagram.
(b) Hidden Markov model (left) and hidden Markov model for a translation problem (right). Visible variables and hidden variables are
colored in blue and green, respectively. The top and bottom visible units store input and output, respectively. We adopt a dynamical point
of view: The HMM can be understood as a measurement-driven evolution of probability distributions that encode the quantum states at
the tth time step over the hidden variables in the tth virtual bond. (c) Example of a Bayesian network on a general directed graph. A more
detailed discussion can be found in the Appendix B 3.
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state of the system. The inputs and outputs are different
measurement bases and measurement results, respec-
tively. In order to simulate the quantum process, the
HMM should have enough memory of the previous
measurement basis and measurement results to predict
future behavior. Within this picture, the translation form
of HMMs is essentially equivalent to hidden variable
models (also called noncontextual ontological models)
[39–41]. Quantum contextuality formalizes the phenome-
non that a measurement result of an observable should
depend on which commuting observable set (known as a
context) the observable belongs to in the given measure-
ment scenario. However, since there are many different
commuting sets that include this observable and there is
no consistent preset assignments to all the observables
(which is the key to contextuality), when it is measured, a
hidden variable must memorize which context this
observable belongs to in any given measurement sce-
nario. A well-known example of contextuality is asso-
ciated with the Mermin-Peres magic square [42,43]. Our
proof strategy for Theorem 2 relies on showing that
Mermin-Peres magic squares are very common in stabi-
lizer states [44], and we use that feature to find a lower
bound on the number of hidden states needed to accu-
rately represent stabilizer measurements.

Finally, we evaluate the relative performance of BBQCs
and Bayesian networks on standard machine-learning data
sets. We focus on the relative performance of HMMs
and their basis-enhanced counterparts, but here we use the
general HMM graph structure in Fig. 1(b). As basis-
enhanced HMMs are a special case of MPSs, we are able
to evaluate the expressive performance of both HMMs and
basis-enhanced HMMs efficiently on a classical computer.
Specifically, we evaluate both models on the biofam data
set [45,46], which is known to be well modeled by a simple
2-gram model. Additionally, we evaluate both models
on the more difficult SPECT Heart and Promoter Gene
Sequences data sets [47]. We find that the basis-enhanced
HMM outperforms the HMM on both the training and
testing data for both the SPECT Heart and Promoter Gene
Sequences data sets and that it achieves comparable
performance on the control biofam data set. These results
are summarized in Fig. 7. In addition, we perform a
likelihood-ratio test on the goodness of fits of the two
models; this measures the statistical significance of the
expressivity gap of the two models, accounting for the
potential overfitting of the basis-enhanced model due to it
having more parameters. We show that the improvement
in KL divergence of the basis-enhanced HMM over the
HMM is statistically significant on the SPECT Heart and
Promoter Gene Sequences data sets to a confidence of
greater than 5σ. These results are summarized in Fig. 8.
Our results have important implications for developing

both classical and quantum machine-learning methods.
Although the source of the advantage mechanisms
described above is inspired by quantum correlations, for
many classes of Bayesian networks—including k-gram
and hidden Markov models—our extension still results
in classical models, described by special cases of MPS or
MPO that can be efficiently implemented on classical
systems. In such cases, our results indicate that with a
minimal computational overhead, one can obtain markedly
improved modeling of data using novel quantum-inspired
classical approaches. While a number of classical machine-
learning techniques are already employing methods based
on tensor networks [31,32,34,48], our results demonstrate
that one could draw on ideas from quantum foundations
to show unconditional efficiency separations for such
novel classical models. Interestingly, our results also apply
to models introduced by the classical machine-learning
community compared with HMMs. One example is the
observable-operator-model (OOM) [49] and its special
case, the normed-observable-operator-model (NOOM)
[50], which are generalization of HMMs to the complex
number domain. Our methods also give a separation
between these models and HMMs because of the normali-
zation independence of the error model we considered.
Furthermore, for more complicated models, such as 2D

Bayesian networks, where our extension cannot be effi-
ciently implemented on a classical computer, our results

(a) Basis enhancement
Basis Result(b)

FIG. 2. (a) Example of a quantum 2-gram model. In this
example, each pair of two qubits (counting from the top)
corresponds to one variable. This BBQC can produce a
(2þ 3)-qubit cluster state and measure each qubit on the cluster
state in either the X or Y basis. For each pair, the first qubit is used
to choose the measurement basis; i.e., if it is measured to be 0, the
second qubit in this pair will be measured in the X basis and
otherwise in the S†XS ¼ Y basis. The second qubit is used as the
“physical” qubit in the cluster state. The cluster state can be
extended to be arbitrarily long. Among all pairs, three pairs are
measured respectively in the basis bi with output results si. In
between the three pairs, there is an odd number of ancillary pairs.
These ancillary pairs are measured in the X basis with outputs
postselected to be 0. There is a nonzero probability of getting a
string that satisfies the constraint in Eq. (5). (b) Corresponding
2-gram model.
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provide important insights into designing novel quantum
machine learning algorithms. We emphasize that in contrast
with the previously proposed quantum machine-learning
models, which consider generic quantum circuits to provide
quantum correlations, our approach makes use of the
minimal extension of classical models. This is important
since unstructured quantum circuits are not practical
machine-learning models because of training difficulties
associated with barren plateaus [51–55], poor local minima
[56], and the no-free-lunch theorem [57]. Our results suggest
that by restricting ourselves to minimal quantum extensions
of classical machine-learning models, we may be able to
sidestep these issues and maintain a quantum advantage
over the corresponding classical model. In addition, this
minimal approach allows us to understand the origin of the
potential quantum advantage, which is essential for efficient
design of new quantum machine-learning models. As an
example, the technique of basis enhancement is also shown
to be useful in other circuit-based quantum generative
models in a subsequent work [58].

III. UNSUPERVISED GENERATIVE MODELING
AND MINIMAL QUANTUM EXTENSIONS

Many unsupervised machine-learning tasks can be under-
stood through a probabilistic lens. In this approach, the data
x [e.g., x could be a vector ðx1;…; xnÞ representing pixels of
a handwritten digit] are regarded as being generated iden-
tically and independently from an unknown probability
distribution pD [1,3]. The task of unsupervised learning is
to characterize some aspects of this distribution explicitly or
implicitly. Generative models attempt to represent the entire
probability distribution pD approximately, thus providing an
almost complete characterization of pD.
Directly representing a probability distribution over

ðx1;…; xnÞ requires a number of parameters exponential
in n. However, assuming some underlying structure on
the distribution pD, it is expected that only a polynomial
number of parameters is sufficient to approximate pD for
most natural distributions. One can draw an analogy to
quantum many-body physics: Physical states, which play
the role of naturally occurring distribution pD, typically
require a polynomial number of parameters to represent,
whereas generic states in the entire Hilbert space, like
generic distributions with n variables, need an exponential
number of parameters [59]. Graphical structures with a
polynomial number of parameters often constitute efficient
representations for generative models, similar to the rep-
resentation of tensor networks in quantum many-body
physics [60–64].
In what follows, we focus on a particular type of

probabilistic graphical model, called Bayesian networks,
and explore one minimal quantum—or, for simple enough
networks, quantum-inspired—extension of this classical
model. This allows us to understand the origin of the

underlying quantum enhancement or advantage, which
sheds light on the design of quantum models. We empha-
size that our approach is not limited to Bayesian networks
and can be extended to other models.

A. Bayesian networks and language processing

Bayesian networks are a class of generative models
that define a probability distribution through a directed
acyclic graph in the following way [see example in
Figs. 1(a) and 1(c)]: For each node xi (associated with a
random variable xi), we assign a transition probability
pðxijparents ofxiÞ, where the parents of xi are nodes with
edges directed towards xi; if there is no parent node for xi,
the transition probability reduces to the marginal proba-
bility pðxiÞ; then, the product of these transition (marginal)
probabilities,

pðx1;…; xnÞ ¼
Y
i

pðxijparents of xiÞ; ð2Þ

is the final joint probability distribution.
Bayesian networks are useful in natural language

processing as statistical language models. Roughly speak-
ing, statistical language models are generative models for
language, and they are used to generate a probability
distribution of “meaningful” combinations of word sequen-
ces. A good design for the statistical language model is
crucial to the performance of machine learning for natural
language processing such as translation, speech recogni-
tion, and natural language generation [65].
Historically, prior to the rise of deep learning, one of the

most commonly used statistical language models was the
k-gram model [65], which is a Bayesian network on a 1D
graphical structure with k − 1 neighbors connected [see
Fig. 1(a) for an example with k ¼ 4]. Despite their
simplicity, certain types of generative neural networks
can also be viewed as k-gram models, e.g., deep belief
nets [66] even for k ¼ 2 (see Appendix A).
In order to capture more complex correlations, a more

complex model, the HMM, with additional hidden nodes
on a 1D graphical structure with nearest-neighbor con-
nections, is introduced as shown in the translation form of
Fig. 1(b). Note that k-gram models are a special case of
HMMs (see Appendix A), as HMMs can store k-length
correlations in the hidden variables. The graph structure of
the HMM is easily generalized for translation problems.
From a probabilistic point of view, a translation problem
can be considered as a modeling problem for a conditional
probability distribution pðyjxÞ by a generative model, e.g.,
using the HMM shown in the translation form of Fig. 1(b),
where x (represented by the visible variables in the top row)
is a “sentence” in the original language and y (represented
by the visible variables in the bottom row) corresponds to
the translation in the target language with the conditional
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probability pðyjxÞ. If the prior probability pðxÞ can be
captured by a HMM in the general form of Fig. 1(b),
the joint probability distribution pðx; yÞ could be viewed as
a special case of the general form of Fig. 1(b).

B. Bayesian quantum circuits
and minimal quantum extensions

The key to defining our quantum extension of Bayesian
networks is the equivalence between Bayesian networks
and a restricted class of quantum circuits, which we call
Bayesian quantum circuits (see also Ref. [36]). BQCs are
defined such that the probability distribution sampled from
the quantum circuits, by measuring the visible qubits in the
computational basis, is the same as the probability dis-
tribution defined by the corresponding Bayesian network.
In addition, we define a minimal quantum extension of
Bayesian networks, basis-enhanced Bayesian quantum
circuits, by allowing the final measurements to be in an
arbitrary local basis.

1. Bayesian quantum circuits

The building blocks of BQCs are uniformly controlled
gates. A uniformly controlled gate is a generalization of a
control-U gate, which consists of k control qubits and one
target qubit [67]: If the control qubits are in the state
jx1;…; xki, the target qubit will be applied by a unitary
Uðx1 � � � xkÞ (i.e., a single qubit unitary determined by
x1;…; xk). For convenience, we introduce the concepts of
control units and target unit for a uniformly controlled gate
as shown in Fig. 1(a).
Definition 1. (Bayesian quantum circuits) A Bayesian

quantum circuit consists of a sequence of uniformly
controlled gates followed by a measurement of a subset
of the qubits in the computational basis, with the following
restrictions:

(i) Each uniformly controlled gate only targets a single
qubit, reflecting the fact that there is only a single
target variable in a transition probability in Bayesian
networks.

(ii) After being used as a control qubit, the qubit cannot
be targeted by a uniformly controlled gate, reflecting
the fact that Bayesian networks are defined on
directed acyclic graphs.

The exact mapping between Bayesian networks and
BQCs can be found in Appendix B 1. The implementation
of an arbitrary uniformly controlled gate by elementary
gates is, in general, not efficient since it typically consists of
an exponential number of standard control gates [67].
However, for most relevant Bayesian networks, the tran-
sition probabilities only involve a few variables or are
highly structured, which will make the corresponding
uniformly controlled gates easy to implement. We further
discuss the implementation of BQCs with multiqubit
collective gates in Appendix B 2.

2. Basis-enhanced Bayesian quantum circuits

As defined above, BQCs can only produce distributions
that correspond to Bayesian networks; thus, there is no
quantum advantage in the expressivity of the model. In
principle, there are many possible ways to generalize this
model, such as violating the order requirement between
target and control units or generalizing the uniformly
controlled gates to more general gates. These generaliza-
tions will include universal quantum circuits and thus lose
resemblance with classical Bayesian networks. To identify
the differences between quantum models and their classical
counterparts in terms of a quantum enhancement or
advantage, we introduce a natural, minimal extension by
allowing the measurements to be in other local bases
beyond the computational basis. We call this basis-
enhanced Bayesian quantum circuits. Note that the locality
in the measurement basis is important; otherwise, the
model will be as powerful as universal quantum circuits.
Definition 2. [Basis-enhanced Bayesian quantum cir-

cuits] A basis-enhanced Bayesian quantum circuit is a
generalization of the Bayesian quantum circuit, where the
measurements can be in any local basis beyond the
computational basis.
This seemingly modest extension of classical Bayesian

networks comes with considerable quantum advantages.
For general underlying Bayesian networks, it can be shown
that the quantum extension has an exponential improve-
ment in expressive power compared to any “reasonable”
classical generative models based on computational com-
plexity assumptions (see Appendix B 3 for the rigorous
proof). However, certain aspects of the complexity proof
are unsatisfying. First, it relies on unproven computational
complexity assumptions. Second, it does not provide
physical insights and understanding on what gives rise
to the purported quantum advantage. Therefore, in Sec. IV,
we show explicitly that quantum correlations are the source
of quantum enhancement and potential advantages for
BBQCs. The unconditional separation between classical
and quantum models based on quantum correlations is,
however, more modest than the separation guaranteed by
the complexity-theory-based arguments. The analysis can
potentially be generalized to other models beyond Bayesian
networks as discussed in Sec. VI.

3. BBQCs as tensor networks

Here, we remark that the quantum model BBQC is still a
special case of tensor networks. We can use the k-gram
model as an example, as shown in Fig. 1(a). Clearly, the
BQC is a tensor network. Since the qubits are arranged on a
line, we regard this tensor network as a MPS. The bond
dimension is bounded by 2k−1. The exponent is the maxi-
mum amount of information transmitted through qubits, and
the unitary to change the measurement basis does not
increase the bond dimension. Generally speaking, if the
degree of the graph is bounded, the bond dimension around a
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qubit in the tensor network is also bounded. Therefore, a
BBQC can still be understood as a tensor network.

IV. PROVABLE EXPRESSIVITY SEPARATION
THROUGH QUANTUM CORRELATIONS

To demonstrate how quantum correlations give rise to
quantum enhancement, we compare the power of BQCs and
BBQCs in generating sequential data. We show that, at least
for some toy models, several fundamental nonclassical
characteristics of quantum theory, i.e., nonlocality and
contextuality, can be used as resources of quantum enhance-
ment for generative models. At the same time, BBQCs are
special classes of tensor networks. Our proof also demon-
strates that ideas from quantum correlations can be used to
show unconditional separation between purely classical
models (k-gram versus MPS or HMM versus MPO).

A. Error models

Given a target probability distribution pD and a distri-
bution generated by a generative model p, one of the most
commonly used cost functions to measure the effectiveness
of p at modeling pD is the forward KL divergence [3,68]:

DKLðpDjjpÞ ¼
X
x

pDðxÞ log
pDðxÞ
pðxÞ ; ð3Þ

which is non-negative and lower bounded by 0 when
p ¼ pD. Since KL divergence is asymmetric, one may also
consider the reverse KL divergence, DKLðpjjpDÞ. The
choice of forward versus reverse KL divergence when
training unsupervised learning models reflects different
priorities in the trained distribution [3].
To compare the expressive power of classical versus

quantum models in generative modeling, we use the KL
divergence to measure how effective classical models can
generate a distribution originating from the corresponding
minimally extended quantum model. In particular, we
denote the probability distribution generated from BQCs
as p and from BBQCs as q, and we investigate what the
separation is between p and q in terms of expressive power.
The error model we use in the following theoretical

analysis requires that both the forward KL divergence
DKLðqjjpÞ and the reverse KL divergence DKLðpjjqÞ are
finite. This is equivalent to Eq. (1). Thus, p approximating
q under this error model is a weaker requirement than a
small divergence of p from q. Nevertheless, we now show
that quantum correlations, such as nonlocality and con-
textuality, give rise to quantum enhancement.
Before proceeding, we note that various other common

error models can be considered. One widely used one, the
multiplicative error, is a stronger requirement and a less
realistic error model than the finiteness of KL divergence.
This is used in our complexity-theory-based proof of
the quantum advantage in Appendix B 3. In Sec. VI, we

discuss additional error models that are more realistic
and more robust to small perturbations of model param-
eters. Relations among error models are explained in
Appendix C.

B. Toy model: k-gram models and quantum nonlocality

In this section, we prove Theorem 1. The separation of 2
versusOðnÞ between the basis-enhanced 2-grammodel and
classical k-gram model [Fig. 1(a)] is demonstrated through
an example constructed from three-partite Bell tests of a
GHZ state [38,69]. The GHZ state is embedded in an
n-qubit 1D cluster state [70], such that measurement on
n − 3 qubits in the X basis will produce a GHZ state (up to
Pauli corrections according to the measurement results).
A similar embedding was also used in Refs. [71,72]. The
basis-enhanced 2-gram model is shown in Fig. 2(a), which
can be verified directly to be a BBQC, where each variable
corresponds to two qubits.
The measurement result bi of the first qubit in the ith pair

plays the role of choosing a measurement basis for the
second qubit: bi ¼ 0 corresponds to measurement in the X
basis, and bi ¼ 1 corresponds to measurement in the Y ¼
S†XS basis for the second qubit. All of the second qubits in
each pair form a cluster state because they are connected
through control-Z gates and the initial states are all jþi.
Suppose we choose three qubits to form the GHZ state and
measure the remaining qubits according to Fig. 2(b). The
resulting quantum state will be a GHZ state, where the
probability to get bi and si is

qðb1s1b2s2b3s300…00Þ ∝ 1þ ib1þb2þb3ð−1Þs1þs2þs3 ; ð4Þ

where bi and si denote the measurement result from the
first and second qubits of the ith pair. When b1 ⊕ b2 ⊕
b3 ¼ 0, the strings generated by this model with nonzero
probability only contain bi and si constrained by

ib1þb2þb3ð−1Þs1þs2þs3 ¼ 1: ð5Þ

It can be shown that any local hidden variable theory [i.e.,
si ¼ siðλ; biÞ does not depend on bj≠i, where λ is the
hidden variable] cannot satisfy this equation [38,72].
We now prove that, for any k < bðn − 1Þ=2c, a classical

k-gram model cannot approximate the probability distri-
bution q generated by the above BBQC up to the error
defined in Eq. (1). We show this by reducing the classical
model to a local hidden variable theory by fixing some
variables, i.e., considering the conditional probability.
When considering the full probability distribution, classical
k-grammodels are not strictly a “local” theory since there is
information flow from the leftmost to the rightmost nodes
even if k is a constant. There is causal influence between
any pairs of nodes; i.e., a k-gram model can simulate the
scenario that any node could communicate, though pos-
sibly only one way, to a node on the right. However, since
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our error model in Eq. (1) only compares the support of the
distributions, if one can show an expressivity separation in
the conditional probability distributions, it directly implies
a separation in the full probability distributions. For the
conditional probability of the k-gram models, one can fix
some variables, which can effectively cut the information
flow. It turns out that the corresponding conditional
probability of classical k-gram models is described by a
local hidden variable theory:

pCðb1s1b2s2b3s3jother variables are 0sÞ

¼ f1ðs1; b1Þf2ðs2; b2Þf3ðs3; b3ÞP
si;bif1ðs1; b1Þf2ðs2; b2Þf3ðs3; b3Þ

; ð6Þ

where fiðsi; biÞ is the product of the terms
pðblþk−1slþk−1jblsl…blþk−2slþk−2Þ involving si, bi while
setting other variables to 0. Because the three variables are
chosen to be further than 2k apart, each product only
involves one variable. We can thus normalize fiðsi; biÞ to
be pðsijbi; λÞ, where λ is determined by the measurement
basis and results, as well as each term in the k-gram model,
but λ does not depend on bj≠i. This shows that Eq. (6) can
be described by a local hidden variable theory and thus
completes the proof of Theorem 1.
In fact, our proof is very general. Using the chain rule

of probability, one can show that if a conditional probability
distribution factorizes (i.e., it is local), the model is a
k-gram model with k ¼ Oð1Þ. This means any separation
between the k-gram model and its basis-enhanced model
must originate from the presence of correlations that share
the mathematical structure of quantum nonlocality.
We note that the 2 vs OðnÞ separation still holds under

the error in Eq. (1), implying a separation also under the
KL divergence. The circuit in Fig. 2 is essentially the same
as the one used in Ref. [72] other than the boundary
conditions. However, their result cannot be applied directly
here since the k-gram model is not a constant-depth
classical probabilistic circuit. Concretely, k does not
correspond to the circuit depth, and the “light cone” scales
with the system size even when k is small. On the other
hand, hidden Markov models with bond dimension 6 could
simulate this basis-enhanced 2-gram model. We give an
explicit construction in Appendix F.

C. Hidden Markov models and quantum contextuality

We now study basis-enhanced HMMs [the translation
form in Fig. 1(b)] in the context of translation problems. We
find that any classical HMM requires DΩðlogDÞ hidden
variables in order to approximate a basis-enhanced HMM
with D hidden variables, under the error model of Eq. (1).
The separation originates from quantum contextuality—in
particular, our proof is constructed from the Mermin-Peres
magic square [42,73].

Our approach is as follows. First, we discuss hidden
variable theories—more precisely, noncontextual ontologi-
cal theories [23,39,41]—and show that they are equivalent
to classical hidden Markov models. Then, we give a lower
bound on the number of ontological states needed to
simulate Pauli measurements on stabilizer states using
the Mermin-Peres magic square [73–75]. Finally, we
discuss how basis-enhanced 2-gram models can efficiently
simulate Pauli measurements on stabilizer states, proving
our result.

1. Noncontextual ontological theories
and hidden Markov models

First, we give a description of hidden variable theories
(more precisely, noncontextual ontological theories)
[23,39,41] in terms of hidden Markov models. At any
moment, such an ontological theory is characterized by a
state variable λi ∈ fλ1; λ2;…; λVg, which we assume com-
pletely determines the resulting distribution of the meas-
urement outcomes of various observables. In particular, the
model assumes that a quantum state jψi is encoded as a
probability distribution over hidden variables as pjψiðλiÞ,
where

P
i pjψiðλiÞ ¼ 1, and the measurement output from

measuring an observable Ô is described as

pjψiðyijÔÞ ¼
X
i

pðyijλi; ÔÞpjψiðλiÞ; ð7Þ

where pjψiðyijÔÞ is the quantum mechanical measurement
output probability for output yi and pðyijλi; ÔÞ is an
indicator function independent of the quantum state jψi.
Below, we use the following notations as illustrated in
Fig. 3(a). After a measurement of an observable Ôxi from
some restricted set of observables fÔxig labeled by xi, and
upon obtaining a measurement result yi with probability
pðyijλi; xiÞ, there is also generally a transition probability
to another state λj with probability ΓMðλjjλiÞ, where M ¼
ðxi; yiÞ characterizes the measurement and its result.
As discussed in Sec. III A, a HMM used for translation

problems is a Bayesian network characterized at any
moment by a hidden state λ0i, with some input xi, and it
transitions to a new internal state λ0j with probability
αðλ0jjλ0i; xjÞ and some probability βðyijλ0iÞ emitting a

FIG. 3. (a) Ontological model in terms of Bayesian networks.
(b) Standard hidden Markov model.
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symbol yi [see Fig. 3(b)]. We note that if we set
λ0i ¼ ðλi; xi; yiÞ, this is identical to a noncontextual onto-
logical theory in the above paragraph.

2. Noncontextual ontological theories representing
quantum states

Let us now consider how noncontextual ontological
theories can simulate measurements on a quantum system.
We follow Ref. [40] on the discussion of such ontological
models, only keeping concepts that are relevant for our
goal. We use Mermin-Peres magic squares explicitly to
demonstrate the advantage of quantum contextuality.
A naive way to simulate a quantum system subject to

sequential measurements is by recording each quantum state
jψ ii that the system could generate as its own state variable
λi. Though this encodes all information in a quantum theory,
there is a large overhead in terms of the number of internal
states λi needed, depending on which classes of circuits are
modeled. We thus consider encodings that allow an internal
state λi to be shared by different quantum states jψi. In this
case, each quantum state is encoded as a probability
distribution over fλ1; λ2;…; λVg. Since we consider the
error model in Eq. (1), we only need to consider if a
measurement probability is zero or not, while the precise
values of the probabilities are not important. Thus, a
quantum state can be associated with a support

suppðjψiÞ ¼ fλijpjψiðλiÞ ≠ 0g; ð8Þ

which is the subset of internal states that the ontological
theory could be in when representing the quantum state jψi.
As illustrated in Fig. 1(b), we interpret the translation

form of the HMM from a dynamical point of view. The
state of the HMM is encoded as a probability distribution
pjψ ti over the hidden states of the HMM at the tth time step.
The quantum state at time t, jψ ti, depends on all the
previous measurement outcomes, Mpast

t ≡ fM1;M2;…;
Mt−1g. Thus, in order to faithfully simulate the quantum
process, the HMM should have enough memory about all
previous measurement bases and outcomes to predict future
behavior. The number of hidden states corresponds to the
memory of the system. We could define the union of all
the states at time t resulting from different measurement
outcomes, fjψ tðMpast

t Þig, but there is ambiguity in setting
the weights for different measurement histories. However,
under the error model in Eq. (1), one only needs to be
concerned with whether the probabilities are nonzero or
not. Each measurement history can be associated with a
support of hidden variables, i.e., suppðjψ tðMpast

t ÞiÞ, and the
union over different histories can be defined as the union
of the support spaces. We emphasize that this is well
defined because there is no interference in the hidden
Markov model; i.e., summation of different histories cannot
be canceled.

Naively, one might believe that it is possible to encode
2V − 1 quantum states using only V ontological states
since a set with V elements has 2V − 1 nontrivial subsets.
However, in order for the ontological theory to make the
same predictions as the quantum theory, there are restric-
tions on which subsets of hidden variables are used to label
quantum states. For instance, if two states jψ1i and jψ2i are
eigenstates with different eigenvalues of an allowed observ-
able Ô, then we must have suppðjψ1iÞ ∩ suppðjψ2iÞ ¼ ∅.
As an example to illustrate this, suppose Ôjψ1i ¼ −jψ1i
and Ôjψ2i ¼ jψ2i, and there is at least one overlapping
hidden variable in the support denoted as λi. Let us first
assume the output is always þ1 when measuring λi by Ô,
i.e., pðþ1jλi; ÔÞ ¼ 1; then, there is a nonzero probability
for both jψ1i and jψ2i to obtain the measurement result þ1
according to Eq. (7), which contradicts the prediction from
quantum measurements. Similarly, assuming the output of
measuring λi by Ô is always −1 or nonzero on both�1 also
leads to the same contradiction.
A less trivial example is given by considering quantum

contextuality, where the intersection among the supports
of several quantum states should still be empty even if
there is not a pair of states that are orthogonal. We now
proceed to use the Mermin-Peres square to construct such
triplets of states.

3. No common hidden variables
in the Mermin-Peres magic square

In the following, we focus our attention on stabilizer
states [44]. We first extend, in a more formal way, the
discussion between memory and contextuality through the
Mermin-Peres magic square example mentioned in Sec. II.
Then, in Sec. IV C 4, we prove a lower bound on the
number of hidden states required to simulate Pauli mea-
surements on all stabilizer states.
Given three stabilizer states jψ1i, jψ2i, and jψ3i, let

fÔi1g, fÔi2g, and fÔi3g be their corresponding stabilizer
groups. If

fÔi1g ∪ fÔi2g ∪ fÔi3g ð9Þ
contains nine observables that form a Mermin-Peres square
as shown in Table I, then we show, by contradiction, that
the following must be true:

suppðjψ1iÞ ∩ suppðjψ2iÞ ∩ suppðjψ3iÞ ¼ ∅: ð10Þ

Concretely, we consider an example to illustrate this idea
and leave the general proof to Appendix D. Let

jψ1i ¼ j00i; jψ2i ¼ j þ þi;

jψ3i ¼
j00i þ j01i þ j10i − j11i

2
;

A ¼ Z1; a ¼ Z2; B ¼ X2; b ¼ X1: ð11Þ
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These stabilizer states and stabilizers form a Mermin-Peres
magic square as in Table I. Here, we show that the
intersection among the supports of the above three states
must be empty. Suppose, instead, the intersection contains
a hidden variable λi. We consider a measurement of the
stabilizer ABab ¼ Y1Y2. Since jψ3i is the eigenstate of
ABab with eigenvalue þ1, we have that for any non-
contextual ontological theory in state λi belonging to the
support of jψ3i,

pðy ¼ þ1jÔy ¼ Y1Y2; λiÞ ¼ 1; ð12Þ

in order to make the same prediction with quantum
mechanics and since

P
i pjψ3iðλiÞ ¼ 1. In addition, there

exists a λj such that

ΓðY1Y2;þ1ÞðλjjλiÞ > 0: ð13Þ

Since λi also belongs to the supports of jψ1i and jψ2i, λj
must also belong to the supports of

ð1þ Y1Y2Þ
2

jψ1i ∝
1ffiffiffi
2

p ðj00i − j11iÞ;

ð1þ Y1Y2Þ
2

jψ2i ∝
1ffiffiffi
2

p ðj01i þ j10iÞ; ð14Þ

which are the resulting states after measuring Y1Y2 on
states jψ1i and jψ2i and getting the measurement resultþ1.
However, these two states are orthogonal and thus cannot
share a common λj as explained in Sec. IV C 2 (e.g.,
consider measuring Z1Z2 or X1X2). We thus arrive at a
contradiction, and the three states cannot share a common
hidden variable λi. It is straightforward to extend this
example to more general stabilizers with the same com-
mutation relations as those in Table I, which is detailed in
Appendix D.

4. Bounding the efficiency of hidden Markov models

We now prove a lower bound, which has been used in
Ref. [40], for the number of hidden states needed in the
HMM. Denote S as the set of all the possible quantum
states appearing in the quantum system that we want to
simulate using a noncontextual ontological theory; in our
case here, it is the set of all stabilizer states. Denote s as a
subset of S such that

∩
jψi∈s

suppðjψiÞ ≠ ∅: ð15Þ

Let

m ¼ max
s

jsj: ð16Þ

Then, the number of state variables V needed in such an
ontological theory in order to simulate the quantum system
is not smaller than jSj=m. The reason for this is illustrated
in Fig. 4.
The following two lemmas show that by allowing for all

stabilizer states and all Pauli measurements, we have large
jSj and relatively small m. We upper bound m by using
contextuality and proving the existence of the Mermin-
Peres square.
Lemma 1. (Proposition 1 in Ref. [76]) The total number

of stabilizer states is

jSj ¼ 2n
2=2þoðn2Þ; ð17Þ

where n is the number of qubits.
Lemma 2. For any subset of stabilizer states s such that

jsj > 2n
2=4þ7n=2, there exist three states such that some of

their stabilizers form a Mermin-Peres magic square as
shown in Table I. Therefore, m ≤ 2n

2=4þ7n=2.
The idea of the proof is as follows: (1) Up to classical

Clifford circuits (those only composed of CNOT and X), any
stabilizer state can be written as a tensor product of
a uniform superposition state of k qubits (with possibly
nontrivial phases) and a product state of n − k over the
computational basis; (2) for any 2n

2=4þ3n=2 · 4n · 2 states, we
can always find one computational basis product state and
4n · 2 other states that are superpositions over the same k
qubits up to a Clifford circuit; (3) we can always find

FIG. 4. Each circle corresponds to a support of a quantum state;
there are thus jSj circles. Each dot corresponds to a hidden
variable. We denote the number of dots as V, and the number of
circles that a dot belongs to is, at most, m. Imagine that we
eliminate a dot and its associated circles each time. After V steps,
all of the circles are eliminated. Since each time we can eliminate
at most m circles, we have Vm ≥ jSj.

TABLE I. Mermin-Peres magic square. The commutation rela-
tions among these operators are given in the following equations:
½A; a� ¼ ½B; b� ¼ ½A; B� ¼ ½a; b� ¼ 0 and fA; bg ¼ fa; Bg ¼ 0.

jψ1i A a Aa þ1
jψ2i B b Bb þ1
jψ3i AB ab ABab þ1

þ1 þ1 −1
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2 standard graph states from these 4n · 2 states up to single-
qubit phase gates (which do not change the computational
basis product state); (4) finally, the stabilizers of the
computational basis product state and the 2 graph states
can always form a Mermin-Peres square. Details of the
proof are in Appendix D. From both lemmas, we have a
lower bound for V:

V ≥
jSj
m

≥ 2ðn2=4Þ−OðnÞ: ð18Þ

Following the discussion on the equivalence of noncon-
textual ontological theories and HMMs in Sec. IV C 1, the
lower bound on V shows that any “translation-form”
HMM simulating Pauli measurements on stabilizer states
on n qubits require at least 2Ωðn2Þ hidden states. In the
following section, we show that a basis-enhanced
2-gram model, which is a special case of the trans-
lation-form HMM as in Fig. 1(b) (see Appendix B 1),
only needs 2OðnÞ internal states.
We have three remarks on the above proof. First, the idea

does not need to be restricted to stabilizer states. Here,
we use stabilizer states for the simplicity of illustrating the
key idea, i.e., making use of the simplest example of
contextuality, the Mermin-Peres square. Second, the above
argument also works for HMMs without translational
invariance. One can remove the requirement of translational
invariance by just relabeling ΓðtÞ and suppðtÞ for the tth time
step. Finally, as we show that HMMs are equivalent to
noncontextual ontological models, our proof also implies
that any such model that can express this language with
2oðn2Þ hidden states cannot be a noncontextual ontological
model. This shows that this separation stems from the
correlations of quantum contextuality present in the basis-
enhanced hidden Markov model.

5. Basis-enhanced 2-gram model from stabilizer states

Here, we construct a basis-enhanced 2-gram model, as
shown in Fig. 5, that simulates Pauli measurements on
stabilizer states using OðnÞ qubits—the underlying 2-gram
model, therefore, has D ¼ 2OðnÞ internal states. The input
and output of the HMM correspond to the choices of
different Pauli measurements and the measurement results,
respectively, and the teleportation gadgets connect succes-
sive nodes in the 2-gram model. Together with the result in
Sec. IV C 4 on the lower bound for the number of hidden
variables required in a classical HMM to simulate the
quantum process, V ≥ 2Ωðn2Þ ¼ DΩðlogDÞ, we have thus
completed the proof of Theorem 2. Furthermore, instead
of regarding it as a 1D model with a large bond dimension,
we can also view it as a 2D model: In Fig. 5(a), if each qubit
is regarded as a node in the Bayesian network, the
corresponding directed graph is shown in Fig. 5(d).
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FIG. 5. (a) Quantum circuits for generating all of the possible
stabilizer states by measurements. Circles 1 and 4 are super-
positions of 2n-bit strings with uniform weights, of which
measurement results in the Z basis determine which stabilizers
are to be measured for the qubits initialized as j0i⊗n (those qubits
in the middle). The measurement results in the X basis of circles
3 and 6 give the outcome of measuring the corresponding Pauli
determined by the measurement result of circles 1 and 4,
respectively. With all of the outcomes of circles 1,3,4,6,� � �,
the qubits in the middle can be any possible stabilizer state.
(b) Teleportation gadget for the part in the red dashed box of
diagram (a). The stabilizer to be measured in the next time step
should be determined by measurement results of both 2 and 5
because the measurement result of 2 will sometimes produce
some Pauli corrections. (c) Corresponding Bayesian network
circuit of (a) after using (b). All of the red circles correspond to
circles in (a) and (b) with the same number labels. We group f1g,
f2; 3g and f4g, f5; 6g as blue circles to form a 2-gram model
with input, which is a special case of the translation form of the
HMM given in Fig. 1(b). (d) 2D arrangement of the Bayesian
network for the circuit shown in (a). The correspondence
between quantum circuits and circles is labeled by Roman
numerals.
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Before concluding this comparison between HMMs
and basis-enhanced HMMs, we note that although this
basis-enhanced circuit is constructed from stabilizer states,
which can be efficiently simulated classically, this does
not imply that a quantum computer is not useful in this
case. In particular, one can consider continuous Pauli
rotations instead of Clifford gates, which will be required
in practice in order to train the model using a method such
as gradient descent. Such quantum training algorithms for
these models are analyzed in Appendix B 4. In general,
such algorithms cannot be efficiently simulated classically.
Furthermore, more general models than HMMs that are
beyond one dimensional would need to sample from a
quantum computer.

V. NUMERICAL TESTS ON REAL-WORLD DATA

In the previous section, we have proven theoretically
that the quantum-inspired models we consider have more
expressive power than the corresponding classical models.
The sources of the quantum enhancement are quantum
nonlocality and contextuality. In this section, we numeri-
cally test that the quantum models do indeed have better
performance in practice. These numerical results primarily
serve two purposes. First, they demonstrate that the
quantum models actually have a potential advantage on
real-world data. Second, they show that the separation is
robust to more practical error models beyond the one used
theoretically as in Eq. (1).
Concretely, we focus on classical HMMs and the quan-

tum extension of 2-gram models introduced in Sec. IV C.
As in most generative modeling tasks, the quantity of
interest to evaluate the performance of the parametrized
model pmodel given a data set pdata is the forward KL
divergence

DKLðpdatajjpmodelÞ ¼
X

m∈½1;…;M�n
pdataðmÞ log pdataðmÞ

pmodelðmÞ ;

ð19Þ

consistent with our convention used in previous sections,
we let M denote the dimensionality of a given visible node
in our model, and we let n be the number of visible nodes in
the model. Since summing over the exponential number of
terms in Eq. (19) is intractable in practice, we use the
stochastic estimate of the KL divergence given in Eq. (B7).

A. Simulation of basis-enhanced 2-gram models

We now focus on (translationally invariant) classical
hiddenMarkov models and basis-enhanced 2-grammodels,
both of which were introduced in Sec. IV C. Though in
Sec. IV C we considered a specific translation task for the
sake of our analysis, here we consider general basis-
enhanced 2-gram models, with the parameters trained to
represent some given data set. The general structure of the
model we consider is given in Fig. 6.
Though basis-enhanced 2-gram models cannot directly

be interpreted as classical Bayesian networks, they are still
classically simulable using tensor networks when they have
low bond dimension [32,48], making them a natural choice
for numerical tests of our analysis [see Fig. 6(b)]. In
particular, the direction of steepest descent of Eq. (B7)
when varying a particular tensor U is given by its negative
gradient with respect to the conjugate of the parameters
[77]; that is, the direction of steepest ascent with respect to
U takes the form

∂D̃KL

∂U ¼ 2∂UZ
Z

−
2

K

X
m∈data

∂USUðmÞ
SUðmÞ ; ð20Þ

(a) (b)

FIG. 6. (a) BBQC interpretation of a three-node 2-gram model, with states s1, s2, s3. An initial unitary Up constructs the prior, and
uniformly controlled unitaries CUt encode transitions between 2-gram states. Each measurement is in some standard basis encoding of
the M-dimensional output space. To directly compare with classical HMMs, we only consider transfer unitaries on a k-dimensional
subspace of each state (top wire), and we consider the distribution on an M subspace of each state (bottom wire). (b) Tensor network
representation of the same quantum circuit.
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where S is the unnormalized probability distribution given
in Fig. 6(b) and Z is its normalization. When we perform
the Riemannian descent algorithm described in Sec. V B,
we optimize on the manifold of unitary matrices, and thus
Z ¼ 1. As we maintain translational invariance in our
model, the total derivative with respect to some parameter
U is given by the sum of the variation over all equivalent
tensors:

∂D̃KL

∂U ¼
X
j

∂D̃KL

∂UðjÞ
: ð21Þ

For completeness, we give examples of the tensor network
representations of ∂USUðmÞ and ∂UZ in Appendix G. Since
within one training minibatch many of the same tensors
are contracted, in practice, we precompute intermediate
tensor contraction results for each minibatch. For a basis-
enhanced 2-gram model with bond dimension h, the
classical runtime is Oðnh3MÞ for computing the gradient
with respect to the unitaries in the model. For comparison, a
classical HMM trained using the Baum-Welch algorithm
[78] takes time O(nhðhþMÞ) per training iteration.

B. Model training

In general, training Bayesian networks beyond tree
graphs is hard [79,80]. We note that there exist many
heuristic and approximate algorithms that work well in
practice for training classical Bayesian networks [81],
and we consider similar heuristics for BBQCs here, as
described in more detail in Appendix B 4.
Since we focus on translationally invariant HMMs here,

we can use the Baum-Welch algorithm to efficiently train
the classical model [78]. Furthermore, as discussed in
Sec. VA, computing the gradient of the loss function with
respect to the parameters in the basis-enhanced 2-gram
model is classically efficient using tensor networks for
small bond dimension. However, naively performing gra-
dient descent on the parameters of the model would
generally violate unitarity constraints in the underlying
quantum circuit model. Therefore, to optimize the unitaries
used in the construction of the quantum model, we perform
a variant of the Riemannian gradient descent algorithm
introduced in Ref. [82].
Normally, in the gradient descent of some loss function

LðfAigÞ for complex-valued matrices Ai, one iteratively
estimates the optimal Ai through the update rule [77]

Ai → Ai − α
∂L
∂Ai

; ð22Þ

where α is the learning rate. In practice, keeping a moving
average of previous gradient estimates smooths out sto-
chastic fluctuations in estimates of ∂L=∂Ai; thus, we
consider the momentum-based update rule [83]:

vAi
→ βvAi

þ α
∂L
∂Ai

; ð23Þ

Ai → Ai − vAi
: ð24Þ

For unitary Ai, however—as in the case of quantum
circuits—this procedure will generally yield nonunitary Ai.
Therefore, we analytically calculate the direction of steep-
est descent in unitary space in terms of ∂L=∂Ai and
perform parallel transport in that direction [82]. This leads
to the update rule for a unitary matrix U:

U → exp ( − α

�
U

�∂L
∂U

�†
−
∂L
∂UU†

�
)U: ð25Þ

We modify the method in Ref. [82] slightly to allow for the
momentum update rule of Eq. (24); namely, we use the
update rule

U → exp ( − ðUv†U − vUU†Þ)U: ð26Þ

C. Model comparison on data sets

We test the performance of our implemented quantum
extension of a 2-gram model on three data sets: the biofam
(sequence length n ¼ 16, output dimensionality M ¼ 8)
[45,46], Promoter Gene Sequences (n ¼ 57, M ¼ 4) [47],
and SPECT Heart (n ¼ 23,M ¼ 2) [47] data sets. For all of
our simulations, we use β ¼ 0.5. For the biofam data set
[45,46], we use α ¼ 10−3, and for the Promoter Gene
Sequences and SPECT Heart data sets [47], we use
α ¼ 10−2. For the biofam data set, we train for 75 epochs,
and for the Promoter Gene Sequences and SPECT Heart
data set, we train for 150 epochs. For all data sets, we
estimate the gradient over a minibatch size of 8 training
samples. The biofam data set tracks the family life of
individuals from year to year (e.g., married, divorced,
married with children) and is correlated from year to year.
We expect it to be efficiently captured by a classical HMM
due to the local nature of the data, and we use it as a control.
The Promoter Gene Sequences data set consists of DNA
sequences that encode promoters and nonpromoters; there-
fore, it has a less-obvious local structure. Finally, the
SPECT Heart data set encodes binary feature vectors of
heart images, with little to no local correlations.
To estimate the generalization performance of the

models, we withhold a quarter of the data for testing the
biofam and Promoter Gene Sequences data set, and use
the standard SPECT Heart testing data set. Our results are
summarized in Fig. 7, where we plot the stochastic estimate
of the KL divergence D̃KL (normalized by the sequence
length) as a function of the local hidden dimension k. As we
are interested in the optimal performance over all param-
eters to compare the expressive power of quantum-inspired
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models versus classical models, we plot the minimum
achieved loss over ten trials. In particular, for the Promoter
Gene Sequences and SPECT Heart data sets, the basis-
enhanced 2-gram model learns the distribution of samples
more effectively and also generalizes more effectively than
the classical HMM. As expected, both models perform
equally well on the biofam data set since it has very local
correlations. These results also demonstrate that for data sets
that have no obvious local structure, quantum models tend to
perform better, which is consistent with our theoretical
analysis in Sec. IV C. Furthermore, we perform a like-
lihood-ratio test between the two models to measure the
statistical significance of the improvement in performance,
accounting for any potential overfitting due to the quantum
model having more parameters than the classical model.
Taking the null hypothesis that the optimal parameters of the
basis-enhanced 2-grammodel reduce the model to a classical
hidden Markov model, using the observed difference in
achieved KL divergence, we find that the null hypothesis
can be rejected with 5σ confidence on the Promoter Gene
Sequences and SPECT Heart data sets (see Fig. 8).
Interestingly, the performance separation between quan-

tum and classical models persists even when considering
the average performance over many runs. These results are
summarized in Appendix G. With these specific examples,
the sets of numerical results suggest that quantum models
with nonclassical correlations may have better performance

as generative models on real-world data. The performance
boost is also robust to practical training procedures and
realistic performance metric considerations.

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 7. Best performances over ten trials of the classical HMM (blue circles) and the basis-enhanced 2-gram model (orange crosses)
on the (a,b) biofam, (c,d) Promoter Gene Sequences, and (e,f) SPECT Heart data sets. The first row plots the performance on the training
data, and the second the performance on withheld testing data. The basis-enhanced 2-gram models have better performance than
classical HMMs on the SPECT Heart and Promoter Gene Sequence data sets. Error bars denote 1 standard error of the mean over ten
trials. Dashed lines are to aid the eye.

FIG. 8. Plotted with dashed lines are the improvements in KL
divergence between the best-performing basis-enhanced 2-gram
model and the best-performing classical hidden Markov model
for each tested model size on the Promoter Gene Sequences and
SPECT Heart data sets. The solid lines show the improvement
needed to reject the null hypothesis in a likelihood-ratio test with
5σ confidence (see Sec. V C). Wherever the dashed lines are
above their corresponding solid lines, the null hypothesis was
rejected with more than 5σ confidence.
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VI. CONCLUSION AND OUTLOOK

In thiswork,we have presented unconditional proof of the
separation in expressive power between Bayesian networks
and their minimal extension, basis-enhanced Bayesian
quantum circuits. We showed that the origin of this sepa-
ration is associated with quantum nonlocality and contex-
tuality. Focusing on sequential models, we constructed
examples via quantum nonlocality of a linear separation
in k between k-gram models and their basis-enhanced
version, and through quantum contextuality, a quasipoly-
nomial separation in bond dimension for the hiddenMarkov
model and its basis-enhanced version. In addition, we
numerically tested this separation on standard data sets,
showing that this separation holds even on practical data sets.
Although we focused on Bayesian networks, our

approach can also be applied to more general models.
Contextuality provides a general framework since the error
model in Eq. (1) is independent of the normalization of
probability distributions; therefore, our techniques can be
applied to graphical models without well-defined transition
probabilities along some edges of the graph. For example,
Theorem 2 also works for deep Boltzmann machines,
which is a much harder model than Bayesian networks
in terms of computational cost. However, there is an
intrinsic difficulty in extending Theorem 2 to get a
separation with some non-energy-based neural networks
(e.g., CNN, RNN [3]). The reason for this is that one hidden
neuron in such kinds of models can take values over real
numbers; thus, it could potentially carry infinite informa-
tion, and our counting methods used in the proof of
Theorem 2 do not directly apply. The possible extensions
and applications of our approach to such models deserve
further theoretical investigations. However, these models
have to be implemented with finite precision in practice. In
this case, our model still has a separation compared with
these neural network models in terms of the amount of
memory required when transmitting information between
successive layers.
Our results establish a powerful connection between

quantum foundations and machine learning. Since many
traditional machine-learning models are based on the
understanding and intuition from classical physics, they
can be naturally characterized by noncontextual ontological
models. Our study shows that quantum correlation can be a
resource to enhance the expressive efficiency of these
models even if the task is purely classical (e.g., by noting
the similarity between contextuality in natural languages
and quantum contextuality; see also Ref. [84] for the
connection between natural language and quantum-
inspired models from a different point of view). Our work
opens new avenues for using ideas from quantum founda-
tions to develop novel machine-learning models based
on MPS (and its equivalence, OOMs, as we mentioned
near the end of Sec. II), treelike tensor networks, or the
multiscale entanglement renormalization ansatz (MERA)

[31–34,85,86]. Because of the form of our error model, the
separation between classical and quantum-inspired models
is mainly due to the non-negative versus complex numbers
instead of the normalization in obtaining the probability. As
an example, the general MPS has the same separation in
terms of bond dimension compared with the stochastic
MPS [87], which is a kind of MPS with non-negative
numbers. In addition, we expect that the concepts of
quantum correlations can be used to provide theoretical
foundations for other quantum-inspired classical models
and quantum machine-learning models.
Finally, our work provides new insights into designing

practical quantummachine-learning algorithms that exhibit a
quantum advantage in tackling machine-learning tasks; this
can be achieved by starting from a successful classical
machine-learning model and enhancing it with quantum
correlations. This is a markedly different approach frommost
proposed quantum machine-learning models, in which
generic quantum circuits are considered. Such structure is
important since unstructured circuits tend to encounter
challenges in training, including encountering barren plateaus
in the loss landscape [51–53] and finding poor local minima
[56]. Although the examples we used here can be efficiently
simulated classically, some of them require the use of
quantum machines during the training stage. Furthermore,
the example models we used in this work are subclasses of
more general, sequential, quantumgenerativemodels, involv-
ing quantum circuits with sequential (adaptive or nonadap-
tive) measurements, which are not classically simulable. It
can be expected that the ideas of contextuality presented here
can be extended to these cases to achieve a quantum
advantage beyond classical simulability.
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APPENDIX A: RELATIONS AMONG VARIOUS
MACHINE-LEARNING MODELS

Deep belief nets have the form

pðv; h1; h2;…;hdÞ
¼ pðvjh1Þ…pðhd−2jhd−1Þpðhd−1; hdÞ; ðA1Þ

this is exactly the form of a 2-gram model if the hidden
variables are also observed.
A k-gram model can be simulated by a HMM with Lk−1

hidden variables per site, where L is the vocabulary length
of the k-gram model; this can be done straightforwardly by
combining sets of k − 1 sites in the k-gram model into one
site in the HMM. The Lk−1 possible values of these sites in
the k-gram model map to each of the Lk−1 hidden variables
in the HMM.

APPENDIX B: DETAILS OF BASIS-ENHANCED
BAYESIAN QUANTUM CIRCUITS

1. Mapping between Bayesian networks
and quantum circuits

In the following, we give the explicit construction of the
mapping between Bayesian networks and quantum circuits
(see Fig. 9 as an illustration):

(i) Bayesian networks ⇒ BQCs. Each node corre-
sponds to a qubit. According to the direction of

edges in the graph, assign an order for these qubits.
Then, do the following steps in order. If the node has
no parent, prepare the corresponding qubit as jψ ii
such that jhxijψ iij2 ¼ pðxiÞ. Otherwise, prepare the
corresponding qubit as jψ ii and apply U (parents
of xi) on the corresponding qubits such that

jhxijUðparents ofxiÞjψ iij2 ¼ pðxijparents ofxiÞ:
ðB1Þ

Notice that there are no other operations between U
(parents of xi) and jψ ii because of the following:
(i) If there were a target unit V in another uniformly
controlled gate, U and V could be merged into a
single uniformly controlled gate, and (ii) the order
guarantees there is no control unit before a tar-
get unit.

(ii) BQCs ⇒ Bayesian networks. First, we assign a
directed acyclic graph to the BQC. Each qubit
corresponds to a node, and we draw an arrow from
node xi to node xj if and only if there exists a
uniformly controlled gate with a control unit on
qubit i and a target unit on qubit j. Then, we assign
each node transition probabilities in the following
way: If there is no target unit on qubit i, assign
pðxiÞ ¼ jhxijψ iij2 for the corresponding node; oth-
erwise, assign a transition probability for this node
according to Eq. (B1).

(a) 2

4

1

3

5

(b)

BQC Measurements

Uniformally controlled gate

Control unit 

Target unit 

FIG. 9. Bayesian network on a generic graph and its associated Bayesian quantum circuit. (a) Example of a Bayesian network on a
generic graph. Each node xi corresponds to a transition probability pðxijparents ofxiÞ; e.g., the node x4 corresponds to pðx4jx1; x3Þ. If
there is no parent for the node xi, it simply corresponds to a marginal probability pðxiÞ; e.g., the node x2 corresponds to pðx2Þ. The joint
probability distribution defined by the Bayesian network is the product of the transition or marginal probability over all of the nodes. For
this example, the probability distribution is pðx1; x2; x3; x4; x5Þ ¼ pðx1Þpðx2Þpðx3jx2Þpðx4jx1; x3Þpðx5jx3; x4Þ. (b) Associated Baye-
sian quantum circuit. Each node in the Bayesian network corresponds to a qubit, and each uniformly controlled gate corresponds to a
transition probability. For example, the uniformly control-U2 gate corresponds to pðx4jx1; x3Þ. The marginal probabilities pðx1Þ; pðx2Þ
have been absorbed into jψ1i; jψ2i. Because all Bayesian networks are associated with directed acyclic graphs, an ancestor of a node
cannot also be a child of the same node. This means, in Bayesian quantum circuits, there cannot be a target unit after a control unit.
Furthermore, the target unit can only involve one qubit in a uniformly controlled gate. Measuring the output qubits of Bayesian quantum
circuits in the computational basis will produce the same probability distribution as the corresponding Bayesian network.
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2. Efficient implementation using multiqubit
collective gates

The implementation of uniformly controlled gates is not
efficient, in general [67]. This is true even ifwe have the ability
to implement collective gates that are native, for instance, to
Rydberg-based quantum platforms [e.g., implementing
quantum fan-out gates with k control units [88] as shown
in Fig. 10(a)]. Even though these gates are very powerful [89],
it is unclear how to implement general uniformly controlled
gatesmore efficiently (in terms of scalingwith k). However, in
almost all machine-learning models, the transition probabil-
ities have specific forms when k is large. In particular,
transition probabilities usually take the form

pðxkþ1jx1;…; xkÞ ¼ f

�
xkþ1

�Xk
i¼1

wixi

��
; ðB2Þ

that is, the dependence on the parent variables is linear in a
nonlinear function f, in general. For example, in deep belief
nets, fðyÞ ¼ e−βy=ð1þ e−βyÞ. Here, we give a construction
showing how to implement such uniformly controlled gates
approximately such that the number of elementary collective
gates does not depend on k.
In the following, we show how to implement the

transition probability shown in Eq. (B2) in BQCs with a
circuit depth independent of k, using collective gates. We
define θ ¼ P

wixi, such that according to Eq. (B2),
pð0jx1;…; xkÞ ¼ fð0Þ and pð1jx1;…; xkÞ ¼ fðθÞ. Thus,
we have a normalization condition fð0Þ þ fðθÞ ¼ 1. We
introduce the notation h·im as a binary representation of · up
to the mth digit. We also introduce θ̃ as an approximation
of θ, with binary representation hθid1 . We then use the
following procedure to implement the transition:

j0i⊗d1 j0i⊗d2 j0i → jhθid1ij0i⊗d2 j0i ½phase estimation algorithm; Oðd21Þ gates�

→ jhθid1ijharcsin
ffiffiffiffiffiffiffiffiffi
fðθ̃Þ

q
i
d2
ij0i ½classical computing; usually O ðpolyðd22ÞÞ gates�

→ jhθid1ijharcsin
ffiffiffiffiffiffiffiffiffi
fðθ̃Þ

q
id2ið

ffiffiffiffiffiffiffiffiffi
fð0Þ

p
j0i þ

ffiffiffiffiffiffiffiffiffi
fðθÞ

p
j1iÞ ðcontrolled rotation along x axisÞ

→ j0i⊗d1 j0i⊗d2ð
ffiffiffiffiffiffiffiffiffi
fð0Þ

p
j0i þ

ffiffiffiffiffiffiffiffiffi
fðθÞ

p
j1iÞ ðuncomputingÞ: ðB3Þ

The precision of the transition is determined by d1
and d2. Note that d1 determines the precision of the input
of the function f, and d2 determines the effect of truncation
for the function arcsin

ffiffiffiffiffiffiffiffi
fð·Þp

. The total error is bounded by

ϵ ¼ max
θ

jðarcsin
ffiffiffiffiffiffiffiffiffi
fðθÞ

p
Þ0j2−d1 þ 2−d2 : ðB4Þ

Therefore, if the derivative is bounded by a constant
[for example, in the case of fðθÞ ¼ e−βθ=ð1þ e−βθÞ, the
derivative is bounded by β], d1 and d2 can be taken to be

Oðlog ð1=ϵÞÞ such that the depth is bounded by
poly( log ð1=ϵÞ), which is independent of k and only
depends on the precision ϵ.

3. Exponential separation of expressive power
between BBQCs and Bayesian networks based

on computational complexity theory

The proof of the exponential expressive power of
BBQCs is a slight modification of the proof for quantum
generative models (QGMs) detailed in Ref. [16].

(a) (b)

FIG. 10. Basic elements in Bayesian quantum circuits implemented by multiqubit collective gates. (a) “Basic” collective gate.
(b) Implementation of control-R ¼ Rzð

P
i wixiÞ gate. This gate can be implemented directly on a Rydberg-atom-based platform.
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Theorem 3. (Ref. [16]) There exists a BBQC with n
qubits such that, if any Bayesian networks with a poly-
nomial number of parameters in n could approximate it
under the multiplicative error, the polynomial hierarchy in
computational complexity theory would collapse.
For completeness, we give a brief review of the proof.

First, we give a brief introduction of related concepts.
Second, we introduce a specific BBQC, which is used to
separate the expressive power between the classical and
quantum models. Third, we give a sketch of the proof. See
Ref. [16] for more details.

a. Related computational complexity classes

The polynomial hierarchy is a hierarchy of complexity
classes that generalize P and NP, and are denoted as
Σp
0 ;Σ

p
1 ;Σ

p
2 ;…. Here, Σp

0 ¼P, Σp
1 ¼ NP, and Σp

iþ1 ¼ NPΣp
i ,

where NPΣp
i is called NP relative to Σp

i . NP denotes
problems that can be verified in polynomial time by a
Turing machine, and NPΣp

i denotes problems that can be
verified in polynomial time by a Turing machine that is
equipped with an oracle that can solve any Σp

i problems in
one step. A detailed discussion can be found in Ref. [90] or
in the recent review article on quantum supremacy [91].
It is widely believed that the polynomial hierarchy does
not collapse, which means Σp

i ≠ Σp
iþ1 (which implies

Σp
i ≠ Σp

iþj for any constant j > 0).

b. Basis-enhanced Bayesian network used in the proof

Here, we give a construction of a basis-enhanced
Bayesian network such that approximately computing
the probability of a specific configuration up to the
multiplicative error is #P-hard.
This BBQC begins as a cluster state on a square lattice.

The corresponding Bayesian network is drawn as the graph
shown in Fig. 11. Then, we use the measurement basis

shown in Ref. [92]. One of the important properties of this
construction is its “single-instance hardness,” which means
there is only one measurement basis for any fixed size;
i.e., the probability distribution qðxÞ only depends on the
size of the lattice. We demand this property because in the
proof of exponential expressive power, we associate a
probability distribution with a problem consisting of non-
negative numbers as outputs: x specifies an instance of the
problem, and the task is to compute the probability given a
specific x, i.e., qðxÞ, to the multiplicative error. Thus, the
complexity of a probability distribution is defined as the
complexity of the associated problem.
The proof of exponential expressive power works for any

efficiently computable classical model. Thus, it also works
for any neural networks.

c. Sketch of the proof

The key to separating the complexity of the classical and
quantum models is formalizing a sign problem caused by
quantum interference: Approximately computing (up to the
multiplicative error) a summation of many non-negative
numbers is easier than the summation of many complex or
real numbers. This can be done via Stockmeyer’s theorem
[93] (see Ref. [16] for an introduction oriented to the proof
here); the former is inside Σp

2 , and the latter is #P-hard. The
same reasoning has been used to separate QGMs and the
general probabilistic graphical model [16]. Here, we only
give a sketch of the proof.
Assume there exists a Bayesian network that generates

the joint probability pðx; y; zÞ such that the conditional
probability

P
y pðx; yjzÞ approximates qðxÞ to the multi-

plicative error. We can use Stockmeyer’s theorem to prove
that, based on this assumption and supposing that the
parameters of the network are given, approximating qðxÞ to
the multiplicative error is in Σp

2 . We should keep in mind
that the probability defines a problem, with x specifying an
instance of the problem.
However, though we can show that it is possible to

approximate q to the multiplicative error, the proof is not
constructive. More concretely, “/poly” denotes that, for any
fixed input size (the length of x), there exists a polynomial-
sized classical circuit that computes all the instances of the
problem, but the circuit may not be efficiently constructed
[90,94]. In Appendix B 3 b, we construct a BBQC such that
computing qðxÞ to the multiplicative error is #P-hard.
Thus, assuming the efficient representation of the BBQC
via classical Bayesian networks, we (roughly) obtain

#P ⊆ Σp
2=poly: ðB5Þ

This implies that the polynomial hierarchy would collapse
to the third level, as more formally shown in Ref. [16]
(which follows from a modification of the reasoning of the
proof of Theorem 3 in Ref. [95]).

FIG. 11. A cluster state in a Bayesian quantum circuit. A cluster
is generated from initial state jþi⊗n by applying control-Z gates
between each pair of neighbors on a square lattice. We may assign
each edge an arrow in the way shown in this figure in order to get
a directed acyclic graph. We can see that this circuit is a Bayesian
quantum circuit by checking Definition 1 and noticing that, in a
control-Z gate, there is no need to distinguish between control
and target units.
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4. Algorithms for inference and learning

There are mainly two computational problem associated
with a generative model. One is inference, i.e., how to
extract useful information from the representation of the
generative model. Making inference on a generative model
usually means computing marginal probabilities or condi-
tional probabilities, or performing maximum likelihood
estimation. With this, we can make predictions for new data
after getting an approximately correct representation of a
data distribution pD. Later, we will give examples to show
the applications of computing conditional probabilities.
The other computational problem is training (or learn-

ing), i.e., how to determine parameters of the generative
model from training data in order to approximate pD.
Training usually means minimizing the KL divergence

DðpDjjpθÞ ¼
X
v

pDðvÞ log
�
pDðvÞ
pθðvÞ

�
ðB6Þ

between pD and pθ, the distribution of the generative
model, with the whole parameter set denoted by
θ ¼ ðθ1;…; θpolyðnÞÞ. The θ-dependent part of DðpDjjpθÞ
can be expressed as

DðθÞ≡ −
1

N

X
v∈training data set

logpθðvÞ; ðB7Þ

where N denotes the total number of data [1=N approx-
imates pDðvÞ] and the summation is over all the training
data or a batch of data for stochastic optimization. As the
number of parameters is bounded by polyðnÞ, the required
data size N is typically bounded by polyðnÞ [1]. We can
also understand optimizing DðθÞ as maximum likelihood
estimation since DðθÞ is proportional to the log-likelihood
log (

Q
v qθðvÞ). It is worth mentioning that, in addition to

DðθÞ with v ¼ ðx; yÞ, it is also usual to adopt the following
loss function for supervised learning [96],

LðθÞ≡ −
X

v∈training data set

logqθðyjxÞ; ðB8Þ

since it is the log-likelihood log ðQv qθðyjxÞÞ. Typically,
we minimize these loss functions via a so-called optimizer,
usually the gradient descent method [3] with a proper
learning rate (the step length for updating parameters) or
its variations, like adding a stochastic term, adjusting the
learning rate adaptively, utilizing training data in batches,
and so on.

a. Heuristic quantum algorithms
for inference and learning

Even for classical Bayesian networks, the training and
inference problems are computationally hard for quantum
computers [79,80]. However, there are a number of

proposed heuristic and approximate algorithms that work
well in practice in tackling these computation problems for
classical algorithms [81].
BBQCs have a similar problem in that exact training and

inference are computationally difficult, and it is natural to
propose heuristic quantum algorithms. Since Bayesian net-
works are a special case of probabilistic graphical models
[81], the quantum algorithm for the learning and inference
problems in extensions of probabilistic graphical models [16]
also works here. The idea is to convert the learning and
inference problems to preparing ground states of a local
Hamiltonian. The runtime of the quantum algorithm is
proportional to the inverse of the energy gap, although we
cannot guarantee that the energy gap scales as 1=polyðnÞ.
Other heuristic quantumalgorithmsmore specific toBayesian
networks may also exist as in the classical case.

APPENDIX C: RELATIONS AMONG VARIOUS
ERROR MODELS

For completeness, we also define two other error models.
One is the multiplicative error:

jpðxÞ − qðxÞj ≤ γqðxÞ; ∀ x; ðC1Þ

with γ being a constant smaller than 1=2. Note that p
approximating q under this error implies that DKLðpjjqÞ is
bounded by γ. Thus, p approximating q under this error
model is a stronger requirement than a small KL divergence
of p from q. This error model is used for our complexity-
theory-based proof of a quantum advantage on general
graphs in Appendix B 3.
For translation problems, the generative models usually

only define conditional probabilities pðyjxÞ for the classical
model [e.g., the second model in Fig. 1(b)] and qðyjxÞ for
the quantum extension. The prior probability for x is
unspecified, and we denote it as pðxÞ and qðxÞ ¼ pðxÞ.
Then, the KL divergence is

DKLðpjjqÞ ¼
X
x;y

pðx; yÞ logpðx; yÞ
qðx; yÞ

¼
X
x

pðxÞ
�X

y

pðyjxÞ logpðyjxÞ
qðyjxÞ

�
: ðC2Þ

In order to avoid any assumptions on pðxÞ, we require that
the quantity inside the brackets be bounded for any x. This
implies that

qðyjxÞ ¼ 0 ⇔ pðyjxÞ ¼ 0; ∀ x; y: ðC3Þ

Now, let us show that the multiplicative error is bounded,
which implies that DKLðpjjqÞ and DKLðqjjpÞ are bounded;
this, in turn, implies the error model in Eq. (1). We see that
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����
X
x

pðxÞ logpðxÞ
qðxÞ

���� ≤
X
x

����pðxÞ log
�
1þ pðxÞ

qðxÞ − 1

�����
≤
X
x

����pðxÞ
�
pðxÞ
qðxÞ − 1

�����
≤
X
x

pðxÞγ

¼ γ: ðC4Þ
The second inequality comes from

jpðxÞ − qðxÞj ≤ γqðxÞ ðC5Þ
with small γ. A similar proof holds for DKLðqjjpÞ by
exchanging p and q.
According to the definition of DKLðpjjqÞ, qðxÞ ¼ 0

implies that pðxÞ¼0 in order to make DKLðpjjqÞ bounded.
According to the definition ofDKLðqjjpÞ, pðxÞ ¼ 0 implies
that qðxÞ ¼ 0 in order to make DKLðqjjpÞ bounded. Thus,
bothDKLðpjjqÞ andDKLðqjjpÞ are bounded, which implies
the error model in Eq. (1).

APPENDIX D: LEMMA PROOFS FOR THE
MERMIN-PERES MAGIC SQUARE

First, we prove the following lemma:
Lemma 2. For any subset of stabilizer states s such that

jsj > 2n
2=4þ7n=2, there exist three states such that some of

their stabilizers form a Mermin-Peres magic square as
shown in Table II.
Proof.—We write jsj ¼ aðnÞbðnÞcðnÞ þ 1, where

aðnÞ ¼ 2n
2=4þ3n=2, bðnÞ ¼ 4n, and cðnÞ ¼ 2; their meaning

will be clear later. Given jsj stabilizer states, we can always
transform these states to another set of stabilizer states by a
Clifford circuit such that one of the states will become
j0i⊗n and the other aðnÞbðnÞcðnÞ states have the following
form (see Ref. [97]):

jψi ∝
X
x∈A

ð−1ÞqðxÞilðxÞjxi; ðD1Þ

where A is an affine subspace of Zn
2 and qðxÞ and lðxÞ are

quadratic and linear functions on Z2 and Z4, respectively.
The state is determined by A, q, l.
We denote aðnÞ as the number of different A: An affine

subspace is composed of a linear subspace and a displace-
ment, and thus there are at most

aðnÞ ≤
X
k

2ðn−kþ1Þk × 2n ¼ 2n
2=4þ3n=2 ðD2Þ

possible A, where the first term involving summation over k
is the number of linear subspaces (where k is the dimension
of the subspace—see Theorem 2.14 of Ref. [98]) and the
second term 2n is the number of possible displacements.
According to the pigeonhole principle, we can prove

that we now have the j0i⊗n state and at least bðnÞcðnÞ
states belonging to the same affine subspace A. Those
bðnÞcðnÞ states only differ by q and l. Using CCNOT
and CX, which are circuits only composed of CNOT and
Pauli X gates, respectively, these states can be trans-
formed to be of the form

X
u∈f0;1gk

ð−1Þq̄ðuÞil̄ðuÞjuij0i⊗ðn−kÞ; ðD3Þ

which are graph states over the first k qubits. These
circuits simultaneously transform j0i⊗n to a state of the
form jz1z2…zni.
Denote bðnÞ as the number of l̄ which is no greater than

4n (where the worst case is k ¼ n). Then, we have the
jz1z2…zni state and at least cðnÞ graph states after applying
S or Z gates to eliminate l̄. As long as cðnÞ ≥ 2, we can
always find two graph states such that there exists a pair of
vertices where there is no edge for the first graph and there
is an edge for the second graph. Without loss of generality,
we may assume this pair is comprised of qubits 1 and 2.
The first graph state (without an edge between qubits 1

and 2) has stabilizer generators X1I2Za3 and I1X2Zb3 , and
the second has generators X1Z2Zc3 and Z1X2Zd3 , where a3,
b3, c3, d3 are n − 2-dimensional vectors on Z2. The
computational state has generators hð−1ÞeiZii, so it could
have any Pauli Z-type stabilizers up to � signs. Then, we
have the Mermin-Peres magic square given by Table II. In
this table, operators in each row commute with each other
since they are chosen from stabilizers of the same quantum
states. It is also easy to check that operators in each column
commute with each other. The first two Pauli stabilizers
in each observable form the “traditional” Mermin square,
and the Pauli Z stabilizers after the first two qubits do not
change the commutation relations between observables.
Thus, this table forms a Mermin-Peres magic square and
thus exhibits contextuality. ▪
Second, we prove the following lemma:
Lemma 3. If three stabilizer states and a subset of their

stabilizers form a Mermin-Peres magic square as shown in
Table I, the intersection of their support in an ontological
theory should be empty in order to be consistent with
quantum mechanics.

TABLE II. Mermin-Peres magic square.

Computational states ð−1ÞfI1Z2Za3þc3 ð−1ÞgZ1I2Zb3þd3 ð−1ÞfþgZ1Z2Za3þb3þc3þd3

First graph state X1I2Za3 I1X2Zb3 X1X2Za3þb3

Second graph state X1Z2Zc3 Z1X2Zd3 −X1X2Z1Z2Zc3þd3
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Proof.—The proof basically follows the discussion in
the main text with the example in Eq. (11) but written in a
more general way. Assume there is a common λ in the
intersection among the supports of the three states
jψ1i, jψ2i, and jψ3i.
It is simple to show the following two equations:

1 − ABab
2

jψ3i ¼ 0; or equivalently;

1þ ABab
2

jψ3i ¼ jψ3i; ðD4Þ

and

1þ ABab
2

jψ1i⊥ 1þ ABab
2

jψ2i; or equivalently;

hψ1j
1þ ABab

2
jψ2i ¼ hψ1j

1þ Aa
2

1þ ABab
2

1þ Bb
2

jψ2i
¼ 0: ðD5Þ

The first set of equalities forces the measurement result of λ
to deterministically be þ1. The second set of equalities
shows that the resulting states of jψ1i and jψ2i after
measuring ABab and getting þ1 are orthogonal. Thus,
there is a contradiction. ▪

APPENDIX E: ROBUST SEPARATION OF
k-GRAM MODEL UNDER l1 DISTANCE

Here, we prove that any k-gram model with the prob-
ability distribution p with k < n=6 cannot approximate a
particular basis-enhanced 2-gram model with the proba-
bility distribution q to l1 distance smaller than 1=288, i.e.,

X
x

jpðxÞ − qðxÞj ≥ 1=288: ðE1Þ

For simplicity, we assume n ¼ 3þ 4k. The key to proving
the separation between the quantum extension and its
classical counterpart is through a Bell test of the GHZ
state through measurements in the X and Y bases. By
measuring the remaining qubits, we obtain a GHZ state up
to three single-qubit Clifford gates. However, as we
restricted measurement to the X and Y bases, this does
not always hold. The following lemma gives the probability
of still having nonlocality.
Lemma 4. The probability of measuring the remaining

qubits to get a GHZ state up to Pauli and S gates is larger than
1=9. We call this measurement a GHZ-type measurement.
Proof.—Suppose the measurement basis and results for

the remaining qubits are b1s1b2s2 � � � with equal proba-
bility. Then, the resulting state is

σ1C1 ⊗ σ3 ⊗ σ2C2jGHZi; ðE2Þ
where σi is a Pauli matrix and

C1 ¼ HSs1H · Ss2 · � � � ·HSs2k−1H · Ss2k ;

C2 ¼ HSs2kþ1H · Ss2kþ2 · � � � ·HSs4k−1H · Ss4k : ðE3Þ
We only need to prove that the probability of C1 equaling I
or S up to a Pauli matrix is at least 1=3.
All of the single-qubit Clifford gates can be represented

as permutations in S3 among single-qubit Pauli matrices up
to an unimportant phase factor. Note thatHSH and S can be
regarded as (12) and (23), which are generators of S3.
Starting from I, each time we apply HSs2i−1H · Ss2i with
probability 1=4 for all of the choices of s2i−1; s2i, we obtain
a random walk among the six group elements of S3. The
transfer matrix is

0
BBBBBBBBBB@

1
4

1
4

1
4

0 1
4

0

1
4

1
4

1
4

0 1
4

0

1
4

0 1
4

1
4

0 1
4

1
4

0 1
4

1
4

0 1
4

0 1
4

0 1
4

1
4

1
4

0 1
4

0 1
4

1
4

1
4

1
CCCCCCCCCCA
: ðE4Þ

By solving for the eigenstates and eigenvalues, and
choosing an initial state of (1,0,0,0,0,0), we find that after
k steps, the probability to get I and S up to Pauli operators
[which are (1) and (12) in S3] is given by

1

3
þ 2

3
4−k >

1

3
; ðE5Þ

which proves the lemma. ▪
Lemma 5. For distributions p and q, and any positive

number c,

X
x

jpðxÞ − cqðxÞj ≥
P

xjpðxÞ − qðxÞj
2

: ðE6Þ

Proof.—Denote δ ¼ P
x jpðxÞ − qðxÞj. We consider the

following two cases:
(i) j1 − cj ≥ δ=2:

X
x

jpðxÞ − cqðxÞj ≥
����
X
x

pðxÞ − cqðxÞ
����

¼ j1 − cj
≥ δ=2: ðE7Þ

(ii) j1 − cj ≤ δ=2:X
x

jpðxÞ−cqðxÞj≥
X
x

jpðxÞ−qðxÞj− jð1−cÞqðxÞj

¼δ− j1−cj
≥ δ=2: ðE8Þ

▪
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Lemma 6. Denote the measurement bases and results
for the three chosen qubits as a ¼ ða1; a2; a3Þ and
t ¼ ðt1; t2; t3Þ, respectively. Then,

X
a;t∈sola

qðaÞpðtja;GHZ-typeÞ ≤ 7

8
; ðE9Þ

where sola means t satisfies Eq. (5) up to flips of some bi
and si determined by the GHZ-type measurement basis
and results.
Proof.—The probability distribution in Eq. (6) could also

be understood as follows: There is a probability distribution
pðλÞ, and each λ determines ti, i.e., ti ¼ tiðsi; λÞ. Because
the GHZ test cannot be described by a local hidden variable
theory, there exists at least one assignment of a given λ such

that t ¼ tðs; λÞ ∉ sola. Assuming this and qðaÞ ¼ 1=8, we
have that

X
a;t∈sola

qðaÞpðtjaÞ ¼ 1

8

X
a

X
t∈sola

pðtjaÞ

¼ 1

8

Z
λ
pðλÞ

X
a

1ðtðλ; aÞ ∈ solÞ

≤
7

8
; ðE10Þ

where 1ð·Þ is the indicator function, which is 1 if the
condition · holds and 0 otherwise. ▪
Combining the above lemmas, we now show that

Eq. (E1) holds. First,

X
a;b;s;t

jpða; b; s; tÞ − qða; b; s; tÞj ¼
X
a;b;s;t

jpðb; sÞpða; tjb; sÞ − qðb; sÞqða; tjb; sÞj

¼
� X

b;s∈GHZ-type
þ

X
b;s∉GHZ-type

�X
a;t

jpðb; sÞpða; tjb; sÞ − qðb; sÞqða; tjb; sÞj

≥
X

b;s∈GHZ-type

X
a;t

jpðb; sÞpða; tjb; sÞ − qðb; sÞqða; tjb; sÞj

≥
X

b;s∈GHZ-type
pðb; sÞ

X
a;t

����pða; tjb; sÞ − qðb; sÞ
pðb; sÞ qða; tjb; sÞ

����
≥

X
b;s∈GHZ-type

pðb; sÞ
2

X
a;t

jpða; tjb; sÞ − qða; tjb; sÞj

≥
X

b;s∈GHZ-type

pðb; sÞ
2

min
b;s∈GHZ-type

X
a;t

jpða; tjb; sÞ − qða; tjb; sÞj

¼ 1

18
min

b;s∈GHZ-type

X
a;t

jpða; tjb; sÞ − qða; tjb; sÞj: ðE11Þ

Making the minimization over GHZ types implicit and noting that qðtja;GHZ-typeÞ ¼ 1 for t ∈ sola finally yields

X
a;t

jpða; tÞ − qða; tÞj ¼
X
a;t

jpðaÞpðtjaÞ − qðaÞqðtjaÞj

¼
X
a

qðaÞ
X
t

jqðtjaÞ − pðaÞ
qðaÞ pðtjaÞj

≥
1

2

X
a

qðaÞ
X
t

jqðtjaÞ − pðtjaÞj

¼ 1

2

�
1 −

X
a;t∈sola

qðaÞpðtjaÞ
�

≥
1

16
: ðE12Þ

With the last inequality, we arrive at the separation of 1=288 under the l1 distance.
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APPENDIX F: HHM TO SIMULATE FIG. 2(a)

The process described in Fig. 2 could also be understood
by the HMM model described in Sec. IV C. The total
number of possible quantum states involved is an upper
bound for the number of hidden variables in HMM. The
state stored in the second qubit of each pair in Fig. 2, with
the evolution driven by measuring the first qubit in each

pair, only involves single-qubit stabilizer states. The total
number is thus 6 (j0i; j1i; jþi; j−i; jþii; j−ii).

APPENDIX G: SUPPLEMENTAL
NUMERICS FIGURES

In Fig. 12, we plot the tensor network representation of
the derivative of the loss function Eq. (20). Furthermore,

(b)(a)

FIG. 12. (a) Derivative of SUðmÞ with respect to Uð2Þ
o , using the network given in Fig. 6(b) as an illustrative example. (b) Derivative of

ZU with respect to Uð2Þ
o , using the network given in Fig. 6(b) as an illustrative example.

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 13. Average performances over ten trials of the classical HMM (blue circles) and the basis-enhanced 2-gram model (orange
crosses) on (a,b) the biofam, (c,d) Promoter Gene Sequences, and (e,f) SPECT Heart data sets. The first row plots the performance on the
training data, and the second the performance on the withheld testing data. The basis-enhanced 2-gram model, on average, performed
better than the classical model even on the simple biofam data set, implying more consistent performance in the basis-enhanced 2-gram
model. Error bars denote 1 standard error of the mean over ten trials. Dashed lines are to aid the eye.
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in Fig. 13, we plot the average performance of both
the trained HMM and the basis-enhanced 2-gram model.
Note that the performance separation between quantum
and classical models persists even when considering the
average performance over many runs. A slight separation
is observed even for the biofam data set, implying
more consistent performance in the basis-enhanced 2-gram
model.
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