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KLAUS HASSELMANN, SUSANNE HASSELMANN, CLAUS BRQNIN(), and ANNEGRET SPEIDEL

INTERPRETATION AND APPLICATION OF SAR
WAVE IMAGE SPECTRA IN WAVE MODELS

A new closed integral transform relation describing the nonlinear mapping of a surface-wave spec-
trum into a synthetic aperture radar (SAR) image spectrum is presented and appilied to selected Labrador
Sea Extreme Waves Experiment cases. The new results agree well with observations and with computa-
tions using earlier Monte Carlo techniques. The integral transform can be expanded in a series whose
terms can be computed rapidly using fast Fourier transforms. The series expansion of the integral trans-
form expression is also useful in identifying the relative contributions of different imaging mechanisms.

INTRODUCTION

Synthetic aperture radars (SAR's)to be flown on ocean
satellites and polar orbiting platforms in the 1990s will
provide ocean wave modelers for the first time with glob-
al measurements of the two-dimensional ocean-wave
spectrum. This should bring an unprecedented boost to
ocean-wave modeling But sar images of the ocean-
wave surface are not easily interpreted. They are often
strongly nonlinear and show pronounced asymmetries
with respect to range and azimuthal imaging. The devel-
opment of appropriate methods for the efficient process-
ing and assimilation of sar wave data into ocean-wave
models is not straightforward and presents a major chal-
lenge to the ocean-wave community.

The basic mechanisms of SAR ocean-wave imaging are
nevertheless rather well understood today (cf. Ref. 1).
In particular, the characteristic nonlinearity and range-
azimuth asymmetry of SAR wave images can be ex-
plained by the large azimuthal displacements—compared
with the scales of the long waves—of individual back-
scattering elements in the image plane caused by the or-
bital motions of the long waves.

To cope with this strong nonlinearity, computations
of the transformation of a surface-wave spectrum into
a SAR image spectrum have been carried out in the past
largely by means of ‘‘brute force”” Monte Carlo simula-
tions,>” in which a series of random realizations of the
sea surface is generated for a given ocean-wave spectrum,
and the sea surface is mapped into the SAR image plane,
pixel by pixel, for each realization. The SAR images are
then Fourier transformed, and the squared Fourier am-
plitudes are averaged over the ensemble of realizations
to obtain an estimate of the image variance spectrum,
Typically, 20 to 50 individual sea-surface realizations (40
to 100 degrees of freedom) need to be mapped. The
method is relatively costly in computer time and suffers
from the usual Monte Carlo statistical sampling uncer-
tainty. Also, it does not offer a simple approach to the
inverse problem of estimating the surface-wave spectrum
from a measured SAR image spectrum.

Recently, a new closed integral refation for the map-
ping of a surface-wave spectrum into a SAR image spec-

trum has been derived by Hasselmann and Hassel-
mann.” Although the transformation is strongly non-
linear, a closed relation between the input surface-wave
spectrum and output SAR spectrum could nevertheless be
derived by making use of the Gaussian property of the
input wave field, which enables all higher order nonlinear
dependencies on the input field to be reduced to the sur-
face-wave spectrum.

The closed integral expression can be readily evaluated,
after a suitable series expansion, by means of fast Fourier
transforms (FF1’s). The computing time (less than 1 s per
spectrum on a CRAY-2 computer) is short enough for the
method to be applied operationally to satellite SAR data.
The integral was also evaluated directly without expan-
sion, and although the Frr1 technique could not be ap-
plied, essentially identical results were obtained with
comparable computation times for somewhat reduced
spectral resolution.

The series expansion of the integral transform relation
is also useful in clarifying the role of the various imag-
ing mechanisms. Thus, the relative contributions from
hydrodynamic and tilt modulation, from linear velocity
bunching, from the interference between these processes,
and from higher order noniinear velocity-bunching inter-
actions can be individually identified as separate spec-
tral terms of the series expansion.

The closed transformation expression has the addi-
tional advantage of lending itself readily to inversion by
means of iterative inverse modeling methods. Details are
given in Ref. 8.

In this article, the resuits of the theory are summarized
and applied to examples from the Labrador Sea Extreme
Waves Experiment (LEWEX), using as input hindcast
wave spectra computed with the wam wave model.’
The theory is verified by comparing the new computa-
tions with the Monte Carlo simulations.

CONCEPTS AND NOTATIONS

To discuss meaningfully the new transformation rela-
tion presented in the next section and interpret its sub-
sequent application to LEWEX SAR spectra, some basic
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concepts and notation need to be introduced. See Ref.
1 for a review of the standard two-scale theory of sAR
imaging of a surface-wave field on which these concepts
are based. The derivation of the spectral transformation
relation is given in Ref. 8.

It is convenient to regard the SARr surface-wave image
as the result of two consecutive imaging mechanisms;
the cross-section modulation that produces the frozen
surface image, /(r), and the additional motion effects
that, together with the frozen surface contribution, yield
the net SAR image, {5(), where r is the position vector.

The Frozen Surface Contribution

The frozen surface image, /R(), of a linear ocean-
wave field corresponds to the image that would be ob-
tained by a real aperture radar (RAR). To a good approx-
imation, it can be linearly related to the surface-wave
field.

The surface-wave elevation {(r, ) of a linear ocean-
wave field can be decomposed into a superposition of
freely propagating wave components:

{r,n = S dk {{(k) explilk - r — wi])

+ complex conjugate} , 0))

where w = gk s the gravity-wave frequency, 7 is
time, ¢ is the wave height, / designates the ‘“‘imaginary
part of,” and k is the wave number vector. To avoid
a proliferation of symbols, we shall use the some symbol
for a function and its Fourier transform, distinguishing
the two where necessary by their arguments. If the RAR
imaging mechanism is linear, the variations of the
(specific) backscattering cross section, ofr, #), can be
similarly decomposed into free wave components:

o(r, ) = a{l + S dk {m(k) exp(itk - r — wit])
+ complex conjugate]} , (2)

where the cross-section modulation, mi{k), is linearly
related to ¢ (k) through a modulation transfer function
™MTR), TR(k),

m(ky = THK) ¢ (k) 3

and & denotes the space-time averaged cross section.
The RAR MTF, TR(k), can be further decomposed into
tilt and hydrodynamic contributions:

TRk) = THk) + T k) . @

The tilt and hydrodynamic MTF’s have been discussed
in detail by various authors.” '*"* For the general the-
ory, however, we require only the net frozen surface
MTF, T®(k), without invoking its decomposition into tilt
and hydrodynamic components. We point out also that
although we present here a quantitative closed theory
for the imaging mechanism as such, the details of the
hydrodynamic MTF required as input (and its possible
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nonlinear correctionsy are sull only poorty known and
need further study.

The frozen surface sar image represents a snapshot
of the field o(r, 1) at a particular time, say 7 = 1. Mea-
suring the image modulation intensity /5(r) (after sub-
traction of the mean) in units of the normalized cross
section, a{r, 0)/43,

o(r, 0)

G

¥y = -1, (5

and introducing the Fourier integral,

" = \ dk I*(k)e* ", (6

.

we have, from Equation 2,
INKkY = mitk) + m(—k)* . 7N

where the asterisk indicates a complex conjugate. We
have ignored here the SAR system MTE, It appears simply
as an additional factor in Equation 7 that we may re-
gard as absorbed in the definition of mik).

We have also ignored, for simpilicity, distortion effects
because a side-looking radar does not, in fact, make a
field snapshot image but builds up the image from a se-
quence of consecutively imaged snapshot strips. Thus,
moving waves are imaged with slightly Doppler displaced
“‘wave numbers of encounter.”” (This straightforward
geometric effect applies equally for a RAr and a sar and
should be distinguished from the SAR motion effects
summarized in the following section.)

Finally, we have not considered clutter effects. To first
order, they may simply be represented as an additional
clutter noise spectrum superimposed on the image spec-
trum discussed here, '

We note that according to Equation 7,

k) = IM(-k) ®

in accordance with the reality condition for a frozen two-
dimensional surface, whereas {(k), {(— k) and, similarly,
mik), m(~ k) refer to different time-dependent wave
components propagating in opposite directions and
which, therefore, are not related.

In terms of the directional wave spectrum F{k), de-
fined by

F(k)
(SRS k)) = 6k — k) 5 9

{where the angle brackets denote ensemble means) such
that

(& = S F(k) dk , (10

and the frozen surface SAR image variance spectrum
PR(k) is defined by

(N()RK)y = 8k — k" )PRGK) (1

with



"

<1**:> = S PRy dk o, (12)

the linear amplitude relations (Eqgs. 3 and 7) translate
into the linear relation

Pk = 12 [T F + [TH(-K)° F(= k)]
(13)

Motion Effects

We limit the discussion of motion effects to pure ve-
locity bunching. Higher order acceleration smearing can
be included in the general theory,® but it is usually
small and will be ignored here for simplicity.

Velocity bunching arises through the variable azimuthal
displacements, £, of individual backscattering elements in
the image plane caused by the spatially variable long-wave
orbital velocities. According to standard sar theory,

£ =0v, (14)

where v is the range component of the local long-wave
orbital velocity advecting the small-scale backscattering
element, and

B =p/U, (i)

where p is the slant range and U is the platform velocity.

For displacements that are small compared with the
characteristic wavelength of the long waves, the velocity
bunching mechanism can be linearized and described by
a velocity bunching MTE:

T%k) = —iBk,T"k) , {16)
where the orbital velocity MTF is

Kk
TYk) = ~w(sin {)A‘k—ll + icos 6) , DN
The sSAR image spectrum is then given by the linear ex-
pression

P3k) = V[ TS(K)2Fk) + |T>(=k)|2F(=k)] ,
(18)

where the net SAR MTF is
TS%k) = TRKk) + T*°%) . 19

The index S refers here and in the following to the SAR
image, including motion effects, while the index R refers,
as before, to the frozen surface RAR image.

The lis.ear theory has only limited applicability. As
will be shown later, it breaks down in all cases, even for
low sea states, for high azimuthal wave numbers. The
general nonlinear transformation expression presented
in the next section yields, to lowest order, a simple quasi-
linear geucralization of Equation 18 containing an ad-
ditional nonlinear azimuthal cutoff factor. This is found
to be quite widely applicable and provides a reasonable

SAKR Wauve huaee Spectra or Wave Maodeis

qualitative description of the sar spectrum, even in
strongly nonlinear cases.

The above relations define all quantities needed to
write the general spectral nonlinear transfer expression,
with the exception of three autocovanance and covari-
ance functions, which are formed from quadratic prod-
ucts of the fields v and /* at ume lag zero and finite
spatial lag r:

S = (vix + nv(x)y

= 3 FUO)IT (k)| explik - r) dk £20)
R = UM+ It x))

= S Va (F(R) | TR (k) )"

+ F(=K)|T*(=k){7) exptik - ndk . QD)
B = U¥Mx o+ v —\ U (FU) T KT (k)"

[y

+ F(~K)TR(—k)*T (—k) exptik - r)dk .
(22)

THE CLOSED NONLINEAR SPECTRAL
TRANSFORMATION RELATION

The general nonlinear spectral transformation relation
derived in Ref. 8 is presented in two forms: as a closed
nonlinear integral transform expression, and as a power
scries expansion. The general integral form does not lend
itself readily to computation by fast transform techniques,
whereas the terms of the power series expansion can be
evaluated individually by fast Fourier transforms. Thus,
the expansion form can usuaily be computed more rapid-
ly. The decomposition into a series also provides a clearer
picture of the interplay of the vanious linc  and non-
linear imaging mechanisms in the formation of the final
image.

The transform was computed both by direct integra-
tion (using a lower resolution representation of the spec-
trum) and by the fast Fourier transform expansion
method. The results were essentially identical.

The closed integral expression has the form

PYk) = Q2w 2exp[-kfs*]g dre ™ Texplk:B°f ()
x {1+ fRn + ik BLYE - SO0

+ KB ot -
o, )

where

£ =B vy (24)

is the root mean square azimuthal displacement.

The power series expansion is obtained by expanding
the second exponential factor in Equation 23. (It is the
dependence of this factor on &7 that destroys the other-
wise straightforward Fourier transform structure of the
integral.) One obtains a series of the form
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PSk) = exp(-k38°7) Y Y (RBY'PL(K)
n=l maln-l (25)

where the index # indicates the order in nonlinearity with
respect to the input wave spectrum, and the index m the
order with respect to the velocity-bunching parameter
8 (which is seen to occur always in combination with
the azimuthal wave number k).

Explicitly,

. 1
Py = ;;,Qn ") (26)

P, =0 {i{f‘*"(r) - M=o }
n2n—1 n (n — l)’

(27)

. 1
Pra s = Qn{m JSRfrn !

o 1 Ry _ Ry
MY 2)![f (n =]

x [f¥(=r) ~f“‘(0)]f’(r)”"3} . (28)
where @, denotes the Fourier transform operator

Q, = (Zw)‘zS dr exp(—ik - r) 29

and n runs through all positive integers 1, 2, . . . . For
nonpositive integers, the factorial function is defined as
0! = 1and [(—1)!] "' = 0. We have left out a term
P,, in the sum representing an irrelevant $-function
contribution at k = 0 arising from the mean image in-
tensity.

Sumination over the velocity-bunching index m for
fixed nonlinearity order n yields a stratification of the
expansion with respect to the nonlinearity only:

PS(k) = exp(—ki£'Y)
X (Pf(k) + PS(k)y + ... PS(k) + ... ).(30)

The linear term, P35, is found to be identical (as it must
be) to the linear sAR spectrum of Equation 18.

The computation of P5(k) according to Equations 25
or 30 involves three steps:

1. Computation of the three autovariance and covar-
iance functions f*(r), £ *(r), and f**(¥) using the Fou-
rier transform relations 20, 21, and 22.

2. Computation of the various covariance product
expressions in Equations 26 through 28.

3. Computation of the Fourier transforms of the co-
variance product expressions, yielding the series 25. (If
there is no need to stratify the expansion with respect
to nonlinearity order, the covariance products of differ-
ent nonlinearity order n for given velocity-bunching or-
der m can be collected together and Fourier transformed
in a single operation.)
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Since only Fourter transforms are involved, the com-
putations are relatively fast. The complete transforma-
tion ¢an be computed in less than 1 s on a «ray2. (The
comnutations could also be carried out efficiently on a
personal computer with hard-wired fast Fourier trans-
form.) Good convergence is normally achieved even for
strongly nonlinear spectra for n = 4 10 6. The contribu-
tions from the higher order terms are concentrated main-
ly in the neighborhood of the (normally not very im-
portant) azimuthal cutoff regions.

As a check, the integral (Eq. 23) was also evaluated
directly, The wave-number coordinates were transformed
to frequency-direction coordinates, and the integral was
computed using the relatively low resolution of the wave
model (30° directional resolution and a logarithmic fre-
quency discretization with Aw/w = 0.1). The computa-
tion time was comparable with the fast Fourier transform
expansion method, and the results were virtually identical.

An important feature of the expansions 25 and 30 is
the occurrence of the common (nonlinear) azimuthal cut-
off factor

C = exp(—~kit'") . an

Without inclusion of this azimuthal cutoff factor, the
straightforward linear approximation F)(k) must al-
ways break down at high azimuthal wave numbers, even
for low sea states, since real wave spectra, and therefore
also F7, decay as a power of the wave number at high
wave numbers, rather than exponentially, as required by
Equation 30.

In contrast, the lowest order quasi-linear approxi-
mation

P3(k) = exp(— Kk}t )P (k) (32)

of Equation 30, with inclusion of the nonlinear azimuthal
cutoff factor, remains a valid approximation for the en-
tire spectrum. In practice, Equation 32 was found to
yield a reasonable quantitative approximation for about
hats the SEASAT and 1 EWEX saR spectra studied in Ref.
15 and by C. Brining and L. F. Zambresky (personal
communication), and was successful in capturing the
qualitative features of the SAR spectrum in all cases.

If applied as a first approximation in the inverse map-
ping problem, the quasi-lincar form can be immediately
inverted analytically {for given £). The solution can then
be used to construct a general iterative inversion method
for estimating wave spectra from observed SAR spec-
tra.® The method gave good convergence in both linear
and strongly nonlinear cases.

The existence of a common azimuthal cutoff factor
(Eq. 31) acting on all terms of the spectral expansion
(Eq. 30) has a useful practical application. Since the cut-
off scale £ can be readily determined for any SAR spec-
trum, regardless of the details of the nonlinear imaging
process, it provides a robust estimate of a useful integral
wave parameter: the root mean square orbital velocity
component in the range direction.

It is of interest that Beal et al.,'® Lyzenga,” and
Monaldo and Lyzenga'™" have already noted empiri-



caily that the observed azimuthal cutoff scale appeared
10 be proportional to the total root mean square orbital
velocity integrated over the entire long-wave spectrum
(or some similar integral wave parameter). Previously,
this finding had been difficult to interpret theoreticaily.
The frequently used SAR two-scale model, in which an
additional scale separation is introduced at the SAR reso-
lution scale, yields an explicit azimuthal smearing given
by the so-called *‘velocity spread”” term (cf. Refs. | and
19). This is determined by the subresolution scale con-
tribution to the root mean square orbital velocity, i.e.,
by the integral over only the high wave-number tail of
the long-wave orbital velocity spectrum. Tucker' com-
puted the effect of this smearing and obtained a filter
function that was identical to our form C (Eq. 31), but
with £’ replaced by the root mean square azimuthal dis-
placement (the velocity spread) arising from only the
short subresolution scale waves. The present closed trans-
formation theory indicates that the nonlinear velocity
bunching from the longer waves must also contribute
to the azimuthal smearing, and that the net effect of both
short and long waves can be expressed very simply by
the azimuthal cutoff factor C—in accordance with Beal
et al."® and Lyzenga’s® findings.

APPLICATION TO LEWEX

As an illustration, we apply the transform relation to
two LEWEX cases. The input wave spectra for the trans-
formation computations were taken from the observed
directional wave buoy (Wavescan) data and from a wave

Hindcast waves Computed fully noniinear
Frnax =218 Fmax =278
3
©
S
]
L
E
=
[=4
L2}
&
<
"1 0 0.15
QObserved Wavescan Computed fully nonlinear
Fenax = 0.923 Fmax = 17.0
0.15

Wave number (rad/m)
()

-0.15
-0.15 0 0.15

Wave number {rad/m)

-0.5 0

SAR Wause Tmuee Spectra i Wave VModeh

hindcast using the wast third generation wave model.”
Comparison of the hindeast wave fields with wave-buoy
observations indicated that the hindcast was acceptable
as a first guess, although some systematic deviations were
found (cf. Fig. 1). The cases were seiected from larger
data sets that were analyzed as part of a more extensive
wave hindcast study (C. Bruning and L. . Zambresky,
personal communication).

The principal sar parameters of the two runs are list-
ed in Table 1. The polarization was horizontal-horizontal
and the look direction to the right for both runs. The
damping factor and wind input modulation term in the
hvdrodynamic M1 were set equal to zero. The images
for both runs were taken over essentially the same wave
field, but the two sak flight directions were opposite,
and the aircraft altitude and thus the 3 parameters (p/ U)
differed by a factor of nearly two.

Figures 1 and 2 compare the observed and computed
saR spectra for the two runs. The two rows in the

Table 1. Sar parameters for two LEWEX runs on 14 March 1987
at the Tydeman (50°N latitude, 45°W longitude); the flight speed
was 128 m/s and the incidence angle was 52°.

Flight Slant Range-to-

Time direction Altitude range, p velocity

Run (UT) (deg) {m) (m) ratio, 3
1 1219 89 3688 5990 46.8
2 1259 270 6096 9902 77.4
Computed quasilinear Observed SAR spectrum

Fmax = 295

Frax = 2.72x 1072

Monte Carlo
Computed quasilinear simulated spectrum
Fmax = 16.7 Froax = 17.0

v

0.5 1.0

Figure 1. Hindcast (top row) and observed (Wavescan, bottom row) wave spectra together with computed SAR spectra for LEWEX
run 1 over the Tydeman, 1219 UT on 14 March. The observed sar spectrum is shown in the top right panel. The bottom right
panel shows the Monte Carlo simulated saR spectrum for the Wavescan wave spectrum. The aircraft flight direction is in the x-
direction. Spectra are normalized with respect to the maximal spectral density F,,, (given in units of m4).
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Hindcast waves

Fmax = 223 Fmax = 406
0.15
€
hel
g
3
£ 0
|
(=
Q
>
u
2
-0.15
-0.15 0 0.15
Observed Wavescan Computed fully nonlinear
Frmax = 0.974 Fmax=28.6
0.15
E
© 4
=
3
E 0 -
2
[=4
-3
] v
=
-0.15
-0.15 0 0.15
Wave number (rad/m)

-0.5 0

Computed lully nonlinear

Computed quasiinear Observed SAR spectrum
Frmax = 45.4 Frnas = 706 x 1072

Monte Carlo
Computed quasilinear simulated spectrum
Fmax = 269 Fmax = 28.4

0.5 1.0

Figure 2. Same as Figure 1 but for LEWEX run 2 over the Tydeman, 1259 UT on 14 March. The aircraft flight direction is opposite
that of run 1, Coordinates are defined as before in the aircraft frame.

figures correspond to different input wave spectra,
shown in the left column, The Monte Carlo computa-
tions are shown only for the Wavescan spectra (second
TOW).

Several features are apparent;

1. The sAR wave image spectra show little resem-
blance to the (symmetrized) input wave spectra. This is,
of course, a well-known feature of SAR spectra. But per-
haps it has not always been fully appreciated that the
distortion can be pronounced not only for azimuthally
traveling waves, for which the nonlinearities are large,
but also for relatively linear range traveling waves, as
in these examples.

2. The azimuthal cutoff is well defined and occurs
at a lower wave number for the higher altitude flight,
as expected.

3. The sAR spectra show evidence of some azimuthal
asymmetry relative to the sAR look direction that is not
apparent in the original wave spectra. The asymmetry
depends on the wave propagation direction relative to
the sAR look direction. In run 1 (Fig. 1), waves in the
top right quadrant are enhanced relative to the waves
in the top left quadrant, whereas in run 2 (Fig. 2), waves
in the bottom right quadrant (corresponding to the top
left quadrant in the 180° rotated spectrum of Fig. 1) are
enhanced relative to the bottom left quadrant. The fact
that the asymmetry depends on the sar look direction—
in both the simulations and the observations—is a clear
indication that it represents an artifact of the imaging
and is not a real feature of the wave spectrum.
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4. The theoretical SAR spectra agree reasonably well
with the measured sAR spectra in all cases. This, together
with the features listed above, underlines the need for
a first-guess input wave spectrum and the application
of quantitative nonlinear mapping computations for the
meaningful interpretation of measurcd SAR spectra.

5. The quasi-linear approximation (Eq. 32) yields a
good first-order description, perhaps not surprising in
these examples of relatively linear, predominately
range-traveling waves.

6. The closed nonlinear transformation relation and
the Monte Carlo computations yield essentially identical
results. The small deviations between the Monte Carlo
method and the closed integral computations near the
azimuthal cutoff line can probably be attributed to the
analytical Phillips form of the high-frequency tail of the
spectrum used in the Monte Carlo computations as op-
posed to the modeled spectrum in the closed integral
computations,

The distortions of the SAR spectra relative to the wave
spectra can be explained rather simply by the structure
of the sar MTF, Equation 19. The azimuthal asymmetry
is produced by interference between the frozen surface
and velocity-bunching MTF’s. The frozen-surface MTF is
symmetrical about the look direction, whereas the velo-
city-bunching MTF is antisymmetrical {cf. Eqgs. 5, 6, 16,
and 17). Thus, while the square modulus of each MTF,
taken by itself, is symmetrical about the look direction,
the square modulus of the net complex SAR MTF, consist-
ing of the sum of both MTF’s i3, in general, nonsymmet-



rical. It follows, moreover, that a change in sign of the
look direction interchanges the enhanced and attenuated
lobes of the wave spectrum, as seen in Figures 1 and 2.

The interference between the frozen surface and the
velocity-bunching modulation can be identified explicitly
in the expansion (Eq. 25). The relevant spectral distribu-
tions are shown in Figure 3 for run 1, The first term,
C - Py (n = 1, m = 0) (Fig. 3A), represents the fro-
zen surface contribution (but with the inclusion of the
azimuthal cutoff factor C). It is positive everywhere and
reproduces the approximately symmetrical distribution
of the wave spectrum about the sar look direction. The
second term, C - (k,B)P5, (n = 1, m = 1) (Fig. 3B),
represents the quadratic interference between the frozen
surface and velocity-bunching transfer functions. It is
asymmetrical, alternating in sign between quadrants. The
third term, C - (k,8)°P, (n = 1, m = 2) (Fig. 3C),
represents the pure (quasi-linear) velocity-bunching term,
without the RAR contribution. It is positive and sym-
metrical. The sum of the first three terms yields the quasi-
linear SARr spectrum, Equation 32 (Fig. 3D), which is
shown also in the corresponding panei of Fig. 1. The
asymme'ry of the quasi-linear spectrum is seen to arise
from the interference term. Asymmetries occur in general
in all higher order, odd-m terms of the expansion (e.g.,
Figs. 3E and 3F), contributing to the asymmetry of the
final nonlinear sar spectrum (Fig. 3H). Figure 3G (m =
10) is an example of a higher order symmetrical spectral
term. It exhibits a pronounced concentration along the
azimuthal cutoff line that is characteristic of all higher
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bunching interference term (m =1, n = 1).
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order terms and arises from the product of the factor
(k. 3)" with the exponential azimuthal cutoff factor C.

CONCLUSIONS

A new, closed, nonlinear, integral transform relation
describing the mapping of a two-dimensional surface-
wave spectrum ifnto a SAR image spectrum has been
presented and discussed for two LEWEX examples. The
new transform refation offers a number of advantages.
It is rapid and accurate enough to be applied routinely
to the processing of quasi-continuous operational satellite
saR data. It offers a simple approach to the inverse
problem of inferring the optimal wave spectrum from
a measured SAR spectrum for a given first-guess wave
spectrum (cf. Ref. 8). By expanding the integral trans-
form in a Fourier transform series, it provides a clearer
insight into the details of the mapping mechanisms. The
expansion yields separate spectral contributions for the
frozen-surface (RAR) modulation term, the linear
velocity-bunching mechanism, the linear interaction be-
tween the two, and the higher order nonlinear velocity-
bunching interactions and distortions. The azimuthal
smearing caused by nonlinear velocity-bunching effects
can be expressed very simply as an exponential cutoff
factor that applies to all terms of the expansion.

The LEWEX examples demonstrate that sarR ocean-
wave imaging theory is in good agreement with measure-
ments. The SAR spectra can differ strongly from the in-
put wave spectra so that a general quantitative interpreta-
tion of SAR image spectra in all cases is possible only

C Velocity bunching image
Fmax

D Quasilinear image
Frmax = 29.5

H Fully nonlinear image
=278

18.1

G kx10 term
Frmax = 9.45% 107"

Fmax

05 10
Figure 3. Contributions of varicus spectral expansion terms to the SAR spectral image for LEWEX run 1. Note the asymmetry about
the look direction induced by the terms with odd m (k, powers). The dominant asymmetry arises from the linear RAR velocity-
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with the aid of exact nonlinear transform computations
and a reasonable first-guess wave spectrum derived from
a model. The quasi-linear sAR image spectrum (the linear
SAR spectrum augmented by the azimuthal cutoff factor)
nevertheless provides a good quantitative approximation
in many cases in which the nonlinearities are not too se-
vere and also provides a useful qualitative description
of the spectrum even for strongly nonlinear cases.
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