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Tensor networks states allow one to find the low-energy states of local lattice Hamiltonians through variational
optimization. Recently, a construction of such states in the continuum was put forward, providing a first step
towards the goal of solving quantum field theories (QFTs) variationally. However, the proposed manifold
of continuous tensor network states (CTNSs) is difficult to study in full generality, because the expectation
values of local observables cannot be computed analytically. In this paper we study a tractable subclass of
CTNSs, the Gaussian CTNSs (GCTNSs), and benchmark them on simple quadratic and quartic bosonic QFT
Hamiltonians. We show that GCTNSs provide arbitrarily accurate approximations to the ground states of
quadratic Hamiltonians and decent estimates for quartic ones at weak coupling. Since they capture the short
distance behavior of the theories we consider exactly, GCTNSs even allow one to renormalize away simple
divergences variationally. In the end our study makes it plausible that CTNSs are indeed a good manifold to

approximate the low-energy states of QFTs.

DOI: 10.1103/PhysRevResearch.3.023059

I. INTRODUCTION

Quantum field theories (QFTs) are difficult to solve out of
the perturbative regime with deterministic techniques. Apart
from lattice Monte Carlo algorithms [1-4], an option would
be to solve strongly coupled QFTs variationally. In a nutshell,
this would mean guessing a “good” manifold M of states
|¥,) described by a manageable number of parameters v,
minimize the energy (yr,|H |v,) over this class M, and hope
that the answer is close enough to the real ground state |0). As
was noted by Feynman [5], finding such a good manifold for
typical QFTs is a highly nontrivial task. In particular, apart
from simple Gaussian states such as free ground states, it
seems impossible to have a sparsely parameterized state with
easily computable local observables (¢, |O(x;) - - - O(x,)|¥,)
while keeping an extensive ansatz—the latter requirement ex-
cluding, e.g., simple expansions in the particle number basis.

On the lattice the situation has proved more favorable
in the last two decades. Tensor network states (TNSs) have
essentially provided what one was looking for: a sparse and
extensive parametrization of many physically relevant many-
body quantum states [6-8]. In this approach the quantum
state is obtained from low-rank tensors, contracted along the
links of a network. In the translation-invariant case, all ten-
sors are identical, making parameter economy and extensivity
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manifest. Tensor networks have proved successful numeri-
cally in d =1 space dimension with matrix product states
(MPSs) [9], which are at the root of the earlier density matrix
renormalization group (DMRG) [10-12], and more recently in
d > 2 with projected entangled pair states (PEPSs) [13-16].
As is often the case, a computationally successful method
brings theoretical insights, and tensor network states have al-
lowed a succinct classification of symmetry-protected [17-20]
and topological phases of matter [21,22].

Given their undeniable success on the lattice, it is tempting
to try to bring tensor networks to the continuum. This can
in principle be done in two ways: by discretizing continuum
theories to the lattice, where powerful techniques can be ap-
plied more or less out of the box, or by bringing the tensor
network toolbox itself to the continuum. While the efficiency
of the first approach is so far unmatched [23-25], we here
wish to explore the second, longer-term option. It turns out
that bringing tensor network states to the continuum can be
done rather straightforwardly in d = 1 space dimension, with
the so-called continuous matrix product states (CMPSs) [26],
which have been applied successfully to a few QFTs [27-29].
Going to d > 2 space dimensions has proved more difficult.
Recently, a candidate higher-dimensional continuous tensor
network state (CTNS) was presented [30]. It is obtained as a
continuum limit of a lattice tensor network state, and many of
the properties of the discrete follow through to the continuum.
However, the efficiency of this candidate at approximating
low-energy states of QFTs has not been demonstrated yet,
primarily because carrying computations in the general case
is substantially more difficult than with CMPSs.

Our objective here is to assess the soundness of CTNSs for
the approximation of ground states of simple QFTs. To this
end we restrict ourselves to an easily manageable subclass,
the Gaussian CTNSs (GCTNSs). Naturally, this class is very
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restrictive and not dense in the space of low-energy states of
interacting QFTs. It can approximate with arbitrary precision
only the ground states of Hamiltonians quadratic in creation
and annihilation operators, but understanding this class is
a necessary sanity check: if GCTNSs do not even work in
this simple setup, they should probably be abandoned right
away. Apart from the assessment of the promise of CTNSs in
general, the study of GCTNSs can also provide an economical
approximation of physically relevant Gaussian states, which
in theory require an infinite number of parameters (a full
continuous two-point correlation function) to be defined in the
context of QFTs.

We start our exploration by recalling the definition of
CTNSs, characterize their Gaussian submanifold, and give
basic computational tools in Sec. II. We then apply GCTNSs
in Sec. III to the task of finding the ground state of a simple
quadratic Hamiltonian in d = 1 and then d = 2 space dimen-
sions. The higher-dimensional setting comes with subtleties
related to the infinite energy density of the ground states.
Finally, we briefly study in Sec. IV a true interacting model
in d = 1 space dimension to show how the GCTNS can be
efficient in some regimes even if the model under investigation
is not quadratic.

II. CONTINUOUS TENSOR NETWORK STATES

In this section we define CTNSs, explain how local observ-
ables can be computed with them, and introduce a Gaussian
subset, the GCTNSs, which are analytically tractable.

A. Definition

A CTNS is a quantum state |V, «), formally belonging
to the Fock space F[L*(R%)], and defined by the functional
integral [30]:

d 1 2
V,a) = / D¢ exp {— / alx SVl

+ V()] — alp(x)] W(x)}|vac>, (1

where |vac) is the “physical” Fock vacuum state, (YT, ) are
the canonical bosonic creation-annihilation operators on this
Fock space, and [ (x), /T (y)] = 8?(x — y). The “auxiliary”
field ¢ integrated over has D components, ¢ = [qbk]kD:l, and
VP> :== >, Ve - V.. This number D is the field bond
dimension or simply bond dimension and is the continuous
analog of the bond dimension for discrete tensor network
states. We have restricted ourselves to the translation-invariant
case and taken the thermodynamic limit, which spares us the
discussion of what happens at the boundaries. Our objective
in this paper is to use this quantum state (1) as an ansatz for
the ground state of a QFT Hamiltonian of interest.

Some quick comments are in order. The state is not nor-
malized, and not all choices of functions V and « even yield a
state at all (for example, if V[¢] = —¢?). We just assume that
we choose functions such that the functional integral in (1) at
least formally makes sense.

The state is parameterized by two (complex) functions,
which suggests that there is an infinite number of parameters

even for a number D of auxiliary fields fixed. In practice, one
could expand both functions as polynomials in the fields:

VIgl =V + V" + V20 + Vi bidude + - .
alpl = oV + oV + b + )b e + -

The maximum degrees «y, k, of these two expansions, to-
gether with D, then give a measure of the expressiveness of
the class of states considered. Formally, the coefficients in the
expansion are also tensors, and so we recover the simple idea
that a tensor network state should associate a quantum state to
a few elementary low-rank tensors.

Finally, we try to explain the connection between this
CTNS ansatz (1) and the discrete TNSs, for the reader already
familiar with the latter. A tensor network state is obtained
by taking a product of elementary tensors and contracting a
fraction of their indices (the bond indices) along the edges of
a lattice. For CTNSs, the equivalent of the product of tensors
is the exponential of the integral, and the equivalent of the
contraction of discrete indices is a product of integrals over
auxiliary fields, which becomes a functional integral in the
limit [30]. The gradient square term in (1) comes from the
fact that the tensors are connected to their nearest neighbors.
In this paper, understanding the derivation of CTNSs as the
continuum limit of TNSs is not needed, since we will directly
test the validity of CTNSs in the continuum, without relying
on a discretization.

B. Generating functional

To compute expectation values of local observables on a
CTNS, the most straightforward method is to introduce the
generating functional Z; ; for the normal ordered correlation
functions:

(V.alexp (fJ'¥")exp (fjF)IV.a)
Zp = . 2)
(V.alV, )
For example, it can be used to compute the simple two-point
function:

V, el T )y IV, a)
(V,a|V, o)
) )
=———2Z
8j'(x)8j(y)

Using the Baker-Campbell-Hausdorff formula to commute the
two exponentials in (2) and then using the formula for the
overlap of un-normalized field coherent states, one obtains
(30]

WOy =

3)

i

J . .
J,J'=0

1 , \vj 2+ V/Z
Zj/,j:A_[/wwexp{_/n o + 174/

+ VIgl + V(¢ — o« [¢'a[p] — jalp]—jo"[¢'] }
“

It is important to note that powers of the field in the ex-
pansion of « come multiplied and connect together the two
auxiliary fields coming from bra and ket, as in a Schwinger-
Keldysh functional integral. In general, if arbitrary powers of
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the field appear, the functional integral (4) might be diverging.
Assuming that the divergences can be properly subtracted,
then actually computing correlation functions remains diffi-
cult nonperturbatively. Apart from Monte Carlo techniques, a
boundary CMPS method was suggested in [30], but we will
not explore this further here.

C. Gaussian subset

The functional integral in (4) can be computed exactly if
the expansions of V and « are truncated to quadratic and linear
order, respectively [31]:

1 2
Vigl =V + v g + V2.
algp]l =a® +aVg;.

We call states defined by such restricted V and o Gaussian
CTNS. Note that these states are Gaussian in the usual sense.
Indeed, one can carry the Gaussian integral directly in the state
definition (1) to get

IV, @) = exp {/ VviGyT +ﬁW}|vac}, )

where
V2 !
G=O((l)T<—7]1 +V(2)> a(l)’ (6)
2 —1
B=a®_ %[V(I)T<_V7ﬂ +V(2>) oD

2
n a(l)r(_v_]l T V(2>>
2

This expression allows us to spot a lot of redundancy in the
parametrization. The first and simplest observation is that
V© does not appear, because it merely changes the state
normalization which we do not keep track of. Second, we
notice that the second term in (7) can be incorporated into
a©, and thus we may fix V() = 0 without loss of generality.
This is quite intuitive: giving the auxiliary field a nonzero
expectation value can be compensated by a constant source.
Finally, under the mild assumption that V® is diagonalizable
V@ = U~ (M/2)U, we have a straightforward rewriting:

1
(1) — -
G=7 > [2 o zfﬂzjgklak}(—v2 +Me) ™ (8)

¢ jk

-1

V“)}. (7)

=Ay

This expression could be obtained directly by taking V? =
M/2 diagonal and a,({l) a complex square root of A;. Thus,
without loss of generality, we can now assume that we have a
diagonal “mass” matrix M := diag(m,, ..., mp) for the aux-
iliary field. In the end, a GCTNS is simply parameterized by
two complex vectors o and m, and a scalar «©, that is,
2D + 1 complex parameters.

We may now go back to the computation of the generating
functional (4). Carrying out the Gaussian integral yields

1 P .o . .
Zy.j = exp (/ 370 Y KIG, j)+je® + a<°>*),

where the operator K fulfills

V24 M
oD T

—a DT

_Vz ‘I‘M*)K(x’y) = ]15()5_)7),

and J(j, j)T = (@PV[j + «@*], aWV*[j/ + «@]). Because of
translation invariance K(x,y) = K(x —y), and it is conve-
nient to go to Fourier space:

d? ;
K@x—y)= / (Zn’;m) &P, ©

which yields K (p) = (p* 1 + W)~" with

M —aWg T
W= (_a(l)*a(l)T M* (10)
With this we can compute various expectation values of the
state, for example, the two-point functions using (3).

D. Variational optimization

We now summarize the strategy to variationally optimize
GCTNS:s in practice. In what follows we study models speci-
fied by a local bosonic Hamiltonian:

H= | dxh@" ), (11
R
where A({/T, )(x) contains products of the operators ¥, ¥ '
and their derivatives. For a GCTNS |V, @) we introduce the
associated energy density

_ (Voalh( T IV, @)
My = V. alV. o) ) (12)

Our objective is to minimize it to find an approximation to
the ground state |0) and an upper bound to the ground energy
density eg:

|0) >~ |V, a) = argmin (h)y 4 , (13)

€ < min (h)yq - (14)
To carry out the minimization, one needs to be able to compute
(h)v.«, which reduces to the computation of a sum of correla-
tion functions of 1& @T, which we know how to compute in
general from the generating functional (see Appendix B).
Whether we use simple gradient descent or a more
advanced optimization algorithm like the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) [32], we also need the gradient
of (h)y, with respect to the 2D + 1 complex coefficients
parametrizing the state. Since we have explicit expressions
for all correlation functions, this presents no fundamental
difficulty and is done in Appendix B.

III. A QUADRATIC MODEL IN ONE
AND TWO SPACE DIMENSIONS

In this section we present a simple quadratic, thus exactly
solvable, Hamiltonian and approximate its ground state with
our GCTNS ansatz.
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FIG. 1. Convergence of the energy density in d = 1. Left—Relative error in the energy density (/)y /€, — 1 as a function of the field bond
dimension D. Right—Relative error as a function of the distance 1/2 — A/u from the gap closing point for D = 1, 2, 3.

A. The model

We first consider a model with a Hamiltonian quadratic in
creation and annihilation operators,

AaA

H=AIVWV&+MW¢+/\W'W+¢$], (15)

and that thus has a Gaussian ground state. In fact, for a single
species of spinless bosons and the usual nonrelativistic kinetic
term, it is essentially the most general one can write. Such
a Hamiltonian can typically be obtained as the mean-field
approximation of a weakly interacting Bose gas, but we take
it as an exact starting point here. Another instructive way
to interpret this Hamiltonian is to see it as the regularized
Hamiltonian of the relativistic free boson [28]:

1 A N 1
Hy, = —/ 2+ (VPP +m*d? + (VA (16)
2 JRra A2
—
regulator
where 7, ¢ are the traditional canonically conjugate fields
[¢(x), #(y)] = i8%(x — y), and A is a nonrelativistic momen-
tum cutoff. This Hamiltonian Hf’b‘ reduces to (15) with the field
mapping

R | O
=/ — f 17
¢ ZA(W +¥'), a7
N VNP
T=y\75 W=y, (18)
and the parameters
A?+m?
p=—" > (19)
A% —m?
A= —. 20
) (20)

Closing the gap, which happens when A/u — f. =1/2, is
equivalent to lifting the nonrelativistic regulator (m << A).

This model is exactly solvable, and one finds (see Ap-
pendix A) that its ground-state energy density is

V(P + 1P = 402 = (7 + wl,

1 d¢
€y = P

=5 Gay 1)

which is infinite when d > 2. Consequently, in d = 1 we will
be able to directly optimize the energy, whereas in d > 2 we
will have to renormalize away the divergent part. The corre-
sponding two-point functions can also be computed exactly,
and we have, e.g.,

A N ddp .
(O P I0) = / 20 o,
i _1 P +u
with  Co(p) = 5(\/m - 1). (22)

B. Variational optimization in one space dimension

To compute the ground-state energy with our ansatz, we
simply compute the energy density, its gradient with respect
to the parameters, and use a standard BFGS solver to find the
point yielding the minimal energy. The results are shown in
Fig. 1.

We observe that for parameter values of order 1 away
from the gap closing (say f = A/u = 0.25 = f,./2), the con-
vergence to the exact value is extremely fast in D—to the
point that it is difficult to probe large values of D because
of machine precision issues. As we get closer to the gap
closing, the convergence becomes slower, but moderate values
of D still give accurate values, even for A/ = 0.99f,. This is
compatible with the TNS folklore that gapped systems can
be precisely approximated with low bond dimension and that
larger values have to be used as we get closer to a critical
point.

In QFT, one might worry that optimizing the energy does
not give a fast convergence of the state itself (summarized by
its two-point functions in the Gaussian case). Here, because
the theory is regular (or equivalently, nonrelativistic), this is
not the case, and we observe a fast uniform convergence of
the two-point function, at least away from the gap closing
(see Fig. 2).

C. A theoretical aparté

Before we move on to the trickier d = 2 space dimen-
sions case, it is helpful to understand better the structure of
GCTNS correlation functions and compare them to the exact
one (22). Using the expression for the generating functional,
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it is straightforward to see that Cy o (p), the Fourier transform
of (¥ (x) (0))y.q, is of the form

2D
ax
Cvo(p) = -, (23)

where wy are the complex eigenvalues of W defined in (10),
and a; are complex coefficients (see Appendix B for more de-
tail). Putting all the fractions in (23) on the same denominator
shows that Cy ,(p) is an even rational function of degree at
most 4D. Clearly, this means that there is no chance to capture
Co(p) exactly for a finite D, since it contains a square root.
However, using the identity

(1-0'=Y" (Z) ", (24)
n=0
we have that
[JReagy Hr "
an=3 2 ()] @

n=1

with uniform convergence for all paslongas X/ < 1/2. This
is the same structure as a GCTNS correlation function, except
that the expansion in rational functions is truncated at order
4D in p for GCTNSs.

At short distances, p — +o00, only the first term in the
expansion matters. It can be reproduced exactly already by
a GCTNS with D = 1, which means the UV behavior of
the QFT can be captured by the simplest nontrivial GCTNS.
At long distances, p >~ 0, the series (25) is still absolutely
convergent with an error decreasing exponentially with the
number of terms. Hence, for a GCTNS the error should be
dominated by the infrared and at most O([2A/1]*P).

Naturally, we perform a variational optimization of the
energy and not a perturbative term by term optimization of
the two-point function, and as a result, the error obtained in
practice could scale differently. And indeed, we observe in
Fig. 1, at least for small D, that the error decreases faster than
naively expected.

D. Variational optimization in two space dimensions
and renormalization

In d = 2 space dimensions, several two-point functions of
interest diverge when taken at equal points. In particular, the
kinetic energy V"V and ¥4 + " terms diverge when
evaluated on GCTNSs. This can be traced back to the fact
that the corresponding momentum integrals (see Appendix B)
diverge logarithmically.

This divergence can be renormalized in a way we now
explain. First, we introduce a hard momentum cutoff A such
that correlation functions are finite. We then observe that the
energy density evaluated on a GCTNS reads

(Mv,a = (h)r + % In(A?) (h)aiv + o(1), (26)
such that the energy can be split into a regular and log di-
vergent part. For the Hamiltonian (15) we consider, the log
divergent part can be evaluated exactly and we find

D D * D
(h)aiv = [Z a’z} [Z "‘f} +A) (e +aP). @D
j=1 j=1 j=1

where we used the simplified notation oz;l) = «;. Importantly,

(h)giv can be made negative and minimized exactly, yielding
the condition

(28)

D

2—_
E o = A
j=1

This condition defines a submanifold of “maximally divergent
energy” GCTNS on which the parameters can be numerically
tuned to minimize the remaining finite part (h);.

We obtained the condition (28) in a variational way, only
asking that the energy be minimal and taking the cutoff to
infinity. As a welcome surprise, it provides the same diver-
gence of the energy density as the exact solution! Indeed, as
can be seen from (21), the latter diverges as —A%In A%/(r),
exactly as for GCTNS on the submanifold defined by (28). So
not only can a GCTNS capture the UV behavior of the exact
ground state, it captures it exactly upon optimization.

In what follows and for comparison, we consider only the
renormalized part of the energy density (h); := lim_, o (h) —
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A2 1In(A?) /(4m). For the exact solution it gives the “renormal-
ized” energy density

R _ ﬁ( *_2) e
eO _f(zn)z 80(17)“1‘ (p2+/L) +47T n(/JL)s

which is, of course, finite and which we can compare to (k)
since the counterterms used in both cases (the divergent parts)
are identical. Again, we insist that this optimization procedure
and the associated renormalization of the energy density do
not require knowing the exact solution.

Results are shown in Figs. 3 and 4, and we observe that
the convergence for the renormalized energy density and two-
point function is qualitatively as good as in the d = 1 case.

(29)

IV. A QUARTIC MODEL IN ONE SPACE DIMENSION

In this section we study a simple quartic model, the
Lieb-Liniger model, that has a non-Gaussian ground state.
Consequently, there is no hope to approximate it with arbitrary
precision with GCTNS, but we may still capture qualitative
features.

0.08 1
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3 0.06 = = [Exact solution
~
Q
=]
8 0.04 A
S -2 L ~.
5 * 10-5 4
Sond s 7] TN T~
1078 + ~
0.00 - o 10°
0.0 0.2 0.4 0.6 0.8 1.0
p

A. Lieb-Liniger model

The Lieb-Liniger model is about the simplest model of
interacting bosons in d = 1 space dimension and is given by
the Hamiltonian

Hy = / o (30)
R

where c is the strength of the coupling. The number of par-
ticles is conserved and another important parameter in the
model is the particle density p = (1/74/). The physics of the
model depends on the adimensional coupling y = ¢/p. This
model is integrable, and with the Bethe ansatz it is possible to
write an exact equation for the energy density in the ground
state, which can be solved numerically to essentially arbitrary
precision or expanded in a power series at weak and strong
coupling [33,34].

The ground state of this model is not a Gaussian state, and
as a result a GCTNS cannot approximate it with arbitrarily
good precision, even for large D. However, it is possible for a
GCTNS to give a reasonable approximation in some regime,
which is what we aim to explore here. To this end we will
compare with two other simple approximation techniques:
classical solution and mean field. For us, the classical solution
is simply what we obtain by minimizing the energy in the
space of coherent states, or equivalently, GCTNS with D = 0.
The mean-field approximation corresponds to the ground state
of a different Hamiltonian, namely, the mean-field quadratic
Hamiltonian of the same model. In Appendix B 3, we explain
how to deal with the quartic terms and how to obtain the
mean-field Hamiltonian.

Our analysis can be seen as the continuum analog of the
one carried recently for the Bose-Hubbard model [35], where
a generic Gaussian state approximation was compared with
standard classical and mean-field solutions. In our case, aside
from dealing with the continuum, we have the refinement that
we do not use the most general Gaussian states in the first
place (which would anyway require infinitely many parame-
ters) but a tower of more and more expressive submanifolds
indexed by D.
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FIG. 4. Convergence of the correlation function in d = 2. Two-point correlation function in momentum space Cy ,(p) for u = 1 away from
the gap closing for A = 0.25 (left) and near the gap closing for A = 0.495 (right). As in d = 1, the GCTNS correlation function converges

uniformly to the exact one as D is increased in two space dimensions.
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FIG. 5. Energy density of the Lieb-Liniger model ground state as
a function of the coupling strength y = ¢/p. See Appendix B 2 for
the definition of the (nonvariational) mean-field solution.

B. Results

In practice, we simply minimize the energy density of
the model over GCTNSs of fixed D, keeping p =1 fixed
with gradient descent. As GCTNSs are Gaussian states, the
expectation value of the quartic term is simply computed with
Wick’s theorem (see Appendix B), and thus the energy density
and its gradient are easily evaluated.

In Fig. 5 we can see that the upper bound provided by
GCTNS approaches the exact ground energy as the coupling
y gets smaller. This is expected: the ground state of a weakly
interacting Bose gas becomes Gaussian when the coupling
goes to zero.

What is remarkable is that the simplest GCTNS ansatz for
D =1 is already sufficient to get all the expressive power
of Gaussian states in this case. Almost all the improvement
from the classical solution D = 0 is reached for D = 1. The
refinements obtained with larger D are not necessary in the
sense that they bring improvements in the energy density
much smaller than the distance between the best Gaussian
energy density and the true energy density. This is rather
intuitive: if a Gaussian state is not the exact solution anyway,
we do not gain much by getting the absolute best Gaussian
state, and a crude approximation of the best Gaussian state
can do qualitatively as well.

V. DISCUSSION

Let us briefly summarize our results. We were mainly inter-
ested in knowing if CTNSs had the right properties to be good
trial wave functions for quantum field theories, mirroring the
efficiency of their discrete lattice counterparts. To this end,
we focused on a subclass of analytically tractable CTNSs, the
Gaussian CTNSs, which are also a submanifold of general
Gaussian states. By optimizing GCTNSs on a simple non-
relativistic quadratic Hamiltonian, we obtained a very good
match with the exact solution, both for the energy density
and the state itself (parameterized by its two-point function).
Importantly, GCTNSs have the right UV behavior, even for
the minimal number of auxiliary fields D = 1. This allows us
to exactly renormalize the divergent part of the Hamiltonian
density in two space dimensions, all variationally, without
requiring any knowledge of the exact solution. With GCTNSs

of moderate field bond dimension D, it is even possible to
go near the gap closing, corresponding to the relativistic limit
of the model we considered. Hence GCTNSs have exactly
the right UV properties to approximate nonrelativistic QFTs,
and they can also accommodate relativistic theories provided
the cutoff scale is only reasonably far from the physical mass
scale (at least up to A/m ~ 10?)

Naturally, interesting Hamiltonians are not quadratic and
thus do not have a Gaussian ground state. In this context a
more general CTNS would be required, but it is worthwhile
to see if GCTNSs can help already. For the Lieb-Liniger
model, GCTNSs approximate the energy density well, at least
in the weak-coupling limit. Importantly, the lowest bond field
dimension D = 1 already captures essentially everything gen-
eral Gaussian states (with infinitely many parameters) can
capture. Importantly, the lowest bond field dimension D = 1
already allows capture of essentially everything general Gaus-
sian states (with infinitely many parameters) can capture. This
means that GCTNSs allow a drastic compression of Gaussian
states for quantum field Hamiltonians, yielding potentially
large gains for methods that build upon them. All these results
are encouraging and demonstrate that CTNSs indeed have the
right properties expected from their discrete tensor network
analogs and, as a result, deserve to be studied further.

Promising extensions of this work are already possi-
ble while staying in the relatively easy realm of Gaussian
states. The states we considered could be extended to deal
with fermions, where richer physics already appears for
quadratic Hamiltonians. Dealing with multiple species of
bosons/fermions could also enable the exploration of topo-
logical phases and see if their characterization for GCTNSs
matches what can be seen on the lattice. Further, in general
one can obtain much more from Gaussian states than mere
ground states, and one could obtain the spectrum and real-
time dynamics with GCTNS extending the geometric methods
developed in [35,36]. Finally, the success of tensor network
methods has been well understood from their entanglement
properties, and it would be useful to see if such an analysis
can be done as well in the context of GCTNSs. In particular, it
is still unknown whether the bond field dimension can upper
bound the prefactor in the area law scaling of entanglement
entropy, as it does in the discrete.

Going beyond the Gaussian setting to deal with genuine
interacting theories could be done in different ways. A first
step could be to stay with GCTNSs, but considering a sum
of them, which is no longer Gaussian. In this context, the
fact that low-field bond dimension and thus very few param-
eters give already good approximations of the best Gaussian
states would allow consideration of large sums. This would
be prohibitively expensive in the more brutal approach of
considering a sum of generic Gaussian states. GCTNSs could
also be used to construct a better basis of states for Hamilto-
nian truncation methods. In this approach (see, e.g., [37]), one
diagonalizes an interacting Hamiltonian in a truncated basis
made from the low-energy sector of the free Fock space. With
GCTNSs, this free Fock space could be replaced by the Fock
space built from the excitations above GCTNSs optimized on
the interacting Hamiltonian.

Another, more radical option is to use genuinely non-
Gaussian CTNSs. There, the difficulty is that it is not possible
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to compute correlation functions exactly, and in particular, to
compute the energy density one typically wants to minimize.
As a first step, such correlations could be evaluated with
Monte Carlo or perturbatively. Note that in the latter case we
would still have an overall nonperturbative method: even at
the lowest order of Taylor expansion, the Gaussian part would
already contain nonperturbative effects in the model coupling
constant. The most appealing option and the one also most in
the spirit of tensor networks would be to evaluate correlation
functions of a CTNS in two dimensions using the transfer
matrix method in one dimension, as proposed in [30]. In one
space dimension, one can use CMPSs to efficiently find the
largest eigenstate of an operator, here the transfer matrix. This
would reduce the problem of computing CTNS correlation
functions to that of optimizing a CMPS. This would likely
require an improvement of the efficiency of existing CMPS al-
gorithms but does not seem out of reach. Ultimately, although
a lot remains to be done to make CTNSs practically useful in
the context of interacting QFTs, we hope that the present work
offers evidence that this is a path worth pursuing.

Note added in proof. Recently we became aware of work
conducted in parallel at the University of Ghent by Aelbrecht
[38].
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APPENDIX A: EXACT DIAGONALIZATION OF H

Since it is quadratic, this Hamiltonian can be diagonal-
ized exactly by the Fourier and Bogoliubov transforms. The
Fourier transform yields

dip P ar A A
H= [ S0+ b+ 20 . AD
The Bogoliubov transform consists in introducing new

creation-annihilation operators (l;;, b ») linearly related to the
original ones:

Fp = uphy +v,b ), (A2)
Y = bl + b, (A3)

where |u,|* — |v,|* = 1 to ensure the canonical commutation
relations remain valid. The Hamiltonian (A1) becomes diago-
nal if

Upvp = —(ui + Uz), (A4)

e

which is solved by

* + 1
= A ] (A5)
2\/ (P2 + )’ — 4x2
2
p-t+ U 1
Up = — ; - 5 (A6)
2\/(p* + )" —4r?
Finally, the diagonalized Hamiltonian reads
"= / TP e p) BBy + eolp) (A7)
Q) Pt
with
el(p) =V (p* + pn)* — 422, (A8)
go(p) = 3le1(p) — (P + ). (A9)

The associated ground-state energy density ey, which will be
useful for benchmarks, is

dip
eo=fW€0(P)-

For large p, £o(p) decays as p~2 and thus the ground energy
density is infinite for d > 2.

Expressing 1ﬁp as a function of l;p, we get the ground-state
two-point function:

(A10)

Ptu 1
2e1(p) 2

(W dg) = ( )6(p - q). (A1)

APPENDIX B: CORRELATION FUNCTIONS
AND THEIR GRADIENTS
1. Two-point functions

The expectation values of the GCTNSs are computed as
functional derivatives of the generating functional Z; ; given
in Eq. (9). For example,

8
= —./ - Zj/,] .
§j'(x)8j(y) J.j'=0
All the two-point functions can be computed in the same way,

and we focus on this one for illustration. Using the expression
for Z; ; we get

W OV (B1)

Av dip ;
WP v = / S G (B

with
Cvo(p) = (0, K (p)(V, 0)"

(1) o (0)%
+ |:(0l(1), O)K(P)(Z(l)ga(())) + 05(0)]

MOMOR

~ |:(0’ Ol(l)*)K(p) (a(l)*a(0)> + a(O)*:| 3(p),

(B3)

where (¢, 0) and (0, «"*) are 2D vectors, and K(p) =
(P*1 4+ W)~ [see Eq. (10)].
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We proceed by calculating the analytic form of (B2). The
integral over the second term in (B3) is trivial; therefore here
we focus on the first one, which corresponds to the two-point
function of a state with o® = 0. First we diagonalize the
matrix K (p) with a unitary 2D x 2D matrix U, such that W =
U~'LU and L is a 2D x 2D diagonal matrix with eigenvalues
A1, A2, ..., Aop. Note that the matrix W needs to be positive
definite for the state to be physical, thus Re[A;] > 0. We get

K(p)=U"'(p’1+L)"'U, (B4)

and hence
Cra(P)| jo_y = 0. U P L +L)'U (@, 0).

This allows us to find the equal point two-point function

2D
(WGP ) g0 =) [0, VUL (1) [U™ (@™, 0)";
i=1

(B5)
with the integral

d?p 1
L= | =
Qm)® p* + A
This integral is convergent in d = 1 and logarithmically di-
vergent in d = 2, see Appendix C. However, the divergences
cancel each other in the sum (B5) as they do not depend
on A;, and thus the particle density is finite in d = 2 space
dimensions (and in fact even in d = 3).

We can proceed in the same way to compute the other cor-
relation functions (¥ (x)¥ (x)) and (¥ (x)yT(x)). For these,
the logarithmic divergences do not cancel each other in d = 2
and contribute to the divergence of the energy density. We
explain how to renormalize in the main text.

To compute the kinetic energy density, we simply take the
derivative of the two-point function lim,_,, Bxay(lﬁ(x)tﬁ(y)).
Ultimately, this yields the same formula as before with the
replacement of /; by

ddp p2

Lin(A) = QY Pt

This latter integral is linearly divergent in d = 1, but again
this divergent part is independent of X; and thus cancels in
the expression for the kinetic energy. In d = 2, the lead-
ing divergence is quadratic and cancels in the sum, but a
subleading logarithmic divergence subsists in the expression
of the kinetic energy density, as well as in (¥ (x)y(x)) and
W edt (), contributing to the overall logarithmic diver-
gence of the energy density.

2. Simplifications for the zero mode

In practice, we do not have to optimize >’ which appears,
e.g., in the zero-mode term in (B3). Indeed, for the quadratic
model we consider, we can set ¢ without loss of expressive-
ness, as the ground state has () = 0.

For the Lieb-Liniger Hamiltonian, we introduce the
modified operators ¥ =1+’ such that (') =0, ie.,

(/) = Y. This gives the following expressions:

(i) =g + ) (B6)

WGP = v +yg ) + G + P
+ () (B7)

for the two- and four-point functions. Exploiting the global
phase invariance of the Hamiltonian then allows to fix ¥y € R.
Finally, we can use the fact that the model is particle conserv-
ing with density p = (Y T) to set

Vo =p— WY

and express the Hamiltonian density as a function of p
(instead of o®) and expectation values of two- and four-
point functions of the operators 1/'". The latter correlation
functions are obtained from the generating functional, when
setting «® = 0, which thus completely eliminates this param-
eter from the optimization.

Note that introducing v is exactly how mean-field Hamil-
tonians are derived. The standard mean-field approximation
is further obtained by replacing ¥ by p in (B7) using (B8)
and then neglecting the terms of order 4 in v/, which is a
good approximation when v is large. Neglecting this term
and optimizing the rest over Gaussian states provides the
(nonvariational) mean-field approximation shown in Fig. 5.

(B8)

3. Four-point function

The Lieb-Liniger Hamiltonian contains quartic terms and,
as a result, evaluating its energy density requires computing a
four-point function. This can be done by taking the functional
derivative of the generating functional, see Eq. (9). Alterna-
tively, using the rewriting in the previous paragraph, we can
write the four-point function (B7) in such a way that only the
two- and four-point functions of the operators v/, ¥/'" appear.
Using the fact that our state is Gaussian, we then simply use
Wick’s theorem,

W) =20 G + T ), (BY)

to break the four-point function into products of two-point
functions, computed already in Sec. B 1.

4. Gradients

To carry the optimization we need the gradient of (h)y g
with respect to the 2D complex coefficients parametrizing
the state (D complex parameters from M and D complex
parameters from ‘! vector). We present the computations
for one two-point function, (¥ (x)y(x)), as the rest of the
gradients are computed analogously. We need the derivative of
the Fourier-transformed two-point function Cy ,(p) (B3) with
respect to all GCTNS parameters separately. Again, we focus
on the first term for «® = 0. Using the fact that for some
parameter 7

dK™! dK

=-K'—k!
dn dn
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and also U'K~'U = (p> + L)~!, we obtain the derivative
with respect to parameters m; of the mass matrix M:

aCV,a (P)
BRe(m_,- )/zIm(m,) a®=0

=—0,a"U@* + L)' FM (Yt + L) U

x (@, 07,

where F'(j) is 2D x 2D a complex matrix with elements
Fi() = U Uik + U pUjenik
Fi() = Uj'Ujk = U} pUjsnie
The derivative with respect to the parameters of o' gives
dCv.«(p)
3RC(Olj)/iIn’1(Otj) a®=0
= -0,V + L) UG (HU P+ LU
x (@, 0)" + [0,V + L)',
+ U@ +L)7'U @, 0)]p,
where GR(j) and G'(j) are 2D x 2D matrices
G (j) = ~[ej(0, V) £ ejyp(@, 0)
D#NT T D LT
+ (0, @Ml £ @D, 0)7 el ],
with e; the 2D column vector with the jth coefficient 1 and
zero otherwise. The precise form of these expressions is not
crucial. In the end, what matters is that they contain two
terms in (p> +L)~'. To go get the equal point correlation

functions in real space, we need to integrate over momenta,
which means we simply need to know the integral,

L. “_/ dip 1 1
I N CESTI R WV

which is well behaved in the dimensions we consider and
given in Appendix C. The gradient of the kinetic term is
obtained in the same way and brings a p> term in the previous
integral

(B10)

dip p? 1
Dyin(Ai, Aj) = .
i) = | Gt
The zero-mode terms in the gradient of (B3) can be computed

in the same way, and the integration over p is then immediate
because of the Dirac § (only the zero mode contributes).

(B11)

APPENDIX C: A FEW (REGULATED)
MOMENTUM INTEGRALS

In this section we give the exact formulas for the needed
integrals, first in one then in two spatial dimensions. In one
dimension we can compute /; (1) with the theorem of residues
or using the fact that arctan is an explicit primitive of the
integrand to get

dp 1 1
2t PP H+A 2Jh

Clearly, Iixin = [ dp/(27)1 — Al; and thus diverges. With a
UV regulator A (unrelated to the nonrelativistic regulator of

Li(x) =

I A) we get
Ay 2
I1kin()»)=/ x 2p
_A 2T pP 4 A
A A
_ - _ £arctan(A/ﬁ)
T T
A VA
=—— — +o(l).
T 2

The integrals I>(A;, A ;) and I,(A;, A ;) are convergent and com-
puted with the theorem of residues, which gives

dp 1 1
noui = [ 5
_ 1
27+ i)W a)

and

dp_p* 1
27 PP+ A pE A
_ 1

I IVEENY

In two dimensions, /; already requires a UV regulator

Ipll < A:
d? 1
Lo = f .
Ipl<a (27)% p* + 4

_ /“ dp’) 1
0 4 pz—{-)xi

1 1
= —1In(A*+ 1) — — In(A
47 n(A”+2) 47 n()

Dyin(Ai, Aj) = /

—11A2 llk 1
_E“( )_E“(HO( )-

Using the relation between I} and [}y, as in d = 1 one gets

d2p p2
Iiin(A) = / RN
Ipl<a (270)° p* 4+ A

= L[A2 —AIn(A% + 1) + AIn(V)].
4

The integral I, is convergent in d = 2 and computed with the
theorem of residues:

B A = d’p 1 1
PRI @u? pr ki p? Ay
In(hi/2.))

B {471@,'—1»’ for A; # A,
. T
eyl fOI‘)\[—)\,j

Finally, Ly, needs to be regulated. Using that formally
Diin(Aiy Aj) = Li (&) — Al (Mg, &) we get

dzp p2 1
Dyin(Ai, A j) =/
e ipi<a )2 p*+ 2 P2+ A

_ L ln(AZ) _ )¥i ln(}\.,) — )\j ln(kj)
4 47'[()\,,' — )‘j)

+ o(1).
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