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Abstract. We show that the lamplighter group L = Z/2ZoZ has a system of generators for
which the spectrum of the discrete Laplacian on the Cayley graph is a union of an interval
and a countable set of isolated points accumulating to a point outside this interval. This
is the first example of a group with infinitely many gaps in the spectrum of Cayley graph.
The result is obtained by a careful study of spectral properties of a one-parametric family
a+ a−1 + b+ b−1 − µc of convolution operators on L where µ is a real parameter.

Our results show that the spectrum is a pure point spectrum for each value of µ, the
eigenvalues are solutions of algebraic equations involving Chebyshev polynomials of the sec-
ond kind, and the topological structure of the spectrum makes a bifurcation when parameter
µ passes the points 1 and −1. Namely if |µ| ≤ 1 the spectrum is the interval while when
|µ| > 1 it is a union of the interval and a countable set of points accumulating to a point
outside the interval.

1. Introduction

The study of spectra of finitely generated (non-commutative) groups is a challenging prob-
lem initiated by Kesten in [23] and related to many topics in mathematics. Let G be a group
generated by the set S ⊂ G. By the spectrum of G, we mean the spectrum of its Cayley
graph Γ(G,S), i.e. the spectrum of the Markov operator M in `2(G) corresponding to a
simple random walk on G (that is, the random walk given by equal probabilites of the gen-
erators and their inverses). Equivalently, one can think about the spectrum of the discrete
Laplace operator ∆ = I−M , where I is the identity operator. A more general point of view
is to consider spectra of all Markov operators MP corresponding to symmetric probability
distributions P on the set of generators and its inverses. Even more informative invariants
are the spectral measures νP associated with MP or the closely related spectral distribution
function NP (x) associated with ∆P , which allows one to not only determine the spectrum

but also calculate the probabilities {P (n)
1,1 }n∈N of the return to the identity 1 ∈ G and some

other asymptotic characteristics of a group.
Currently, little is known about the possible shape of the spectrum of M (denoted sp(M))

as a set or about the possibilities for the decomposition of the spectral measure ν into its
absolutely continuous, singular continuous, and pure point components. Also very little is
known about how N(x) behaves near 0 or how sp(M) depends on the generating set S. For
example, it is unknown if sp(M) can be a Cantor set or if ν can simultaneously have singular
and absolutely continuous parts.
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Figure 1. The automaton realization of L.

An even larger family of operators in `2(G) given by convolutions of operators determined
by elements of the group algebra C[G] or even operators in (`2(G))n of multiplication by
matrices A ∈ Mn(C[G]) can be taken into account. Questions about their spectra, spectral
measures, and other asymptotic characteristics are of great importance in many areas of
mathematics such as Novikov-Shubin invariants, Atiyah’s L2-Betti numbers, etc.

In [21], A. Zuk and the first author showd that the Lamplighter group L = Z/2Z oZ has a
generating set {a, b} with respect to which the spectrum of M is pure point. Furthermore,
the eigenvalues are of the form cos p

q
π, where q = 2, 3, . . ., 1 ≤ p < q, and (p, q) = 1. These

eigenvalues densely pack the interval [−1, 1] and so as a set, sp(M) = [−1, 1]. The spectral
measure ν is discrete with the mass at cos p

q
π equal to (2q− 1)−1. This was the first example

of a group and generating set with pure point spectrum of a Markov operator.
In [13, 15], Grabowski and Virag observed that if one considers not the operator of convo-

lution with 1
4

(a+ a−1 + b+ b−1) ∈ Z[L] (which is a Markov operator for Γ(L, {a, b})), but

instead with 1
2+β

(a + a−1 + βc) corresponding to the anisotropic random walk given by the

distribution P such that P (a) = P (a−1) = 1
2+β

and P (c) = β
2+β

, where c = b−1a and β ∈ R+,

then for large values of β, the spectral measure ν is a purely singular continuous measure.
Thus, there is a symmetric random walk on L with a Markov operator that has singular
continuous spectrum. The proof of this latter fact is based on the reduction to the case of
random Schrödinger operators and a result of Martinelli and Micheli [29].

The system {a, c} of generators of L is a natural one because of the algebraic structure of
L as a semi-direct product:

L =

(⊕
Z

Z/2Z

)
o Z

where a generator a of the “active” group Z acts on the abelian group given by the direct
sum as the automorphism induced by the shift in the index set Z. The generator c then
corresponds to the element (. . . , 0, 0, 1, 0, 0, . . .) ∈

⊕
Z Z/2Z. The generators {a, b} corre-

spond to the states of a Mealy type automaton machine A over a binary alphabet as shown
in Figure 1.
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It is well known that to each invertible automaton B over a finite alphabet, one can
associate a group G(B) = 〈Bq1 , . . . ,Bqm〉, where q1, . . . , qm are states of the automaton and
the operation is composition of automata [20].

Automaton groups are a class of groups that have been used to solve important problems.
The realization of L as L = 〈Aa,Ab〉 gave much new information about the group L and
showed that it possesses important self-similarity features. In particular, it lead to the
computation of the spectrum and spectral measure as was noticed earlier. This in turn was
used in [18] to answer one of Atiyah’s questions on the existence of closed manifolds with
non-integer L2-Betti numbers. In [21], the authors started with the convolution operator Mµ

corresponding to the element mµ = a+a−1 + b+ b−1−µc ∈ R[L] and provided computations
that eventually lead to the description of the spectrum and spectral measure of Mµ under
the assumption that µ = 0. The goal of this paper is to prove the following theorems.

Theorem 1. For µ ∈ R, let Mµ be defined as above. For every µ ∈ R, the operator Mµ has
pure point spectrum. Moreover

(a) If |µ| ≤ 1, the eigenvalues of Mµ densely pack the interval [−4− µ, 4− µ].
(b) If |µ| > 1, the eigenvalues of Mµ form a countable set that densely packs the interval

[−4− µ, 4− µ] and also has an accumulation point µ+ 2/µ 6∈ [−4− µ, 4− µ].

When µ ∈ R, the operator Mµ is self-adjoint, the spectral decomposition Mµ =
∫
R λdEµ(λ)

holds, and one can define a spectral measure νµ as

νµ(B) = 〈Eµ(B)δ1, δ1〉,

where {Eµ(B) : B is real Borel} is a spectral family of projections and δ1 is a delta function
at 1 ∈ L. We can also provide a detailed description of the spectral measure νµ.

Theorem 2. The spectral measure νµ of the operator Mµ is given by

νµ =
1

4
δµ +

∞∑
k=2

 1

2k+1

∑
{s:Gk(s,µ)=0}

δs

 ,
where

Gk(z, µ) = 2k
[
Uk

(
−z − µ

4

)
+ µUk−1

(
−z − µ

4

)]
,

Uk is the degree k Chebyshev polynomial of the second kind, and zeros of Gk in the above
sum are counted with multiplicities.

Our calculation of the spectral measure νµ will proceed by reducing it to a problem of
finding zeros of polynomials Gk(z, µ) when µ is fixed and counting their multiplicities. The
case µ = 0 is relatively easy and was investigated in [21]. To deal with the general case, we
will explore the theory of orthogonal polynomials.

Surprisingly, there is a connection between operators associated with groups and random
Schrödinger operators. The first link between them was discovered by L. Grabowski and B.
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Virag in [15] (see also [13, 14, 26]) and the involved group is the lamplighter that we consider
here. Another example is the paper of D. Lenz, T. Nagnibeda, and the first author [17].

The method of Grabowski and Virag (which goes back to [12] and T. Austin in [1])
associates to a convolution operator T ∈ `2(G), where G = A o Γ is a semidirect product
of an abelian group A and a countable group Γ acting on A by automorphisms, a random
family {Hω}ω∈Ω of operators in `2(Γω) where Ω = Â is the Pontryagin dual of A supplied with
normalized Haar measure. In some cases (when Γ ' Z, A =

⊕
Z Z/nZ, and specially chosen

elements of a group algebra C[G]) the family {Hω}ω∈Ω becomes a true random Schrödinger
operator. The remarkable fact observed in [12] is that the spectral measure of the operator
T associated with the delta function δ1 at the identity coincides with the density of states of
Hω In [15] this fact was used to show that some convolution operators on L have continuous
singular spectral measure. This is the first such example in abstract harmonic analysis on
discrete groups.

Using the above approach we produce interesting examples for the theory of random
Jacobi-Schrödinger operators in the Anderson model (i.e. when (Ω, ν) is a Bernoulli system).
Let Ω = {0, 1}Z, ν be a uniform Bernoulli measure on Ω (i.e. ν = {1/2, 1/2}Z), f and g
functions defined as

f(ω) = 1 + (−1)ω−1 , g(ω) = µ(−1)ω0+1,

where ωn denotes the nth entry of ω ∈ Ω. Let {Hω}ω∈Ω be a random family of operators in
`2(Z) given by

(1) (Hωu)(n) = f(T nω)u(n− 1) + g(T nω)u(n) + f(T n+1ω)u(n+ 1)

Then as a corollary of Theorems 1 and 2 we get the following result.

Theorem 3. a) The random operator Hµ,ω almost surely has pure point spectrum and
as a set, the spectrum of Hµ,ω is almost surely given by the set described in Theorem
1.

b) The density of states of Hµ,ω is discrete and coincides with the spectral measure
described in Theorem 2.

It is known that the density of states in the classical Anderson model is a continuous
measure. We see that for Jacobi-type operators this is no longer true. Also, Theorem 2 gives
us the exact description of the density of states. We will discuss this more in Section 6.

The final section discusses further topics related to the results of this paper, in particular
the Novikov-Shubin invariants. The last example at the very end of the text shows that L
has operators of convolution given by the elements of the group algebra with rational (or
even integer) coefficients and irrational Novikov-Shubin invariants. The first such examples
were given in [14].

2. Preliminaries

In this section we will introduce some relevant information about orthogonal polynomials
and their relationship to the spectral theory of Jacobi matrices. In particular we will be
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interested in understanding the location of the zeros of orthogonal polynomials in terms of
the spectrum of the corresponding Jacobi matrix. Also we will provide a short background
to the spectral theory of groups acting on rooted trees.

2.1. Orthogonal Polynomials on the Real Line. Consider a probability measure γ with
compact and infinite support in the real line. By performing Gram-Schmidt orthogonaliza-
tion on the sequence of monomials, one arrives at the sequence of orthonormal polynomials
{ϕn(x)}∞n=0, where the degree of ϕn is exactly n and the leading coefficient of ϕn is positive.
By dividing each polynomial by its leading coefficient, we obtain the sequence {pn(x)}∞n=0

of monic polynomials that are still mutually orthogonal in the space L2(γ). The most basic
facts about the zeros of pn are (see [33, Section 1.2.5]):

• The zeros of pn are all real and simple.
• Between any two zeros of pn+1 there is a zero of pn.

To get more detailed information about the zeros of pn, we need to employ ideas from
the spectral theory of bounded self-adjoint operators. The polynomials {pn}∞n=0 satisfy a
three-term recurrence relation

(2) pn+1(x) = (x− bn+1)pn(x)− a2
npn−1(x), n = 0, 1, 2, . . . ,

where p−1 = 0 by convention. In (2), bn ∈ R and an > 0 for each n ∈ N. The orthonormal
polynomials also satisfy a three-term recurrence relation, which is most easily expressed in
the following formal matrix notation:

(3)


b1 a1 0 0 · · ·
a1 b2 a2 0 · · ·
0 a2 b3 a3 · · ·
0 0 a3 b4

. . .
...

...
...

. . . . . .



ϕ0(x)
ϕ1(x)
ϕ2(x)
ϕ3(x)

...

 =


xϕ0(x)
xϕ1(x)
xϕ2(x)
xϕ3(x)

...


The tri-diagonal self-adjoint matrix on the far left of (3) is the Jacobi matrix J that defines
a self-adjoint operator on `2(N), which we also denote by J . The measure γ is the spectral
measure for this matrix and the vector (1, 0, 0, . . .)T . Consequently, the support of γ is the
spectrum of J . This relationship allows us to connect the zeros of pn to the spectrum of J .
Indeed, the following facts can be found in [33, Section 1.2.11]:

• If y ∈ supp(γ) and ε > 0, then for all sufficiently large n the polynomial pn has a
zero within ε of y
• If I is an interval that is disjoint from supp(γ), then pn has at most one zero in I.

These two facts tell us that when n is very large, the collection of zeros of pn very closely
resembles the support of the measure γ.

The above discussion tells us that as n → ∞, the number of sign changes of pn on the
interval (x,∞) approaches the cardinality of supp(γ) ∩ (x,∞). Thus, if x is chosen so that
supp(γ) ∩ (x,∞) has finite cardinality N , then for all very large n, the polynomial pn will
have exactly N zeros in the interval (x,∞). Furthermore, by the interlacing property of the



6

zeros of orthogonal polynomials, the limit points of these N zeros (as n→∞) are precisely
the N points in supp(γ) ∩ (x,∞) and the approach to these points is monotonic.

One very well understood example is the case when an ≡ 1 and bn ≡ 0. The Jacobi matrix
in this case is called the free Jacobi matrix and can be written as L+R, where L is the left
shift operator on `2(N) and R is the right shift operator on `2(N). In this case, the spectrum
of the Jacobi matrix is [−2, 2] and the spectral measure γ is purely absolutely continuous
on that interval with weight 1

2π

√
4− x2. The corresponding orthonormal polynomials are

rescaled Chebyshev polynomials of the second kind, namely {Un(x/2)}∞n=0, where Un is the
nth Chebyshev polynomial. The polynomials {Un}∞n=0 have the following properties, which
we will use later:

Un+1(x) = 2xUn(x)− Un−1(x)(4)

Un(cos(x)) =
sin((n+ 1)x)

sin(x)
(5)

Un(1) = n+ 1(6)

lim
n→∞

Un(x)

Un+1(x)
=

1

x+
√
x2 − 1

, x 6∈ [−1, 1](7)

U0(x) = 1, U1(x) = 2x(8)

where the square root is defined with the branch cut along [−1, 1] and so that
√
x2 − 1 > 0

when x > 1.

2.2. Matrix Recursions and the Limit Spectral Measures. A group G defined by an
automaton over an alphabet of d letters naturally acts by automorphisms of a d-regular
rooted tree T = Td (see [16, 20]). The self-similarity structure given by the automaton
realization of G leads to self-similarity properties of involved Schreier graphs {Γn}n∈N and
{Γξ}ξ∈∂T associated with the action on the nth level of the tree and the orbit Gξ. If a
group G with a generating set S acts transitively on a set X, then the Schreier graph
(also called the graph of action) consists of the set of vertices V = X and the set of edges
{(x, sx) : x ∈ X, s ∈ S}.

Another set of important operators involved in this study are those of the form π(m),
where m ∈ C[G] is an element of the group algebra and π : G→ U(L2(∂T, γ)) is a Koopman
representation given by

πf(x) = f(g−1x), f ∈ L2(∂T, γ)

In general, spectra of Schreier graphs Γξ are contained in the spectrum of π(m), where

(9) m =
1

2|S|
∑

s∈S∪S−1

s
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but in the case when the graphs Γξ are amenable (and this holds for instance if G is
amenable), the relations sp(Γξ) = sp(π(m)) hold (see [4]). Moreover,

sp(π(m)) =
∞⋃
n=0

sp(Γn)

and sp(Γn) ⊂ sp(Γn+1) as Γn+1 covers Γn for each n.
There are several examples of computations of the spectra sp(Γn), the spectral counting

measure σn, and of the limit spectral measures σ∗ := limn→∞ σn provided in [4, 21] and other
articles. It is known from [22] that this limit exists and it is called there the KNS-spectral
measure. This measure could also be called the density of states because of the similarity
of its definition to the classical notion of density of states used in the theory of random
Schrödinger operators (see [8]).

The study of spectra of graphs Γn and Γξ are closely related. By the spectrum of a graph,
we mean first of all the spectrum of the adjacency matrix. The spectrum of Γis denoted by
sp(Γ). A more general point of view of the spectrum involves use of weights along the edges
of the graph (e.g. anisotropic case).

The meaning of σ∗ can be understood as follows. For a graph Γ = (V,E) and vertex
v ∈ V , let σv be the spectral measure given by σv(B) = 〈E(B)δv, δv〉, where δv is the delta
mass at v, B is a Borel subset of R, and E(B) is a spectral family given by the spectral
theorem for M . For a simple random walk on Γ that starts at v and with equal transition

probabilities along edges, the probability P
(n)
v,v of return after n steps is the nth moment of

the measure σv. Now apply this reasoning to the family {Γξ}ξ∈∂T with ξ taken as the initial
point of the random walk and take the averages

P̃ (n) =

∫
P

(n)
ξ,ξ dγ(ξ)

Then P̃ (n) is the nth moment of the measure σ∗ [16]. Thus if the action G y ∂T on the
boundary of the tree is essentially free, then the graphs {Γξ}ξ∈∂T are almost surely isomor-
phic to the Cayley graphs Γ(G,S) and so the probabilities of return do not depend on the
starting vertex (because the Cayley graphs have a transitive group of automorphisms), the

probabilities {P (n)
ξ,ξ }ξ∈∂T are constant almost surely and coincide with the averaged probabil-

ity P̃ (n). Hence the KNS-spectral measure σ∗ coincides in this case with the Kesten’s spectral
measure associated with the random walk on G. The paper [21] gave another justification of
this fact based on the use of the C∗-algebra generated by the Koopman representation and
the recurrent trace defined in [21]. A clearer form of this result is provided in [16].

The above arguments in fact work not only for a simple random walk (and hence for the
operator λG(m), with m as in (9)), but for operators given by any self-adjoint elements of
the group algebra C[G].
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3. Recursive relations and determinants

Let us return our attention to the lamplighter group L = 〈a, b〉 and its realization by
the automaton A from Figure 1. The group acts by automorphisms of a rooted binary tree
(the action is determined by the automaton structure). Our approach to the computation
of the relevant spectrum will follow that used in [21, Section 6], so let us review the set-up
presented there.

Let T = T2 be a binary rooted tree and let η denote the uniform Bernoulli measure on the
boundary of T , ∂T = {0, 1}N. Let H denote the Hilbert space L2(∂T, η). The left and right
branches T0 and T1 of T are canonically isomorphic to the whole tree T and the restrictions
of η to each Ti (i = 0, 1) are - after appropriate normalization - equal to η. This leads to the
self-similarity H ∼= H⊕H of the Hilbert space H and to the operator recursions

π(a) =

(
0 π(a)

π(b) 0

)
, π(b) =

(
π(a) 0

0 π(b)

)
where π is the Koopman representation (for more on self-similar C∗-algebras and operator
recursions, see [19]). The operator π(c) corresponding to the element c = b−1a ∈ L, which
has order 2, is presented by

π(c) =

(
0 I
I 0

)
where I is the identity operator (because the automorphism c just permutes the vertices of
the first level and hence switches T0 and T1 without further action inside T0 or T1).

Similarly, let Vn be the set of 2n vertices of the nth level of T . The matrices of size 2n× 2n

an, bn, and cn presenting generators a, b, and c by their actions on the space `2(Vn) satisfy
the recurrent relations

an =

(
0 an−1

bn−1 0

)
bn =

(
an−1 0

0 bn−1

)
cn =

(
0 I2n−1

I2n−1 0

)
The sum an + a−1

n + bn + b−1
n is the adjacency matrix of the Schreier graph Γn when the

system of generators {a, b} for L is used. Similarly, the sum an + a−1
n + bn + b−1

n + cn is the
adjacency matrix when the system of generators {a, b, c} for L is used. We include the latter
sum in the one-parameter pencil

Mn(µ) = an + a−1
n + bn + b−1

n − µcn, µ ∈ C
of matrices of size 2n. We will now see that one can relate the problem of finding the eigen-
values (and their multiplicities) of Mn(µ) to solving certain equations involving Chebyshev
polynomials of the second kind.

Following the notation in [21], set

Sn+1 =

(
0 I2n

I2n 0

)
and let us consider the calculation of

Φn(λ, µ) := det
(
an + a−1

n + bn + b−1
n − µSn − λI2n

)
.
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From this we find

Φ0(λ, µ) = (4− λ− µ)

Φ1(λ, µ) = (µ− λ)(4− λ− µ)

Φ2(λ, µ) = (µ− λ)(4− λ− µ)(λ2 − µ2 − 4)

Φ3(λ, µ) = (λ− µ)2(λ+ µ− 4)(λ2 − µ2 − 4)(λ3 + λ2µ− λµ2 − µ3 − 8λ)

Observe that Φn is a factor of Φn+1 since the graph Γn+1 covers Γn. The first step in this
calculation will involve writing Φn(λ, µ) as a product of many factors of smaller degree. In
[21, Section 6] it is shown that

(10) Φn(λ, µ) = (µ− λ)2nΦn−1(λ′, µ′), n ≥ 1,

where

λ′ =
λ2 − µ2 − 2

λ− µ
, µ′ =

2

λ− µ
and hence one can establish a recursive relationship for the functions {Φn(λ, µ)}n∈N. Indeed,
one has

Φn(λ, µ) = (µ− λ)2n−1+···+2+1Φ0(F (n)(λ, µ))

where F : C2 → C2 is given by λ→ λ′, µ→ µ′. Thus the dynamics of the map F is relevant.
The lines `c := {λ + µ = c} are F -invariant since λ + µ = λ′ + µ′. As observed in [22], the
restriction of F to `c is conjugate to a modular mapping given by the matrix

Qc =

(
c − c2

2
− 1

1 − c
2

)
∈ SL(2,C)

which is elliptic if |c| < 4, parabolic of |c| = 4, and hyperbolic if |c| > 4. When |c| < 4

the restriction F
∣∣
`c

is conjugate to the rotation by an angle ϕ = arctan
√

4−c2
c

and hence is

“chaotic” when the angle is irrational. Thus, in the strip Ω = {`c : |c| < 4}, the behavior of
F is partially chaotic.

Outside the strip Ω, the orbit of each point tends to infinity. Unfortunately, understanding
the dynamics of F does not help us find the spectrum of the pencil Mn(µ). For this purpose,
the important relation

µ′ − λ′ = −λ− µ+
4

λ− µ
is useful. If we denote (λ(n), µ(n)) = F (n)(λ, µ), then

µ(n) − λ(n) = −λ(n−1) − µ(n−1) +
4

λ(n−1) − µ(n−1)

which leads us to the relation

λ(n) − µ(n) =
Gn(λ, µ)

Hn(λ, µ)
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where

(11)

(
Gk+1

Hk+1

)
=

(
−λ− µ −4

1 0

)(
Gk

Hk

)
and G1(λ, µ) = µ− λ, H1(λ, µ) = 1. Notice that

(12) Hk = Gk−1, k ≥ 2.

To proceed with our calculations, we need the following lemma.

Lemma 1. It holds that

Gk(λ, µ) = 2k−1(µ− λ)Uk−1

(
−λ− µ

4

)
− 2k+1Uk−2

(
−λ− µ

4

)
(13)

Hk(λ, µ) = 2k−1

[
Uk−1

(
−λ− µ

4

)
+ µUk−2

(
−λ− µ

4

)]
(14)

with the understanding that U−1 = 0.

Proof. From the recursion relation (11) satisfied by the polynomials Gk and Hk we conclude
that (

Gk+1

Hk+1

)
=

(
−λ− µ −4

1 0

)k (
µ− λ

1

)
Applying [30, Theorem 1], we can rewrite this as(

Gk+1

Hk+1

)
=

(
2kUk

(−λ−µ
4

)
−2k+1Uk−1

(−λ−µ
4

)
2k−1Uk−1

(−λ−µ
4

)
2kUk

(−λ−µ
4

)
+ 2k−1(µ+ λ)Uk−1

(−λ−µ
4

))(µ− λ
1

)
which implies the desired formulas if k ≥ 2. By inspection, we see that those formulas also
holds when k = 1. �

The relation (10) shows that

(15) Φn(λ, µ) = (4− λ− µ)
n∏
k=1

(
Gk(λ, µ)

Hk(λ, µ)

)2n−k

= (4− λ− µ)G2n−2

1 G2n−3

2 · · ·Gn−1Gn

(see [21, Section 6]). This leads us immediately to the following corollary.

Corollary 4. Using the notation defined above,

{(λ, µ) : Φn(λ, µ) = 0} =

{(λ, µ) : λ+ µ = 4}
⋃{

n⋃
k=1

{
(λ, µ) : (µ− λ)Uk−1

(
−λ− µ

4

)
= 4Uk−2

(
−λ− µ

4

)}}
where Uk is the degree k Chebyshev polynomial of the second kind.
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The zero set of Φn(λ, µ) is pictured below for n = 6. We can easily calculate

Φ6(λ, µ) = (λ− µ)16(4− λ− µ)(4− λ2 + µ2)8(λ3 + λ2µ− µ3 − λ(8 + µ2))4

(λ5 + 16µ+ 3λ4µ+ 8µ3 − µ5 + 2λ3(µ2 − 8)− 2λ2µ(12 + µ2)− 3λ(µ4 − 16))

(64− (λ+ µ)(12− (λ+ µ)2)(λ3 + λ2µ− µ3 − λ(8 + µ2)))

(16 + (λ+ µ)(λ3 + 4µ+ λ2µ− µ3 − λ(12 + µ2)))2

Since Φn(λ, µ) divides Φn+1(λ, µ), the pictured set will be a subset of the zero set of Φm for
all m ≥ 6. Notice that there is a critical value of µ above which we see a zero of Φ6(λ, µ)
outside of the strip {|λ + µ| ≤ 4}. This value appears to be close to µ = 1, but we will see
later that for n = 6, this critical value is actually 7/6. Later we will see how this value is
calculated.

Figure 2. The curves showing where Φ6(λ, µ) = 0 when λ and µ are real. λ
is the horizontal axis and µ is the vertical axis.

We suspect that for each n ∈ N, the curves defined by the condition {(λ, µ) : Gn(λ, µ) = 0}
are irreducible, but we do not have a proof of this fact.

4. Eigenvalues and their multiplicities

Our next task is to understand some finer properties of the zero set of Φn(λ, µ). In
particular, if we think of µ as a fixed constant and λ as a variable in C, then we want to
understand the distribution of zeros of Φn(λ, µ) for large n and also the multiplicities of
those zeros.

From (11) we see that the polynomials {Gk(λ, µ)}∞k=1 satisfy the recurrence relation

Gk+1(λ, µ) = (−λ− µ)Gk(λ, µ)− 4Gk−1(λ, µ).

It follows that

(16) Gk(λ, µ) = 2kPk,µ(−λ/2),
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where Pk,µ(z) is the degree k monic orthogonal polynomial corresponding to the Jacobi
matrix

J ∗(µ) =


−µ

2
1 0 0 · · ·

1 µ
2

1 0 · · ·
0 1 µ

2
1

. . .
...

. . . . . . . . . . . .


One immediate consequence of (16) is that when µ is fixed all the zeros of Gk(λ, µ) are
simple. Furthermore, our discussion in Section 2 showed the relationship between the zeros
of Gk(λ, µ) and the spectrum of the corresponding Jacobi matrix. Thus we can deduce
information about the zeros of Gk if we can identify the spectrum of the operator J ∗(µ).
This is the content of our next result.

Proposition 4.1. When µ is any complex number, it holds that the spectrum of J ∗(µ) is
given by the straight line segment joining −2 + µ

2
to 2 + µ

2
and - precisely when |µ| > 1 - the

isolated point −µ
2
− 1

µ
.

First proof of Proposition 4.1: The spectrum of J ∗(µ) is just a translation (in C) by µ/2 of
the spectrum of

J ∗1 (µ) =


−µ 1 0 0 · · ·
1 0 1 0 · · ·
0 1 0 1

. . .
...

. . . . . . . . . . . .


so we will consider the spectrum of this operator instead. The essential spectrum of J ∗1 (µ)
is [−2, 2] (see [5, Equation 2.12]), so we need only locate the isolated eigenvalues of J ∗1 (µ).
For this, we will use [2, Proposition 1]. If we consider the continued fraction

1

z + µ−
1

z −
1

z − · · ·
1

z

=
1

z + µ− An−1(z)
Bn−1(z)

=
Kn(z)

Ln(z)
,

then z0 is an eigenvalue of J ∗1 (µ) if and only if {Ln(z0)}n∈N ∈ `2(N). By [2, Equation 6], we
know that Bn−1(z) = Un−1(z/2) and An−1(z) = Un−2(z/2). Thus,

Kn(z) = Un−1(z/2) Ln(z) = (z + µ)Un−1(z/2)− Un−2(z/2)

so the only possible isolated eigenvalues are values of z0 6∈ [−2, 2] for which

∞∑
n=2

|(z0 + µ)Un−1(z0/2)− Un−2(z0/2)|2 <∞
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For such a value of z0, it must certainly be the case that

(z0 + µ)− Un−2(z0/2)

Un−1(z0/2)
→ 0

as n→∞. Taking n to infinity and invoking (7) shows

z0 + µ =
2

z0 +
√
z2

0 − 4
,

and hence z0 = −µ− 1
µ
. Thus, this is the only possible isolated eigenvalue of J ∗1 (µ). To see

that it actually is an eigenvalue, we write µ = −eix for some x ∈ C. Then we are left to
evaluate

∞∑
n=2

|e−ixUn−1(cos(x))− Un−2(cos(x))|2

By (5) we can write

e−ixUn−1(cos(x))− Un−2(cos(x)) = e−ix
sin(nx)

sin(x)
− sin((n− 1)x)

sin(x)

= e−ix
einx − e−inx

eix − e−ix
− ei(n−1)x − e−i(n−1)x

eix − e−ix
=
e−i(n−1)x − e−i(n+1)x

eix − e−ix
= e−inx

eix − e−ix

eix − e−ix
= e−inx.

Thus the above sum simplifies to
∞∑
n=2

∣∣e−inx∣∣2 =
∞∑
n=2

|µ|−2n

which is finite if and only if |µ| > 1. After translating by µ/2 to get the spectrum of J ∗(µ),
we get the desired conclusion. �

Second proof of Proposition 4.1 for real µ: Define

J0(µ) =


µ
2

1 0 0 · · ·
1 µ

2
1 0 · · ·

0 1 µ
2

1
. . .

...
. . . . . . . . . . . .


whose corresponding spectral measure for the vector e0 = (1, 0, 0, . . .)T is

dν0 :=
1

2π

√
4− (x− µ/2)2 dx, x ∈ [−2 + µ/2, 2 + µ/2]

Since J ∗(µ) is a compact perturbation of J0(µ), we know that the essential spectrum of
J ∗(µ) is [−2 + µ/2, 2 + µ/2]. Thus the spectrum of J ∗(µ) is this interval and possibly a
countable set of mass points outside this interval, which we now determine.

For any probability measure γ on R, we define

m(z; γ) =

∫
R

1

x− z
dγ(x)



14

Let ν∗ be the spectral measure of J ∗(µ) and e0. Then

m(z; ν∗) =
1

−µ/2− z −m(z; ν0)

(see [35, Theorem 3.2.4]). Also using [35, Theorem 3.2.4], one finds that

m(z; ν0) =
µ

4
− z

2
−
√

(z − µ/2)2 − 4

2

where the branch cut is taken to be positive along the interval [2 + µ/2,∞). Thus

m(z; ν∗) =
−4

2z + 3µ−
√

(2z − µ)2 − 16
=
−(2z + 3µ+ 2

√
(z − µ

2
)2 − 4)

4(zµ+ µ2

2
+ 1)

We know from [35, Proposition 2.3.12] that the singular part of ν∗ is supported on the set

{x ∈ R : lim
t→0+

Im(m(x+ it; ν∗)) =∞}

We calculate

lim
t→0+

Im(m(x+ it; ν∗)) =

√
(µ− 2x)2 − 16

2(µx+ µ2/2 + 1)

Thus we see that if µ = 0, then there is no singular component to the spectrum and if µ 6= 0,
then the only possible mass point is x∗ = − 1

µ
− µ

2
. To determine if this point is actually a

mass point, we recall [35, Proposition 2.3.12], which tells us that if there is a mass point at
x∗, then its mass is

lim
t→0+

(−it)m(x+ it; ν∗)

Plugging in x∗ = −1−µ2/2
µ

, then we consider

ν∗{x∗} = lim
t→0+

2(−1−µ2/2
µ

+ it) + 3µ+ 2
√

(−1−µ2/2
µ

+ it− µ
2
)2 − 4

4µ

=
µ− 1

µ
+
√

(µ+ 1
µ
)2 − 4

2µ

where the branch cut of
√
z2 − 4 is taken on [−2, 2] so that it is positive if z > 2. With this

choice of square root, one finds that ν∗{x∗} = 0 if and only if |µ| ≤ 1, so ν∗ only includes a
mass point if |µ| > 1. �

Remark. We actually know from [35, Chapter 2] that the spectral measure of J ∗(µ) and the
vector e0 is given by

χ[−2+µ
2
,2+µ

2
]

√
4− (x− µ

2
)2

2π(µx+ µ2

2
+ 1)

dx+
µ− 1

µ
+
√

(µ+ 1
µ
)2 − 4

2µ
δ−µ

2
− 1
µ
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assuming |µ| > 1. If |µ| ≤ 1, then the spectral measure is just the absolutely continuous
part of this measure.

-5 5

-4

-2

2

4

Figure 3. The spectrum of J ∗(µ) when µ is real. The vertical axis corre-
sponds to µ and then the portion of the picture at that horizontal level is the
spectrum of J ∗(µ).

Proposition 4.1 identifies the spectrum of the linear pencil Jfree+µD, where Jfree = L+R
and D = diag(−1/2, 1/2, 1/2, 1/2, . . .).

Proof of Theorem 1: (a) Assume −1 ≤ µ ≤ 1. We have already seen that the spectrum of
Mµ consists of the zeros of the polynomials Gk(z, µ) and the point 4 − µ. Proposition 4.1
and the formula (16) imply all of the zeros of Gk(z, µ) are inside [−4−µ, 4−µ]. Finally, the
information about the zeros of orthogonal polynomials presented in Section 2.1 shows that
these zeros densely pack this interval.

(b) Assume |µ| > 1. As in part (a), the zeros of Gk(z, µ) densely pack [−4−µ, 4−µ]. Also,
the information about the zeros of orthogonal polynomials presented in Section 2.1 shows
that there is a collection of zeros of Pk,µ(z) (defined before Proposition 4.1) approaching
−µ/2 − 1/µ as k → ∞. The relation (16) then implies there is a sequence of zeroes of
Gk(z, µ) whose only accumulation point as k → ∞ is µ + 2/µ. It is easy to see that
µ+ 2/µ 6∈ [−4− µ, 4− µ]. �

Proof of Theorem 2: As in [21, Section 7], we know that the spectral measure νµ is the weak-
∗ limit of the normalized counting measures of the zeros of Φn(λ, µ). The formula (15) then
gives the desired formula for νµ. �

5. Computation of the Spectral Measure

Theorem 2 provides a general formula for νµ, so now we want to extract additional infor-
mation from it. From our earlier observations, we know that when µ is real, the zeros of
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Gk(λ, µ) will be in the interval (−4−µ, 4−µ) when |µ| ≤ 1 and when |µ| > 1, the zeros will
mostly be in this interval, but there will be a single zero tending monotonically to µ+ 2

µ
as

k →∞.
Our next task is to determine precisely when Gk(λ, µ) contains a zero outside of the

interval [−4 − µ, 4 − µ]. We have already mentioned that this occurs when |µ| > 1 and k
is sufficiently large, but we want to be more precise about what we mean by “sufficiently
large.”

To complete this calculation, let us assume that µ > 1 (the case µ < −1 can be handled
similarly). Using our formula for Hk = Gk−1 and the fact that Uk(1) = k + 1, we conclude
that Gk(4 − µ, µ) = 0 if and only if µ = k+1

k
and Gk(λ, µ) changes sign in the interval

(4− µ,∞) if µ > k+1
k

. Thus, for a fixed µ > 1 we define m(µ) so that

(17)
m(µ) + 1

m(µ)
≤ µ <

m(µ)

m(µ)− 1

and observe that at the points µ = 2, 3
2
, 4

3
, . . . there is a bifurcation of the multiplicity of the

zeros of Φn(λ, µ) that are outside the interval [−4−µ, 4−µ]. We summarize our conclusions
in the following proposition.

Proposition 5.1. If µ > 1, then Gk(λ, µ) has a zero outside the interval (−4− µ, 4− µ) if
and only if k ≥ m(|µ|).

Remark. Proposition 5.1 explains how we found the value of 7/6 in describing Figure 2
before Section 4. Of course the conclusion of Proposition 5.1 also holds true for Φk(λ, µ).

If k+1
k
< µ < k

k−1
, then Gn(z, µ) has a zero outside of [−4−µ, 4−µ] for all n ≥ k and thus

the same holds true for Φn(λ, µ). The multiplicity of any such zero is equal to the exponent
on the corresponding factor Gm in (15).

As we have mentioned, the spectral measure that we wish to compute can be realized as
the limiting measure of the counting measures of the zeros of Φn(λ, µ). If T1 and T2 are
bounded operators, we define the real joint spectrum of T1 and T2 to be all pairs of real
numbers (r1, r2) such that T1 − r1T2 − r2I does not have a bounded inverse. We can now
completely describe the real joint spectrum of the linear pencil of operators that we have
been considering.

Theorem 5. The real joint spectrum of operators of convolution in `2(L) given by elements
a + a−1 + b + b−1 and c from the group algebra consists of the strip {|λ + µ| ≤ 4}, the line
{λ = µ}, and a countable collection of disjoint curves {γ±n }∞n=1 that are asymptotic to the
line {λ = µ}. Each curve γ±n is outside the strip {|λ + µ| ≤ 4} and the curve γ+

n meets the
strip {|λ + µ| ≤ 4} at the point (λ = 3 − 1/n, µ = 1 + 1/n) (similarly γ−n meets the strip
{|λ+ µ| ≤ 4} at the point (λ = −3 + 1/n, µ = −1− 1/n)).

Proof. We have seen that the spectral measure νµ is a pure point measure, so the spectrum
is the closure of the set of eigenvalues. The conclusion now follows from Theorem 1. �
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The application of Theorem 2 is not especially transparent because some of the sums may
be redundant, meaning the zero sets of the polynomials Gk may not be disjoint. Thus,
the next step is to determine the multiplicity of the zeros of Φn(λ, µ) (again, here we are
thinking of µ as a fixed constant and λ is our variable). We can interpret our results as an
understanding of when the curves {(λ, µ) : Gn(λ, µ)} intersect for different values of n and
where these curves can intersect. The main idea of our findings is summarized in our next
three propositions. Before we can state it, we need to define three sets:

B1 :=

{
−sin((n+ 1)t)

sin(nt)
: t =

p

q
π; p, q, n ∈ N; p < q

}
B2 := {t : Uk(t/2) = 0 for some k ∈ N}

B3 :=

{
1 +

1

k
: k ∈ N

}
The set B3 is motivated by Proposition 5.1 and the inequalities (17). The orthogonality of
the Chebyshev polynomials implies B2 ⊆ [−1, 1]. Recall Niven’s Theorem states that if x/π
and sin(x) are both rational, then sin x ∈ {0,±1/2,±1} (see [31, Corollary 3.12]). Notice
that (5) and Niven’s Theorem together imply B2 ∩ B3 = ∅. The set B1 will tell us how to
determine if a mass point in the support of νµ appears in several terms of the sum defining νµ
in Theorem 2. We see its relevance in our next result, which concerns zeros inside the interval
[−4−µ, 4−µ]. For convenience, we parametrize this interval by {−µ−4 cos(t) : 0 ≤ t ≤ π}.

Proposition 5.2.

(i) Suppose Gn(−µ− 4 cos(t), µ) = 0 for some t ∈ (0, π) and t is not a rational multiple
of π. Then Gm(−µ− 4 cos(t), µ) 6= 0 for all m > n.

(ii) Suppose Gn(−µ − 4 cos(t), µ) = 0 for some t ∈ (0, π) and t is a rational multiple
of π. Then µ ∈ B1 and if we write t = p

q
π, then the set of indices k for which

Gk(·, µ) vanishes at −µ − 4 cos (t) forms an arithmetic progression with step size q
and beginning at some k0 ∈ {1, . . . , q}.

Proof. To prove (i) first recall the relations (12) and (14). Notice thatGk+1(−µ−4 cos(t), µ) =
0 is equivalent to the condition

(18) sin((k + 1)t) = −µ sin(kt)

If k = 0, then this implies t is an integer multiple of π, so our hypotheses in part (i) exclude
this possibility. If k > 0, then (18) can be rewritten as

−µ = cos(t) + sin(t) cot(kt)

If this identity holds true for multiple natural numbers (say m1 < m2), then it must be the
case that

(19) t =
M

m2 −m1

π

for some M ∈ N. This implies t ∈ Qπ, which contradicts our assumption and proves (i).
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To prove (ii) notice that the calculations from the proof of part (i) imply µ ∈ B1. Indeed,
the calculations in that proof are all reversible, so we see that Gm1+1(−µ − 4 cos(t), µ) =
Gm2+1(−µ− 4 cos(t), µ) = 0 if and only if

t =
Mπ

m2 −m1

µ = − cos

(
Mπ

m2 −m1

)
− sin

(
Mπ

m2 −m1

)
cot

(
m1Mπ

m2 −m1

)
= − cos

(
Mπ

m2 −m1

)
− sin

(
Mπ

m2 −m1

)
cot

(
m2Mπ

m2 −m1

)
for some M ∈ N. Thus, if t = p

q
π and Gn+1(−µ− 4 cos(t), µ) = 0, then

µ = − cos

(
pπ

q

)
− sin

(
pπ

q

)
cot

(
npπ

q

)
= − cos

(
pπ

q

)
− sin

(
pπ

q

)
cot

(
(n+ jq)pπ

q

)
, j ∈ Z

and hence Gn+jq+1(−µ− 4 cos(t), µ) = 0 for all j ∈ Z as long as n+ jq+ 1 > 0. This proves
the claims made in (ii). �

Now we will see that as long as we avoid the sets {Bj}3
j=1, we need not worry about the

complications presented in Proposition 5.2.

Proposition 5.3. If µ 6∈ B1 ∪B2 ∪B3 and Φn(λ, µ) = 0, then the multiplicity of λ as a root
of Φn(z, µ) is 1 if µ = 4−λ or is equal to the exponent on Gk in (15), where k is the unique
natural number m for which Gm(λ, µ) = 0. In the latter case, the measure νµ assigns that
mass 2−(k+1) to the point λ.

Proposition 5.3 tells us that generically we may apply Theorem 2 at face value. Each of
the pure point measures in the infinite sum defining νµ have disjoint supports, so one can
easily calculate the mass of any particular point to which νµ assigns weight. However, there
are cases where these measures do not have disjoint supports (namely when µ ∈ B1∪B2∪B3)
and further analysis is required to determine the mass of any one particular point.

Proof of Proposition 5.3: We saw in the proof of Proposition 5.2 that a the existence of a
common root of Gn+1(·, µ) and Gm+1(·, µ) for m,n > 0 requires µ ∈ B1. Also notice that
Gk(µ, µ) = 0 if and only if µ ∈ B2. Thus, if µ 6∈ B2, then we can extend our conclusion to
the case when m or n is equal to 0. Finally, note that Proposition 5.1 tells us that if µ 6∈ B3,
then Gk shares no common roots with the factor (4− λ− µ). The desired conclusion is now
apparent. �
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We can now conclude that if µ 6∈ B1 ∪B2 ∪B3, Φn(λ, µ) = 0, and λ ∈ [−4−µ, 4−µ], then
the multiplicity of λ as a root is

1 if λ = 4− µ
2n−1−j if Gj(λ, µ) = 0, j = 1, . . . , n− 1

1 if Gn(λ, µ) = 0

Thus, the spectral measure νµ (from Theorem 2) will assign weight 1
2j+1 to each zero of

Gj(λ, µ).
Let us see what happens if we relax some of the assumptions from Proposition 5.3.

Proposition 5.4.

(i) If µ 6∈ B1 but µ ∈ B3 (which implies µ 6∈ B2 by our earlier remark) and Φn(λ, µ) = 0,
then the multiplicity of λ ∈ [−4− µ, 4− µ] as a root of Φn(λ, µ) is

1 + 2n−1−k if λ = 4− µ
2n−1−j if Gj(λ, µ) = 0, j = 1, . . . , n− 1, λ 6= 4− µ
1 if Gn(λ, µ) = 0, λ 6= 4− µ

as long as n > k, where k is chosen so that µ = 1 + k−1. The spectral measure νµ
assigns weight 2−(1+k) to the point 4 − µ and weight 2−(j+1) to each zero of Gj not
equal to 4− µ.

(ii) Suppose µ 6∈ B1 but µ ∈ B2 (which implies µ 6∈ B3 by our earlier remark) and
Φn(λ, µ) = 0. We will suppose Uk(−µ/2) = 0 for some k ∈ N and we assume k is
the smallest index for which this holds. The multiplicity of λ ∈ [−4 − µ, 4 − µ] as a
root of Φn is (where J =

⌊
n−1
k+1

⌋
)

1 if λ = 4− µ
2n−2 + (2(k+1)J−1)2n−(k+1)J

4(2k+1−1)
if λ = µ

2n−1−j if Gj(λ, µ) = 0, j = 2, . . . , n− 1, λ 6= µ

1 if Gn(λ, µ) = 0

where we assume n is such that Gn(µ, µ) 6= 0. The spectral measure νµ assigns weight 2−(j+1)

to each zero of Gj not equal to µ and also satisfies

νµ({µ}) =
1

4
+

1

4(2k+1 − 1)
.

Proof. For part (i), we notice that Gk(4 − µ, µ) = 0 by Proposition 5.1 so we have simply
added the multiplicities of the factors of (4− λ− µ) and Gk to get the multiplicity of 4− µ
as a root.

For part (ii), notice that the given information and (5) imply µ/2 = cos(jπ/(k + 1)) for
some j ∈ {1, . . . , k}. Then Um(−µ/2) = 0 for all m of the form m = qk + q − 1 with q ∈ N.
This gives us an arithmetic progression of indices for which µ is a root. Summing up the
corresponding multiplicities gives the desired result. �
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The calculation of the multiplicities of roots is more complicated when µ ∈ B1. Since the
set of indices at which a zero is repeated forms an arithmetic progression, finding the weight
that νµ assigns to that point requires a calculation similar to that presented in Proposition
5.4ii. However, there is the added difficulty of determining the first index in this set, which
prevents us from presenting a concise formula. The following list summarizes what we have
so far learned about νµ:

• If µ 6∈ B1 ∪B2 ∪B3, then to each mass point in λ ∈ supp(νµ) we can associate to λ a
unique index j such that Gj(λ, µ) = 0. It then holds that νµ{λ}) = 2−(j+1).
• If µ ∈ B3 \ (B1 ∪B2) and µ = 1 + k−1, then µν({4− µ}) = 2−(k+1). If λ ∈ supp(νµ) is

a mass point of νµ and λ 6= 4− µ, then we can associate to λ a unique index j such
that Gj(λ, µ) = 0. It then holds that νµ{λ}) = 2−(j+1).
• If µ ∈ B2 \ (B1 ∪ B3) and Uk(−µ/2) = 0 and k is the smallest such index, then
µν({µ}) = 1/4 + 1/(4(2k+1 − 1)). If λ ∈ supp(νµ) is a mass point of νµ and λ 6= µ,
then we can associate to λ a unique index j such that Gj(λ, µ) = 0. It then holds
that νµ{λ}) = 2−(j+1).
• If µ ∈ B1 \ (B2 ∪ B3), then µ = − cos(t) − sin(t) cot(nt) for some natural number n

and some t = p
q
π ∈ (0, π). If n is the smallest such natural number for which this is

true, then νµ({−µ− 4 cos(t)}) = 2q

2n+1(2q−1)
.

Example. Consider the case when µ = 0 and let us calculate the multiplicity of the zero
(0, 0) of Φn. In this case

Φn(λ, 0) = (4− λ)

(
2U1

(
−λ
4

))2n−2

· · ·
(

2n−1Un−1

(
−λ
4

))(
2nUn

(
−λ
4

))
Notice that 0 is a root of Uk if and only if k is odd, so the multiplicity of the root at 0 is{

2n−2 + 2n−4 + · · ·+ 23 + 2 + 1 if n is odd

2n−2 + 2n−4 + · · ·+ 24 + 22 + 1 if n is even

This agrees with our earlier observations because λ = 0 = cos(π/2), so every collection of two
consecutive natural numbers contains an index k for which Gk(0, 0) = 0. By normalizing and
sending n→∞, we see that ν0({0}) = 1/3. This is a special case of a result from [21], which
shows ν0({cos(pπ/q)}) = 1/(2q − 1). This can also be obtained from our above discussion,
since 0 ∈ B1 \ (B2 ∪ B3) and we can apply the given formula with n = 1 and t = π/2.

Example. The case µ = 2 also presents an interesting example because in this case µ = 4−µ
and µ = 1+1

1
and several of the above special cases apply when calculating the multiplicity
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of the root Φn(2, 2). In this case

Φn(λ, 2) = (2− λ)

(
2U1

(
−λ− 2

4

)
+ 4

)2n−2 (
4U2

(
−λ− 2

4

)
+ 8U1

(
−λ− 2

4

))2n−3

× · · · ×
(

2nUn

(
−λ− 2

4

)
+ 2n+1Un−1

(
−λ− 2

4

))
Notice that λ = 2 is a root due to the first factor of (2 − λ). Also, λ = 2 will be a root for
any Uk such that Uk(−1) + 2Uk−1(−1) = 0. This is precisely when k = 1, so 2 is a root of
multiplicity 1 + 2n−2.

5.1. The set B1. The set B1 is the set of all real numbers r that can be written as

r =
sin((n+ 1)qπ)

sin(nqπ)

for some q ∈ Q and n ∈ N.

Proposition 5.5. The set B1 is dense in R.

Proof. It is easy to see that the closure of B1 includes all numbers of the form

r =
sin((n+ 1)x)

sin(nx)

for some x ∈ R and n ∈ N.
Now, pick any r0 ∈ R. It is clear the we can find points z1 = (x1, sin(x1)) and z2 =

(x2, sin(x2)) on the graph of sin(x) such that r0 = sin(x2)/ sin(x1) and x2 > x1. In fact,
there are infinitely many pairs of such points with the same distance between them due to
the periodicity of the graph of sin(x). If s := x2 − x1 is an irrational multiple of π, then
consider the set

Os :=

{
sin((n+ 2)s)

sin((n+ 1)s)

}
n∈N

The numbers {(n+ 1)smod 2π}n∈N are dense in [0, 2π] and hence by taking n→∞ through
the appropriate subsequence, a subsequence in Os converges to sin(x2)/ sin(x1) = r0 as
desired.

If s is a rational multiple of π, then we can choose x3 arbitrarily close to x2 so that x3−x1

is an irrational multiple of π. Our above reasoning shows that sin(x3)/ sin(x1) is in B1 and
hence by a limiting argument, sin(x2)/ sin(x1) = r0 is in B1 also. �

5.2. Bulk Distribution of Zeros. Let us now focus our attention on the distribution of the
zeros of Φn(λ, µ) for a fixed µ and large n. Suppose λ1 is such that Uk−1

(−λ1−µ
4

)
= 0 and λ2 >

λ1 is the next real number so that Uk−1

(−λ2−µ
4

)
= 0. By the interlacing property of zeros

of Chebyshev polynomials, it is true that Uk
(−λ1−µ

4

)
and Uk

(−λ2−µ
4

)
are both non-zero and

have opposite sign. Therefore, in moving from λ1 to λ2, the fraction Uk
(−λ−µ

4

)
/Uk−1

(−λ−µ
4

)
takes all values in R. In particular, there is a λ∗ where Uk

(−λ∗−µ
4

)
/Uk−1

(−λ∗−µ
4

)
= µ and
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this is a zero of Hk+1(λ, µ) = Gk(λ, µ). Thus, the zeros of Gk(λ, µ) satisfy the same law as
the zeros of Uk, but shifted by µ and rescaled by a factor of 4.

Note that the above procedure only accounts for k− 2 zeros of Gk(λ, µ), which has degree
k. To find the remaining two zeros, we apply the above reasoning with λ1 replaced by −∞
or λ2 replaced by ∞. Using the fact that we know how Uk behaves at the endpoints of the
support of its measure of orthogonality, we can see that when |µ| > 1, we will have one zero of
Gk predictably outside this (translated and rescaled) interval for all large k. Using the ratio
asymptotic formulas for the Chebyshev polynomials, we can see that this zero approaches
µ+ 2/µ as k →∞.

6. The Relation with the Theory of Random Jacobi & Schrödinger
Operators

Surprisingly, there is an interesting connection between the above ideas and the theory of
random operators acting on `2(Z). This was first observed by L. Grabowski and B. Virag in
[12, 15, 26] who used this connection to show that the spectral measure associated with the
operator Hβ of convolution with the element a+a−1 +βc ∈ R[L] is singular continuous. This
was achieved through a modification of a method from [1], which appeared in an unpublished
work of Grabowski and Virag [15] and for which an exposition appears in the appendix of
[13]. The idea is to use an application of the Fourier transform using Pontryagin’s dual

Â =
∏

Z/2Z of the base A =
⊕

Z Z/2Z of the wreath product

L = Z/2Z o Z =

(⊕
Z

Z/2Z

)
o Z

which transforms the operator Hβ into a random Schrödinger operator H̃β acting on `2(Z)
by

(H̃β,ωu)(n) = u(n− 1) + Vω(n)u(n) + u(n+ 1),

where {u(n)}n∈Z ∈ `2(Z) and ω is a sequence of i.i.d random variables taking values in {0, 1}
with Bernoulli distribution the assigns probability 1/2 to 0 and 1. The potential Vω(n) is
then a random potential that takes the value β in the nth coordinate if the nth coordinate of ω
is equal to 1 and takes the value 0 otherwise. The surprising property of this correspondence
is that the spectral measure of Hβ associated with the delta function δ1 ∈ `2(L) coincides

with the density of states of the family {H̃β,ω}ω∈Ω={0,1}Z , which is the average over Ω of the

spectral measures of H̃β,ω associated with the delta function at the origin δ0 ∈ `2(Z). This
fact was discovered by L. Grabowski and is valid in much greater generality [12].

Using results from [29] Grabowski and Virag concluded that Hβ has a singular continuous
spectral measure when β is sufficiently large. This is the first example of a group and
convolution operator on it with singular continuous spectral measure.

Our result allows one to reason in the opposite direction. Using information about the
spectrum and spectral measure of Markov operators Mµ of convolution on L, we are able
to deduce new information about the spectrum and the integrated density of states for
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dynamically defined random Jacobi operators, where the randomness is ruled by a uniform
Bernoulli measure on the space {0, 1}Z. Recall that the classical Anderson model concerns
the Schrödinger operator Hω acting on `2(Z) by

(Hωu)(n) = u(n− 1) + Vω(n)u(n) + u(n+ 1),

where Vω(n) = g(T nω), T is the left shift in Ω = [a, b]Z with a < b, a, b ∈ R, and g : Ω→ R
is the sampling function which is given by evaluation at the 0 coordinate. The randomness
is described by the product measure ν = ρZ, where ρ is a probability measure on [a, b]. It is
well-known that the spectrum of Hω as a set is almost surely independent of ω and is equal
to [−2, 2] + supp(ρ). Thus as a set, sp(Hω) is equal to a union of finitely many intervals.
Applying this to the case considered by Grabowski in [12], we find sp(H̃β,ω) = sp(Hβ) =
[−2, 2] ∪ [−2 + β, 2 + β].

We now consider the related operator acting on `2(Z) given by (1), where f, g : [a, b]Z → R,
ω is as above, and the randomness is ruled as before by a probability measure ν = ρZ where
ρ is a probability measure on [a, b]. Thus, the operator in matrix form has the structure of
a Jacobi matrix with entries determined by the functions f and g. It is quite probable that
many results from the classical theory of dynamically defined Jacobi matrices associated with
Schrödinger operators can be translated to this more general setting. Such a generalization
in the case of minimal subshifts over a finite alphabet is done by Beckus and Pogorzelski in
[6].

Consider the operator Hµ obtained by applying the Fourier transform given by the Pon-

tryagin duality between Â and A as described in [12, 13, 14, 26] to the operator Mµ of
convolution by the element a + a−1 + b + b−1 − µc ∈ R[L] in `2(Z). This operator Hµ is of
the form ∫

Ω

Hµ,ωdν(ω)

in the Hilbert space ∫
Ω

`2(Γω)dν(ω)

where Ω = [0, 1]Z = Â serves as the dual of A and Γω is the Z-orbit of ω for ω ∈ Ω under the

adjoint action of the active group Z of the wreath product Z/2Z oZ on Â (which happens to
be the action by powers of the shift). If we identify Γω with Z (for non-periodic ω), then the
generator of Z acts on Ω as the shift T : (Tω)n = ωn+1. The operator Hµ,ω is an operator of
the type described in (1) with functions f and g defined on {0, 1}Z as

f(ω) = 1 + (−1)ω−1 , g(ω) = µ(−1)ω0+1,

where ωn denotes the nth entry of ω ∈ Ω and ν = ρZ, where ρ is the uniform measure on the
two-point set {0, 1}.

Putting all the above together and keeping in mind that the matrices Hµ,ω almost surely
have a block diagonal structure with finite blocks, we come to the conclusion of Theorem 3.

Theorem 3 shows that the nature of the density of states for random Jacobi matrices in
the Anderson model can be very different from the case of random Schrödinger operators.
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Furthermore, along with the result in [21], this provides perhaps the first nontrivial example
of the exact computation of the integrated density of states for randomly defined Jacobi
operators.

7. Concluding Remarks and Open Problems

7.1. The Resolvent Set. Although Theorems 1 and 2 concern real values of µ, one can
consider complex values of µ. One can use similar calculations to those presented above to
show that as µ varies through C, the spectrum of J ∗(µ) is an interval or perhaps an interval
and an isolated point. The isolated point appears when |µ| > 1. We have also seen that the
union of all the resolvent sets has four connected components in R2.

Now consider the resolvent set when µ is complex. For a fixed µ the spectrum of J ∗(µ)
is an interval and perhaps one isolated point. For ease of visualization, we will consider
the matrix J ∗1 (µ) (defined in the proof of Proposition 4.1) instead of J ∗(µ). In this case,
the union of all the spectra is C × [−2, 2] ∪ S, where S is the surface that is the image of
{z : |z| > 1} under the map z → −z − 1/z, which is a bijection from {z : |z| > 1} to
C ∪ {∞} \ [−2, 2]. Thus, the union of all the spectra is the union of a three dimensional
manifold with boundary (namely C × [−2, 2]) and a two dimensional manifold (namely S)
and they are glued together in such a way that if z0 ∈ C has modulus 1, then a boundary
point of S attaches to the z0 copy of [−2, 2] at the point −z0 − 1/z0.

It remains an open question to determine the joint spectrum of the pencil of operators
Mµ − λI acting on `2(L) when µ, λ ∈ C. The results of [11] and essential freeness of the
action of L on (∂T, ν), where ν is a uniform Bernoulli measure on ∂T = {0, 1}N show that
for each µ ∈ C, the spectrum of Mµ coincides with the spectrum of the corresponding
operator π(mµ) = π(a + a−1 + b + b−1 − µc) acting in L2(∂T, ν), where π is the Koopman
representation associated with the dynamical system (L, ∂T, ν). Our results describe the real
joint spectrum (given by Figure 2). The representation π is a direct sum of finite dimensional
subrepresentations, which implies that in the real situation (when µ ∈ R), it holds that

(20) spπ(mµ) =
∞⋃
n=0

spπn(mµ),

where πn, n = 0, 1, 2, . . . are permutational representations given by the action of L on the
level n of the tree [4, 16]. If (20) remains valid for complex values of µ, then the part (a) of
Theorem 1 remains true for µ ∈ C and hence the joint spectrum of Mµ−λI (or of π(mµ−λ1))
is the closure of the union of curves {Gk(λ, µ) = 0} for k = 0, 1, 2, . . ..

The validity of (20) reduces to the question of whether or not the spectrum of the block
diagonal matrix corresponding to the operator π(mµ) (whose blocks are finite matrices) is
the closure of the union of the spectra of the blocks. In the self-adjoint case, this is known
to be true, but in the general case it need not hold. Also, (20) would hold if the matrix
of π(mµ) is diagonalizable, but as our computations show, the eigenvalues of these matrices
have large multiplicities (see also [21]), which complicates the issue of diagonalization. We
thus arrive at the following questions:
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Question 1. Are the matrices Mn(µ) from Section 3 diagonalizable for all µ ∈ C?

Question 2. What is the joint spectrum of the pencil Mµ−λI acting in `2(L) (or equivalently,
what is the joint spectrum of the pencil π(mµ − λ1) acting in L2(∂T, ν))?

Let {Hω}ω∈Ω be a random ergodic family of Jacobi operators on Z of the form (1) above.
An interesting question that is related to this discussion is about the decomposition

of the representation πn into irreducible components. If we know such a decomposition
πn = ⊕κni=1πn,i with each πn,i irreducible, then for each element m ∈ C[G], the determinant
det(πn(m) − λI2n) (which is Φn(λ, µ) in the notation of Section 3 with m = mµ) splits
into the product

∏κn
i=1 det(πn,i(m) − λI2n) and this reduces the problem to that of finding

eigenvalues for the irreducible parts. The high multiplicities of the eigenvalues suggests that
perhaps the irreducible subrepresentations πn,i appear in the decomposition with high mul-
tiplicities. However, the calculations for levels n = 1, 2, . . . , 6, 7 show that this is not the
case and that at least for these values of n, the pairs (Ln, stLn(1n)) are Gelfand Pairs, where
Ln = L/stL(n), stL(n) is the stabilizer in L of level n, stLn(1n) is the stabilizer of the vertex
1n = 1 · · · 1︸ ︷︷ ︸

n

for the natural action of the quotient group Ln on level n.

Question 3. For each n, what is the decomposition of πn into irreducible subrepresentations?

7.2. Spectra and Spectral Measures. It is a widely open question as to what could
be the shape of the spectrum sp(Mm) of convolution operators in `2(L) given by elements
m ∈ C[L] of the group algebra. Theorem 1 shows that in addition to the interval and union
of two intervals, we can get an interval and a countable set of points accumulating to a point
outside the interval. As for the spectral measure µm (in the case of self-adjoint m) it can be
a pure point measure (as shown in [21] and in this paper) or it can be a singular continuous
measure (as in the case when m = a+a−1 +βc with β sufficiently large, where the spectrum
is a union of two intervals). Observe that all of this information is achievable already using

elements m of the form
∑k

i=1 pi(ss + s−1
i ), where S = {s1, . . . , sk} is a generating set of L

and pi is a symmetric probabilistic distribution of S ∪ S−1 (thus corresponding to a Markov
operator of a random walk on L given by this distribution).

Question 4. a) What are all the shapes of the spectrum of operators of convolution Mm

in `2(L) given by elements in m ∈ C[L] of the group algebra?
b) What are all the possible types of spectral measures for operators as in part (a) with

m self-adjoint?

Let us elaborate on part (b) of Question 4. Any probability measure µ on R has a
decomposition µ = µac + µsc + µpp into its absolutely continuous, singular continuous, and
pure point parts. Any of these parts may happen to be empty so, in principle, we may expect
to have 8 different possibilities for the decomposition with the nontrivial components. From
the above information, we know that µ = µsc and µ = µpp are possible. What about the
other 6 cases?

Now let us restrict our attention to the operators Mm(β) where m(β) = a + a−1 + βc.
Using the Fourier transform (as was explained above), an operator of this form transforms
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into a Schrödinger operator with Bernoulli-Anderson random potential whose density of
states µm(β) is continuous for all β ∈ R, and is singular continuous when β is sufficiently
large [29].

Question 5. For what values of 0 6= β ∈ R does the density of states µm(β) have nontrivial
absolutely continuous part? What are the possibilities for µm(β) in terms of its absolutely
continuous part and singular continuous part?

The values at zero of the spectral measure µm corresponding to operators of convolution
Mm in `2(G) given by elements m ∈ Q[G] are called “`2-Betti numbers arising from the
group G.” For a recursively presentable group G (such as L) they appear also as L2-Betti
numbers of closed manifolds [18, 27]. Part (a) of the next question is [12, Question 1.7]

Question 6. a) What is the set of values of µm(0) for self-adjoint m ∈ Q[L]?
b) What is the set of values of µm(0) for self-adjoint m ∈ C[L]?
c) Do the sets from parts (a) and (b) coincide?

Question 7. For which rational values of µ does the operator Mµ given by Mµ = a+ a−1 +
b+ b−1 − µ1 have a rational eigenvalues different from µ?

The correspondence between convolution operators in `2[L] and random generalized oper-
ators of Jacobi-Schrödinger type should lead to interplay between methods of the theory of
random operators and methods used in group theory, the theory of random walks on groups,
and the theory of self-similar groups defined by finite automata.

The random operators corresponding to operators of convolution in `2(L) are presented
by random banded matrices of Jacobi type whose non-zero entries are of the form fi(T

kω)
for i = 1, . . . , k where k is the number of upper diagonals, including the main diagonal,
ω ∈ Ω = {0, 1}Z, T is a shift in Ω, and fi is a function from Ω→ R corresponding to the ith

diagonal. The pencil M(β, µ) = a+a−1 +β(b+ b−1) +µc, after an application of the Fourier
transform, becomes the random Jacobi matrix ruled by two functions f (on the off-diagonal)
and g (on the diagonal). Specifically,

f(ω) = 1 + β(−1)ω−n , g(ω) =

{
µ if ω0 = 1

0 otherwise

Question 8. What is the joint spectrum of the pencil M(β, µ) − λI when µ, β, λ ∈ R and
what is the corresponding spectral measure?

If β 6= 1, then the off-diagonal function f does not take the value 0 and hence by the same
argument as in [9], we know that the density of states is a continuous measure. If β = 1,
then f takes the value 0 with positive probability and the argument from [9] fails. In fact,
as we see from the results of [21] and this paper, the situation can be completely different
from the β 6= 1 case and the density of states may not only acquire mass points, but it could
in fact become a pure point measure.

This matter is briefly discussed near the conclusion of [9], where it is written “... the
coefficients J(x, y), |x− y| = 1 could be zero with a non-zero probability, in which case the
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density of states would be discontinuous.” There is no argument provided in [9] for this claim
and it would be useful to clarify it. If the word “would” is replaced by the word “could,”
then this paper and [21] confirm the claim.

The general case of random Jacobi-Schrödinger matrices given by data {fi(ω)}ki=1 as de-
scribed above looks to be too hard to handle. The case of random Jacobi-Schrödinger oper-
ators determined by two functions f1 = g and f2 = f and a Bernoulli system (Ω, T, ν) seems
to much more tractable and most of the known results of the classical theory should be valid
for random Jacobi-Schrödinger operators. Some steps in this direction are done for instance
in [6, 7]. The theorems of Pastur [32] about existence for the ergodic family {Hω}ω∈Ω of a
set Σ ⊆ R such that sp(Hω) = Σ extends to ergodic random Jacobi-Schrödinger operators
without extra efforts.

Question 9. Let Jω(f, g) be a dynamically defined Jacobi matrix with diagonal entries de-
termined by g(T nω) and off-diagonal entries determined by f(T nω). Assume that f(ω) = 0
on a subset Ω0 ⊂ Ω of positive measure and assume Ω \ Ω0 has positive measure as well.
Will the density of states be a pure point measure? Will it always have a non-trivial discrete
component? Here (T,Ω, ν) is a Bernoulli system (Anderson model).

7.3. Novikov-Shubin invariants and Lifshits Tails. Given a self-adjoint m ∈ C[G], the
Novikov-Shubin invariant of m is defined as

(21) α(m) = lim inf
λ→0+

log(µT (0, λ])

log λ
.

Novikov-Shubin invariants were introduced for manifolds and then translated to the group
case. If m ∈ Q[G] and the group is recurseivel presentable, then α(m) can be realized as
a fourth Novikov-Shubin invariant of some finite CW complex [27]. The papers [14, 22]
show that already the lamplighter group L is rich enough to produce elements of m ∈ Z[G]
with non-integer (or even irrational) `2-Betti numbers (and with irrational Novikov-Shubin
invariant). In fact, the study of Novikov-Shubin invariants is a particular case of the study
of regularity properties of the spectral distribution function Nm(x) := µm(−∞, x]. For each
point E ∈ sp(Mm) of the convolution operator Mm given by m ∈ C[G], one can study local
behavior of Nm(x) − E− on the left of E (where E− = limx→E− N(x) and local behavior of
Nm(x)−µm({E}) to the right of E. If on the right, one finds that Nm(E+x)−µm({E}) ∼ xα

for some α ∈ (0,∞), then α is the Novikov-Shubin invariant of m−µm({E}). But, the local
behavior could be of type −1/ log(x) or e−1/x or an even more exotic type, which corresponds
to α = 0 or α =∞ respectively. For different groups, elements m ∈ C[G] and different points
of the spectrum dilatation behavior of Nm(x) around E ∈ sp(Mm) can be very different.

Suppose E0 and E+ are extreme points of the spectrum of a convolution operator Mm given
by a self-adjoint element m ∈ C[L] (so that the distribution function N(x) of the spectral
measure takes the value 0 if x < E0 and takes the value 1 if x > E+), then it is interesting
to study the asymptotic behavior of N(x) near these endpoints. This is related to the study
of not only Novikov-Shubin invariants but also the growth of the Fölner function F (n) when
n → ∞ [21] (see also [26]) and of other group invariants. Translated into the language of
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random operators, the asymptotics of N(x) near E0 corresponds to what is called Lifshitz
tails [24]. For a random Schrödinger operator on Zd, Lifshitz predicted

N(x) ∼ c1e
−c2(x−E0)−d/2 ,

which was later confirmed in some cases (for a related result, see [28]). From [21] it follows
that for random operators corresponding to an operator of convolution given by 1

4
(a+ a−1 +

b+ b−1), the function 1−N(x) behaves as e−(x−1)−1
near E+. It will be interesting to study

what kind of asymptotic behavior N(x) and 1−N(x) can exhibit near E0 an E+ respectively
(as well as at any other point of the spectrum) for convolution operators given by elements
m ∈ C[L], in particular those outlined in Question 8.

Example. Consider the case when µ > 1 so the spectrum of the operator Mµ acting in `2(L)
is described by part (b) of Theorem 1. Using Theorem 2, we know that the corresponding
spectral measure ν assigns weight 2−m to the interval [xm, µ+ 2/µ], where xm is the largest
zero of Gm. It is known that |xm − µ − 2/µ| decays exponentially, but to calculate the
Novikov-Shubin invariant, we will need to know this exact rate of decay. To do so, it suffices
to find the smallest zero of Pm,µ (defined in (16)).

By the reasoning of Section 5.2, we know that the zeros of Pm,µ consist of a single zero
very close to −µ/2− 1/µ (call it x∗m) and the remaining zeros are contained in the interval
[−2 +µ/2, 2 +µ/2] and distribute (for m large) according to the arcsine distribution on that
interval. Define Qm(x) = Pm,µ(x)/(x− x∗m). Then it follows from (7) that∣∣∣∣Qn

(
−µ

2
− 1

µ

)∣∣∣∣1/n → µ

as n→∞. By Poincaré’s Theorem [34, Theorem 9.6.2], we know that∣∣∣∣Pn(−µ2 − 1

µ

)∣∣∣∣1/n → 1

µ

as n → ∞. Thus |x∗n + µ/2 + 1/µ|1/n → µ−2 as n → ∞. We conclude that, ν assigns
mass 2−m to an interval near the right endpoint of its support of length approximately µ−2m.
Using the definition (21) we find that the Novikov-Shubin invariant in this case is

log 2

2 log µ
= logµ(

√
2) =

1

2 log2 µ
.

Therefore, for the element a+a−1 + b+ b−1−µc−
(
µ+ 2

µ

)
I ∈ Q[L] with integer µ ∈ Z that

is not a power of 2, the “true” Novikov-Shubin invariant given by (21) is irrational. This
recovers one of the results from [14].
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[35] B. Simon, Szegő’s Theorem and its Descendants. Spectral theory for L2 perturbations of orthogonal
polynomials, Princeton University Press, Princeton, NJ, 2011.


	1. Introduction
	2. Preliminaries
	2.1. Orthogonal Polynomials on the Real Line
	2.2. Matrix Recursions and the Limit Spectral Measures

	3. Recursive relations and determinants
	4. Eigenvalues and their multiplicities
	5. Computation of the Spectral Measure
	Example.
	Example.
	5.1. The set B1.
	5.2. Bulk Distribution of Zeros

	6. The Relation with the Theory of Random Jacobi & Schrödinger Operators
	7. Concluding Remarks and Open Problems
	7.1. The Resolvent Set
	7.2. Spectra and Spectral Measures
	7.3. Novikov-Shubin invariants and Lifshits Tails

	References

