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ABSTRACT

A more efficient method of computing the nonlinear transfer in a surface wave spectrum is developed which
is symmetrical with respect to all wavenumbers of the resonant interaction quadruplets. This enables a large
number of computations to be carried out, as required for investigations of the spectral energy balance or the
development of parameterizations. New results are presented for finite-depth surface waves. By filtering out
regions in interaction phase space, the assumptions involved in the narrow-peak and local-interaction approx-
imations are investigated. Both approximations are found to be useful but are generally not sufficiently accurate
to replace exact computations or provide adequate parameterizations for wave models.

1. Introduction

The nonlinear transfer of energy by resonant wave-
wave interactions is known to play an important role
in the spectral energy balance of wind waves. However,
it has not yet been possible to represent this process
satisfactorily in numerical wave models. Although the
basic mechanism of the transfer has long been well
understood (Hasselmann, 1962, 1963a) and numerical
calculations of the transfer rate for particular spectra
have been presented in a number of papers (Hassel-
mann, 1963b; Cartwright, 1968; Sell and Hasselmann,
1972; Webb, 1978; Masuda, 1981) exact computations
of the full five-dimensional Boltzmann transfer-integral
expression are far too time consuming for incorpora-
tion in wave models. In fact, the excessive computing
requirements have in the past even precluded system-
atic transfer calculations for a sufficiently wide variety
of spectra to develop and test suitable parameterizations
of the exact expression for use in wave models. -

In Part [ of this two-part paper we describe a method
of computing the nonlinear transfer based on a sym-
metrical treatment of the interactions which is one to
two orders of magnitude more efficient than previous
methods. With the new technique, large series of exact
computations can now be carried out, enabling the
systematic development of parameterizations of the
nonlinear transfer, described in Part II of this paper
(Hasselmann et al., 1985).

The need for improved parameterizations of the
nonlinear transfer in wave models (cf. The SWAMP
Group, 1985) is not the only motivation for developing
a more efficient method of computing the exact transfer
expression. Although the general structure of the energy
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balance of a growing wind sea is believed now to be
fairly well understood, a number of details have still
not been determined quantitatively. This applies par-
ticularly to the form of the dissipation source function.
The problem can be approached by numerical energy
balance experiments, in which the knowledge that is
available on the form of the input source function, the
nonlinear transfer and the observed growth of fetch-
limited spectra is used to infer the form of the residual
dissipation source function. In order to compare the
observed and theoretical growth curves, the spectral
transport equation must be integrated with respect to
fetch for a given set of assumed source functions. This
is feasible only if an efficient method of evaluating the
exact nonlinear transfer expression is available. (The
alternative strategy of differentiating the observed
growth curves and comparing these with the theoretical
source functions computed at a few fixed fetch locations
is found to be too sensitive with respect to small vari-
ations in the spectral shape.) Komen et al. (1984) have
carried out such numerical experiments to investigate
the structure of the energy balance of a fully developed
spectrum, using the computational techniques de-
scribed here, and determined the form of dissipation
source functions needed to maintain the observed fully
developed spectrum. Similar results for fetch-limited
wave growth are summarized by Hasselmann and
Hasselmann (1985). Young et al. (1985a) have carried
out energy balance experiments with essentially the
same model to investigate the directional response of
the wave spectrum to turning winds. Numerical inte-
grations of this kind, based on the exact nonlinear
transfer source function, at the same time provide an
important contribution to the reference data set for
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testing and calibrating the parameterization schemes
discussed in Part II.

The basic method of computation is described in
Section 2. For a more detailed description of numerical
details and an extensive compilation of computed

 transfer rates for a variety of spectral shapes we refer
to the report by Hasselmann and Hasselmann (1981).
Results for the special case of cross-sea interactions are
given by Young ef al. (1985b).

In Section 3 we summarize briefly the principal fea-
tures of these computations that are important for un-
derstanding the role of the nonlinear transfer in con-
troling the spectral shape and rate of development of
a growing wind-wave spectrum, and the adjustment of
the wave spectrum to changing winds. These features
must be reproduced by a satisfactory parameterization
scheme. In Section 4 we present as examples the non-
linear transfer computed for finite-depth wave spectra.
In Section 5, finally, we investigate the contributions
to the transfer integral from different regions of inter-
action phase space. These investigations are pertinent
to various approximations of the exact integral expres-
sion based on the narrow-peak expansion (Longuet-
Higgins, 1976; Fox, 1976; Dungey and Hui, 1979;
Herterich and Hasselmann, 1980) or the local inter-
action expansion (Part II). The phase space analysis
indicates that although these approximations capture
some of the salient features of the full integral expres-
sion, they are not sufficiently accurate to serve as ac-
ceptable parameterizations in wave models, and that
alternative parameterization approaches must therefore
be explored.

- 2. Computation of the nonlinear transfer in symmet-
rical interaction phase space

The source function S,,(k) describing the rate of
change of energy of the wave spectrum F(k) at the
wavenumber k4 due to nonlinear wave-wave interac-
tions is given by the Boltzmann integral expression

Slke) = ws f o0k, + ks — ks — ko)

X 8wy + w; — w3 — wa)[mny(n; + ny)

.= n3ng(ny + ny)ldk,dk,dk; (2.1)

where n; = n(k;) = F(k;)/w, represent action densities,
w; = (gk; tanhkh)'? (j = 1, - - - 4) wave frequencies,
h is the water depth, g the gravitational acceleration,
and o represents a net scattering coefficient which is
proportional to the square of a (rather complex) inter-
action coefficient (Hasselmann, 1962, 1963b).
Equation (2.1) describes the net energy received by
a given wave component k = k, due to interactions
with all combinations of quadruplets k;, k,, k3, kg
satisfying the resonance conditions expressed by the é-
functions in the integral. The form (2.1) is not sym-
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metrical in the four interacting wavenumber compo-
nents, since the wave component k, has been singled
out in considering the effect of the interactions. How-
ever, the interactions as such are completely symmet-
rical: the scattering coefficient ¢ is invariant with respect
to permutations of the wavenumbers, and the incre-
mental change of action is the same (except for a simple
sign rule) for all four components participating in a
given interaction (principle of detailed balance, cf.
Hasselmann, 1966). Thus the computation of the in-
tegrand in (2.1) for a particular infinitesimal element
dk,dk,dk; of the six-dimensional (6d) integration space
yields not only the'incremental rate of change of the
action density at the selected wavenumber k,, but also
the identical action changes occurring at the other thrée
wavenumbers k,, k, and k;. This additional infor-
mation is disregarded in the usual method of deter-
mining S, by straightforward numerical integration
of (2.1).

We adopt here an alternative technique for com-
puting .S,; which exploits the basic symmetry of the
interactions. The integration is carried out in the gen-
eral 8d-interaction space k,k,k;k,, the identical incre-
mental changes in action resulting from the interactions
within an infinitesimal phase volume element
dk,dk,dk;dk, being recorded simultancously for all
four interacting wavenumbers k,, k,, k; and k,. The
single evaluation of the general 8d-interaction integral
is basically equivalent to the evaluation of the 6d-in-
tegral (2.1) for the 2d-ensemble of wavenumbers k,.
However, the net phase volume can be reduced by a
factor of 8 through the exploitation of the symmetries
implied by the principle of detailed balance. A further
reflection symmetry of the interaction coefficient yields
an additional factor-2 saving in the calculation of the
cross section ¢ (this is not applicable to the spectral
product expression, however). Another advantage of
the symmetrical integration technique is that it auto-
matically ensures the conservation of energy, momen-
tum and action.

The method is most easily explained and visualized
in the particle picture. This provides particularly simple
rules for the exchange of action, energy and momentum
between resonantly interacting wave trains (cf. Has-
selmann, 1966). The wave trains may be represented
as finite wave packets that interact only during the finite
time span in which all four wave packets occupy the
same region of space. The mean exchange of action
(and energy and momentum) between the wave trains
during this period may be expressed in the analogous
particle picture in terms of the probability of creating
and annihilating “particles” or “wave packets” in a
collision process. In the particle analogy, the resonant
interaction between four wave components is repre-
sented as the sum of four “collision” processes between
“wave packets” or particles (Fig. 1). The collision
probabilities of the four processes, expressed in terms
of a probability density in the 8d-wavenumber phase
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(iii)
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FIG. 1. The four basic collision diagrams in the particle picture for
the quadruplet k,, k,, kj, kq satisfying the resonance conditions k,
+k2=k3+k4,w,+w2=w3+w4.

space of the four interacting wave components, is given
by

(1)  nyngny

(ll) mnanyg | @
(iii) mnshg [ 4 5(k1 + kz - ks - k3)
(iv)  monyng

X 6(0)1 + Wy — w3 — (.l)4)dk1dk2dk3(ik4 (2.2)

where the same scattering (collision) coefficient ¢ ap-
plies for all four processes. In each collision, the three
ingoing particles or antiparticles are annihilated, and
the outgoing particle is created. “Antiparticles” (ingoing
particles associated with negative frequency and wave-
number in the resonance conditions) are denoted by
cross bars in Fig. 1 and are associated with negative
energy, momentum and number (action) density .
The annihilation of an antiparticle is thus equivalent
to the creation of a particle. (Note that the particularly
simple rules used here for writing down transfer rates
for classical wave-wave interaction processes using a
particle analogy differ in some important details from
the normal boson particle interpretation—cf. Hassel-
mann, 1966). Applying these rules, the changes An; in
the particle number (i.e., wave action), per unit time,
for each of the four wavenumbers involved in the set
of four interactions of Fig. 1 are given by

An, —1
An2 - -1
Any 41 (W 2.3)
An4 +1
where
. P
dW=a-Z-dk,-dk2-dk3-dk4 2.4)
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o= O'(S(kl + kz - k3 - k4)5w1 + Wy — w3 — w4) (2.5)
P = niny(nsy + ng) — nsng(ny + ny). (2.6)

The integral (2.1) follows from (2.3)-(2.6) by inte-
grating Eq. (2.3) under the side condition that one of
the four wavenumbers is fixed. [A factor % enters in
(2.2), (2.4) because each of the four interacting wave-
numbers can be chosen in turn as the fixed wave-
number.]

However, the net energy transfer rate associated with
the differential form (2.4) can also be computed directly
by integrating over all interactions in the full 8d-inter-
action space and storing the four incremental changes
(2.3) of the action for each of the four wave components
involved in the elementary interaction sets in the ap-
propriate “bins” of a two-dimensional wavenumber
grid. The net rate of change of the action spectral den-
sity is obtained at the end of the integration by dividing
the change in action (particle number) computed for
each bin by the area of the bin. A useful feature of this
technique is that the wavenumber resolution of the
output of the integration can be chosen independently
of the integration grid.

Formally, the symmetrical integral method can be
derived from (2.1) by writing [dF(K4)/0f] = [ 8(Ks
— k4)[0F(k,)/0t]dk,, substituting the integral expression
for dF(k,)/dt into the right-hand side and considering
simultaneously the three similar expressions for the
output wavenumbers Kk, k5, k3. Except for the “bin
selection factor” 6(k; — k;), the same integral over 8d-
interaction space dk,dk,dksdk, is involved for all out-
put wavenumbers k', k5, kj and Kj.

In addition to the factor-8 saving derived from the
symmetries, another order-of-magnitude reduction in
computing time can be achieved in production runs
by precomputing the cross sections and prefiltering the
interaction phase space, retaining only those regions
of phase space that have been established as important
for a given type of spectrum in previous test compu-
tations.

The presence of the 5-functionsin (2.1), (2.5) reduces
the effective interaction space to a 5d-resonance hy-
persurface in the 8d-wavenumber space k k;k;k,. De-
tails on the removal of the é-functions, the exploitation
of symmetries, the introduction of stretched variables
to provide higher resolution in important regions of
the interaction space and other numerical aspects are
given by Hasselmann and Hasselmann (1981).

3. Principal properties of the nonlinear transfer

Since numerical computations of the nonlinear
transfer S, for various types of deep water spectra have
been published by a number of workers (Hasselmann,
1963b; Snodgrass et al., 1966; Sell and Hasselmann,
1972; Hasselmann ef al., 1973; Webb, 1978; Masuda,
1981) we limit ourselves here to a summary of the
principal properties of the source function S, referring
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to Hasselmann and Hasselmann (1981) and Young et
al. (1985b) for more extensive compilations of com-
putations. A satisfactory simulation of these features
is an important requirement for the parameterization
schemes discussed in Part II. We consider the modi-
fications induced by finite depth in Section 4.

1) For a two-dimensional spectrum

ag?

Q2n)?

(f= frequency, ¢ = wave propagation direction)
(3.1)

characterized by the frequency and energy scale pa-
rameters fm, and a, respectively, and with a given spec-
tral shape F(v, ¢), where v = f/f,,, the nonlinear transfer

scales as )
Sulfs @) = &S 7 Sulv, @) (3.2)

where S, is a nondimensional distribution that is de-
termined by the corresponding nondimensional dis-
tribution # and is independent of the scale parameters
(for finite depth waves, S,; depends also on the non-
dimensional depth parameter hf,,2/g). f. is usually
taken as the frequency of the peak of the spectrum and
a (where applicable) as Phillips’ constant. An alter-
native scaling which is sometimes useful is

S_nl(f; )= g_4€3fm8§nl(l'a ®) (3.3)

where € = [[ F(f, ¢)dfdp represents the total wave
energy (mean square surface displacement).

2) S,y typically has a 3-lobed positive-negative—
positive distribution. For a fully developed Pierson-
Moskowitz spectrum, the low-frequency positive lobe
-is located roughly at the spectral peak, while for a
growing wind-sea spectrum of the more sharply peaked
JONSWAP form the low-frequency positive lobe lies
slightly to the left of the peak on the forward face of
the spectrum (cf. II, Fig. 1). The nonlinear transfer is
approximately an order of magnitude larger for the
JONSWAP spectral shape than for the Pierson-Mos-
kowitz form. The strong dependence of the position
and magnitude of the positive lobe on the shape of the
spectrum is an important feature governing the evo-
lution of the wind wave spectrum.

3) The high-frequency positive lobe tends to have
a broader directional distribution than the other two
lobes. This is presumably one of the reasons for the
observed broadening of the spectral spreading function
towards higher frequencies.

4) The low frequency positive lobe is concentrated
in a narrow frequency band and also has a relatively
narrow directional distribution. There is a tendency to
develop relative maxima within this lobe on either side
of the mean propagation direction. This feature has
been discussed for the narrow-peak approximation by

F(f, 0) = I Fw, ¢)
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Longuet-Higgins (1976) and Fox (1976) and is respon-
sible for the horseshoe-shaped isoline structure of the
theoretical fully developed two-dimensional spectrum
obtained by numerical integration of the spectral energy
balance equation (cf. Komen et al., 1984).

5) The interactions are relatively short range in
wavenumber space (cf. also Section 5, and Part I1, Sec-
tion 4). Thus the strongest transfer rates are found
rather close to the spectral peak, particularly for sharply
peaked spectra. The interaction between a wind sea
and swell is normally negligible, unless the swell fre-
quency is so high that it falls within the wind-sea fre-
quency range (i.c., the swell has comparable wavelength
to the wind sea but is propagating in a different direc-
tion). In this case the swell is rapidly absorbed in the
wind sea (cf. Young et al., 1985b).

4. Finite depth effects

Equation (2.1) holds generally for a wave spectrum
in any water depth, provided the interactions can still
be regarded as weak, i.e., provided the interaction time
Tine = F/Sy is large compared with a characteristic
spectral time scale 74, defined by the inverse of the
peak width of the frequency spectrum. (The relevant
spectral time scale 7, is governed by the width of the
spectrum rather than a characteristic mean frequency,
since the usual weak-interaction two-time scale ap-
proximation involves replacing a narrow finite-time
resonance response function by a frequency é-func-
tion.) Since, with the exception of the report by Has-
selmann and Hasselmann (1981), previously published
computations of the nonlinear transfer have been lim-
ited to the infinite depth case, we discuss here a few
results for finite depth spectra. [We note that in the
original expression for the finite-depth interaction cross
section given by Hasselmann (1962), two terms were
overlooked; the correct expression is given by Herterich
and Hasselmann (1980, Appendix B)].

To compare the finite depth case with the infinite
depth results, the source functions S,; were computed
for a series of identical spectra F{( £, 0) for different water
depths. As reference spectrum we chose a JONSWAP
spectrum with a Mitsuyasu-Hasselmann-type fre-
quency-dependent spreading function [¢f. II, Egs. (2.1)~
(2.5), and Fig. 4a].

Figures 2a—f show the one-dimensional distribution
S.(f) for various values of the depth parameter kA,
where k,, is the wavenumber corresponding to the peak
frequency f,, = w,,/27 as given by the dispersion re-
lation w,,> = gk,, tanhk,,h. Also shown in each panel
is the corresponding deep-water source function Sy,
rescaled by a factor R’ such that R'Sy = S5 agrees as
closely as possible with the finite-depth source function.
For ks = 0.8 the shape of the finite-depth source
function S, is seen to be very similar to the shape of
the infinite-depth source function, although at kA
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FIG. 2. One-dimensional source functions S,; computed for different water depths for a JONSWAP spectrum with a Mitsuyasu-Hasselmann
spreading factor (cf. Fig. 4a). Also shown are the appropriately scaled source functions Sp for infinite depth.

= (.8 the magnitude is already twice that of the infinite
depth case. The shape similarity holds also for the di-
rectional distributions (not shown here, cf. Hasselmann
and Hasselmann, 1981). These results are consistent
with the conclusions of Herterich and Hasselmann
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(1980) based on similarity arguments for the narrow-

peak approximation. However,

the increase of the fac-

tor R' with decreasing k.4 is greater for the exact com-
putations than inferred from the narrow-peak approx-

imation (cf. Fig. 3).
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FIG. 3. Ratios R’ of the nonlinear transfer for finite-depth and
infinite-depth wave spectra as inferred from the exact computations
of Fig. 2 and as derived from the narrow-peak approximation (from
Herterich and Hasselmann, 1980). '

For k,h < 0.4 the nonlinear transfer exceeds the
deep water values by more than an order of magnitude,
and the weak nonlinear approximation becomes ques-
tionable (Fig. 3). This is also the region in which the
distortions in the distribution of S,; become most pro-
nounced. However, the general three-lobe structure of
the transfer function is retained for all &,/ values (as
required by the simultaneous conservation of energy
and action), and it may therefore be concluded that
the effect of the nonlinear transfer on the evolution of
the wave spectrum is qualitatively similar in the finite
depth and infinite depth cases.

Instead of relating the finite depth calculations to
the infinite depth case through a fixed reference fre-
quency spectrum we could also have chosen a fixed
reference spectrum with respect to wavenumber. This
would be more in keeping, for example, with various
scaling hypotheses for the high-wavenumber region of
the spectrum (Phillips, 1958; Kitaigorodskii e7 al., 1975;
Kitaigorodskii, 1983; Bouws et al., 1985a,b). However,
a wavenumber reference spectrum is perhaps less ap-
propriate for the energy containing region of the spec-
trum, since it shifts the finite-depth peak frequency to
lower values than the deep water value, whereas the
opposite is observed empirically. The choice of refer-
ence spectrum is essentially arbitrary, since the struc-
ture of the energy balance in terms of the input, dis-
sipation and nonlinear transfer processes cannot in
general be expected to be simply related for the infinite
depth and finite depth cases (cf. Bouws and Komen,
1983).

For a wavenumber reference spectrum, the theoret-
ical scaling factor R’ for the narrow-peak approximation
is found to be reduced by a factor (tanhk,,n)*%. (The
same scaling factors may be expected to apply to first
order also for the local-interaction approximation dis-
cussed in II). If this factor is applied to the R’ curve of
Fig. 3, the finite-depth nonlinear transfer is found to
be significantly depressed below the infinite depth value
in the region 0.5 < k,,,4 < 1.5. If the nonlinear transfer
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plays a similarly significant role in the energy balance
of finite-depth waves as in the infinite depth case, a
universal, depth-independent scaling of the wavenum-
ber spectrum cannot hold. We should expect qualita-
tively a depth scaling intermediate between a depth-
independent frequency and a depth-independent
wavenumber spectrum.

5. Contributions to the Boltzmann integral from dif-
ferent regions of interaction phase space

Various approximations of the full Boltzmann in-
teraction integral have been proposed on the premise
that only limited subregions of the full interaction space
contribute significantly to the integral. In the local in-
teraction approximation (Part 1I) the dominant inter-
action region is assumed to lie in the vicinity of the
center point k = (k; + k;)/2 = (k; + k4)/2 of Longuet-
Higgins’s “figure-of-eight” interaction diagram (cf.

- Hasselmann, 1963b; and II, Fig. 6), while in the narrow-

peak approximation (Longuet-Higgins, 1976; Fox,
1976; Dungey and Hui, 1979; Herterich and Hassel-
mann, 1980) only interactions in the neighborhood of
the spectral peak k,, are considered. The latter restric-
tion automatically ensures that all interacting wave-
numbers also lie in the neighborhood of k, and
that k ~ k,,. In the local-interaction approximation,
on the other hand, k is free to vary throughout the 2d-
wavenumber plane. The two approximations also differ
in the assumptions and details of the expansions
(sharply peaked cross sections in the first case, sharply
peaked spectra in the second). In this section we in-
vestigate the basic assumptions of the two approxi-
mations regarding the importance of particular regions
of interaction space, without entering into the details
of the expansion procedures. As reference spectrum
we choose the same JONSWAP spectrum with a Mit-
suyasu-Hasselmann spreading function as in the pre-
vious section.

Figure 4 shows the two-dimensional wave spectrum
(panel a), the complete integral computation of S,
(panel b) and two filtered integral computations ap-
propriate for the local interaction approximation, in
which only those wavenumber quadruplets are retained
for which all components lie within circles |k; — k|
< |kl|/2 (panel ¢) or |k; — k| < |k|/4 (panel d) around
k. While panel c still indicates a reasonably good agree-
ment with the exact calculation of panel b, panel d
shows that if the interaction region is restricted further
to a 25% radius circle around k, the nonlinear transfer
is strongly reduced to about s of its exact value. Since
a limitation to a radius of this order of magnitude is
needed to apply the higher-order differential diffusion
operator resulting from the local-interaction expansion
with some confidence, it is not surprising that this ap-
proximation exhibits deficiencies. Even if the local-in-
teraction result is rescaled to agree in magnitude with
the exact computations, the shape of the 3-lobe distri-
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FIG. 4. Two-dimensional wave spectrum (panel a) and source functions computed by integrating over the full interactioh space (panel b)
and over limited regions |k; — k| < |k|/2 (panel ¢) and [k — k| < |K}/4 (panel d) around the central interaction wavenumber k.

bution in panel d is seen to be too narrow. This is,
indeed, precisely one of the shortcomings evident in
the diffusion-operator parameterization (cf. Part II).
Panel d also explains another deficiency of the diffu-
sion-operator approximation: the ratios of the values
of S, obtained for strongly peaked (fetch limited JON-
SWAP) spectra relative to less strongly peaked (fully

developed Pierson-Moskowitz) spectra are too large. -
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This comes about because for sharply peaked spectra
a larger proportion of the transfer is provided by the
interactions in the neighborhood of the peak, which
are retained in the local-interaction approximation.
A comparison of panels ¢ and d, finally, explains
why the alternative discrete-interaction parameteriza-
tion (cf. Part II) is more successful. The dominant con-
tribution to the nonlinear transfer is clearly provided
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FIG. 5. Complementary contributions to the complete source
function shown in Fig. 4b from interactions involving at least one
wavenumber k; in the vicinity of the spectral peak K., |k; — kil
< |K,.//4 (panel a) and interactions involving no wavenumber in the
vicinity of the peak, [k; — k| > |k,x|/4 for all k; (panel b).

by the interactions in the k,,/2-circle region of panel
¢, but excluding the k,,/4-region of panel d, i.e., by
interactions in the “ring” region

|k; — K,ul > K,,/4 for at least one k;
Ik; — K| < kp/2  for all k;
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The optimal interaction configurations derived
(empirically) for the discrete-interaction parameteriza-
tion are found to lie precisely in this ring region.

The contributions from the different phase-space
regions relevant for the narrow-peak approximation
are shown in Fig. 5. Panel a shows the nonlinear trans-
fer resulting from all interactions involving the spectral-
peak region (at least one k; in the region |k; — k|
< |kn|/4) while panel b shows the contribution from
the complementary set of interactions in which none
of the wavenumbers lies in the peak region (|k; — K,
> |k,,|/4 for all k;). The sum of these two contributions
yields the total transfer shown in Fig. 4b.

As expected, the interactions involving the peak re-
produce the exact expression very well in the neigh-
borhood of the peak, while the complementary set of
interactions captures most of the transfer at high wave-
numbers, where the net transfer is quasi-local in wave-
number space (cf. Hasselmann, 1963b). However, in
the important transition region 1.2w,, € w <€ 1.5w,,,
which normally contains a large fraction of the total
wind input and dissipation (cf. Komen et al., 1984),
the contributions from both types of interaction are
comparable. Although this analysis does not mirror
the narrow-peak approximations exactly (these require
more strictly that not just one, but all interacting wave-
numbers lie in the neighborhood of the peak, while on
the other hand the peak can extend beyond the sharp
limits defined here) it appears that the narrow-peak
approach is too restricted for a general simulation of
the full spectral energy balance, including both pro-
cesses in the peak region and the coupling between the
peak region and the higher-wavenumber range in which
most of the dissipation takes place.
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