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ABSTRACT

Many parameters that measure climatic variability have nonstationary statistics, that is, they depend
strongly on the phase of the annual cycle. In this case normal statistical analysis techniques based on
time-invariant models are inappropriate. Generalized methods accounting for seasonal nonstationarity
{phase averaged or cyclostationary models) have been developed to treat such data.

The methods are applied to the problem of predicting El Nifio off South America. It is shown that
El Nifos may be predicted up to a year in advance with considerably more confidence and accuracy
using phase-averaged models than with time-invariant models.

In a second application surface air temperature anomalies are predicted over North America from
Pacific Ocean sea surface temperatures. Again, the phase-averaged models consistently outperform

models based on standard. statistical procedures.

1. Imtroduction

Most methods of linear prediction assume the
statistics of the data fields to be time invariant. Re-
cent summaries of this work, as it applies to geo-
physics and particularly climate prediction, may be
found in Davis (1978), Hasselmann (1979), and
Barnett and Hasselmann (1979, hereafter called
BH). In the present paper we modify the latter
work to include situations in which the statistics
are periodic in time. Similar techniques have been
applied in other fields, particularly in econometrics
(cf. Parzen and Pagano, 1979; Pierce, 1980; Zellner,
1979; and Swamy and Tinsley, 1976). However, a
general application in meteorology does not appear
to have been previously published. The generaliza-
tion of BH to include seasonality yields a method
of statistical modeling applicable to climatic
phenomena which show strong dependence on the
phase of the annual cycle, such as the effect of air/sea
heat flux variations on the atmospheric system.
‘Numerous analyses of climatic data sets suggest
such methods will be required in many regions of the
world.

After the derivation of the general method of
modeling systems with periodic statistics in Sections
2-5, the technique is illustrated in Section 6 by
application to two examples of general practical
interest, the forecasting of El Niiio events and the
prediction of surface air temperature over North
America. The results are compared with those ob-
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tained from current time-invariant and simple
seasonally stratified (fixed-phase) models.

2. The unfiltered general case

Consider a discrete predictand time series y(¢)
which we attempt to estimate g time lags into the
future using past and present values of a set of n
predictor time series x;{¢) by means of a general
linear relation

m m

Yt +q) =3 ¥ Digxi(t - 1),

i=1 =0

M

where y denotes the predicted value as opposed to
the true value y and the dependence on the lead time
index g is implicit in the coefficient D;,;. In contrast
to BH we do not regard the system as time-
invariant (D;,; independent of the reference time ¢),
but assume instead that D, is periodic in ¢ with a
basic periodicity p,

Dy, = Di(t+p)l = Dy, (2)

where « = t(modp), i.e., t = pv + k, where v is an
integer and 0 < x < p — 1. In our applications the
periodicity corresponds to the annual cycle with
p = 12 or 4 for monthly or seasonal data; « is then
a month or season of the year, and v is the year
index.

Similarly, assume that all statistical quantities
are invariant with respect to a time shift p, e.g.,
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(DXt + DY | g
= (xt + Pt + 1+ ) = R, ), ()

where angle brackets denote ensemble means.
Processes whose * second moments satisfy the
periodicity condition (3) are often referred to as
cyclostationary in the wide sense with period p (cf.

Gardner, 1978).
The least-squares solution of (1) is obtained by

minimizing
(@) = yOP) = e @)

Since the system is not statistically stationary,
the quantity €, is not time invariant, but depends
on the phase « of the annual cycle. Thus, in contrast
to the time-invariant case, we now have not one but
_p least-squares solutions, one for each month/season
x. We note that the seasonality can occur inde-
pendently in the second moments of the predictand,
in the predictors, or in the covariances of the
predictand and predictors. Only the latter two lead
to seasonally dependent coefficients D,,; represent-
ing the coupling \between the predictors and the
predictand.

The problem is separable with respect to x. For
each «, the least-squares solution is found exactly
as in the time-invariant case. This may be seen by
rewriting Eq. (1) as

yw) = ¥ Dix&), &)

where

Y) = 3(th+a)s

xg() = x(tk-0),
with

e =pv + K,
Dg = Dikl

and a = (i, D). .

For fixed phase « (month, season), Eq. (5) is
identical to the time-invariant prediction problem,
with the exception that the time v changes by units
of one year. By seeking the minimum of (4) for each
k one obtains a set of optimal prediction coef-
ficients D, for each k. This class of models we
call fixed-phase models, for they are solved ex-
plicitly for each of the p phase elements of the
annual cycle, with no approximation or filtering. The
error analysis, model nesting techniques, EOF
ordering, etc., all carry over as in the time-
invariant case described in BH and Barnett (1981a).
However, the estimates of moments are not formed
as time averages over all points of the time series,
but as averages over consecutive years v at the
same phase x (month). Thus the estimate of the
covariance function (3), for example, is given by

-~ N )
Rifc, D = N7' Y x{t)x{tis),

v=1

where N is the length of the data sets in years.

(6
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The form (6) has to be kept in mind when deter-
mining the estimation errors of the covariance
matrices given in the Appendix of BH. It yields
higher estimation errors than averages taken over
all time points and so makes it harder to con-
struct a statistically significant model. This is be-
cause the number of statistically independent con-
tributions to the sum in Eq. (6) is generally of
order N, whereas for continuous time averaging
the appropriate number is N/r, where 7 is the
correlation time scale (in years), which in many
applications is of order 0.3-0.5.

3. Smoothing the x-dependence

To construct a statistically significant prediction
model, the number of coefficients must be limited.
However, if the modulated prediction problem is
treated with the full annual-cycle resolution, as
described above, a large number of coefficients is
unavoidable. It is possible to reduce the number
with respect to the predictor and lag indices / and /,
for each k, by the techniques described in BH, but
one still requires a separate set of coefficients for
each phase value . The large number of coefficients
is partly offset by the fact that in the modulated pre-
diction problem more information is used, namely,
the full « dependence of the lagged covariance
functions (3). However, the net effect of working
with the full annual cycle resolution is generally to
increase the statistical indeterminacy. Essentially,
this is due simply to the larger sampling errors as-
sociated with averaging over a time series with an-
nual rather than monthly or seasonal increments.

Improved statistical significance may be obtained
by sacrificing some annual-cycle resolution. This
may be achieved by representing the x dependence
of the coefficients by a smaller number of basis
functions.

An obvious choice of basis functions is the Fourier
expansion

D = E Eipgs(K), )]
B=1
with
2mK
g, =1, g2=cos( ),
p
g = sin(z.—mi) @)
p

and s < p. In many applications a termination of
the series at s = 3 will be adequate. This procedure
yields a phase-averaged model in which the « de-
pendence of the prediction is smoothed and the num-
ber of independent coefficients thereby reduced.
[We note that a fixed phase model as defined in Sec-
tion 2 can be formally included in the definition (7)
by defining the basis functions g as ‘‘box car’’ func-
tions. However, for small s this generally yields a

2
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less accurate description of a continuous system
than a Fourier expansion, as is borne out in the
examples considered in Section 6.]

If the representation (7) is introduced, all 12 X N
months or4 X N seasons of data must be used simul-
taneously in the least-squares determination of the
coefficients, and the separability of the seasonal
dependence is lost. On the other hand, the trade-off
between the number of predictor fields, number of
lags and resolution of the seasonal cycle can now
be combined and varied at will. The main advantage
of expanding the seasonal dependence of the model
is this flexibility in the choice of trade-off. In keeping
with the discussion of BH, however, it is essential
that the combination of desired resolution char-
acteristics is defined a priori in a one-dimensional
model hierarchy.

The phase-averaged model becomes equivalent
to the fixed-phase model in the full-resolution limit
s = p. In many applications, however, the model
hierarchy must be broken off before this limit is
reached. In this case the fixed-phase model (although
of higher apparent skill) must be rejected as statis-
tically insignificant, whereas a less ambitious (al-
though, less skillful) model with s < p may remain
statistically significant.

Substituting (7) into (1), one obtains

' m 8

V(g = 2 2 2 Eipgp(K)xi(tisy).

i=1 =0 B=1

®

Compressing the subscripts (i, [) again into «, this
may be written more concisely as

)’}(IZMI) = z z EaﬂgB(K)xa(tZL

(10)
a=1 B=1
where r = m’' X m and x(t%) = x,(t%_).
Introducing the new predictors
xa(£0)8(K) = 24(1), (11

where vy = (a, B) and ¢ again represents the original
discrete time variable running through the entire
time series, one finally obtains

¥t +q) = i ayz(t),

r=1

(12)

where n = m' X m X s and a, = E .

Eq. (12)is seen to be formally identical to the time-
invariant prediction model considered in BH. How-
ever, the statistics of the variables 7, z, are not time
invariant. Thus the expectation value of the square
error ¢,2, Eq. (4), depends still on the phase «. The
optimal model may be defined then as the solution
which minimizes the phase-averaged error e?
= ¥ . G2, where G, is some arbitrarily chosen
positive weighting distribution. In the following we
set G, = 1. The analysis for determining the least-
squares solution reduces in this case to the time-
invariant case. :
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Following the standard time-invariant procedure,
it is convenient to orthonormalize the predictor time
series by defining new predictors

() = 3 owzi' (DT gy, (13)
k

where o,? represent eigenvalues and Ty, are the

eigenvectors of (z,z;). The transformation (13)

yields (z;'z;/) = §;;. In this coordinate system the

prediction coefficients a,” become simply

a, = (¥'zy'), (14)

where y' is the predictand scaled by its standard
deviation, so that ((y’)?) = 1 (see BH).

The hindcast skill of the model in the coordinate
system defined by (13) is given by

Sy = Y (a))

=1

(15)

Eq. (15) represents the hindcast skill averaged over
all seasons. We shall also consider later a fixed-
phase hindcast skill S dependent on the season
(month), defined as the average of the skill for given
« over all years. ‘

4. Modei order and significance

The model skill §; [Eq. (15)] increases mono-
tonically with the order n (number of predictors)
of a model. However, the statistical significance of
a model generally decreases with n. A central prob-
lem in constructing models from data, therefore, is
arriving at a proper balance between model skill and
significance. Methods for doing this are discussed in
BH, Hasselmann (1979), and Barnett (1981a). The
relevant relations for the present applications are
summarized below.

The significance of a model can be expressed in
terms of the statistic

p’ =3 M;8a,8a;,

i

(16)

where 8a,’ = a;,/ — a;° denotes the difference be-
tween the least-squares-fit model parameters esti-
mated from a single, finite data realization and the
“true’” model a;® derived from a (hypothetical)
infinite data ensemble. The matrix M;; = (8a,' da;")
represents the covariance matrix of sampling errors.
The statistic p* can be seen to be a x* variable with
n degrees of freedom (orthogonalization of the vari-
ables 8a;’ yields the sum of n squares). A model of
order n can accordingly be defined as statistically
significant at the confidence level ¢ with respect to
the null hypothesis of zero predictability, a;' = 0,
if p? exceeds the appropriate critical value x,.? of
the variable x,? for this confidence level.

The expression (16) corresponds to the quadratic
form with the highest ‘‘equivalent number of degrees
of freedom’ or, expressed geometrically, to the
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FiG. 1. Model significance tests: El Nifo prediction at 12-month
lead. The significance parameter (p?) is shown for the time-
invariant model A+, phase-averaged models Apsv and fixed phase

- models Ap. The 90% confidence limit is also indicated.

quadratic form whose ellipsoidal isosurfaces p?
= const. bound the smallest spatial volume for a given
probability volume (cf. Miiller et al., 1978; Hassel-
mann, 1979, BH). In this sense p? defines an optimal
statistic for significance tests. An alternative quad-
ratic form which is also often used to assess model
significance is the skill (which can be compared
against the artificial skill of the null model a,® = 0).
However, this statistic generally is characterized by
a smaller equivalent number of degrees of freedom
and provides less discrimination than the statistic p?.

To arrive at a suitable trade-off between model
skill and significance, the significance test is applied
not simply to a single model, but to a hierarchy of
models. Following BH, the selection of an optimal
model from a model hierarchy is carried out in a
series of steps:

1) The complete set of potential predictors is first
orthogonalized and then ordered with respect to their
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variance, i.e., with respect to the eigenvalues
of (ziz;).

2) The eigenvectors of this set are then filtered
to eliminate higher order predictors that are in-
distinguishable from spatial/temporal white noise.
(cf. Preisendorfer and Barnett, 1977). This reduces
the original (large) predictor set to a group of N,
ordered orthogonal predictors, thereby prescribing
an upper limit (N ) on the possible order of the
model.

3) A nested model hierarchy is then considered,
consisting of models using the first, firsttwo, . . . ,
first n, . . . , all N predictors. For each member
(n) of the hierarchy the statistic p,? is evaluated.

4) Finally, an optimal model is selected from the
hierarchy, and the significance of the selected model
is evaluated.

In BH a selection criterion was suggested in which
the model with the largest n was chosen for which
the model (n) and all lower order models exceeded
a prescribed confidence level c: p,® > xm® for
all m in 1 < m < n. In practice, the requirement
that all models in the range 1 < m < n exceed a
given probability level without exception can repre-
sent a very stringent condition, requiring particu-
larly good a priori insight into the proper order-
ing of the lowest order predictors. In the examples
discussed in BH the condition was actually tacitly
relaxed by accepting models for which the higher
order members of the hierarchy were all significant
up to the cutoff, but the first one or two were insig-
nificant. However, it" has been pointed out by R.
Davis (private communication) that the number of
insignificant models ‘‘ignored’’ at the beginning of
the hierarchy can have a non-negligible influence on
the true significance of the selected high-order
model, and the selection criterion should there-
fore be clearly defined a priori in order to properly
evaluate the statistical significance of the final
optimal model.

A number of possible selection criteria have been
discussed and evaluated statistically (by Monte Carlo
simulations) in Barnett ez al. (1981). In the follow-
ing examples we adopt the simplest strategy in which
the “‘optimal’’ model is defined as the model (n)
whose p,? value yields the highest individual sig-
nificance level of the entire set 1 < n < N. Since the
model (n) is selected from a larger set of competi-
tors, the true significance of the optimal model can-
not be obtained simply by entering the statistic p,>
in a standard yx,” table, but must be inferred (as a
function of p,? and N) from the results of the numeri-
cal experiments presented in Barnett et al. (1981).

5. Interpreting model results

In BH the analogy between the prediction coef-
ficients a,’ and Green’s functions are discussed.
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Fi1G. 2. Skill, by month, for various one-year-in-advance El Nifio prediction models.
Skill values are in percent.

It was shown that empirical statistical prediction
models can generally be related to predictions
derived from differential equations with appropriate
driving fields. For a similar interpretation of the sea-
sonally modulated case it is convenient to divide the
net prediction coefficients (response functions) into
their seasonally varying components. Substitution
of (7) into (10) yields for a phase-averaged Fourier
model, with s = 3,

$( + q) = Y xo()[Ey + Eqe cosQarp™)

o

+ E. sinwxp™)], (17)

where the x dependence has been written out ex-
plicitly in the harmonic terms and « represents, as
before, the combined lag subscript / and predictor
variable subscript i. The relation between a,’ and
E,z is given by (13) and (14).

The coefficients E,, correspond to the standard
time-invariant response functions used in BH,
whereas the coefficients E,, and E; describe the
seasonality or nonstationarity of the response func-
tion. Thus, if ‘Eml > (E? + Ey3?)'* the prediction
is essentially stationary to first order and expansions
of the form (7) and (8) are unnecessary. If, on the
other hand, the seasonal coefficients (E,., E3) are
comparable with E,,, the associated time series are
nonstationary and the dependence on seasonal
phase must be included in the analysis of their prop-
erties (or in the construction of differential equa-
tions designed to simulate their behavior).

The phase of the seasonal harmonic of the net
coefficient D4 = E, + Ey cosQRmkp™) + E4; sin
X Qukp) is 0 = tan"Y(E/Ey). We adopt the
convention that « = 0 corresponds to winter (sea-
sonal data) or January (monthly data), so that 8 = 0
or 7 implies maximal seasonal modulation between
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winter and summer (or January and July). A strong
seasonal modulation of D¥ implies that the seasonal
variability of the predictand cannot be explained
alone by the seasonal variability of the predictor,
but must be due to a seasonal change of the physical
processes which link the two. In the examples we
investigated the modulation of DX was generally
pronounced.

6. Examples

We illustrate the results of the previous sections
by two examples of particular practical interest:
1) the prediction of sea surface temperature (SST)
anomalies off Peru, i.e., El Nifio events and 2) the
prediction of air temperature over North America.

a. Predicting El Nifo

Barnett (1981a) used the time invariant formalisms
of BH to show that El Nifio events may be predicted
marginally at lead times of one year from knowledge
of the trade wind field (TWF) alone. No effort was
made to optimize the model. However, it was pointed
out in that study and elsewhere that SST in the
tropical Pacific has a high level of persistence and is
intimately related to the east/west slope of sea level
across the ocean basin. It also is known, from a
variety of sources, that El Nifios tend to occur at
certain seasons of the year. We now use these facts
to construct a more detailed El Nifo prediction
model for a lead time of one year.

As predictand, we consider the SST anomaly at
Talara, Peru. The predictors consist of several
regions of the TWF found useful in predicting ocean/
atmosphere variables in the tropical Pacific, a meas-
ure of the east/west sea level slope variability, and
prior values of the predictand. All data series rep-
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F1G. 3. Prediction coefficients relating SST and trade wind strength
from El Nifo prediction models at 12-month lead.

resent monthly values extending over 20 years.
More details on the predictand/predictors definition
and characteristics are given in Barnett (1981a).
After orthonormalization [Eq. (13)] and subsequent
filtering by the Preisendorfer-Barnett (1977) tech-
nique, only eight predictor time series remained
for model building.

Three prediction models were constructed. The
first (Ar,) was time invariant. The second (Agp) was
a fixed-phase model designed to forecast Talara SST
in July, a time when El Nifios normally reach high
1ntens1ty The third model (Apay) was a first-har-
monic (s = 3) phase-averaged model of the form
(9). All predictions were made for a lead time of one
year and used the previous 12 months’ data in the
lagged predictor fields.

The significance measures of the models are shown
in Fig. 1. Model Ay (time-invariant) is significant
at the 90% level, as is model Ap,v (nonstationary).
Model App, the fixed-phase model for July, is not
significant for any order.

The seasonally dependent skill §4 of each model
is shown in Fig. 2. The model Agp had a high skill
(76%), but was not significant at even the 90% level
and must, therefore, be rejected. (This stresses again
the fact that model skill and significance are not
synonymous.) The mean skill of Ay, indicated by
(An), is 26%., Although the time invariant model
assumes a constant skill, the actual evaluation of
Ar; on a monthly basis shows the skill to vary widely

over the course of the year. In October, November

and January the skill is negative. The model does
well during the summer. It is clear that the average
skill normally associated with such a time-invariant
model (26%) is misleading in a nonstationary situa-
tion. The continuous, nonstationary model (Apav)
shows positive skill for all months. The skill is
particularly strong during the summer when El Nifos
generally reach their highest intensity.

As example of the model transfer functions (Sec-
tion 5), Fig. 3 shows the coefficients relating the
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prior years variations of one of the predictors (the
zonal component of the southeast trade winds,
USET) to the year-in-advance SST fluctuations. For
the time-invariant model, only E,; exists; its lag
dependence is indicated by the curve Ay. The sea-
sonally modulated response functions for Ap,y are
shown for January and July (since the phase 8
= arctan(E;/E,;) is approximately 0 or = for this
predictor, the months shown correspond to the max-
imal and minimal values of the net coefficients). The
Ar results show a strong (time-lagged) net correla-
tion between USET and'SST averaged over the year.
The Ap,v results, on the other hand, show that this
relation in fact exists for summer fluctuations in
SST, but not winter variations (this implies, for
0 =0, E,, = E,5). The predictive relationship is
clearly determined largely by the covariance of the
predictor with the summer SST anomalies. This ex-
plains why for summer the skill of the model A
is nearly as good as the skill from Ap,vy. It also ex-
plains the negative skill of At; during the winter, for
the assumed predictand/predictor relationship does
not hold for this season; it is merely an artifact of
the strong summertime correlation.

JACKSONVILLE

20—

MODEL ORDER

FiG. 4. Model significance tests. North American surface
air temperature at one-season lead.
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Fi1G. 5. Skill of hindcasting North American surface air temperature one season in advance. Left: an-
nual average skill for phase-averaged (upper) and time invariant (lower) models; right: winter skill for
phase-averaged (upper) and fixed phase (lower) models.

b. Predicting seasonal air temperature over North
America ’

The relation between fluctuations in ocean/
atmosphere parameters in the Pacific and subsequent
air temperature anomalies over North America
further illustrate the ideas of Sections 3 and 4. A
detailed analysis of the Pacific/North American in-
. teractions is given elsewhere (Barnett, 1981b). Here
we excerpt from that study some of the results relat-
ing SST to air-temperature prediction.

Three prediction models are again constructed:
1) model B; assumed the statistics of all daia series
were stationary; 2) models By were fixed phase,
designed to predict only one season at a time, and
3) model Bp,y was a phase-average model of the
form (9). In this case the difference between models
Byp and Bp,v is rather small because the time series
consisted of seasonally averaged data (for the
period 1902-72) and the number of free coefficients
in Bp,y is therefore only one less than in Byp. All
models forecast air temperature at a lead time of one
season and used the previous four seasons data in the
SST predictor field. The SST predictors come from
equatorial and midlatitude regions identified by
Bjerknes (1966, 1969) and Namias (1975), respec-
tively, as being potentially important to subsequent
events over North America.

The significance measure of the models is shown
in Fig. 4 for a typical station (Jacksonville). A model

of the form Br; could not be constructed at this sta-
tion with 90% significance. Fixed phase models
(Brp) were found to be significant (>90%) for three
seasons of the year. The highest and lowest p? dis-
tributions for these models are shown. The other
two seasons fall between these extremes. The skill
of the significant fixed-phase models ranged from
6-22%. This range, plus the seasonal dependence,
explains the poor performance of Br. The phase
averaged model was significant at a higher level than
its competitors, as expected.

The skill values for the different classes of model
are shown in Fig. 5 for 36 North American stations.
The left-hand panels show the annually averaged
skill for stationary (Bq;) and phase-averaged (Bpav)
models. These averages are somewhat misleading,
however, since they contain strong seasonal vari-
ability. The seasonal character of the ocean/atmos-
phere interaction that gave the predictive skill
(Barnett, 1981b) clearly makes By inferior to Bp,y.
Comparison of the ability of models Bgp and Bpav
to forecast winter air temperatures is shown in the
right-hand panel of Fig. 5. The fixed-phase models
have somewhat higher skill at many individual sta-
tions, as expected, since the models were tuned for
the particular station/season forecast. Note, how-
ever, that models of the form Bgp could not be con-
structed at many stations where Bp,y shows low,
but significant skill.

We note that significant models Bp,v occasionally
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Fi1G. 6. Seasonally modulated prediction coefficients relating
equatorial sea surface temperature and North American surface
air témperature at one season lead.

produce negative skill scores at some stations/
seasons. In most cases this occurred when the sta-
tion was rather strongly predictable in only one
season, and the representation of the seasonal
modulation in terms of the lowest harmonic yielded
a rather poor approximation. Models By, also gen-
erally gave negative skills for these stations/seasons.
Models of the form Byp could generally not be con-
structed in these cases at an acceptable level of
significance.

Examples of the seasonally modulated response
functions with respect to the most important pre-
dictor, SST off Peru, are shown in the upper panels
of Fig. 6 for two widely separated individual pre-
dictand stations, Mobil and Winnepeg. A systematic
representation of these response functions for the

entire predictand field can be developed in terms:

of principal predictors (cf. Davis, 1978; Barnett,
1981b). In the present case the technique yields as
dominant interaction the response function relatmg
SST off South America (predictor) to the numeri-
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‘cally largest pattém of predictable air temperature

fluctuations over North America (lower part of Fig.
6). The strong seasonality of the interaction stands
out clearly in all three examples. Winter forecast
skill is strongly dependent on the equatorial SST
during the prior three seasons (fall-spring). The
summer forecast, on the other hand, is only weakly
dependent on equatorial SST (or, indeed, any other
predictor, since summer predictability is much lower
than that obtained for winter). The stationary models
By, yield a strong net coupling between the tropics
and midlatitudesaveraged over the year. This an-
nually averaged correlation is misleading, however,
since the neglect of seasonal modulation in this
model leads to negative skill scores for many sta-
tions/seasons (not shown), as illustrated previously
in the example of Section 5a.

7. Conclusions

-A general approach for modeling systems with
periodic statistics has been developed. The tech-
niques should be particularly useful for short- and
medium-range climate prediction, for which the
strong annual variability of the basic climatic sys-
tem cannot be neglected. To achieve maximal sta-
tistical significance, phase-averaged models were
introduced, in which the model coefficients were
expanded in a harmonic series and statistical aver-
ages were estimated by continuous time averages
over the entire time series. The method enables all
available data to be used in the estimation of a rela-
tively small number of model coefficients. The
technique may be contrasted with fixed-phase
models constructed for a single time point of the
cycle. Although conceptually simpler, these must
necessarily be derived from a smaller data base (for
a given phase) and therefore are more difficult to
construct with adequate statistical significance.’

Both model types were tested together with stand-
ard time-invariant models in two hindcasting exam-
ples: 1) the prediction, one year in advance, of El
Nifio conditions off South America, and 2) the sea-
sonal forecasting of surface air temperature anoma-
lies over North America. In both cases significant
predictability was obtained with phase averaged
models, but not always with the time-invariant
models. The phase-averaged models were found to
be superior to both time-invariant and fixed-phase
models in both examples.
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