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ABSTRACT

The horizontal dispersion of tracers in the presence of a random field of ocean surface waves is examined.
Random fluctuations in the local Stokes-drift current cause a water particle to follow a random-walk path.
The associated diffusion coefficients for individual particles, particle pairs and a continuous tracer patch
can be calculated rigorously within the framework of perturbation analysis. For a fully developed Pierson-
Moskowitz wave spectrum all diffusion coefficients scale as the third power of the wind speed and are
typically of the order 102 m? s™! for a wind speed of 10 m s™'. The diffusion coefficients are strongly
anisotropic and decrease approximately exponentially with depth below the sea surface.

1. Physical mechanism of wave-induced dispersion

Observations of the horizontal dispersion of tracers
in the upper layer of the ocean are usually interpreted
in terms of eddy diffusion processes. A basic diffi-
culty in modeling these processes is the broad range
of scales of the natural eddy spectrum of the ocean,
which normally makes it impossible to separate the
space or time scales of the tracer distribution from
the scales of the mixing eddies. Thus classical Fickian
diffusion theories, which require that the scale of the
mixing eddies be small compared to the scale of the

* tracer distribution, are not applicable. Models of the
dispersion of tracers by oceanic turbulence have
therefore largely been limited to semi-empirical scal-
ing relations based on rather simple dimensional ar-
guments (cf. Okubo, 1962).

Although horizontal eddies of approximately the
same scale as the tracer distribution are probably
responsible for mixing at scales larger than a few
kilometers, there is some evidence that for smaller
scales surface waves may yield an equally important
contribution to horizontal dispersion. Diffusion mea-
surements by Schott et al. (1978) indicate that the
diffusion coefficients for these scales tend to increase
with the surface-wave height. In the present paper
we investigate this alternative mechanism theoreti-
cally and compute dispersion rates for typical sur-
face-wave spectra. Our analysis supports the conjec-
ture that surface waves can yield a significant con-
tribution to dispersion for small scales of the order
of decameters to a few kilometers.

In contrast to the problem of eddy diffusion, the
dispersion of a scalar tracer by surface waves is a
problem which can be closed statistically and treated
rigorously by perturbation methods. This comes
about because the autocorrelation time of the ran-

0022-3670/82/070704-08$06.00
© 1982 American Meteorological Society

dom velocity perturbations responsible for diffusion
is small compared with the diffusion time scale, so
that two-scale statistical techniques are applicable.
The process may, in fact, be regarded as a particular
case of a resonant interaction at zero frequency, as
already pointed out by Hasselmann (1966, 1968).

The dispersion mechanism can be readily under-
stood physically in terms of random fluctuations of
the Stokes-drift current.

For a sinusoidal deep-water surface wave the mean
Lagrangian (Stokes) drift current, obtained by ex-
panding the potential-flow wave solution to second
order, is given by

u,(z) = 2wk 2k, (1.1)
where {? is the mean-square surface displacement,
w = (gk)"/? and k are the frequency and wavenumber
of the waves, g is the gravitational acceleration, and
z is the vertical coordinate, measured positive up-
wards from the mean surface. More generally, for
a random field of ocean surface waves, the ensemble-
mean Stokes-drift is given by the sum of the con-
tributions (1.1) from all individual components of
the wave spectrum

(ufz)) =2 ff F(k)wke***dk, (1.2)

where the spectrum is defined here as the
variance spectrum of the surface displacement
If F(k)dk = T2,

Computations of the Stokes-drift (1.2) for typical
wave spectra have been made by Bye (1967), Kenyon
(1969) and Chang (1969). For a fully developed
Pierson-Moskowitz (1964) spectrum, for which the
peak frequency scales as the inverse wind speed U
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and the mean-square wave height as the fourth power
of U, Eq. (1.2) yields

u(z=0)=a-U,

with g =~ 0.013 (U is defined here as the wind speed
at 10 m anemometer height). A Stokes-drift current
of this order represents a significant contribution to
the total wind drift at the sea surface, which is es-
timated from measurements to be of the order of
2-3% of the wind speed.

The Stokes-drift velocity represents the average
velocity of a particle at a given depth, for an aver-
aging time large compared with the wave period.
Over shorter periods, however, individual particles
will experience drift-velocity fluctuations relative to
the mean value due to the statistical fluctuations of
the local wave amplitudes in a random sea. If the
wave field is regarded as a random superposition of
statistically independent wave packets, each of which
is associated with its own Stokes-drift velocity, a fluid
particle experiencing the passage of a sequence of
wave packets will be exposed to a fluctuating drift
current, in analogy to the Brownian motion of a par-
ticle exposed to random external forces. Thus any
given water particle at a given location experiences
a local second-order velocity, whose mean value is
given by the mean Stokes-drift (1.2), but which fluc-
tuates about this mean. From the Rayleigh statistics
of the amplitudes of wave groups it follows that the
fluctuations u; will generally be of the same order
as the mean u, (note that we refer here to fluctuations
of the second-order Lagrangian velocities, not to the
larger, first-order orbital velocities of higher fre-
quency which, as shown below, do not contribute to
the diffusion process). From random-walk theory it
is known that such random velocity fluctuations re-
sult generally in a particle dispersion which, for large
dispersion times, can be represented as a Fickian
diffusion process. The diffusion coeflicient is given
by

D = (uDr, (1.3)
where u; = u; ~ (u,) is the local deviation of the
second-order Lagrangian drift velocity relative to its
mean value (u,) (= Stokes-drift) and r represents
the (one-sided) integral autocorrelation time of the
fluctuations.

According to (1.3) [cf. also (2.3) and (2.3")], Fick-
ian diffusion by random continuous motion occurs
only if the integral of the Lagrangian velocity au-
tocorrelation function exists and is non-zero. In the
frequency domain, this is equivalent to the condition
that the variance spectrum of the Lagrangian veloc-
ities at zero frequency is finite and non-zero. In the
formal second-order perturbation analysis presented
in Section 2 it will be shown that this condition is
indeed satisfied for the second-order Lagrangian ve-
locity field (the spectral density for the first-order,
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finite-wavelength, linear wave field is, of course, zero
at zero frequency).

Using Eq. (1.3) an order of magnitude estimate
of the diffusion coefficient may be obtained. For a
random wave field characterized by a narrow spec-
trum of bandwidth Aw, 7 ~ (Aw)™' and from the
Rayleigh statistics of wave-group amplitudes (u’")
~ (u,). Taking (u;y ~ 0.1 — 0.2 m s7', Aw ~
1 — 0.4 s}, one obtains D ~ 0.01 — 0.1 m? s™'. This
is comparable with the orders of magnitude of Fick-
ian diffusion coefficients estimated from tracer-patch
dispersion experiments for small time and space
scales in the range T ~ O (1 h), L ~ O (30-3000 m)
(cf. Schott et al., 1978).

For wave-induced diffusion, the autocorrelation
time scales of the horizontal velocity fluctuations are
generally small compared with the horizontal tracer-
dispersion times of interest. Thus a Fickian diffusion
description of the dispersion process is applicable.
For single-particle diffusion relative to a reference
frame moving with the mean drift velocity (which
is appropriate, for example, for an ensemble of in-
dependent single-buoy drift experiments), the dif-
fusion coefficient is independent of scale. However,
if relative particle displacements are considered
(tracer or buoy-cluster experiments) the diffusion
coefficient becomes independent of scale only when
the horizontal-distribution scale becomes large com-
pared with the extent of the wave groups. In both
cases, however, the inequality of the autocorrelation
and dispersion time scales ensures the applicability
of the Fickian diffusion formalism.

2. Mathematical derivation

Before considering the statistical fluctuations ex-
perienced by a particle in a random surface-wave
field, we recall first the basic results of the classical
theory of diffusion by random continuous motion
(cf. Einstein, 1905; Taylor, 1921).

A particle whose velocity u(z) (i = 1, 2, 3) un-
dergoes statistically stationary fluctuations generally
follows a random-walk path x(t) which is charac-
terized by non-stationary statistics. For large times
t, both the mean and variance of x; increase linearly

with time:
<xi> = <ui>t, (2.1)
where
l a0
o= " Rrrdr 23
= WG,']'(O) (2.3’)
and
R(7) = {ult + Du 1)), (2.4)
GU(O)) = '217; [_z Rij(T)e_indT, (2.5)



706

represent, respectively, the covariance function and
cross-spectrum of the particle-velocity fluctuations
u{ = u; — {(u;). The angle brackets denote averages
over an infinite ensemble of particles associated with
different realisations of the velocity function but the
same initial value x; = 0 for t = 0.

Egs. (2.1), (2.2) hold asymptotically for times ¢
which are large compared with the integral covari-
ance time scales

= f_ Z Ry(r)dr[R,(0) = 2xG,(0) / f_ Z G (w)do.

If Egs. (2.1), (2.2) are applied to an ensemble of
particles characterized by a continuous concentra-
tion function ¢(x, ?), the rate of change of ¢ is given
by the advective-diffusive equation

dc 0 3] dc
—+—(c) = —\D; — .
ot dx; i) Ax; (D” 6x,-) ’ (2:6)

where
a _ 6DU
#; = {u;) “ax, .

Eq. (2.6) also applies asymptotically under the
two-scaling conditions L » (Dr)'/2, T > 7, where L,
T represent the characteristic space and time scales
of the distribution ¢, while D, 7 denote the orders of
magnitude of Dj; and 7;; Under these conditions the
statistical properties of the velocity field, and there-
fore also the mean quantities (u,;), Dy, can be re-
garded as slowly varying functions of x and ¢.

The dispersion of particles in a quasi-homoge-
neous, quasi-stationary random surface-wave field
clearly represents a particular case of the general
theory of diffusion by continuous motion. The present
problem therefore reduces to the derivation of the
mean advection velocity {«;) and diffusion tensor D;;
for the velocity field associated with a random sur-
face-wave field. The mean advection velocity is, of
course, simply the well-known Stokes-drift current.
However, the diffusion tensor D; has not been eval-
uated previously. The general structure of the term
was discussed briefly by Hasselmann (1968) as one
of a general set of weak-interaction processes in a
surface-wave field. In this representation the diffu-
sion process was regarded as a resonant interaction
process for the particular case of a zero resonance
frequency. Following this approach, we shall use the
spectral expression (2.3’) for D; rather than the more
familiar correlation integral (2.3). To keep the al-
gebra simple we restrict ourselves to an infinite-depth
ocean (which is a good approximation for ocean
depths larger than about one-fourth of the wave-
length).

A random surface-wave field may be regarded in
the linear approximation as a superposition of an
ensemble of statistically independent, normally dis-
tributed wave components
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§-= % [Zk+ei(k~x—wr) + Zk——e—-i(k.x—wx)]’ (2.7)

where
Z
(Z(ZR)*y = (2.8)

In Eq. (2.8), the asterisk denotes the complex con-
jugate, s,, 5, are sign indices, and Ak, represents the
(infinitely small) wavenumber increment of the
sum (2.7).

For ocean waves, the nonlinearities of the waves
are small, and the general nonlinear wave field (as-
suming irrotational, inviscid flow) can be constructed
formally by a perturbation expansion with respect
to the wave amplitudes (cf. Phillips, 1960; Hassel-

I

(Zk+)*»
1/26k|k26:132F(kl )Akl .

. mann, 1961; Longuet-Higgins, 1962; and others),

{:":} - g {;’%‘(}Zk’ exp{i-s(k+x — wt) + kz}

Vi .
+Z{"“sz}ex i[(sik; + s5,k)x
= Wy p{il(s ik K2)
k2,52

~— (slwl + Szwz)t] + (k] + kz)Z}, (29)

where v; (i = 1, 2) and w denote the horizontal and
vertical components of the velocity field, and the lin-
ear coefficients are given by

Va= kif kw}

2.10
Wi= —isw ( )

The nonlinear coupling coeflicients are given in the
references cited. For the following, however, we re-
quire only the result that the quadratic coupling coef-
ficients vanish for w, = w, and s; = —s,. For this
reason the nonlinear terms in (2.9).do not contribute
to the mean second-order (Eulerian) velocity and, as
shown below, also do not contribute to particle dif-
fusion (to the lowest, quadratic order).

For the dispersion of particles the Eulerian veloc-
ities (v;, w) at fixed positions are of less concern than
the Lagrangian velocities of individual particles,
which have a non-vanishing mean equal to the Stokes
drift. The Lagrangian vertical drift and diffusion
terms are found to vanish (as expected on the basis
of the heuristic explanation of the diffusion process
given in Section 1), so that we need consider in the
following only the horizontal velocity components u;.
These can be expressed to lowest, quadratic order in
terms of the corresponding Eulerian components by
expanding with respect to the orbital displacements,

u(x,z) =v{x+&z+Y¢)

o; ov;

= v(X, 2) +a—xjsj+32— & (2.11)
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where x, z denote the mean position of a particle,
averaged over a wave period, and & = (£, &, §) is
the instantaneous displacement of the particle rela-
tive to this position. Substituting the expansion (2.9)
into (2.11) we obtain

u; = 2 ViZi explis(kx — wt) + kz]
k,s

+ 2 U, ZR Z exp{il(s ik, + s:ko)x — (510,
ky.k2
51,52

+ Sz(.dz)l] + (kl + kz)Z}, (212)

where

w k. + .k
Ukl =~ i

X (kik, — si5(kik;)) + VEg,. (2.13)

The expectation value of (2.12) yields Eq. (1.2)
for the mean Stokes drift (). To obtain the dif-
fusion coefficient D;; we need to determine the cross
spectral density matrix G; at zero frequency [Eq.
(2.3)]. Invoking the Gaussian property of the Fou-
rier components Z,° and assuming that the first-order
spectrum F(k) is zero at k = 0, so that the linear
terms do not contribute to the zero-frequency energy
density, one obtains from (2.12)

D;=7G[0) == f e f T(k,, k)F(k,)F(k,)

X 6(0)1 - wz)dk]dkz N (2.14)
with
Tij(kh k2)(w;=w2)
o w? Kk, -k,\’
= ( a-ukzljjkrkz)(wﬁwz) = : (1 + Ikz 2)
X (kliij + kyky; + kiky; + k2ik2j)9 (2.15)

where w = w, = wy, k =k, = k,.

The 5-function is most easily eliminated in (2.14)
by transforming to frequency-directional spectra,
F(k)dk = F(w, 8)dwdf. Eq. (2.14) then becomes

D,=r= fff T,F(w, 0)F(w, 8,)dwdd dp, . (2.16)

The diffusion-coefficient tensor D, is constant for
a given wave spectrum and characterizes the disper-
sion of an ensemble of particles relative to a reference
point moving with the mean Stokes velocity.

In many applications it is also useful to consider
diffusion tensors defined with respect to relative dis-
placements of particles. The simplest case is the rel-
ative dispersion of two particles a, b which are
separated initially by the distance r; = x? — x?. As-
suming both particles to be at the same depth, the
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mean separation rate vanishes, (dr;/dt)
= (uf) — {u}) = 0. The two-particle diffusion tensor
Dy = {(r; = {r))r; — {r;>))/2t is calculated in ex-
actly the same way as for the single particle case,
except that the nonlinear coupling coefficient for the
relative velocity now becomes

Ust, = Uit (1 — expli(sik, + s,k,)r]).

The diffusion coefficient D, characterizing the rate
of relative dispersion of pairs of particles is accord-
ingly given by Eq. (2.16), but with the kernel T}
replaced by

fij = ZTU{I - COS[(k] - kz)'l']}.

(2.17)

(2.18)

For small r, T,-j — 0, as expected, since the two
particles experience essentially the same velocity
fluctuations, whereas for large r, T;; — 2T, in ac-
cordance with the standard relation for two particles
dispersing independently.

The Fickian diffusion equation (2.6) is also ap-
plicable to pair dispersion, the probability density
referring in this case to the distribution of displace-
ments for an ensemble of pairs of particles. The par-
ticle-pair diffusion equation is useful for interpreting
experiments with clusters of drifter buoys. In such
experiments the reference point for single-particle
diffusion, which moves with the (ensemble) mean
Stokes-drift velocity, is not always well defined by
the finite buoy cluster. A dispersion formulation in
terms of pair separations avoids this difficulty. In
addition, particle-pair separation data are more
abundant than single-particle data: a cluster of n
buoys yields only » displacement values relative to
the mean, while the same cluster yields n(n — 1)/2
relative separation values.

However, in situations in which individual particle
marking is not feasible, for example in tracer-patch
experiments, one has no recourse other than to con-
sider the dispersion relative to the mean drift. Since
the ensemble-mean Stokes-drift cannot be deter-
mined from a finite-size tracer patch, the appropriate
reference velocity must be defined by the motion of
the center of gravity of the tracer patch itself.

The modifications of the single particle relations
(2.12)-(2.16) required to treat this case are again
minor. Defining an instantaneous mean position and
velocity of the tracer patch (at a given depth) by

5= f f xc(x)dx,
;= f f u;e(x)dx,

where ¢(x) is the (normalized) tracer concentration,
the instantaneous velocity of a particle at a position
x relative to the mean patch velocity is again given
by (2.12), but with a modified linear term (which is
irrelevant, since the linear term does not contribute
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F1G. 1. Principal components D,, and D,, of the diffusion tensor

for single-particle diffusion for different exponents » of the angular
spreading function S(8) o« cos’(8) [cf. Eq. (3.7)].

to the diffusion or mean drift) and a modified non-
linear coefficient

ﬁff‘fﬁl = U.Sf(fﬁz{l - ff expli(s.k, + 5k;)

X (x' — x)] c(x’)dx’} . (2.19)

The diffusion coefficient D is accordingly given
by (2.16), as before, but with the kernel T; replaced
by

Ty = Ty{1 + cm? + sm? — 2 cm - cos[(k; — k,) - X]
— 2 sm-sin[(k; — k;)-x]}, (2.20)

where

cm .~ fcos[(k;, — kz)-x']} ,

{sm} ff ox) {sin[(kl —ky)-x] dx. (2.21)

The diffusion coefficient D;; depends both on the
particle position x relative to the patch center X and
on the size of the patch. Although Egs. (2.20), (2.21)
are independent of the choice of origin, it is conve-
nient to place the origin of the x,, x, plane at the
center of the patch. For small patches, it is then seen
that cm — 1, sm — 0, and Eq. (2.20) takes the form
(2.18) corresponding to two-particle diffusion. For
large patches, cm — 0, sm — 0, and one recovers
the single-particle relation (2.15). Thus the tracer-
patch diffusion problem may be regarded as an in-

termediate case between the single-particle and par-
ticle-pair dispersion cases.
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3. Numerical calculations

Examples of the diffusion tensors D;; were calcu-
lated from the integral (2.16) for the cases of single,
pair and patch diffusion. For simplicity the wave
spectrum F was assumed separable into a one-di-
mensional frequency spectrum f(w) and a frequency-
independent directional spreading factor S(8),

F(w, 0) = f(w)-S(0),

where S(0) is normalized such that

(3.1)

f_ S(8)d0 = 1.

The one-dimensional spectra were taken as Pier-
son-Moskowitz or JONSWAP spectra of the form

4

f(w) = ag?0™Y(w/wnm) cxp[— % (%) ] , (3.2)

where w,, denotes the peak frequency, « is Phillips’s

constant and Y(w/w,,) is a shape function which de-

scribes the enhancement of the peak of a fetch-lim-

ited JONSWAP spectrum relative to the fully-de-
veloped Pierson-Moskowitz spectrum.

For the Pierson-Moskowitz spectrum, the shape
factor ¢ = 1, a = 0.0081 and the peak frequency is
determined by the wind speed U (at 19.5-m height
above sea surface) through the relation

wm = 0.140- 27g/U. (3.3)

For the JONSWAP spectrum, the shape factor
¥ has a maximal value (1) ~ 3.3 at the peak, and
« and w,, vary with the state of development of the
wind-sea.

For a spectrum of the general form (3.2) it follows
from dimensional analysis of (2.16) that in all three
diffusion cases the diffusion coefficients scale as

D,‘j = a2g4w,,,_3D_,-j , (3.4)
where Dj; is a nondimensional coefficient which de-
pends only on the properties of the nondimensional
shape functions Y(w/w,) and S(6).

For a fully developed Pierson-Moskowitz spec-
trum, Egs. (3.3) and (3.4) imply

D,'j = l.47a2gU3lj,~j . (3.5)
Most of the following examples are computed for
a Pierson-Moskowitz spectrum with U = 10 m s™".
The transformation to other wind speeds can be
readily effected using (3.5). For single particle dif-
fusion we obtain from (2.14), (2.15) and (3.1)

(ID): Dyy) - 4_2_2 J;“’ dwo®f(w) f_: d01S(01? J: d6,S(8)[1 + cos(8; — 6,)]

((cos(?l + cosf,)?, (cosh, + cosd,) (sind, + sind,)
(cosh, + cosf,) (sinf, + sind,), (sinf, + sind,)>
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[m2s-] ' .
Dyx (pair)
002+
I3xx {patch)
Dux(single)
001+ -
yy {pair)
D,y (single)
— . R
102 10" 10° 10' 102

/N

FiG. 2. Components D,, of the diffusion tensor for single-particle, particle-pair and

patch diffusion, and D,

» for single-particle and partxcle-pan‘ diffusion as functions of

r/\ = (diffusion scale/peak wave length) (cf. definitions given in text and Fig: 3).

For a symmetrical spreading function S(8) about
the wind direction § = 0, which we define as the x-
axis, the non-diagonal components D,, = D,, vanish.
Fig. 1 shows the components D,, and D,, for a Pier-
son-Moskowitz spectrum at U = 10 m s™! as a func-
tion of the narrowness of the spreading function, as
characterized by the exponent » in the spreading
function representations

A, cos’(8); 6] < 7—2r
S(9) = , (3.7
0; % <b<nw

where A, denotes a normalization factor.

Also shown is the isotropic case, S(8) = 1/2x plot-
ted at » = Q, although it should be noted that the
limit » — O of (3.7) corresponds in fact to the half-
plane and not to the full-plane isotropic case). As
expected, narrower directional distributions yield
more pronounced diffusion in the x-direction than
in the y-direction.

For particle pair diffusion, 7, Eq. (2.16), must
be replaced by T, from (2.18). This introduces the
additional factor

2{1 ~ cos[(k, — k;)-r]}

= 2(1 - cos{%z- r{cos(8; — 8) — cos(8, — B)]}) ,

into the integrand of (3.6), where 8 denotes the angle
between the x-axis and the vector separation r be-
tween the two particles. Because of this factor, the
integration variables w and #,, 8, can no longer be
separated.

The corresponding diffusion tensor D,, is now in
general a function of r. The computations for D..
and D,, are shown in Fig. 2. The vector separation
r is taken parallel to the x-axis, the mean wave di-
rection, and is scaled in units of A, the peak wave-
number of the Pierson-Moskowitz spectrum (3.2).
A cos?¥ angular distribution is used for S(6) [Eq.
(3.7) with » = 2]. Also shown for comparison is the
constant single-particle diffusion coefficient D;;, which
is equal to half the asymptotic value (r — o) of the
particle-pair diffusion coefficient D;;.

Finally, patch diffusion coefficients were computed
for an isotropic and normalized Gaussian tracer con-
centration

e(x) oc exp[—(2[x|/X)*]

with a horizontal scale given by A, centered at the
origin of the coordinate system (X = 0). With this
choice of scale the patch is neither sufficiently small
for the patch to move simply as a single particle
[particle-pair diffusion limit: cm — 1, sm — 0 (see
Section 2)], nor sufficiently large for the center of
mass of the patch 'to stay essentially at the same
place (single- particle diffusion limit: cm — 0,
sm — 0). This is borne out by the curve for the patch
diffusion coefficient D,; shown in Fig. 2: the limiting
values at #/A = 0 and for /A — oo are seen to differ
from the corresponding values for both single-par-
ticle and particle-pair diffusion. Note that the ab-
scissa variable /X represents in the case of the patch
diffusion coefficient the dimensionless distance of a
given particle from the center of the patch. The ge-
ometry and nomenclature for the three diffusion
cases presented in Fig. 2 are summarized in Fig. 3.

The relatively small transverse diffusion coeffi-
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Y single Y pair Y patch
P P P
, F
r r X —~r & X
X d X -~ ————3» X
0 k P k k
(fixed) 1
x=0 c(x’) = const

FiG. 3. Geometry and notation for single-particle, particle-pair and patch diffusion.

cients D,, are shown in Fig. 2 only for the cases of
single-particle and particle-pair diffusion. It may be
noted that for particle-pair diffusion D,, approaches
its asymptotic value for r — oo more rapidly than
D,,. This is due to the fact that a Pierson-Moskowitz
spectrum with a cos?# angular spreading function is
broader (in the neighborhood of the peak) in the
cross-wind k,-direction than in the downwind k,-di-
rection, so that the correlation length is smaller in
the y-direction than in the x-direction.
Nondiagonal contributions to the diffusion tensor
arise if .S(0) is nonsymmetrical and also, in the case
of pair diffusion, if r is not parallel to the mean wave
direction k. Fig. 4 shows the dependence of D,; for
the latter case on 8, the angle between r and Kk, for
the value /X = 1 for which the 8 dependence is most
pronounced. (For r = 0 and r — co the diffusion
. tensor D;; becomes independent of 8 [see Eq. (2.18)].

[m2s) T
002} B :
/N =1
001 T
Byy
-\_/——'\/-
6xy T 6yx
0 n/2 T

FiG. 4. The three components D,,, D,, and D,, = D,, of the
diffusion tensor for particle-pair diffusion for /X = 1 as a function
of §, the angle between the vector distance r between the two
particles and the x-axis (the mean wind direction).
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The maximum in D, at 8 = /2 is again due to the
smaller correlation length of the wave spectrum in
the y-direction. o

In addition to the results shown here for a Pierson-
Moskowitz spectrum a number of computations were
also made for a JONSWAP spectrum, which is more
appropriate for a growing wind-sea than the fully
developed Pierson-Moskowitz spectrum (Hassel-
mann et al., 1973). For a given wind speed, the dif-
fusion coeflicients for a fetch-limited JONSWAP
spectrum are smaller than for a Pierson-Moskowitz
spectrum, essentially because the fetch-limited spec-
trum contains less energy than the fully developed
spectrum.

To conclude this section, it should be pointed out
again that all results presented here apply for a me-
dium wind speed U = 10 m s™. Since the diffusion
coefficients scale as the third power of U [Eq. (3.5)],
considerably higher values are obtained for higher
wind speeds.

4. Comparison with measurements

Although a random surface wave field will nec-
essarily produce dispersion, it is not yet clear whether
the process can compete with other horizontal dif-
fusive processes in the upper layer of the ocean, such
as eddy turbulence.

Diffusion experiments in the ocean have been
made on a variety of space and time scales. Few,
however, have been combined with sufficiently de-
tailed wave measurements to determine how much
of the observed diffusion may have been due to waves.
Okubo (1971) has compared a large number of dif-
fusion experiments from different investigations and
finds a mean scale dependence of the diffusion coef-
ficients for all experiments proportional to L'!, where
L is the space scale of the diffusing patch. Although
the definitions of diffusion coefficient and space scale
used by Okubo and in this paper are somewhat dif-
ferent, we may nonetheless compare the orders of
magnitude of the theoretical wave-induced diffusion
with these measurements. From Fig. 5, taken from
Okubo (1971), it may be inferred that for scales
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FiG. 5. Comparison of measured diffusion coefficients (from
Obuko, 1971) with wave-induced (particle-pair) diffusion as a
function of scale.

larger than ~1 km, the contribution due to wave-
induced diffusion will generally be negligible, but for
scales between 10 and 100 m, wave diffusion may
be an important contributing mechanism.

However, to clarify this question, more detailed
dispersion experiments in the space-time scale range
of 10-10* m, 0.1-10 h, supported by wave measure-
ments, are needed. Several characteristic features of
wave-induced diffusion can aid in identifying wave-
induced diffusion in the presence of other diffusion
mechanisms. The process is strongly anisotropic,
with considerably larger diffusion rates in the mean
propagation direction of the waves than in the trans-
verse direction. Also, the strength of the diffusion
decreases rapidly with the depth d below the surface.
The rate of decrease is approximately proportional
to e~*“, where k is the peak wavenumber of the wave
spectrum. Thus for a Pierson-Moskowitz spectrum
with a wind speed of U = 10 m s™! the diffusion
coefficient is already reduced to 1/e of the surface
value at a depth of only 3 m. This property is, of
course, only relevant for float dispersion experiments.
Horizontal dye diffusion in a vertically mixed layer
is governed by the vertically averaged horizontal dif-
fusion coefficient and is also affected by the vertical
shear of the mean Stokes-drift via the coupling of
vertical diffusion and vertical mean shear (cf. Kul-
lenberg, 1972). The diffusion process, finally, is
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strongly wind-speed dependent. Increasing the wind
speed U not only increases the strength of the dif-
fusion coefficient as U3, but also increases the scale
L characterizing the asymptotic transition of the
pair-diffusion coefficient to its limiting value (twice
the single-particle value) in accordance with the re-
lation L oc U? [cf. Eq. (3.3) and Fig. 5].

A general assessment of the significance of wave-
induced diffusion relative to other diffusion processes
in a given situation will require, of course, not only
a knowledge of the local wave field, but also an un-
derstanding of the parameters controlling turbulent
and other non-wave-diffusion processes. Unfortu-
nately, this is still a largely unsolved problem. How-
ever, it may be encouraging that at least one of the
processes contributing to horizontal diffusion in the
ocean is amenable to a quantitative analysis, and that
the process may indeed play an important role in the
small scale: initial diffusion of concentrated injec-
tions into the ocean, such as occur in practice through
oil spills, or the dumping of chemical contaminants.
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