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Scattering
of charged particles by random electromagnetic fields

By K. HASSELMANN, Hamburg!) and G. WiBBERENZ, Kiel2)

Eingegangen am 22. April 1968

Summary: A general, relativistic formalism for particle scattering by random electromagnetic
fields is developed in the weak-interaction approximation. The scattering is described by a
FokkEeR-PLANCK equation, the coefficients of which are derived as linear spectral integrals
over an infinite set of resonance surfaces. The formulae are evaluated explicitly for three
field models. The theory is applied to the spatial diffusion parallel to the mean field, the
equilibrium pitch-angle distribution, and FERMI acceleration processes. Detailed comparisons
with observations will be given in subsequent papers.

Zusammenfassung: Es wird eine allgemeine, relativistische Theorie fiir die Streuung geladener
Teilchen durch statistische elektromagnetische Storfelder entwickelt. Die Streuung wird durch
eine FOKKER-PLANCK-Gleichung beschrieben, deren Koeffizienten durch Spektralintegrale iiber
eine unendliche Schar von Resonanzflichen dargestellt werden. Die Integrale werden fiir drei
Feldmodelle explizit ausgewertet. Als Anwendungsbeispiele werden die rdumliche Diffusion
parallel zum mittleren Feld, die Gleichgewichts-Pitchwinkelverteilung und FERMI Beschleuni-
gungsprozesse untersucht. Der Vergleich mit Beobachtungen wird in spiteren Arbeiten aus-
fithrlicher dargestellt.

1. Introduction

Interactions between charged particles and fluctuating electromagnetic fields play
an important role in a number of geo- and astrophysical problems. The particle
distributions of the solar wind and the magnetosphere represent collision less plasmas,
for which the details of distributions are determined primarily by wave-particle rather
than particle-particle interactions. Various scattering processes of high-energy particles
in interplanetary space, as infered from solar-flare particle propagation or the solar
modulation of the galactic radiation, are also believed to have their origin in random
irregularities in the interplanetary fields.

It appears worthwhile, therefore, to investigate in a general manner the influence of
an arbitrary random electromagnetic field on the particle distributions of a magnetized
plasma. Various aspects of the problem have been treated in recent papers by Jokirit
(1966), RoeLoF (1966), KENNEL and PETSCHEK (1966), and others. In particular, it has
been recognized that the evolution of the particle distributions can be described by a
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FoxkEer-PLANCK equation, the coefficients of which depend linearly on the field co-
variance functions or spectra. However, the functional dependence on the spectra has
not been derived in closed form, so that estimates of the coefficients have usually been
based on various rather questionable approximations. By using spectral representa-
tions throughout and applying the asymptotic resonance relations of wave scattering
theory (c.f. HASSELMANN, 1967), we shall show in the following that the FOKKER-
PLANCK coefficients can be derived in closed form as spectral integrals over an infinite
series of equidistant resonance surfaces.

Resonant interactions occur between individual particles and FOURIER components
of the electromagnetic field whenever the “parallel” frequency (i. e., the DOPPLER
shifted and LorenTz dilated frequency of the field component relative to the parallel
particle motion) is equal to a multiple of the particle’s LARMOR frequency. Special
cases include the Landau resonance and the MHD- and Whistler-mode resonances
considered by DrRAGT (1961), WENZEL (1961), KENNEL and PETSCHEK (1966) and, in a
somewhat different context, by Jokipir (1966) and RoeLoF (1966). The wave number in
these cases is parallel to the mean field. If the wave number is non-parallel, an infinite
number of resonances occur. They are essentially the same resonances that occur in
the theory of plasma waves (c. f. STIX, 1962), except that we are concerned here with
their effect on the particle distributions rather than on the wave motion. Normally, the
FoxkkKER-PLANCK coefficients include comparable contributions from many resonances.

The theory is based on the weak-interaction approximation, which requires that
OH[O0w < HT, where H is the electromagnetic spectrum, w is the frequency, and T is
a characteristic transfer time. The condition does not depend explicitly on the LARMOR
frequency; it involves only the “smoothness’ of the spectrum. The analysis is carried
through explicitly as a perturbation about the guiding centre description, which
requires additionally that the transfer time is large compared with the gyration period.
In many applications, both conditions are satisfied. However, the guiding-centre
approximation is not a basic limitation of the theory. In the case of a non-magnetized
plasma, or a plasma with a weak mean field, an alternative FOKKER-PLANCK equation
can be derived by perturbing about the zero’th order distributions for a non-magnetized
plasma (Appendix).

A covariant tensor notation is used to provide a unified treatment for electric and
magnetic interactions and space-time variations. A further advantage is the natural
derivation of interrelationships between different transfer processes, such as pitch-
angle scattering and FErRMI acceleration (Section 8).

The FokkKer-PLANCK coefficients are evaluated explicitly for two axisymmetric
magnetic field models and one isotropic model, all three of which include arbitrary
circular polarisation factors. The theory is then applied to pitch-angle scattering,
spatial diffusion parallel to the mean field, gradient-induced anisotropies and FErMI
acceleration processes. Comparison with observations will be given in later papers.

The random electromagnetic field is regarded throughout as given. Normally, the
electromagnetic fluctuations will be associated with plasma waves, whose dispersion
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and stability characteristics depend on the particle distributions. To predict both the
particle distributions and the electromagnetic spectrum, the FOKKER-PLANCK equation
describing the effect of the field on the particle distributions must be considered to-
gether with the complementary transport equation describing the back-interaction of
the particle distributions on the plasma-wave spectra. However, we shall not treat the
full cross-coupled problem here. The question has been discussed for the case of the
radiation belts by KENNEL and PeTscHEK (1966) and for conditions in interplanetary
space by SCARF (1966).

2. Representation of the field and equations of motion

Consider the relativistic motion of a particle of charge e and rest mass m in an
electromagnetic field which consists of a uniform magnetic component B in the x3-
direction and superimposed random fluctuations.

We assume that the random field has zero mean and is statistically stationary and
homogeneous. Its four-potential ¢; (i = 0, 1, 2, 3) may then be represented by a
FOURIER-STIELTIES integral

¢ (x)=[ do (k) ", 2.1
doi(—k)=do,(k)*,  1=y/-1,
with statistically orthogonal FOURIER increments,
doi (k) do;(k))=H;; (k) (k' k) dk dk', 22)
where Hy;(k) is the (four-dimensional) electromagnetic spectral density matrix. Cor-

nered parentheses denote ensemble expectation values.
The LoreNTZ condition 0¢;/0x; = 0 yields

Covariant and contravariant components are related through

xi=gijxj
where
goo=1, g11=822=833=—¢ "7, gi;j=0for i%j.

The equations of motion of the particle may then be written

%—QMj-uj=£sz-u" 2.4
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where u! = dri/dr, rt is the particle position, T is the eigen-time, dv2 = dx; dx?,
Q= eB/mc is the cyclotron frequency?),

00 0O
0010
i.= b
Mi=lo=1 0 o (2.5)
00 00O
and Fy is the random electromagnetic field tensor,
a(p a(P kxt
Fjj=————=[dF;(k)e""”
ookt oxf JdFy ()
with
dF;;(k)=u(kido;(k)—k;do; (k)) (2.6)

We shall assume that the random field can be regarded as a small perturbation.
The zero’th order particle motion ri, it is then given by the equations

0
du'

o _oMii= .
L aniiti=o @7
The general solution is
u'=al 0 (2.8)
where
W=U/e'°®»* Ul=const (2.9)
and
1 0 0 0
ok ko
al= Vv ; v L (2.10)
2 2
0 o0 0 1
is the eigen-vector matrix of equation (2.7); the eigen-frequencies are
w 0 = =0
@7 2.11)

D)= — W)=

1) 2 can be positive or negative, according to the sign of the charge.
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We note that according to equation (2.9) the amplitudes U7 and eigen-frequencies
o, are not vector variables. Parentheses are used here to denote indices which are
excluded from the sum convention.

The amplitudes satisfy the reality conditions

Ul ___(UZ)* .
(2.12)
U°, U3 real
and the relation
(U~ QIUP+U))=1, 213)

which follows from the normalisation wfu; = 1.
The usual parallel and perpendicular velocities are given by

u“=U3, ul=\/§|U1|.

Besides velocities «f, u, u, with respect to eigen-time we shall use velocities
vt = dxt/dt, v, v, with respect to real time, where

vt=ut [y, etc.;

2 2\ -4 2 2\ %
y=uo=<1_.v_lju||> =<1+_ulc+ul|>

represents the ratio of the total energy of a particle to its rest energy.
For future reference, we write down the zero’th order particle position

alei etﬂt ai2U2 e—z!)r

i (. iy70 iT13
r'=(aaU" +a3U0%) 1+ e o

(2.14)

In the following, we shall be concerned primarily with the non-stationary response of
the linear system (2.7) to various forms of resonant excitation. For this purpose, we
need to resolve the excitation into its normal-mode constituents, i. €. to transform
from variables #¢ in a cartesian basis to helical variables ut (non-cursive symbols) in
the eigen-vector basis. The transformation is given by equations (2.8), (2.10): it affects
only the perpendicular components,

1
7

2_ b1 2 2 1 4 2
u“=—(u" —u’), w=—W 4w")
2( ) 2(

ul=—(u'+u?), u? =i§(u‘—tu")

(2.15)
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The corresponding transformation for the covariant components is given by

“1=71'§(u1 +uy), U1=:/%("1+‘“2)
(2.16)
uz=;§£(u1—u2), u2=%("1—‘“'2)
We note that co- and contravariant helical components satisfy the relation
uf=g;u’ (2.17)

Although the amplitudes U7 are non-tensor variables, it is convenient to introduce
“covariant” amplitudes Uy defined by the transformation (2.17). Equation (2.9) can
then be written in the covariant form

u=U,etow® (2.18)

In helical coordinates, the equations of motion now become

d i eu; i 1kx!
<E_ Lw(i)> u =;1?’ [dFi(k)e'™ (2.19)

where the operator on the left-hand side is diagonal.

3. Perturbation expansion

We attempt to construct a solution of the full equations of motion by expanding the
particle motion in a perturbation series,

Ferib (3.1)

where 7% is of order » in the random field amplitudes.
The local field at the position of the particle may be similarly expanded,

(pi(r(r))=(;’i+éi+ (3.2)
where
0:(D)=0,(r () (3.3)
2 =1 0,(r(®) (3.4
Ox

etc.
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Substituting the FOURIER expansion (2.1) and the zero’th order solution (2.14) in
equation (3.3), we obtain for the first-order field

1 19: 2 -1t
Jo,-=Jd<p,-(k)exp{e(koU°+k3U3)r+k‘UQe e }

On expanding the exponential in a BESSEL series, this may be written

0

1

@i=[do;(kK)e'" Y cfe'r™ (3.5)
where e

CU” =k0u0+k3u3 (3.6)

ck=J,(e1) e (3.7
and g, and O are defined by

2k, U? .

;2 =g0.€ ° (3.8)

The phase angle @ is found later to be irrelevant; the modulus is given by

ei=kyry : (3.9)
where

=G+ K¢

and r; = u, /£ is the LARMOR radius.
We note that the reality condition (2.12) yields the relation

P =(cIP)* (3.10)

Equation (3.5) states that to first order a particle sees a given FOURIER component
d@q(k) as a series of sinusoidal components of frequency w), + pQ,p=0,+1,+2, ...
The “parallel” frequency w| represents the original frequency k, of the FOURIER
component modified by the relativistic dilatation factor 1 =y and the DOPPLER shift
kau3 induced by the particle motion parallel to the field lines. It is clearly invariant
with respect to LORENTZ transformations parallel to the mean field. A FOURIER com-
ponent whose spatial variation is parallel to the mean field is seen by the particle as a
single sinusoid of frequency w). However, if the component varies also in the perpen-
dicular direction, the particle’s gyration motion leads to a splitting of the parallel fre-
quency into a series of components separated by multiples of the cyclotron frequency.
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1If the transverse wave length 2z/k; of the field component is comparable to the
LARMOR radius r, the periodic lateral variations encountered by the particle along its
helical path are no longer sinusoidal, so that all harmonics of the gyration frequency
arise. The strength of the side lines is determined by the parameter o, = k,r,. For
scattering involving a spectrum with a finite angular spread, p, is typically of order
unity, so that a number of higher harmonies normally need to be considered.

For the first-order particle motion we obtain from the equations of motion (2.19)
and the perturbation expansions (3.1) and (3.3)

d 1, _eUletons i kP!
(dr ICO(,)> = J dFi (k) e

Introducing the BEsSEL expansion (3.5), this yields

d li i
<dr tw(,)>u=——de (k) Z cfexp {¢(w ;) + o+ pR) 1} (3.11)

p=—

If the initial perturbation is taken as zero, the solution at time 7 is then given by

li l [0} o r
ui= s de' (k)pzz_wcl’ (o) +oy+p2) 1(w(,)+60|| +pQ— w(.)) (3.12)
where Lo
4y (@)=—7— (3.13)
[10)

is the response function of the operator (d/dt — 1w) to the sinusoidal excitation
exp {1(w + o')t}. We note that the definition of the response function includes the
homogeneous solution needed to satisfy the initial condition. In this manner, the
singularity which would otherwise occur at the resonance point ' = 0 is removed,
enabling the investigation of the secular behaviour at o’ = 0. The solution contains
resonances whenever the parallel frequency is equal to a multiple of the cyclotron
frequency.
Integration of equation (3.12) yields the first-order particle positions,

lg de; (k) Z cp !(tD(J)+wlI+pD)tA (w(1)+w“+pQ wm+w“+p!2 w(;))
, T . (3.14)
where T
e Ay (0,0")= [ &7 4, (0',7")dT’ (3.15)
0
or

4, (@)= 4, (0 - )

'

4, (w,0")= (3.16)
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4. The transition moments

Consider now an ensemble of identical, non-interacting particles characterized by a
number density with respect to eight-dimensional x — u space (which in the present
treatment replaces the usual non-covariant number density in six-dimensional x — u
phase space). Since w;u¢ = 1, only three velocity variables need be given. We assume
that in the undisturbed mean field the circular-phase distribution is uniform. The
number of velocity variables can then be further reduced to two, so that we may
introduce a six-dimensional number density n (x, 49, u3; ), say, where the perpendic-
ular velocity is determined by #0 and #3 through (2.13). In order that the velocity
distributions remain strictly axisymmetric for spatially varying n, we shall interpret x
here as referring to the guiding-centres rather than the instantaneous particle positions.

Interactions with the random field affect the distribution in two ways. The non-
resonant perturbations of the particle motion lead to small, stationary distortions.
Although important for the theory of plasma oscillations, these are not of interest in
the present problem. The resonant interactions, on the other hand, produce secular
variations of the particles zero’th order motion which lead ultimately to a finite
modification of the initial particle distribution. The secular variations can be described
by a FOKKER-PLANCK equation, in which the transport coefficients are determined by
the first and second moments of the transition probabilities from one zero’th order
particle state to another.

Let dxt, 6u® and 0u3 represent the variations of the zero’th order (guiding centre)
parameters of a particle during the eigen-time 7.

We have

5lli=ui—loli=llli+tzli+
4.1)

Considering first the second moments, the expansion begins with the terms

(Suswdy =y + .. 4.2)
(US> =y + .. (4.3)
(XSS = (PP + ... (4.4)

As equations (4.1)— (4.4) stand, the right hand sides cannot strictly be identified with
variations in the zero’th order particle variables, since they include both resonant and
non-resonant perturbations. However, we shall be concerned primarily with the
asymptotic form of the transition moments for large 7. In this limit, only the resonant
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terms contribute, and these may then be interpreted as secular changes in the zero’th
order particle motions.

Substituting the solution (3.12) in equation (4.2), we obtain for the second velocity
moment

2 e
Gusuy=(=) [dkG™, (k) U, U™ Y cel”
mc J PP = =0
{exp [t(@my— @y +(p—P") 2) 7] A1 (O(my+ 0 + PR+ ;)
'AT((D(,,)'*‘C();[ +p'Q+w(,)) (4.5)
where
(i ’:i)de (D gk H 4 Kok Hy — ki Hoy =k ko Ho  (4.6)

For large 7, it is readily seen that

2710 (0w —wy)+0(1) for w;=w,
AT (0—w;) 4, (0—w,)- 4.7)
0(1) for w; +w,

and one obtains asymptotically

; (5u'5u’) e \’ m

JdkG™, (k) Y 11?0 (0 +pR+ 0y,  (4.8)
p=—o
for i,j= 0 or 3.
For a uniform circular-phase distribution, the amplitude moments on the right hand

side of (4.8) are given by

—5,’,"'——2—I—for n=1,2; m=0,1,2,3

U=y (49)
—Hc—[fj— for n,m=0 or 3

To determine the remaining second moments (4.3) and (4.4), we need consider only
the zero frequency resonances of i, since the resonances at 4 2 correspond to varia-
tions of the LARMOR radius rather than the guiding centre. Furthermore, we can
restrict the analysis to the transyerse components of ¢, since the diffusion parallel to
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the mean field is governed to lowest order by the convection due to the zero’th order
parallel velocities. In the same manner as above, we obtain then from (4.3), (4.4) and
3.19)

Gu'dxiy=0  (i=0,3; j=1,2) (4.10)
and

. 2 2 . ®
(Oxox;y=—" (—e—> (UU™ [dle G (k) Y 1€]12 8 (my+ ) +P2)

Biy@D(jy \me P=—-wo
(,j=lor2) (4.11)

The second transition moments depend only on the spectral densities on the reso-
nance surfaces wgm) + @) + p£2 = 0. Formally,

_ {Su'su >
O@HWy

QD

although equations (4.8) and (4.11) apply for different indices.

The asymptotic expressions for the transition moments remain valid so long as the
perturbations can still be regarded as small. This implies small 7, as opposed to the
large t required for the asymptotic response relation (4.7). Clearly, the two conditions
will be compatible only if the interactions are sufficiently weak. To determine the
precise form of this restriction, we need to investigate the limiting process involved in
the transition from equation (4.5) to (4.8) (the derivation of (4.10) and (4.11) follows
analogously).

For large 7, the response function 4j (w — w;) develops a resonance peak at = w;
of amplitude 7 and width w = 2x/7. The quadratic product 4;(w — w1). 47 (0 — w2)
in equation (4.5) will therefore have either two such peaks, if w1 3 ws, or a single peak
of amplitude 72 and width ~ dw, if w1 = wz. In the latter case, | 41 (w — w1)|2 can be
replaced in (4.8) by 227.0(w — w1), provided the variation 6 Hy; of the spectrum Hy;
within the frequency band dw = 6w” about the resonance frequency remains small.
A first restriction on our analysis is thus that the velocity perturbations within the
time t and the spectral perturbations dHj; within the conjugate frequency interval
dw = 27/t can both be made small for a finite range of z. In terms of the characteristic
transfer term T = 7u2/{6u®), this may be written

OH;; < ﬂ_H,-jt < H;T
aw” 27

dw  2m

where 0Hy;/0w | represents the spectral derivative normal to the resonance surface.
The condition is essentially a randomness criterion. Interpreted in terms of time-
series analysis, it requires that the spectral densities on the resonance surfaces can be
resolved from a finite field record of duration short compared with the transfer timel).
1) We note that the condition involves local spectral properties. It cannot be expressed,
as has sometimes been assumed, in terms of correlation scales, which are integral moments
of the spectrum.
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If this is not the case, the field cannot be meaningfully described as a random spectral
continuum. For example, if the power spectrum consists of a number of narrow peaks
of width 71 or less, the interaction analysis should be based on a deterministic field
description in terms of a discrete line spectrum. The quadratic transition products are
then either proportional to 72, for resonant particles, or constant, for non-resonant
particles, and a FOKKER-PLANCK description is not applicable.

In the case w1 ¥ wg, the integration over two separate peaks of amplitude = and
width 27/t yields only a bounded contribution to (4.5), which may be neglected
compared with the single-peak terms proportional to 7. This presumes, however,
that 7 is sufficiently large for the separate peaks to be resolved, or that (w1 — w2)T > 1.
Since w1 — wg in equation (4.5) is an integral multiple of Q, the inequality is satisfied
if the variations of the particle velocities within a gyration period remain small. This is
the case if the field fluctuations in the appropriate wave number range are small com-
pared with the mean field, as already assumed.

Apart from these conditions, a statistical closure relation has been invoked in the
derivation of (4.8). In taking expectation values, the particle velocities and field
amplitudes were treated as statistically independent (more precisely, the joint fourth
cumulants were neglected). This is closely analogous to the ‘“random-phase” or
GAUSSIAN hypothesis in the theory of wave-wave and wave-external field interactions
(cf. PEIERLS, 1929, HASSELMANN, 1967) and to BoLTZMANNS ‘“‘molecular chaos’ hypo-
thesis for the case of interacting particles in a dilute gas. The closure hypothesis for
weakly interacting systems has been investigated extensively in the classical and
quantum-statistical theory of irreversible processes. Various methods of proof have
been developed. Derivations based on the master equation method may be found,
for example, in PRIGOGINE (1962) and in articles by KAMPEN and vAN HoVEe
in CoHEN (1962).

5. The FOKKER-PLANCK equation

Since the second infinitesimal transition moments are proportional to z, the evolution
of the particle distribution n (x, 19, u3; 7) is governed by a FOKKER-PLANCK equation
(cf. CHANDRASEKHAR 1943)

@+i(ﬁ"n)—-i<x” —a—n.>——?—.<D” 9'1.>=0 .1
ot ox' ox' ox’/ ou' ou’
where

(5xi5x" >

P for i,j=1 or 2 (equation 4.10)

i = (5.2)
Oforiorj+1,2

(negligible compared with the zero’th order convective term)
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_ (ou'du

.. j
DY o 2 for i, j=0 or 3 (equation 4.8) 5.3)

and

~ (u* for i=0or3
it = (5.4)

0 for i=1or2

Equation (5.1) does not include mean-acceleration terms

or transverse convective terms
0 .
— (i'n), i=1,2.
Ox

It has been pointed out by DUNGEY (1965) that these must vanish on account of
LiouviLLE’s theorem, which requires that n = const is a possible solution of (5.1).
(See also FALTHAMMAR, 1966 and Jokieii, 1966)1). The coefficients are given by

i {6xy __6_ {Ox'8x7y

~ o 2% (i,j=lor2) (5.5)

A (51:‘)__6_ YCITL I

- i (i,j=0or 3), (5.6)

which in the present case imply an interrelationship between the first and second
moments. It may be mentioned here that the evaluation of the first moments in terms
of the perturbation expansion (which requires an extension of the present analysis to
second order) does not yield zero @t (i = 1,2) and at (i = 0,3) according to equations
(5.5) and (5.6). Presumably, this is because the equations are strictly valid only for
rigorous solutions of the equations of motion. Their derivation depends on the prop-
erty that the particle flux in phase space is incompressible for each realisation of the
ensemble of fields; it can be readily seen that this is not the case for the truncated
perturbation solutions. Rather than follow up this question, however, we have given
in the appendix an alternative derivation of the FOKKER-PLANCK equation based on a
perturbation expansion of the LIOUVILLE equation as outlined by RoEeLor (1967). It
confirms it = 0 ({ = 1, 2), @ = 0 (i = 0, 3) and the relations (5.2), (5.3).

1) DuNGEY’s argument is normally expressed for the mean acceleration terms, but applies
equally to the transverse convection terms.
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The FOKKER-PLANCK equation (5.1) describes the diffusion of particles (more
precisely, guiding centres) as a function of eigen-time 7 in the space R, (x). Re (10, u3).
Of interest physically is the number density 7 (x, u9, t3; x%) in R3 (x). Rz (119, u3) space,
with x0 = ¢ as parameter. This is given by the zero’th component

A=u®n=y-n

of the flux vector S¢ = ut. n, where
o0

n= | ndr.
- 0
Siy; is the number of particles whose paths x (z) pass with velocity 9, 43 through a
unit surface element of normal 7; at x. The remaining three components represent the
particle flux S = u n = v 7 in R3. We shall use the number density » rather than 7
in the following, since it is a scalar invariant.
The FoxKER-PLANCK equation for n follows by integrating (5.1) over ,

2 (o) 2 e
ox' ox' ox’/ ou'\ o’

Equation (5.7), together with the expressions (5.2) to (5.4), (4.8) and (4.11) for the
diffusion coefficients, complete the main part of our analysis. In the following sections
we investigate in more detail particular solutions of the FOKKER-PLANCK equation (5.7)
under simple conditions. In most applications, equation (5.7) needs to be extended
to include adiabatic drift and accelerations terms due to slow variations of the mean
field. However, we shall consider in this paper only effects arising from the random-
field interactions.

In section 6, the diffusion coefficients are determined for the case of a time-in-
dependent, random magnetic field. The coefficients are evaluated explicitly for three
models: (a) an axisymmetric transverse field varying parallel to the mean field, (b) an
axisymmetric field in which the energy is concentrated in the perpendicular wave-
number directions, and (c) an isotropic field. All models include an arbitrary circular
polarisation.

For spatially uniform distributions, the FOKKER-PLANCK equation reduces in the
case of a time-independent magnetic field to a one-dimensional diffusion equation for
the pitch angles. All solutions tend for 7 — o0 to an isotropic equilibrium distribution.
If the particle distribution is non-uniform, or the field time dependent, the degenerate
one-dimensional diffusion character is destroyed, and an equilibrium distribution no
longer exists. However, in many cases the time scales of the spatial diffusion or
acceleration processes are large compared with the pitch-angle relaxation time, so
that the processes can be regarded as small perturbations about the pitch-angle
equilibrium. The spatial diffusion is treated in this manner in section 7, and the FERMI
acceleration processes in section 8.
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6. Diffusion coefficients for a random magnetic field

In many cases, the electric components of the random field can be neglected com-
pared with the magnetic components. The ratio of electric to magnetic forces is of the
order E'c/B'v, where E’ and B’ are typical field amplitudes and v is the particle velocity.
Since B= —cV X E, this is of the order a/v, where a is a characteristic phase velocity
of the random field. Hence the electric forces are small if v > a. To the same approxi-
mation, the magnetic fields can be regarded as time independent, since the field fre-
quencies are small compared with the DopPLER shifts induced by the particle motion.
This yields no notational simplification, however, and has been ignored in the general
expressions (6.3) and (6.4) (the time-independent case is obtained simply by replacing k&
in (6.3) and (6.4) by k).

The field tensor reduces in the case of a magnetic field B, (y = 1,2, 3) to

Fp=c %,,'B (6.1)
B By

where ¢, By is the LEVI-CiviTA symbol. The field spectrum Gijnsm can then be expressed
in terms of the magnetic spectrum

B, ()= BEVIBWD ¢ 110, (62)

where dBx (k) represents a FOURIER-STIELTJES increment,

B,=[dB, (k)"

and C,g, O, are the co- and quadrature spectra, respectively.
Since the particle energy is not affected by the magnetic field, the diffusion co-
efficients D% and D93 vanish. The remaining coefficients are found to reduce to

2,2 ©
D33=£<i) i‘iL_ |c,’j“|2(C“+C22+2Q‘2)5(w”+pQ)dk (6.3)
2\me) ¢ J,57
and
g o (e V] & 5 o) [Pt 12 —oY 2033 19 (e2 2 u3 CY bk
K=t \me) |, L @ P T a2l

(6.4)

It is difficult to determine the magnetic spectrum experimentally, since single-
satellite observations yield only the projection of the spectrum in a particular wave-
number direction. For later applications, we shall accordingly consider three idealised

models:
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@
ié(ko)a(kl)a(kz)f(|k3|)<6,-,~+w(|k3|)e.-,-3%) for i,j=1,2
Bij(k)= ksl (6.5)
Oforiorj=3
®

0 for |ks) > |KT*]

B;; (k)=
j 5553){ (5,-,- kkk>+(g” gl)5,35J3+m\/glg”su,,Z }fork3_0

(gr=g.(ky), g1=8) (ky),o=0(k)) (6.6)
©

B,;(k)= 5(k°)f(f)< i "+w(f)s,,nk/f) (t=1K]) 6.7)

For notational convenience d;; is defined here as the KRONECKER symbol rather than
6_‘,.. We assume that in the range of interest the scalar spectra can be represented by
power laws,
fC)=Cx"(x=¥f or k)
(6.8)
1,1 =C,, ||k(i

with constant C, C, o and q.

The spectrum (a) represents the general form for an axisymmetric, transverse field
varying only in the direction parallel to the mean field. The spectrum (b) is also axi-
symmetric, but in this case the energy is concentrated in the perpendicular rather than
parallel wave-number directions. It is zero for |k;| > |kP*| (which is taken to be
small). Thus for velocities in the range |u”[ < ks, only the p = 0 resonance surface
kyuy + 282 = 0 contributes to the transport coefficients. We need therefore consider
only the general form (6.6) of an axisymmetric spectrum on the plane k3 = 0. The
spectrum (c), finally, is isotropic.

The spectra (a) and (c) are normalised such that

[ £ 09 di=[ Bo(k)dk=(B,B.Y (e=t ot [k
0

The functions g, and g in (b) represent, respectively, the spectral density of the
transverse field intensity Bi; 4+ Bsz and the longitudinal field intensity Bsz on the
surface k3 = 0.

All three models are invariant under the rotations of their respective groups, but
not reflections (cf. CHANDRASEKHAR, 1953). The circular polarisation is determined
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by the functions o, where — 1 < ¢ < + 1. The limits correspond to pure left or
right polarisation. For simplicity, we take ¢ in the following as constant. In case (b)
the diffusion coefficients are found to be independent of the circular polarisation.

The models yield diffusion coefficients of the form

2
() o

mc

2,2
elt—g22 (€ ) My
me) QF

K12=0

where in case (a)!)

oy n 1 } aC Q1 uy] " |1
G k = i
{az} 4Ill“|f(l ”I){k“/lknl 4 Q Uy

121 Tuyl
with k“ = .Q/ll[l,
7 |u
p=Sd o),
in case (b)
k QiC,I
T (k I e
%y = 8|ll”|j ( J.r_L)ql( J.) _L 8|u"|u'j_
a2=0’
@ uj dk
=3 “|[| j{h (kyry) gy (kl)+J0(k.L’L)'—l2'gi_(k_L)} -
0
7t Q1 uj
=_—_—8Iu”|uf <C”Im+—2c_,_10q>
where

= I‘Ii(x)xq_l dx,
0

(6.9)

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

1) In applications not involving covariance considerations we shall change from a tensor

notation to the usual notation u, = 13, k, = k, etc.
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and in case (c)

% 2— k2
{az} Slunlp_z:_wgdkl f(f)leJ+l(k_Lr.L){2k”/-fL } (6.15)
p= 8|7:,“| b oko.I;_Lf(f)l:J2+1(k_L l)kl_l_l]l_]z(klrl)(zprki)] 1 (6.16)

- The sign of the particle charge enters in equation (6.9) through the polarisation
term oxg; the term «; is sign independent. Formally, the charge dependence is con-
tained in 2 (see footnote on page 356).

The discussion of the transport coefficients will be restricted to power law scalar
spectra with constant exponent g, although the expressions for arbitrary spectra
are also given. Experimentally, the spectrum slope is often found to increase with
wavenumber (see e. g. COLEMAN (1966), SiscoE et al. (1968) for fluctuations of
magnetic fields in interplanetary space). However, the form of D33 (#y) in these
cases can be readily infered from the subsequent discussion.

Fig. 1: Schematic distributions of the scalar spectral densities in the k — k-plane for the
magnetic field models (a), (b) and (c). The distributions are mdxcated by contours of
equal power density. For case (a) the curves should lie directly on the k& [-ax1s The
resonance surfaces for different p are also shown, for a given value of IQ)uHI.
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The three models (a), (b) and (c) differ in the distribution of spectral power in the
ky — kj-plane, as indicated in Figure 1. The resonance surfaces are drawn for a fixed
value of IQ/u“|. For model (a), the power is concentrated entirely on the k“-axis; it is
distributed about the k,-plane (but within the resonance surfaces p = =+ 1) for model
(b), whereas in the isotropic case (c) the surfaces of constant power densities are
spherical shells centered in the origin. The locations of these isocontours govern the
contribution of the various resonance surfaces to the transport coefficients.

In the axisymmetric cases, only a single resonance surface contributes to the velocity
diffusion coefficient. This is immediately apparent in case (b), where the only resonance
surface contained in the power density contours is p = 0, corresponding to k; = 0.
In case (a), a particle moving along the field with velocity u; “sees” only the funda-
mental frequency w; = k) u, since there are no transverse field variations. This yields
only a contribution from the p = — 1 resonance, k| = Q/u”, although the power
density is distributed along the entire k”-axis. In the isotropic case (c), all resonance
surfaces enter.

Figures 2 to 5 show the pitch-angle diffusion coefficient D33 for various values of
the spectral parameter q and the polarisation ¢ as a function of u /u, where

u=(uj+ud)=cy’-1.
Case (a):

The coefficient D33 exists for all ¢ (Figure 2). There is a strong dependence on the
polarisation. The behaviour near 4 = 0 is finite if f (k) ~ k] 1 and is zero or infinite
according as the spectrum falls off more rapidly or slowly than this rate. For asympto-
tic values ¢ < — 2 the pitch angle scattering becomes so ineffective near 90°, that the
coefficient k) for longitudinal diffusion (see the discussion in section 7) tends to
infinity. This singular behaviour, however, results only from a too restrictive ideali-
sation. If a finite angular spread is allowed for, the coefficient D33 (4 = 0) is always
non-zero, and K| is finite. In general, very little energy is needed in components with
wavenumbers perpendicular to the field to produce appreciable scattering at pitch-
angles of 90°. This will be seen more clearly from the other two models.

Case (b):

The pitch-angle diffusion coefficient exists if the scalar spectra approach infinity
less rapidly than k=2 as k — 0 (Figure 3). Otherwise the integral in (6.13) does not
exist. There is no polarisation dependence. The pitch angle scattering is seen to be
strongly peaked at large pitch-angles (#; = 0). This is a special feature ofthep=10
resonance. The singularity at #; = 0 is due to a coincidence of the p = 0 resonance
term 0 (koy + kju)) and the d-function factor ¢ (k,) in the spectrum; it is removed if
the finite phase velocities of the field components are taken into account.
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Case (c):

The isotropic case lies between the axisymmetric cases (a) and (b), as may have been
anticipated from the distribution of spectral densities, Figure 1. This is best seen from
the contributions from the seperate resonances, Figure 4. For small 4, the p = 0
resonance dominates, and the diffusion coefficient becomes identical with the ex-
pression (6.13) for case (b). In the other limit #; — -+ u, only the p = — 1 resonance
remains, and we recover case (a). The net coefficient obtained by summing over all
resonances is shown in Figure 5. The polarisation effect is seen to be much smaller
than in case (a). This is largely due to the dominance of the polarisation-independent
p = 0 contribution (see Figure 4); for a power law isotropic spectrum, the p = 0
resonance surface passes through the region of highest spectral density at zero wave-
number (Figure 1).

Spatial diffusion coefficient:

The coefficient k% for spatial diffusion perpendicular to the magnetic field (see
eq. (6.9)) is determined in case (a) by the spectral density at zero wave number; this
may not always be defined. The lateral diffusion arises in this case from particles
following slow meanders of the mean field, which can be described by a random
process only if £(0) exists. Similarly, in cases (b) and (c) the p = 0 contribution of the
second terms in the integral expressions for f§ converge only if g, and fapproach zero
at zero wave number.

Equilibrium pitch angle distribution:

If the particle distribution is spatially uniform, the FOKKER-PLANCK equation re-
duces in the case of magnetic-field interactions to a one-dimensional diffusion equation

on o (D* on

for the pitch-angle. The solutions tend asymptotically to an equilibrium distribution
ne = const. in a time of the order of the relaxation time

trel =0 (‘y 112/D33) (618)

The solution n, = const implies also a constant (isotropic) distribution with respect

to the solid angle @, since
Ou,

— u —
'a—d}'—ﬂ—const.

The functional form of the diffusion coefficient is irrelevant for the equilibrium
distribution, which is always isotropic. However, in practice deviations from equi-
librium arise, for example, from pitch-angle dependent loss terms (the ‘“loss cone” in
radiation belt problems), adiabatic pitch-angle variations, spatial density gradients
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(section 7) or acceleration processes (section 8). All these effects compete with the
tendency to isotropy due to pitch-angle scattering. The resulting balance is strongly
influenced by the functional dependence of D33 (), which we see from Figures 1—4
varies considerably with the magnetic-field model.

7. Spatial diffusion parallel to the mean field

We consider now particle distributions which vary slowly in space and time. We
assume that the scattering field is again a magnetic field, and that the particle distri-
butions are close to the isotropic pitch-angle equilibrium.

The particles travel a distance of the order A = uz [y before their velocities are
appreciably changed by pitch-angle scattering. If the time and spatial variations are
so slow that

Onfox; <nfd, On[ot<nft,,

we may expect the evolution of the omnidirectional number density

+u

e(x,7;0)= | ynduy (7.1)
-u

to be governed in the appropriate limit by a diffusion equation, in which the longitudi-
nal diffusion coefficient x| is of the order 42/, (Joxipn, 1966, ROELOF, 1966).
Since the distribution is close to equilibrium, we may write

n(x,p,up)=e(x,y;t)2yu+n"(x,y,uy) (7.2)
where n’ < n.

Substituting equation (7.2) in the FOKKER-PLANCK equation and treating n’ as a
perturbation, we obtain

dg @ (K 00\ D Oo .
at axi ('_y_ 6x’> ax” < |] ax =0 (l,.]_l’z) (7‘3)

where
@’] 1 +u ‘ijd
Ki=54 _.fu K= duy (7.4)
and .
1 “W)?
K” 4’))11 -_[u [ I L du ”jlll” du ] (75)

which is identical in the non-relativistic limit with Jokrtpir’s (1966) resultl). The aniso-
tropy induced by the spatial gradient is given by

r_ 1 ""(ui) ’
n = ax” [4 g _‘. d ” +d] (7.6)

1) A factor 1/ should be inserted in the right hand side of Jokipir’s equation (28).
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where the integration constant « is determined by the side condition

u

§ n'duy=0 (cf. (7.1) and (7.2)).

-u

For the axisymmetric models (a) and (b), equations (7.5) and (7.6) yield
(@)

2 [(mc)\? Q Iy~ 1yet3
""=E(T> @+ )@ H A=) 7

, 0o 1 (mc>2 Q "1yt { q+2<u” Q) Q u““}
nN=———-—f\—] — 77—\ U ——C = |+ O —— 7.8
q  oxymC\ e ) (g+2)(1—0?) eyl luyl 19 |Qlg+3 (7.8)

(®)

= 2 mc— ZQ—qy—luq+3 (7 9)
I=a2C \e ) (@+4)Iy, '
r 20-4q,—1,-1
’ aQ 2 (mc) Q qy u Uy q+2 q+2
WNe=e———| — ) ——————[u"" “—u 7.10

Como L 0%y CyL\ e q+2)1y, |"|||[ + (7.10)

The isotropic model (c) does not lead to closed expressions, but results were obtained
numerically.

For power-law spectra, the dependence of k| on the energy y is the same for all
three models, kj =4 (u/c)?*3y~1. However, the proportionality factor A depends
strongly on the model, as is indicated in figure 6. The associated anisotropies are
shown in figures 7—9. Figures 6—9 demonstrate again the significance of the field
structure in the discussion of scattering processes.

The longitudinal diffusion coefficients k| are meaningful in the axisymmetric cases
only if — g < 2; if the spectra fall off more steeply for large wave numbers, the
diffusion coefficient D33 approaches zero too rapidly at u; = 0, (case (a)) or u; = U
(case (b)) for the integral (7.5) to convergel). Physically, this is due to the mean free
path becoming infinite as D33 approaches zero; the diffusion coefficient diverges when
“escape holes” developatu = Qoru = £ u. The singularitiesat ¢ = -+ 11incase (a)
is similarly due to the diffusion coefficient D33 vanishing. In this case, there is an
“escape band” for 0 < F u, <, cf. equations (6.9) and (6.11). The zeros in D33
arise only for idealised spectral distributions containing a single resonance term.
Normal spectral distributions involving more than one resonance surface, such as the
isotropic model (c), yield finite K)-

1) This is independent of the fact that I14 diverges for — g > 2 due to the singularity of
the power law at zero wave number. We assume for the present discussion that the true
spectrum yields finite coefficients I14.
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For g = — 1, which is appropriate for certain energy ranges (cf. CoLEMAN, 1966),
the parallel diffusion coefficient for the axisymmetric case (a) becomes

2 [(me\* Qu?
173 nc(7> 1-dd)y (7.11)

This is identical for ¢ = 0 with Jokipir’s (1966) equation (39)!), derived for an iso-
tropic spectrum. Jokrpir introduced approximations which were equivalent to retaining
only the p = — 1 resonance; the correspondence to our case (a) is therefore not
surprising. However, for a power-law isotropic spectrum there is no range in which the
p = — 1 resonance is asymptotically dominate; the isotropic case is quantitatively
different from the axisymmetric cases (a) or (b), cf. Figures 4 and 5.

The anisotropy of the pitch-angle distributions induced by the density gradient is
one of various anisotropies caused by small deviations from the pitch-angle equili-
brium. We shall discuss these in relation to observations in more detail in a subsequent

paper.

8. Acceleration processes

In the general case of time-dependent field fluctuations, the field-particle interactions
affect both the pitch-angle and the energy. A stationary equilibrium distribution will
normally not exist, since the particles can diffuse away continually to higher energies.

An exception, however, is the class of random fields for which the parallel phase
velocity — kg / ks is the same for all FOURIER components. In this case, the field can be
transformed to a time-independent magnetic field in a coordinate system % by a
LorenTz transformation L; (i) parallel to the mean field,

X W
=y, <x° —?x3>

3=y, (x3—wx%, where w=—kolk;, P,=(1—w?/c})"*

(8.1)

Since LORENTZ transformations leave the phase element invariant, the number density
n transforms as a scalar. Hence the equilibrium distribution in x follows immediately
from the isotropic equilibrium distribution in X%,

1o (u®, u¥) =7, (i, #%)= g (@2 % J@°) > =1 (#°=yp, @’ +wi’[c?))  (8.2)
The velocity diffusion in the u0, #3 plane occurs along the lines (Figure 10)

w 3
u°——c—5us=u°/yw=const (8.3)

1) Except for a factor 1/s, see footnote p. 375.
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The relation (8.3) was deduced by BRrice (1964) from classical energy-momentum con-
siderations and by KeNNEL and PetscHEK (1966) from de BROGLIES relation and the
correspondence principle (see also Jokipit and PARKER, 1967).

The velocity diffusion coefficients transform as components of a tensor,

D3 ®, u?)=y2D* (", i%) 8.4)

D% (u°,u®) =yfv—;; D3 @@°, %) (8.5)
00,0 ,3 2W? 33 0 -3

D (u s U )='))w7ﬁ (ll s U ) (8'6)

Although the transformation induces energy diffusion terms, the resultant diffusion
in the velocity plane u%, u3 remains one-dimensional, |D¥| = D33D% — (D93)2 = 0,
We are concerned here simply with pitch-angle scattering viewed from a different co-
ordinate system, and the energy transfer ceases once equilibrium is established.

For example, in a solar wind model in which the electromagnetic fluctuations are
regarded as “frozen” into the plasma, the random field appears as a time-independent
magnetic field in the system moving with the plasma. Energetic particles traversing
interplanetary space will therefore attain an isotropic equilibrium distribution relative
to the local solar wind in a time equal to the pitch-angle relaxation time. One recovers

?-,

T
3
u z u
S

S

Fig. 10: LoreNnTz transformation of the isotropic pitch-angle equilibrium in the system s
to a system S moving with velocity w. The scattering in S occurs along the lines

w
u®— —-u® = const.
C

1
°

~ ' a3

S
Fig. 11: Removal of the one-dimensional scattering degeneracy of Figure 10 through an
ensemble of waves travelling with different phase velocities a. The scattering direction
for each phase velocity is indicated by straight lines. The net scattering is two-
dimensional with D% ~ g2,



Scattering of charged particles by random electromagnetic fields 381

in this approximation the usual picture of the solar wind ‘“‘sweeping” particles away
from the sun, but no acceleration.

To obtain a continuous energy transfer, the one-dimensional degeneracy has to be
removed, for example, by inclusion of adiabatic deceleration terms (cf. PARKER, 1966),
or by allowing for variations of the phase velocities in the diffusion coefficients
(Figure 11).

For an arbitrary time dependent field model, the diffusion coefficient can be evaluated
using the general formulae of section 4. However, until more detailed observations of
the space-time structure of the fields become available, it appears adequate to deter-
mine the coefficients only for a simple example which can be constructed from one of
the magnet field models discussed previously.

Consider the electromagnetic field obtained by superimposing a set of fields, each
member of which is derived from the same time-independent magnetic field by a
different LoreNTZ transformation Ly (a). Assuming no two transformations to be
identical, the spectrum of the resultant field is given by the sum of the spectra of the
individual fields. Since the transport coefficients are linear in the spectra, they are
then also obtained by superposition. Hence the velocity diffusion coefficients are
given by averaging the expressions (8.4) —(8.6) over the set of LORENTZ transfor-
mations L (a). We assume that a/v < 1, so that the expressions may be expanded in
powers of a/v. Without loss of generality, the mean value @ may also be taken as zero.
(If @ % 0, we can first carry out a LORENTZ transformation to the system in whichd= 0
and then refer the ensemble of transfqrmations to this new system. It is readily seen
that this does not affect the final result (8.9) to lowest order.) We obtain in this manner

D3, u?)=y2D*W°, u?)+...

D u¥)=a%(..)+... 8.7
a?
D% (u°, u3)=?;1333 W, u?)+...

where, for lowest order, the arguments %, 3 in the right hand side have been replaced
by 9, 3.

To determine the effect of the energy scattering on the omnidirectional distribution

N 3
0= [ n@®u)u’du’,
-u

we average the FOKKER-PLANCK equation (5.7) over the pitch angles. Taking, for
simplicity, the distributions to be spatially uniform, this yields

) ol on ol ¢ on
a_f_a_o[ ) D°3Wdu3:|—ml: [ D5 sdu’ [=0 (8.8)

u -1 -u
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To lowest order, the distribution is isotropic, » = p (u9)/2 uu0. For @ = 0, D% is of
the same order as D90, so that the second term in (8.8) is negligible. The equation then
becomes

I 0¢\ _
ot ay(A 0)- 6y( ’6y>—0 (8.9)

where the energy diffusion coefficient

—

a 33 3
W_jul) «°, u?) du® (8.10)
and the acceleration
=) (8.11)

The proportionality of D, and 4, to a2 agrees with previous estimates of the FERMI
effect based on statistical models of discrete interaction processes (FERMI, 1949, 1954;
cf. Jokrrn and PARKER, 1967 for a summary of other papers).

For the axisymmetric model (a) we obtain from (8.10) and (6.9), (6.11)

2 +1
(e =z =nCQu
b V"(mc) Sl iy e (8.12)

The relation (8.10) diverges if applied to the models (b) and (c) or, in general, to any
field model which has a finite energy density on the p = 0 resonance surface ky=0.
This is due to the occurence of infinite phase velocities — kgy/k3 at k3 = 0, for which
the above transformation procedure has to be modified.

If the FERMI processes are combined with spatial diffusion (section 7), we obtain
the transport equation

ag 0 Og) O 0o ; 0o
( v0)= 6y< ’6)}) ax”< Hax”) ox’ (K ox/ =0 @13

The equation applies to a reference frame in which the mean phase velocity vanishes
(or is at least not larger than the rms variations in the phase velocity). In interplanetary
space, this corresponds to a system moving with the solar wind; (g)* is then pre-
sumably of the order of the mhd-wave velocities. Applications of an extended form of
equation (8.13) including adiabatic terms will be discussed in a subsequent paper.
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Appendix

Derivation of the FOKKER-PLANCK equation

The following derivation of the Foxkker-PLANCK equation starting from the
LIOUVILLE equation is similar to an approach outlined by RoeLor (1967), except that
we shall use spectral representations throughout. The diffusion coefficients obtained
in this way are found to be identical with the coefficients infered in section 5 from the
quadratic transition moments. In the case of a magnetised plasma, the mean accelera-
tion and convection terms vanish, as anticipated by DUNGEY (1965).

To illustrate the method, we consider first an unmagnetised plasma. The equations
of motion (2.4) reduce in this case to

du' e

J
—_ 11
dtv mec’

The LiouViLLE equation for the number density n (x, u; 7) is then

— 41—+ —Fu;,—=0 Al
ot oxt me ' od AaD

We regard n here as a distribution in eight-dimensional x — u phase space. On
account of the side condition ufu; = 1, n contains a d-function factor 8 (utu; — 1).
In particular, an axisymmetric distribution about the x3-axis is given by

n =n—’2,5 (u'u;—1) (A 2)

where n (x, «9, u3; 7) is the six-dimensional distribution introduced in section 4.
Assuming that the random field can be treated as a perturbation, we may expand n
in a series
n=n+n'+n’+... (A3)

where 19 is a solution of the zero’th order LIOUVILLE (convection) equation

0 0
on ;0n
—_—t U —=

0 A4
ot ox' A9

and 5 is of order r in the random field.
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Subtracting equation (A 3) from (A 1) and writing

1 1
n= [dn(k,u)e'™,
the first order perturbation is given by

<aa +tw> dn(k,u)= ————dF‘ (k) u’ an

where w = k;ut. The solution may be written
1 .
dn (k, u) = —%‘% dF (k)14 (w) (A 5)

where 4 is defined by equation (3.13).
The expectation value of n vanishes, since {dF}) = 0. To determine the mean
perturbation of the particle distribution, we must therefore go to second order. From

equations (A 1), (A 3) and (A 5) we obtain for n

<a+u i>'2"<‘e‘> — [ §dFL () dF} (K w4, (w)f’i' (A6
ot ox! ou' v

For large 7, 4; develops a d-function at the resonance frequency o = 0,

lim 4, (w)=nd (w)— t{P}— AD
>0
where {P} denotes the principal value. Thus the expectation value of equation (A 6)
yields, asymptotically,

0 0
a a ( ..an) a ( Uan)

+ut— |<{n DY — |4+ — | AV — A8
(61: 6x>< ’= out ou//  ou ou’ (A9

where

2
D"j=n<-'%> u"u™ [ G, (k)6 (w) dk (A9)
and
2

A”=-—L< ) uu™ [{P} G, (K)o~ dk (A 10)

From the symmetry and reality relations

Gln(R)=(G" ()" =(G' 7 (— K))*

it follows that D¥ is a symmetrical tensor, whereas A% is antisymmetrical.
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Adding equations (A 4) and (A 8) we obtain the FOKKER-PLANCK equation

2 (n>+u —<n)+—(a (nd)— ( 49 <">) 0 (A 11)
ou' ouw’
where the mean acceleration term is defined as
— o ..
a'=—A4"Y (A 12)
ouf

Since A¥ is antisymmetrical, 0a¢/Out = 0. Hence n = const is a possible solution of
(A 11), as required by LiouviLLE’s theorem. In the case of a magnetised plasma, the
mean accelerations will be found to vanish identically.

If the random field is superimposed on a uniform magnetic field, the equations of
motion are given by (2.4) and the LIOUVILLE equation becomes

{a+u—a+<QM+ F) aal}n=0 (A13)
u

ot ox' mc

The equation can be brought into a form similar to (A 1) by transforming first to
helical coordinates, x, u — X, u (equations 2.15), and then to a co-rotating (semi-
characteristic) coordinate system X, U defined by

u'=U), x'=X! for i=0,3
: (A 14)

w=Uie?mr, x":X"J,.__-U etem’ fori=1,2
lﬂ)(i)

This yields, with n (x, u; 7) = N (X, U; 1),
S -1, U'—.+—F'-U’e“””"(e Ot =R 2 e N=0 (A 15)
{ar =2V it e U g, 0X/)

where the variable

1 fori=1,2
Aiy= .
0 fori=0,3

is introduced to distinguish operations applying to the indices 1,2 from those applying
to 0,3.
In terms of X, U, the FouriErR decomposition of the field becomes

JaFy e = ARy e T o e (4 16)

p=-ow
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Substituting (A 16) in (A 15), introducing the expansion (A 3) and writing
N = [dN (k) ™,
we obtain for the first order solution
0

1 . s
dN (k)= -—%‘dF} (k)u’ Z c? {e'(“’m‘w(i)"'pﬂ) T

p=-

(w a),+w+§2—
4, () — 0@+ o) P)aU,

0
+e :}(1) t(ogptpR)t, -4, (wm+w”+p9) }N (A17)
(O]

The second order solution is then given by

2 2
<§-+ t(1-26)U; 'a—) N=<i> (e"”"“’ ,_6 i all’ Am 0 >
ot ox' mc out oy oX'

. j j dF,i, (k') de;, (k) e'(k+kl) X Z c,‘:: CII: umy*t e'(w(n)+ P
p,p=—
0

. —,. tom—om+pDr, 7
{Ai(w(m) o+ +pQ)e 507

M N
1 2D g @em . 4 (Ogmy+ @y + PQ) i}}N (A 18)
) ox

For large 7, the expectation value of (A 18) yields

0

3 d oN 0 (piudN
+:(1-14,;)U; ) = (K'J >+ .<Du )
(a (1=%0) o= ,,Zuax' X’ i,j;),saU' Glog

.. (A 19)

where

2
i__ € m in P12
K,._<—-mc) w(,)a)m<UU > [dk G’ ,,,(k)p_z—wlckl 5(w2m)+w” +)pQ) (A 20)
i,j=1,2

Dj-=<—nz> 7 <U,U™ [ dk G™,, (k) _i 16212 6 (@my+ @0y +P2) (A 21)
’ G, j=0,3)
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and {(U,U™} represents the mean value over the phase angle (cf. equation (4.9)).
In deriving (A 19) to (A 21), we have assumed an axisymmetric distribution about the
x3 axis and have retained only the zero-frequency terms that yield a secular contri-
bution on integration of (A 19) with respect to 7.

Combining equations (A 19), (A 3) and (A 13), transforming back to the original
variables, and introducing the distribution » according to (A 2), we regain the Fokker-
Planck equation (5.1). The diffusion coefficients (A 20) and (A 21) are identical with
the coefficients (5.3), (5.4) derived from the transition moments.
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