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Abstract: Many control tasks can be formulated as tracking problems of a known or
unknown reference signal. Examples are motion compensation in collaborative robotics, the
synchronisation of oscillations for power systems or the reference tracking of recipes in chemical
process operation. Both the tracking performance and the stability of the closed-loop system
depend strongly on two factors: Firstly, they depend on whether the future reference signal
required for tracking is known, and secondly, whether the system can track the reference at
all. This paper shows how to use machine learning, i.e. Gaussian processes, to learn a reference
from (noisy) data while guaranteeing trackability of the modified desired reference predictions
within the framework of model predictive control. Guarantees are provided by adjusting the
hyperparameters via a constrained optimisation. Two specific scenarios, i.e. asymptotically
constant and periodic references, are discussed.
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1. INTRODUCTION

Model predictive control (MPC) is a popular optimisation
based control strategy which can handle a broad class
of dynamical systems including nonlinear, constrained,
multi-input multi-output systems. MPC can be used for
different control tasks, including setpoint stabilisation,
tracking of time dependent references, path following
or economical operation of a system, see for example
(Matschek et al., 2019). To guarantee repeated feasibility
of the optimal control problem as well as to achieve closed
loop stability several concepts exist that differ depending
on the control tasks. In tracking MPC the controller can
e.g. be designed in error coordinates which leads to time-
varying error dynamics and consequently time-dependent
terminal ingredients to prove stability (Faulwasser and
Findeisen, 2011). To do so, the reference needs to be known
and trackable for the system, i.e. it must be compliant
with the state constraints and an admissible reference
input should exist to follow the reference given the system
dynamics. Alternatively, one can use artificial references
(Limon et al., 2008, 2012; Ferramosca et al., 2009) to
ensure feasibility under changing references. Hereby, the
system state is steered to follow an artificial reference while
the distance of the artificial reference to the actual refer-
ence is minimized. Reference modification to achieve good
performance and stability can also be achieved by reference
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governors, which act as pre-filters for the reference signal,
see e.g. (Garone et al., 2017) and references therein.

Machine learning, as for instance a Gaussian process (GP),
can be used to obtain analytical models of external refer-
ence signals that are only available in terms of (noisy) data.
Application examples are dynamically operated chemical
plants where references are obtained via real-time optimi-
sation or autonomous cars which learn from and adapt
to human driver provided references. Learning of external
or additive signals via GPs is considered for instance in
(Maiworm et al., 2018; Klenske et al., 2016; Matschek
et al., 2020), where feed-forward control signals and ex-
ternal reference signals are learned, respectively. In this
work, additional constraints in the learning of GPs are
included to guarantee that the signal provided by the GP
is suitable for a predictive controller. In other words, the
learned reference should be trackable or at least guaran-
tee recursive feasibility. This is important as noise in a
reference can lead to infeasibility of the controller even if
the underlying true signal is trackable. Moreover, adding
constraints can improve the approximation quality of the
GP as unrealistic evolutions are excluded. In case that
the original reference is not trackable, the constrained GP
allows to find a trade-off between close approximation and
constraint satisfaction. Thus the GP is used for reference
prediction and adaptation if necessary, cf. Figure 1.

The main contributions of this paper is a guideline how
to setup and train GPs to be used as reference predic-
tors with guaranteed trackability of the learned reference.
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Fig. 1. Based on data, denoted by ×, the unknown ref-
erence (dashed) should be modelled by the GP. It
learns a reference (solid) while both prediction into
the future (t > τ) as well as reference shaping to
satisfy the constraints (red) is achieved.

These learning algorithms utilize special structures of the
underlying reference which should be modelled, as well
as constrained hyperparameter estimation. In contrast to
(Da Veiga and Marrel, 2012) we do not use truncated
multinormal distributions, but constrain the predicted
mean of the GP to lie inside the reachable tube and the
state constraints during hyperparameter estimation.

The remainder of this paper is structured as follows: Sec-
tion 2 describes the problem setup of learning based refer-
ence prediction via Gaussian processes. Section 3 proposes
algorithms for Gaussian processes training to guarantee
trackability of the reference. Section 4 summarises the
achievements and provides directions for future work.

2. PROBLEM SETUP
Consider the nonlinear time-discrete system

x(k + 1) = f(x(k), u(k)), x(0) = x0, (1)

where x ∈ Rnx is the state, u ∈ Rnu is the input, and
x0 ∈ Rnx is the initial condition of the system.

In tracking MPC, the goal is to design a controller such
that the system state follows a reference xr while satisfying
state constraints X and input constraints U . One possibil-
ity to guarantee stability of tracking MPC is the use of
time varying terminal equality or inequality constraints
which depend on the reference (Faulwasser and Findeisen,
2011; Rawlings et al., 2017; Matschek et al., 2019). De-
termination of these terminal ingredients consequently re-
quires the knowledge of the reference xr, which is however
not always a priori known. For example, dynamic opera-
tion of chemical plants might lead to sudden changes in the
reference based on economical considerations. Other ex-
amples are autonomous vehicles following a human driver
(e.g. adapting to its velocity) while not knowing its future
decisions. In such cases, machine learning can be used to
obtain a model of the reference, such that the reference
can be predicted and thus is known to the controller
including predictions of future values. Besides the required
knowledge of the reference, the reference must fulfil the
following property:

Definition 1. (Constrained Trackability).
A reference xr : N0 → Rnx is said to be trackable for
system (1) if it fulfils the state constraints xr(k) ∈ X and
can be followed given the system dynamics, i.e. ∃ur(k) ∈ U
such that xr(k + 1) = f(xr(k), ur(k)) for all k ∈ N0.

Though restrictive, trackability of the reference accord-
ing to Definition 1 enables desirable properties such as
recursive feasibility of an MPC with terminal equality
constraints (once being on the reference there exists an

admissible input to stay on it). This definition allows us
to formulate the following task:

Task 1. (Reference generator).

Given system (1) and data/ measurements D :=
n∏

i=0

R+
0 ×

Rnx describing the desired reference r : N0 → Rnx . Design
a reference generator g : N0 ×D → X , which provides for
D ∈ D a reference xr : N0 → X , (k) �→ xr(k) := g(k,D),
which fulfils:

(i) Trackability: The reference xr is trackable.
(ii) Reference Prediction: The reference xr spans at least

over a receding prediction horizon N , i.e. at k, xr(i)
is known ∀i ∈ {k, k + 1, . . . , k +N}.

(iii) Data fitting: The reference model finds a trade off
between model complexity and data consistency, i.e.
xr(k) ≈ r(k) for D ∈ D.

To address this task we propose to use a machine learning
technique called Gaussian processes. A general introduc-
tion to GPs and an elaboration on the use of them as
reference generators is provided in the following.

2.1 Gaussian processes

Gaussian Processes are stochastic modelling approaches
which can be used for classification and regression prob-
lems. In control they have gained an increasing attention
for the modelling of both static and dynamic systems,
see e.g. (Rasmussen and Williams, 2006; Ostafew et al.,
2016; Kocijan et al., 2004; Berkenkamp and Schoellig,
2015). Reasons for this popularity are the limited amount
of design decisions, their capability of dealing with noisy
data, and the confidence interval that is provided by the
GP which allows to investigate the quality of the model.

We use GPs to obtain the desired reference generator.
Here, the GP can be uniquely defined by a mean function
m : R → R and a symmetric, positive semi-definite
covariance function κ : R× R → R+

0 and is denoted by

y(t) ∼ GP(m(t), κ(t, t′)).

Here, t, t′ ∈ R are the regressors or inputs to the GP and
the values of the process y(t) at each specific time t possess
a normal distribution. Via the covariance function (also
called kernel) a GP relates similarities between the input
variables to the similarity between the output variables.
These mean and covariance functions involve hyperpa-
rameters θ ∈ Rnθ , where nθ depends on the selected
functions m and κ. The values of the hyperparameters
can be learned based on a hyperparameter training set
Dθ :=

{
(tθ,i, yθ,i) ∈ R+

0 × Rnx | i = 1, 2, . . . , nDθ

}
∈ D.

To do so, often a point estimate of θ is calculated via the
maximization of the marginal logarithmic likelihood.

Our overall goal is to predict or infer the distribution of the
output at (possibly unseen) test points t∗. This prediction
is based on several design decisions, the hyperparameters,
and a training data set Dt :=

{
(tt,i, yt,i) ∈ R+

0 ×Rnx | i =
1, 2, . . . , nDt

}
∈ D. For ease of notation, we define

t := [tt,1, . . . , tt,nDt
], (2a)

y := [yt,1, . . . , yt,nDt
], (2b)

m(t) := [m(tt,1), . . . ,m(tt,nDt
)] (2c)

The joint distribution of the training data output y and
the test data output y∗ at t∗ can be expressed as
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Fig. 1. Based on data, denoted by ×, the unknown ref-
erence (dashed) should be modelled by the GP. It
learns a reference (solid) while both prediction into
the future (t > τ) as well as reference shaping to
satisfy the constraints (red) is achieved.

These learning algorithms utilize special structures of the
underlying reference which should be modelled, as well
as constrained hyperparameter estimation. In contrast to
(Da Veiga and Marrel, 2012) we do not use truncated
multinormal distributions, but constrain the predicted
mean of the GP to lie inside the reachable tube and the
state constraints during hyperparameter estimation.

The remainder of this paper is structured as follows: Sec-
tion 2 describes the problem setup of learning based refer-
ence prediction via Gaussian processes. Section 3 proposes
algorithms for Gaussian processes training to guarantee
trackability of the reference. Section 4 summarises the
achievements and provides directions for future work.

2. PROBLEM SETUP
Consider the nonlinear time-discrete system

x(k + 1) = f(x(k), u(k)), x(0) = x0, (1)

where x ∈ Rnx is the state, u ∈ Rnu is the input, and
x0 ∈ Rnx is the initial condition of the system.

In tracking MPC, the goal is to design a controller such
that the system state follows a reference xr while satisfying
state constraints X and input constraints U . One possibil-
ity to guarantee stability of tracking MPC is the use of
time varying terminal equality or inequality constraints
which depend on the reference (Faulwasser and Findeisen,
2011; Rawlings et al., 2017; Matschek et al., 2019). De-
termination of these terminal ingredients consequently re-
quires the knowledge of the reference xr, which is however
not always a priori known. For example, dynamic opera-
tion of chemical plants might lead to sudden changes in the
reference based on economical considerations. Other ex-
amples are autonomous vehicles following a human driver
(e.g. adapting to its velocity) while not knowing its future
decisions. In such cases, machine learning can be used to
obtain a model of the reference, such that the reference
can be predicted and thus is known to the controller
including predictions of future values. Besides the required
knowledge of the reference, the reference must fulfil the
following property:

Definition 1. (Constrained Trackability).
A reference xr : N0 → Rnx is said to be trackable for
system (1) if it fulfils the state constraints xr(k) ∈ X and
can be followed given the system dynamics, i.e. ∃ur(k) ∈ U
such that xr(k + 1) = f(xr(k), ur(k)) for all k ∈ N0.

Though restrictive, trackability of the reference accord-
ing to Definition 1 enables desirable properties such as
recursive feasibility of an MPC with terminal equality
constraints (once being on the reference there exists an

admissible input to stay on it). This definition allows us
to formulate the following task:

Task 1. (Reference generator).

Given system (1) and data/ measurements D :=
n∏

i=0

R+
0 ×

Rnx describing the desired reference r : N0 → Rnx . Design
a reference generator g : N0 ×D → X , which provides for
D ∈ D a reference xr : N0 → X , (k) �→ xr(k) := g(k,D),
which fulfils:

(i) Trackability: The reference xr is trackable.
(ii) Reference Prediction: The reference xr spans at least

over a receding prediction horizon N , i.e. at k, xr(i)
is known ∀i ∈ {k, k + 1, . . . , k +N}.

(iii) Data fitting: The reference model finds a trade off
between model complexity and data consistency, i.e.
xr(k) ≈ r(k) for D ∈ D.

To address this task we propose to use a machine learning
technique called Gaussian processes. A general introduc-
tion to GPs and an elaboration on the use of them as
reference generators is provided in the following.

2.1 Gaussian processes

Gaussian Processes are stochastic modelling approaches
which can be used for classification and regression prob-
lems. In control they have gained an increasing attention
for the modelling of both static and dynamic systems,
see e.g. (Rasmussen and Williams, 2006; Ostafew et al.,
2016; Kocijan et al., 2004; Berkenkamp and Schoellig,
2015). Reasons for this popularity are the limited amount
of design decisions, their capability of dealing with noisy
data, and the confidence interval that is provided by the
GP which allows to investigate the quality of the model.

We use GPs to obtain the desired reference generator.
Here, the GP can be uniquely defined by a mean function
m : R → R and a symmetric, positive semi-definite
covariance function κ : R× R → R+

0 and is denoted by

y(t) ∼ GP(m(t), κ(t, t′)).

Here, t, t′ ∈ R are the regressors or inputs to the GP and
the values of the process y(t) at each specific time t possess
a normal distribution. Via the covariance function (also
called kernel) a GP relates similarities between the input
variables to the similarity between the output variables.
These mean and covariance functions involve hyperpa-
rameters θ ∈ Rnθ , where nθ depends on the selected
functions m and κ. The values of the hyperparameters
can be learned based on a hyperparameter training set
Dθ :=

{
(tθ,i, yθ,i) ∈ R+

0 × Rnx | i = 1, 2, . . . , nDθ

}
∈ D.

To do so, often a point estimate of θ is calculated via the
maximization of the marginal logarithmic likelihood.

Our overall goal is to predict or infer the distribution of the
output at (possibly unseen) test points t∗. This prediction
is based on several design decisions, the hyperparameters,
and a training data set Dt :=

{
(tt,i, yt,i) ∈ R+

0 ×Rnx | i =
1, 2, . . . , nDt

}
∈ D. For ease of notation, we define

t := [tt,1, . . . , tt,nDt
], (2a)

y := [yt,1, . . . , yt,nDt
], (2b)

m(t) := [m(tt,1), . . . ,m(tt,nDt
)] (2c)

The joint distribution of the training data output y and
the test data output y∗ at t∗ can be expressed as

(
y
y∗

)
∼ GP

((
m(t)
m(t∗)

)
,

(
K(t, t) + σ2

nI K(t, t∗)
K(t∗, t) κ(t∗, t∗)

))
.

Here, σ2
n represents the variance of the measurement noise.

The entries of the covariance matrix K are calculated
using the covariance function κ. Specifically, K(t, t) is of
dimension nDt

×nDt
and specifies the covariance between

all of the training data points, while K(t, t∗) and K(t∗, t)
(with dimensions nDt

×1 and 1×nDt
, respectively) define

the cross correlation between test and training data points.
The scalar κ(t∗, t∗) is the auto covariance of the test data.
Given this joint probability distribution, the conditional
posterior distribution can be calculated via the posterior
mean function m+ : R → R defined by

m+(t∗) :=m(t∗)

+K(t∗, t)(K(t, t) + σ2
nI)

−1
(
y −m(t)

)
(3)

and the posterior covariance κ+ : R×R → R+
0 defined by

κ+(t∗, t∗) :=κ(t∗, t∗)

−K(t∗, t)
(
K(t, t) + σ2

nI
)−1

K(t, t∗).

These posterior moments clearly depend on the involved
data set D = Dθ ∪Dt and the hyperparameter θ. There-
fore, whenever necessary we will explicitly denote this
dependency bym+(t∗|D, θ) and κ+(t∗, t∗|D, θ), but refrain
from using it elsewhere for sake of brevity of notation.

2.2 GPs as reference predictors

In our setup we will use the posterior mean of the GP as
the reference xr(k) := m+(t∗), where t∗ = Tsk ∈ T := {t ∈
R+

0 | t = Tsk, k ∈ N0} with sampling time Ts. If nx > 1,
either nx independent GPs can be trained as e.g. done in
(Matschek et al., 2020) or correlations between the outputs
can be modelled, see e.g. (Rasmussen and Williams, 2006;
Salzmann and Urtasun, 2010).

By using Gaussian processes as reference predictors Task 1
(ii) and (iii) are naturally fulfilled, as GPs form a (static)
prediction model trained via a hyperparameter optimi-
sation that avoids overfitting. The remaining task is to
satisfy the trackability property. The reference xr and
therefore the posterior mean m+(t∗) with t∗ ∈ T must
be consistent with state constraints. Additionally, it must
be followable for system (1) such that there exists an input
u(k) ∈ U , ∀k ∈ N0 for system (1) to stay on the reference
when starting on it. To this end we use the definition of a
reachable set from Blanchini and Miani (2008):

Definition 2. (Reachability set). Given the set of initial
conditions P ⊂ Rnx , the reachability set RT (P) ⊂ Rnx

from P in time T < +∞ is the set of all states x for which
there exists x(0) ∈ P and u(·) ∈ U such that x(T ) = x.

We can use the one step ahead reachable set R1(P) from
an initial condition P := {xr(k)} as a sufficient condition
to verify that xr(k + 1) is trackable, i.e. if xr(k + 1) ∈
R1

(
xr(k)

)
and xr(k) ∈ X for all k ∈ N0 then the reference

is trackable according to Definition 1. We denote the one
step ahead reachable tube as Tk+1 := R1(xr(k)). An
illustration of a reachable tube is shown in Figure 2. In
essence, we have to design the GP such that the posterior
mean m+(t∗ = Tsk) is constrained by the intersection of
the state constraints X and the reachable tube Tk. Then,
point three of Task 1 is fulfilled. We show how to do so in
the following paragraphs.
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Fig. 2. Illustration of a reachable tube.
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Fig. 3. Illustration of an asymptotically constant reference.

3. CONSTRAINED GP LEARNING

We propose to include constraints in the learning phase
of the GP to satisfy m+(t∗) ∈ (Tk ∩ X ) with t∗ = Tsk by
this ensuring trackability. To learn the hyperparameters θ
of the mean and covariance function we rely on maximis-
ing the logarithmic marginal likelihood. This optimisation
results in a point estimate of the most likely hyperparame-
ters given the prior belief (uniformly distributed hyperpa-
rameter prior) and the hyperparameter training data set
Dθ ∈ D. Analogously to (2) we define tθ,yθ and m(tθ)
from Dθ. The optimisation problem can be written as

θ̂ := arg min
θ

l(θ) (4a)

subject to m+(t∗|Dθ, θ) ∈ (Tk ∩ X ), (4b)

t∗ = Tsk, ∀k ∈
{
0, . . . , k̄

}
, (4c)

where the cost function l(θ) is the negative logarithmic
marginal likelihood

l(θ) := ln(|K(tθ, tθ)|) + y�
θ K(tθ, tθ)

−1yθ + nDθ
ln(2π).

We denote the optimal solution of (4) with θ̂. Despite
the small number of decision variables θ, the optimisation
problem is complex as it has a large number of constraints,
is nonconvex, and requires the inverse of K(tθ, tθ) which
can be large for a high number of data points nDθ

. To solve
the optimisation problem several numerical optimisation
methods exist, see e.g. Kocijan (2016). In the remainder
of this paper, we rely on the following assumption:

Assumption 1. The optimisation problem (4) is feasible.

Proposition 1. Given Assumption 1 the resulting parame-

trisation θ̂ of the GP obtained via problem (4) guarantees
trackability of the reference for system (1) for all k ∈
{0, 1, . . . , k̄}.

Proposition 1 only guarantees trackability up to step k̄. To
be able to guarantee trackability for all times, as demanded
in Task 1, we consider asymptotic as well as periodic
references as special cases in the following.

3.1 Asymptotically Constant References
A special case of time dependent references are those which
change for a finite time and are constant (or converge to
a constant) afterwards, cf. Figure 3. Examples for such
references are the transition between two setpoints in
chemical plants or the parking of a car. As the transient
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phase is of finite time Ttrans = Tsktrans < ∞, a finite
number of constraints allows for trackability during the
transient via k̄ ≥ ktrans. In the following, an iterative
algorithm is derived which ensures trackability for k ≥ k̄.
For the specific type of reference we use a prior mean m
and covariance function κ with following properties:

Assumption 2. The prior mean function m is constant.

Assumption 3. The covariance function κ is stationary
and strictly monotonously decreasing κ(t1, t2) < κ(t3, t4)
for all |t2 − t1| > |t4 − t3|.
Assumption 4. The absolute value of the time derivative

of the covariance function κ̇ : R × R → R, κ̇ := ∂κ(·,t′)
∂t is

strictly monotonously decreasing |κ̇(t1, t2)| < |κ̇(t3, t4)| at
least for all |t2 − t1| > |t4 − t3| > ζ(θ), where ζ : Rnθ → R
depends on the hyperparameters.

For example, the popular squared exponential covariance
function κ(t, t′) = θ21exp(− 1

2θ2
2
(t−t′)2) fulfils Assumption 3

and 4 for ζ(θ) = θ2. Assuming fixed hyperparameters θ
and a fixed training data set Dθ ∈ D, the posterior mean
(3) can be reformulated as a weighted sum

m+(t∗) = m(t∗) +

nDθ∑
i=1

ciκ(ti, t∗). (5)

Here, ti ∈ tθ fromDθ and ci are constant coefficients which
depend on the fixed hyperparameters and the training
data. A bound on m+ can be obtained via

|m+(t∗)−m(t∗)| ≤ m̄(t∗) :=

nDθ∑
i=1

|ci|κ(ti, t∗). (6)

Similar to (5) and (6) and with Assumption 2, the deriva-
tive of m+ can be expressed via

ṁ+(t∗) =

nDθ∑
i=1

ciκ̇(ti, t∗),

with a corresponding bound

|ṁ+(t∗)| ≤ ¯̇m(t∗) :=

nDθ∑
i=1

|ci||κ̇(ti, t∗)|. (7)

Furthermore, we rely on the assumption that the growth
rate of the tube can be characterised by a constant lower
bound τ and upper bound τ :

Assumption 5. τ and τ are constant and form an inner
approximation of the one-step reachable tube such that
[xr(k)− τTs, xr(k) + τTs] ⊆ Tk+1 for all xr(k) ∈ X̃ ⊆ X .

Let X̃ := [m(t̄) − m̄(t̄),m(t̄) + m̄(t̄)]. If X̃ ⊆ X , and if
τ ≤ ¯̇m(t̄) ≤ τ for time t̄ = k̄Ts, then (relying also on (4))
m(t) ∈ X ∩Tk(P) for all t ∈ T, i.e. trackability is achieved
as also outlined in Lemma 1. If these requirements are not
fulfilled for k̄, the hyperparameter optimisation (4) must
be performed again with updated k̄. Iteratively updating
the number of constraints by increasing k̄ will lead to
constraint satisfaction for a longer time span, decreased
bounds for the mean and its derivative (as |ti − t̄| is
increased) as well as less conservative bounds τ , τ . In
Algorithm 1, the whole procedure is summarised.

We assume that Algorithm 1 terminates in finite time.
This allows to conclude the following result:

Algorithm 1 GP Learning for asymptotic references

1: procedure GP Training
2: Init k̄,Dθ

3: while true do
4: obtain θ̂ via (4) using

(
k̄,Dθ

)

5: if |ti − Tsk̄| > ζ
(
θ̂
)
then

6: compute m+(t̄), m̄(t̄), ¯̇m(t̄) with t̄ = Tsk̄

via (3),(6),(7) using
(
θ̂,Dθ

)

7: if m+(t̄)± m̄(t̄) ∈ X then
8: choose τ , τ in accordance to Ass. 5 with

X̃ = [m+(t̄)− m̄(t̄),m+(t̄) + m̄(t̄)]
9: if τ ≤ ¯̇m(t̄) ≤ τ then

10: break
11: k̄ ← k̄ + 1
12: return k̄, θ̂

Lemma 1. Given Assumptions 1 to 5 the posterior mean
(3) of a GP trained with Algorithm 1 is trackable in the
sense of Definition 1 for system (1).

Proof 1. If Algorithm 1 converges, we obtain the optimised

hyperparameters θ̂ and the time instant k̄. Problem (4)
(under Assumption 1) guarantees m+(t) ∈ (Tk ∩ X ) for
all t ∈ T≤ := {t ∈ T|t ≤ t̄ = k̄Ts}. From Assumption 3
follows m̄(t) < m̄(t̄) if |ti−t| > |ti− t̄| for all ti ∈ tθ. Line 7
in Algorithm 1 guarantees [m(t̄)− m̄(t̄),m(t̄) + m̄(t̄)] ∈ X
and thus m+(t) ∈ X for all times t ∈ T> := T \ T≤.
Line 5 in Algorithm 1 ensures monotonicity of |κ̇| (see
Assumption 4). Additionally, τ ≤ ¯̇m(t̄) ≤ τ (line 9).
Due to the structure of (7) monotonicity of |κ̇| implies
monotonicity of ¯̇m such that ¯̇m(t) < ¯̇m(t̄) for all t which
fulfil |ti − t| > |ti − t̄|, with ti ∈ tθ. Consequently,
τ ≤ ¯̇m(t) ≤ τ for all t ∈ T>. Including Assumption 5 (line
8) results in m+(t + Ts) ∈ [m+(t)− τTs,m

+(t) + τTs] ⊆
Tk+1 ∀t ∈ T>. In other words, m+(t) ∈ Tk for t ∈ T>. All
in all, m+(t) ∈ (Tk ∩ X ) for t ∈ T. �

We provide an illustrative example in the following:

Example 1. Given is a dynamical system x(k + 1) =
0.9x(k) + 0.5u(k) with state constraints X = [−2, 0.05]
and input constraints U = [−0.5, 0.5]. We want to model
the reference depicted by the black solid line in Fig. 5,
which is however unknown to the GP. Only data points
(depicted as crosses), which cover the transient phase and
the fact that the reference converges to a constant after the
transient are known. We choose a constant zero prior mean
functionm(t∗) = 0 and the squared exponential covariance
function κ(ti, t∗) = θ21 exp(− 1

2θ2
2
(t∗ − ti)

2). Algorithm 1 is

initialised with k̄ = 70 > ktrans. The convergence of the

bounds m̄, ˙̄m as well as the optimal hyperparameters θ̂ at
each iteration are depicted in Figure 4. Monotonicity of
|κ̇| (line 5) is fulfilled after k = 81 only. The convergence
of m̄ and ¯̇m is mainly influenced by the increase of
the distance |ti − t∗|. After k̄ = 101 the inner tube
approximation is non empty (line 9 is feasible) and after
k̄ = 108 the bound on the derivative lies inside of it (line
9 is fulfilled). The iterative algorithm is terminated at
k̄ = 130 as the bound for the predicted mean becomes
small enough (m̄ = 0.0468) to guarantee trackability
for all times. The resulting GP prediction is depicted in
Figure 5 in blue dashed line. In contrast to a GP whose
hyperparameters were conventionally optimised without
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phase is of finite time Ttrans = Tsktrans < ∞, a finite
number of constraints allows for trackability during the
transient via k̄ ≥ ktrans. In the following, an iterative
algorithm is derived which ensures trackability for k ≥ k̄.
For the specific type of reference we use a prior mean m
and covariance function κ with following properties:

Assumption 2. The prior mean function m is constant.

Assumption 3. The covariance function κ is stationary
and strictly monotonously decreasing κ(t1, t2) < κ(t3, t4)
for all |t2 − t1| > |t4 − t3|.
Assumption 4. The absolute value of the time derivative

of the covariance function κ̇ : R × R → R, κ̇ := ∂κ(·,t′)
∂t is

strictly monotonously decreasing |κ̇(t1, t2)| < |κ̇(t3, t4)| at
least for all |t2 − t1| > |t4 − t3| > ζ(θ), where ζ : Rnθ → R
depends on the hyperparameters.

For example, the popular squared exponential covariance
function κ(t, t′) = θ21exp(− 1

2θ2
2
(t−t′)2) fulfils Assumption 3

and 4 for ζ(θ) = θ2. Assuming fixed hyperparameters θ
and a fixed training data set Dθ ∈ D, the posterior mean
(3) can be reformulated as a weighted sum

m+(t∗) = m(t∗) +

nDθ∑
i=1

ciκ(ti, t∗). (5)

Here, ti ∈ tθ fromDθ and ci are constant coefficients which
depend on the fixed hyperparameters and the training
data. A bound on m+ can be obtained via

|m+(t∗)−m(t∗)| ≤ m̄(t∗) :=

nDθ∑
i=1

|ci|κ(ti, t∗). (6)

Similar to (5) and (6) and with Assumption 2, the deriva-
tive of m+ can be expressed via

ṁ+(t∗) =

nDθ∑
i=1

ciκ̇(ti, t∗),

with a corresponding bound

|ṁ+(t∗)| ≤ ¯̇m(t∗) :=

nDθ∑
i=1

|ci||κ̇(ti, t∗)|. (7)

Furthermore, we rely on the assumption that the growth
rate of the tube can be characterised by a constant lower
bound τ and upper bound τ :

Assumption 5. τ and τ are constant and form an inner
approximation of the one-step reachable tube such that
[xr(k)− τTs, xr(k) + τTs] ⊆ Tk+1 for all xr(k) ∈ X̃ ⊆ X .

Let X̃ := [m(t̄) − m̄(t̄),m(t̄) + m̄(t̄)]. If X̃ ⊆ X , and if
τ ≤ ¯̇m(t̄) ≤ τ for time t̄ = k̄Ts, then (relying also on (4))
m(t) ∈ X ∩Tk(P) for all t ∈ T, i.e. trackability is achieved
as also outlined in Lemma 1. If these requirements are not
fulfilled for k̄, the hyperparameter optimisation (4) must
be performed again with updated k̄. Iteratively updating
the number of constraints by increasing k̄ will lead to
constraint satisfaction for a longer time span, decreased
bounds for the mean and its derivative (as |ti − t̄| is
increased) as well as less conservative bounds τ , τ . In
Algorithm 1, the whole procedure is summarised.

We assume that Algorithm 1 terminates in finite time.
This allows to conclude the following result:

Algorithm 1 GP Learning for asymptotic references

1: procedure GP Training
2: Init k̄,Dθ

3: while true do
4: obtain θ̂ via (4) using

(
k̄,Dθ

)

5: if |ti − Tsk̄| > ζ
(
θ̂
)
then

6: compute m+(t̄), m̄(t̄), ¯̇m(t̄) with t̄ = Tsk̄

via (3),(6),(7) using
(
θ̂,Dθ

)

7: if m+(t̄)± m̄(t̄) ∈ X then
8: choose τ , τ in accordance to Ass. 5 with

X̃ = [m+(t̄)− m̄(t̄),m+(t̄) + m̄(t̄)]
9: if τ ≤ ¯̇m(t̄) ≤ τ then

10: break
11: k̄ ← k̄ + 1
12: return k̄, θ̂

Lemma 1. Given Assumptions 1 to 5 the posterior mean
(3) of a GP trained with Algorithm 1 is trackable in the
sense of Definition 1 for system (1).

Proof 1. If Algorithm 1 converges, we obtain the optimised

hyperparameters θ̂ and the time instant k̄. Problem (4)
(under Assumption 1) guarantees m+(t) ∈ (Tk ∩ X ) for
all t ∈ T≤ := {t ∈ T|t ≤ t̄ = k̄Ts}. From Assumption 3
follows m̄(t) < m̄(t̄) if |ti−t| > |ti− t̄| for all ti ∈ tθ. Line 7
in Algorithm 1 guarantees [m(t̄)− m̄(t̄),m(t̄) + m̄(t̄)] ∈ X
and thus m+(t) ∈ X for all times t ∈ T> := T \ T≤.
Line 5 in Algorithm 1 ensures monotonicity of |κ̇| (see
Assumption 4). Additionally, τ ≤ ¯̇m(t̄) ≤ τ (line 9).
Due to the structure of (7) monotonicity of |κ̇| implies
monotonicity of ¯̇m such that ¯̇m(t) < ¯̇m(t̄) for all t which
fulfil |ti − t| > |ti − t̄|, with ti ∈ tθ. Consequently,
τ ≤ ¯̇m(t) ≤ τ for all t ∈ T>. Including Assumption 5 (line
8) results in m+(t + Ts) ∈ [m+(t)− τTs,m

+(t) + τTs] ⊆
Tk+1 ∀t ∈ T>. In other words, m+(t) ∈ Tk for t ∈ T>. All
in all, m+(t) ∈ (Tk ∩ X ) for t ∈ T. �

We provide an illustrative example in the following:

Example 1. Given is a dynamical system x(k + 1) =
0.9x(k) + 0.5u(k) with state constraints X = [−2, 0.05]
and input constraints U = [−0.5, 0.5]. We want to model
the reference depicted by the black solid line in Fig. 5,
which is however unknown to the GP. Only data points
(depicted as crosses), which cover the transient phase and
the fact that the reference converges to a constant after the
transient are known. We choose a constant zero prior mean
functionm(t∗) = 0 and the squared exponential covariance
function κ(ti, t∗) = θ21 exp(− 1

2θ2
2
(t∗ − ti)

2). Algorithm 1 is

initialised with k̄ = 70 > ktrans. The convergence of the

bounds m̄, ˙̄m as well as the optimal hyperparameters θ̂ at
each iteration are depicted in Figure 4. Monotonicity of
|κ̇| (line 5) is fulfilled after k = 81 only. The convergence
of m̄ and ¯̇m is mainly influenced by the increase of
the distance |ti − t∗|. After k̄ = 101 the inner tube
approximation is non empty (line 9 is feasible) and after
k̄ = 108 the bound on the derivative lies inside of it (line
9 is fulfilled). The iterative algorithm is terminated at
k̄ = 130 as the bound for the predicted mean becomes
small enough (m̄ = 0.0468) to guarantee trackability
for all times. The resulting GP prediction is depicted in
Figure 5 in blue dashed line. In contrast to a GP whose
hyperparameters were conventionally optimised without
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Fig. 4. Optimal hyperparameters θ̂, the bound for the
mean value m̄, and the bound on its derivative ¯̇m
compared to the inner approximation of the tube
growth τ , τ at each iteration of Algorithm 1 for
Example 1. The zoom shows the last 11 iterations.
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Fig. 5. Comparison between an unconstrained GP
(dash-dotted) and the proposed learning algorithm
(dashed). The constraints for the hyperparameter op-
timisation X ∩Tk (dark grey), are used up to k̄ = 130.

additional constraints (depicted in red dash-dotted line)
it satisfies trackability for all times.

In systems where not every state is directly influenced by
an input, the lower and upper bound τ and τ become equal
for some states. In this case line 9 of Algorithm 1 cannot
be fulfilled. Instead of using the one step reachable set, the
N step reachable set can then be used. This relaxes the
restriction significantly and guarantees recursive feasibility
instead of trackability.
3.2 Periodical references
Often periodic references are of interest. They occur e.g.
in the periodic operation of chemical reactors or when a
robot manufactures the same item iteratively. To be able
to extrapolate periodic signals with Gaussian processes we
rely on Assumption 2 and the following covariance:

Assumption 6. Covariance κ is stationary and periodic,
i.e. κ(t, t′) = κ(t, t′ + nTp) with n ∈ N0 and period Tp.

To guarantee trackability, the constraints of the optimi-
sation (4) should cover at least one period k̄ ≥ Tp/Ts.
If the period Tp is an integer multiple of the sampling
time Ts then (4) with k̄ ≥ Tp/Ts guarantees trackability

for all times t ∈ T. In the more general case, constraint
satisfaction must be guaranteed not only point wise but ul-
timately for all t ∈ [0, Tp]. Therefore, we will derive bounds
on the mean and its derivative to guarantee constraint
satisfaction not only at the sampling instances t ∈ T, but
for all t ∈ [0, Tp]. To this end, we propose the optimisation:

θ̂ := argmin
θ

l(θ) (8a)

s. t.

m+
min = min

t
m+(t|Dθ, θ), s.t. 0 ≤ t ≤ Tsk̄, (8b)

m+
max = max

t
m+(t|Dθ, θ), s.t. 0 ≤ t ≤ Tsk̄, (8c)

ṁ+
min,i = min

t
ṁ+(t|Dθ, θ), s.t.∆ti ≤ t ≤ ∆ti+1, (8d)

ṁ+
max,i = max

t
ṁ+(t|Dθ, θ), s.t.∆ti ≤ t ≤ ∆ti+1, (8e)

m+
min ∈ X , m+

max ∈ X , (8f)

ṁ+
min,i ≥ τ i, ṁ+

max,i ≤ τ i, (8g)

∀i ∈ [0, 1, . . . , η − 1], ∆ti := iη−1Tsk̄. (8h)

Here, a constant upper and lower bound on the mean via
(8b) and (8c) is obtained which need to fulfil the state
constraints (8f). As a constant bound for the derivative of
the mean and the inner tube approximation could be quite
conservative, piecewise constant approximations are used.
The time span [0, Tsk̄] is therefor divided into η intervals.
For each interval, a lower bound ṁ+

min,i and upper bound

ṁ+
min,i on the derivative of the mean is calculated in

(8d) and (8e). Furthermore, inner approximations of the

reachable tube growth [τ i, τ i] for X̃i := {m+(t) ∀t ∈
[∆ti,∆ti+1]} are determined according to Assumption 5.
Followability is achieved via (8g) and via:

Assumption 7. The optimisation problem (8) is feasible.

Lemma 2. Given Assumptions 2, 5, 6, 7, and k̄ ≥ Tp/Ts

the posterior mean (3) of a GP trained with (8) is trackable
in the sense of Definition 1 for system (1).

Proof 2. Under Assumption 7 optimisation problem (8)
guarantees m+(t) ∈ [m+

min,m
+
max] ⊆ X for all t ∈ [0, Tsk̄].

With k̄ ≥ Tp/Ts and Assumptions 2 and 6 m+(t+nTp) =
m+(t), where n ∈ N and consequently m+(t) ∈ X for all
t ∈ R. For each time interval ∆ti ≥ t ≥ ∆ti+1, ṁ

+(t) ∈
[m+

min,i,m
+
max,i] ⊆ [τ i, τ i], such that with Assumption 5

m+(t) ∈ T for each t ∈ [0, Tp/Ts]. With k̄ ≥ Tp/Ts

and Assumptions 2 and 6 m+(t) ∈ T for all t ∈ R, and
consequently m+(t) ∈ (X ∩ T ) for all t ∈ R. �

Please note that from a practical side, optimisation prob-
lem (4) with very small sampling time Ts might be pre-
ferred over (8) as it is computationally cheaper and tends
to the same result for Ts → 0.

Example 2. Given is the dynamical system x(k + 1) =
0.9x(k) + 0.1u(k) with state constraints X = [−2, 2]
and input constraints U = [−3, 1.4]. In accordance
to Assumptions 2 and 6 a zero prior mean function
m(t∗) = 0 and a periodical covariance function κ =
θ21 exp(− 2

θ2
2
sin(πθ−1

3 (t∗− ti)
2)) are chosen. Figure 6 shows

the (unknown) reference r(k) in solid black which should
be modelled based on the observations depicted as black
crosses. The predicted mean should be consistent with X ∩
Tk, depicted as dark grey area. The constrained Gaussian
process provides a reference prediction depicted as dashed
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Fig. 6. GP prediction of a periodic reference. The underly-
ing unknown reference r(k) = sin(2k)+0.5 sin(4k+1)
is modelled based on the data points (×).
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Fig. 7. Inner tube growth rate approximation (shaded area
with η = 16 intervals) should not be left by ṁ.

line. It satisfies the trackability conditions for all times.
In contrast to this, an unconstrained hyperparameter op-
timisation using the same training data leads to the red
dash-dotted prediction which violates the reachable tube.
This can be seen e.g. in the inlay plot in Figure 6 showing
a zoomed view on the first 50 steps as well as in Figure 7.
The derivative of the unconstrained mean ṁ+

uncon violates
the inner approximation of the tube growth rate (the
trajectory leaves the grey area) depicted in Figure 7. In
contrast, the derivative of the constrained mean ṁ+

constr is
fulfilling those constraints. Even though the unconstrained
GP satisfies the state constraints X , it is not trackable by
the system dynamics due to the input constraints.

4. CONCLUSION

We outlined how Gaussian processes can model external
reference signals of different structure (asymptotically con-
stant or periodic). These GP predictions can be used e.g. in
model predictive control to achieve an improved tracking
performance as well as providing stability guarantees. To
do so, we have proposed different algorithms to train GPs.
These concepts are based on constrained hyperparameter
optimisation to guarantee trackability and constrained sat-
isfaction of the predicted GP mean. Investigations for arbi-
trary references, online learning, and truncated multinor-
mal distributions are interesting future research directions.
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