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In this second part of a two-part paper, we discuss numerical simulations of a head-on merger of
two non-spinning black holes. We resolve the fate of the original two apparent horizons by showing
that after intersecting, their world tubes “turn around” and continue backwards in time. Using the
method presented in the first paper [1] to locate these surfaces, we resolve several such world tubes
evolving and connecting through various bifurcations and annihilations. This also draws a consistent
picture of the full merger in terms of apparent horizons, or more generally, marginally outer trapped
surfaces (MOTSs). The MOTS stability operator provides a natural mechanism to identify MOTSs
which should be thought of as black hole boundaries. These are the two initial ones and the final
remnant. All other MOTSs lie in the interior and are neither stable nor inner trapped.

I. INTRODUCTION

The now numerous detections of gravitational wave
events leave little doubt that black hole coalescences are
a regularly occurring phenomenon in our universe [2–8].
With the help of numerical relativity simulations, the
produced gravitational waves travelling to distant ob-
servers are analysed and modeled with steadily increas-
ing efficiency and accuracy [9, 10]. However, the details
of the merger of the black holes themselves is less well
understood. This is partly for conceptual and partly for
numerical reasons.

On the conceptual side, one needs to answer the ques-
tion of how to describe black holes in highly dynamical
situations. When a black hole is at rest or only slightly
perturbed, the event horizon is a suitable description [11].
In non-perturbative cases, however, its teleological na-
ture makes it unsuitable for gaining an understanding of
the dynamics [12–15]. A much better alternative is pro-
vided by the quasilocal horizon framework [12, 16, 17].
The central concept in this framework, the dynamical
horizon, presents a notion of black holes that is valid
and satisfies physical laws even in the highly nonlinear
phases of the merger. Dynamical horizons are based on
the numerically accessible marginally outer trapped sur-
faces (MOTSs), i.e. surfaces S defined as having vanish-
ing outward expansion. Following such a MOTS through
the time evolution of a spacetime generates a world tube,
called a marginally outer trapped tube (MOTT). In their
original definition [12, 16, 17], dynamical horizons are a
certain subset of MOTTs. In the present work, MOTS
stability [18, 19] will play a central role and we shall re-
fer to a stable MOTS as apparent horizon1 (AH) and

1 The compatibility with the traditional terminology of apparent
horizons as boundaries of trapped regions will be discussed below.

to a MOTT foliated by apparent horizons as dynamical
apparent horizon (DAH).

Whether we consider dynamical horizons or MOTTs
in general, one seemingly basic question remained open:
What happens to the horizons of two black holes when
they merge? It is well known that a common apparent
horizon forms around the two individual ones when they
are sufficiently close to each other. This common horizon
immediately splits into an outer and an inner branch.
This fact together with the observation that MOTTs may
in principle weave back and forth in time (see e.g. [15, 20])
sparked speculations that all the horizons in a binary
merger might, in fact, be parts of a single world tube
[21–23].

Prior to recent advances in methods for locating
MOTSs numerically [24], it was not possible to further
investigate these ideas. The world tubes that had to be
tracked developed extremely distorted shapes, which the
typically used algorithms failed to resolve. The funda-
mental assumption often employed to simplify the nu-
merical task is that the surface we wish to locate is
star shaped, i.e. it can be represented using an angle-
dependent (coordinate) distance function from some ref-
erence point. See Ref. [25] for a review.

By removing this limitation, it was shown recently that
the individual apparent horizons connect indirectly to
the outer common horizon by merging (non-smoothly)
with the world tube of its inner branch at the time when
the individual apparent horizons touch [26–29]. However,
they continue to exist afterwards and their later fate was
not fully resolved in these studies. One reason for this is
that in the utilized methods, one still had to anticipate
the possible shapes with appropriate initial guesses. As
we shall see, resolving their full fate requires even more
exotic guesses, and for this a new method was needed.
We have developed and presented such a method in the
first paper of this two-part series, henceforth denoted as
paper I [1]. As we shall see in the remainder of this second
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paper, having such a method is the key to resolving this
question.

One might argue that in classical general relativity,
whatever happens in the interior of the event horizon re-
mains – by definition – causally disconnected from far
away observers. MOTTs are always located in this inte-
rior region and, after the outer common apparent horizon
has formed, the individual apparent horizons are even
further away from it. Nevertheless, the question of their
fate seems highly relevant if one aims at using MOTTs to
understand the merger. To allow for a physically mean-
ingful interpretation, these should be well-behaved ob-
jects in the first place. But how is this compatible with
the results of paper I? There, we have shown that a two-
black-hole configuration may contain a large number of
MOTSs not previously known. Are these merely artifacts
of an “unphysical” configuration? Since they were found
in time-symmetric initial data with a common AH al-
ready present, neither the past nor the future of this
configuration contains two separate black holes. In the
present paper, we therefore look at the merger of initially
separate black holes and aim to answer two questions: i)
Do such additional MOTSs also form dynamically in a
merger of initially separate black holes? ii) What physi-
cal significance do they have and how can we differentiate
them from the intuitively more relevant apparent hori-
zons we associate with the individual black holes (S1,2)
and the final common one (Souter)?

To answer these questions, we perform numerical simu-
lations of the head-on collision of two non-spinning black
holes with no initial momentum. In particular, we show
explicitly that i) such additional MOTSs do form dynam-
ically and ii) the new MOTTs we track do, in fact, bifur-
cate and annihilate with the other MOTTs. This means
that they are indeed weaving back and forth in time, but
as we will see later, they do not connect to form just
one single smooth surface. A remarkable result is a sur-
prisingly clear and predictable behavior in terms of the
stability of these MOTTs: Whenever a MOTT switches
direction in time, it gains an additional negative eigen-
value of the stability operator, i.e. it effectively becomes
“more unstable”. Furthermore, only three MOTTs are
stable (and hence DAHs) in the sense of [18, 19] and are
thus distinguished from all other MOTTs we find. These
are the two DAHs traced out by S1 and S2 associated
with the individual black holes and the one final com-
mon DAH traced out by Souter.

The rest of this paper is organized as follows. We start
by fixing the notation and introducing the required math-
ematical concepts in Section II. Section III gives the
numerical details of our setup, the simulations and the
method to locate and track the marginal surfaces. The
new MOTSs and the world tubes they trace out are intro-
duced in Section IV. Here, we also describe a mechanism
occurring multiple times along otherwise smoothly evolv-
ing MOTTs where a cusp forms followed by a new self-
intersection. Additionally, we present MOTSs of toroidal
topology that exist inside the individual MOTSs S1 and

S2. Section V connects the various observations made in
the previous sections with the MOTS stability properties.
The signature and the expansion of the ingoing null rays,
together important for understanding the behavior of the
area, are presented in Section VI. Finally, Section VII will
conclude with a discussion of the main results.

II. BASIC NOTIONS

A. Marginal surfaces and their world tubes

We consider four-dimensional spacetime (M, gαβ ,∇α)
with Lorentzian four-metric gαβ of signature (−+ + +).
For a smooth spacelike two-surface (S, qAB ,DA), let `±

be two linearly independent future pointing null normals
scaled such that `+ · `− = −1. In the present paper we
will only consider closed surfaces S and we assume it
is possible to assign an outward direction on S. Then,
`+ is taken to be pointing outward and `− inward. The
expansions Θ± of a congruence of null rays travelling in
the `± directions is then given by

Θ± = qαβ∇α`±β , (1)

where qαβ = eαAe
β
Bq

AB with eαA being the pull-back from
M to S. The expansions can be seen as the trace of the
extrinsic curvatures k±AB of S associated with `±. The
(symmetric) trace-free part is given by the shear

σ±AB = ∇A`±B−
1

2
Θ±qAB = eαAe

β
B∇α`±β −

1

2
Θ±qAB . (2)

We will call Θ+ the outgoing and Θ− the ingoing expan-
sion.

The signs of Θ± allow us to classify S. In particular, if
Θ± < 0 then S is called a trapped surface. The existence
of such a surface has been proven to imply that spacetime
is causally geodesically incomplete and thus singular [30].
S is called a marginally trapped surface if Θ− < 0 and
Θ+ = 0 and a marginally outer trapped surface (MOTS)
if Θ+ = 0 with no restriction on Θ−. We mention here
that Andersson et al. show in [31] that existence of a
strictly stable MOTS (introduced in Section II B) is suf-
ficient for the singularity theorem mentioned above to
hold. Note that we can still scale the null normals by
arbitrary positive functions f > 0 via

`+ → f`+ and `− → 1

f
`− . (3)

Fortunately, the signs of the expansions Θ± and conse-
quently the above characterization of S is invariant under
these transformations.

Let the spacetime M be foliated by spatial slices
(Σt, hij , Di,Kij) with Riemannian three-metric hij and
extrinsic curvature Kij . Following a MOTS S through
slices of the foliation provides the notion of a MOTT.
More precisely, a smooth three-manifold H is called a
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marginally outer trapped tube (MOTT) if it admits a fo-
liation of MOTSs. Note that this definition of a MOTT
makes no use of the foliation of spacetime by the Σt. We
will, however, only consider MOTTs H with a foliation of
MOTSs contained in the slices Σt. For a spacelike future
(Θ− < 0) MOTT H, the foliation can be shown to be
unique [32].

The above objects are closely related to various terms
involving the word “horizon”. For instance, a spacelike fu-
ture MOTT is defined as a dynamical horizon in [17, 33]
while in [28, 29], the definition of a dynamical horizon
has been generalized to refer to any MOTT. Additional
qualifiers (e.g. future, spacelike) were used to then spe-
cialize where needed. One of the reasons for this gen-
eralization is that MOTSs and MOTTs were found to
appear in a much wider variety than expected and the
original dynamical horizon did not cover all the interest-
ing cases. However, the examples in [28, 29] were just the
start and [34] showed that even in a single slice of the
Schwarzschild spacetime there are an infinite number of
MOTSs. This together with the results shown in the first
and this second paper clearly suggest that not all of these
objects should be thought of as black hole boundaries.
As mentioned in the introduction, the notion of MOTS
stability turns out to reliably select those MOTSs which
possess reasonable physical properties and can thus be
called horizons. We will therefore introduce the MOTS
stability operator in the following section.

B. MOTS stability

The concept of MOTS stability in the sense of Refs. [18,
19] is helpful to get a deeper insight into the evolution
properties of a MOTS. In particular, it will be useful in
assessing at which time t a MOTT H becomes tangent
to a spatial slice Σt and thus generically “turns around”
in time. These instances correspond to a MOTT appear-
ing and bifurcating into two branches, as well as when
two MOTTs merge and annihilate. Furthermore, we ex-
pect the physically relevant horizons to be boundaries for
trapped and untrapped surfaces, at least in a neighbour-
hood. This property also turns out to be closely related
to the notion of MOTS stability.

Before delving into the fully generic case, it will be
helpful to first consider a very simple situation in which
the stability operator appears almost naturally. Spheri-
cally symmetric spacetimes provide such an example and
so here we restrict our attention to spherically symmetric
MOTSs.

1. MOTTs in spherical symmetry

We will start by establishing some basic properties of
MOTTs in spherical symmetry. In this setting, each point
in the two-dimensional (t, r) space represents a sphere
and we can calculate its expansion Θ+. A point (t, r) can

FIG. 1. Spherically symmetric evolution of a MOTT H (thin
solid line). It is perfectly possible for H to weave back and
forth through the time foliation. See, for example, [20, 21] for
exact solutions exhibiting this behaviour.

then be labeled as outer trapped, outer untrapped or
marginally outer trapped as shown in FIG. 1. A MOTT
H traces a curve through the (t, r) space and it can weave
its way back and forth through the foliation of spacetime.

Tangents to this curve can be written in the form

Vα = N(uα + vRα) , (4)

where uα and Rα are respectively the unit vectors in the t
and r directions. N can be any function of (t, r), though a
convenient choice is the lapse. v is the speed of H relative
to the foliation.H is spacelike if |v| > 1, timelike if |v| < 1
and null if |v| = 1. If H becomes tangent to the foliation
(as at B or C) then at that point |v| → ∞.

The speed v may also be calculated from the fact that
Θ+ = 0 on H. Then writing the derivative in the V direc-
tion as δV (the notation is chosen to be compatible with
the next section), δVΘ+ = 0. It follows that

v = − δuΘ+

δRΘ+
= 1− 2

δ`+Θ+

δRΘ+
, (5)

where we made a particular choice for the null vectors
relative to u and R:

`+ =
1

2
(u+R) and `− = u−R . (6)

Then we can again see that if δRΘ+ → 0, |v| → ∞ (as
long as δ`+Θ+ 6= 0).

Next, applying the spherically symmetric null Ray-
chaudhuri equation we find

v = 1 + 2
G++

δRΘ+
. (7)

By the null energy condition, G++ = Gαβ`
α
+`

β
+ ≥ 0. If it

vanishes, then v = 1 and soH is outward null and isolated

at that point. If matter falls through H (Gαβ`
α
+`

β
+ > 0)

and the region outside of H is outer untrapped (from A
to C and then B onwards in FIG. 1) then δRΘ+ > 0 ⇒
v > 1 and H is spacelike outward at that point. However
if the region outside of H is outer trapped (from C to
B) then δRΘ+ < 0 and so H could be either spacelike,
timelike or (inward) null. At C it transitions from v =∞
to −∞ and at B from −∞ to ∞.
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These quantities also determine the expansion of H.
From (4) and (7)

ΘV = N (Θu + vΘR) = −
(
G++

δRΘ+

)
Θ− . (8)

Thus if G++ = 0, then ΘV is non-expanding. However
if G++ 6= 0 and Θ− < 0 (that is, the (t, r) spheres
get smaller moving inward from the MOTT), then H is
expanding if the region just outside is outer untrapped
(from A to C and then B onwards) and shrinking if the
region outside of H is outer trapped (from C to B). To-
gether these results mean that if we consider H as a con-
tinuous curve running in the direction A to B then it is
increasing in area as one would expect for a black hole
horizon.

Note that the exact location of the transition points
is at least partly a function of the foliation. For exam-
ple, if we chose a foliation rotated relative to our original
Σt in FIG. 1, then the points of tangency between H and
the foliation would be different. Their number could even
increase. However the possible timelike signature of H
means that this wending through time cannot (always)
be understood as simply a by-product of the choice of
spacetime foliation. Timelike sections necessarily inter-
sect with many slices of any foliation.

Finally note that a simulation that only tracked outer-
most MOTSs would see an apparent horizon jump from
A to B at Σ2. However a more careful tracker would iden-
tify B as a MOTS pair creation event with one surface
subsequently moving inwards while the other expands
outwards. Ultimately that inward moving MOTS would
annihilate with the original apparent horizon at C. Both
pair creation and annihilation events happen at points
where δRΘ+ → 0.

2. The MOTS stability operator

Away from spherical symmetry everything is more
complicated, though many of the themes (and conclu-
sions) that we have just examined remain. In particular
δRΘ+ continues to play a key role though it is now gen-
eralized to become the MOTS stability operator [18, 19].

Leaving rigid spherical symmetry behind, there is no
longer just one way to expand a surface outwards (or in-
wards). Since deformations tangent to a MOTS S leave
Θ+ invariant, we will only consider deformations along
some direction V α normal to S. In principle, this need
not be limited to a particular slice Σt containing S. Now,
for such a deformation of S, consider a family Sν of sim-
ilar surfaces such that S0 = S. Then we can consider
the vector field of normal vectors V α to these surfaces.
In turn these generate a congruence of curves that map
points between the Sν and we can write the tangent vec-
tor to these curves, the generator of the deformations,
as

∂

∂ν
= ψV (9)

for a function ψ. Note that the local deformation of S is
fully determined by ψ as a function on just S. For the
spherical deformations of the last section, ψ would be a
constant and V α would be the normal Ri in a t = const
slice.

Next, to each of the Sν we can construct a (non-unique)
pair of null normals `±ν and calculate the expansions Θν

±.

They are chosen so that `±0 = `± (the original null nor-
mals on S). The MOTS stability operator LV with re-
spect to the normal V α, scaled2 such that V α`+α = 1, is
then defined as the derivative of Θν

+ with respect to ν:

LV ψ := δψV Θ+ :=
∂

∂ν

∣∣∣
ν=0

Θν
+ . (10)

It is shown in [19] that LV does not depend on the choice
of `±ν away from S. On the other hand, the definition of
LV is not invariant under the rescalings (3) of the null
normals `±. However, since we will be interested only in
its eigenvalues, we can use the fact that LV is isospectral
under (3) as shown in [35] and we shall work with the
particular choice (6).

Just as in the spherical case of the previous section,
we will discuss the evolution properties of a MOTT H
in the context of some fixed foliation Σt and use this
foliation to talk about bifurcations and annihilations. We
will then need to choose the vector V α as the normal of S
which lies in Σt, i.e. we choose3 V α = 2Rα. The stability
operator with respect to the slice Σt is then defined as
LΣ := L2Rα and it takes the form (e.g. [18, 19, 36]):

LΣψ = −4̃ψ +

(
1

2
R− 2|σ+|2 − 2G++ −G+−

)
ψ ,

(11)

where factors of 2 differing from [18, 19] result from our
different cross normalization `+ · `− = −1 and where

4̃ψ = (DA − ωA)(DA − ωA)ψ (12)

with ωA = −eαA`−β∇α`
β
+ the connection on the nor-

mal bundle of S, R its Ricci scalar, G+− = Gαβ`
α
+`

β
−,

G++ = Gαβ`
α
+`

β
+ and |σ+|2 = σ+

ABσ
AB
+ . This is a second

order, linear, elliptic operator with discrete spectrum and
for a non-vanishing connection ωA it is not self-adjoint.
However, its principal eigenvalue λ0, i.e. the eigenvalue
with the smallest real part, is always real. A MOTS S
with λ0 ≥ 0, λ0 > 0, λ0 < 0 is called stable, strictly
stable, or unstable, respectively. The meaning of this ter-
minology will soon become clear.

Note that for the spherical cases that we considered in
the last section, ωA = 0 and σ+

AB = 0 and we were only

2 In particular, V cannot be parallel to `+.
3 The factor 2 results from our different convention (6) for the

scaling of `+ as compared to [18]. However, this does not change
the spectrum of LV .
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FIG. 2. Definition of the evolution vector V along a MOTTH.
V can be split into a component ψR orthogonal to S = H∩Σt1

within Σt1 and one orthogonal to Σt1 , i.e. Nu, which is also
orthogonal to S.

considering constant ψ. With those restrictions

LΣψ = 2 δψRΘ+ =

(
1

R2
− 2G++ −G+−

)
ψ , (13)

where R is the areal radius of the MOTS. Then the term
in parentheses is the principal4 eigenvalue of LΣ. Hence
in spherical symmetry we can only have an “ingoing” H
when the sum of the matter terms is comparable in size to
1/R2. If it is not then, as we saw earlier, H is necessarily
spacelike and (if Θ− < 0) expanding. However if it is
equal so that δψRΘ+ = 0, then we can have horizon pair
formation (annihilation) as at B (C) in FIG. 1. Physically
this can be thought of as a case where the matter outside
is dense enough to cause the formation of a new horizon
outside the old one [21].

Returning to the general stability operator (11), An-
dersson et al. proved in [18, 19] that λ0 > 0 implies ex-
istence of a smooth MOTT H containing S. That is, S
evolves smoothly to the future and to the past for at
least a short time interval. This can be understood intu-
itively in the following way. Consider a three-dimensional
MOTT H in spacetime, illustrated in FIG. 2. Again, let
Vα be the tangent to H orthogonal to the MOTSs S and
scaled such that LV t = 1, where LV is the Lie-derivative
along Vα. For a fixed foliation Σt, we can split Vα into
the components orthogonal and tangent to Σt,

Vα = Nuα + ψRα , (14)

where the foliation fully determines the lapse N and so
Nuα is fixed. Clearly, the variation of the expansion along
the MOTT H vanishes,

δVΘ+ = 0 , (15)

which means that finding the tangent vector Vα amounts
to solving the inhomogeneous partial differential equation

LΣψ = −2δNuΘ+ (16)

4 Allowing non-constant ψ would add a term −∆Sψ, where ∆S
is the Laplacian on S. The spectrum would then be that of the
Laplacian on a round sphere (with lowest eigenvalue being zero)
shifted by the constant term in parenthesis in Eq. (13).

for ψ. The inhomogeneity on the righthand side of this is
fixed by the foliation.

Note that if LΣ is invertible, then there exists a so-
lution for (16) for any lapse N . This is guaranteed if,
e.g., λ0 > 0. However, if λ0 ≤ 0, then invertibility can
fail, as eigenvalues may vanish. Equivalently, in that case
there are homogeneous solutions to the evolution equa-
tion (16): that is we can choose a Vα that is tangent
to Σt and still satisfies (15). The pair creation event B
in FIG. 1 is such an event. This association of vanish-
ing eigenvalues with pair creation/annihilation has also
been observed away from spherical symmetry [24]. In the
present paper, we shall see multiple instances of horizons
appearing and vanishing precisely as one of the eigenval-
ues – not necessarily λ0 – becomes zero. If it is λ0 that
vanishes, then Proposition 5.1 of [31] shows that generi-
cally H is tangent to Σt and, for fixed slicing, unique at
least in a neighbourhood.

Note too that λ0 > 0 implies that δψRΘ+ > 0 and
again, just as we saw in the spherically symmetric case,
this is sufficient to imply that the evolving H is space-
like at that point [18, 19] and so, if Θ− < 0, expand-
ing (see also [33, 37]). This area expansion theorem has
been generalized to include timelike “backwards in time”
segments [38]. However this is not the end of the story:
certain assumptions made in that generalized proof have
now been shown to not always hold during black hole
mergers [28, 29]. We will see further examples of this in
Section VI.

Stability is not only useful for understanding the evolu-
tion ofH, it also tells us something about local properties
of S within the slice Σt. In paper I, it is shown that the
stability operator for MOTS can be understood as the
analogue of the Jacobi operator for geodesics [1]. Thus
if one considers an axisymmetric MOTS to be one of a
congruence of marginally outer trapped (possibly open)
surfaces, then the number of negative eigenvalues of the
stability operator corresponds to the number of inter-
sections with other nearby members of the congruence.
Hence a stable MOTS with λ0 > 0 does not intersect
its neighbours while an unstable one certainly does have
such intersections.

More generally, it is shown in [18, 19] that a strictly
stable MOTS S (λ0 > 0) has the barrier property. In
essence, this means that given a close-by surface S ′ then
if S ′ has expansion Θ′+ ≤ 0, it cannot extend into the
exterior of S. Similarly if Θ′+ ≥ 0, it cannot enter the
interior. On the other hand if S has the barrier property,
it is at least stable.

Following from these results, we adopt the following
convention in the present work. A stable MOTS S shall
be called an apparent horizon (AH). Note that an appar-
ent horizon is usually defined as the outer boundary of
the trapped region in a given slice Σt. Due to Theorem 2.1
in [31], this boundary is a stable MOTS, so our definition
includes the previous one and extends it to include sur-
faces that can still reasonably be associated with black
hole boundaries. Examples are the previously outermost
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MOTSs S1 and S2, as we shall see below. Similarly, a
three-surface H will be called a dynamical apparent hori-
zon (DAH) if it allows a foliation of apparent horizons.

3. Simplification for vacuum, axial symmetry and no spin

As shown in the first paper, for non-spinning axisym-
metric MOTSs S in vacuum, we can simplify LΣ to

LΣψ = −∆Sψ +

(
1

2
R− 2|σ+|2

)
ψ , (17)

where ∆S = DADA is the Laplacian on S. In this case LΣ

is self-adjoint with purely real spectrum. Another simpli-
fication can be made if we introduce coordinates (θ, φ)
on S. Let φ be the coordinate along orbits of the axial
Killing field ϕA preserving the two-metric qAB and van-
ishing at exactly two points, the poles of S. We take φ to
be in the range [0, 2π). Let further θ be any coordinate
orthogonal to φ, e.g. cos θ = ζ, with ζ constructed as in
Ref. [39]. Then we can write any eigenfunction ψ of LΣ

as

ψ(θ, φ) =

∞∑
m=−∞

ψm(θ)eimφ . (18)

For each m ∈ Z, the eigenvalue problem LΣψ = λψ then
reduces to a one-dimensional problem

LmΣψm := (LΣ +m2qφφ)ψm = λψm . (19)

The eigenvalues of Eq. (19) are labeled as λl,m, where
l is chosen to run from l = |m| over the eigenvalues in
ascending order. This guarantees that for a round sphere,
for which the spectrum reduces to that of the Laplacian
on a sphere of radius R0 and shifted by 1

2R = 1/R2
0,

the eigenvalues are labeled in the conventional way as
λl,m = (1 + l(l + 1))/R2

0. For brevity, we will sometimes
write λl := λl,0.

III. NUMERICAL SETUP AND MOTS
FINDING

We use Brill-Lindquist initial data [40] for our simu-
lations. These describe a Cauchy slice Σ which is time
symmetric, i.e. with vanishing extrinsic curvature. The
topology of Σ is R3 \ {x1, x2}, where x1,2 are the coordi-
nates of two punctures. The Riemannian three-metric is
conformally flat, hij = ψ4δij , where δij is the flat metric.
The conformal factor is given by

ψ = 1 +
m1

2r1
+
m2

2r2
, (20)

where m1,2 are the bare masses of the black holes and r1,2

are the (coordinate) distances to the respective puncture.
We shall here focus primarily on one particular configu-
ration with total ADM mass M = m1 + m2 = 1 and a

mass ratio of q = m2/m1 = 2 (i.e. m1 = 1/3, m2 = 2/3).
We choose a distance parameter of d := ‖x2−x1‖2 = 0.9
resulting in two black holes which are initially separate
with no common apparent horizon present.

We track the various MOTSs in the simulations using
the method described in [24, 27] and available from [41],
which in turn uses software libraries described in [42–
49]. Two approaches are used to locate the new MOTSs
in the simulations. One is the shooting method described
in paper I [1], which can, in principle, locate all axisym-
metric MOTSs of spherical topology by choosing suit-
able starting points on the z-axis. This method has been
implemented in [41] and can be applied to both, ana-
lytically known initial data as well as to slices obtained
e.g. from numerical simulations. The other method for
generating initial guesses is motivated by the assump-
tion that MOTSs may vanish and appear only in pairs of
two. Based on this idea, we try to track each MOTS to
the future and to the past. Whenever a MOTS cannot be
tracked further in either direction, we look for a “close
by” one with which it might merge. Such a merger will
be an annihilation if it happens to the future and a bi-
furcation if it happens in the past direction. Appendix A
details the method we use to locate such a corresponding
MOTT using families of surfaces of constant expansion
Θ+.

The simulations themselves are carried out using the
Einstein Toolkit [50, 51]. The Brill-Lindquist initial data
are generated by TwoPunctures [52], while we use an ax-
isymmetric version of McLachlan [53] for evolving these
data in the BSSN formulation of the Einstein equations.
This uses Kranc [54, 55] to generate efficient C++ code.
We always work with the 1 + log slicing and a Γ-driver
shift condition [56, 57]. An important feature of these
gauge conditions is that they are “singularity avoiding”,
which results in simulation time effectively slowing down
close to the punctures. It was seen in [58] that the indi-
vidual MOTTs S1,2 essentially stop evolving due to this
effect, with the precise behavior being highly dependent
on the choice of initial data: A smaller initial distance
allows the S1,2 to evolve further during the simulation.
We repeat our simulations at different resolutions to en-
sure convergence of our results. Most of these results are
obtained using a spatial grid resolution of 1/∆x = 720,
with additional simulations carried out with 1/∆x = 240,
360 and 480. Shorter simulations to verify certain fea-
tures were performed at 1/∆x = 960 and 1920. We do
not use mesh refinement and choose our domain large
enough to ensure that any boundary effects do not reach
the MOTSs for as long as we track them. Additional de-
tails and convergence properties of our simulations are
described in Ref. [27].

IV. OVERVIEW OF THE VARIOUS MOTTS

The general picture one expects to find in head-on
mergers of two black holes has previously been analyzed



7

in great detail [26–29, 59]: Initially, only two individual
apparent horizons are present, S1 and S2, belonging to
the two separate black holes. At a time touter

bifurcate, com-
mon MOTSs Souter and Sinner form as one surface and
bifurcate into two branches. While Souter settles to the
final Schwarzschild horizon, Sinner travels inwards and
becomes increasingly distorted. At the precise time when
S1,2 touch, denoted as ttouch, Sinner forms a cusp and coin-
cides with S1∪S2. Immediately afterwards, S1,2 intersect
each other while Sinner forms self-intersections. However,
the final fate of S1, S2 and Sinner had not been resolved
in those studies. We shall attempt to resolve that fate
here.

In the following, we will encounter several new MOTSs
S and we will, as before, differentiate between them us-
ing different sub- and superscripts. It is understood that
replacing “S” with “H” indicates that we refer to the
MOTT traced out by S.

A. Area evolution

The main results are most easily visualized in terms
of the area of the various MOTSs. FIG. 3 shows that
we indeed find multiple new MOTSs previously not
known, each forming in a bifurcation as a pair with an
outer and an inner branch. Furthermore, we find MOTSs
which merge and annihilate in pairs of two. Each bifur-
cation and annihilation connects two MOTTs in a lo-
cally smooth world tube. Upon formation, the area of
the outer branch increases while it decreases for the in-
ner branch. However, with the exception of Souter, even
the areas of the outer branches soon start to decrease.
This non-monotonic behavior of the area along a smooth
portion of a MOTT has been previously discussed for
Sinner in [26, 28] and has been attributed to properties
of the expansion Θ− of the ingoing null rays `− and
to the signature of the world tube. We shall here ex-
tend the discussion of these properties to the new world
tubes in Section VI. One characteristic that all MOTSs S
along such a MOTT have in common is which punctures
they enclose, i.e. no MOTS crosses a puncture in its evo-
lution. Further, all additional bifurcations happen after
the formation of the outermost common MOTS Souter at
touter
bifurcate and the new MOTSs are solely contained within
Souter.

We note here that we lose track of some of the MOTSs,
such as S∗∗2 , during the simulation without having an in-
dication of an annihilation. The reason we cannot track
these MOTSs further is a purely numerical one. The
shapes move very close to one of the punctures in our
numerical coordinates (the proper distance to the punc-
ture is, of course, always infinite). This close proximity
results in loss of numerical accuracy since a large spatial
region is covered by a decreasing number of numerical
grid points as the puncture is approached, i.e. this region
is numerically underresolved. Fortunately, the analysis of
the MOTS stability spectrum enables us to clearly differ-
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FIG. 3. Evolution of the area of the various MOTSs. Lines of
the same color and different line styles smoothly connect and
correspond to a single world tube continuing back and forth
in time (except for the pair (S1,S∗1 ), which is discussed in
Section IV B 3). The sum of the areas of S1,2 is shown as the
thin dashed line. This coincides with the area of Sinner at ttouch

marking the merger of Sinner with S1 ∪ S2. Note that despite
some MOTSs having larger area than Souter, they are, in fact,
all contained within Souter for t ≥ touter

bifurcate. For all curves
that end without smoothly connecting to another curve, we
lost track of the corresponding MOTS for numerical reasons
(see the end of Section IV A for details).

entiate between a MOTS vanishing due to annihilation
and one vanishing due to loss of accuracy.

B. The world tubes

In this subsection, we will give an overall description
of the individual connected world tubes.

1. The world tube of Souter

The most complicated of the four world tubes is the
one that asymptotes to the final Schwarzschild horizon.
Starting with Souter, this MOTT is composed of the se-
quence Souter → Sinner → S∗inner → S∗∗inner. All MOTSs
along this MOTT enclose both punctures. FIG. 4 shows
several examples of these MOTSs as we follow this world



8

−1.0 −0.5 0.0 0.5 1.0

x/M

−1.0

−0.5

0.0

0.5

1.0
z
/M

Souter at t = 6M

−0.5 0.0 0.5

x/M

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

z
/M

Souter at t = 0.725M

−0.5 0.0 0.5

x/M

−0.75

−0.50

−0.25

0.00

0.25

0.50

z
/M

Sinner at t = 1.5M

−0.5 0.0 0.5

x/M

−0.8

−0.6

−0.4

−0.2

0.0

0.2

z
/M

Sinner at t ≈ 3.8628M

−0.4 −0.2 0.0 0.2 0.4

x/M

−0.6

−0.4

−0.2

0.0

z
/M

Sinner at t = 5.5M

−0.5 0.0 0.5

x/M

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

z
/M

S∗inner at t = 2.5M

−0.5 0.0 0.5

x/M

−0.75

−0.50

−0.25

0.00

0.25

0.50

z
/M

S∗inner at t ≈ 0.8181M

−0.5 0.0 0.5

x/M

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

z
/M

S∗∗inner at t = 3M

−0.4 −0.2 0.0 0.2 0.4

x/M

−0.6

−0.4

−0.2

0.0

z
/M

S∗∗inner at t ≈ 4.9667M

−0.03 0.00 0.03

−0.06

−0.04

FIG. 4. Several shapes of the MOTSs along the connected MOTT following the sequence Souter → Sinner → S∗inner → S∗∗inner.
The panels are to be read row by row from left to right. The respective inset in the bottom-left indicates the location of the
shown MOTS on the connected area curve with a red dot (see FIG. 3 for the precise axes and labels). For reference, the shapes
of S1 and S2 are drawn as light grey solid lines (except for the top-left and the center panel, where S2 does not exist). We start
in the top-left panel with Souter at t = 6.5M and then go backwards along the MOTT until we reach S∗∗inner at the final time
t = 4.4625M when it could be located (bottom-right panel). The inset in the bottom-right of this last panel shows the newly
formed second self-intersection of S∗∗inner.

tube, starting with Souter (top left panel) and mov-
ing backwards. We find the well-known bifurcation of
(Souter,Sinner) at touter

bifurcate ≈ 0.702M (top center panel).
Going now forward in time along the inner common

MOTT Hinner, we find that Sinner coincides momentar-
ily with S1 ∪ S2 at ttouch ≈ 3.86M (middle left panel)
and afterwards develops self-intersections. It merges and
annihilates smoothly with S∗inner, which retains the self-
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FIG. 5. Same as FIG. 4 but showing MOTSs along the connected MOTT consisting of S2 → S∗2 → S∗∗2 .

intersection, and travels from the annihilation backwards
in time until shortly after touter

bifurcate (bottom left panel).
At this point, it smoothly connects to S∗∗inner in a bifurca-
tion. S∗∗inner, initially fully outside and enclosing S2, sub-
sequently becomes increasingly distorted. Just like Sinner,
it forms a cusp at the time tinner∗∗

cusp when the lower part of
it passes from the outside to the inside of S2, after which
it has a second self-intersection (bottom right panel).

The two instances where a cusp is formed along this
MOTT are very similar in nature. An important ingredi-
ent for understanding these is the maximum principle for
MOTSs (c.f. Section 3.2 in [22]). This implies that two
smooth MOTSs S and S ′, one enclosing the other, must
be identical if they have a common point with normals
pointing in the same direction. This is precisely the sit-
uation of Sinner as it approaches ttouch and that of S∗∗inner

as t→ tinner∗∗
cusp . At the respective times of cusp formation,

the two portions of the MOTS separated by the cusp are
individually each a smooth MOTS. In the case of Sinner,
this is just S1 and S2, while for S∗∗inner it is S2 and another
MOTS, S1c, discussed in Section IV C.

2. The world tube of S2

This MOTT consists of the sequence S2 → S∗2 → S∗∗2 ,
with MOTSs shown in FIG. 5. Starting with S2 at t = 0
(top left panel), we find the annihilation of S2 with S∗2
at t ≈ 5.35M . S∗2 is then followed backwards until the
point where it bifurcates with S∗∗2 at t ≈ 0.811M (bottom
center panel). All MOTSs along this MOTT enclose only
the puncture in the interior of S2, i.e. that of the larger
of the two original black holes. The bottom right panel
of FIG. 5 shows the last time we were able to reliably
locate S∗∗2 . Shortly after this time, it gets too close (in
coordinates) to the puncture inside S1, resulting in loss
of numerical accuracy. However, just as for Sinner and
S∗∗inner, S∗∗2 approaches S2 from the outside. We suspect
that S∗∗2 will subsequently move to the inside of S2 by
forming a cusp at the time of transition. At this time, it
must momentarily coincide with S2 in its lower portion
and another MOTS (S1a, shown in Section IV C) in its
upper portion. If true, this scenario would lead to a self-
intersection forming in this world tube.

The annihilation of S2 with S∗2 resolves the previously
unknown fate of this individual apparent horizon, al-
though the fate of the full world tube (including S∗2 and



10

−0.5 0.0 0.5

x/M

−0.5

0.0

0.5

z
/M

t = 2.5M

S1

S∗1
S∗∗1

FIG. 6. Examples of the MOTSs S1, S∗1 , and S∗∗1 at simulation
time t = 2.5M . The light grey curve shows S2 for reference.

S∗∗2 ) is not numerically resolved. We shall defer further
discussion of possible scenarios to Section VII.

3. The world tube(s) of S1 and S∗1

At t
S∗1
bifurcate ≈ 0.756M we find the formation of the

pair (S∗1 ,S∗∗1 ). These enclose the puncture inside S1 but
do not contain the puncture of S2. FIG. 6 shows this pair
along with S1 at a time t = 2.5M .

A merger and annihilation of S1 with S∗1 analogous to
that of S2 with S∗2 could not be seen in this simulation. It
is unclear if this lack of an annihilation is a) purely due to
the smaller S1 being closer in coordinates to one of the
punctures, which increases the effect of the slow-down
discussed above and in [58], or if b) S1 has a qualita-
tively different behavior than S2 and possibly does not
annihilate at all. One option to pursue the first possibil-
ity is to choose initial data for a simulation which reduces
the aforementioned slow-down effects. Appendix B shows
results for such a simulation, which suggests that the lack
of annihilation could indeed be due to case a) even in the
present simulation.

Lastly, we would like to point out that, in a very similar
way to S∗∗2 , we find the inner branch S∗∗1 approaching
one of the individual apparent horizons, this time S1,
from the outside. In this case, however, we were able to
resolve the formation of a cusp as S∗∗1 coincides with
S1 ∪S2a (S2a is discussed in Section IV C). As expected,
S∗∗1 subsequently self-intersects. This supports again the
above expectation that this also happens for S∗∗2 .
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FIG. 7. Examples of the MOTSs S∗0 and S∗∗0 at simulation
time t = 2.5M . The light grey curves show S1 and S2 for
reference.

4. The world tube of S∗0

The last world tube is traced out by the pair (S∗0 ,S∗∗0 ),

which bifurcates at t
S∗0
bifurcate ≈ 0.888M . These do not con-

nect smoothly to any of the above MOTSs. FIG. 7 shows
the MOTSs at a time t = 2.5M . None of the MOTSs
along this world tube contain any puncture in their inte-
rior.

Based on the cases of cusp formation and self-
intersections mentioned above, we speculate here on the
future of S∗∗0 beyond the point where we are able to locate
it reliably: We already mentioned the cusp formations of
S∗∗1 and S∗∗2 in the previous two subsections. In these two
cases, either S1 or S2 coincides with S∗∗1 or S∗∗2 on one of
their portions, respectively. We also noted that in both
cases the two remainders, S2a and S1a, respectively, are
themselves MOTSs discussed in Section IV C. These lat-
ter two MOTSs do not contain any puncture. They may,
however, at some point touch and start to intersect, just
like S1 and S2 do at ttouch. At the time when they touch,
we propose that S∗∗0 coincides with their union, has a
cusp at this time, and forms a self-intersection immedi-
ately afterwards. We are unfortunately not able to resolve
this idea at this point since we lose numerical accuracy
near the punctures before this can be observed.

5. Comparison with the extreme mass ratio merger case

It is illuminating to compare these sequences of
MOTSs to FIG. 16 in [34]. That paper studied marginally
outer trapped open surfaces (MOTOSs) in Schwarzschild
spacetimes with the argument that they could be used
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to model dynamical apparent horizon and other MOTT
evolutions during an extreme mass ratio merger.

That paper did not include true dynamics, but it was
argued that it should be possible to assemble the var-
ious MOTOSs found in Schwarzschild into a sequence
describing the full dynamics of the merger. The authors
proposed one such evolution, but what they didn’t con-
sider5 is that many of the steps could be happening simul-
taneously. Instead of creations and annihilations, they ex-
pected a single continuous sequence of MOTOSs evolving
in time. If one reinterprets the sequence in their FIG. 16
as a marginally outer trapped open tube weaving back-
wards and forwards in time, then the proposed picture
becomes much closer to that of FIG. 4 in the current
paper, though still with some mistakes.

It is intriguing that that simple model of an ex-
treme mass ratio merger can reproduce cusp formation
which subsequently evolves into self-intersections. How-
ever since [34] works with an exact solution, we can
push further and see that this process may repeat in-
definitely with surfaces involving more and more self-
intersections. This then is extra evidence that the dou-
ble self-intersection of FIG. 4 at t ≈ 4.9667M is likely
just the beginning of a sequence that may continue in-
definitely with each n-times self-intersecting MOTOS ul-
timately being annihilating with an (n + 1)-times self-
intersecting MOTS which in turn was pair-created with
a (soon-to-be) (n+ 2)-times self-intersecting MOTOS.

C. MOTSs inside S1 and S2

None of the MOTSs described thus far are located fully
in the interior of either S1 or S2. As discussed in the
first paper, we were in fact not able to locate such an
interior MOTS in the Brill-Lindquist initial data. From
the discussion in the previous Section IV B, however, one
would expect that at any point where a cusp forms in a
MOTS and separates it into two smooth parts, these two
parts are individually separate MOTSs with their own
time development to the future and past. This holds for
example for the upper portion of S∗∗inner at the time it
forms a cusp shortly before the last panel of FIG. 4. This
portion is fully contained inside S1, i.e. at some point
a MOTS must have formed inside S1 evolving into this
self-intersecting shape. A similar argument holds for the
lower portion of S∗∗1 .

A search for MOTSs in the interior regions of S1 and S2

at a time t > 0 has indeed been successful. FIG. 8 shows
the four MOTSs we could locate inside S1 at a simulation
time t = 1.5M . From FIG. 9 it can be seen that these
MOTSs pinch off and merge with S1 as t→ 0, i.e. they do
not exist separately in the initial data and thus can only

5 We are confident about this as two of them are also authors on
the current paper!

be found at later times. The same qualitative behavior
is found inside S2. Note that the self-intersecting MOTS
S1c later merges with S∗∗inner at the time the latter forms
the cusp at t ≈ 4.32M . FIG. 10 shows this formation
of a cusp and subsequent self-intersection. Similarly, S2a

merges with S∗∗1 as it forms its cusp at about t ≈ 4.9M .
Another observation is that these interior MOTSs can-
not “escape” their enclosing S1 or S2, respectively, while
the latter exist. This is again easily explained by the
maximum principle for MOTSs given in Section 3.2 of
Ref. [22], since any common point with a common normal
direction would imply the MOTSs necessarily coincide.

Interestingly, S1d and S2d are MOTSs with toroidal
topology, i.e. their Euler characteristic is χ = 0 in con-
trast to all other MOTSs which have χ = 2. We numeri-
cally verified that their shear σ+

AB does not vanish, which
immediately implies that any first order spacelike out-
ward deformation does not lead to an untrapped surface
(see the remark at the end of Section III A of Ref. [17]).
This is compatible with a negative principal eigenvalue of
the stability operator, which we find as well. S1d is shown
in the last panel of FIG. 8 and closely follows the loop of
the self-intersecting S1c. Just like S1a,b,c and S2a,b,c, the
toroidal MOTSs merge with S1 and S2, respectively, as
t→ 0.

From their behavior for t → 0, one can immediately
deduce that the area of S1a,b and S1d becomes twice the
area of S1 while S1c has three times this area in the limit
t → 0. Analogous arguments hold for S2a,b,c,d. FIG. 11
confirms this expectation and shows the evolution of the
various areas as a function of time.

All these interior MOTSs get very close in coordinates
to one of the punctures and we hence lose most of them
due to numerical problems before the end of our simula-
tion. This happens earlier for S1a,b,c,d than for S2a,b,c,d

as the former are smaller in coordinates than the latter.

D. MOTSs seen from the other asymptotic ends

Figures 8 and 9 show curves Si1 and Si2 which we did
not yet comment on. These curves belong to marginally
inner trapped surfaces (MITSs), where Θ− = 0 with no
condition on Θ+. Equivalently, these surfaces are MOTSs
with the notion of inward and outward reversed. These
MITSs are interesting for two reasons.

First, the MITSs provide a means for generalizing a
feature visible in the time-symmetric case (see paper I),
where the MOTSs with sharp turns seem to transition
between portions staying close to one of the other MOTSs
with fewer or no turns. However, at these turns the notion
of inside and outside may switch. This is irrelevant in
time-symmetry as in that case Θ+ = 0 ⇐⇒ Θ− = 0,
but it becomes important during the simulation where
time-symmetry is lost. As can be seen in FIG. 8, the
MOTSs S1a,b,c,d run close to Si1 on an extended portion,
consistent with the notions of inside and outside there.
FIG. 12 visualizes this idea by showing the spatial part of
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FIG. 8. The MOTSs S1a,b,c,d in the interior of S1 at a simulation time t = 1.5M . S1a (first panel) and S1b (second panel) do not
enclose the puncture inside S1, while S1c (third panel) is self-intersecting and does enclose this puncture. The last panel shows
a MOTS S1d of toroidal topology. We also show a marginally inner trapped surface Si

1 as thin solid line, which is discussed in
Section IV D.
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FIG. 9. MOTSs in the interior of the individual MOTSs S1 and S2 at the two different times t = 0.2M (left panel) and t = 1M
(right panel). Any MOTS outside or partially outside the individual ones is not shown here. The MOTSs S1a,b,c,d are shown
individually in FIG. 8. We furthermore show the MITSs Si

1, Si
2, which are discussed in Section IV D.

the respective null normals with vanishing expansion, i.e.
of `+ for the MOTSs and `− for the MITS. We find that
all MOTSs in the interior of S1 fully lie in the annular
region between S1 and the MITS Si1. The MOTSs in the
interior of S2 behave analogously.

The second reason to consider MITSs is that the two
punctures in the Brill-Lindquist initial data belong to two
different asymptotically flat ends of the slice Σ. In fact,
these data contain three ends with x → ∞ representing
the end we commonly choose to be in the “outward” di-
rection. The ends x→ x1 and x→ x2, where x1,2 are the
coordinates of the two punctures, contain equally valid

observers far away from any black hole. An observer near
x1 or x2 will see a quite different picture of what “we” (i.e.
observers for whom x→∞ is considered outside) see as
a binary black hole merger. In particular, at t = 0 where
S1,2 are not only MOTSs but also MITSs, an observer
near, say, x1 interprets S1 as common apparent horizon
enclosing both punctures. FIG. 13 shows that the area of
these MITSs is monotonically increasing. Furthermore,
considered as MOTSs seen from the respective asymp-
totic region, Si1 and Si2 are strictly stable and, in fact,
the outermost common MOTSs representing a perturbed
Schwarzschild black hole. While many more MITSs are
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FIG. 11. Evolution of the area of the MOTSs S1a,b,c inside S1 (top panel) and of S2a,b,c inside S2 (bottom panel). The areas
of S1 and S2 are shown for reference. Note that the smooth annihilation of S2 is not visible since we do not include the area of
the connecting MOTS S∗2 .

likely present in our simulations, we shall leave a more
exhaustive study of these surfaces for future work.

E. Remarks on initial distance and mass ratio

Most of the discussed numerical results are obtained
from simulations starting with a single physical configu-
ration, namely Brill-Lindquist initial data consisting of a
conformally flat three-metric with conformal factor (20)
where the bare masses are m1 = 1/3 and m2 = 2/3 and
the distance parameter is chosen as d = 0.9. This choice

balances several effects resulting from the interplay of
the employed slicing and the numerical setup: A larger
value for d makes the individual apparent horizons S1,2

slow down in evolution before they start to intersect [58]
and thus prevents us from observing the annihilations
of (S2,S∗2 ) and (Sinner,S∗inner). A smaller value leads to
common MOTSs Souter and Sinner already being present
in the initial data. As shown in paper I, many more com-
mon MOTSs exist in these kinds of setups and hence at
least some of the various bifurcations do not exist in the
simulation.

Similar considerations led to the chosen mass ratio of
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where it coincides with the area of S1 and S2, respectively.

q = 2. In particular, it is true that more unequal masses
keep the larger MOTS S2 further away (in coordinates)
from the puncture in its interior. As a consequence, it suf-
fers less from the slow-down described in [58] and we can
observe that it annihilates with S∗2 “earlier” with respect
to simulation time. However, this comes at the cost of S∗2
now getting too close (again, in coordinates) to the punc-
ture inside the smaller MOTS S1 and thus we were not
able to resolve the full world tube of S∗2 and show that it
turns around in time at both of its ends. This also means
that the prospect of resolving the fate of S1 crucially
depends on keeping it as far away from its puncture as
possible. Without modifying the used gauge conditions,
which we do not try to do in the present work, this can
only be achieved with more equal masses. Our attempts
to do so are summarized in Appendix B. However, we

find that this requires a very small initial distance d.
Thus, while we are indeed able to resolve some of the

previously presented features for many choices of initial
data, the particular choice we made combines most of
these in one simulation. Furthermore, the reasons we can-
not resolve the full set of these features for other mass
ratios or initial distances are well understood and due
to numerical issues. We therefore have no clear indica-
tion that the observed behavior should indeed be specific
to our choice of these parameters. The exception is a
possible qualitative change in case of a large mass ra-
tio. For large q, we find that the time tS2annihilate where
S2 annihilates with S∗2 occurs earlier and much closer to
the time ttouch when S1 and S2 start to intersect. Recall
that ttouch is precisely the time when the union S1 ∪ S2

coincides with Sinner and that this provides the connec-
tion between S1,2 and Souter [26, 27]. We have verified for

d = 0.9 that ttouch < tS2annihilate up to q = 14. However,
if one finds for even larger q that S2 annihilates with
S∗2 before it intersects with S1, one may still be able to
find a sequence of MOTSs connecting S1,2 with Souter. In
this case, the connection may occur after S2 has turned
around in time, i.e. one may see a merger S1 ∪ S∗2 with
S∗inner.

V. STABILITY

The various bifurcations and annihilations described
thus far can also be understood with the help of the
MOTS stability operator. As we shall see, this not only
gives strong numerical support for our claims of smooth
bifurcations and annihilations, it also provides a useful
characterization of the respective two branches in terms
of the eigenvalues of this operator.

Let LΣ be the stability operator (11). As shown in
Proposition 5.1 of [31], the vanishing of the principal
eigenvalue of LΣ is closely related to bifurcations and
annihilations of a MOTS. The intuitive picture is that
of a MOTT H which is tangent to one of the slices Σt∗ ,
where t∗ is the time of bifurcation or annihilation. At this
time, the cross section St∗ ofH is a MOTS with vanishing
principal eigenvalue λ0 = 0. Essentially, the proposition
proves, under suitable genericity conditions satisfied in all
our cases, that the existence of such a MOTS St∗ with
λ0 = 0 implies existence of a unique MOTT H tangent to
Σt∗ and containing St∗ . Hence, if we do find two MOTTs
connecting smoothly at t∗ with λ0 → 0 as t→ t∗, then we
have a clear numerical indication for such a bifurcation
or annihilation. This is precisely the case for the bifur-
cation of the pair (Souter,Sinner) and the annihilation of
the pair (S2,S∗2 ) shown in Figures 14 and 15. However,
for the other pairs of MOTSs, we in fact find that instead
of the principal eigenvalue, it is one of the higher eigen-
values which tends to zero at bifurcation or annihilation
time.

An interesting observation we can make here is that
the number of negative eigenvalues necessarily changes
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hilate.

as we follow a smooth MOTT across such a bifurcation
or annihilation. Three of the MOTSs, namely Souter, S1,
and S2, possess a positive principle eigenvalue, i.e. they
are strictly stable and thus act as barrier for trapped and
untrapped surfaces in a neighbourhood. By our terminol-
ogy, they are apparent horizons and the world tubes they
trace out are dynamical apparent horizons. The above
properties are what one would usually expect from hori-
zons associated with black holes. All other MOTSs we
found possess one or more negative eigenvalues. At any
given time, all MOTSs with a negative eigenvalue are con-
tained in the interior of one of the strictly stable ones, i.e.
S1, S2, or Souter. To present our results more systemati-
cally, let N− be the number of eigenvalues λl,m < 0 and
N0
− the number of eigenvalues λl,m=0 < 0. Table I lists

the various values of N− and N0
− we find for the MOTSs

TABLE I. Number of negative eigenvalues of LΣ for the
MOTSs along the different MOTTs. The arrows indicate
when we have found a smooth connection between the re-
spective world tubes, while the arrow in parentheses indi-
cates a suspected smooth transition which we could not re-
solve numerically. Shown is N0

−, i.e. the number of eigenvalues
λl,m=0 < 0 as well as N− for the number of all negative eigen-
values. This latter value changes for some of the MOTTs, in
which case we list all the occurring cases (not in order of
appearance).

MOTT H1 (→) H∗1 → H∗∗1
N0
− 0 1 2

N− 0 1 2,4

MOTT H2 → H∗2 → H∗∗2
N0
− 0 1 2

N− 0 1 2,4

MOTT Houter → Hinner → H∗inner → H∗∗inner

N0
− 0 1 2 3

N− 0 1,3 2,4 3,5,7,9

MOTT H∗0 → H∗∗0
N0
− 2 3

N− 2 3,5,7

MOTT H1a H1b H1c H1d

N0
− 1 1 2 2

N− 3 1,3 4,6 4,6

MOTT H2a H2b H2c H2d

N0
− 1 1 2 2

N− 1,3 1 4 4

along each MOTT during the evolution and FIG. 16
shows all MOTSs at two different times with N0

− indi-
cated by line thickness and color. In each instance where
a MOTS transitions through a bifurcation or annihilation
along the indicated sequences of MOTTs, one additional
negative eigenvalue of the m = 0 mode appears.

Another observation is related to the non-smooth
MOTS mergers where two MOTSs touch at one point
and coincide at this time with a MOTS having a cusp.
We were able to explicitly resolve three of these mergers
numerically, namely S1 ∪ S2 = Sinner, S1c ∪ S2 = S∗∗inner

and S1 ∪ S2a = S∗∗1 . Based on our results, we expect at
least two more such mergers, which we could not resolve
for numerical reasons. These are S1a ∪ S2 = S∗∗2 and
S1a ∪ S2a = S∗∗0 . For all these cases where S ∪ S ′ = S ′′,
we find, with obvious notation, that

N0
− +N0

−
′
+ 1 = N0

−
′′
. (21)

Note thatN0
− is constant along each individual MOTT,

even when cusps and self-intersections form, as they do
for Sinner, S∗∗inner and S∗∗1 . However, in several instances,
we find that eigenvalues of the higher angular modes
(m 6= 0) do cross zero on perfectly smooth portions of
the MOTT. Due to the axisymmetry and absence of spin
in our simulation, we have a ±m degeneracy in the spec-
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Lighter colors show MOTSs with larger N0

−. Note that none of the MOTSs extends beyond Souter.

trum, whence all zero crossings of eigenvalues λl,m6=0 hap-
pen in multiples of 2. Two examples of such cases are
depicted in FIG. 17, which shows that the two degener-
ate eigenvalues λ1,±1 of S∗∗2 and S∗∗1 do cross zero during
their evolution. This crossing happens twice for the lat-
ter case. Taking invertibility of LΣ as indicator for the
existence of a smooth evolution of a MOTS S, we here
have explicit counterexamples showing that the converse
of this statement is not true. In other words, invertibility
of LΣ is only a sufficient but not a necessary condition
for a smooth evolution.

VI. SIGNATURE AND INGOING EXPANSION

As discussed in Section II B 2, a strictly stable MOTS,
λ0 > 0, belongs to a dynamical apparent horizon that has
spacelike signature at that point (cf. [18, 19]). Together
with Θ− ≤ 0, the area will be non-decreasing. Since we
see in FIG. 3 that many of the MOTSs have a decreasing
or non-monotonic area evolution, we expect that those
with λ0 < 0 cannot have both non-positive ingoing ex-
pansion Θ− ≤ 0 and evolve along a spacelike MOTT.
Examples are shown in Figures 18 and 19 where we see
complicated signature changes and indefiniteness of the
sign of Θ− along the world tubes Hinner and H∗inner. In
these figures, time increases upwards and the signature or
sign of Θ− is shown as color on the world tubes. FIG. 20
shows a close-up of the sign of Θ− at the top end where
Sinner and S∗inner annihilate (or equivalently where Hinner
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FIG. 17. Examples of eigenvalues with m 6= 0 crossing zero on
the smoothly evolving portions of S∗∗2 (thick dotted line) and
S∗∗1 (thin dotted line). The smoothly connecting respective
curves for S∗2 and S∗1 are added here for reference. Note that
both S∗∗2 and S∗∗1 have a principal eigenvalue λ0 < 0 and
λ1,0 < 0, which are not shown.

and H∗inner connect smoothly). A qualitatively very sim-
ilar behavior of these quantities is found for all MOTTs
exceptHouter,H1 andH2. These are purely spacelike and
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Hinner H∗inner

FIG. 18. Signature of Hinner (left panel) and H∗inner (right panel). In these tube plots, time goes upwards and z-values increase
to the left. These two MOTTs smoothly connect at their top ends but not at the bottom as they connect with different world
tubes there. The bottom end of the right panel corresponds to the bottom-left panel of FIG. 4.

Hinner H∗inner

FIG. 19. Sign of the ingoing expansion Θ− of Sinner (left panel) and S∗inner (right panel) plotted on their respective MOTTs
Hinner and H∗inner in the same perspective as in FIG. 18. The portion with Θ− > 0 of Sinner (left panel) smoothly connects to
a corresponding portion on Souter, which quickly vanishes after ∆t ≈ 0.04M (not shown here).

have Θ− ≤ 0 at most times.6

A result of Bousso and Engelhardt [38, 60] shows that

6 We do find a very short duration of ∆t ≈ 0.04M after touter
bifurcate

where Souter has a small portion with Θ− > 0 close to its equa-
tor. This was also found in [29]. A similar portion with Θ− > 0
is found on S2 shortly (∆t ≈ 0.02M) before it annihilates with
S∗2 . Both of these portions smoothly connect with corresponding
portions on the MOTSs they connect to (Sinner for Souter and
S∗2 for S2).

even when H changes direction in time and has non-
spacelike segments, it will have a monotonic area evolu-
tion provided several conditions hold on H. One of these
is that Θ− ≤ 0, which we have already seen to not be
satisfied for most MOTTs we found in this simulation.
At this point, one could immediately conclude that this
result is not applicable to most of our cases and hence
finding non-monotonic area evolutions is not in tension
with any theoretical expectation. While certainly true,
we still think it is worthwhile to show which of the other
assumptions made in the proof are violated, not least
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Hinner H∗inner

FIG. 20. Close-up of the top ends of the MOTTs shown in FIG. 19. The two world tubes smoothly join at this top end and
the portions with Θ− < 0 connect across this merger.

because they were believed to be unrestrictive.
To state the relevant ones here, we go back to the evo-

lution vector Vα defined as tangent to H and orthogonal
to each MOTS S foliating H. As before, we fix its scaling
by requiring LV t = 1. Since the null normals `± span the
two-dimensional space of normals to S, we can write

Vα = b`α+ + c`α−. (22)

As V · V = −2bc, the coefficients b and c are related to
the signature of H, i.e. H is spacelike, timelike, or null
when bc < 0, bc > 0, or bc = 0, respectively. The proof in
[60] now requires in addition to genericity assumptions
satisfied in all our cases, the following:

(i) Every inextendible portion of definite sign of c is
entirely timelike or contains at least one full MOTS.

(ii) Every MOTS in H splits a Cauchy slice Σ that it
is contained in into two disjoint portions.

Then, without restrictions on Θ−, it is proven that c
cannot change sign on H. On all but the three strictly
stable MOTTs, however, we find that at least one of the
above conditions is violated and that, in fact, both b and
c do change sign.

In cases of self-intersections, it is clearly condition (ii)
that does not hold. But even for MOTSs that do not self-
intersect (or on portions of their world tubes on which
they do not self-intersect), we find that condition (i) is
violated. For the case of Sinner, this was discussed in
great detail in [28]. With the annihilation of Sinner with
S∗inner, we are now able to extend these results to later
times. In particular, shortly before Sinner vanishes, its
world tube Hinner becomes purely spacelike with c < 0
on full MOTSs. At these times, however, Sinner has self-
intersections, i.e. this presents an explicit example that
(i) is not a sufficient condition.

VII. CONCLUSIONS

In the present second paper of this two-part study,
the new generalized shooting method introduced in the
first paper was used successfully to uncover new MOTSs
forming during the head-on merger of two non-spinning
black holes, including MOTSs of toroidal topology. This
has vastly increased the number and variety of known
MOTSs and also shows that they can have a much richer
range of geometrical properties than had been previously
expected.

However this increase has also highlighted the rarity
and significance of stable MOTSs. Only three out of all
the multitude that we have observed are stable – even
strictly stable except for the points of annihilation or bi-
furcation – and trace out spacelike world tubes. These
are exactly the MOTSs that one would naturally asso-
ciate with black hole boundaries: the two individual black
holes (S1 and S2) and the final remnant (Souter). These
world tubes H1, H2 and Houter are the dynamical appar-
ent horizons. One may ask whether additional strictly
stable MOTSs may exist if we do not restrict ourselves
to only axisymmetric surfaces. Fortunately, this has been
ruled out by Theorem 8.1 in Ref. [19]. This unambiguous
natural choice of physically relevant horizons provides
an additional numerical indication that dynamical ap-
parent horizons are well-behaved objects suitable to de-
scribe the highly dynamical and non-perturbative regime
during such a merger.

That said, the apparent horizons cannot forever remain
aloof from the common herd. Souter appears out of a bi-
furcation with the unstable Sinner while S2 and (likely)
S1 are ultimately annihilated in mergers with other un-
stable MOTSs. The additional MOTTs then significantly
increase our understanding of the interior structure form-
ing shortly after the common apparent horizon appears.
This structure shares certain features with previous spec-
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ulations that the merger might, in fact, be described by
a single smooth MOTT weaving back and forth in time
[15, 21–23]. What we find is significantly more compli-
cated, but we do see this back and forth in time. Since
we lose the MOTSs only for (well understood) numerical
reasons, it seems plausible that they continue to weave
back and forth, possibly forming more and more self-
intersections. We also find that all world tubes seem to be
connected7 However, since no MOTS crosses a puncture,
some connections are not smooth and instead happen via
cusp-formation with subsequent self-intersections.

Together, these observations motivate the following
suggestion. If one assumes that (i) MOTSs cannot cross
punctures, (ii) MOTSs appear and disappear only as
pairs, (iii) all MOTTs connect in some form and (iv) the
individual apparent horizons vanish at some point during
a merger, then many of the observed behaviors seem to be
inevitable. It seems conceivable that (i) holds and the re-
sults of Andersson et al. [31] points toward (ii). While our
results certainly do not imply (iii) and (iv), they might
still provide an incentive for further investigation in this
direction.

The present results for the axisymmetric head-on col-
lision of two black holes also have implications for the
generic case where inspiraling black holes coalesce with-
out any symmetry. We now know which kinds of surfaces
a generalized MOTS finder must be able to resolve and
which surfaces to look for. One might explore whether
a generalization of the shooting method could be used
to approximate near-axisymmetric MOTSs to be used as
initial guesses for such a finder. An important question
will be whether it is still only three MOTTs which are
stable and hence dynamical apparent horizons.
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Appendix A: Families of surfaces of constant
expansion

A MOTS S is defined as a closed surface with zero
outward expansion, Θ+ = 0. However, one may also try
to look for surfaces Sc with Θ+ = c, where c = const,
in a neighbourhood of any given MOTS. These surfaces
can be used to help locating common MOTSs as early as
possible during the simulation by tracking common sur-
faces Sc>0, which are seen to exist prior to the formation
of a common MOTS S = Sc=0 [61, 62]. We will show
here another application of such surfaces, which turned
out to be helpful in resolving the various bifurcations and
annihilations. This is related to and motivated by the ob-
servation made in [24] that a family of such surfaces may
connect one MOTS with another. See Figure 13 in [24]
and its discussion for details.

We start with a MOTS S found in some particular
Cauchy slice Σt at simulation time t = t1. This surface is
then tracked through the simulation forwards and back-
wards in time. If in either direction, the MOTS is lost
and cannot be located anymore, say at t2 > t1, then we
choose a time t . t2 and construct a family of surfaces
Sc starting with S0 = S. Note that just as there may
be multiple MOTSs S0 in any given Cauchy slice, the
surfaces Sc for c 6= 0 will also not be unique in general.
However, when varying c in small steps c → c′ = c + ε,
one can look for Sc′ in the vicinity of Sc by taking Sc
as initial guess. As an example, FIG. 21 shows such a
family in terms of the expansion and area of the Sc. In
this case, we start from S2 at a time t = 2.5M and we
are able to reliably locate S∗2 and S∗∗2 . FIG. 22 shows the
shapes of these surfaces of constant expansion and how
they connect S2 with S∗2 (left panel) and S∗2 with S∗∗2

(right panel).
A slight complication is encountered whenever Θ+ = c

has a local extremum. This happens twice in FIG. 21. In
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these cases we cannot vary c but instead we can take a
small step in area by prescribing the area instead of the
expansion for this step (see e.g. [61]). Alternatively, one
can anticipate the shape change by extrapolating from
the previous steps to construct an initial guess surface
which overcomes the extremum of c.

Once another MOTS is found this way, it can itself be
tracked forwards and backwards in time to resolve the
possible annihilation or bifurcation.

Appendix B: Annihilation of S1 with S∗1

The annihilation of the larger individual MOTS S2

with S∗2 was found with high accuracy and is discussed in
the main text. Here, the goal is to show that it is plausible
that the smaller individual MOTS S1 also annihilates, in
this case with S∗1 , and that it does not have a qualita-
tively different behavior than S2 in this regard. To this
end, we perform a simulation with different initial con-
ditions than those in the main text and show that both

individual horizons annihilate. We take this as suggest-
ing that the lack of annihilation in the main configuration
is purely due to the numerical setup and caused by the
MOTS moving too close to the puncture (in the numeri-
cal coordinates) as also analyzed in [58].

By using more equal masses, the shape of the smaller
apparent horizon remains larger in coordinates for a
longer time, and a smaller initial distance parameter re-
duces the simulation time when the annihilation takes
place. FIG. 23 shows the area and principal stability
eigenvalue for a simulation with a mass ratio of q = 1.05
and distance parameter d = 0.4. We see that both in-
dividual apparent horizons seem to annihilate, first the
larger one S2 with S∗2 and shortly after the smaller one
S1 with S∗1 . Despite the above choice of parameters for
this simulation, the MOTSs still approach the punctures
(in coordinates) before they vanish. We found the anni-
hilations of both apparent horizons in simulations with
spatial resolutions of 1/∆x = 480, 720, and 960. How-
ever, the precise behavior of these curves in the final time
span after t ∼ 5M varies between the resolutions. While
not as convincing as the remaining results we present, a
merger of S1 and S∗1 seems at least plausible.
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[50] Frank Löffler, Joshua Faber, Eloisa Bentivegna, Tanja
Bode, Peter Diener, Roland Haas, Ian Hinder, Bruno C.
Mundim, Christian D. Ott, Erik Schnetter, Gabrielle
Allen, Manuela Campanelli, and Pablo Laguna, “The
Einstein Toolkit: A Community Computational Infras-
tructure for Relativistic Astrophysics,” Class. Quantum
Grav. 29, 115001 (2012), arXiv:1111.3344 [gr-qc].

[51] EinsteinToolkit, “Einstein Toolkit: Open software for rel-
ativistic astrophysics,” http://einsteintoolkit.org/.

[52] Marcus Ansorg, Bernd Brügmann, and Wolfgang Tichy,
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