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ABSTRACT
We consider the policy synthesis problem for continuous-state

controlled Markov processes evolving in discrete time, when the

specification is given as a Büchi condition (visit a set of states infin-

itely often). We decompose computation of the maximal probability

of satisfying the Büchi condition into two steps. The first step is to

compute the maximal qualitative winning set, from where the Büchi

condition can be enforced with probability one. The second step is

to find the maximal probability of reaching the already computed

qualitative winning set. In contrast with finite-state models, we

show that such a computation only gives a lower bound on the

maximal probability where the gap can be non-zero.

In this paper we focus on approximating the qualitative winning

set, while pointing out that the existing approaches for unbounded

reachability computation can solve the second step. We provide an

abstraction-based technique to approximate the qualitative winning

set by simultaneously using an over- and under-approximation of

the probabilistic transition relation. Since we are interested in qual-

itative properties, the abstraction is non-probabilistic; instead, the

probabilistic transitions are assumed to be under the control of

a (fair) adversary. Thus, we reduce the original policy synthesis

problem to a Büchi game under a fairness assumption and charac-

terize upper and lower bounds on winning sets as nested fixed point

expressions in the µ-calculus. This characterization immediately

provides a symbolic algorithm scheme. Further, a winning strategy

computed on the abstract game can be refined to a policy on the

controlled Markov process.

We describe a concrete abstraction procedure and demonstrate

our algorithm on two case studies. We show that our techniques

are able to provide tight approximations to the qualitative winning

set for the Van der Pol oscillator and a 3-d Dubins’ vehicle.

ACM Reference Format:
Rupak Majumdar, Kaushik Mallik, and Sadegh Soudjani. 2020. Symbolic

Controller Synthesis for Büchi Specifications on Stochastic Systems. In 23rd
ACM International Conference on Hybrid Systems: Computation and Control
(HSCC ’20), April 22–24, 2020, Sydney, NSW, Australia. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3365365.3382214

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HSCC ’20, April 22–24, 2020, Sydney, NSW, Australia
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7018-9/20/04. . . $15.00

https://doi.org/10.1145/3365365.3382214

1 INTRODUCTION
Decision making under stochastic uncertainty has many applica-

tions in science, engineering, and economics. Typically, one models

a system with uncertainty as a controlled Markov process evolving
in time. Such a process consists in a (possibly uncountable) set of

states and actions. At a given state, an agent picks an action and the

state and the action together determine the distribution over the

next states. The choice of the control action depends on the history

of states seen so far and may be randomized; the decision rule that

assigns to each history a distribution of control actions is called

a policy. Given a temporal specification over trajectories, the goal

of the agent is to find an optimal policy: one that maximizes the

probability that the resulting trajectory of the system satisfies the

specification. The control problem asks, given a controlled Markov

process and a temporal specification (given, e.g., in linear temporal

logic), to design an optimal policy. In the finite-state setting, the

control problem can be solved algorithmically based on graph tra-

versal and linear programming [1, 3, 6]. A lot of recent research has

focused on extending algorithmic policy synthesis techniques to

continuous-state systems. The goal for continuous-state systems is

to provide approximations to the probability of satisfaction, while

providing formal guarantees on convergence of the error.

While synthesis for reachability and safety properties have been

studied in this setting both for infinite horizon [9, 33] and for finite

horizon [13, 14, 18–20, 26, 34], there are few techniques for syn-

thesis against Büchi specifications, which requires the trajectory

to visit a given set of states infinitely often. In this paper, we con-

sider the problem of synthesizing controllers for controlled Markov

processes for properties specified as Büchi conditions.

The key aspect of the solution in the finite-state case is to sepa-

rate a synthesis problem into a qualitative part (find the set of states
from which the agent has a policy to satisfy the property almost

surely) and a quantitative part (find the policy that maximizes the

probability of reaching the qualitatively winning states). Given the

qualitative solution, one can iteratively compute the quantitative

solution by solving a reachability problem, where the target is the

absorbing set given by the qualitative solution.

Our first contribution is to show that a similar decomposition for

Büchi properties does not hold for continuous state systems in gen-

eral: we provide an example of a Markov process over continuous

state space for which the qualitative winning set (from which there

is a policy that ensures the Büchi property holds almost surely) is

empty but the maximal probability of satisfying the property has

a non-zero solution. Moreover, we show that such a decomposi-

tion is able to provide a lower bound on the quantitative part of

the problem. Thus, if one can compute (an approximation of) the
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winning set, a lower bound on the quantitative solution can be ob-

tained by Bellman iteration or by other techniques for (unbounded)

reachability in the continuous-state setting [9, 33].

As our second contribution, we provide symbolic algorithms

for computing under- and over-approximations of the qualitative

winning set. We compute finite-state abstractions of the continuous-

state system. Our abstraction uses two transition relations: an over-

approximation and an under-approximation of the continuous tran-

sitions. For qualitative probabilistic analysis on finite-state systems,

one can replace the probabilistic transitions by an adversarial sched-

uler with a fairness requirement [10]. Accordingly, our abstractions

are non-probabilistic and only require the knowledge of the support
of the stochastic kernel associated to the process. We characterize

the qualitative winning states as a nested fixed point expression

in the µ-calculus [17]; such an expression naturally gives a sym-

bolic implementation. Since the abstraction is non-probabilistic, the

symbolic implementation avoids numerical issues and can use stan-

dard encodings based on satisfiability checkers or binary decision

diagrams.

Our fixed point characterization is similar to the characterization

of qualitative almost-sure winning in concurrent games [7], but the

use of two kinds of transitions—acting as upper and lower bounds—

is a key distinguishing ingredient in our characterization. We show

through examples why both are required. The qualitative winning

region in the original continuous-state process is not characterized
by a similar fixed point: it is well known that unlike the finite-state

case, the actual probability values matter in deciding qualitative

winning in infinite-state systems [1, pp. 779-780].

We demonstrate our approach on the Van der Pol oscillator

and the 3-d Dubin’s vehicle, both in the presence of stochastic

perturbation. Our computation shows that when the disturbance

is treated as a worst case adversary, there exists a deterministic

value of the disturbance for which the specification is violated for

all initial states. On the contrary, when the disturbance is treated

as random, we are able to satisfy the specification almost surely.

Moreover, we empirically show that the difference between the over-

and under-approximation reduces as we pick finer abstractions.

There are relatively few results on the algorithmic analysis of

liveness properties for controlled Markov processes. A theoreti-

cal study of the Büchi objective □♢B is conducted by Tkachev et

al. [33] via persistence properties ♢□B. It is shown that Ps (♢□B)
can be characterized by two fixed-point equations but no com-

putational method is provided. In particular, their techniques do

not provide a way to solve the qualitative Büchi problem that we

solve. Our computational approach is similar in nature to results

that employ Interval MDP or Interval Markov chains (MC) as ab-

stractions. For example, Dutreix and Coogan [8] use Interval MC

for verification of a particular class of systems. The method of

Dutreix and Coogan requires numerical computations of lower and

upper bounds of the probabilities and provides an enumerative

algorithm. Our approach generalizes their construction of the over-

and under-approximations to the setting of controlled Markov pro-

cesses and the synthesis problem. We focus on the winning region

of the specification, which allows us to write symbolic algorithms

purely on non-probabilistic structures, thus avoiding numerical

optimization procedures. Once the winning region is approximated,

a quantitative reachability can be solved using standard techniques.

2 CONTROLLED MARKOV PROCESSES
2.1 Preliminaries
We consider a probability space (Ω,FΩ, PΩ), where Ω is the sample

space, FΩ is a sigma-algebra on Ω comprising subsets ofΩ as events,

and PΩ is a probability measure that assigns probabilities to events.

We assume that random variables introduced in this article are mea-

surable functions of the formX : (Ω,FΩ) → (SX ,FX ). Any random
variable X induces a probability measure on its space (SX ,FX ) as
Prob{A} = PΩ{X−1(A)} for any A ∈ FX . We often directly discuss

the probability measure on (SX ,FX ) without explicitly mentioning

the underlying probability space and the function X itself.

A topological space S is called a Borel space if it is homeomorphic

to a Borel subset of a Polish space (i.e., a separable and completely

metrizable space). Examples of a Borel space are the Euclidean

spaces Rn , its Borel subsets endowed with a subspace topology, as

well as hybrid spaces. Any Borel space S is assumed to be endowed

with a Borel sigma-algebra, which is denoted by B(S). We say that

a map f : S → Y is measurable whenever it is Borel measurable.

We denote the set of nonnegative integers by N := {0, 1, 2, . . .}.

2.2 Controlled Markov processes
We consider controlled Markov processes (CMP) in discrete time

defined over a general state space, characterized by a tuple S =

(S,U,Ts) ,whereS is a Borel space serving as the state space of the

process,U is a finite input space, and Ts is a conditional stochastic
kernelTs : B(S)×S×U → [0, 1]with B(S) being the Borel sigma-

algebra on the state space and (S,B(S)) being the corresponding
measurable space. The kernel Ts assigns to any s ∈ S and u ∈ U
a probability measure Ts(·|s,u) on the measurable space (S,B(S))
so that for any set A ∈ B(S), Ps,u (A) =

∫
ATs(ds |s,u), where Ps,u

denotes the conditional probability P(·|s,u).

Remark 1. The input spaceU in general can be any Borel space
and the set of valid inputs can be state dependent. We have considered
thatU is a finite set and all elements of this set can be taken at any
state. This choice is motivated by the digital implementation of control
policies and also facilitates concise presentation of the results.

2.3 Semantics of controlled Markov processes
The semantics of a CMP are characterized by its paths or executions,
which reflect both the history of previous states of the system

and of implemented control inputs. Paths are used to measure the

performance of the system.

Definition 2.1. Given a CMPS, a finite path is a sequence

wn = (s0,u0, . . . , sn−1,un−1, sn ), n ∈ N,

where si ∈ S are state coordinates and ui ∈ U are control input

coordinates of the path. The space of all paths of length n is denoted

by PATHn := Kn × S with K := S × U. Further, we denote

projections bywn [i] := si andwn (i) := ui . An infinite path of the

CMPS is the sequence w = (s0,u0, s1,u1, . . .), where si ∈ S and

ui ∈ U for all i ∈ N. As above, let us introduce w[i] := si and
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w(i) := ui . The space of all infinite paths is denoted by PATH∞ :=

K∞.

Given an infinite pathw or a finite pathwn , we assume below

that si and ui are their state and control coordinates respectively,

unless otherwise stated. For any infinite path w ∈ PATH∞, its n-
prefix (ending in a state)wn is a finite path of length n, which we

also call n-history. We are now ready to introduce the notion of

control policy.

Definition 2.2. A policy is a sequence ρ = (ρ0, ρ1, ρ2, . . .) of
universally measurable stochastic kernels ρn [2], each defined on

the input spaceU given PATHn . The set of all policies is denoted

by Π.

Given a policy ρ ∈ Π and a finite pathwn ∈ PATHn , the distribu-

tion of the next control input un is given by ρn (·|wn ). In this work,

we restrict our attention to the class of stationary policies.

Definition 2.3. A policy ρ is stationary if there is a universally

measurable function C : S → U such that at any time epochn ∈ N,
the inputun is taken to be C(sn ) ∈ U. Namely, the stochastic kernel

ρn (·|wn ), n ∈ N, in Definition 2.2 is a Dirac delta measure centered

at C(sn ) with sn = wn [n] being the last element ofwn . We denote

the class of stationary policies by ΠS ⊂ Π and a stationary policy

just by the function C ∈ ΠS . The function C is also called state
feedback controller in control theory.

For a CMP S, any policy ρ ∈ Π together with an initial prob-

ability measure α : B(S) → [0, 1] of the CMP induces a unique

probability measure on the canonical sample space of paths [11]

denoted by P
ρ
α with the expectation E

ρ
α . In the case when the initial

probability measure is supported on a single point, i.e., α(s) = 1,

we write P
ρ
s and E

ρ
s in place of P

ρ
α and E

ρ
α , respectively. We denote

the set of probability measures on (S,B(S)) by D.

3 PROBLEM DEFINITION
Liveness specification. We consider liveness or repeated reacha-

bility specification as the synthesis objective. Given ameasurable set

of states B ⊆ S, the liveness specification is denoted by □♢B in lin-

ear temporal logic (LTL) notation [1]. An infinite pathw ∈ PATH∞
of a CMPS satisfies the liveness specification □♢B if for all k0 ∈ N,
there exists k1 ∈ N such that k1 > k0 andw[k1] ∈ B. This requires
that the pathw visits the set B infinitely often. We indicate the set

of all infinite pathsw ∈ PATH∞ ofS that satisfy the property □♢B
byS |= □♢B.

We are interested in the probability that the liveness specification

can be satisfied by paths of a CMPS under different policies. Given

a policy ρ ∈ Π and initial state s ∈ S, we define the satisfaction
probability as

f (s, ρ) := P
ρ
s (S |= □♢B), (1)

and the supremum satisfaction probability

f ∗(s) := sup

ρ ∈Π
P
ρ
s (S |= □♢B). (2)

Problem 1 (Policy Synthesis). GivenS and a set B ⊆ S, find
the optimal policy ρ∗ along with f ∗(s) s.t. Pρ

∗
s (S |= □♢B) = f ∗(s).

Measurability of the event {S |= □♢B} in the canonical sample

space of paths under the probability measure P
ρ
s is proved in [33].

An initial attempt is also made to study the properties of the func-

tion f ∗(·). For instance, it is shown that f ∗ ≡ 1 if and only if the

probability that the pathw reaches B is one for all initial states. We

anticipate that the sets where f ∗(s) = 1 plays a crucial role in the

computation of f ∗.

Definition 3.1 (Almost sure winning region). Given the CMPS,

the policy ρ, and a set B ⊆ S, the state s ∈ S wins the specification

□♢B almost surely (a.s. in short) if f (s, ρ) = 1. The a.s. winning
region of the policy ρ is defined as

WinDom(S, ρ) := {s ∈ S | f (s, ρ) = 1}. (3)

We also define the maximal a.s. winning region as

WinDom∗(S) := {s ∈ S | f ∗(s) = 1}. (4)

Proposition 3.2. The set WinDom∗(S) is universally measur-
able. The set WinDom(S,C) is also universally measurable for any
stationary policy C ∈ ΠS . The setW := WinDom(S,C) is an ab-
sorbing set, i.e., the paths stating from this set will stay in the set with
probability one.

The proof can be found in the appendix.

In the sequel, we restrict our attention to stationary policies

C ∈ ΠS and decompose the computation of P Cs (S |= □♢B) into the

computation of the winning setWinDom(S,C) and then computa-

tion of reachability probability P Cs (S |= ♢WinDom(S,C)). This is
formalized next.

Assumption 1. There exists an optimal policy for (2), and in
addition that policy is stationary. Formally, there is a stationary
policy C∗ ∈ ΠS such that f ∗(s) = f (s,C∗) for all s ∈ S.

It is known, already for CMPs with countable state spaces, that

for Prob. 1 an optimal policy from a state s ∈ S may not exist even

when f ∗(s) is non-zero [15]. As stated in the first part of Assump. 1,

we restrict the scope of the rest of the paper to problems for which

an optimal policy exists. For the second part of Assump. 1, we

do not yet know if stationary policies are sufficient for general

CMPs even when an optimal policy is guaranteed to exist. We do

know that for CMPs with countable state spaces, when an optimal

policy exists, then it is stationary [16]. If optimal policies need not

be stationary, our proposed algorithms in the following sections

would still produce sound but sub-optimal approximations of the set

WinDom∗(S); see Rem. 6. Nevertheless, even if stationary policies

are not sufficient for optimality, they are still of practical interest

due to their simple structure and ease of implementation. It is

worthwhile to note that similar assumption was used by other

authors [33, Assump. 2].

Theorem 3.3. For any policy C ∈ ΠS on CMP S, and W :=

WinDom(S,C), we have{
P Cs (S |= □♢B) = 1 if s ∈W
P Cs (S |= □♢B) ≥ P Cs (S |= ♢W ) if s <W ,

(5)

The proof can be found in the appendix.

Computation of the reachability probability has been studied

extensively in the literature for both infinite horizon [9, 31–33]

and finite horizon [13, 14, 18–20, 27–29, 34] using different abstract

models and computational methods. These approaches can be used
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to provide a lower bound on the probability of satisfaction of the

Büchi condition. So from this point onward, we mostly consider

the first half of (5) which is formalized as in the following:

Problem 2 (Maximal Winning Region). Given S and a set
B ⊆ S, find a stationary policy C∗ ∈ ΠS such that

WinDom(S,C) ⊆ WinDom(S,C∗) almost everywhere

for all C ∈ ΠS .

The maximal policy C∗ defined in Problem 2 is not necessarily

unique, but the winning region associated to such maximal poli-

cies is unique. A formal treatment of this claim can be found in

the appendix in Sec. 9.4. Moreover, when Assump. 1 holds, using

properties of the setsWinDom(S,C) for different policies, we have
WinDom(S,C∗) =WinDom∗(S).

In the following, we mainly focus on the approximate computa-

tion of WinDom(S,C∗) with a suitable policy. For the reachability

part, it has been shown that linking the infinite-horizon reachability

to the finite-horizon one requires knowledge of the absorbing sets
from which the trajectory cannot escape. So we briefly discuss in

Sec. 5.5 how the absorbing sets can be over-approximated to enable

linking the reachability in (5) to its finite-horizon version.

A solution outline for Problem 2. Computing the exact maximal

policy forS is difficult in general. In the following we propose an

approximation procedure which is motivated by the three-step

abstraction-based controller synthesis methods [22, 24, 30]:

Abstraction. First, the given CMP S is approximated using

a finite state transition system A, called the abstraction, by
means of state space discretization. The specification—which

is the Büchi condition in our case—is also approximated

using the discretized state space of the abstract transition

system, and is called the abstract specification.
Synthesis. Second, the policy synthesis problem is posed as

a zero-sum game on A between the controller and an ad-

versary, where in each step the controller chooses a control

input, and the adversary chooses a successor allowed by the

transitions in A. The goal of the control player is a.s. satis-

faction of the Büchi objective from as many discrete states as

possible, whereas the goal of the environment player is the

complement of the same. The outcome of the game, when

played from the perspective of the control player, is an ab-
stract controller Ĉ.

Controller refinement. Third, the abstract controller Ĉ is

mapped back to the continuous state space using a process

called controller refinement. This results in a continuous con-

troller C that can be paired withS and a continuous winning

domainWinDom(S,C).

4 A GENERIC FINITE STATE ABSTRACTION
Our proposed solution relies on constructing an abstraction A
which uses two transition functions to approximate the transition

kernel ofS.

Definition 4.1. A transition system is a tuple (Q, Σ,δ1,δ2) where
Q is a finite set of states, Σ is a finite input alphabet, and δi : Q×Σ→
2
Q
, i ∈ {1, 2} are two transition functions with the property that

δ1(q,u) ⊇ δ2(q,u) for all (q,u) ∈ Q × Σ.

The abstraction A is constructed based on a finite partition of

the state space. Therefore, we require a bounded state space S. If S
is unbounded, we truncate it to a measurable setS′, which serves as
the working region; the rest is represented by a symbolic sink state

ϕ. It is true that this truncation could possibly lead to computation

of only an under-approximation of the true a.s. winning region.

However, from practical standpoint, it is often the case that bounds

of the state variables are already in place (e.g. the work space of a

robot, or the maximum rated voltage across a capacitor in a voltage

converter, etc.), which would serve as the boundary of S′. The
state ϕ models all the out-of-domain behaviors ofS, and should be

avoided. The new CMP will beS′ := (S′ ∪ {ϕ},U,T ′s ) with

T ′s (A | s,u) =
{
Ts(A | s,u) if s ∈ S′

0 if s = ϕ,
(6)

for any A ∈ B(S′), and T ′s (ϕ | s,u) = 1 − T ′s (S′ | s,u). In order

to avoid change of notation, we work in the sequel with S :=

(S,U,Ts) where the state space S is bounded but may also include

a symbolic sink state ϕ. We also assume that B ⊆ S.

4.1 The abstraction
We propose a novel abstraction, which will later be used in Sec. 5

to synthesize approximations of the maximal winning region and a

winning policy. First, we introduce some notation. Given the state

space S of the CMP S, we define a finite partition of S denoted

by Ŝ := {x̂i }i ∈I s.t. S =
⋃
i ∈I x̂i and x̂i ∩ x̂ j = ∅ for all x̂i , x̂ j ∈ Ŝ,

i , j. The set Ŝ will be called the abstract state space (state space

of the abstraction), and each element x̂i is an abstract state.

Remark 2. For the theory that is going to be presented in this
paper, the abstract states need not be of the same size. However, for
a practical implementation, partition sets are chosen to be hyper-
rectangular of the form x̂ = Ja,bK where a,b ∈ S are vectors. The
partition sets are uniformly sized and their boundaries are assigned to
only one partition element. In our implementation, we have also used
a hyper-rectangular state space with an additional symbolic state ϕ
that is also an element of the abstract state space.

Definition 4.2. Let S = (S,U,Ts) be a CMP and Ŝ be a finite

partition ofS. SupposeA = (Ŝ,U, F , F ) is a transition systemwith

two modes of transitions F : Ŝ × U → 2
Ŝ
and F : Ŝ × U → 2

Ŝ
.

The systemA will be called an abstraction ofS if for all x̂ ∈ Ŝ and

all u ∈ U,

F (x̂ ,u) ⊇ {x̂ ′ ∈ Ŝ | ∃s ∈ x̂ . Ts(x̂ ′ | s,u) > 0}, (7)

F (x̂ ,u) ⊆ {x̂ ′ ∈ Ŝ | ∃ε > 0 . ∀s ∈ x̂ . Ts(x̂ ′ | s,u) ≥ ε}. (8)

In words, in the presence of the stochastic disturbance and given

an abstract state x̂ and a control input u ∈ U, F (x̂ ,u) represents an
over-approximation of the set of all abstract states which can be

reached with positive probability from some continuous state in x̂ ,

and F (x̂ ,u) represents a subset of F (x̂ ,u) under-approximating the

set of states that can be reached with probability bounded away

from 0 from all the states in x̂ . The role of the lower bound ε in
(8) will be clear in Sec. 4.2. We defer the actual computation of the

abstract transition system until Sec. 6.
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Remark 3. The abstract transition systems in the usual abstraction
based control methods [22, 24, 30] play the role of a game graph for a
two-player zerosum game between the controller and an imaginary
adversary, where the adversary is an accumulation of the external
perturbation and the discretization-induced non-determinism. The
rule of the game is that at each discrete step, the controller plays a
control input, to which the adversary responds by choosing one of the
many non-deterministic successors. A control policy is synthesized for
the controller by treating the adversary actions in worst-case fashion.

In our case, the controller effectively plays simultaneously against
two imaginary adversaries who use two different types of actions: The
first adversary—called the random adversary—uses the external ran-
dom noise, while the second adversary—called the non-deterministic
adversary—uses the discretization-induced non-determinism. This
separation enables the controller to somewhat relax the worst-case
treatment of the problem, by assuming that the random adversary
is fair in choosing its actions, meaning all the noise values in the
support of the distribution will appear always eventually. The non-
deterministic adversary is still treated in the worst-case fashion.

Keeping this two-adversary interpretation in perspective, given
some control action, one can interpret a F -transition as a joint collud-
ing move of the two adversaries, while one can interpret a F -transition
as a move of the lone random adversary. The rule of the game in
our case is that at each discrete step, the controller plays a control
input, to which either the adversaries jointly respond by choosing
one of the F -successors (which is possibly not an F -successor), or the
random adversary independently chooses an F -successor. Since the
random adversary is fair in its moves, hence it will not collude with
the non-deterministic adversary all the time, and all the F -transitions
will be chosen at some point in the long run. This additional fairness
assumption in the underlying game creates a favorable condition for
the controller in many cases, as will be shown in the next section.

4.2 Almost sure progress
The fairness of the random adversary is materialized using the ε in
the definition of F , which guarantees that a trajectory eventually

exits from an abstract state x̂ in the long run, even when there is

a non-zero probability for a single-step successor of a continuous

state s ∈ x̂ to stay within x̂ . This feature is a central element of our

synthesis method that will be presented in Sec. 5.

Following is an example of a general continuous state Markov

chain which demonstrates that in the absence of the bound ε in the

definition of F , trajectories could get trapped inside x̂ forever.

Example 4.3. For simplicity and a focused exposition of the actual

issue, we use a system admitting no control over state trajectories

(can be alternatively thought of as a system with a control input

space that has a single element). Consider a one dimensional CMP

with state space S = [0, 2], and with the following transition kernel

(see Fig. 1):

sk ∈ [1, 2] ⇒ Ts([α , β] | sk ) = (β − α),

sk = 0⇒
{

Ts ({0} | sk ) = 0.5

Ts ([α , β] | sk ) = 0.5(β − α),
(9)

sk ∈ (0, 1) ⇒
{

Ts ({b(sk )} | sk ) = 1 − a(sk )
Ts ([α , β] | sk ) = a(sk )(β − α),
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Figure 1: A trajectory could get trapped inside [0, 1) for in-
finite time if the transition probabilities are allowed to be
arbitrarily small. In the figure, the nodes with red labels are
continuous states, and the labels on the edges are the proba-
bility of the associated transition.

for any [α , β] ⊂ [1, 2] with α ≤ β , and a : sk 7→ [0, 1] is some

probability assigning function, and b(sk ) :=
sk

1+sk
. In words, the

next state is uniformly distributed over the interval [1, 2] if the
current state of the CMP is in the same interval; for current state

sk = 0, the next state either stays at zero with probability 0.5 or

jumps uniformly to the interval [1, 2]; for current state sk ∈ (0, 1),
the next state jumps to the interval [1, 2] with probability a(sk ) or
jumps to a single state b(sk ) with probability 1 − a(sk ).

Let us consider two CMPsS1,S2 with kernels obtained respec-

tively by a(s) = s2 and a(s) = 0.5 for all s ∈ (0, 1), and compute

the probability Ps (Si |= □♢[0, 1)). For a trajectory starting from an

initial state s0 ∈ (0, 1), the probability of staying inside [0, 1) is:
Ps0 (S1 |= □[0, 1))

=
(
1 − s2

0

)
·
(
1 −

(
s0

1 + s0

)
2

)
· ©­«1 −

( s0
1+s0

1 +
s0

1+s0

)
2ª®¬ . . .

=
(
1 − s2

0

)
·
(
1 −

s2
0

(1 + s0)2

)
·
(
1 −

s2
0

(1 + 2s0)2

)
. . .

=

∞∏
k=0

(
1 −

s2
0

(1 + ks0)2

)
=1 − s0.

Then, for any s0 ∈ (0, 1) there is a non-zero probability of staying

forever inside [0, 1). For example, for s0 = 0.5, this probability is

0.5. Doing the computations for other states results in

Ps (S1 |= □♢[0, 1)) =
{
1 − s if s ∈ (0, 1)
0 if s ∈ [1, 2] ∪ {0}.

For the second model with a(s) = 0.5, we have Ps (S2 |= □♢[0, 1)) =
0 for all s ∈ [0, 2]. □

Ex. 4.3 clearly shows that unlike discrete MDPs, in case of

continuous-space CMPs we cannot ignore the actual value of the

probabilities, as otherwise we would have had Ps (Si |= □[0, 1)) = 0

for both i ∈ {1, 2}. So unlike the case of discrete MDPs, we can no

longer just use the support of the distribution to find the winning

region, and then solve a reachability problem.

Ex. 4.3 also shows that the inequality in (5) can be strict: the win-

ning region is empty but there are states with positive probability
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of satisfying the liveness specification. We leave the formulation of

conditions under which the equality holds as future work.

The CMPS1 in Ex. 4.3 also justifies the use of ε in the definition

of F . Assume that we want to compute an abstraction using the

hyper-rectangular cover {[0, 1), [1, 2]}. The continuous states in

the cell [0, 1) have positive transition probability to [1, 2], although
there does not exist a uniform lower bound ε > 0 of these transition

probabilities. As we showed in Ex. 4.3, even then a trajectory can

remain trapped inside [0, 1) with a positive probability in the long

run. Because of the presence of the ε in the definition of F , the
abstraction will have F ([0, 1)) = ∅ (there is no control input, so F
takes only state as argument).

Proposition 4.4. Let x̂ ∈ Ŝ be an abstract state and u ∈ U be
an input s.t. there exists x̂ ′ ∈ Ŝ, x̂ ′ , x̂ , such that x̂ ′ ∈ F (x̂ ,u). Then,
there is a policy C such that

P Cs (S |= ♢□x̂) = P Cs (S |= □x̂) = 0, ∀s ∈ S,
i.e. the probability of an infinite trajectory getting trapped forever
inside x̂ is 0.

Proof. Since x̂ ′ ∈ F (x̂ ,u), there exists an ε > 0 such that

Ts(x̂ ′ | s,u) ≥ ε for all s ∈ x̂ . Define the policy to be the con-

stant one C(s) = u for all s ∈ x̂ and any other input policy

for other states s < x̂ . We first show that P Cs (S |= □x̂) = 0.

Note that P Cs (S |= □x̂) = limn→∞Vn (s), with V0(s) = 1x̂ (s) and
Vn+1(s) =

∫
x̂ Vn (s

′)Ts(ds ′ |s,u). It is easy to show inductively that

Vn (s) ≤ (1 − ε)n for all s . By taking the limit as n → ∞ we get

the claimed result. For the ♢□x̂ property, we have P Cs (S |= ♢□x̂) =
limn→∞Wn (s) with

Wn+1(s) = P Cs (S |= □x̂) +
∫
S\x̂

Wn (s ′)Ts(ds ′ |s,u),

which results inWn (s) = 0 for all n. □

Intuitively, Prop. 4.4 says that if there is a x̂ ′ ∈ F (x̂ ,u) with
x̂ ′ , x̂ , then almost all trajectories reaching x̂ will eventually leave

x̂ in finite time with the repeated use of the control input u.
We presented Ex. 4.3 to show that having Ts(x̂ ′ | s,u) > 0 for all

s ∈ x̂ is inadequate, and we need a uniform lower bound ε for the
definition of F in (8). In fact, this condition is enough under proper

continuity assumptions on the stochastic kernel.

Proposition 4.5. Suppose the kernelTs is continuous, i.e.,д(s,u) =∫
S f (s ′)Ts(ds ′ | s,u) is upper (lower) semi-continuous for any upper
(lower) semicontinuous function f . Moreover, the partition sets in
Ŝ = {x̂i }i ∈I are such that Ts(int(x̂ ′) | s,u) = Ts(cl(x̂ ′) | s,u) for
all s ∈ cl(x̂), u ∈ U, and x̂ , x̂ ′ ∈ Ŝ, where int(·) and cl(·) indicate
respectively the interior and the closure of a set. Then, F (x̂ ,u) can be
defined alternatively as

F (x̂ ,u) ⊆ {x̂ ′ ∈ Ŝ | ∀s ∈ cl(x̂) . Ts(x̂ ′ | s,u) > 0}. (10)

The proof can be found in the appendix.

5 CONTROLLER SYNTHESIS AND
REFINEMENT

With the abstractionA of the given CMPS computed in Sec. 4, we

now propose algorithms to approximate—from above and below—

the maximal a.s. winning regionWinDom(S,C∗). As a by-product,

we will also obtain a suitable control policy. We first lift the specifi-

cation □♢B to an abstract specification that can be specified using

the states of A. For that we define an under-approximation B and

an over-approximation B of the set B ⊆ S using the states of A:

B := {x̂ ∈ Ŝ | ∀s ∈ x̂ . B(s) = 1}

B := {x̂ ∈ Ŝ | ∃s ∈ x̂ . B(s) = 1}.

Note that the sink state ϕ < B, since we assume that the set B
is fully contained in the working region of the CMP. Hence, the

satisfaction of □♢B would ensure that ϕ is always avoided.

To formalize the synthesis process, we introduce four operators:

Controllable predecessor: Define CpreF : 2
Ŝ → 2

Ŝ
for F ∈

{F , F },

CpreF : T 7→ {x̂ ∈ Ŝ | ∃u ∈ U . F (x̂ ,u) ⊆ T }. (11)

Cooperative predecessor: Define PreF : 2
Ŝ → 2

Ŝ
for F ∈

{F , F },

PreF : T 7→ {x̂ ∈ Ŝ | ∃u ∈ U . F (x̂ ,u) ∩T , ∅}. (12)

Almost sure predecessor: Define Apre : 2Ŝ × 2Ŝ → 2
Ŝ
,

Apre : (T , S) 7→ {x̂ ∈ Ŝ | ∃u ∈ U . F (x̂ ,u) ⊆ T ∧ F (x̂ ,u) ∩ S , ∅}.
(13)

Uncertain predecessor: Define Upre : 2Ŝ × 2Ŝ → 2
Ŝ
,

Upre : (T , S) 7→ {x̂ ∈ Ŝ | ∃u ∈ U . F (x̂ ,u) ⊆ T ∧ F (x̂ ,u) ∩ S , ∅}.
(14)

5.1 Warm-up: reachability specification
As a warm-up, we first consider under-approximation of the largest

winning domain for a.s. satisfaction of the reachability specification

♢B in the presence of stochastic noise. For that we take inspiration

from the fixed point of a.s. reachability in concurrent two-player

games [7], and obtain the following nested fixed-point on the ab-

stract system A:

νY . µZ . (Bc ∩ (Apre(Y ,Z ) ∪ CpreF (Z ))) ∪ B, (15)

where Bc represents the complement of the set B. Intuitively, the
above fixed point computes the largest set Y s.t. from every state

y ∈ Y \ B there exists control input sequence s.t. either (a) there is

a finite sequence of F -transitions to B and no F -transition outside

Y , or (b) there is a bounded finite sequence of F -transitions all of
whose non-deterministic branches reach B. On the CMP level this

means: for all y ∈ Y \ B and for all s ∈ y there exist control input

sequence s.t. either (a) there exist paths that enter B with positive

probability bounded away from zero and all paths stay insideY with

probability 1, or (b) there exist paths that enter B with probability

1. It can be shown, by repeated use of Prop. 4.4 on the F -transitions,
that B (and hence B) will be reached a.s. by such a control sequence.

The fixed point (15) is in contrast with the usual reachability fixed

point for worst case disturbances, which is given as µZ . CpreF (Z )∪
B, where it is required that from every state z ∈ Z , all the non-

deterministic branches of F reach B in at most some finite number

of steps. Note that the solution of (15) subsumes the solution of the

usual fixed point, and in practice the usual reachability fixed point
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Figure 2: The top figure represents S2 and the bottom fig-
ure represents both transition relations F ([0, 1)) and F ([0, 1))
(same in this case) ofA. It is not possible to reach [1, 2] from
[0, 1) if the non-determinism in F or F is treated as a worst-
case adversary: the adversary can choose the loop at [0, 1) all
the time. In the top figure, the labels on the edges are the
probabilities of the associated transitions, and in both fig-
ures the labels in red are continuous states.

is much stronger than its stochastic counterpart. Following is an

illustrative example that captures this intuition.

Example 5.1. Consider the CMPS2 (see Fig. 2) defined in Ex. 4.3,

with stochastic kernel (9) anda(s) = 0.5. The transition probabilities

from states in [0, 1) to the interval [1, 2] have a lower bound 0.5, and
so unlikeS1 of Ex. 4.3, F ([0, 1)) = {[0, 1), [1, 2]}. Moreover, since

there exist transitions with positive probability from all the state

in [0, 1) to [1, 2], hence F ([0, 1)) = {[0, 1), [1, 2]} as well.
Assume that the abstract reachability specification is given

♢[1, 2]. If we start from some state in [0, 1) and treat the adver-

sary (resolving the non-determinism) as worst-case, then by using

both F or F , we will forever loop in [0, 1) and would violate the

specification. Formally, the fixed point for ♢[1, 2] will converge to
the singleton set {[1, 2]}, since CpreF ({[1, 2]}) = {[1, 2]}.

On the other hand, if we treat the disturbance as stochastic

noise, then from Prop. 4.4 we know that if we loop in [0, 1) in-
definitely long, then in the long run a.s. the system is going to

move to [1, 2] (recall the interpretation of fair random adversary).

So the winning region in this case should be the whole state

space {[0, 1), [1, 2]}. Indeed, (15) will include the state [0, 1) since
[0, 1) ∈ Apre({[0, 1), [1, 2]}, {[1, 2]}). □

Remark 4. Nilsson et al. [22] introduced augmented transition
systems as abstractions of non-stochastic systems. Augmented transi-
tion systems embed liveness information in progress groups. If a set
of abstract states form a progress group under some control action,
then the system eventually leaves the progress group under repeated
use of this particular control action. Even though our work deals with
an unrelated problem, we note that our fairness assumption on the
random adversary allowing the CMP to make progress to escape a
given abstract state a.s. (Prop. 4.4) has a similar flavor.

5.2 Under-approximation of the maximal a.s.
winning region

We build up on the intuition of the solution of the a.s. reachabil-

ity specification, and present the computation of a sound under-

approximation of the maximal a.s. winning regionWinDom(S,C∗)
with a suitable abstract controller Ĉ. In µ-calculus notation, this
under-approximation can be computed as:

W := νY . µZ .
[
(Bc ∩ (Apre(Y ,Z ) ∪ CpreF (Z )))

∪(B ∩ CpreF (Y ))
]
. (16)

Note that the only new term in (16) as compared to (15) is the

intersection of B with CpreF (Y ). This additional term makes sure

that each time B is reached, the winning region Y is not left in the

next step to make sure that B can be reached once again.

The fixed point (16) and the associated abstract controller Ĉ can

be computed as the nested iteration given in Alg. 1. The controller

Ĉ is a partial function from Ŝ toU, and we use the notation dom Ĉ
to denote the domain of the controller Ĉ.

Algorithm 1 Computation ofW

Input: B ⊆ Ŝ
Output: W , Ĉ
1: Y ← Ŝ,Y ′ ← ∅
2: while Y , Y ′ do
3: Y ′ ← Y
4: Z ← ∅,Z ′ ← Ŝ
5: ∀x̂ ∈ Ŝ . Ĉ : x̂ 7→ ∅
6: while Z , Z ′ do
7: Z ′ ← Z
8: Z ′′ ← (Bc ∩(Apre(Y ,Z )∪CpreF (Z )))∪ (B∩CpreF (Y ))

9: ∀x̂ ∈ Z ′′ \ (B ∪ dom Ĉ) . Ĉ : x̂ 7→ u s.t. F (x̂ ,u) ⊆
Y ∧ F (x̂ ,u) ∩ Z , ∅ or F (x̂ ,u) ⊆ Z

10: Z ← Z ′′

11: end while
12: Y ← Z
13: end while
14: W ← Y

15: ∀x̂ ∈W ∩ B . Ĉ : x̂ 7→ u s.t. F (x̂ ,u) ⊆W
16: returnW , Ĉ

Note that, the existence of the control input u in Lines 9 and 15

is guaranteed because of the definition of Cpre and Apre.

Proposition 5.2. The setW is an under-approximation of the
maximal a.s. winning regionWinDom(S,C∗).

Proof. The goal is to proveW ⊆ WinDom(S,C∗). Let q ∈ Ŝ
be a state s.t. q ∈ W . We show that q ⊆ WinDom(S,C∗). In the

last iteration of the outer while loop in Alg. 1, we obtain a growing

sequence of states Z0 ⊂ Z1 ⊂ . . . ⊂ Zk = Y , where Z0 = ∅ and
Y = W . Since Apre(Y , ∅) = CpreF (∅) = ∅, hence Z1 ⊆ B. For all

the other states x̂ in Zi for i ∈ (2;k], one of the two cases happen:

Either (a) by CpreF (Zi−1), it is ensured that Zi−1 is surely reached
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from x̂ in one step, or (b) by Apre(Y ,Zi−1), it is ensured that Y
(same asW in the last iteration) is not left from x̂ , and additionally

(follows from Prop. 4.4) from all the (continuous) states inside x̂ ,
transition to Zi−1 happens almost surely in the long run. Thus, for

every q ∈W \ B and for all x ∈ q, B is reached almost surely in the

long run.

Moreover, the operator CpreF (Y ) ensures that Y—same asW in

the last iteration—is not left in the one step from Z1. Hence almost

surely B is visited infinitely often. □

Remark 5. The operators Apre and the fix-point (16) are inspired
by how a.s. winning strategies are synthesized for Büchi specification
in two-player concurrent games [7]: There the optimal strategy for
the protagonist player (who wants to satisfy the Büchi condition) is to
play an action that surely keeps the game within the winning region,
while making progress towards the target with positive probability.

At a very high level, we use the same insight to expressW in (16),
though for us the underlying game structure is totally different (see
Rem. 3). It turns out that winning the game almost surely in our case
means to either stay in the winning region using all F -successors,
while at the same time making progress using some F -successor.

5.3 Controller refinement
The state space discretization in the abstraction process induces a

quantizer mapQ : S → Ŝ′ s.t.Q : s 7→ x̂ when s ∈ x̂ . Given the ab-

stract controller Ĉ : Ŝ → U, we can obtain a continuous controller

C : S → U as C ≡ Ĉ ◦Q , where “◦” denotes function composition.

The following theorem states that C is a sound controller.

Theorem 5.3. Consider the control policy C ≡ Ĉ ◦Q and the set
W , whereW and Ĉ are the outputs of Alg. 1 and Q is the quantizer
map. Then, P Cs (S |= □♢B) = 1 for all s ∈W .

The proof of the above theorem directly follows from the proof

of Prop. 5.2, and hence is omitted.

5.4 Over-approximation of the maximal a.s.
winning region

The over-approximation ofWinDom(S,C∗) is given by the follow-

ing fixed-point

W := νY . µZ .
[
(Bc ∩ Upre(Y ,Z ))

∪
(
B ∩ (CpreF (Y ) ∪ PreF \F (Y ))

)]
. (17)

The expression (17) can be solved in the same way as Alg. 1 by

replacing the update in Line 8 with the update in the r.h.s. of (17).

Also, Line 9 and 15 are not needed, as the control policy in this case

does not serve any useful purpose.

Proposition 5.4. The set W is a superset of the maximal a.s.
winning regionWinDom(S,C∗).

Proof. Let x∗ ∈ WinDom(S,C∗). Since Ŝ creates a partition of

the state space S, hence there exists an abstract state x̂∗ ∈ Ŝ s.t.

x∗ ∈ x̂∗.We need to show that x̂∗ ∈W . For the sake of contradiction,

assume that x̂∗ ∈W c
. We will show that this cannot happen.

The fixed point computation (17) produces a shrinking sequence

of states Ŝ = Y 0 ⊇ Y 1 ⊇ . . . ⊇ Yk = W . Let i ∈ N be the

round index when x̂∗ was excluded from Y for the first time i.e.,

x̂∗ ∈ Y i−1 but x̂∗ < Y i . Consider the following two possible

cases: (a) When x̂∗ ∈ B, then this means that for all u ∈ U,

F (x̂∗,u) ⊈ Y i−1 (all states in x̂∗ leave Y i−1 with positive proba-

bility) and

(
F (x̂∗,u) \ F (x̂∗,u)

)
∩ Y i−1 = ∅ (no state in x̂∗ can stay

inY i−1 with positive probability). (b) When x̂∗ < B, then this means

that for all u ∈ U, either F (x̂∗,u) ⊈ Y i−1 (all states in x̂∗ leave Y i−1

with positive probability), or from all states x ∈ x̂∗ there does

not exist any path to B. Both (a) and (b) mean that from all the
continuous states x ∈ x̂∗, the specification will be violated with

positive probability after i time steps. This is a contradiction to our

assumption that x∗ ∈ WinDom(S,C∗), since we know that from

x∗ ∈ x̂∗ the specification can be satisfied for infinite duration with

probability 1. Hence, it must hold that x̂∗ ∈W . □

5.5 Over-approximation of the minimal a.s.
losing region for reachability

Once we have a tight approximation of the a.s. winning region, we

can compute a lower-bound of the satisfaction probability for the

quantitative version of the □♢B through Eqn. (5):

P Cs (S |= □♢B) ≥ P Cs (S |= ♢WinDom(S,C∗)) ≥ P Cs (S |= ♢W )

for all s ∈W c
, whereW c

is the complement ofW . Efficient com-

putation of maximal reachability requires computation of minimal

a.s. losing region, i.e., the set

L := {s ∈ S| sup
C∈ΠS

P Cs (S |= ♢W ) = 0}.

The following fixed point over-approximates L:

L :=
[
µX . PreF (X ) ∪W

]c
.

Theorem 5.5. L is an over-approximation of L.

Proof. We show the contra-positive, i.e. L
c ⊆ Lc . Consider any

abstract state x̂ ∈ Lc . By construction, from all the continuous states

x ∈ x̂ ,W is reached with non-zero probability. Hence x̂ < L. □

Once we have an over-approximation of L, the stochastic kernel

of the CMP becomes contractive over S\(L ∪W ) under mild conti-

nuity assumptions. Then approximate computational techniques in

the literature on finite-horizon reachability can be utilised to find

P Cs (S |= ♢W ) with tunable error bounds [27, 28, 33].

Remark 6. If Assump. 1 does not hold, then WinDom(S,C∗)
would be the “largest a.s. winning region achievable using stationary
policies” contained in, but not necessarily equal to, the “true a.s. win-
ning region.” As a result,W would only be an over-approximation of
WinDom(S,C∗), and not necessarily an over-approximation of the
true a.s. winning region anymore. Nevertheless, the final controller
obtained using Alg. 1 would still be a sound a.s. winning controller, but
with a smaller domain than the optimal a.s. winning controller. More-
over, L would still be an over-approximation—but a more conservative
one—of the “true minimal a.s. losing region.”
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6 COMPUTATION OF THE ABSTRACTION
The dynamical system. We consider sampled-time continuous

state dynamical systems with additive stochastic disturbance. The

system is formalized using the tuple Σ = (S,U, f , tw ), where S ⊂
Rn is the state space,U ⊂ Rm is the finite input space, f : S×U →
S is the nominal state transition function and tw : Rn → R≥0 is
the density function of the stochastic disturbance. The state update

of Σ is given as:

s(k + 1) = f (s(k),u(k)) +w(k), k ∈ N, (18)

where s(k) ∈ S and u(k) ∈ U are the state and input at the kth

time instant,w(k) is a random variable with the density function

tw (·), and s(k + 1) is the state at the (k + 1)st time instant.

The random variables {w(k)}k ∈N are pairwise independent with

the same density function tw (·). We can write the system as a

CMP S = (S,U,Ts) with the stochastic kernel Ts(A | s,u) =∫
A tw (s ′ − f (s,u))ds ′ for all A ∈ B(S). For the construction of the

abstraction we assume that tw (·) is piecewise continuous and f (·,u)
is continuous for all u ∈ U.

The abstraction. We assume that S = S′ ∪ {ϕ}, where S′ is a
compact hyper-rectangular working region of the system and ϕ is a

sink state representing the complement of S′. The disturbance has
a compact support D ⊂ Rn . Let Ŝ′ be a hyper-rectangular partition
of S′. The overall abstract state space is Ŝ = Ŝ′ ∪ {ϕ}. Given an

abstract state x̂ = Ja,bK ∈ Ŝ′ and a control input u ∈ U, we denote

the approximate nominal reachable set ofS by Φ(x̂ ,u) s.t.

Φ(x̂ ,u) ⊇
⋃

s ∈cl(x̂ )
f (s,u), (19)

where cl(x̂) is the closure of the set x̂ . Note that Φ(x̂ ,u) can be

computed using any reachability analysis method for deterministic

dynamical systems [4, 5].

Define two functions S1, S2 : Ŝ × U → 2
Rn

s.t.

S1 : (x̂ ,u) 7→ D ⊕ Φ(x̂ ,u) and (20)

S2 : (x̂ ,u) 7→ D ⊖ (−Φ(x̂ ,u)), (21)

where D ⊇ D is any over-approximation of the support of distur-

bance D and D ⊆ D is any compact under-approximation of D
over which tw (·) is strictly positive. The operators ⊕ and ⊖ are

Minkowski sum and Minkowski difference of two sets, respectively,

and the minus sign in (−Φ(x̂ ,u)) is applied to all elements.

Theorem 6.1. Let Σ = (S,U, f , tw ) be a dynamical system and
S = (S,U,Ts) be the CMP induced by Σ. Define A = (Ŝ,U,T ,T )
s.t.:

T (x̂ ,u) := {x̂ ′ ∈ Ŝ | (x̂ ′ , ϕ) ⇒ (x̂ ′ ∩ S1(x̂ ,u) , ∅)∧
(x̂ ′ = ϕ) ⇒ (S1(x̂ ,u) ⊈ S′)}, (22)

T (x̂ ,u) := {x̂ ′ ∈ Ŝ | (x̂ ′ , ϕ) ⇒ (λ(x̂ ′ ∩ S2(x̂ ,u)) > 0)∧
(x̂ ′ = ϕ) ⇒ λ(S2(x̂ ,u)\S′) > 0}, (23)

where λ(·) gives the Lebesgue measure (volume) of a set. Then A is
an abstraction ofS.

Proof. We show that T and T satisfy the properties of F and F
as formalized in Def. 4.2. For (7), consider any pair of abstract states

x̂
d1

d1d2

d2

Figure 3: Illustration of abstraction computation: given the
abstract state x̂ (filled with grey) and some control input u,
first the nominal reachable set is over-approximated (black
rectangle). Next, the sets S1 (blue rectangle) and S2 (red rec-
tangle) are computed. Finally, the images of the transition
functions F (filled with yellow) and F (filled with green) are
the abstract states intersecting with S1 and S2 respectively.

x̂ , x̂ ′ ∈ Ŝ′ and input u ∈ U and there exists s ∈ x̂ , Ts(x̂ ′ | s,u) > 0.

We show that x̂ ′ ∈ T (x̂ ,u):∫
x̂ ′
tw (s ′ − f (s,u))ds ′ > 0⇒

∫
x̂ ′⊖{f (s,u)}

tw (w)dw > 0

⇒ (x̂ ′ ⊖ { f (s,u)}) ∩ D , ∅
⇒ ∃w ∈ D,∃s ′ ∈ x̂ ′ s.t. w = s ′ − f (s,u)
⇒ ∃w ∈ D,∃s ′ ∈ x̂ ′ s.t. s ′ = f (s,u) +w .

At the same time we know that f (s,u) ∈ Φ(x̂ ,u) since s ∈ x̂ . Then,

s ′ ∈ S1(x̂ ,u) ⇒ x̂ ′ ∩ S1(x̂ ,u) , ∅ ⇒ x̂ ′ ∈ T (x̂ ,u).

A similar reasoning holds for the case of x̂ ′ = ϕ.

Nowwe show thatT satisfies the condition given in (8). Take x̂ ∈ Ŝ′,
input u ∈ U , and x̂ ′ ∈ T (x̂ ,u) s.t. x̂ ′ , ∅. Then λ(x̂ ′ ∩ S2(x̂ ,u)) > 0

according to (23). For any s ′ ∈ x̂ ′ ∩ S2(x̂ ,u), we have

s ′ ∈ S2(x̂ ,u) ⇒ {s ′} ⊕ (−Φ(x̂ ,u)) ⊆ D

⇒ s ′ − f (s,u) ⊆ D ∀s ∈ cl(x̂)
⇒ Ts(x̂ ′ | s,u) ≥

∫
x̂ ′∩S2(x̂,u)

tw (s ′ − f (s,u))ds ′ > 0

The right-hand side is strictly positive since the integrand is strictly

positive and the domain of integration has a positive measure. It

is also assumed that f is continuous and tw piecewise continuous.

Therefore, we have a positive function over the compact domain

cl(x̂), which will have a positive minimum:

∃ε > 0 . ∀s ∈ cl(x̂) . Ts(x̂ ′ | s,u) ≥ ε ⇒ x̂ ′ ∈ F (x̂ ,u).

□

The abstraction procedure can be summarized as follows: first

compute the approximate nominal reachable setΦ(x̂ ,u) in (19), then
take the Minkowski sum and difference for S1, S2 in (20)-(21), and

finally compute the transition relations (23)-(22). Fig. 3 illustrates

the abstraction procedure for a 2-d system and when D is of the

form [−d1,d1] × [−d2,d2].
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6.1 Computation for mixed-monotone systems
If the function f (·,u) is mixed-monotone for every u ∈ U and the

partition sets are hyper-rectangles, then the nominal reachable

set Φ(x̂ ,u) can be computed particularly efficiently. We recall the

definition of mixed-monotonicity [4].

Definition 6.2. Let д : S → S be a function, and ≤S be an order

relation on S induced by positive cones. The function д is called

mixed-monotone w.r.t. ≤S (or simply mixed-monotone if ≤S is

obvious from the context) if there exists a function h : S×S → S—
called the decomposition function—with the following properties:

(1) ∀x ∈ S . h(x ,x) = д(x),
(2) ∀x1,x2,y ∈ S . (x1 ≤S x2) ⇒ (h(x1,y) ≤S h(x2,y)), and
(3) ∀x ,y1,y2 ∈ S . (y1 ≤S y2) ⇒ (h(x ,y2) ≤S h(x ,y1)).

Intuitively, a mixed-monotone function can be decomposed into

an increasing and a decreasing component. This phenomenon can

be seen from the definition of the decomposition function. The

following proposition shows a fast over-approximation method of

the image of a rectangular set under a mixed-monotone function.

Proposition 6.3 ([4, Thm. 1]). Let д be a mixed-monotone func-
tion with the decomposition function h, and Ja,bK ⊆ S be any hyper-
rectangle. The image of Ja,bK under д can be over-approximated as
Jh(a,b),h(b,a)K.

For mixed-monotone f (·,u) with decomposition function hu ,
the function Φ(x̂ ,u) can be computed using Prop. 6.3 as Φ(x̂ ,u) =
Jhu (a,b),hu (b,a)K for x̂ = Ja,bK.

7 EXAMPLES
We implemented the presented algorithms in an open-source tool

called Mascot-SDS (https://gitlab.mpi-sws.org/kmallik/mascot-sds.

git), which is an extension of the tool Mascot [12], and is built

on top of the basic symbolic computation framework of the tool

SCOTS [25]. All the experiments were performed on a computer

with a 3GHz Intel Xeon E7-8857 v2 processor and 1.5 TB memory.

7.1 Perturbed Van der Pol Oscillator
Our first example considers the computation of the maximal a.s.

winning region of an autonomous stochastically perturbed Van der

Pol oscillator [21]. The state evolution of the oscillator is given by:

x1(k + 1) = x1(k) + x2(k)τ +w1(k)
x2(k + 1) = x2(k) + (−x1(k) + (1 − x1(k)2)x2(k))τ +w2(k),

where the sampling time τ is set to 0.1s and (w1(k),w2(k)) is a
pair of stochastic noise signals at time k drawn from a piece-

wise continuous density function with a compact support D =
[−0.02, 0.02] × [−0.02, 0.02]. Note that for the computation of the

winning set, we do not need the actual density function as discussed

in the previous section. We consider a safety specification □S′ for
staying within the working area S′ = [−0.5, 0.5] × [−0.5, 0.5], as
well as a Büchi specification □♢B for repeatedly reaching the target

set B = [−1.2,−0.9] × [−2.9,−2] (green rectangle in Fig. 4a). Our

algorithm is able to compute the under and over-approximation of

the set of a.s. winning region. In Fig. 4a, the under-approximation

W is shown in grey andW \W is shown in blue.

It turns out that when the noise is treated as worst case, then

there exists a deterministic value of the noise forwhich the oscillator

trajectory never reaches the target from all the initial states inside

the domain, thus violating the specification. So the winning region

is empty. A trajectory with a fixed deterministic perturbation that

misses the target all the time is shown in black in Fig. 4a.

On the other hand, when the noise is treated as stochastic, then

there are initial states from where the perturbed trajectory always

eventually reaches the target polytope. Hence, the specification is

satisfied. A trajectory with stochastic perturbation and the initial

state I is shown in red in Fig. 4a. Table 1 summarizes the abstraction

parameters used in our experiment, ratio of the computed volume

ofW to the computed volume ofW , and the computation time.

7.2 Controlled perturbed vehicle
Our second example is a controller synthesis problem for a per-

turbed sampled-time 3-d Dubins’ vehicle [23]. We consider almost

sure satisfaction of the Büchi specification while avoiding obstacles

in the state space. Althoughwe did not discuss avoidance of obstacle

in the theory part, this can be easily handled by redefining the work-

ing region S′ of the system by excluding the obstacles. Thus given

a hyper-rectangular working region [0, 2] × [0, 3] × [−π ,π ], and an

obstacle [0.8, 1.2] × [1, 1.4] × [−π ,π ] within that working region,

we define S′ = [0, 2]× [0, 3]× [−π ,π ] \ [0.8, 1.2]× [1, 1.4]× [−π ,π ].
The system dynamics is given as: when u , 0,

x1(k + 1) = x1(k) +
V

u
sin(x3(k) + uτ ) −

V

u
sin(x3(k)) +w1(k)

x2(k + 1) = x2(k) −
V

u
cos(x3(k) + uτ ) +

V

u
cos(x3(k)) +w2(k)

x3(k + 1) = x3(k) + uτ +w3(k),

and when u = 0,

x1(k + 1) = x1(k) +V cos(x3(k))τ +w1(k)
x2(k + 1) = x2(k) −V sin(x3(k))τ +w2(k)
x3(k + 1) = x3(k) +w3(k),

where the sampling time τ = 1s , the constant forward velocity

V = 0.1 (maintained by e.g. a low level cruise control system),

and (w1(k),w2(k),w3(k)) is a collection of stochastic noise samples

drawn from a piecewise continuous density function with the sup-

port D = [−0.06, 0.06] × [−0.06, 0.06] × [−0.06, 0.06]. It is due to
this fixed velocity that the vehicle cannot stay stationary (or near

stationary) after reaching the target, which makes the synthesis

problem with Büchi specification much more challenging than the

same with normal reachability specification.

When the noise is treated as a worst case adversary, the winning

region is empty. However, when the noise is treated as stochas-

tic, the approximate winning regionsW andW are non-empty as

shown in Fig. 4b. Fig. 4c shows the simulated trajectory of the ve-

hicle using the synthesized controller. It was observed that even

though the trajectory moves away from the target from time to

time, either due to the external noise or due to the constant velocity,

it always returns to the target eventually.

We performed the computation for four different levels of dis-

cretization granularity, and the results are summarized in Table 1. It

can be observed (from the ratio λ(W )/λ(W )) that the gap between

https://gitlab.mpi-sws.org/kmallik/mascot-sds.git
https://gitlab.mpi-sws.org/kmallik/mascot-sds.git
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W andW monotonically shrinks as the abstract states get smaller,

which means that the approximationsW andW get progressively

better with refinement of the state space partition. However, com-

putation time sharply increases with finer discretization.

7.3 A note on computation time
The computation time for W reported in Table 1 is based on a

warm-start of Alg. 1 by replacing Y ← Ŝ in Line 1 with Y ←W .

The intuition is that since it is known upfront thatW ⊆W , hence

we do not need to consider the set Ŝ \W in Alg. 1. In practice,

the computation time forW would be higher than the numbers

reported in Table 1 had we started with Ŝ.
In general, we observed that the computation ofW takes much

longer than the computation ofW . Our hypothesis is that this is

due to the properties of the operators defined in (11)-(14), and how

they are used in the computation ofW andW . For example, because

F (x̂ ,u) is a superset of F (x̂ ,u) for all x̂ ,u, it can be shown that for

a given Y ,Z ⊆ Ŝ, Apre(Y ,Z ) ⊆ Upre(Y ,Z ). Similarly CpreF (Z ) ⊆
Upre(Y ,Z )whenY ⊇ Z . Moreover, B∩CpreF (Y ) ⊆ B∩(CpreF (Y )∪
PreF \F (Y )). Thus each iteration in the inner “µ” fixed point would

add possibly fewer states in case ofW than in case ofW . Since

ultimately the size ofW andW are not very far apart, as shown in

Col. 4 of Table 1, hence the iterations forW would take many more

number of steps thanW .

8 FUTUREWORK
We are working on three different extensions of this work. First, we

plan to develop computation techniques for the qualitative winning

regions for more general Rabin or parity conditions. Second, we are

working on formulating conditions to guarantee convergence of the

computations to the actual winning region when the discretization

gets finer. Finally, we plan to improve the scalability of the approach

using multi-resolution abstractions.
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(a) (b) (c)

Figure 4: (a) The Van der Pol oscillator example: B (green box) is the target,W is in grey,W \W is in blue, and I is the initial
state for simulation. The trajectory with stochastic perturbation is shown in red, and the trajectory with a fixed deterministic
perturbation that always misses the target is shown in black. (b) The approximate a.s. winning domain for the Dubin’s vehicle
(for abstract state size 0.1 × 0.1 × 0.1):W is in grey andW \W is in blue. (c) Simulation of perturbed trajectory for the Dubin’s
vehicle projected onto x1,x2 plane. The black box A is the obstacle and the green box B is the target.

System Size of abstract states

Volume of the

worst-case

winning region

λ(W )/λ(W )
Computation time

Abstraction W W

Van der pol oscillator 0.02 × 0.02 empty 73.0% < 1m 12m 416m

Dubins’ vehicle

0.1 × 0.1 × 0.1 empty 80.0% 1m 2m 11m
0.07 × 0.07 × 0.07 empty 83.8% 4m 23m 35m
0.05 × 0.05 × 0.05 empty 87.2% 18m 124m 140m
0.04 × 0.04 × 0.04 empty 88.9% 37m 132m 128m

Table 1: Performance evaluation of our method on the Van der Pol oscillator and the Dubin’s vehicle. The 2nd column shows
the size of each hyper-rectangular abstract state in the underlying uniform grid, the 3rd column shows the volume of the
approximate winning domain when the noise is treated in the usual worst-case sense, the 4th column shows the ratio of the
Lebesgue measure (volume) ofW toW , and the 5th, 6th, and 7th columns show the computation times of different phases of
our algorithm in minutes. Note that in our implementation, the computation ofW was warm started with already computed
W . HadW been computed from scratch, the computation time forW would be higher than what is shown in the last column.

of CPS Week), HSCC ’18, pages 1–10, New York, NY, USA, 2018. ACM.

9 APPENDIX
9.1 Proof of Prop. 3.2
Following the steps utilized in [33, Theorem 7], we have that 1 −
f ∗(s) is lower semi-analytic. Then {s ∈ S | 1 − f ∗(s) < c} is an
analytic subset ofS for all c ∈ R. Take a positive sequence {cn → 0}.
The set ∩n {s ∈ S | f ∗(s) > 1 − cn } = {s ∈ S | f ∗(s) = 1} is also
analytic. Every analytic set is universally measurable.

9.2 Proof of Thm. 3.3
Proof of Thm. 3.3. We already know that P Cs (S |= □♢B) = 1

for all s ∈ WinDom(S,C) by definition of the winning set. Take

any s <W :=WinDom(S,C). We make the event conditional on τ

which is the first time the path hits a state inW . Then we have

P Cs (S |= □♢B) = ECs
[
P Cs (S |= □♢B | s1, s2, . . . , sn ,τ = n)

]
=

∞∑
n=0

P Cs (s1, s2, . . . , sn−1 ∈ S\W , sn ∈W )

+ P Cs (S |= □♢B andS |= □S\W ).

The sum is the reachability probability and the last term is always

non-negative. □

9.3 Proof of Prop. 4.5
Proof. We take an element x̂ ′ ∈ Ŝ and u ∈ U. We show that

x̂ ′ belongs to the right-hand side of (10) if and only if it belongs to

the right-hand side of (8). Observe that

Ts(x̂ ′ | s,u) = Ts(cl(x̂ ′) | s,u)

=

∫
cl(x̂ ′)

Ts(ds ′ | s,u) =
∫
S
1cl(x̂ ′)(s ′)Ts(ds ′ | s,u).
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Since the indicator function of a closed set is upper semi-continuous,

Ts(x̂ ′ | s,u) is also upper semi-continuous for all s ∈ cl(x̂). Similarly,

Ts(x̂ ′ | s,u) = Ts(int(x̂ ′) | s,u)

=

∫
int(x̂ ′)

Ts(ds ′ | s,u) =
∫
S
1int(x̂ ′)(s ′)Ts(ds ′ | s,u).

Since the indicator function of an open set is lower semi-continuous,

Ts(x̂ ′ | s,u) is also lower semi-continuous for all s ∈ cl(x̂). There-
fore, Ts(x̂ ′ | s,u) is continuous over the domain s ∈ cl(x̂), which
means it attains its minimum over s ∈ cl(x̂). Suppose x̂ ′ belongs
to the right-hand side of (10) and take ε = mins ∈cl(x̂ )Ts(x̂ ′ | s,u).
SinceTs(x̂ ′ | s,u) is positive, ε > 0 and x̂ ′ belongs to the right-hand
side of (8). Now suppose x̂ ′ belongs to the right-hand side of (8).

Then there is an ε > 0 such that Ts(x̂ ′ | s,u) ≥ ε for all s ∈ x̂ . Since
Ts(x̂ ′ | s,u) is continuous over cl(x̂), we get that Ts(x̂ ′ | s,u) > 0

for all s ∈ cl(x̂), which means x̂ ′ belongs to the right-hand side

of (10). □

9.4 Properties of the winning region
Proposition 9.1. For any control policy C, The set W :=

WinDom(S,C) is an absorbing set, i.e., the paths starting from this
set will stay in the set a.s.:

P Cs (w[k + 1] ∈W |w[k]) = 1,

for allw[k] ∈W .

Proof. For any s ∈W , we have

P Cs (S |= □♢B) =
∫
S
P Cs1 (S |= □♢B)Ts(ds1 |s,C(s))

=

∫
W

Ts(ds1 |s,C(s)) +
∫
S\W

P Cs1 (S |= □♢B)Ts(ds1 |s,C(s)).

This means∫
S\W
(1 − P Cs1 (S |= □♢B))Ts(ds1 |s,C(s)) = 0,

P Cs
[
(1 − P Cs1 (S |= □♢B))1S\W (s1) ≥ ϵ

]
≤ 0

ϵ
= 0,

where the last inequality is a consequence of Markov’s inequality

for non-negative random variables. By taking the union over a

monotone positive sequence {ϵn → 0}, we get

P Cs
[
(1 − P Cs1 (S |= □♢B))1S\W (s1) > 0

]
= 0,

P Cs
[
s1 ∈ S\W and P Cs1 (S |= □♢B) < 1

]
= 0,

P Cs [s1 ∈ S\W ] = 0.

□

Proposition 9.2. Given a countable sequence of stationary
policies {C1,C2, . . .} for the system S with winning regions
{WinDom(S,Cn ), n = 1, 2, . . .}, there is a controller C with winning
region WinDom(S,C) = ∪∞n=1WinDom(S,Cn ).

Proof. Define the sets {W n ,n = 1, 2, . . .} inductively asW 1 :=

WinDom(S,C1) andW n :=WinDom(S,Cn )\ ∪n−1i=1 W n for all n ∈

W 1 W 2

W 3

Figure 5: Illustration of construction of W 1 (green filled
part), W 2 (blue filled part), and W 3 (red filled part) from
WinDom(S,C1) (green circle), WinDom(S,C2) (blue circle),
andWinDom(S,C3) (red circle).

{2, 3, . . .}. This construction is illustrated in Fig. 5. Also, define the

new stationary policy:

C(s) :=


C1(s) if s ∈W 1

C2(s) if s ∈W 2

...

(24)

for all non-empty setsW n . It is easy to show that the sets {W i }
are non-intersecting and ∪ni=1W i = ∪ni=1WinDom(S,Ci ). Then for

any initial state s ∈ ∪∞i=1WinDom(S,Ci ), there is some n such that

s ∈ W n . Note that all sets WinDom(S,Ci ) are absorbing under

their respective policy. The path starting from s with Cn either

stay in WinDom(S,Cn ) or will reach someW i with i < n. In the

first case, the path satisfies the specification with probability one.

The same argument can be applied a finite number of times until

reaching the lowest index i = 1.

measurability of C. Note that the sets {W1,W2, . . .} are uni-

versally measurable and the policies {C1,C2, . . .} are universally
measurable functions. We also have C−1(A) = ∪∞i=1[C

−1
i (A) ∩Wi ],

which means C−1(A) is universally measurable for any universally

measurable A. Therefore, C is a universally measurable function.

□
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