
ar
X

iv
:2

00
6.

08
23

3v
2 

 [
m

at
h-

ph
] 

 2
4 

Fe
b 

20
21

Groundstate finite-size corrections and

dilogarithm identities for the twisted

A
(1)
1 , A

(1)
2 and A

(2)
2 models

Alexi Morin-Duchesnea,b, Andreas Klümperc, Paul A. Pearced,e
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Abstract

We consider the Y -systems satisfied by the A
(1)
1 , A

(1)
2 , A

(2)
2 vertex and loop models at roots of unity

with twisted boundary conditions on the cylinder. The vertex models are the 6-, 15- and Izergin-
Korepin 19-vertex models respectively. The corresponding loop models are the dense, fully packed and
dilute Temperley-Lieb loop models respectively. For all three models, our focus is on roots of unity
values of eiλ with the crossing parameter λ corresponding to the principal and dual series of these
models. Converting the known functional equations to nonlinear integral equations in the form of
Thermodynamic Bethe Ansatz (TBA) equations, we solve the Y -systems for the finite-size 1

N corrections
to the groundstate eigenvalue following the methods of Klümper and Pearce. The resulting expressions
for c−24∆, where c is the central charge and ∆ is the conformal weight associated with the groundstate,
are simplified using various dilogarithm identities. Our analytic results are in agreement with previous
results obtained by different methods.
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1 Introduction

Two-dimensional lattice models on the square lattice are Yang-Baxter integrable [1] if their Boltzmann
face weights, dependent on the spectral parameter u and crossing parameter λ, satisfy the Yang-Baxter
equation. Solutions to the Yang-Baxter equation are typically classified [2,3] by Lie algebras. Perhaps
the simplest families of Yang-Baxter integrable lattice models are classified by the trilogy of Lie algebras

A
(1)
1 , A

(1)
2 and A

(2)
2 . The representations of these algebras admit at least three types, namely, vertex

type, loop type and height or Restricted Solid-On-Solid (RSOS) type. Specifically, the vertex models
are the 6-vertex model [4–9], 15-vertex model [10–16] and Izergin-Korepin 19-vertex model [17–21]
respectively. The corresponding loop models are the dense Temperley-Lieb loop model [22–28], fully
packed Temperley-Lieb loop model [29–31] and dilute Temperley-Lieb loop model [32–37] respectively.
Algebraically, these loop models are described by the dense and dilute Temperley-Lieb algebras [38–42].
In this paper, we are interested in representations of vertex and loop type models at roots of unity,
where the crossing parameter λ

π ∈ Q is parameterised as

λ =















π(p′ − p)

p′
, A

(1)
1 , A

(1)
2 ,

π(b− a)

2b
, A

(2)
2 ,

p, p′, a, b ∈ Z, gcd(p, p′) = gcd(a, b) = 1. (1.1)

Our investigation will in fact focus on a subset of these values, namely on two one-parameter series of
values, the principal series and the dual series:

A
(1)
1 , A

(1)
2 :

{

p = p′ − 1, Principal series,

p = 1, Dual series,
A

(2)
2 :

{

a = b− 1, Principal series,

a = 1− b, Dual series.
(1.2)

We consider periodic boundary conditions on a cylinder with a twist ω = eiγ , where the vertex and
loop models are described by single-row transfer matrices T (u). The Yang-Baxter equation ensures the
commutativity of the transfer matrices at different values of the spectral parameter. The groundstate
eigenvalue T (u) of the transfer matrix admits the 1

N expansion

log T (u) = −Nfbulk(u) +
π sinϑ(u)

6N
(c− 24∆) + o( 1

N ). (1.3)

The first term involves the bulk free energy fbulk(u), a non-universal quantity that can be computed
using the inversion identities satisfied by the transfer matrices [43, 44]. In contrast, the 1

N finite-size
correction term is universal. Its prefactor is written in terms of the conformal data of the associated
Conformal Field Theory (CFT) realized in the continuum scaling limit, namely the central charge c
and the dimensions ∆ = ∆̄ of the conformal field corresponding to the groundstate. It also involves
the anisotropy angle ϑ(u), which is model dependent.

The integrability of the A
(1)
1 , A

(1)
2 and A

(2)
2 models is manifest in the T - and Y -systems of functional

equations [45–49] satisfied by the transfer matrices. Closed finite T - and Y -systems for the A
(1)
1 , A

(1)
2 ,

A
(2)
2 vertex and loop models at roots of unity have been obtained in [27, 31, 37] respectively. The

Y -systems are universal [50] in the sense that they do not depend on the boundary conditions or the
topology. Following the methods of Klümper and Pearce [51, 52, 47], each Y -system can be solved for
the finite-size 1

N correction term in (1.3), allowing one to compute c− 24∆ and ϑ(u) exactly.
For the vertex models, a twist ω = eiγ is introduced between the first and last columns in the

transfer matrix T (u) via a twist matrix Θ that acts on the auxiliary space. The transfer matrix is then

4



given by a trace over that auxiliary space:

Tr
(

ΘT (u)
)

, Θ =































(

ω 0
0 ω−1

)

, A
(1)
1 ,





ω 0 0
0 1 0
0 0 ω−1



 , A
(1)
2 , A

(2)
2 .

(1.4)

Because of the sℓ(3) symmetry, the A
(1)
2 models allow for a two-parameter twist matrix but we only

consider the one-parameter twist matrix.
For the loop models, the relevant representations of the Temperley-Lieb algebras are the so-called

standard modules. Their construction in terms of link states is well-known and here we will use the
convention of [28, 31, 37] for these modules for the A

(1)
1 , A

(1)
2 and A

(2)
2 models, respectively. The twist

ω = eiγ , with γ ∈ (−π, π), is a parameter associated with these representations. It measures the
winding of the defects around the cylinder. Each defect that crosses the vertical line where the cylinder
is cut contributes a factor ω if it travels towards the left, whereas it contributes ω−1 if it travels
towards the right as it progresses down the cylinder. Clearly, for loop models, powers of ω only appear
in standard modules with a positive number of defects. In the zero defect module, the representation
instead depends on the fugacity α of the non-contractible loops. This fugacity is parametrised as
α = ω + ω−1 = 2cos γ allowing for the simultaneous treatment of vertex and loop models in our
calculations.

Some special values of the twist parameter are distinguished. The untwisted vertex model is
obtained by specialising the twist parameter to ω = 1. In the loop model, this corresponds to setting
the fugacity of the non-conctractible loops to α = ω + ω−1 = 2. For this value, the vertex and loop
models share a common modular invariant partition function. Another natural choice for the loop
models is to assign equal fugacities to the contractible and non-contractible loops: α = β. This is
achieved by specialising the twist parameter to

γ =















λ, A
(1)
1 , A

(1)
2 ,

4λ− π, A
(2)
2 , 0 < λ < π

2 ,

3π − 4λ, A
(2)
2 , π

2 < λ < π.

(1.5)

For the A
(1)
2 case, the choice γ = λ coincides with the Fully Packed Loop (FPL) model [53,54]. Another

interesting value is γ = 2λ for which the continuum scaling limit of this model is described [30] by
a non-rational W3 conformal field theory, which we believe can be obtained as the logarithmic limit
(m,m′ → ∞,m/m′ → p/p′) of the rational minimal W3(m,m′) models [55–57].

From the analytic calculation of finite-size corrections, our results for the conformal data of the
twisted models are

A
(1)
1 : c− 24∆ =















1− 6γ2p′

π2(p′ − 1)
,

1− 6γ2p′

π2
,

Principal series,

Dual series,

(1.6a)

A
(1)
2 : c− 24∆ =















2− 6γ2p′

π2(p′ − 1)
,

2− 6γ2p′

π2
,

Principal series,

Dual series,

(1.6b)

5



A
(2)
2 : c− 24∆ =















1− 3γ2b

π2(b− 1)
,

3

2
− 3γ2b

π2
,

Principal series,

Dual series.

(1.6c)

These are to be compared with the analytic results from other methods, such as Non-Linear Integral
Equations (NLIEs) and Bethe Ansatz techniques:

A
(1)
1 : c− 24∆ = 1− 6γ2

π(π − λ)
, 0 < λ < π (dense phase [58,59]), (1.7a)

A
(1)
2 : c− 24∆ = 2− 6γ2

π(π − λ)
, 0 < λ < π (Regimes I & II [13,16,30]), (1.7b)

A
(2)
2 : c− 24∆ =















1− 3γ2

π(π − 2λ)
, 0 < λ < π

2 (Regime I: dilute/dense phase [18,20]),

3

2
− 3γ2

2π(π − λ)
, 2π

3 < λ < π (Regime II [18,20]).

(1.7c)

The A
(1)
2 intervals in Regimes I & II are 0 < λ < π

2 and π
2 < λ < π respectively. The A

(2)
2 dilute/dense

intervals in Regime I are 0 < λ < π
4 and π

4 < λ < π
2 respectively. Note also that we do not consider

the A
(2)
2 model in the non-compact regime π

2 < λ < 2π
3 [21].

The outline of the paper is as follows. We compute the groundstate finite-size corrections for the

A
(1)
1 , A

(2)
2 and A

(1)
2 models in Sections 2 to 4 respectively. While the A

(1)
2 model may appear simpler as a

lattice model, the analysis of its Y -system is more complicated than that of the A
(2)
2 model, prompting

us to present our analysis for the A
(2)
2 model first for pedagogical reasons. Each of these three sections

is subdivided in the same way. Firstly, we review the definition of the model. Secondly, we review the
functional relations and Y -systems that were obtained in previous papers. Thirdly and fourthly, we
solve these equations for the 1

N finite-size correction for the principal and dual series respectively. The
final step of the calculations uses certain dilogarithm identities stated and proven in Appendix A. We
make some concluding remarks in Section 5.

Throughout the paper, our algebraic and analytic results are checked by a computer
implementation using Mathematica [60] on a Mac Pro with 8 parallel kernels and 256GB of RAM. The
fused transfer matrices are coded symbolically out to system sizes N = 6. Fixing λ and γ numerically
to 40 digits precision, the entries of fused transfer matrices are obtained to high precision as Laurent
polynomials in eiu with constant coefficients for system sizes out to N = 9. Using 18 digit machine
precision, the fused transfer matrices were obtained out to system sizes N = 11 or N = 12. Since
the common transfer matrix eigenvectors are independent of u, the eigenvalues are also obtained as
Laurent polynomials in eiu with numerical coefficients. Importantly, this allows us to solve numerically
for the locations of eigenvalue zeros in the complex u plane and to confirm the qualitative patterns
of zeros and analyticity information we use to solve the Y -systems. Specializing u, λ and γ, direct
confirmation of the finite-size corrections were carried out using the Arnoldi method [61] to find the
dominant eigenvalues of numerical unfused transfer matrices out to system sizes N = 12 and applying
Vanden Broeck-Schwartz [62] sequence extrapolation.
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2 Finite-size corrections for the A
(1)
1 models

2.1 Definition of the A
(1)
1 models

The loop and vertex models in the A
(1)
1 family are the dense loop model and the 6-vertex model. The

dense loop model is a face model on the square lattice, where each face takes on one of two possible
local configurations designated by tiles. The elementary face operator for the loop model is defined by
the linear combination

u = s1(−u) + s0(u) , sk(u) =
sin(kλ+ u)

sinλ
, (2.1)

where u is the spectral parameter and λ is the crossing parameter. On the cylinder, the fugacities of
the contractible and non-contractible loops are

β = 2cos λ, α = ω + ω−1 = 2cos γ, (2.2)

where ω = eiγ is a free parameter. The Ř-matrix of the six-vertex model is

Ř(u) =











s1(−u) 0 0 0

0 eiu s0(u) 0

0 s0(u) e−iu 0

0 0 0 s1(−u)











= s1(−u)I + s0(u)Ř(λ). (2.3)

The twist matrix is (1.4) with ω = eiγ . Both the vertex and loop A
(1)
1 models are described by the

Temperley-Lieb algebra [38], with its parameter fixed to β = 2cos λ. On the cylinder, the single-row
transfer matrices are elements of the enlarged periodic Temperley-Lieb algebra [63–66]. For the vertex
model, the Temperley-Lieb generators are defined on (C2)⊗N by

ej = I ⊗ I ⊗ · · · ⊗ Ř(λ)⊗ · · · ⊗ I, j = 1, 2, . . . , N, (2.4)

where Ř(λ) occurs in slots j and j + 1.

The fundamental regime of the A
(1)
1 models is

0 < λ < π, 0 < u < λ. (2.5)

The roots of unity values of λ are those for which λ
π ∈ Q. We parameterise them in terms of two

integers p, p′ as

λ = λp,p′ =
π(p′ − p)

p′
, 1 6 p < p′, gcd(p, p′) = 1. (2.6)

Our calculation of the finite-size corrections below focuses on two series:

Principal series: (p, p′) = (p′ − 1, p′), 0 < u < λ,

Dual series: (p, p′) = (1, p′), 0 < u < λ.
(2.7)

We fix N to be an even number. For the vertex model, the groundstate lies in the zero magnetisation
sector. For the loop model, it lies in the standard module with zero defects, WN,0. (We follow the
convention used in [28] for these modules.) In these sectors, the spectrum of the transfer matrix T (u)

of the A
(1)
1 models is invariant (up to an irrelevant overall sign) under the involution

λ ↔ π − λ, u ↔ −u. (2.8)
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The dual series can therefore be alternatively specified by

Dual series: (p, p′) = (p′ − 1, p′), λ− π < u < 0. (2.9)

In this section, we study the groundstate of the transfer matrix for even N . We focus on values
of u in the neighborhood of u = λ

2 and restrict to values of the twist parameter ω = eiγ with γ in the
interval (0, π

p′ ). We will compute the 1
N finite-size correction term for the groundstate eigenvalue T (u)

to confirm the conformal prediction (1.3) with

c− 24∆ =















1− 6γ2p′

π2(p′ − 1)
, Principal series,

1− 6γ2p′

π2
, Dual series,

ϑ(u) =
πu

λ
. (2.10)

2.2 Functional relations

The fused transfer matrices T n(u) for the A
(1)
1 models are defined recursively [27, 28] from the fusion

hierarchy relations, as functions of the fundamental transfer matrix T 1(u) = T (u). The T -system
equations are

T n
0T

n
1 = f−1fnI + T n+1

0 T n−1
1 , n > 0, (2.11)

where we use the notations

T 1(u) = T (u), T n
k = T n(u+ kλ), T 0

k = fk−1I, T−1
k = 0, fk =

(

sin(kλ+ u)

sinλ

)N

.

(2.12)
For λ = λp,p′, the infinite Y -system closes into a finite system involving p′ − 1 functions:

tn0 =
T n+1

0 T n−1
1

f−1fn
, x0 = (−1)Np/2T

p′−2
1

f−1
, (2.13)

where n = 1, . . . , p′ − 2. The Y -system equations are

tn0 t
n
1 = (I + tn−1

1 )(I + tn+1
0 ), n = 1, . . . , p′ − 3, (2.14a)

t
p′−2
0 t

p′−2
1 = (I + t

p′−3
1 )(I + eiΛx0)(I + e−iΛx0), (2.14b)

x0x1 = (I + t
p′−2
1 ). (2.14c)

In the loop model, the operator eiΛ is diagonal on the standard moduleWN,0, with its unique eigenvalue
given by ωp′ . Likewise in the vertex model, in the zero-magnetisation sector, the matrix eiΛ is diagonal
with the unique eigenvalue ωp′.

2.3 The principal series

In this subsection, we fix p = p′ − 1 with p′ ∈ N>2, so that λ = π
p′ . We compute the 1

N term in (1.3)

explicitly, for N even, γ ∈ (0, π
p′ ) and u in the neighborhood of λ

2 .
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T 1(u)

T 3(u)

T 2(u)

T 4(u)

Figure 1: The patterns of zeros for the groundstate of T (u) for N = 6, (p, p′) = (4, 5) and ω = 1, in
the complex u-plane. The horizontal axis is divided in units of λ = π

5 . Each zero of T 4(u) is doubly
degenerate. This degeneracy is lifted for ω 6= 1, with the zeros remaining on the same vertical lines for
ω on the unit circle.

2.3.1 Analyticity properties and symmetric Y -system

Our computer implementation of the transfer matrices reveals a number of properties for the
groundstate for λ = π

p′ . In the complex u-plane, the zeros of T 1(u) for the groundstate approximately

lie on the vertical lines Re(u) = −λ
2 ,

3λ
2 . Because of the periodicity property T 1(u + π) = T 1(u),

these patterns are repeated in each vertical strip of width π. Likewise, the zeros of T 2(u) lie on
the vertical lines Re(u) = −3λ

2 ,
3λ
2 . More generally, for T n(u), the zeros lie on two vertical lines:

Re(u) = (12 − n)λ, 3λ2 . The center of the analyticity strip is therefore situated at Re(u) = (2 − n)λ2 .
This holds for n = 1, . . . , p′−1. To illustrate, the patterns of zeros for N = 6, (p, p′) = (4, 5) and ω = 1
are given in Figure 1.

With this information, we deduce the positions of the zeros and poles of the functions tn(u),
1 + tn(u), x(u) and (1 + ωp′x0)(1 + ω−p′x0). This is achieved using the relations

tn0 =
T n+1
0 T n−1

1

f−1fn
, 1 + tn0 =

T n
0 T

n
1

f−1fn
, 1 + tp

′−1
0 = (1 + ωp′x0)(1 + ω−p′x0). (2.15)

In particular, we note that t1(u) has a zero of order N at u = 0 and poles at u = −λ, λ, also of order N .
The functions tn(u) with n > 1 have poles of order N at u = λ and u = −nλ, but no zeros of order N .
Finally, x(u) has a pole of order N at u = λ. The same deductions are repeated for 1 + tn(u) and
(

1+ωp′x(u)
)(

1+ω−p′x(u)
)

. The calculation of the finite-size correction of this subsection uses certain
assumptions for the analyticity strips of these functions. These are given in Table 1. Crucially, these
analyticity strips are free of zeros and poles, except for the order-N zero of t1(u).

The properties of these analyticity strips lead us to define new Y -functions where the
parameterisation of the arguments is different. This is done in such a way that, for the new functions,
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width is larger than centered at

tn(u) λ (1− n)λ2
1 + tn(u) 0 (1− n)λ2

x(u) λ (2− p′)λ2
(

1 + ωp′x(u)
)(

1 + ω−p′x(u)
)

0 (2− p′)λ2

Table 1: The analyticity strips for the various functions.

the central line of the strip coincides with the real axis:

tn(u) = an
(

− iπ
λ

(

u+ (n−1)λ
2

)

)

, An(z) = 1 + an(z), n = 1, . . . , p′ − 2, (2.16a)

x(u) = ap
′−1
(

− iπ
λ

(

u+ (p′−2)λ
2

)

)

, Ap′−1(z) =
(

1 + ωp′ap
′−1(z)

)(

1 + ω−p′ap
′−1(z)

)

. (2.16b)

With these new parameterisations, the Y -system takes a symmetric form:

an(z − iπ
2 )a

n(z + iπ
2 ) = An−1(z)An+1(z), n = 1, . . . , p′ − 1, (2.17)

where we use the convention A0(z) = Ap′(z) = 1. The D-type Y -system has thus been rewritten as a
Y -system of A-type.

In terms of the variable z, the analyticity strips are horizontal and centered on the real line. For
an(z), these strips have a width larger than iπ. Our computer implementation also reveals that, in
the z-plane, the zeros of all the eigenvalues are symmetrically distributed between the upper and lower
half-planes, implying that the eigenvalues are real for z ∈ R. The patterns of zeros are also identical
in the left and right half-planes. This implies that

an(z + iξ) = an(z − iξ) = an(−z + iξ), z, ξ ∈ R. (2.18)

This is not true in general, for other eigenstates of the transfer matrix.

2.3.2 Bulk and finite contributions

The eigenvalue of the elementary transfer matrix is related to the first Y -system function by

T 1
0 T

1
1 = f−1f1(1 + t10). (2.19)

The eigenvalue T (u) = T 1(u) is written as the product of its bulk and finite contributions:

T (u) = κ(u)NTf(u). (2.20)

These satisfy the functional equations

κ(u)κ(u + λ) =
sin(λ+ u) sin(λ− u)

sin2 λ
, Tf(u)Tf(u+ λ) = 1 + t1(u). (2.21)

The solution for the bulk contribution is known [44]:

log κ(u) =

∫ ∞

−∞

dt

t

cosh(π − 2λ)t sinh ut sinh(λ− u)t

sinh πt coshλt
, 0 < u < λ < π. (2.22)

For the finite term, we define
Tf(u) = b

(

− iπ
λ (u− λ

2 )
)

, (2.23)

and rewrite the second relation in (2.21) as

b(z − iπ
2 )b(z +

iπ
2 ) = A1(z). (2.24)
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2.3.3 Non-linear integral equations

The order-N zero of t1(u) lies inside its analyticity strip, whereas its order-N poles lie outside of this
strip. The corresponding zero of a1(z) lies at z = 0. We then define the functions ℓn(z) as

ℓ1(z) =
a1(z)

η(z)N
, ℓn(z) = an(z), n = 2, . . . , p′ − 1, (2.25)

where
η(z) = tanh(z2 ), η(z − iπ

2 )η(z +
iπ
2 ) = 1. (2.26)

As a result, we have

ℓn(z − iπ
2 )ℓ

n(z + iπ
2 ) = An+1(z)An−1(z), n = 1, . . . , p′ − 1. (2.27)

The functions ℓn(z) are analytic and non-zero inside their respective analyticity strips. As
discussed in Section 2.3.5, for generic values of ω, their asymptotic values for z → ±∞ are finite
and nonzero. This allows us to define the Fourier transform of their logarithmic derivative:

Ln(k) =
1

2π

∫ ∞

−∞

dz e−ikz
(

log ℓn(z)
)′
, An(k) =

1

2π

∫ ∞

−∞

dz e−ikz
(

logAn(z)
)′
. (2.28)

The non-linear integral equations are obtained by first taking the Fourier transform of the logarithmic
derivative of (2.27) yielding

Ln(k) =
1

2 cosh(πk2 )

(

An−1(k) +An+1(k)
)

, n = 1, . . . , p′ − 1, (2.29)

where we use the conventions A0(k) = Ap′(k) = 0. Applying the inverse transform, we find

(

log ℓn(z)
)′

= K ∗
(

logAn−1
)′
+K ∗

(

logAn+1
)′
, n = 1, . . . , p′ − 1, (2.30)

where the convolution of two functions is

(f ∗ g)(z) =
∫ ∞

−∞

dyf(z − y)g(y) =

∫ ∞

−∞

dyf(y)g(z − y). (2.31)

The kernel is given by

K(z) =
1

2π

∫ ∞

−∞

dk
eikz

2 cosh πk
2

=
1

2π cosh z
. (2.32)

Integrating (2.30) over z removes the derivatives and introduces overall additive constants. Using
(2.25), we obtain the non-linear integral equations for an(z):

log an(z) − φn = fn(z) +K ∗ logAn−1 +K ∗ logAn+1, n = 1, . . . , p′ − 1, (2.33)

where φ1, . . . , φp′−1 are the integration constants and the driving terms are

fn(z) =

{

N log η(z) n = 1,

0 n = 2, . . . , p′ − 1.
(2.34)
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2.3.4 Scaling functions and scaling non-linear integral equations

In (2.33), the dependence on N appears only in the driving term N log η(z). For z of order ± logN
with N large, this function converges to an exponential:

lim
N→∞

N log η
(

±(z + logN)
)

= −2 e−z, (2.35)

where we recall that N is assumed to be even. To compute the finite-size correction at order 1
N , we

assume that the Y -system functions appearing in (2.33) are well-defined in this limit. The patterns of
zeros are all symmetric with respect to the imaginary z-axis, so the scaling functions behave identically
in the left and right half-planes:

an(z) = lim
N→∞

an
(

±(z + logN)
)

, An(z) = lim
N→∞

An
(

±(z + logN)
)

. (2.36)

These satisfy the following integral equations:

log an(z)− φn = fn(z) +K ∗ logAn−1 +K ∗ logAn+1, n = 1, . . . , p′ − 1, (2.37)

where

fn(z) =

{

−2 e−z , n = 1,

0, n = 2, . . . , p′ − 1.
(2.38)

2.3.5 Braid and bulk behavior

The scaling functions have finite asymptotics for z → ±∞. For z → ∞, these are obtained from the
braid limits of the transfer matrix eigenvalues:

an∞ =
(ωn − ω−n)(ωn+2 − ω−n−2)

(ω − ω−1)2
, ap

′−1
∞ =

ωp′−1 − ω−(p′−1)

ω − ω−1
, (2.39)

where n = 1, . . . , p′ − 2. These values satisfy the following Y -system:

(an∞)2 = (1 + an−1
∞ )(1 + an+1

∞ ), n = 1, . . . , p′ − 3, (2.40a)

(ap
′−2

∞ )2 = (1 + ap
′−3

∞ )(1 + ωp′ap
′−1

∞ )(1 + ω−p′ap
′−1

∞ ), (2.40b)

(ap
′−1

∞ )2 = (1 + ap
′−2

∞ ). (2.40c)

These asymptotic values allow us to compute the constants φ1, . . . , φp′−1, by studying the z → ∞
asymptotics of (2.37). On the interval γ ∈ (0, π

p′ ), all the functions in (2.39) are positive and finite. We
use

lim
z→∞

K ∗ X = X∞

∫ ∞

−∞

dyK(y) = 1
2X∞ (2.41a)

and find that the constants are all zero:

φn = 0, n = 1, . . . , p′ − 1, for γ ∈ (0, π
p′ ). (2.42)

For the bulk behavior at z → −∞, we recall that the function a1(z) has a zero of order N near the
origin, so that a1−∞ = 0. The bulk asymptotic values an−∞ satisfy the following Y -system equations:

(an−∞)2 = (1 + an−1
−∞ )(1 + an+1

−∞ ), n = 2, . . . , p′ − 3, (2.43a)

(ap
′−2

−∞ )2 = (1 + ap
′−3

−∞ )(1 + ωp′ap
′−1

−∞ )(1 + ω−p′ap
′−1

−∞ ), (2.43b)

(ap
′−1

−∞ )2 = (1 + ap
′−2

−∞ ). (2.43c)
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This system has more than one solution, and we wish to retain the unique one that has all positive
values in the range γ ∈ (0, π

p′ ). To obtain the solution, we note that the system (2.43) is obtained from

(2.40) by simultaneously shifting the indices by one unit, changing p′ for p′ − 1 and changing ω for
ωp′/(p′−1). The resulting solution is

an−∞ =
(ω̄n−1 − ω̄−(n−1))(ω̄n+1 − ω̄−(n+1))

(ω̄ − ω̄−1)2
, ap

′−1
−∞ =

ω̄p′−2 − ω̄−(p′−2)

ω̄ − ω̄−1
, ω̄ = ωp′/(p′−1). (2.44)

2.3.6 Finite-size correction and the dilogarithm technique

Applying the Fourier transform and subsequently the inverse transform of the logarithmic derivative
to (2.24), we find

log b(z)− φ0 = K ∗ logA1 =

∫ ∞

−∞

dy K(y − z) logA1(y) (2.45)

where φ0 is an integration constant. We express this in terms of integrals involving the scaling function
A1(y):

log b(z) − φ0 =

∫ ∞

− logN
dy
(

K(y + logN − z) logA1(y + logN) +K(−y − logN − z) logA1(−y − logN)
)

≃ 1

πN
(ez + e−z)

∫ ∞

−∞

dy e−y logA1(y), (2.46)

where we used

K(z + logN) ≃ e−z

πN
. (2.47)

Here, ≃ indicates that higher-order terms in 1
N have been omitted.

To apply the dilogarithm technique, we define the integral

J =

∫ ∞

−∞

dy

[ p′−1
∑

n=1

(log an)′ logAn − log an(logAn)′
]

, (2.48)

where the dependence of the functions on the argument y is dropped for ease of notation. This integral is
evaluated in two ways. The first consists of replacing log an and its derivative by its expression (2.37).
Many terms cancel out because of the symmetry property K(−z) = K(z) of the kernel. The only
surviving contributions come from the driving terms, and the result reads

J = 4

∫ ∞

−∞

dy e−y logA1(y). (2.49)

Up to an overall prefactor, this is precisely the integral that we wish to compute in (2.46). The second
way of computing the integral is to apply the derivatives explicitly, which yields

J =

∫ ∞

−∞

dy

[ p′−2
∑

n=1

dan

dy

(

logAn

an
− log an

An

)

+
dap

′−1

dy

(

logAp′−1

ap′−1
− dAp′−1

dap′−1

log ap
′−1

Ap′−1

)]

. (2.50)

Dividing the integral into two parts and changing the integration variables from y to an, we find

J =

p′−2
∑

n=1

∫ an
∞

an
−∞

dan
(

logAn

an
− log an

An

)

+

∫ ap′−1
∞

ap′−1
−∞

dap
′−1

(

logAp′−1

ap
′−1

− dAp′−1

dap
′−1

log ap
′−1

Ap′−1

)

(2.51)
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where

An = 1 + an, n = 1, . . . , p′ − 2, (2.52a)

Ap′−1 =
(

1 + ωp′ap
′−1
)(

1 + ω−p′ap
′−1
)

. (2.52b)

The result is therefore a combination of regular integrals. Setting ω = eiγ , the integral evaluates to

J =
π2

3

(

1− 6γ2p′

π2(p′ − 1)

)

=
π2

3

(

1− 6γ2

π(π − λ)

)

, γ ∈ (0, π
p′ ). (2.53)

The proof of this result is given in Appendix A.2.1. The final result is

log b(z) ≃ π cosh z

6N

(

1− 6γ2p′

π2(p′ − 1)

)

, log Tf(u) ≃
π sin πu

λ

6N

(

1− 6γ2p′

π2(p′ − 1)

)

, (2.54)

where the constant φ0 was found to equal zero using Tf(u = 0) = 1. This result is precisely (1.3) with
c− 24∆ and ϑ(u) given in (2.10).

2.4 The dual series

In this subsection, we fix p = 1, so that λ = π(p′−1)
p′ , and consider p′ ∈ N>2. We also define λ̄ = π−λ =

π
p′ . We compute the 1

N term in (1.3) explicitly, for N even, γ ∈ (0, π
p′ ) and u in the neighborhood of λ

2 .

2.4.1 Analyticity properties and symmetric Y -system

Our computer implementation of the transfer matrices reveals a number of properties for the

groundstate for λ = π(p′−1)
p′ . In the complex u-plane, the zeros of T 1(u) for the groundstate

approximately lie on the vertical line Re(u) = − λ̄
2 . Because of the periodicity property T 1(u + π) =

T 1(u), these patterns are repeated in each vertical strip of width π. Likewise, the zeros of T 2(u) lie on

the vertical line Re(u) = 0. More generally, for T n(u), the zeros lie on the vertical line Re(u) = (n−2)λ̄
2 .

This holds for n = 1, . . . , p′−1. We consider analyticity strips for the functions T n(u) that are centered

at Re(u) = λ
2 + (n−1)λ̄

2 . To illustrate, the patterns of zeros for N = 6, (p, p′) = (1, 5) and ω = 1 are
given in Figure 2.

With this information, we deduce the positions of the zeros and poles of the functions tn(u),
1 + tn(u), x(u) and

(

1 + ωp′x(u)
)(

1 + ω−p′x(u)
)

using the relations (2.15). In particular, t1(u) has a
zero of order N at u = 0. In the derivation below, this zero will not play any role, as it will sit outside
the analyticity strip of t1(u). This function also has poles of order N at u = λ̄, (p′ − 1)λ̄. Likewise, the
functions tn(u) with n = 1, . . . , p′ − 2 have poles of order N at u = nλ̄ and u = (p′ − 1)λ̄. Finally, x(u)

has a pole of order N at u = λ ≡ λ
2 + (p′−1)λ̄

2 , where ≡ indicates an equality modulo π. The poles of
these functions will play a crucial role in the following. To work with functions that remain finite inside
their analyticity strips, we make a change of variable and work with the reciprocals of these functions:

t̃n(u) = tn(u)−1, x̃(u) = x(u)−1. (2.55)

Inside their analyticity strips, these functions have order-N zeros instead of order-N poles. The
assumptions that we use for the properties of the analyticity strips of these functions are given in
Table 2. Crucially, except for the order-N zeros of t̃p

′−2(u) and x̃(u), these analyticity strips are free
of zeros and poles.
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T 1(u)

T 3(u)

T 2(u)

T 4(u)

Figure 2: The patterns of zeros for the groundstate of T (u) for N = 6, (p, p′) = (1, 5) and ω = 1, in
the complex u-plane. The horizontal axis is divided in units of λ̄ = π

5 . Each zero of T 4(u) is doubly
degenerate. This degeneracy is lifted for ω 6= 1, with the zeros remaining on the same vertical lines for
ω on the unit circle.

We proceed with a second change of variables that modifies the argument in such a way that the
central line of the strip coincides with the real axis:

t̃n(u) = an
(

− iπ
λ̄

(

u− λ+nλ̄
2

)

)

, An(z) = 1 + an(z), n = 1, . . . , p′ − 2, (2.56a)

x̃(u) = ap
′−1
(

− iπ
λ̄

(

u− λ+(p′−1)λ̄
2

)

)

, Ap′−1(z) =
(

1 + ωp′ap
′−1(z)

)(

1 + ω−p′ap
′−1(z)

)

. (2.56b)

In terms of these functions, the Y -system reads:

a2(z)

a1(z − iπ
2 )a

1(z + iπ
2 )

= A2(z), (2.57a)

an−1(z)an+1(z)

an(z − iπ
2 )a

n(z + iπ
2 )

= An−1(z)An+1(z), n = 2, . . . , p′ − 3, (2.57b)

ap
′−3(z)

(

ap
′−1(z)

)2

ap
′−2(z − iπ

2 )a
p′−2(z + iπ

2 )
= Ap′−3(z)Ap′−1(z), (2.57c)

ap
′−2(z)

ap
′−1(z − iπ

2 )a
p′−1(z + iπ

2 )
= Ap′−2(z). (2.57d)

The analyticity strips of an(z) are horizontal strips centered at the origin and with a width larger
than iπ. The two order-N zeros of an(z) sit at ± iπ

2 (p
′ − n − 1) for n = 1, . . . , p′ − 2. For ap

′−1(z),
there is a single order-N zero sitting at the origin. Our computer implementation also reveals that,
in the z-plane, the zeros of all the eigenvalues are symmetrically distributed between the upper and
lower half-planes, implying that these eigenvalues are real for z ∈ R. The patterns of zeros for the
groundstate are also identical in the left and right half-planes. This implies that

an(z + iξ) = an(z − iξ) = an(−z + iξ), z, ξ ∈ R. (2.58)

This is specific to the groundstate and does not hold for all the other eigenstates of the transfer matrix.
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width is larger than centered at

t̃n(u) λ̄ λ+nλ̄
2

1 + t̃n(u) 0 λ+nλ̄
2

x̃(u) λ̄ λ+(p′−1)λ̄
2

(

1 + ωp′ x̃(u)
)(

1 + ω−p′ x̃(u)
)

0 λ+(p′−1)λ̄
2

Table 2: The analyticity strips for the various functions.

2.4.2 Bulk and finite contributions

The eigenvalues T n(u) of the fused transfer matrices are related to the Y -system functions by

T n
0 T

n
1

T n+1
0 T n−1

1

= 1 + t̃n0 ,
T p′−1
0 T p′−1

1

T p′−2
2

= (1 + ωp′ x̃0)(1 + ω−p′ x̃0). (2.59)

They are written as the product of bulk and finite contributions:

T n(u) =
(

κn(u)
)N

T n
f (u). (2.60)

The bulk and finite contributions satisfy the functional equations

κn(u)κn(u− λ̄)

κn+1(u)κn−1(u− λ̄)
= 1,

κp
′−1(u)κp

′−1(u− λ̄)
(

κp′−2(u− λ̄)
)2 = 1, (2.61a)

T n
f (u)T

n
f (u− λ̄)

T n+1
f (u)T n−1

f (u− λ̄)
= 1 + t̃n(u),

T p′−1
f (u)T p′−1

f (u− λ̄)
(

T p′−2
f (u− λ̄)

)2 =
(

1 + ωp′ x̃(u)
)(

1 + ω−p′x̃(u)
)

, (2.61b)

where n = 1, . . . , p′ − 2. The initial condition is κ0(u) = sin(λ−u)
sinλ and T 0

f (u) = 1. For the finite
contribution, we define

T n
f (u) = b

(

− iπ
λ̄

(

u− λ+(n−1)λ̄
2

)

)

(2.62)

and rewrite the relations in (2.61b) in a symmetric way as

bn(z − iπ
2 )b

n(z + iπ
2 )

bn−1(z)bn+1(z)
= An(z),

bp
′−1(z − iπ

2 )b
p′−1(z + iπ

2 )

(bp
′−2(z))2

= Ap′−1(z), (2.63)

where n = 1, . . . , p′ − 2.

2.4.3 Non-linear integral equations

The Y -system functions an(z) have order-N zeros on the imaginary axis. We define new functions
ℓn(z) where those zeros are removed:

ℓn(z) =
an(z)

[

η
(

z − iπ
2 (p

′−1−n)
)

η
(

z + iπ
2 (p

′−1−n)
)

]N
, ℓp

′−1(z) =
ap

′−1(z)

η(z)N
, (2.64)
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where n = 1, . . . , p′ − 2 and

η(z) = tanh z
2(p′−1) , η

(

z − iπ
2 (p

′−1)
)

η
(

z + iπ
2 (p

′−1)
)

= 1. (2.65)

Rewriting the Y -system in terms of the functions ℓn(z), we find that it has exactly the same form as
(2.57), but with each an(z) on the left-hand sides replaced by the corresponding ℓn(z):

ℓ2(z)

ℓ1(z − iπ
2 )ℓ

1(z + iπ
2 )

= A2(z), (2.66a)

ℓn−1(z)ℓn+1(z)

ℓn(z − iπ
2 )ℓ

n(z + iπ
2 )

= An−1(z)An+1(z), n = 2, . . . , p′ − 3, (2.66b)

ℓp
′−3(z)

(

ℓp
′−1(z)

)2

ℓp′−2(z − iπ
2 )ℓ

p′−2(z + iπ
2 )

= Ap′−3(z)Ap′−1(z), (2.66c)

ℓp
′−2(z)

ℓp′−1(z − iπ
2 )ℓ

p′−1(z + iπ
2 )

= Ap′−2(z). (2.66d)

The functions ℓn(z) are analytic and non-zero inside their respective analyticity strips. As
discussed in Section 2.4.5, for generic values of ω, their asymptotic values for z → ±∞ are finite
and nonzero. This allows us to define the Fourier transforms Ln(k) and An(k) of their logarithmic
derivative, as in (2.28). We take the Fourier transform of the logarithmic derivative of (2.66) and find










−2 cosh πk
2

1 0

1 −2 cosh πk
2

1 b
b

b

0 1 −2 cosh πk
2

1 0
b

b

b

1 −2 cosh πk
2

2

0 1 −2 cosh πk
2



















L1

L2

b

b

b

Lp′−2

Lp′−1









=







0 1 0

1 0 1 b
b

b

0 1 0 1 0
b

b

b

1 0 1

0 1 0















A1

A2

b

b

b

Ap′−2

Ap′−1









. (2.67)

We compute the inverse of the matrix in the left side, apply it to the right side and find

~L = K̂ · ~A. (2.68)

Here K̂ is a symmetric matrix that can be computed explicitly. Applying the inverse transform, we
find

(

log ℓn(z)
)′

=

p′−1
∑

m=1

Knm ∗
(

logAm
)′
, n = 1, . . . , p′−1, (2.69)

where the kernel functions are given by

Knm(z) =
1

2π

∫ ∞

−∞

dk eikzK̂nm. (2.70)

Integrating (2.69) over z removes the derivatives and introduces overall additive constants. Using
(2.64), we obtain the non-linear integral equations for an(z):

log an(z) − φn = fn(z) +

p′−1
∑

m=1

Knm ∗ logAm, n = 1, . . . , p′−1, (2.71)

where φ1, . . . , φp′−1 are the integration constants and the driving terms are

fn(z) =







N log
[

η
(

z − iπ
2 (p

′−1−n)
)

η
(

z + iπ
2 (p

′−1−n)
)

]

n = 1, . . . , p′−2,

N log η(z) n = p′−1.
(2.72)
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2.4.4 Scaling functions and scaling non-linear integral equations

In (2.71), the dependence on N appears only in the driving terms. For z of order (p′−1) logN with N
large, these functions converge to exponentials:

fn(z) = lim
N→∞

fn
(

z + (p′−1) logN
)

=







−4 sin
(

πn
2(p′−1)

)

e−z/(p′−1) n = 1, . . . , p′−2,

−2 e−z/(p′−1) n = p′−1.
(2.73)

To compute the finite-size correction at order 1
N , we assume that the Y -system functions appearing

in (2.71) are well-defined in this limit. The patterns of zeros are all symmetric with respect to the
imaginary z-axis, so the scaling functions behave identically in the left and right half-planes:

an(z) = lim
N→∞

an
(

±(z + (p′−1) logN)
)

, An(z) = lim
N→∞

An
(

±(z + (p′−1) logN)
)

. (2.74a)

These satisfy the following set of integral equations:

log an(z)− φn = fn(z) +

p′−1
∑

m=1

Knm ∗ logAm. (2.75)

2.4.5 Braid and bulk behavior

The scaling functions have finite asymptotics for z → ±∞. For z → ∞, these are obtained from the
braid limits of the transfer matrix eigenvalues:

an∞ =
(ω − ω−1)2

(ωn − ω−n)(ωn+2 − ω−n−2)
, ap

′−1
∞ =

ω − ω−1

ωp′−1 − ω−(p′−1)
, (2.76)

where n = 1, . . . , p′ − 2. These values are constant solutions to the Y -system (2.57). They are positive
and finite on the interval γ ∈ (0, π

p′ ). By studying the z → ∞ asymptotics of (2.75), we are able to
compute the constants φ1, . . . , φp′−1:

φn = 0, n = 1, . . . , p′ − 1, γ ∈ (0, π
p′ ). (2.77)

The behavior of the functions an(z) for z → −∞ is dictated by the driving terms in the non-linear
integral equations. These originated from the order-N zeros of these functions that lie on the imaginary
axis in the z-plane. As a result, the bulk limits of these functions all vanish:

an−∞ = 0, n = 1, . . . , p′−1. (2.78)

2.4.6 Finite-size correction and the dilogarithm technique

We define the Fourier transform of the logarithmic derivative of the functions bn(z):

Bn(k) =
1

2π

∫ ∞

−∞

dz e−ikz
(

log bn(z)
)′
. (2.79)

Applying the Fourier transform and subsequently the inverse transform to (2.63), we find










2 cosh πk
2

−1 0

−1 2 cosh πk
2

−1 b
b

b

0 −1 2 cosh πk
2

−1 0
b

b

b

−1 2 cosh πk
2

−1

0 −2 2 cosh πk
2



















B1

B2

b

b

b

Bp′−2

Bp′−1









=









A1

A2

b

b

b

Ap′−2

Ap′−1









. (2.80)
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Denoting by M the matrix on the left-hand side, we invert M and apply it to both sides of the equation.
The matrix elements of the first row of M−1 are

(M−1)1n =
cosh

(

πk
2 (p′−1−n)

)

cosh
(

πk
2 (p′−1)

) ×
{

1 n = 1, . . . , p′−2,
1
2 n = p′−1.

(2.81)

As a result, we find

log b1(z) − φ0 =

p′−2
∑

n=1

K̃n ∗ logAn + 1
2K̃p′−1 logA

p′−1, (2.82)

where

K̃n(z) =
1

2π

∫ ∞

−∞

dk eikz
cosh

(

πk
2 (p′−1−n)

)

cosh
(

πk
2 (p′−1)

) =
1

π(p′ − 1)

sin
(

πn
2(p′−1)

)

cosh
(

z
p′−1

)

sinh
(

z− iπn
2

p′−1

)

sinh
(

z+ iπn
2

p′−1

) . (2.83)

In the scaling limit, we have

K̃n

(

z + (p′−1) logN
)

≃
2 sin

(

πn
2(p′−1)

)

e−z/(p′−1)

πN(p′−1)
(2.84)

where ≃ indicates that higher-order terms in 1
N have been omitted. Using this result, we find

b1(z)− φ0 =

∫ ∞

−(p′−1) logN
dy

[ p′−2
∑

n=1

K̃n

(

y + (p′−1) logN − z
)

logAn
(

y + (p′−1) logN
)

+ 1
2K̃p′−1

(

y + (p′−1) logN − z
)

logAp′−1
(

y + (p′−1) logN
)

+

p′−2
∑

n=1

K̃n

(

− y − (p′−1) logN − z
)

logAn
(

− y − (p′−1) logN
)

+ 1
2K̃p′−1

(

− y − (p′−1) logN − z
)

logAp′−1
(

− y − (p′−1) logN
)

]

≃ 2
(

ez/(p
′−1) + e−z/(p′−1)

)

πN(p′−1)

∫ ∞

−∞

dy e−y/(p′−1)

[ p′−2
∑

n=1

sin
( πn

2(p′−1)

)

logAn + 1
2A

p′−1

]

. (2.85)

To apply the dilogarithm technique, we define the integral

J =

∫ ∞

−∞

dy

[ p′−1
∑

n=1

(log an)′ logAn − log an(logAn)′
]

. (2.86)

This integral is evaluated in two ways. The first consists of replacing log an and its derivative by its
expression (2.75). Many terms cancel out because of the symmetries Knm(z) = Knm(−z) = Kmn(z)
of the kernel functions (2.70). The only surviving contributions come from the driving terms, and the
result reads

J =
8

p′−1

∫ ∞

−∞

dy e−y/(p′−1)

[ p′−2
∑

n=1

sin
πn

2(p′−1)
logAn + 1

2A
p′−1

]

. (2.87)
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Up to an overall prefactor, this is precisely the integral we wish to compute in (2.85). The second way
of computing the integral is to apply the derivatives explicitly, which yields

J =

∫ ∞

−∞

dy

[ p′−2
∑

n=1

dan

dy

(

logAn

an
− log an

An

)

+
dap

′−1

dy

(

logAp′−1

ap
′−1

− dAp′−1

dap
′−1

log ap
′−1

Ap′−1

)]

. (2.88)

Dividing the integral into two parts and changing the integration variables from y to an, we find

J =

p′−2
∑

n=1

∫ an
∞

an
−∞

dan
(

logAn

an
− log an

An

)

+

∫ ap′−1
∞

ap′−1
−∞

dap
′−1

(

logAp′−1

ap′−1
− dAp′−1

dap′−1

log ap
′−1

Ap′−1

)

(2.89)

where

An = 1 + an, n = 1, . . . , p′ − 2, (2.90a)

Ap′−1 =
(

1 + ωp′ap
′−1
)(

1 + ω−p′ap
′−1
)

. (2.90b)

The result is therefore a combination of regular integrals, with the upper and lower bounds given by
(2.76) and (2.78) respectively. Setting ω = eiγ , the integral evaluates to

J =
π2

3

(

1− 6γ2p′

π2

)

=
π2

3

(

1− 6γ2

π(π − λ)

)

, γ ∈ (0, π
p′ ). (2.91)

The proof of this result is given in Appendix A.2.2. The final result is

log b(z) ≃
π cosh z

p′−1

6N

(

1− 6γ2p′

π2

)

, log Tf(u) ≃
π sin πu

λ

6N

(

1− 6γ2p′

π2

)

, (2.92)

where the constant φ0 was found to vanish using Tf(u = 0) = 1. This result is precisely (1.3) with
c− 24∆ and ϑ(u) given in (2.10).

3 Finite-size corrections for the A
(2)
2 models

3.1 Definition of the A
(2)
2 models

The loop and vertex models in the A
(2)
2 family are the dilute Temperley-Lieb loop model and the

Izergin-Korepin 19-vertex model. The A
(2)
2 loop model is a face model on the square lattice, where

each face takes on one of nine possible local configurations. The elementary face operator is defined
by the linear combination

u = ρ1 + ρ2 + ρ3 + ρ4 + ρ5

+ ρ6 + ρ7 + ρ8 + ρ9 , (3.1)

where the local Boltzmann weights are

ρ1 = 1 +
sinu sin(3λ− u)

sin 2λ sin 3λ
, ρ2 = ρ3 =

sin(3λ− u)

sin 3λ
, ρ4 = ρ5 =

sinu

sin 3λ
, (3.2a)

ρ6 = ρ7 =
sinu sin(3λ− u)

sin 2λ sin 3λ
, ρ8 =

sin(2λ− u) sin(3λ− u)

sin 2λ sin 3λ
, ρ9 = −sinu sin(λ− u)

sin 2λ sin 3λ
. (3.2b)
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The fugacities of the contractible and non-contractible loops are

β = −2 cos 4λ, α = ω + ω−1 = 2cos γ, (3.3)

where ω = eiγ is a free parameter. The Ř-matrix of the 19-vertex model is

Ř(u) =





























ρ8 0 0 0 0 0 0 0 0
0 ρ2 0 ρ7 0 0 0 0 0
0 0 ρ8 − ρ9 e

4iλ 0 iρ4 e
2iλ 0 ρ9 0 0

0 ρ6 0 ρ3 0 0 0 0 0
0 0 iρ5 e

2iλ 0 ρ1 0 −iρ5 e
−2iλ 0 0

0 0 0 0 0 ρ3 0 ρ6 0
0 0 ρ9 0 −iρ4 e

−2iλ 0 ρ8 − ρ9 e
−4iλ 0 0

0 0 0 0 0 ρ7 0 ρ2 0
0 0 0 0 0 0 0 0 ρ8





























. (3.4)

The twist matrix is given in (1.4) with ω = eiγ . Both the vertex and loop A
(2)
2 models are described

by the dilute Temperley-Lieb algebra [39,40,67], with its parameter β fixed to β = −2 cos 4λ. On the
cylinder, the single-row transfer matrices are elements of the periodic dilute Temperley-Lieb algebra
[31]. The Ř(u) can be written as Ř(u) =

∑9
ν=1 ρνg

(ν) where the matrices g(ν) with ν = 1, . . . , 9 are the
matrix representatives of the nine tiles in (3.1) in the vertex representation of the dilute Temperley-Lieb
algebra. The explicit form of these matrices can be directly read off from (3.4).

The relevant regimes of the A
(2)
2 models are

I (Dilute; Dense): 0 < u < 3λ, 0 < λ < π
4 ;

π
4 < λ < π

2 ,

II (Dual): 0 < u < 3λ− 2π, 2π
3 < λ < π.

(3.5)

Regime III with π
2 < λ < 2π

3 is the non-compact regime [21] which will not be studied in this paper.
For the vertex model in Regimes I and II, the groundstate appears in the zero magnetisation sector.
For the loop model in Regimes I and II, it lies in the standard module with zero defects, WN,0. (We
follow the convention used in [37] for these modules.) In these sectors, up to an irrelevant overall sign,

the transfer matrix T (u) of the A
(2)
2 models is invariant under the involution

λ ↔ π − λ, u ↔ π − u. (3.6)

It follows that the dual Regime II is equivalent to the regime 3λ−π < u < 0 with 0 < λ < π
2 considered

in other papers.
The roots of unity values of λ are those for which λ

π ∈ Q. We parameterise them in terms of two
integers a, b as

λ = λa,b =
π(b− a)

2b
, gcd(a, b) = 1. (3.7)

An alternative parameterisation for λ of the A
(2)
2 models, used in earlier works such as [68–72, 33], is

λ = π(2p′−p)
4p′ . The precise relation between (a, b) and (p, p′) relating the two parameterisations is

(p, p′) =

{

(2a, b), b odd,

(a, b/2), b even,
(a, b) =

{

(p, 2p′), p odd,

(p/2, p′), p even,
1 6 p < p′, 1 6 |a| < b. (3.8)

Our calculation of the finite-size corrections below focuses on two series:

Principal series: (a, b) = (b− 1, b), u > 0, I (Dilute),

Dual series: (a, b) = (1− b, b), u > 0, II.
(3.9)
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From (3.6), the dual series can be alternatively specified by

Dual series: (a, b) = (b− 1, b), 3λ− π < u < 0. (3.10)

In this section, we study the groundstate of the transfer matrix. We will focus on values of u in the
neighborhood of u = 3λ

2 . We consider arbitrary integer N for the principal series and N ≡ 0 mod 2 for
the dual series. Furthermore, we will restrict to values of the twist parameter ω = eiγ in the intervals

γ ∈
{
(

0, 2π(b−1)
b2

)

Principal series,
(

0, 2π
b+1

)

Dual series.
(3.11)

We will compute the 1
N finite-size correction term for the groundstate eigenvalue T (u) and will confirm

the conformal prediction (1.3) with

c− 24∆ =















1− 3γ2b

π2(b− 1)
Principal series,

3

2
− 3γ2b

π2
Dual series,

ϑ(u) =











πu

3λ
Principal series,

π(u− π)

3λ− 2π
Dual series.

(3.12)

3.2 Functional relations

The fused transfer matrices Tm,n(u) for the A
(2)
2 models are defined recursively in [37] from the fusion

hierarchy relations, as functions of the fundamental transfer matrix T 1,0(u) = T (u) = T 0,1(u − λ).
There, it was found that the T -system equations involve only the transfer matrices Tm,0(u) where the
second index is zero:

T
m,0
0 T

m,0
2 = σmf−3f2mT

m,0
1 + T

m+1,0
0 T

m−1,0
2 , m > 0. (3.13)

We use the compact notations

T
m,n
k = Tm,n(u+ kλ), T 1,0(u) = T (u), T

−1,0
k = 0, (3.14a)

fk =

(

sin(u+ kλ)

(sin 2λ sin 3λ)1/2

)N

, T
0,0
k = fk−3fk−2I, σ = (−1)N . (3.14b)

For λ = λa,b, the Y -system is finite and is defined in terms of a set of b functions:

tn0 =
T

n+1,0
0 T

n−1,0
2

σnf−3f2nT
n,0
1

, n = 1, . . . , b− 2, x0 = σ
T

b−2,0
2

T
b−1,0
1

, y0 = x−1x0. (3.15)

The functional equations are

tn0 t
n
2

tn1
=

(I + tn−1
2 )(I + tn+1

0 )

I + tn1
, n = 1, . . . , b− 3, (3.16a)

tb−2
0 tb−2

2

tb−2
1

=
(I + tb−3

2 )(I + eiΛx0)(I + x0)(I + e−iΛx0)

(I + tb−2
1 )(I − y0)(I − y1)

, (3.16b)

x0x2

x1
=

(I + tb−2
2 )(I − y1)(I − y2)

(I + eiΛx1)(I + x1)(I + e−iΛx1)
, (3.16c)

y0y2

y1

=
(I + tb−2

1 )(I + tb−2
2 )(I − y0)(I − y1)

2(I − y2)

(I + eiΛx0)(I + x0)(I + e−iΛx0)(I + eiΛx1)(I + x1)(I + e−iΛx1)
. (3.16d)
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T 1,0(u)

T 3,0(u)

T 2,0(u)

T 4,0(u)

T 4,4(u)

Figure 3: The patterns of zeros for the groundstate of T (u) for N = 6, (a, b) = (4, 5) and ω = 1, in
the complex u-plane. The horizontal axis is divided in units of λ = π

10 . Each zero of T 4,4(u) is triply
degenerate. This degeneracy is lifted for ω 6= 1, with the zeros remaining on the same vertical lines for
ω on the unit circle.

Another relation that will play an important role in the derivations below is the fusion hierarchy relation
for T b−1,b−1(u) obtained in [37], which can be conveniently written as

I − y0 =
σb−af−3T

b−1,b−1
1

T
b−1,0
0 T

b−1,0
1

. (3.17)

In the loop model, the matrix eiΛ is diagonal on the standard module WN,0, with its unique
eigenvalue given by ωb. Likewise in the vertex model, in the sector of zero magnetisation, the matrix
eiΛ is also diagonal with the unique eigenvalue ωb.

3.3 The principal series

In this subsection, we fix a = b − 1 with b ∈ N>4, so that λ = π
2b . We compute the 1

N term in (1.3)

explicitly for γ ∈
(

0, 2π(b−1)
b2

)

and u in the neighborhood of 3λ
2 .

3.3.1 Analyticity properties and symmetric Y -system

Our computer implementation of the transfer matrices reveals that, in the complex u-plane, the zeros of
T 1,0(u) for the groundstate approximately lie on the vertical lines with Re(u) = −λ, 4λ. Its analyticity
strip is therefore centered at 3λ

2 . Likewise, the zeros of T 2,0(u) lie on the vertical lines Re(u) = −3λ, 4λ.
These patterns are repeated in each vertical strip of width π. In general, the zeros of T n(u) lie on the
vertical lines Re(u) = −(2n− 1)λ, 4λ. This holds for n = 1, . . . , b− 1. Finally, the zeros of T b−1,b−1(u)
lie on the vertical line Re(u) = 4λ. To illustrate, the patterns of zeros for N = 6, (a, b) = (4, 5) and
ω = 1 are given in Figure 3.

This allows us to find the positions of the zeros and poles of the functions of the Y -system. In
particular, t1(u) has zeros of order N at u = 0, λ and poles at u = −2λ, 3λ. Those zeros of order N
are inside its analyticity strip and will play an important role in the following. In contrast, its poles lie
outside of this strip and will not play an important role. The functions tn(u) with n = 2, . . . , b−2 have
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width is larger than centered at

tn(u) 2λ (32 − n)λ

1 + tn(u) 0 (32 − n)λ

x(u) 2λ (52 − b)λ
(

1 + ωbx(u)
)(

1 + x(u)
)(

1 + ω−bx(u)
)

0 (52 − b)λ

y(u) 2λ (3− b)λ

1− y(u) 2λ (3− b)λ

Table 3: The analyticity strips for the various functions.

no zeros of order N , but have poles of order N on the real axis that lie outside of their analyticity strip.
The same investigation with our computer program is repeated for the analyticity strips of 1 + tn(u),
(

1 + ωbx(u)
)(

1 + x(u)
)(

1 + ω−bx(u)
)

and 1− y(u). This is done using the relations

1 + tn0 =
T n,0
0 T n,0

2

σnf−3f2nT
n,0
1

, 1− y0 =
σb−af−3T

b−1,b−1
1

T b−1,0
0 T b−1,0

1

, 1+ tb−1
0 =

(1 + ωbx0)(1 + x0)(1 + ω−bx0)

(1− y0)(1− y1)
.

(3.18)
Our derivation below uses certain assumptions for the analyticity strips of these functions. These are
given in Table 3. Crucially, except for the order-N zeros of t1(u), these analyticity strips are free of
zeros and poles.

We make a change of variables for the Y -system functions in such a way that the central lines of
the analyticity strips coincide with the real axis:

tn(u) = an
(

− iπ
3λ

(

u+ (n− 3
2)λ
)

)

, An(z) = 1 + an(z), n = 1, . . . , b− 2, (3.19a)

x(u) = ab−1
(

− iπ
3λ

(

u+ (b− 5
2 )λ
)

)

, (3.19b)

Ab−1(z) =
(

1 + ωbab−1(z)
)(

1 + ab−1(z)
)(

1 + ω−bab−1(z)
)

, (3.19c)

y(u) = ab
(

− iπ
3λ

(

u+ (b− 3)λ
)

)

, Ab(z) = 1− ab(z). (3.19d)

In terms of these functions, the Y -system takes a more symmetric form:

an(z − iπ
3 )a

n(z + iπ
3 )

an(z)
=

An−1(z)An+1(z)

An(z)
, (3.20a)

ab−2(z − iπ
3 )a

b−2(z + iπ
3 )

ab−2(z)
=

Ab−3(z)Ab−1(z)

Ab−2(z)Ab(z − iπ
6 )A

b(z + iπ
6 )

, (3.20b)

ab−1(z − iπ
3 )a

b−1(z + iπ
3 )

ab−1(z)
=

Ab−2(z)Ab(z − iπ
6 )A

b(z + iπ
6 )

Ab−1(z)
, (3.20c)

ab(z − iπ
3 )a

b(z + iπ
3 )

ab(z)
=

Ab−2(z − iπ
6 )A

b−2(z + iπ
6 )A

b(z − iπ
3 )A

b(z)
2
Ab(z + iπ

3 )

Ab−1(z − iπ
6 )A

b−1(z + iπ
6 )

. (3.20d)

In terms of the variable z, the analyticity strips are horizontal and centered on the real line. For
an(z), the width of the strips is 2iπ

3 . Our computer implementation also reveals that, in the z-plane, the
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zeros of all the eigenvalues are symmetrically distributed between the upper and lower half-planes, and
likewise between the right and left half-planes. This implies that the eigenvalues are real for z ∈ R. The
patterns of zeros for the groundstate are also identical in the left and right half-planes. This implies
that

an(z + iξ) = an(z − iξ) = an(−z + iξ), z, ξ ∈ R. (3.21)

This is not true for all eigenstates of the transfer matrix.

3.3.2 Bulk and finite contributions

The eigenvalue of the elementary transfer matrix is related to the Y -system functions by

T 1,0
0 T 1,0

2

T 1,0
1

= σf−3f2(1 + t10). (3.22)

The function T (u) = T 1,0(u) is written as the product of its bulk and finite contributions:

T (u) = κ(u)NTf(u). (3.23)

These satisfy the functional equations

κ(u)κ(u + 2λ)

κ(u+ λ)
=

sin(2λ+ u) sin(3λ− u)

sin 2λ sin 3λ
,

Tf(u)Tf(u+ 2λ)

Tf(u+ λ)
= 1 + t1(u). (3.24)

The known solution for the bulk contribution is [18]:

log κ(u) = 2

∫ ∞

0
dt

sinhλt sinh (π−2λ)t
2 cosh (2u−3λ)t

2

t sinh πt
2 cosh 3λt

2

+ log
∣

∣

∣

sinu sin(3λ− u)

sin 2λ sin 3λ

∣

∣

∣
, Regime I. (3.25)

For the finite term, we define
Tf(u) = b

(

− iπ
3λ(u− 3λ

2 )
)

(3.26)

and rewrite the second relation in (3.24) as

b(z − iπ
3 )b(z +

iπ
3 )

b(z)
= A1(z). (3.27)

3.3.3 Non-linear integral equations

The order-N zeros of t1(u) lie inside its analyticity strip, whereas its order-N poles lie outside of this
strip. The corresponding zeros of a1(z) lie at z = ± iπ

6 . We then define the functions ℓn(z) as

ℓ1(z) =
a1(z)

η(z)N
, ℓn(z) = an(z), n = 2, . . . , b, (3.28)

where

η(z) = tanh 1
2(z − iπ

6 ) tanh
1
2(z +

iπ
6 ),

η(z − iπ
3 )η(z +

iπ
3 )

η(z)
= 1. (3.29)

The function ℓ1(z) has no zeros inside its analyticity strip. Moreover we have

ℓ1(z − iπ
3 )ℓ

1(z + iπ
3 )

ℓ1(z)
=

A2(z)

A1(z)
. (3.30)
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The other equations in the Y -system are identical to those in (3.20), with the functions an(z) on the
left-hand side replaced by the corresponding functions ℓn(z).

The functions ℓn(z) are all analytic and non-zero inside their respective analyticity strips. As
discussed in Section 3.3.5, for generic values of ω, these functions have asymptotic values for z → ±∞
that are finite and nonzero. This allows us to define the Fourier transform of their logarithmic derivative:

Ln(k) =
1

2π

∫ ∞

−∞

dz e−ikz
(

log ℓn(z)
)′
, An(k) =

1

2π

∫ ∞

−∞

dz e−ikz
(

logAn(z)
)′
, (3.31)

where n = 1, . . . , b. The non-linear integral equations for the eigenvalues are obtained by first taking
the Fourier transform of the logarithmic derivative of the Y -system equations yielding

Ln(k) =
1

2 cosh πk
3 − 1

[

An−1(k)−An(k) +An+1(k)
]

, n = 1, . . . , b− 3, (3.32a)

Lb−2(k) =
1

2 cosh πk
3 − 1

[

Ab−3(k)−Ab−2(k) +Ab−1(k)− 2 cosh(πk6 )Ab(k)
]

, (3.32b)

Lb−1(k) =
1

2 cosh πk
3 − 1

[

Ab−2(k)−Ab−1(k) + 2 cosh(πk6 )Ab(k)
]

, (3.32c)

Lb(k) =
1

2 cosh πk
3 − 1

[

2 cosh πk
6

(

Ab−2(k)−Ab−1(k)
)

+ 3Ab(k)
]

+Ab(k). (3.32d)

Applying the inverse Fourier transform, we obtain the non-linear integral equations for the functions
ℓn(z). We use (3.28) to express these in terms of the functions an(z), integrate once with respect to z
and find

log a1(z)− φ1 = N log η(z)−K ∗ logA1 +K ∗ logA2, (3.33a)

log an(z)− φn = K ∗ logAn−1 −K ∗ logAn +K ∗ logAn+1, n = 2, . . . , b− 3, (3.33b)

log ab−2(z)− φb−2 = K ∗ logAb−3 −K ∗ logAb−2 +K ∗ logAb−1 − K̃ ∗ logAb, (3.33c)

log ab−1(z)− φb−1 = K ∗ logAb−2 −K ∗ logAb−1 + K̃ ∗ logAb, (3.33d)

log ab(z)− φb = K̃ ∗ logAb−2 − K̃ ∗ logAb−1 + 3K ∗ logAb + logAb(z), (3.33e)

where φ1, . . . , φb are the integration constants. The convolution is defined in (2.31) and the kernels
are given by

K(z) =
1

2π

∫ ∞

−∞

dk eikz
1

2 cosh(πk3 )− 1
=

√
3

π

sinh(2z)

sinh(3z)
, (3.34a)

K̃(z) =
1

2π

∫ ∞

−∞

dk eikz
2 cosh(πk6 )

2 cosh(πk3 )− 1
=

3

π

cosh(2z)

cosh(3z)
. (3.34b)

3.3.4 Scaling functions and scaling non-linear integral equations

In (3.33), the dependence on N appears only in the driving term N log η(z). For z of order ± logN
with N large, this function behaves as an exponential:

lim
N→∞

N log η
(

±(z + logN)
)

= −2
√
3 e−z. (3.35)
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To compute the finite-size correction at order 1
N , we assume that the unknown functions appearing in

(3.33) are well-defined in this limit. For the groundstate, the patterns of zeros are all symmetric with
respect to the imaginary z-axis, so the scaling functions behave identically in both limits:

an(z) = lim
N→∞

an
(

±(z + logN)
)

, An(z) = lim
N→∞

An
(

±(z + logN)
)

, n = 1, . . . , b. (3.36)

These satisfy the following set of integral equations:

log a1(z)− φ1 = −2
√
3 e−z −K ∗ logA1 +K ∗ logA2, (3.37a)

log an(z)− φn = K ∗ logAn−1 −K ∗ logAn +K ∗ logAn+1, n = 2, . . . , b− 3, (3.37b)

log ab−2(z)− φb−2 = K ∗ logAb−3 −K ∗ logAb−2 +K ∗ logAb−1 − K̃ ∗ logAb, (3.37c)

log ab−1(z)− φb−1 = K ∗ logAb−2 −K ∗ logAb−1 + K̃ ∗ logAb, (3.37d)

log ab(z)− φb = K̃ ∗ logAb−2 − K̃ ∗ logAb−1 + 3K ∗ logAb + logAb(z). (3.37e)

Multiplying the last equation by an overall minus sign, we see that the kernel terms on the right sides
become symmetric.

3.3.5 Braid and bulk behavior

The scaling functions have finite asymptotics for z → ±∞. For z → ∞, these are obtained directly
from the braid limits of the transfer matrix eigenvalues:

an∞ =
(ωn/2 − ω−n/2)(ω(n+3)/2 − ω−(n+3)/2)

(ω1/2 − ω−1/2)(ω − ω−1)
, ab−1

∞ =
ω(b−1)/2 − ω−(b−1)/2

ω(b+1)/2 − ω−(b+1)/2
, ab∞ = (ab−1

∞ )2,

(3.38)
where n = 1, . . . , b− 2. For γ ∈ (0, 2π

b+1 ), these constants are all positive and finite. These values allow
us to compute the constants φn by studying the z → ∞ asymptotics of (3.37). We use

lim
z→∞

K ∗ X = X∞

∫ ∞

−∞

dyK(y) = X∞, lim
z→∞

K̃ ∗ X = X∞

∫ ∞

−∞

dy K̃(y) = 2X∞, (3.39a)

and find that the constants vanish:

φn = 0, n = 1, . . . , b, γ ∈ (0, 2π
b+1). (3.40)

For the bulk behavior at z → −∞, we recall that the function a1(z) has a zero of order N near the
origin, so that a1−∞ = 0. From the Y -system equation, the asymptotic values an−∞ satisfy the relations

an−∞ =
(1 + an−1

−∞ )(1 + an+1
−∞ )

(1 + an−∞)
, n = 2, . . . , b− 3, (3.41a)

ab−2
−∞ =

(1 + ab−3
−∞)(1 + ωbab−1

−∞)(1 + ab−1
−∞)(1 + ω−bab−1

−∞)

(1 + ab−2
−∞)

(

1− (ab−1
−∞)2

)2 , (3.41b)

ab−1
−∞ =

(1 + ab−2
−∞)

(

1− (ab−1
−∞)2

)2

(1 + ωbab−1
−∞)(1 + ab−1

−∞)(1 + ω−bab−1
−∞)

. (3.41c)

Of the many solutions to this system, we select the only one for which all the functions are positive for
ω = 1. Indeed, in a small interval around this point, these functions are real for z ∈ R, have positive
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asymptotics at z → ∞ and have no zeros inside the analyticity strip, which implies that they also have
positive bulk asymptotics. The solution is

an−∞ =
(ω̄(n−1)/2 − ω̄−(n−1)/2)(ω̄(n+2)/2 − ω̄−(n+2)/2)

(ω̄1/2 − ω̄−1/2)(ω̄ − ω̄−1)
, n = 1, . . . , b− 2, (3.42a)

ab−1
−∞ =

ω̄(b−2)/2 − ω̄−(b−2)/2

ω̄b/2 − ω̄−b/2
, ab−∞ = (ab−1

−∞)2, ω̄ = ωb/(b−1). (3.42b)

These values are finite on the range γ ∈ (0, 2π(b−1)
b2

).

3.3.6 Finite-size correction and the dilogarithm technique

Applying the Fourier transform and subsequently the inverse transform of the logarithmic derivative
of (3.27), we find

log b(z)− φ0 =

∫ ∞

−∞

dyK(y − z) logA1(y), (3.43)

where φ0 is an integration constant. For large N , we express this in terms of integrals involving the
scaling function A1(z):

log b(z) − φ0 =

∫ ∞

− logN
dy
(

K(y+logN−z) logA1(y+logN) +K(−y−logN−z) logA1(−y−logN)
)

≃
√
3

πN
(ez + e−z)

∫ ∞

−∞

dy e−y logA1(y), (3.44)

where we used

K(z + logN) ≃
√
3 e−z

πN
. (3.45)

Here, ≃ indicates that higher-order terms in 1
N are omitted.

To apply the dilogarithm technique, we define the integral

J =

∫ ∞

−∞

dy

[ b−1
∑

n=1

(

(log an)′ logAn − log an(logAn)′
)

−
(

(

log ab
)′
logAb − log ab (logAb)′

)

]

, (3.46)

where the dependence on the argument y is dropped for ease of notation. This integral is evaluated
in two ways. The first consists of replacing log an by its expression in (3.37). Many terms cancel out
because of the symmetry properties of the kernels

K(−z) = K(z), K̃(−z) = K̃(z). (3.47)

The only surviving contributions come from the driving terms, and the result reads

J = 4
√
3

∫ ∞

−∞

dy e−y logA1(y). (3.48)

Up to an overall prefactor, this is precisely the integral we wish to compute in (3.44). The second way
of computing the integral is to apply the derivatives explicitly, which yields

J =

∫ ∞

−∞

dy

[ b−2
∑

n=1

dan

dy

(

logAn

an
− log an

An

)

+
dab−1

dy

(

logAb−1

ab−1
− dAb−1

dab−1

log ab−1

Ab−1

)

− dab

dy

(

logAb

ab
+
log ab

Ab

)]

.

(3.49)
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Dividing the integral in three parts and changing the integration variables from y to an, we find

J =

b−2
∑

n=1

∫ an
∞

an
−∞

dan
(

logAn

an
− log an

An

)

+

∫ ab−1
∞

ab−1
−∞

dab−1

(

logAb−1

ab−1
− dAb−1

dab−1

log ab−1

Ab−1

)

−
∫ ab

∞

ab
−∞

dab
(

logAb

ab
+

log ab

Ab

)

(3.50)

where

An = 1 + an, n = 1, . . . , b− 2, (3.51a)

Ab−1 = (1 + ωbab−1)(1 + ab−1)(1 + ω−bab−1), (3.51b)

Ab = (1− ab). (3.51c)

The resulting expression for J is therefore a combination of regular integrals. Setting ω = eiγ , the
integral evaluates to

J =
π2

3

(

1− 3γ2b

π2(b− 1)

)

=
π2

3

(

1− 3γ2

π(π − 2λ)

)

, γ ∈
(

0, 2π(b−1)
b2

)

. (3.52)

The proof of this result is given in Appendix A.2.3. The final result is

log b(z) ≃ π cosh z

6N

(

1− 3γ2b

π2(b− 1)

)

, log Tf(u) ≃
π sin πu

3λ

6N

(

1− 3γ2b

π2(b− 1)

)

, (3.53)

where the constant φ0 was found to equal zero using Tf(u = 0) = 1. This result is precisely (1.3) with
c− 24∆ and ϑ(u) given in (3.12).

3.4 The dual series

In this subsection, we fix a = 1 − b, so that λ = π(2b−1)
2b , and consider b ∈ N>4. We also define

λ̄ = π − λ = π
2b . We compute the 1

N term in (1.3) explicitly for N even, γ ∈
(

0, 2π
b+1

)

and u in the

neighborhood of 3λ
2 .

3.4.1 Analyticity properties and symmetric Y -system

Our computer implementation of the transfer matrices reveals that, in the complex u-plane, the zeros
of T 1,0(u) for the groundstate approximately lie on the vertical lines with Re(u) = −λ̄,−2λ̄. Its
analyticity strip is centered at 3λ

2 . Likewise, the zeros of T
2,0(u) lie on the vertical lines Re(u) = −λ̄, 0.

These patterns are repeated in each vertical strip of width π. For n = 1, . . . , b− 2, the zeros of T n,0(u)
lie on the vertical lines Re(u) = −λ̄, 2(n − 2)λ̄. The zeros of T b−1,0(u) lie on the three vertical lines
Re(u) = −λ̄, (b− 7

2)λ̄, 2(b−3)λ̄. The center of the analyticity strip for T n,0(u) is at Re(u) = 3λ
2 +(n−1)λ̄.

Finally, the zeros of T b−1,b−1(u) lie on the vertical lines Re(u) = (b− 7
2)λ̄, (b− 9

2 )λ̄. To illustrate, the
patterns of zeros for N = 6, (a, b) = (−4, 5) and ω = 1 are given in Figure 4.

This allows us to find the positions of the zeros and poles of the functions of the Y -system. In
particular, t1(u) has zeros of order N at u = 0, λ and poles at u = 2λ̄, (2b−3)λ̄. Those zeros of order N
will lie outside its analyticity strip and will play no role in the following. In contrast, its poles will play
an important role. The functions tn(u) with n = 2, . . . , b − 2 have no zeros of order N , but have two
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T 1,0(u)

T 3,0(u)

T 2,0(u)

T 4,0(u)

T 4,4(u)

Figure 4: The patterns of zeros for the groundstate of T (u) for N = 6, (a, b) = (−4, 5) and ω = 1, in
the complex u-plane. The horizontal axis is divided in units of 2λ̄ = π

5 . Each zero of T 4,4(u) is triply
degenerate. This degeneracy is lifted for ω 6= 1, with the zeros remaining on the same vertical lines for
ω on the unit circle.

poles of order N at u = 2nλ̄, (2b − 3)λ̄. The functions x(u) and y(u) have no order-N zeros and no
order-N poles.

The same investigation is repeated for the functions 1+tn(u),
(

1+ωbx(u)
)(

1+x(u)
)(

1+ω−bx(u)
)

and 1−y(u), using the relations (3.18). In particular, we find that the function 1−y(u) has an order-N
zero at u = 3λ ≡ −3λ̄, where ≡ denotes an equality modulo π. In the following, we choose the last
function entering the Y -system to be w(u) =

(

1− y(u)
)

/y(u) instead of y(u), as this function has an
order-N zero which will play an important role for the calculation. Moreover, to work with functions
that remain finite inside their analyticity strips, we make a change of variables and work with the
reciprocals of the functions tn(u) and x(u):

t̃n(u) = tn(u)−1, x̃(u) = x(u)−1. (3.54)

Inside their analyticity strips, the functions t̃n(u) have order-N zeros instead of order-N poles. Our
derivation below uses certain assumptions for the analyticity strips of these functions. These are given
in Table 4. Crucially, except for the order-N zeros of t̃b−2(u) and w(u), these analyticity strips are free
of zeros and poles.

We make a change of variables for the Y -system functions in such a way that the central lines of
the analyticity strips coincide with the real axis:

t̃n(u) = an
(

− iπ
λ̄

(

u− 3λ
2 − nλ̄

)

)

, An(z) = 1 + an(z), n = 1, . . . , b− 2, (3.55a)

x̃(u) = ab−1
(

− iπ
λ̄

(

u− 3λ
2 − (b− 1)λ̄

)

)

, (3.55b)

Ab−1(z) =
(

1 + ωbab−1(z)
)(

1 + ab−1(z)
)(

1 + ω−bab−1(z)
)

, (3.55c)

w(u) = ab
(

− iπ
λ̄

(

u− 3λ
2 − (b− 3

2)λ
)

)

, Ab(z) = 1 + ab(z). (3.55d)
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width is larger than centered at

t̃n(u) 2λ̄ 3λ
2 + nλ̄

1 + t̃n(u) 0 3λ
2 + nλ̄

x̃(u) 2λ̄ 3λ
2 + (b− 1)λ̄

(

1 + ωbx̃(u)
)(

1 + x̃(u)
)(

1 + ω−bx̃(u)
)

0 3λ
2 + (b− 1)λ̄

w(u) λ̄ 3λ
2 + (b− 3

2 )λ̄

1 + w(u) 0 3λ
2 + (b− 3

2 )λ̄

Table 4: The analyticity strips for the various functions.

In terms of these functions, the Y -system reads

a2(z)

a1(z − iπ)a1(z + iπ)
=

A2(z)

A1(z)
, (3.56a)

an−1(z)an+1(z)

an(z − iπ)an(z + iπ)
=

An−1(z)An+1(z)

An(z)
, n = 2, . . . , b− 3, (3.56b)

ab−3(z)ab−1(z)ab(z − iπ
2 )a

b(z + iπ
2 )

ab−2(z − iπ)ab−2(z + iπ)ab−1(z − iπ)ab−1(z + iπ)
=

Ab−3(z)Ab−1(z)

Ab−2(z)
, (3.56c)

ab−2(z)

ab(z − iπ
2 )a

b(z + iπ
2 )

=
Ab−2(z)

Ab−1(z)
, (3.56d)

ab−1(z − iπ
2 )a

b−1(z + iπ
2 ) = Ab(z). (3.56e)

In terms of the variable z, the analyticity strips are horizontal and centered on the real line.
For an(z) with n = 1, . . . , b − 2, the width of the strips is 2iπ. Our computer implementation also
reveals that, in the z-plane, the zeros of all the eigenvalues are symmetrically distributed between the
upper and lower half-planes, and likewise between the right and left half-planes. This implies that the
eigenvalues are real for z ∈ R. The patterns of zeros for the groundstate are also identical in the left
and right half-planes. This implies that

an(z + iξ) = an(z − iξ) = an(−z + iξ), z, ξ ∈ R. (3.57)

This is not true for all eigenstates of the transfer matrix.

3.4.2 Bulk and finite contributions

The eigenvalues of the transfer matrices are related to the Y -system functions by

T n,0
0 T n,0

2

T n+1,0
0 T n−1,0

2

= 1 + t̃n0 , n = 1, . . . , b− 2, (3.58a)

w0w1

f−3f−2

T b−2,0
1 T b−2,0

3

T b−2,0
2

= (1 + ωbx̃0)(1 + x̃0)(1 + ω−bx̃0), (3.58b)

T b−1,0
0 T b−1,0

1

T b−2,0
1 T b−2,0

2

= 1 + w0. (3.58c)
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The eigenvalues T n,0(u) and w(u) are written as the product of their bulk and finite contributions:

T n,0(u) =
(

κn(u)
)N

T n
f (u), w(u) =

(

κw(u)
)N

wf(u). (3.59)

These satisfy the functional equations

κn(u)κn(u− 2λ̄)

κn+1(u)κn−1(u− 2λ̄)
= 1, n = 1, . . . , b− 2, (3.60a)

κω(u)κω(u− λ̄)
κb−2(u− λ̄)κb−2(u− 3λ̄)

κb−2(u− 2λ̄)
=

sin(3λ− u) sin(2λ− u)

sin 3λ sin 2λ
, (3.60b)

κb−1(u)κb−1(u− λ̄)

κb−2(u− λ̄)κb−2(u− 2λ̄)
= 1, (3.60c)

and

T n
f (u)T

n
f (u− 2λ̄)

T n+1
f (u)T n−1

f (u− 2λ̄)
= 1 + t̃n(u), n = 1, . . . , b− 2, (3.61a)

wf(u)wf(u− λ̄)
T b−2
f (u− λ̄)T b−2

f (u− 3λ̄)

T b−2
f (u− 2λ̄)

=
(

1 + ωbx̃(u)
)(

1 + x̃(u)
)(

1 + ω−bx̃(u)
)

, (3.61b)

T b−1
f (u)T b−1

f (u− λ̄)

T b−2
f (u− λ̄)T b−2

f (u− 2λ̄)
= 1 +w(u). (3.61c)

The initial conditions are κ0(u) = sin(3λ−u) sin(2λ−u)
sin 3λ sin 2λ and T 0

f (u) = 1. The known solution for the bulk
n = 1 contribution is [18]:

log κ(u) = 2

∫ ∞

0
dt

sinh(π − λ)t sinh (2λ−π)t
2 cosh (2u−3λ+2π)t

2

t sinh πt
2 cosh (3λ−2π)t

2

+ log
∣

∣

∣

sinu sin(3λ− u)

sin 2λ sin 3λ

∣

∣

∣, Regime II.

(3.62)
For the finite terms, we define

T n
f (u) = bn

(

−iπ
λ̄

(

u− 3λ
2 −(n−1)λ̄

)

)

, n = 1, . . . , b−1, wf(u) = bb
(

−iπ
λ̄

(

u− 3λ
2 −(b− 3

2)λ̄
)

)

, (3.63)

and rewrite the relations (3.61) as

bn(z − iπ)bn(z + iπ)

bn−1(z)bn+1(z)
= An(z), n = 1, . . . , b− 2, (3.64a)

bb(z − iπ
2 )b

b(z + iπ
2 )b

b−2(z − iπ)bb−2(z + iπ)

bb−2(z)
= Ab−1(z), (3.64b)

bb−1(z − iπ
2 )b

b−1(z + iπ
2 )

bb−2(z − iπ
2 )b

b−2(z + iπ
2 )

= Ab(z). (3.64c)
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3.4.3 Non-linear integral equations

The functions an(z) have order-N zeros on the imaginary axis. We define new functions ℓn(z) where
those zeros are removed:

ℓn(z) =
an(z)

[

η
(

z − iπ(b− n− 3
2 )
)

η
(

z + iπ(b− n− 3
2)
)

]N
, n = 1, . . . , b− 2, (3.65a)

ℓb−1(z) = ab−1(z), ℓb(z) =
ab(z)

η(z)N
, (3.65b)

where
η(z) = tanh z

2(2b−3) , η
(

z − iπ
2 (2b− 3)

)

η
(

z + iπ
2 (2b− 3)

)

= 1. (3.66)

In terms of these functions, the Y -system reads

ℓ2(z)

ℓ1(z − iπ)ℓ1(z + iπ)
=

A2(z)

A1(z)
, (3.67a)

ℓn−1(z)ℓn+1(z)

ℓn(z − iπ)ℓn(z + iπ)
=

An−1(z)An+1(z)

An(z)
, n = 2, . . . , b− 3, (3.67b)

ℓb−3(z)ℓb−1(z)ℓb(z − iπ
2 )ℓ

b(z + iπ
2 )

ℓb−2(z − iπ)ℓb−2(z + iπ)ℓb−1(z − iπ)ℓb−1(z + iπ)
=

Ab−3(z)Ab−1(z)

Ab−2(z)
, (3.67c)

ℓb−2(z)

ℓb(z − iπ
2 )ℓ

b(z + iπ
2 )

=
Ab−2(z)

Ab−1(z)
, (3.67d)

ℓb−1(z − iπ
2 )ℓ

b−1(z + iπ
2 ) = Ab(z). (3.67e)

The functions ℓn(z) are all analytic and non-zero inside their respective analyticity strips. As
discussed in Section 3.4.5, for ω = eiγ with γ ∈ (0, 2π

b+1 ), these functions have asymptotic values for
z → ±∞ that are finite and nonzero. This allows us to define the Fourier transform of their logarithmic
derivative:

Ln(k) =
1

2π

∫ ∞

−∞

dz e−ikz
(

log ℓn(z)
)′
, An(k) =

1

2π

∫ ∞

−∞

dz e−ikz
(

logAn(z)
)′
, (3.68)

where n = 1, . . . , b. The non-linear integral equations for the eigenvalues are obtained by first taking
the Fourier transform of the logarithmic derivative of the Y -system equations yielding











−2 cos(πk) 1 0
1 −2 cos(πk) 1 b

b

b

0 1 −2 cos(πk) 1 0 0
b

b

b

1 −2 cos(πk) 1−2 cos(πk) 2 cos(πk
2
)

0 1 0 −2 cos(πk
2
)

0 2 cos(πk
2
) 0























L1

L2

b

b

b

Lb−2

Lb−1

Lb













=













−1 1 0

1 −1 1 b
b

b

0 1 −1 1 0
b

b

b

1 −1 1 0

0 1 −1 0

0 0 1

























A1

A2

b

b

b

Ab−2

Ab−1

Ab













. (3.69)
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We compute the inverse of the matrix in the left side, apply it to the right side and find

~L = K̂ · ~A. (3.70)

The matrix K̂ is symmetric and its entries can be computed explicitly. Applying the inverse transform,
we find

(

log ℓn(z)
)′

=

b
∑

m=1

Knm ∗
(

logAm
)′
, n = 1, . . . , b, (3.71)

where the kernel functions are given by

Knm(z) =
1

2π

∫ ∞

−∞

dk eikzK̂nm. (3.72)

Using (3.65), we obtain the non-linear integral equations for an(z):

log an(z) − φn = fn(z) +

b
∑

m=1

Knm ∗ logAm, n = 1, . . . , b, (3.73)

where φ1, . . . , φb are the integration constants and the driving terms are

fn(z) =















N log
[

η
(

z − iπ(b− n− 3
2)
)

η
(

z + iπ(b− n− 3
2)
)

] n = 1, . . . , b− 2,

0 n = b− 1,

N log η(z) n = b.

(3.74)

3.4.4 Scaling functions and scaling non-linear integral equations

In (3.73), the dependence on N appears only in the driving terms. For z of order ±(2b− 3) logN with
N large, these terms behave as exponentials:

fn(z) = lim
N→∞

fn
(

±(z + (2b− 3) logN)
)

=















−4 sin
(

πn
2b−3

)

e−z/(2b−3) n = 1, . . . , b− 2,

0 n = b− 1,

−2 e−z/(2b−3) n = b.

(3.75)

To compute the finite-size correction at order 1
N , we assume that the unknown functions appearing in

(3.73) are well-defined in this limit. For the groundstate, the patterns of zeros are all symmetric with
respect to the imaginary z-axis, so the scaling functions behave identically in both limits:

an(z) = lim
N→∞

an
(

±(z + (2b− 3) logN)
)

, An(z) = lim
N→∞

An
(

±(z + (2b− 3) logN)
)

, (3.76)

where n = 1, . . . , b. These satisfy the following set of integral equations:

log an(z)− φn = fn(z) +

b
∑

m=1

Knm ∗ logAm, n = 1, . . . , b. (3.77)

We note that the kernel terms in these non-linear integral equations are symmetric.

34



3.4.5 Braid and bulk behavior

The scaling functions have finite asymptotics for z → ±∞. For z → ∞, these are obtained directly
from the braid limits of the transfer matrix eigenvalues:

an∞ =
(ω1/2 − ω−1/2)(ω − ω−1)

(ωn/2 − ω−n/2)(ω(n+3)/2 − ω−(n+3)/2)
, n = 1, . . . , b− 2, (3.78a)

ab−1
∞ =

ω(b+1)/2 − ω−(b+1)/2

ω(b−1)/2 − ω−(b−1)/2
, ab∞ =

(ωb − ω−b)(ω − ω−1)

(ω(b−1)/2 − ω−(b−1)/2)2
. (3.78b)

For γ ∈ (0, 2π
b+1), these functions are positive and finite. These allow us to compute the constants φn

by studying the z → ∞ asymptotics of (3.77). We find that the constants all vanish:

φn = 0. (3.79)

The behavior of the functions an(z) for z → −∞ is dictated by the driving terms in the non-linear
integral equations (3.77). These originated from the order-N zeros of these functions that lie on the
imaginary axis in the z-plane. As a result, we have

an−∞ =

{

0 n = 1, 2, . . . , b− 2, b,

1 n = b− 1.
(3.80)

The value for ab−1
−∞ was obtained as the positive solution to the Y -system relation (ab−1

−∞)2 = 1 + ab−∞.

3.4.6 Finite-size correction and the dilogarithm technique

We define the Fourier transform of the logarithmic derivative of the functions bn(z):

Bn(k) =
1

2π

∫ ∞

−∞

dz e−ikz
(

log bn(z)
)′
, n = 1, . . . , b. (3.81)

Applying the Fourier transform to (3.64), we find
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) 0
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b
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=











A1

A2

b

b

b

Ab−2

Ab−1

Ab











. (3.82)

Denoting by M the matrix on the left-hand side, we invert M and apply it to both sides of the equation.
The matrix elements of the first row of M−1 are

(M−1)1n =



































cosh
(

πk
2 (2b− 3− 2n)

)

cosh
(

πk
2 (2b− 3)

) n = 1, . . . , b− 2,

0 n = b− 1,

1

2 cosh
(

πk
2 (2b− 3)

) n = b.

(3.83)

As a result, we find

log b1(z) − φ0 =

b−2
∑

n=1

K̃n ∗ logAn + 1
2K̃(b−3)/2 ∗ logAb (3.84)
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where

K̃n(z) =
1

2π

∫ ∞

−∞

dk eikz
cosh

(

πk
2 (2b− 3− 2n)

)

cosh
(

πk
2 (2b− 3)

) =
1

π(2b− 3)

sin
(

πn
2(2b−3)

)

cosh
(

z
2b−3

)

sinh
(

z− iπn
2

2b−3

)

sinh
(

z+ iπn
2

2b−3

) . (3.85)

This leads to

b1(z)− φ0 =

∫ ∞

−(2b−3) logN
dy

[ b−2
∑

n=1

K̃n

(

y + (2b−3) logN − z
)

logAn
(

y + (2b− 3) logN
)

+ 1
2K̃(b−3)/2

(

y + (2b−3) logN − z
)

logAb
(

y + (2b−3) logN
)

+
b−2
∑

n=1

K̃n

(

− y − (2b−3) logN − z
)

logAn
(

− y − (2b−3) logN
)

+ 1
2K̃(b−3)/2

(

− y − (2b−3) logN − z
)

logAb
(

− y − (2b−3) logN
)

]

≃ 2
(

ez/(2b−3) + e−z/(2b−3)
)

πN(2b− 3)

∫ ∞

−∞

dy e−y/(2b−3)

[ b−2
∑

n=1

sin
( πn

2(2b− 3)

)

logAn + 1
2A

b

]

, (3.86)

where we used

K̃n

(

z + (2b− 3) logN
)

≃
2 sin

(

πn
2(2b−3)

)

e−z/(2b−3)

πN(2b− 3)
. (3.87)

To apply the dilogarithm technique, we define the integral

J =

∫ ∞

−∞

dy

[ b
∑

n=1

(log an)′ logAn − log an(logAn)′
]

. (3.88)

The integral J is evaluated in two ways. The first consists of replacing log an and its derivative by its
expression (3.77). Many terms cancel out because of the symmetries Knm(z) = Knm(−z) = Kmn(z)
of the kernel functions (3.72). The only surviving contributions come from the driving terms, and the
result reads

J =
8

2b− 3

∫ ∞

−∞

dy e−y/(2b−3)

[ b−2
∑

n=1

sin
( πn

2(2b − 3)

)

logAn + 1
2A

b

]

. (3.89)

Up to an overall prefactor, this is precisely the integral we wish to compute in (3.86). The second way
of computing the integral is to apply the derivatives explicitly, which yields

J =

∫ ∞

−∞

dy

[ b−2
∑

n=1

dan

dy

(

logAn

an
− log an

An

)

+
dab−1

dy

(

logAb−1

ab−1
− dAb−1

dab−1

log ab−1

Ab−1

)

+
dab

dy

(

logAb

ab
− log ab

Ab

)]

.

(3.90)
Dividing the integral in three parts and changing the integration variables from y to an, we find

J =

b−2
∑

n=1

∫ an
∞

an
−∞

dan
(

logAn

an
− log an

An

)

+

∫ ab−1
∞

ab−1
−∞

dab−1

(

logAb−1

ab−1
− dAb−1

dab−1

log ab−1

Ab−1

)

+

∫ ab
∞

ab
−∞

dab
(

logAb

ab
− log ab

Ab

)

(3.91)
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where

An = 1 + an, n = 1, 2, . . . , b− 2, b, (3.92a)

Ab−1 = (1 + ωbab−1)(1 + ab−1)(1 + ω−bab−1). (3.92b)

The resulting expression for J is therefore a combination of regular integrals. Setting ω = eiγ , the
integral evaluates to

J =
π2

3

(

3

2
− 3γ2b

π2

)

=
π2

3

(

3

2
− 3γ2

2π(π − λ)

)

, γ ∈
(

0, 2π
b+1

)

. (3.93)

The proof of this result is given in Appendix A.2.4. The final result is

log b(z) ≃
π cosh z

2b−3

6N

(

3

2
− 3γ2b

π2

)

, log Tf(u) ≃
π sin π(u−π)

3λ−2π

6N

(

3

2
− 3γ2b

π2

)

, (3.94)

where the constant φ0 was found to equal zero using Tf(u = π) = 1. This result is precisely (1.3) with
c− 24∆ and ϑ(u) given in (3.12).

We note that the factor (u− π) in the argument of the sine function is different compared to the

results for the other models, which have only a factor of u. This is due to the fact that for λ = π(2b−1)
2b ,

the value u = 3λ
2 whose neighborhood we are studying is larger than π, and u = π is the nearest value

where log Tf(u) vanishes identically. Alternatively, if one wishes to study the finite-size correction in
the neighborhood of u = 3λ

2 − π, then by the periodicity T (u) = T (u + π), the result is identical to
(3.94) but with u− π changed for u in the argument of the sine function.

4 Finite-size corrections for the A
(1)
2 models

4.1 Definition of the A
(1)
2 models

The loop and vertex models in the A
(1)
2 family are the A

(1)
2 (or fully packed) loop model and the 15-

vertex model. The A
(1)
2 loop model is a face model on the square lattice, where each face takes on one of

seven possible local configurations. The elementary face operator is defined by the linear combination

u = s1(−u)

(

+

)

+ + + s0(u)

(

+ +

)

(4.1)

where sk(u) is defined in (2.1). The fugacities of the contractible and non-contractible loops are

β = 2cos λ, α = ω + ω−1 = 2cos γ, (4.2)

where ω = eiγ is a free parameter. The Ř-matrix of the 15-vertex model is

Ř(u) =





























s1(−u) 0 0 0 0 0 0 0 0
0 1 0 s0(u) 0 0 0 0 0
0 0 eiu 0 0 0 s0(u) 0 0
0 s0(u) 0 1 0 0 0 0 0
0 0 0 0 s1(−u) 0 0 0 0
0 0 0 0 0 1 0 s0(u) 0
0 0 s0(u) 0 0 0 e−iu 0 0
0 0 0 0 0 s0(u) 0 1 0
0 0 0 0 0 0 0 0 s1(−u)





























. (4.3)
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The twist matrix is given in (1.4) with ω = eiγ . Both the vertex and loop A
(1)
2 models are described

by the dilute Temperley-Lieb algebra [39, 40], with its parameter β fixed to β = 2cos λ. To be more
precise, on the cylinder, the single-row transfer matrices are elements of a subalgebra of the periodic
dilute Temperley-Lieb algebra where the number of vacancies is conserved [31]. The Ř-matrix is then
equal to Ř(u) =

∑9
ν=1 ρ̃νg

(ν), where the matrices g(ν) are the representatives of the nine tiles in the
vertex representation of the dilute Temperley-Lieb algebra, discussed in Section 3.1. The functions ρ̃ν
are

ρ̃1 = ρ̃8 = s1(−u), ρ̃2 = ρ̃3 = 1, ρ̃4 = ρ̃5 = 0, ρ̃6 = ρ̃7 = ρ̃9 = s0(u). (4.4)

We consider the A
(1)
2 model on the domain (including Regimes I & II)

0 < u < λ, 0 < λ < π. (4.5)

For the vertex model, the elementary space is spanned by the three states ↑, 0 and ↓ and the groundstate
appears in the sector with equal numbers of these three states. For the loop model, it appears in the
standard module with zero defects and N

3 vacancies, WN,0,N/3. (We follow the convention used in [31]

for these modules.) In these sectors, the spectrum of the transfer matrix T (u) of the A
(1)
2 models is

invariant under the involution
λ ↔ π − λ, u ↔ −u. (4.6)

The roots of unity values of λ are those for which λ
π ∈ Q. We parameterise them in terms of two

integers p, p′ as

λ = λp,p′ =
π(p′ − p)

p′
, gcd(p, p′) = 1. (4.7)

Our calculation of the finite-size corrections below focuses on two series:

Principal series: (p, p′) = (p′ − 1, p′), 0 < u < λ,

Dual series: (p, p′) = (1, p′), 0 < u < λ.
(4.8)

From (4.6), the dual series can be alternatively specified by

Dual series: (p, p′) = (p′ − 1, p′), λ− π < u < 0. (4.9)

In this section, we focus on the groundstate of the transfer matrix for N ≡ 0 mod 3 for the
principal series and N ≡ 0 mod 6 in the dual series. We will focus on values of u in the neighborhood
of u = λ

2 and will restrict to values of the twist parameter ω = eiγ in the intervals

γ ∈
{
(

0, 2π(p
′−1)

p′2

)

Principal series,
(

0, 2π
p′+1

)

Dual series.
(4.10)

We will compute the 1
N finite-size correction term for the groundstate eigenvalue T (u) and will confirm

the conformal prediction (1.3) with

c− 24∆ =















2− 6γ2p′

π2(p′ − 1)
, Principal series,

2− 6γ2p′

π2
, Dual series,

ϑ(u) =
2πu

3λ
. (4.11)
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4.2 Functional relations

The fused transfer matrices Tm,n(u) for the A
(1)
2 models are defined recursively in [31] from the fusion

hierarchy relations, as functions of the two elementary transfer matrices T (u) = T 1,0(u) and T̄ (u) =
T 0,1(u). There, it was found that the T -system equations involve only the transfer matrices Tm,0(u)
and T 0,n(u) where one of the two indices is zero:

T
m,0
0 T

m,0
1 = fmT

0,m
0 + T

m+1,0
0 T

m−1,0
1 , T

0,n
0 T

0,n
1 = σnf−1T

n,0
1 + T

0,n+1
0 T

0,n−1
1 . (4.12)

Here, m,n > 1 and we use the compact notations

T
m,n
k = Tm,n(u+ kλ), T

0,0
k = fk−1I, σ = (−1)N , (4.13a)

fk =
(sin(u+ kλ)

sinλ

)N
, T

−1,0
k = T

0,−1
k = 0. (4.13b)

For λ = λp,p′ , the Y -system is finite and is defined in terms of a set of 2p′ functions:1

tm0 =
T

m+1,0
0 T

m−1,0
1

fmT
0,m
0

, t̄
n
0 =

T
0,n+1
0 T

0,n−1
1

σnf−1T
n,0
1

, n = 1, . . . , p′ − 2, (4.14a)

x0 =
σpT

p′−2,0
1

T
0,p′−1
0

, x̄0 =
σp+1T

0,p′−2
0

T
p′−1,0
0

, y0 = x0x̄0, z0 = x0x̄1. (4.14b)

The functional equations are

tn0 t
n
1

t̄
n
0

=
(I + tn−1

1 )(I + tn+1
0 )

I + t̄
n
0

, n = 1, . . . , p′ − 3, (4.15a)

t
p′−2
0 t

p′−2
1

t̄
p′−2
0

=
(I + t

p′−3
1 )(I + eiΛ1x0)(I + eiΛ2x0)(I + eiΛ3x0)

(I + t̄
p′−2
0 )(I − y0)(I − z0)

, (4.15b)

x0x1

x̄1
=

(I + t
p′−2
1 )(I − y1)(I − z0)

(I + e−iΛ1x̄1)(I + e−iΛ2x̄1)(I + e−iΛ3x̄1)
, (4.15c)

y0y1

z0
=

(I + t
p′−2
1 )(I + t̄

p′−2
0 )(I − y0)(I − y1)(I − z0)

2

(I + eiΛ1x0)(I + eiΛ2x0)(I + eiΛ3x0)(I + e−iΛ1x̄1)(I + e−iΛ2x̄1)(I + e−iΛ3x̄1)
, (4.15d)

and

t̄
n
0 t̄

n
1

tn1
=

(I + t̄
n−1
1 )(I + t̄

n+1
0 )

I + tn1
, n = 1, . . . , p′ − 3, (4.15e)

t̄
p′−2
0 t̄

p′−2
1

t
p′−2
1

=
(I + t̄

p′−3
1 )(I + e−iΛ1x̄1)(I + e−iΛ2x̄1)(I + e−iΛ3x̄1)

(I + t
p′−2
1 )(I − y1)(I − z0)

, (4.15f)

x̄0x̄1

x0
=

(I + t̄
p′−2
0 )(I − y0)(I − z0)

(I + eiΛ1x0)(I + eiΛ2x0)(I + eiΛ3x0)
, (4.15g)

z0z1

y1

=
(I + t

p′−2
1 )(I + t̄

p′−2
1 )(I − y1)

2(I − z0)(I − z1)

(I + eiΛ1x1)(I + eiΛ2x1)(I + eiΛ3x1)(I + e−iΛ1x̄1)(I + e−iΛ2x̄1)(I + e−iΛ3x̄1)
. (4.15h)

1For convenience, we choose here slightly different sign conventions for certain functions compared to [31].
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T 1,0(u)

T 3,0(u)

T 2,0(u)

T 4,0(u)

T 4,4(u)

1− y(u)

Figure 5: The patterns of zeros for the groundstate of T (u) for N = 6, (p, p′) = (4, 5) and ω = 1, in the
complex u-plane. The horizontal axis is divided in units of λ = π

5 . Each zero of T 4,4(u) and 1− y(u)
is triply degenerate. This degeneracy is lifted for ω 6= 1, with the zeros remaining on the same vertical
lines for ω on the unit circle. The diagram for 1 − y(u) only shows its zeros, and not its poles which
can be deduced from the zeros of the other functions.

Finally, another relation that will play an important role in the derivations below is the fusion hierarchy
relation for T p′−1,p′−1(u) obtained in [31], which can be conveniently written as

I − z0 =
f−1T

p′−1,p′−1
1

T
p′−1,0
1 T

0,p′−1
0

. (4.16)

In the loop model, the matrices eiΛ1 , eiΛ2 and eiΛ3 are diagonal on the standard module WN,0,N/3

with the unique eigenvalues ωp′ , 1 and ω−p′, respectively. Likewise, for the vertex model in the zero
magnetisation sector, the matrices eiΛ1 , eiΛ2 and eiΛ3 are diagonal with the unique eigenvalues ωp′ , 1
and ω−p′ , respectively.

4.3 The principal series

In this subsection, we fix p = p′ − 1 with p′ ∈ N>4, so that λ = π
p′ . We compute the 1

N term in (1.3)

explicitly for N ≡ 0 mod 3, γ ∈ (0, 2π(p
′−1)

p′2
) and u in the neighborhood of λ

2 .

4.3.1 Analyticity properties and symmetric Y -system

Our computer implementation of the transfer matrices reveals that, in the complex u-plane, the zeros
of T 1,0(u) for the groundstate lie close to the vertical lines with Re(u) = −λ

2 , 2λ. We shall therefore

center its analyticity strip at 3λ
4 . Likewise, the zeros of T

2,0(u) lie on the vertical lines Re(u) = −3λ
2 , 2λ.

These patterns are repeated in each vertical strip of width π. In general, the zeros of T n(u) lie on the
vertical lines Re(u) = −(n− 1

2)λ, 2λ, for n = 1, . . . , p′ − 1. We set the center of its analyticity strip at

(52 − n)λ2 . The groundstate eigenvalues satisfy the crossing relations

T n,0(u) = T 0,n
(

(2− n)λ− u
)

. (4.17)
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width is larger than centered at

tn(u) λ (32 − n)λ2
1 + tn(u) 0 (32 − n)λ2

x(u) λ (52 − p′)λ2
(

1 + ωp′x(u)
)(

1 + x(u)
)(

1 + ω−p′x(u)
)

0 (52 − p′)λ2
y(u) λ (3− p′)λ2

1− y(u) λ (3− p′)λ2
t̄n(u) λ (12 − n)λ2

1 + t̄n(u) 0 (12 − n)λ2
x̄(u) λ (72 − p′)λ2

(

1 + ωp′ x̄(u)
)(

1 + x̄(u)
)(

1 + ω−p′ x̄(u)
)

0 (72 − p′)λ2
z(u) λ (2− p′)λ2

1− z(u) λ (2− p′)λ2

Table 5: The analyticity strips for the various functions.

The positions of the zeros for T 0,n(u) can therefore be deduced from those of T n,0(u) using (4.17). They
lie on the vertical lines Re(u) = −nλ, 3λ2 . Furthermore, the zeros of T p′−1,p′−1(u) lie on the vertical
line Re(u) = 2λ. To deduce the positions of the zeros and poles of all the functions of the Y -system,
we also need to know the position of the zeros of the function 1 − y(u). Indeed, there appears not to
be a relation similar to (4.16) for this function which would otherwise give us this information. Our
computer implementation reveals that its zeros lie on the vertical line Re(u) = 3λ

2 . To illustrate, the
patterns of zeros for N = 6, (p, p′) = (4, 5) and ω = 1 are given in Figure 5.

With this information, we deduce the position of the zeros and poles of the Y -system functions.
We find that the functions t1(u) and t̄1(u) each have a zero of order N at u = 0, whereas they have
a pole of order N at u = −λ and u = λ respectively. Its zeros will play an important role in the
following. The functions tn(u) and t̄n(u) with n = 2, . . . , p′ − 2 have no zeros of order N , but have
poles of order N at u = −mλ and u = λ respectively. These poles will not play any role for this
computation. The functions x(u), x̄(u), y(u) and z(u) have no order-N zeros and no order-N poles.
The same investigation is repeated for the patterns of zeros of the functions 1 + tn(u), 1 + t̄n(u),
(

1 + ωp′x(u)
)(

1 + x(u)
)(

1 + ω−p′x(u)
)

,
(

1 + ωp′ x̄(u)
)(

1 + x̄(u)
)(

1 + ω−p′ x̄(u)
)

, 1− y(u) and 1− z(u).
Our derivation below uses certain assumptions for the analyticity strips of these functions. These are
given in Table 5. Crucially, except for the order-N zeros of t1(u) and t̄1(u), these analyticity strips are
free of zeros and poles.

We make a change of variables for the Y -system functions in such a way that the central lines of
the analyticity strips coincide with the real axis:

tn(u) = an
(

− iπ
λ

(

u+ (n− 3
2)

λ
2

)

)

, An(z) = 1 + an(z), n = 1, . . . , p′ − 2, (4.18a)

x(u) = ap
′−1
(

− iπ
λ

(

u+ (p′ − 5
2)

λ
2

)

)

, (4.18b)

Ap′−1(z) =
(

1 + ωp′ap
′−1(z)

)(

1 + ap
′−1(z)

)(

1 + ω−p′ap
′−1(z)

)

, (4.18c)

y(u) = ap
′

(

− iπ
λ

(

u+ (p′ − 3)λ2
)

)

, Ap′(z) = 1− ap
′

(z), (4.18d)
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and

t̄n(u) = ān
(

− iπ
λ

(

u+ (n− 1
2)

λ
2

)

)

, Ā
n
(z) = 1 + ān(z), n = 1, . . . , p′ − 2, (4.18e)

x̄(u) = āp
′−1
(

− iπ
λ

(

u+ (p′ − 7
2)

λ
2

)

)

, (4.18f)

Ā
p′−1

(z) =
(

1 + ωp′ āp
′−1(z)

)(

1 + āp
′−1(z)

)(

1 + ω−p′ āp
′−1(z)

)

, (4.18g)

z(u) = āp
′

(

− iπ
λ

(

u+ (p′ − 2)λ2
)

)

, Ā
p′
(z) = 1− āp

′

(z). (4.18h)

In terms of these functions, the Y -system takes a more symmetric form:

an(z − iπ
2 )a

n(z + iπ
2 )

ān(z)
=

An−1(z)An+1(z)

Ā
n
(z)

, n = 1, . . . , p′ − 3, (4.19a)

ap
′−2(z − iπ

2 )a
p′−2(z + iπ

2 )

āp
′−2(z)

=
Ap′−3(z)Ap′−1(z)

Ā
p′−2

(z)Ā
p′
(z − iπ

4 )A
p′(z + iπ

4 )
, (4.19b)

ap
′−1(z − iπ

2 )a
p′−1(z + iπ

2 )

āp
′−1(z)

=
Ap′−2(z)Ap′(z − iπ

4 )Ā
p′
(z + iπ

4 )

Ā
p′−1

(z)
, (4.19c)

ap
′

(z − iπ
2 )a

p′(z + iπ
2 )

āp
′

(z)
=

Ap′−2(z − iπ
4 )Ā

p′−2
(z + iπ

4 )A
p′(z − iπ

2 )A
p′(z + iπ

2 )
(

Ā
p′
(z)
)2

Ā
p′−1

(z − iπ
4 )A

p′−1(z + iπ
4 )

. (4.19d)

and

ān(z − iπ
2 )ā

n(z + iπ
2 )

an(z)
=

Ā
n−1

(z)Ā
n+1

(z)

An(z)
, n = 1, . . . , p′ − 3, (4.19e)

āp
′−2(z − iπ

2 )ā
p′−2(z + iπ

2 )

ap
′−2(z)

=
Ā
p′−3

(z)Ā
p′−1

(z)

Ap′−2(z)Ap′(z − iπ
4 )Ā

p′
(z + iπ

4 )
, (4.19f)

āp
′−1(z − iπ

2 )ā
p′−1(z + iπ

2 )

ap
′−1(z)

=
Ā
p′−2

(z)Ā
p′
(z − iπ

4 )A
p′(z + iπ

4 )

Ap′−1(z)
, (4.19g)

āp
′

(z − iπ
2 )ā

p′(z + iπ
2 )

ap
′(z)

=
Ā
p′−2

(z − iπ
4 )A

p′−2(z + iπ
4 )Ā

p′
(z − iπ

2 )Ā
p′
(z + iπ

2 )
(

Ap′(z)
)2

Ap′−1(z − iπ
4 )Ā

p′−1
(z + iπ

4 )
. (4.19h)

In terms of the variable z, the analyticity strips are horizontal and centered on the real line. For
an(z) and ān(z), the width of the strips is iπ. Our computer implementation also reveals that, in
the z-plane, the zeros of all the eigenvalues are symmetrically distributed between the right and left
half-planes, but not between the upper and lower half-planes. This implies that

an(z + iξ) = an(−z + iξ)∗, ān(z + iξ) = ān(−z + iξ)∗, z, ξ ∈ R. (4.20)

This is true for the groundstate eigenvalues, but not for arbitrary eigenstates of the transfer matrix.

4.3.2 Bulk and finite contributions

The eigenvalues of the two elementary transfer matrices are related to the Y -system functions by

T 1,0
0 T 1,0

1

T 0,1
0

= f1(1 + t10),
T 0,1
0 T 0,1

1

T 1,0
1

= σf−1(1 + t̄10). (4.21)
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The eigenvalues T (u) = T 1,0(u) and T̄ (u) = T 1,0(u) are written as the product of their bulk and finite
contributions:

T (u) = κ(u)NTf(u), T̄ (u) = κ̄(u)N T̄f(u). (4.22)

These satisfy the functional equations

κ(u)κ(u + λ)

κ̄(u)
=

sin(λ+ u)

sinλ
,

Tf(u)Tf(u+ λ)

T̄f(u)
=
(

1 + t1(u)
)

, (4.23a)

κ̄(u)κ̄(u+ λ)

κ(u+ λ)
=

sin(λ− u)

sinλ
,

T̄f(u)T̄f(u+ λ)

Tf(u+ λ)
=
(

1 + t̄1(u)
)

. (4.23b)

The solution for the bulk contribution can be computed using Baxter’s technique [44]:

log κ(u) =

∫ ∞

−∞

dt

t

sinhλt sinhut

sinhπt sinh 3λt

(

sinh(π−u)t+ sinh(4λ−π−u)t+ sinh(π−2λ−u)t
)

. (4.24)

This result in fact holds for 0 < λ < π. The expression for log κ̄(u) is obtained from the crossing
relation κ̄(u) = κ(λ− u). For the finite term, we define

Tf(u) = b
(

− iπ
λ (u− 3λ

4 )
)

, T̄f(u) = b̄
(

− iπ
λ (u− λ

4 )
)

, (4.25)

and rewrite the rightmost relations in (4.23a) and (4.23b) as

b(z − iπ
2 )b(z +

iπ
2 )

b̄(z)
= A1(z),

b̄(z − iπ
2 )b̄(z +

iπ
2 )

b(z)
= Ā

1
(z). (4.26)

4.3.3 Non-linear integral equations

The functions a1(z) and ā1(z) have order-N zeros on the imaginary axis inside their analyticity strips.
We define new functions ℓn(z) and ℓ̄n(z) as the products and ratios of an(z) and ān(z), with the order-N
zeros removed:

ℓ1(z) =
a1(z)ā1(z)

η(z − iπ
4 )η(z +

iπ
4 )

, ℓn(z) = an(z) ān(z), n = 2, . . . , p′, (4.27a)

ℓ̄1(z) =
a1(z)

ā1(z)

ν(z − iπ
4 )

ν(z + iπ
4 )

, ℓ̄n(z) =
an(z)

ān(z)
, n = 2, . . . , p′. (4.27b)

The functions η(z) and ν(z) are

η(z) = tanh z
3 , η(z − 3iπ

4 ) η(z + 3iπ
4 ) = 1, (4.28a)

ν(z) = tanh 2z
3 ,

ν(z + 3iπ
4 )

ν(z − 3iπ
4 )

= 1. (4.28b)

The Y -system equations for the functions ℓn(z) and ℓ̄n(z) are obtained by taking products and ratios
of the first and second set of relations in (4.19). It in fact splits in two separate sets of equations,
the first depending on the functions ℓn(z) and An(z)Ā

n
(z) and the second on the functions ℓ̄n(z)

and An(z)/Ā
n
(z). Moreover, these equations do not depend explicitly on η(z) and ν(z) due to the

convenient definitions (4.28) for these functions.
The functions ℓn(z) and ℓ̄n(z) are analytic and non-zero inside their respective analyticity strips.

As discussed in Section 4.3.5, for generic values of ω, the functions an(z) and ān(z) have asymptotic
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values for z → ±∞ that are finite and nonzero. The same then holds for the functions ℓn(z), ℓ̄n(z),
An(z) and Ā

n
(z), allowing us to define the Fourier transforms

Ln(k) =
1

2π

∫ ∞

−∞

dz e−ikz
[

log ℓn(z)
]′
, An(k) =

1

2π

∫ ∞

−∞

dz e−ikz
[

log
(

An(z)Ā
n
(z)
)]′

, (4.29a)

L̄n(k) =
1

2π

∫ ∞

−∞

dz e−ikz
[

log ℓ̄n(z)
]′
, Ān(k) =

1

2π

∫ ∞

−∞

dz e−ikz

[

log

(

An(z)

Ā
n
(z)

)]′

, (4.29b)

The non-linear integral equations for the eigenvalues are obtained by first taking the Fourier transform
of the logarithmic derivative of the Y -system equations yielding











L1

L2

b

b

b

Lp′−2

Lp′−1

Lp′











=
1

2 coshπk
2 − 1















−1 1 0

1 −1 1 b
b

b

0 1 −1 1 0
b

b

b

1 −1 1 −2 coshπk
4

0 1 −1 2 coshπk
4

2 coshπk
4

−2 coshπk
4

2 coshπk
2

+2

























A1

A2

b

b

b

Ap′−2

Ap′−1

Ap′











(4.30a)

and











L̄1

L̄2

b

b

b

L̄p′−2

L̄p′−1

L̄p′











=
1

2 coshπk
2 + 1













1 1 0
1 1 1 b

b

b

0 1 1 1 0
b

b

b

1 1 1 −2 sinhπk
4

0 1 1 −2 sinhπk
4

−2 sinhπk
4

−2 sinhπk
4

2 coshπk
2

− 2























Ā1

Ā2

b

b

b

Āp′−2

Āp′−1

Āp′











. (4.30b)

We note that, up to a rescaling of k, the Y -system relations (4.30a) are identical to the similar relations

(3.37) for the A
(2)
2 model. Writing the result in matrix form as

~L = K̂(1) · ~A, ~̄L = K̂(2) · ~̄A, (4.31)

we note that the matrices K̂(1) and K̂(2) have the symmetries
(

σK̂(j)
)⊺

= σK̂(j)
∣

∣

k→−k
, j = 1, 2, σ = diag(1, 1, . . . , 1,−1). (4.32)

We apply the inverse transform, integrate with respect to z, and find

log an(z)− φn = 1
2

(

fn(z) + gn(z)
)

+ 1
2

p′
∑

m=1

(

K(1)
nm +K(2)

nm

)

∗ logAm +
(

K(1)
nm −K(2)

nm

)

∗ log Ām
, (4.33a)

log ān(z)− φ̄n = 1
2

(

fn(z)− gn(z)
)

+ 1
2

p′
∑

m=1

(

K(1)
nm −K(2)

nm

)

∗ logAm +
(

K(1)
nm +K(2)

nm

)

∗ log Ām
, (4.33b)

where n = 1, . . . , p′, and φn and φ̄n are integration constants. The driving terms are

fn(z) =







N log
[

η
(

z − iπ
4

)

η
(

z + iπ
4

)

]

n = 1,

0 n = 2, . . . , p′,
(4.34a)

gn(z) =











N log

[

ν
(

z + iπ
4

)

ν
(

z − iπ
4

)

]

n = 1,

0 n = 2, . . . , p′.

(4.34b)
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The kernel functions are given by

K(j)
nm(z) =

1

2π

∫ ∞

−∞

dk eikzK̂(j)
nm, j = 1, 2, (n,m) 6= (p′, p′). (4.35)

Extra care has to be taken for the kernel functions K
(j)
p′,p′, as in this case the corresponding functions

in k-space tend to 1 for k → ±∞. This results in extra algebraic terms in the non-linear integral
equations (similarly to (3.33e)), which can be encoded in the kernel functions as

K
(j)
p′,p′(z) = δz,0 +

1

2π

∫ ∞

−∞

dk eikz(K̂
(j)
p′,p′ − 1), j = 1, 2. (4.36)

These extra terms are diagonal and do not play a role in the computation of the dilog integral in
Section 4.3.6.

4.3.4 Scaling functions and scaling non-linear integral equations

In (4.33), the dependence on N appears only in the driving terms. For z of order ±3
2 logN with N

large, the functions fn(z) behave as exponentials:

fn(z) = lim
N→∞

fn
(

±(z + 3
2 logN)

)

=

{

−2
√
3 e−2z/3 n = 1,

0 n = 2, . . . , p′.
(4.37)

In contrast, in the same regime, the functions gn(z) vanish:

lim
N→∞

gn
(

±(z + 3
2 logN)

)

= 0. (4.38)

To compute the finite-size correction at order 1
N , we assume that the unknown functions appearing in

(4.33) are well-defined in this limit. For the groundstate, the patterns of zeros are all symmetric with
respect to a reflection along the imaginary z-axis, and we have the equalities (4.20). As a result, the
scaling functions behave identically in both limits:

an(z) = lim
N→∞

an
(

±(z + 3
2 logN)

)

, An(z) = lim
N→∞

An
(

±(z + 3
2 logN)

)

, (4.39)

ān(z) = lim
N→∞

ān
(

±(z + 3
2 logN)

)

, Ā
n
(z) = lim

N→∞
Ā
n(±(z + 3

2 logN)
)

, (4.40)

where n = 1, . . . , p′ and z is taken to be real. These functions satisfy the following set of integral
equations:

log an(z) − φn = 1
2 f

n(z) + 1
2

p′
∑

m=1

(

K(1)
nm +K(2)

nm

)

∗ logAm +
(

K(1)
nm −K(2)

nm

)

∗ log Ām
, (4.41a)

log ān(z) − φ̄n = 1
2 f

n(z) + 1
2

p′
∑

m=1

(

K(1)
nm −K(2)

nm

)

∗ logAm +
(

K(1)
nm +K(2)

nm

)

∗ log Ām
, (4.41b)

where n = 1, . . . , p′. Multiplying the equations for log ap
′

(z) and log āp
′

(z) by an overall minus sign, we
obtain a set of equations where the kernel terms are symmetric, which follows from (4.32).
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4.3.5 Braid and bulk behavior

The scaling functions have finite asymptotics for z → ±∞. For z → ∞, these are obtained directly
from the braid limits of the transfer matrix eigenvalues:

an∞ = ān∞ =
(ωn/2 − ω−n/2)(ω(n+3)/2 − ω−(n+3)/2)

(ω1/2 − ω−1/2)(ω − ω−1)
, n = 1, . . . , p′ − 2, (4.42a)

ap
′−1

∞ = āp
′−1

∞ =
ω(p′−1)/2 − ω−(p′−1)/2

ω(p′+1)/2 − ω−(p′+1)/2
, ap

′

∞ = (ap
′−1

∞ )2. (4.42b)

For γ ∈ (0, 2π
p′+1), these constants are all positive and finite. These values allow us to compute the

constants φn by studying the z → ∞ asymptotics of (4.41). After a straightforward computation, we
find that the constants vanish:

φn = φ̄n = 0, n = 1, . . . , p′, γ ∈ (0, 2π
p′+1). (4.43)

For the bulk behavior at z → −∞, we recall that the functions a1(z) and ā1(z) each have a zero
of order N near the origin, so that a1−∞ = ā1−∞ = 0. The asymptotic values an−∞ and ān−∞ are constant
solutions to the Y -system (4.19). We select the only solution for which the functions an∞ and ān∞, with
n = 2, . . . , p′, are positive in the neighborhood of ω = 1:

an−∞ = ān−∞ =
(ω̄(n−1)/2 − ω̄−(n−1)/2)(ω̄(n+2)/2 − ω̄−(n+2)/2)

(ω̄1/2 − ω̄−1/2)(ω̄ − ω̄−1)
, (4.44a)

ap
′−1

−∞ = āp
′−1

−∞ =
ω̄(p′−2)/2 − ω̄−(p′−2)/2

ω̄p′/2 − ω̄−p′/2
, ap

′

−∞ = āp
′

−∞ = (ap
′−1

−∞ )2, ω̄ = ωp′/(p′−1). (4.44b)

These asymptotic values are positive and finite on the range γ ∈ (0, 2π(p
′−1)

p′2
).

4.3.6 Finite-size correction and the dilogarithm technique

Applying the Fourier transform and subsequently the inverse transform of the logarithmic derivative
of (4.26), we find

log b(z)− φ0 = K̃(1) ∗ logA1(z) + K̃(2) ∗ log Ā1
(z), (4.45a)

log b̄(z)− φ̄0 = K̃(2) ∗ logA1(z) + K̃(1) ∗ log Ā1
(z), (4.45b)

where φ0 and φ̄0 are integration constants. The kernels are

K̃(1) =
1

2π

∫ ∞

−∞

dk eikz
2 cosh πk

2

2 cosh πk + 1
=

1

π
√
3

cosh z
3

cosh z
, (4.46a)

K̃(2) =
1

2π

∫ ∞

−∞

dk eikz
1

2 cosh πk + 1
=

1

π
√
3

sinh z
3

sinh z
. (4.46b)
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We express the large-N asymptotics of log b(z) in terms of integrals involving the scaling functions

A1(z) and Ā
1
(z):

log b(z)− φ0 =

∫ ∞

− 3
2
logN

dy
(

K(1)(y + 3
2 logN − z) logA1(y + 3

2 logN)

+K(2)(y + 3
2 logN − z) log Ā

1
(y + 3

2 logN)

+K(1)(−y − 3
2 logN − z) logA1(−y − 3

2 logN)

+K(2)(−y − 3
2 logN − z) log Ā

1
(−y − 3

2 logN)
)

≃ 1

π
√
3N

(e2z/3 + e−2z/3)

∫ ∞

−∞

dy e−2y/3
(

logA1(y) + log Ā
1
(y)
)

, (4.47)

where we used

K(1)(z + 3
2 logN) ≃ K(2)(z + 3

2 logN) ≃ e−2z/3

π
√
3N

. (4.48)

Here, ≃ indicates that higher-order terms in 1
N are omitted.

To apply the dilogarithm technique, we define the integral

J =

∫ ∞

−∞

dy

[ p′−1
∑

n=1

(

(log an)′ logAn − log an(logAn)′
)

−
(

(

log ap
′)′

logAp′ − log ap
′

(logAp′)′
)

]

+

∫ ∞

−∞

dy

[ p′−1
∑

n=1

(

(log ān)′ log Ā
n − log ān(log Ā

n
)′
)

−
(

(

log āp
′)′

log Ā
p′ − log āp

′

(log Ā
p′
)′
)

]

. (4.49)

This integral is evaluated in two ways. The first consists of replacing log an and log ān by their
expressions (4.41). Many terms cancel out because of the symmetries of the kernels. The only surviving
contributions come from the driving terms, and the result reads

J =
4√
3

∫ ∞

−∞

dy e−2y/3
(

logA1(y) + log Ā
1
(y)
)

. (4.50)

Up to an overall prefactor, this is precisely the integral we wish to compute in (4.47). The second way
of computing the integral is to apply the derivatives explicitly, which yields

J =

∫ ∞

−∞

dy

[ p′−2
∑

n=1

dan

dy

(

logAn

an
− log an

An

)

+
dap

′−1

dy

(

logAp′−1

ap′−1
− dAp′−1

dap′−1

log ap
′−1

Ap′−1

)

− dap
′

dy

(

logAp′

ap′
+

log ap
′

Ap′

)]

+

∫ ∞

−∞

dy

[ p′−2
∑

n=1

dān

dy

(

log Ā
n

ān
− log ān

Ā
n

)

+
dāp

′−1

dy

(

log Ā
p′−1

āp′−1
− dĀ

p′−1

dāp′−1

log āp
′−1

Ā
p′−1

)

(4.51)

− dāp
′

dy

(

log Ā
p′

āp′
+

log āp
′

Ā
p′

)]

.
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We split the integrals in three parts and change the integration variables from y to an or to ān. Because
the functions an(z) and ān(z) have identical asymptotics, we find two copies of the same integrals:

J = 2

[

p′−2
∑

n=1

∫ an
∞

an
−∞

dan
(

logAn

an
− log an

An

)

+

∫ ap′−1
∞

ap′−1
−∞

dap
′−1

(

logAp′−1

ap′−1
− dAp′−1

dap′−1

log ap
′−1

Ap′−1

)

−
∫ ap′

∞

ap′

−∞

dap
′

(

logAp′

ap′
+

log ap
′

Ap′

)

]

, (4.52)

where

An = 1 + an, n = 1, . . . , p′ − 2, (4.53a)

Ap′−1 = (1 + ωp′ap
′−1)(1 + ap

′−1)(1 + ω−p′ap
′−1), (4.53b)

Ap′ = (1− ap
′

). (4.53c)

The resulting expression for J is therefore a combination of regular integrals. This integral is exactly
twice the quantity in (3.50) and (3.52), with p′ replacing b. Setting ω = eiγ , J evaluates to

J =
π2

3

(

2− 6γ2p′

π2(p′ − 1)

)

=
π2

3

(

2− 6γ2

π(π − λ)

)

, γ ∈
(

0, 2π(p
′−1)

p′2

)

. (4.54)

The proof of this result is given in Appendix A.2.5. The final result is

log b(z) ≃ π cosh(2z3 )

6N

(

2− 6γ2p′

π2(p′ − 1)

)

, (4.55)

and therefore

log Tf(u) ≃
π sin2πu

3λ

6N

(

2− 6γ2p′

π2(p′ − 1)

)

, log T̄f(u) ≃
π sin2π(λ−u)

3λ

6N

(

2− 6γ2p′

π2(p′ − 1)

)

, (4.56)

where we recall the crossing relation T̄f(u) = Tf(λ−u). The constant φ0 was found to equal zero using
Tf(u = 0) = 1. This result is precisely (1.3) with c− 24∆ and ϑ(u) given in (4.11).

4.4 The dual series

In this subsection, we fix p = 1, so that λ = π(p′−1)
p′ , and consider p′ ∈ N>4. We also define λ̄ =

π − λ = π
p′ . We compute the 1

N term in (1.3) explicitly for N ≡ 0 mod 6, γ ∈
(

0, 2π
p′+1

)

and u in the

neighborhood of λ
2 .

4.4.1 Analyticity properties and symmetric Y -system

Our computer implementation outputs the patterns of zeros for the fused transfer matrices, for the
groundstate. For this case, the zeros do not appear precisely on vertical lines, in the complex u-plane,
in constrast with the other cases. We find that the zeros of T 1,0(u) for the groundstate lie in the region

Re(u) ∈ (− λ̄
2 ,

λ̄
2 ). We choose the center of its analyticity strip to be on the vertical line Re(u) = λ

2 − λ̄
4 .

We observe that there is a strip of width larger than λ̄ centered at this position where there are no
zeros. Likewise, our computer implementation reveals that T 2,0(u) has an analyticity strip of width
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T 1,0(u)

T 3,0(u)

T 2,0(u)

T 4,0(u)

T 4,4(u)

1− y(u)

Figure 6: The patterns of zeros for the groundstate of T (u) for N = 6, (p, p′) = (1, 5) and ω = 1, in the
complex u-plane. The horizontal axis is divided in units of λ̄ = π

5 . Each zero of T 4,4(u) and 1− y(u)
is triply degenerate. This degeneracy is lifted for ω 6= 1, with the zeros remaining on the same vertical
lines for ω on the unit circle. The diagram for 1 − y(u) only shows its zeros, and not its poles which
can be deduced from the zeros of the others functions.

larger than λ̄ centered at Re(u) = λ
2 +

λ̄
4 . In general, we observe that the function T n,0(u) has its zeros

in the region Re(u) ∈
( (n−2)λ̄

2 , nλ̄2
)

, and has an analyticity strip of width larger than λ̄ centered at

Re(u) = λ
2 + (n− 3

2)
λ̄
2 . The positions of the zeros and of the analyticity strips for T 0,n(u) are obtained

from those of T n,0(u) and the crossing relation (4.17). As a result, T 0,n(u) has an analyticity strip of

width larger than λ̄ centered at Re(u) = λ
2 + (n − 1

2)
λ̄
2 . Furthermore, T p′−1,p′−1(y) has its zeros on

the vertical line Re(u) = −2λ̄. To deduce the positions of the zeros and poles of all the functions of
the Y -system, we also need to know the position of the zeros of the function 1 − y(u), as we lack a
formula similar to (4.16) for this function. Our computer implementation reveals that its zeros lie on

the vertical line Re(u) = (p′−3)λ̄
2 . The patterns of zeros for N = 6, (p, p′) = (1, 5) and ω = 1 are given

in Figure 6.
This information allows us to read off the positions of the zeros and poles of the functions of the

Y -system. Let us describe the order-N poles and zeros. The function t1(u) has a zero of order N at
u = 0 and a pole of order N at u = λ̄. The function tn(u) with n = 2, . . . , p′ − 2 has no zeros of
order N , but has a pole of order N at u = nλ̄. Similarly, the function t̄1(u) has a zero at u = 0 and a
pole at u = (p′ − 1)λ. The function t̄n(u) has no zero of order N , but has a pole at u = (p′ − 1)λ. The
functions x(u), x̄(u), y(u) and z(u) have neither zeros nor poles of order N . The same applies to the
functions

(

1 + ωp′x(u)
)(

1 + x(u)
)(

1 + ω−p′x(u)
)

,
(

1 + ωp′ x̄(u)
)(

1 + x̄(u)
)(

1 + ω−p′ x̄(u)
)

and 1− y(u),
which are free of order-N zeros and poles. Finally, the function 1 − z(u) satisfies the identity (4.16)
and therefore has an order-N zero at u = (p′ − 1)λ̄.

The poles of these functions will play an important role in what follows, as some of them turn
out to lie inside the analyticity strips. We choose to work with the functions tn(u)−1, t̄n(u)−1, x(u)−1,
x̄(u) and

w(u) =
1− z(u)

z(u)
, w̄(u) =

y(u)

1− y(u)
. (4.57)

Our asymmetrical choice for x(u)−1 and x̄(u) might be surprising, but leads to the correct calculation
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width is larger than centered at

tn(u)−1, n 6 p′ − 3 λ̄ λ
2 + (n− 1

2)
λ̄
2

tp
′−2(u)−1 3λ̄

2
λ
2 + (p′ − 5

2)
λ̄
2

1 + tn(u)−1, n 6 p′ − 4 0 λ
2 + (n− 1

2)
λ̄
2

1 + tp
′−3(u)−1 λ̄

2
λ
2 + (p′ − 7

2)
λ̄
2

1 + tp
′−2(u)−1 λ̄

2
λ
2 + (p′ − 5

2)
λ̄
2

x(u)−1 2λ̄ λ
2 + (p′ − 1) λ̄2

(

1 + ωp′x(u)−1
)(

1 + x(u)−1
)(

1 + ω−p′x(u)−1
)

0 λ
2 + (p′ − 1) λ̄2

w(u) 0 λ
2 + (p′ − 1) λ̄2

1 + w(u) 0 λ
2 + (p′ − 1) λ̄2

t̄n(u)−1, n 6 p′ − 3 λ̄ λ
2 + (n+ 1

2)
λ̄
2

t̄p
′−2(u)−1 3λ̄

2
λ
2 + (p′ − 3

2)
λ̄
2

1 + t̄n(u)−1, n 6 p′ − 4 0 λ
2 + (n+ 1

2)
λ̄
2

1 + t̄p
′−3(u)−1 λ̄

2
λ
2 + (p′ − 5

2)
λ̄
2

1 + t̄p
′−2(u)−1 λ̄

2
λ
2 + (p′ − 3

2)
λ̄
2

x̄(u) 2λ̄ λ
2 + (p′ − 2) λ̄2

(

1 + ωp′ x̄(u)
)(

1 + x̄(u)
)(

1 + ω−p′ x̄(u)
)

0 λ
2 + (p′ − 2) λ̄2

w̄(u) λ̄ λ
2 + (p′ − 2) λ̄2

1 + w̄(u) 0 λ
2 + (p′ − 2) λ̄2

Table 6: The analyticity strips for the various functions.

of the finite-size corrections below. The Y -system equations (4.15) are then rewritten in terms of
these new functions. Our derivation below uses certain assumptions for the analyticity strips of these
functions. These are given in Table 6. Crucially, these analyticity strips are free of order-N zeros
and poles, with the exception of the order-N zeros of tp

′−2(u)−1 and w(u). The analyticity strips are
free of simple zeros, except for the functions w(u),

(

1 + ωp′x(u)−1
)(

1 + x(u)−1
)(

1 + ω−p′x(u)−1
)

and
(

1+ωp′x̄(u)
)(

1+ x̄(u)
)(

1+ω−p′ x̄(u)
)

. These functions all have simple zeros on the central line of the
analyticity strip. Moreover, the number of such zeros grows linearly with N .

As we shall see, the derivation below works despite the presence of the simple zeros in the central
line of the analyticity strips for these three functions. A key remark is that in the Y -system relations
that we will solve below, these three functions always appear at most once, instead of multiple times
with shifted arguments like the other functions. In the calculation below, the presence of their zeros
inside the analyticity strips will be addressed by shifting the arguments of the functions in the complex
plane, in such a way that the integration path does not cross these zeros.

We make a change of variables for the Y -system functions in such a way that the central lines of
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the analyticity strips coincide with the real axis:

tn(u)−1 = an
(

− iπ
λ̄

(

u− λ
2 − (n − 1

2 )
λ̄
2

)

)

, An(z) = 1 + an(z), n = 1, . . . , p′ − 2, (4.58a)

x(u)−1 = ap
′−1
(

− iπ
λ̄

(

u− λ
2 − (p′ − 1) λ̄2

)

)

, (4.58b)

Ap′−1(z) =
(

1 + ωp′ap
′−1(z)

)(

1 + ap
′−1(z)

)(

1 + ω−p′ap
′−1(z)

)

, (4.58c)

w(u) = ap
′

(

− iπ
λ̄

(

u− λ
2 − (p′ − 1) λ̄2

)

)

, Ap′(z) = 1 + ap
′

(z), (4.58d)

and

t̄n(u)−1 = ān
(

− iπ
λ̄

(

u− λ
2 − (n+ 1

2)
λ̄
2

)

)

, Ā
n
(z) = 1 + ān(z), n = 1, . . . , p′ − 2, (4.58e)

x̄(u) = āp
′−1
(

− iπ
λ̄

(

u− λ
2 − (p′ − 3) λ̄2

)

)

, (4.58f)

Ā
p′−1

(z) =
(

1 + ωp′ āp
′−1(z)

)(

1 + āp
′−1(z)

)(

1 + ω−p′ āp
′−1(z)

)

, (4.58g)

w̄(u) = āp
′

(

− iπ
λ̄

(

u− λ
2 − (p′ − 2) λ̄2

)

)

, Ā
p′
(z) = 1 + āp

′

(z). (4.58h)

In terms of these functions, the Y -system reads

an−1(z)an+1(z)

an(z − iπ
2 )a

n(z + iπ
2 )

=
An−1(z)An+1(z)

Ā
n
(z)

, (4.59a)

ap
′−3(z − iπ

4 )a
p′−1(z)āp

′−1(z − iπ)āp
′−1(z)ap

′

(z)

ap
′−2(z − 3iπ

4 )ap′−2(z + iπ
4 )ā

p′(z − iπ
2 )

=
Ap′−3(z − iπ

4 )A
p′−1(z)

Ā
p′−2

(z − iπ
4 )

, (4.59b)

ap
′−2(z + iπ

4 )ā
p′(z + iπ

2 )
(

āp
′−1(z)

)3
ap

′(z)
=

Ap′−2(z + iπ
4 )

Ā
p′−1

(z)
, (4.59c)

ap
′−1(z)

āp
′−1(z)

= Ap′(z), (4.59d)

and

ān−1(z)ān+1(z)

ān(z − iπ
2 )ā

n(z + iπ
2 )

=
Ā
n−1

(z)Ā
n+1

(z)

An(z)
, (4.59e)

āp
′−3(z + iπ

4 )
(

āp
′−1(z)

)2
ap

′

(z)

āp
′−2(z − iπ

4 )ā
p′−2(z + 3iπ

4 )ap′−1(z)ap′−1(z + iπ)āp
′

(z + iπ
2 )

=
Ā
p′−3

(z + iπ
4 )Ā

p′−1
(z)

Ap′−2(z + iπ
4 )

, (4.59f)

āp
′−2(z − iπ

4 )ā
p′(z − iπ

2 )

ap
′(z)

=
Ā
p′−2

(z − iπ
4 )

Ap′−1(z)
, (4.59g)

ap
′−1(z + iπ

2 )ā
p′(z)

āp
′−1(z − iπ

2 )
= Ā

p′
(z), (4.59h)

for n = 1, . . . , p′ − 2.
In terms of the variable z, the analyticity strips are horizontal and centered on the real line. For

an(z) and ān(z) with n = 1, . . . , p′ − 3, the width of the strips is iπ. Our computer implementation
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also reveals that, in the z-plane, the zeros of all the functions are symmetrically distributed between
the right and left half-planes, but not between the upper and lower half-planes. This implies that

an(z + iξ) = an(−z + iξ)∗, ān(z + iξ) = ān(−z + iξ)∗, z, ξ ∈ R. (4.60)

This is true for the groundstate eigenvalues, but not for arbitrary eigenstates of the transfer matrix.

4.4.2 Bulk and finite contributions

The eigenvalues of the transfer matrices are related to the Y -system functions by

T n,0
0 T n,0

1

T n+1,0
0 T n−1,0

1

= 1 + (tn0 )
−1, n = 1, . . . , p′ − 2, (4.61a)

T 0,p′−2
0 T 0,p′−2

1 w0

f−1T
p′−2,0
1 w̄0

= (1 + ωp′x−1
0 )(1 + x−1

0 )(1 + ω−p′x−1
0 ), (4.61b)

T 0,p′−1
0 T p′−1,0

1

T p′−2,0
1 T 0,p′−2

1

= 1 + w0, (4.61c)

and

T 0,n
0 T 0,n

1

T 0,n+1
0 T 0,n−1

1

= 1 + (t̄n0 )
−1, n = 1, . . . , p′ − 2, (4.61d)

T p′−2,0
1 T p′−2,0

2 (T 0,p′−2
1 )2w0

f−1(T
p′−1,0
1 )3w̄1

= (1 + ωp′ x̄1)(1 + x̄1)(1 + ω−p′x̄1), (4.61e)

T 0,p′−1
0 T p′−1,0

0 w̄0

T p′−2,0
1 T 0,p′−2

0

= 1 + w̄0. (4.61f)

The functions T n,0(u), T 0,n(u), w(u) and w̄(u) are written as the product of their bulk and finite
contributions:

T n,0(u) =
(

κn(u)
)N

T n
f (u), w(u) =

(

κw(u)
)N

wf(u), (4.62a)

T 0,n(u) =
(

κ̄n(u)
)N

T̄ n
f (u), w̄(u) =

(

κw̄(u)
)N

w̄f(u). (4.62b)

The bulk terms satisfy the functional equations

κn(u)κn(u− λ̄)

κn+1(u)κn−1(u− λ̄)
= 1, n = 1, . . . , p′ − 2, (4.63a)

κ̄p
′−2(u)κ̄p

′−2(u− λ̄)κw(u)

κp′−2(u− λ̄)κw̄(u)
=

sin(u− λ)

sinλ
, (4.63b)

κp
′−1(u− λ̄)κ̄p

′−1(u)

κp′−2(u− λ̄)κ̄p′−2(u− λ̄)
= 1, (4.63c)
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and

κ̄n(u)κ̄n(u− λ̄)

κ̄n+1(u)κ̄n−1(u− λ̄)
= 1, n = 1, . . . , p′ − 2, (4.63d)

κp
′−2(u− λ̄)κp

′−2(u− 2λ̄)
(

κ̄p
′−2(u− λ̄)

)2
κw(u)

(

κp′−1(u− λ̄)
)3
κw̄(u− λ̄)

=
sin(u− λ)

sinλ
, (4.63e)

κp
′−1(u)κ̄p

′−1(u)κw̄(u)

κp
′−2(u− λ̄)κ̄p

′−2(u)
= 1. (4.63f)

Likewise, the finite terms satisfy the functional relations

T n
f (u)T

n
f (u− λ̄)

T n+1
f (u)T n−1

f (u− λ̄)
= 1 + tn(u)−1, n = 1, . . . , p′ − 2, (4.64a)

T̄ p′−2
f (u)T̄ p′−2

f (u− λ̄)wf(u)

T p′−2
f (u− λ̄)w̄f(u)

=
(

1 + ωp′x(u)−1
)(

1 + x(u)−1
)(

1 + ω−p′x(u)−1
)

, (4.64b)

T̄ p′−1
f (u)T p′−1

f (u− λ̄)

T p′−2
f (u− λ̄)T̄ p′−2

f (u− λ̄)
= 1 + w(u), (4.64c)

and

T̄ n
f (u)T̄

n
f (u− λ̄)

T̄ n+1
f (u)T̄ n−1

f (u− λ̄)
= 1 + t̄n(u)−1, n = 1, . . . , p′ − 2, (4.64d)

T p′−2
f (u− λ̄)T p′−2

f (u− 2λ̄)
(

T̄ p′−2
f (u− λ̄)

)2
wf(u)

(

T p′−1
f (u− λ̄)

)3
w̄f(u− λ̄)

= (1 + ωp′ x̄(u− λ̄))(1 + x̄(u− λ̄))(1 + ω−p′ x̄(u− λ̄)),

(4.64e)

T̄ p′−1
f (u)T p′−1

f (u)w̄f(u)

T p′−2
f (u− λ̄)T̄ p′−2

f (u)
= 1 + w̄(u). (4.64f)

The initial conditions are κ0(u) = κ̄0(u) = sin(u−λ)
sinλ and T 0

f (u) = T̄ 0
f (u) = 1. For the finite terms, we

define

T n
f (u) = bn

(

− iπ
λ̄

(

u− λ
2 − (n− 3

2)
λ̄
2

)

)

, wf(u) = bp
′

(

− iπ
λ̄

(

u− λ
2 − (p′ − 1) λ̄2

)

)

, (4.65a)

T̄ n
f (u) = b̄

n
(

− iπ
λ̄

(

u− λ
2 − (n− 1

2)
λ̄
2

)

)

, w̄f(u) = b̄
p′
(

− iπ
λ̄

(

u− λ
2 − (p′ − 2) λ̄2

)

)

, (4.65b)

where n = 1, . . . , p′ − 1. We rewrite the relations (4.64) as

bn(z − iπ
2 )b

n(z + iπ
2 )

bn−1(z)bn+1(z)
= An(z), n = 1, . . . , p′ − 2, (4.66a)

b̄
p′−2

(z − 3iπ
4 )b̄

p′−2
(z + iπ

4 )b
p′(z)

bp
′−2(z − iπ

4 )b̄
p′
(z − iπ

2 )
= Ap′−1(z), (4.66b)

bp
′−1(z + iπ

4 )b̄
p′−1

(z − iπ
4 )

bp
′−2(z − iπ

4 )b̄
p′−2

(z + iπ
4 )

= Ap′(z), (4.66c)
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and

b̄
n
(z − iπ

2 )b̄
n
(z + iπ

2 )

b̄
n−1

(z)b̄
n+1

(z)
= Ā

n
(z), n = 1, . . . , p′ − 2, (4.66d)

bp
′−2(z + 3iπ

4 )bp
′−2(z − iπ

4 )
(

b̄
p′−2

(z + iπ
4 )
)2
bp

′

(z)
(

bp
′−1(z + iπ

4 )
)3
b̄
p′
(z + iπ

2 )
= Ā

p′−1
(z), (4.66e)

bp
′−1(z − iπ

4 )b̄
p′−1

(z + iπ
4 )b̄

p′
(z)

bp
′−2(z + iπ

4 )b̄
p′−2

(z − iπ
4 )

= Ā
p′
(z). (4.66f)

4.4.3 Non-linear integral equations

The functions an(z) and ān(z) have order-N zeros on the imaginary axis. We define new functions
ℓn(z) and ℓ̄n(z) where these order-N zeros are removed:

ℓn(z) =
an(z)

[

η
(

z − iπ
2 (p

′ − n− 3
2)
)

]N
, ℓp

′−1(z) = ap
′−1(z), ℓp

′

(z) =
ap

′

(z)
[

η(z)
]N

, (4.67a)

ℓ̄n(z) =
ān(z)

[

η
(

z + iπ
2 (p

′ − n− 3
2)
)

]N
, ℓ̄p

′−1(z) = āp
′−1(z), ℓ̄p

′

(z) = āp
′

(z), (4.67b)

where n = 1, . . . , p′ − 2 and
η(z) = tanh z

2p′−3 . (4.68)

In terms of the these functions, we have the Y -system relations

ℓ2(z)

ℓ1(z − iπ
2 )ℓ

1(z + iπ
2 )

=
A2(z)

Ā
1
(z)

×
[

η
(

z − iπ
2 (p

′ − 3
2)
)]N

, (4.69a)

ℓ̄2(z)

ℓ̄1(z − iπ
2 )ℓ̄

1(z + iπ
2 )

=
Ā
2
(z)

A1(z)
×
[

η
(

z + iπ
2 (p

′ − 3
2)
)]N

. (4.69b)

The other Y -system relations are obtained from the relations (4.59) for n > 1, by replacing the functions
an(z) and ān(z) on the left sides by the corresponding functions ℓn and ℓ̄n. As discussed in Section 4.4.5,
for generic values of ω, these functions have asymptotic values for z → ±∞ that are finite and nonzero.
We define the Fourier transform of their logarithmic derivative:

Ln(k) =
1

2π

∫

dz e−ikz
[

log ℓn(z)
]′
, An(k) =

1

2π

∫

dz e−ikz
[

logAn(z)
]′
, (4.70a)

L̄n(k) =
1

2π

∫

dz e−ikz
[

log ℓ̄n(z)
]′
, Ān(k) =

1

2π

∫

dz e−ikz
[

log Ā
n
(z)
]′
, (4.70b)

where n = 1, . . . , p′. Here the integrals are performed from −∞+iǫ1n to ∞+iǫ1n for the functions Ln and
An, and from −∞+iǫ2n to ∞+iǫ2n for the functions L̄n and Ān, for certain small real parameters ǫ1n, ǫ

2
n.

This allows the integration paths to avoid the zeros of the functions ap
′

(z), Ap′−1(z) and Ā
p′−1

(z) that
lie on the real line. (The other functions are all analytic and non-zero inside their respective analyticity
strips.) We shall see later that this peculiar form of the Fourier transforms is useful, with parameters ǫ1n
and ǫ2n that can be chosen separately for different values of n. It will moreover turn out to be useful for
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the calculation to choose ǫ1n and ǫ2n to be negative numbers for all values of n. The inverse transforms
are

(

log ℓn(z + iǫ1n)
)′
=

∫ ∞

−∞

dk eik(z+iǫ1n)Ln(k),
(

logAn(z + iǫ1n)
)′
=

∫ ∞

−∞

dk eik(z+iǫ1n)An(k), (4.71a)

(

log ℓ̄n(z + iǫ2n)
)′
=

∫ ∞

−∞

dk eik(z+iǫ2n)L̄n(k),
(

log Ā
n
(z + iǫ2n)

)′
=

∫ ∞

−∞

dk eik(z+iǫ2n)Ān(k). (4.71b)

We also compute the Fourier transforms

C(k) =
N

2π

∫ ∞

−∞

dz e−ikz
[

log η
(

z − iπ
2 (p

′ − 3
2 )
)]′

=
iN

2 cosh
(

πk
4 (2p′ − 3)

) , (4.72a)

C̄(k) =
N

2π

∫ ∞

−∞

dz e−ikz
[

log η
(

z + iπ
2 (p

′ − 3
2 )
)]′

= − iN

2 cosh
(

πk
4 (2p′ − 3)

) = −C(k). (4.72b)

The non-linear integral equations for the eigenvalues are obtained by first taking the Fourier
transform of the logarithmic derivative of the Y -system equations yielding
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. (4.73)

We note that the Y -system relations (4.59) are written in such a way that the functions ap
′

(z), Ap′−1(z)

and Ā
p′−1

(z) appear without shifts in their arguments. The calculation leading to (4.73) thus does not
require one to shift the path of integration for the Fourier transform of these functions, which would
be problematic because of the real zeros of these functions.

We denote by M̂ and N̂ the matrices on the left and right sides of (4.73). We invert M̂ and apply
it to both sides of (4.73) to find

(

~L
~̄L

)

= K̂ ·
(

~A
~̄A

)

+ M̂−1 ·
(

~C
~̄C

)

(4.74)
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where K̂ = M̂−1N̂ . The matrix elements of K̂ and M̂−1 can be computed explicitly. In particular, we
find that the matrix K̂ satisfies the symmetry

(σK̂)⊺ = σK̂
∣

∣

k→−k
, σ = diag(1, 1, . . . , 1, 1,−1,−1). (4.75)

Let us write K̂ as

K̂ =

(

K̂(11) K̂(12)

K̂(21) K̂(22)

)

(4.76)

where the matrices K̂(ij) have size p′ × p′. Their matrix entries can be computed explicitly. We find
that

lim
k→∞

K̂
(11)
p′−1,p′ = lim

k→∞
K̂

(12)
p′,p′−1 = 1, lim

k→−∞
K̂

(11)
p′,p′−1 = − lim

k→−∞
K̂

(21)
p′−1,p′ = 1. (4.77)

The other entries of K̂(ij) vanish for k → ±∞. We apply the inverse transform and find that the kernel
functions are

K(ij)
nm (z) =

1

2π

∫ ∞

−∞

dk eik(z+i(ǫin−ǫjm))K̂(ij)
nm , i = 1, 2, j = 1, 2. (4.78)

We choose the parameters ǫin such that

ǫ1p′−1 > ǫ1p′ > ǫ2p′−1. (4.79)

With this choice, the integrals (4.78) for K
(11)
p′−1,p′ , K

(11)
p′,p′−1, K

(12)
p′,p′−1 and K

(21)
p′−1,p′ are well-defined, as

their integrands vanish at both terminals. To apply the inverse transform of the terms involving C and
C̄, we compute the difference between the rows 1 and p′ + 1 of M̂−1. Let us define

∆n(k) = (M̂−1)n,1 − (M̂−1)n,p′+1, ∆̄n(k) = (M̂−1)n+p′,1 − (M̂−1)n+p′,p′+1, n = 1, . . . , p′.
(4.80)

These functions have the explicit expressions

∆n(k) =
sinh πk

2 (p′ − 1)

sinh 3πk
2 (p′ − 1)

×























− e
πk(2p′−2−n)

2 − e−
πk(2p′−2−n)

2 − e
πk(n−1)

2 − e−
πkn
2 + e−

πk(n+1)
2 n 6 p′ − 2,

− e
πk(2p′−3)

4 − e−
πk(2p′−3)

4 n = p′ − 1,

2 e
πk(2p′−3)

4 + e−
πk(2p′−3)

4 − e
πk(2p′−1)

4 + e−
πk(2p′−1)

4 n = p′,

(4.81a)
and

∆̄n(k) =
sinh πk

2 (p′ − 1)

sinh 3πk
2 (p′ − 1)

×























e
πk(2p′−2−n)

2 + e−
πk(2p′−2−n)

2 + e−
πk(n−1)

2 + e
πkn
2 − e

πk(n+1)
2 n 6 p′ − 2,

− e
πk(2p′−3)

4 − e−
πk(2p′−3)

4 n = p′ − 1,

− e
πk(2p′−1)

4 + e−
πk(2p′−1)

4 + e
πk(2p′−5)

4 − e−
πk(2p′−5)

4 n = p′.

(4.81b)
Using this data, we compute the inverse Fourier transforms

Cn(z) =

∫ ∞

−∞

dk eikzC(k)∆n(k). (4.82)
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These can be computed explicitly using the integral

I(z, α) =
∫ ∞

−∞

dk
eikzeαk sinh πk

2 (p′ − 1)

sinh 3πk
2 (p′ − 1) cosh πk

2 (p′ − 3
2)

=
2πi

1 + e−4(z−iα)

∑

j

Res

(

eik(z−iα) sinh πk
2 (p′ − 1)

sinh 3πk
2 (p′ − 1) cosh πk

2 (p′ − 3
2 )

, kj

)

(4.83)

where the sum runs over the poles kj of the integrand on the imaginary axis between k = 0 and k = 4i.
The resulting non-linear integral equations are

(

log an(z + iǫ1n)
)′

= fn(z + iǫ1n)
′ + Cn(z + iǫ1n)

+

p′
∑

m=1

K(11)
nm ∗ (logAm)′(z + iǫ1m) +K(12)

nm ∗ (log Ām
)′(z + iǫ2m), (4.84a)

(

log ān(z + iǫ2n)
)′

= f̄
n
(z + iǫ2n)

′ + C̄
n
(z + iǫ2n)

+

p′
∑

m=1

K(21)
nm ∗ (logAm)′(z + iǫ1m) +K(22)

nm ∗ (log Ām
)′(z + iǫ2m), (4.84b)

where n = 1, . . . , p′, and

fn(z) =















N log η
(

z − iπ
2 (p

′ − n− 3
2)
)

n = 1, . . . , p′ − 2,

0 n = p′ − 1,

N log η(z) n = p′,

(4.85a)

f̄
n
(z) =

{

N log η
(

z + iπ
2 (p

′ − n− 3
2)
)

n = 1, . . . , p′ − 2,

0 n = p′ − 1, p′.
(4.85b)

The convolution terms in (4.84) are symmetric, namely

(σK)⊺(z) = (σK)(−z), K(z) =

(

K(11)(z) K(12)(z)

K(21)(z) K(22)(z)

)

. (4.86)

4.4.4 Scaling functions and scaling non-linear integral equations

In (4.84), the dependence on N appears only in the driving terms. Crucially, the scaling behavior of the
functions fn, f̄

n
and Cn, C̄

n
is different. The former has a non-trivial exponential scaling behavior for z

of order ±(p′− 3
2 ) logN . The latter also has an exponential behavior, but for z of order ±3

2(p
′−1) logN .

This is the dominant scaling behavior, namely

lim
N→∞

fn
(

±(z + 3
2 (p

′ − 1) logN) + iǫ1n
)

= lim
N→∞

f̄
n(±(z + 3

2 (p
′ − 1) logN) + iǫ2n

)

= 0. (4.87)

The functions Cn(z) have different scaling behaviors in the two limits. We therefore define

Cn,±(z ± iǫ1n) = lim
N→∞

Cn
(

±(z + 3
2 (p

′ − 1) logN) + iǫ1n
)

, (4.88a)

C̄
n,±

(z ± iǫ2n) = lim
N→∞

C̄
n(±(z + 3

2 (p
′ − 1) logN) + iǫ2n

)

. (4.88b)
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These can be computed directly from the asymptotic behavior of I(z, α) at ±∞, which are respectively
dictated by the first and last pole in (4.83):

lim
N→∞

I
(

±(z + 3
2(p

′ − 1) logN), α
)

=
2 e−2(z∓iα)/(3(p′−1))

√
3(p′ − 1) sin(π6

p′

p′−1)
. (4.89)

After simplifiation, we find

Cn,ρ(z + iρ ǫ1n) = ρ
2 e−2(z+iρ ǫ1n)/(3(p

′−1))

√
3(p′ − 1)















2 e−ρ iπ(2p′−1)/(6(p′−1)) sin
(

πn
3(p′−1)

)

n = 1, . . . , p′ − 2,

−ρ i n = p′ − 1,
√
3 eρ iπ/3 n = p′.

(4.90a)
and

C̄
n,ρ

(z + iρ ǫ2n) = ρ
2 e−2(z+iρ ǫ2n)/(3(p

′−1))

√
3(p′ − 1)















2 eρ iπ(2p
′−1)/(6(p′−1)) sin

(

πn
3(p′−1)

)

n = 1, . . . , p′ − 2,

−ρ i n = p′ − 1,

2 sin
(

π
3(p′−1)

)

n = p′,

(4.90b)
where ρ ∈ {+,−}.

To compute the finite-size correction at order 1
N , we assume that the unknown functions appearing

in (4.84) are well-defined in these limits. We define both limits separately:

an,±(z ± iǫ1n) = lim
N→∞

an
(

±(z + 3
2(p

′ − 1) logN) + iǫ1n
)

, (4.91a)

An,±(z ± iǫ1n) = lim
N→∞

An
(

±(z + 3
2 (p

′ − 1) logN) + iǫ1n
)

, (4.91b)

ān,±(z ± iǫ2n) = lim
N→∞

ān
(

±(z + 3
2(p

′ − 1) logN) + iǫ2n
)

, (4.91c)

Ā
n,±

(z ± iǫ2n) = lim
N→∞

Ā
n(±(z + 3

2 (p
′ − 1) logN) + iǫ2n

)

, (4.91d)

where n = 1, . . . , p′. In the language of conformal field theory, the + and − limits correspond to
left-movers and right-movers, respectively. These satisfy the integral equations

log an,±(z ± iǫ1n)− φ±
n = gn,±(z ± iǫ1n) +

p′
∑

m=1

(

K(11)
nm ∗ logAm,±

)

(z ± iǫ1m) +
(

K(12)
nm ∗ log Ām,±)

(z ± iǫ2m),

(4.92a)

log ān,±(z ± iǫ2n)− φ̄±
n = ḡn,±(z ± iǫ2n) +

p′
∑

m=1

(

K(21)
nm ∗ logAm,±

)

(z ± iǫ1m) +
(

K(22)
nm ∗ log Ām,±)

(z ± iǫ2m),

(4.92b)

where φ±
n , φ̄

±
n are integration constants and

gn,ρ(z) = −ρ
3(p′ − 1)

2
Cn,ρ(z), ḡn,±(z) = −ρ

3(p′ − 1)

2
C̄
n,ρ

(z). (4.93)

We note that the overall sign ρ comes from the terms with derivatives in (4.84), which pick up an extra
minus sign for the ρ = − case.
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4.4.5 Braid and bulk behavior

The scaling functions have finite asymptotics for z → ±∞. For z → ∞, these are obtained directly
from the braid limits of the transfer matrix eigenvalues:

an,ρ∞ = ān,ρ∞ =
(ω1/2 − ω−1/2)(ω − ω−1)

(ωn/2 − ω−n/2)(ω(n+3)/2 − ω−(n+3)/2)
, n = 1, . . . , p′ − 2, (4.94a)

ap
′−1,ρ

∞ = (āp
′−1,ρ

∞ )−1 =
ω(p′+1)/2 − ω−(p′+1)/2

ω(p′−1)/2 − ω−(p′−1)/2
, (4.94b)

ap
′,ρ

∞ = (āp
′,ρ

∞ )−1 =
(ωp′ − ω−p′)(ω − ω−1)

(ω(p′−1)/2 − ω−(p′−1)/2)2
. (4.94c)

For γ ∈
(

0, 2π
p′+1

)

, these numbers are strictly positive and finite. These values allow us to compute

the constants φρ
n and φ̄ρ

n by studying the z → ∞ asymptotics of (4.92). We find that the constants all
vanish:

φρ
n = φ̄ρ

n = 0. (4.95)

Indeed, we have

φρ
n = lim

z→∞

[

log an,ρ(z + iρ ǫ1n)−
p′
∑

m=1

(

(K(11)
mn ∗ logAm,ρ)(z + iρ ǫ1m) + (K(12)

mn ∗ log Ām,ρ
)(z + iρ ǫ2m)

)

]

= log an,ρ∞ −
p′
∑

m=1

(

K̂(11)
mn (0) log Am,ρ

∞ + K̂(12)
mn (0) ∗ log Ām,ρ

∞

)

= 0. (4.96)

At the last step, we used the Y -system relations for the braid values, which is indeed described by the
matrices K̂(ij)(0). The same arguments apply to show that φ̄ρ

n is zero.
The behavior of the functions an,ρ(z) and ān,ρ(z) for z → −∞ is dictated by the driving terms in

the non-linear integral equations (4.92):

an,ρ−∞ = ān,ρ−∞ = 0, n = 1, . . . , p′. (4.97a)

We note that the bulk values for n = p′ − 1 vanish because we chose ǫ1p′−1 and ǫ2p′−1 to be negative
numbers.

4.4.6 Finite-size correction and the dilogarithm technique

We define the Fourier transform of the logarithmic derivative of the functions bn(z) and b̄
n
(z):

Bn(k) =
1

2π

∫

dz e−ikz
[

log bn(z)
]′
, B̄n(k) =

1

2π

∫

dz e−ikz
[

log b̄
n
(z)
]′
. (4.98)

These integrals are performed from −∞ to ∞, with imaginary shifts in the complex plane. The
integration paths then avoid the poles of the bp

′

(z) on the real line. For convenience, we choose that
these contours are not shifted for the eigenvalues of the elementary transfer matrix. Applying the
Fourier transform to the relations (4.66), we find

M ·
(

~B
~̄B

)

=

(

~A
~̄A

)

(4.99)
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with

M =
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. (4.100)

The matrix M−1 can be computed explicitly. The entries of its first row are

(M−1)1,n =
sinh πk

2 (p′ − 1)

sinh 3πk
2 (p′ − 1)



































































e
πk(2p′−2−n)

2 + e
πkn
2 + e−

πk(2p′−2−n)
2 n = 1, . . . , p′ − 2,

e
πk(2p′−3)

4 n = p′ − 1,

e−
πk(2p′−1)

4 − e
πk(2p′−3)

4 n = p′,

e−
πk(n−p′+1)

2 − e−
πk(n−p′−1)

2 n = p′ + 1, . . . , 2p′ − 2,

− e
πk(2p′−3)

4 n = 2p′ − 1,

e
πk(2p′−1)

4 − e
πk(2p′−5)

4 n = 2p′.
(4.101)

As a result, we find

log b1(z)− φ0 =

p′
∑

n=1

(

K̃n ∗ logAn
)

(z + iǫ1n) +
( ˜̄Kn ∗ log Ān)

(z + iǫ2n) (4.102)

where φ0 is a constant and

K̃n(z) =
1

2π

∫ ∞

−∞

dk eik(z−iǫ1n)M−1
1,n ,

˜̄Kn(z) =
1

2π

∫ ∞

−∞

dk eik(z−iǫ2n)M−1
1,n+p′ , (4.103)

with n = 1, . . . , p′. These can be computed using the integral

1

2π

∫ ∞

−∞

dk eikzeαk
sinh πk

2 (p′ − 1)

sinh 3πk
2 (p′ − 1)

=
1

π
√
3(p′ − 1)

sinh z−iα
3(p′−1)

sinh z−iα
p′−1

. (4.104)

Writing the convolution integrals explicitly, we find

log b1(z)− φ0 =

∫ ∞

− 3
2
(p′−1) logN

dy

[ p′
∑

n=1

K̃n

(

z − y − 3
2 (p

′ − 1) logN
)

logAn
(

y + 3
2(p

′ − 1) logN + iǫ1n
)

+ ˜̄Kn

(

z − y − 3
2(p

′ − 1) logN
)

log Ā
n(
y + 3

2(p
′ − 1) logN + iǫ2n

)

+ K̃n

(

z + y + 3
2(p

′ − 1) logN
)

logAn
(

− y − 3
2(p

′ − 1) logN + iǫ1n
)
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+ ˜̄Kn

(

z + y + 3
2(p

′ − 1) logN
)

log Ā
n(− y − 3

2(p
′ − 1) logN + iǫ2n

)

]

≃ 1

N

∫ ∞

−∞

dy

[ p′
∑

n=1

K̃−
n (−z + y) logAn,+(y + iǫ1n) +

˜̄K−
n (−z + y) log Ā

n,+
(y + iǫ2n)

+ K̃+
n (z + y) logAn,−(y − iǫ1n) +

˜̄K+
n (z + y) log Ā

n,−
(y − iǫ2n)

]

(4.105)

where we defined

K̃±
n (z) = lim

N→∞
NK̃n

(

±(z+ 3
2(p

′−1) logN)
)

, ˜̄K±
n (z) = lim

N→∞
N ˜̄Kn

(

±(z+ 3
2(p

′−1) logN)
)

. (4.106)

These can be computed explicitly:

K̃ρ
n(z) =

ρ ie−2(z−iρ ǫ1n)/(3(p
′−1))

√
3π(p′ − 1)















2 e−ρ iπ/3 sin
(

πn
3(p′−1)

)

n = 1, . . . , p′ − 2,

e−ρ iπ/(6(p′−1)) n = p′ − 1,

−
√
3 e−ρ iπ/(6(p′−1)) n = p′,

(4.107a)

˜̄Kρ
n(z) = −ρ ie−2(z−iρ ǫ2n)/(3(p

′−1))

√
3π(p′ − 1)















2 e−ρ iπ/3 sin
(

πn
3(p′−1)

)

n = 1, . . . , p′ − 2,

e−ρ iπ/(6(p′−1)) n = p′ − 1,

−2 eρ iπ(2p
′−3)/(6(p′−1)) n = p′,

(4.107b)

with ρ ∈ {+,−}.
To apply the dilogarithm technique, we define the integrals

J ρ =

∫ ∞

−∞

dy

[ p′
∑

n=1

σn
(

(log an,ρ)′ logAn,ρ − log an,ρ(logAn,ρ)′
)

+ σ̄n
(

(log ān,ρ)′ log Ā
n,ρ − log ān,ρ(log Ā

n,ρ
)′
)

]

. (4.108)

where

σn = 1, σ̄n =

{

1 n = 1, . . . , p′ − 2,

−1 n = p′ − 1, p′,
(4.109)

are the diagonal entries of the matrix σ defined in (4.75). In (4.108), the arguments of the functions
an,ρ,An,ρ and ān,ρ, Ā

n,ρ
are omitted and understood to be y + iρ ǫ1n and y + iρ ǫ2n, respectively.

We evaluate J ρ in two ways. The first consists of replacing log an,ρ and log ān,ρ by their
expressions (4.92). Many terms cancel out because of the symmetries (4.86) of the kernel. The only
surviving contributions come from the driving terms, and the result reads

J ρ = 2

∫ ∞

−∞

dy

[ p′
∑

n=1

σn
(

gn,ρ
)′
logAn,ρ + σ̄n

(

ḡn,ρ
)′
log Ā

n,ρ
]

, (4.110)

where the functions gn,ρ and ḡn,ρ have the arguments y+ ρi ǫ1n and y+ iρ ǫ2n respectively. Up to overall
prefactors, these are precisely the integrals we wish to compute in (4.105). This is due to the relation

(

K̃ρ
n(z)

˜̄Kρ
n(z)

)

=
e−ρ iπp′/(6(p′−1))

2π

(

σn
(

gn,−ρ(z)
)′

σ̄n
(

ḡn,−ρ(z)
)′

)

, ρ = +,−. (4.111)
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This yields

log b1(z) − φ0 =
1

4πN

(

e(4z+iπp′)/(6(p′−1))J + + e−(4z+iπp′)/(6(p′−1))J−
)

. (4.112)

The second way of computing the integral is to apply the derivatives explicitly, which yields

J ρ =

∫ ∞

−∞

dy

[ p′−2
∑

n=1

dan,ρ

dy

(

logAn,ρ

an,ρ
− log an,ρ

An,ρ

)

+

p′−2
∑

n=1

dān,ρ

dy

(

log Ā
n,ρ

ān,ρ
− log ān,ρ

Ā
n,ρ

)

+
dap

′−1,ρ

dy

(

logAp′−1,ρ

ap′−1,ρ
− dAp′−1,ρ

dap′−1,ρ

log ap
′−1,ρ

Ap′−1,ρ

)

+
dap

′,ρ

dy

(

logAp′,ρ

ap′,ρ
− log ap

′,ρ

Ap′,ρ

)

(4.113)

− dāp
′−1,ρ

dy

(

log Ā
p′−1,ρ

āp′−1,ρ
− dĀ

p′−1,ρ

dāp′−1,ρ

log āp
′−1,ρ

Ā
p′−1,ρ

)

− dāp
′,ρ

dy

(

log Ā
p′,ρ

āp′,ρ
− log āp

′,ρ

Ā
p′,ρ

)]

.

Dividing the integral in six parts and changing the integration variables from y to an,ρ and ān,ρ, we
find

J ρ =

p′−2
∑

n=1

∫ an,ρ
∞

an,ρ
−∞

dan,ρ
(

logAn,ρ

an,ρ
− log an,ρ

An,ρ

)

+

p′−2
∑

n=1

∫ ān,ρ
∞

ān,ρ
−∞

dān,ρ
(

log Ā
n,ρ

ān,ρ
− log ān,ρ

Ā
n,ρ

)

(4.114)

+

∫ ap′−1,ρ
∞

ap′−1,ρ
−∞

dap
′−1,ρ

(

logAp′−1,ρ

ap′−1,ρ
− dAp′−1,ρ

dap′−1,ρ

log ap
′−1,ρ

Ap′−1,ρ

)

+

∫ ap′,ρ
∞

ap′,ρ
−∞

dap
′,ρ

(

logAp′,ρ

ap′,ρ
− log ap

′,ρ

Ap′,ρ

)

−
∫ āp′−1,ρ

∞

āp′−1,ρ
−∞

dāp
′−1,ρ

(

log Ā
p′−1,ρ

āp
′−1,ρ

− dĀ
p′−1,ρ

dāp
′−1,ρ

log āp
′−1,ρ

Ā
p′−1,ρ

)

−
∫ āp′,ρ

∞

āp′,ρ
−∞

dāp
′,ρ

(

log Ā
p′,ρ

āp
′,ρ

− log āp
′,ρ

Ā
p′,ρ

)

where

An,ρ = 1 + an,ρ, Ā
n,ρ

= 1 + ān,ρ, n = 1, 2, . . . , p′ − 2, p′, (4.115a)

Ap′−1,ρ = (1 + ωp′ap
′−1,ρ)(1 + ap

′−1,ρ)(1 + ω−p′ap
′−1,ρ), (4.115b)

Ā
p′−1,ρ

= (1 + ωp′ āp
′−1,ρ)(1 + āp

′−1,ρ)(1 + ω−p′ āp
′−1,ρ). (4.115c)

We note that in order to go from (4.113) to (4.114), which only involves integrals with real terminals,
one must consider how the functions an(y+iǫ1n) and ān(y+iǫ2n) wind around the points 0 and −1, where
the integrand has poles. Here we observe using our computer implementation that the only functions
with a non-trivial winding are the functions ap

′−1 and āp
′−1. For ǫ1p′−1, ǫ

2
p′−1 < 0, they do not wind

around the point −1, but they do wind around the origin. They in fact both wind around this point
the same number of times and in the same direction. Because their contributions in (4.113) come with
opposite signs, the resulting residues cancel out and the result (4.114) is indeed correct.

The resulting expressions for J ρ are therefore a combination of regular integrals. They are in fact
equal for both values of ρ. Setting ω = eiγ , they evaluate to

J ρ =
π2

3

(

2− 6γ2p′

π2

)

=
π2

3

(

2− 6γ2

π(π − λ)

)

, γ ∈
(

0, 2π
p′+1

)

. (4.116)

The proof of this result is given in Appendix A.2.6. The final result is

log b(z)− φ0 ≃
π cosh 4z+iπp′

6(p′−1)

6N

(

2− 6γ2p′

π2

)

, (4.117)
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and therefore

log Tf(u) ≃
π sin 2πu

3λ

6N

(

2− 6γ2p′

π2

)

, log T̄f(u) ≃
π sin 2π(λ−u)

3λ

6N

(

2− 6γ2p′

π2

)

, (4.118)

where we used the crossing relation T̄f(u) = Tf(λ− u). The constant φ0 was found to equal zero using
Tf(u = 0) = 1. This result is precisely (1.3) with c− 24∆ and ϑ(u) given in (4.11).

5 Conclusion

In this paper, we computed the groundstate finite-size corrections for the twisted A
(1)
1 , A

(1)
2 , A

(2)
2 vertex

and loop models at roots of unity. This was achieved by converting the recently obtained Y -systems
into nonlinear integral equations in the form of TBA equations. Using various dilogarithm identities,
stated and proved in Appendix A, these can be solved analytically for the conformal data c − 24∆
with the methods of Klümper and Pearce. Here c is the central charge and ∆ is the conformal weight
associated with the groundstate. The resulting expressions for the principal and dual series are in
agreement with previous analytic results for the central charges and conformal weights obtained by
different methods.

Strictly speaking, one cannot obtain separately the central charge c and the conformal weights ∆
from the finite-size correction, as only the difference c − 24∆ can be measured. Without further
information, there are two possible consistent interpretations of this conformal data. The first
interpretation is that the continuum scaling limit of a twisted model is described by a unitary CFT. In
this interpretation, this CFT describes a lattice model labeled by a pair (λ, γ). The minimal conformal
weight associated with the groundstate is ∆ = ∆min = 0. The quantity c − 24∆ appearing in the
finite-size correction on the right sides of (1.7) is then simply the central charge c(λ, γ) of the (λ, γ)
model. This is the usual interpretation for vertex models with generic parameters.

A second interpretation is possible, where the conformal field theories, instead of being labeled by
pairs (λ, γ), are labeled by the single parameter λ. The groundstate of the theory then corresponds to
a special choice γ = γ∗ of the twist parameter, and is assumed to have the conformal weight ∆ = 0.
This second interpretation is for instance appropriate for the loop models whose continuum scaling
limits are described by logarithmic CFTs. In such cases, the twist γ = γ∗ is usually tuned to ensure
the equality of the contractible and non-contractible fugacities α = β. For the loop models considered
here, the required specialisations for the twist parameter γ are given in (1.5). The central charges
c(λ) of the corresponding logarithmic CFTs are then obtained from the differences c− 24∆ in (1.7) by
specialising to γ = γ∗:

A
(1)
1 : c(λ) = 1− 6λ2

π(π − λ)
, 0 < λ < π, (5.1a)

A
(1)
2 : c(λ) = 2− 6λ2

π(π − λ)
, 0 < λ < π, (5.1b)

A
(2)
2 : c(λ) =















1− 3(π − 4λ)2

π(π − 2λ)
, 0 < λ < π

2 ,

3

2
− 3(3π − 4λ)2

2π(π − λ)
, 2π

3 < λ < π.

(5.1c)

They depend only on λ. The other values of γ are then described in the CFT in terms of the presence of
fields in the theory. On the cylinder, setting the fugacity α 6= β to non-contractible loops corresponds
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to inserting a field at infinity that has a conformal dimension ∆(λ, γ). The differences appearing in
(1.7) are then equal to c(λ)− 24∆(λ, γ), allowing us to solve for ∆(λ, γ).

This second interpretation also produces a consistent framework for the vertex models. In this
case, the special value of the twist parameter is γ∗ = 0 and corresponds to the untwisted model. The
corresponding central charges c(λ) of the vertex model are obtained by specialising (1.7) to this value,

A
(1)
1 : c(λ) = 1, 0 < λ < π, (5.2a)

A
(1)
2 : c(λ) = 2, 0 < λ < π, (5.2b)

A
(2)
2 : c(λ) =

{

1, 0 < λ < π
2 ,

3
2 ,

2π
3 < λ < π.

(5.2c)

They are independent of λ. On the cylinder, a non-zero value for the twist γ is then accounted for
in the CFT by the insertion of a field at infinity with a conformal dimension ∆(λ, γ). The differences
appearing in (1.7) are again equal to c(λ)− 24∆(λ, γ), allowing us to solve for ∆(λ, γ).

By analysing just the groundstate, we have found results consistent with the known finite-size

corrections of the twisted A
(1)
1 , A

(1)
2 , A

(2)
2 vertex and loop models. The advantage of the current

methods, however, is that they can be applied very generally to calculate the conformal energies of
all finite excitations and hence conformal partition functions. This was achieved in the case of critical
bond percolation on the square lattice LM(2, 3) [28]. In principle, this analysis can also be applied
to critical site percolation on the triangular lattice. This is the limiting case DLM(2, 3) [37] of the

A
(2)
2 loop model with λ → π

3 , where the limit is taken after the face operator is renormalised to remove
the factors sin 3λ in the denominators. This mapping of the usual lattice model of site percolation to
the loop model is described in [35]. The analysis of finite excitations and conformal partition functions
of site percolation would provide a highly nontrivial test of the meaning of universality in the setting
of these logarithmic CFTs. We hope to return to this problem at a later time.

Although we focussed on the principal and dual series, it is expected that the methods of this
paper will generalize to all non-principal series described by fractional values of λ

π . In the context of

the A
(1)
1 models, this entails solving the so-called “snake” Y -systems discussed in [73,74]. For the A

(1)
2

and A
(2)
2 models, the analog of the “snake” Y -systems are not yet known. It will be interesting to

derive these systems of functional equations and to study prototypical examples. Lastly, it would also

be of interest to apply these techniques to the A
(2)
2 models in the non-compact regime (π2 < λ < 2π

3 ),
where many eigenvalues share the same 1

N finite-size correction and the degeneracy is only lifted at
order 1

N(B+logN)2
, for some constant B [21].
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A Proofs of the dilogarithm identities

A.1 Solution for the general case

A.1.1 Standardised non-linear integral equations

For studying the finite-size corrections of the eigenvalues, we obtained non-linear integral equations for
the functions an(z). These take the general form

log an(z) = dn(z) +
∑

m

Kn,m ∗ logAm(z), (A.1)

where K is a kernel matrix with sufficiently well-behaved entries Kn,m. The argument z of the
convolution, indicated by ∗, must not be misunderstood as the argument of the second function of
the convolution. The objects dn(z) are explicit driving terms depending on the argument z.

For most values of n, the functions An are related to an as

An(z) = 1 + an(z). (A.2)

In certain special cases, the function An(z) is defined as An(z) = 1− an(z). Finally, in each of the six
derivations performed in Sections 2 to 4, one of the functions An(z) is defined as a quadratic or cubic
polynomial in an(z):

Aρ−1(z) =
∏

j

(

1 + ωρja(z)
)

, ρ =

{

p′, A
(1)
1 , A

(1)
2 ,

b, A
(2)
2 .

(A.3)

The first step of our calculation will be to recast these non-linear integral equations in a
standardised form where the functions An(z) are defined as An(z) = Fn

(

an(z)
)

with Fn(a) either

equal to 1 + a or 1 − a for all n. This will be achieved by defining new functions a(ρ−1,j)(z) and
A(ρ−1,j)(z) in such a way that the function Aρ−1(z) in (A.3) takes the form

Aρ−1(z) =
∏

j

A(ρ−1,j)(z), A(ρ−1,j)(z) = 1 + a(ρ−1,j)(z), a(ρ−1,j)(z) = ωρja(z). (A.4)

The non-linear integral equations are then easily rewritten in terms of these new functions. They are
in fact precisely of the form (A.1), where the indices n and m in this equation are allowed to take the
values (ρ−1, j) in addition to the usual integer values (with the value ρ−1 now removed). The resulting
non-linear integral equation for a(ρ−1,j)(z) has a term proportional to jρ log ω on the right-hand side,
which for convenience we incorporate in the driving term d(z) in (A.1).

We will further use the fact that the kernel matrix K is symmetric: K⊺(−z) = K(z). In three of
the cases to be treated, K is not symmetric, but there exists a set of numbers σn ∈ {+1,−1} such that
the product of the diagonal matrix σ = diag(σ1, σ2, . . . ) with K is a symmetric kernel matrix:

(σK)⊺(−z) = σK(z). (A.5)

In standard cases, the matrix σ is simply the identity matrix. From the derivations of Sections 2 to 4,
we observe that in the cases with σn = −1, the corresponding function Fn(a) may equal 1− a or 1+ a.
We therefore write generally

Fn(a) = 1 + εna (A.6)

where εn ∈ {+1,−1}.
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For the study of the finite-size corrections to the eigenvalues, we make use of the observation that
a suitable scaling limit of the functions an(z) exists. To this end, we look at the scaling limit of the
driving terms dn(z) upon replacing z by z + r logN , for a suitable choice of the constant r, and take
the limit N → ∞. We have

dn(z) = lim
N→∞

dn(z + r logN) = −δne−z/r + φn(ω) (A.7)

where δn has a non-negative real part. The extra terms φn(ω) are independent of z and are present only
when n takes the values (ρ − 1, j) with j 6= 0. We now assume that the scaling limit of the functions
an also exists:

an(z) = lim
N→∞

an(z + r logN). (A.8)

These functions satisfy the integral equations

log an(z) = dn(z) +
∑

m

Kn,m ∗ logAm(z). (A.9)

Of course, these are still non-linear because of the same relations between an and An as between an

and An. We are not able to solve these equations in a general manner. Yet, we will evaluate exactly a
certain integral involving the auxiliary functions logAn. The necessary manipulations use among other
properties the symmetry (A.5) of the matrix σK(z).

A.1.2 First use of the kernel’s symmetry: derivation of the integral identity

We treat the most general case where σ is the diagonal matrix diag(σ1, σ2, . . . ). We take the derivative
of (A.9) with respect to the argument z, which is indicated by a prime ′, and multiply with σ. To show
the structure of the equation most clearly, we suppress in the formula the explicit dependence on z:

σn (log an)′ = σn(dn)′ +
∑

m

(σK)n,m ∗ (logAm)′. (A.10)

Next we multiply by the function logAn, sum over n and integrate over the argument z from −∞ to
∞. We indicate this last operation by the short-hand notation

∫

, omitting the integration terminals
and the infinitesimal factor dz. This yields

∫

∑

n

σn (logAn) (log an)′ =

∫

∑

n

σn (logAn) (dn)′ +

∫

∑

n,m

(logAn) (σK)n,m ∗ (logAm)′. (A.11)

Next we take (A.9) as it is and multiply it with σ. Then we multiply this by the derivative of the
function logAn with respect to z, sum over n and integrate:

∫

∑

n

σn (logAn)′ (log an) =

∫

∑

n

σn (logAn)′ (dn) +

∫

∑

n,m

(logAn)′ (σK)n,m ∗ (logAm). (A.12)

A most important observation is that the two double integrals in (A.11) and (A.12) are identical: due
to the symmetry (A.5), the integrals turn into each other upon simultaneously exchanging the discrete
summation variables n,m and the two (not shown) variables of integration. Hence the difference of
(A.11) and (A.12) yields an identity of single integrals

∫

∑

n

σn
[

(logAn) (log an)′ − (logAn)′ (log an)
]

=

∫

∑

n

σn
[

(logAn) (dn)′ − (logAn)′ (dn)
]

. (A.13)
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The merits of this equation are two-fold: (i) the left-hand side can be evaluated as it is an integral
over a perfect differential, and (ii) the right-hand side is closely related to the amplitude of the 1/N
finite-size correction term of the eigenvalue. Let us look at the integrals on the left-hand side and show
the dependence on z explicitly:

lhs of (A.13) =
∑

n

σn

∫

dz
[

(

logAn(z)
)(

log an(z)
)′ −

(

logAn(z)
)′(

log an(z)
)

]

. (A.14)

Here we perform a change of the variable of integration from z to the functions an respectively An.
With (an)′dz = dan and (An)′dz = dAn, we obtain

lhs of (A.13) =
∑

n

σn

∫ [

dan
logAn

an
− dAn log a

n

An

]

. (A.15)

The variables an and An are related by the simple function Fn in (A.6). Here we find for the left-hand
side of (A.13)

lhs of (A.13) =
∑

n

σn

∫ an(∞)

an(−∞)
da

[

log(1 + εna)

a
− εn

log a

1 + εna

]

, (A.16)

where we specified the terminals of the integrals and replaced the variables of integration an by a
uniformized variable a. We will evaluate these integrals explicitly as we have explicit expressions
for the terminals an(±∞). However a suitable mathematical reasoning will replace the cumbersome
calculations.

Before treating the expression (A.16), we want to slightly simplify the right-hand side of (A.13).
An integration by parts yields

rhs of (A.13) = 2

∫

∑

n

σn (logAn(z)) (dn(z))′dz −
∑

n

σn (logAn(z)) (dn(z))
∣

∣

∣

∞

−∞
. (A.17)

The surface term may look delicate as certain factors dn(z) diverge to −∞ for z → −∞. However,
in such cases, the corresponding function an(z) tends to zero in this same limit, the factor logAn(z)
vanishes much faster than dn(z) diverges, and the product

(

logAn(z)
)

dn(z) converges to zero. It
appears that the exponentials in (A.7) drop out in the surface term, and the constants φn(ω) naturally
drop out in the integral term resulting in

rhs of (A.13) =
2

r

∫

dz e−z/r
∑

n

σnδn logAn(z)−
∑

n

σnφn(ω) log An(z)
∣

∣

∣

∞

−∞
. (A.18)

Let us state the intermediate result

2

r

∫

dz e−z/r
∑

n

σnδn logAn(z)−
∑

n

σnφn(ω) logAn(z)
∣

∣

∣

∞

−∞

=
∑

n

σn

∫ an(∞)

an(−∞)
da

[

log(1 + εna)

a
− εn

log a

1 + εna

]

=: I(ω). (A.19)

In the next subsection, we will show how to evaluate this sum of dilogarithmic integrals. Here we like
to mention, without using it for the evaluation, a compact way of writing the integrals in terms of the
Rogers dilogarithm [75–77]

L(z) = Li2(z)+
1

2
log z log(1−z) = −1

2

∫ z

0
da

[

log(1− a)

a
+

log a

1− a

]

, z ∈ C\(−∞, 0]∪ [1,∞). (A.20)
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This is most obvious for the terms in (A.19) with εn = −1:

∫ an(∞)

an(−∞)
da

[

log(1− a)

a
+

log a

1− a

]

= −2L(z)

∣

∣

∣

∣

an(∞)

an(−∞)

. (A.21)

For terms in (A.19) with εn = +1 we have:

∫ an(∞)

an(−∞)
da

[

log(1 + a)

a
− log a

1 + a

]

= 2L

(

z

1 + z

) ∣

∣

∣

∣

an(∞)

an(−∞)

. (A.22)

This is proven by taking the derivative of 2L
(

z
1+z

)

and finding the integrand of the left-hand side. In
total, we obtain

1

2
I(ω) =

∑

nwith
εn=+1

σnL

(

z

1 + z

) ∣

∣

∣

∣

an(∞)

an(−∞)

−
∑

nwith
εn=−1

σnL (z)

∣

∣

∣

∣

an(∞)

an(−∞)

. (A.23)

A.1.3 Second use of the kernel’s symmetry: evaluation of the sum of dilogarithms

Now let us evaluate I(ω). We will see that in all of the cases of interest to us this quantity is independent
of ω. Furthermore we will see that an evaluation at ω = ∞ is done most economically. We take the
derivative of I(ω) and note that just the integration terminals depend on ω, hence

d

dω
I(ω) =

∑

n

σn

[(

d

dω
log an(+∞)

)

logAn(+∞)−
(

log an(+∞)
) d

dω
logAn(+∞)

]

−
∑

n

σn

[(

d

dω
log an(−∞)

)

logAn(−∞)−
(

log an(−∞)
) d

dω
logAn(−∞)

]

. (A.24)

This expression can be simplified by a second use of the fact that the integral kernel K in (A.9) is
symmetric after multiplication by σ, as in (A.5). We take the limit z → +∞ in (A.9):

log an(+∞) = φn(ω) +
∑

m

κn,m · logAm(+∞), (A.25)

where the convolution turned into a simple multiplication with the number κn,m =
∫∞

−∞
dz Kn,m(z).

We note that the matrix σκ is symmetric. We take the derivative of (A.25) with respect to ω, multiply
with σn and find

σn d

dω
log an(+∞) = σn d

dω
φn(ω) +

∑

m

(σκ)n,m
d

dω
logAm(+∞). (A.26)

Next we multiply with logAn(+∞) and sum over n:

∑

n

σn logAn(∞)
d

dω
log an(∞) =

∑

n

σn logAn(∞)
d

dω
φn(ω) +

∑

n,m

logAn(∞)(σκ)n,m
d

dω
logAm(∞).

(A.27)
Then we take (A.25), multiply with σn d

dω logAn(+∞) and sum over n:

∑

n

σn d

dω

(

logAn(∞)
)

log an(∞) =
∑

n

σn d

dω

(

logAn(∞)
)

φn(ω)+
∑

n,m

d

dω

(

logAn(∞)
)

(σκ)n,m logAm(∞).

(A.28)
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Similarly to above, we see that the double sums on the right-hand sides of (A.27) and (A.28) are
identical. Hence the difference of both equations yields

∑

n

σn

[

logAn(∞)
d

dω
log an(∞)− d

dω
(logAn(∞)) log an(∞)

]

=
∑

n

σn

[

logAn(∞)
d

dω
φn(ω)− d

dω
(logAn(∞))φn(ω)

]

. (A.29)

A similar equation holds in the limit z → −∞:

∑

n

σn

[

logAn(−∞)
d

dω
log an(−∞)− d

dω
(logAn(−∞)) log an(−∞)

]

=
∑

n

σn

[

logAn(−∞)
d

dω
φn(ω)− d

dω
(logAn(−∞))φn(ω)

]

. (A.30)

In deriving this equation, driving terms dn(z) = −δne−z/r + φn(ω) appear which differ (especially in
the limit z → −∞) from φn(ω). This happens for instance in the counterpart of (A.25) for the cases
with Re(δn) > 0 (the case Re(δn) < 0 does not occur). For these cases, logAn(−∞) is zero and
its product with the exponential driving terms (and other terms) consistently vanishes in the limit
z → −∞, ensuring that the possibly problematic extra terms drop out.

For (A.24), we find with (A.29) and (A.30)

d

dω
I(ω) =

∑

n

σn

[

logAn(z)
d

dω
φn(ω)− d

dω
(logAn(z))φn(ω)

]

∣

∣

∣

∣

∣

∞

−∞

. (A.31)

Let us focus first on the A
(1)
1 and A

(2)
2 models. In our concrete calculations below, we will find that for

only two values of the index n, say p and m, the term φn(ω) is non-zero. These will in fact correspond
to some of the indices (ρ− 1, j) that appear in our standardisation procedure of the non-linear integral
equations, as described in Appendix A.1.1. In these two cases, we will find that φn(ω) for n = p and
m are equal up to a sign: φm(ω) = −φp(ω). Furthermore we have σp = σm =: σp,m in all cases. Hence

d

dω
I(ω) = σp,m

[

log
Ap(z)

Am(z)

d

dω
φp(ω)− d

dω

(

log
Ap(z)

Am(z)

)

φp(ω)

]

∣

∣

∣

∣

∣

∞

−∞

. (A.32)

Here the sum over copies is trivial for the A
(1)
1 and A

(2)
2 models, and covers the unbarred and barred

functions for the A
(1)
2 model. Concrete calculations reveal that log

(

Ap(±∞)/Am(±∞)
)

and φp(ω) are
of the form µ± logω and ν log ω for certain constants µ± and ν. Therefore the right-hand side of (A.32)
is clearly zero. We rewrite (A.19) as

2

r

∫

dz e−z/r
∑

n

σnδn logAn(z) = I(ω)+σp,mν(µ+−µ−)(log ω)
2 = I(∞)−σp,mν(µ+−µ−)γ

2. (A.33)

where finally we have inserted the physical value ω = eiγ except in I(ω), which is independent of ω,
and where ω = ∞ will lead to a simpler computation scheme.

For the A
(1)
2 model, the same arguments apply, except that there are four functions with non-

zero values of φn(ω) and φ̄n(ω), namely a(p
′−1,j) and ā(p

′−1,j) with j = +1,−1. In this case, we have
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two functions I(w) and Ī(w), with the latter defined similarly to (A.19) but with σn, εn replaced by
σ̄n, ε̄n and the integration terminals set to ān(±∞). The above proof generalises to show that the sum
I(w) + Ī(w) is independent of ω. Moreover, we have

log
(

Ap(±∞)/Am(±∞)
)

= µ± log ω, φp/m(ω) = ±ν logω, σp = σm =: σp,m, (A.34a)

log
(

Ā
p
(±∞)/Ā

m
(±∞)

)

= µ̄± log ω, φ̄p/m(ω) = ±ν̄ logω, σ̄p = σ̄m =: σ̄p,m, (A.34b)

which yields

2

r

∫

dz e−z/r

(

∑

n

σnδn logAn(z) +
∑

n

σ̄nδ̄n log Ā
n
(z)

)

= I(ω) + Ī(ω) + σp,mν(µ+ − µ−)(log ω)
2 + σ̄p,mν̄(µ̄+ − µ̄−)(log ω)

2

= I(∞) + Ī(∞)− σp,mν(µ+ − µ−)γ
2 − σ̄p,mν̄(µ̄+ − µ̄−)γ

2. (A.35)

Returning to the A
(1)
1 and A

(2)
2 cases, we note that we can make a statement stronger than

d
dz I(ω) = 0. For the two contributions to I(ω) from the upper and the lower terminals separately,
namely

I±(ω) :=
∑

n

σn

∫ an(±∞)

0
da

[

log(1 + εna)

a
− εn

log a

1 + εna

]

= 2
∑

nwith
εn=+1

σnL

(

an(±∞)

1 + an(±∞)

)

− 2
∑

nwith
εn=−1

σnL (an(±∞)) , (A.36)

I(ω) = I+(ω)− I−(ω), (A.37)

the above reasoning applies. The two contributions on the right hand side of (A.24) were treated
separately down to (A.31) and (A.32). Also these last identities may be formulated separately for
I±(ω) from which we find

I±(ω) = constant . (A.38)

This separate independence of ω is not of relevance for the computation of the conformal data. It leads
however to stronger identities for dilogarithms that we derive and state in the course of our calculations.

A.2 Results for specific cases

A.2.1 Case A
(1)
1 : Principal series

We rewrite (2.33) by the above explained standard. We avoid the definition of (2.16b) for Ap′−1 by
defining

a(p
′−1,±1) = ω±p′ap

′−1, A(p′−1,±1) = 1 + a(p
′−1,±1). (A.39)

The resulting set of functions now has the standardized form discussed in Appendix A.1.2. The number
of functions an is now p′, as it is for An. Note that we doubled the index p′ − 1 to (p′ − 1,−1), and
(p′ − 1,+1). From Section 2.3, we read off the values

r = 1, σn = εn = +1, δn =

{

2 n = 1,

0 otherwise.
(A.40)
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For the indices m = (p′ − 1,−1) and p = (p′ − 1,+1), explicit calculations yield

Ap(∞)

Am(∞)
= ω2p′−2,

Ap(−∞)

Am(−∞)
= ω2p′(p′−2)/(p′−1), φp/m = ±p′ log ω, (A.41)

and hence

µ+ = 2p′ − 2, µ− =
2p′(p′ − 2)

p′ − 1
, ν = p′. (A.42)

For the calculation of I(∞), we see that the lower and upper terminals of integration appearing
in (A.19) are identical and equal to +∞, except for the index n = 1 where the lower terminal is 0 and
the upper terminal is +∞. As

∫ ∞

0
da

[

log(1 + a)

a
− log a

1 + a

]

=
π2

3
, (A.43)

we find I(∞) = π2/3 and from (A.33)

4

∫ ∞

−∞

dz e−z logA1(z) =
π2

3

(

1− 6

π2

p′

p′ − 1
γ2
)

. (A.44)

The underlying identities for dilogarithms (A.36) and (A.38) read in this case I+(ω) = (p′ − 1)π2/3
and I−(ω) = (p′ − 2)π2/3. We state the identity for I+(ω) explicitly by using the terminals aj+∞(j =
1, . . . , p′ − 1) as given in (2.39) and writing N for p′ and eiφ for ω:

N−2
∑

n=1

L

(

sin (n+ 2)φ sinnφ

sin2 (n+ 1)φ

)

+ L

(

eiφ
sin (N − 1)φ

sinNφ

)

+ L

(

e−iφ sin (N − 1)φ

sinNφ

)

= (N − 1)
π2

6
. (A.45)

This identity holds for general continuous φ from a domain containing the imaginary axis and for
general integer N > 2. Note that the identity may be analytically continued in φ to the entire complex
plane, however avoiding the singularities of the dilogarithmic function and choosing the appropriate
branch. It then also holds on a real interval in a neighborhood of φ = 0, relevant to our calculation
involving γ. The identity following from I−(ω) = (p′−2)π2/3 is the same as (A.45) with the parameters
N = p′ − 1 and eiφ = ω̄, see (2.44).

A.2.2 Case A
(1)
1 : Dual series

We rewrite (2.71) by the above explained standard. We avoid the definition of (2.56b) for Ap′−1 by
defining

a(p
′−1,±1) = ω±p′ap

′−1, A(p′−1,±1) = 1 + a(p
′−1,±1). (A.46)

The number of functions an is now p′, as it is for An. Note that we doubled the index p′ − 1 to
(p′ − 1,−1), and (p′ − 1,+1). From Section 2.4, we read off the values

r = p′ − 1, σn = εn = +1, δn =

{

4 sin( πn
2p′−2) n = 1, . . . , p′ − 2,

2 n = (p′ − 1,−1), (p′ − 1,+1).
(A.47)

For the indices m = (p′ − 1,−1) and p = (p′ − 1,+1), explicit calculations yield

Ap(∞)

Am(∞)
= ω2,

Ap(−∞)

Am(−∞)
= 1, φp/m = ±p′ log ω, (A.48)
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and hence
µ+ = 2, µ− = 0, ν = p′. (A.49)

For the calculation of I(∞), we see that the lower and upper terminals of integration appearing in
(A.19) are identical except for the index n = (p′ − 1,+1) where the lower terminal is 0 and the upper
terminal is ∞. As

∫ ∞

0
da

[

log(1 + a)

a
− log a

1 + a

]

=
π2

3
, (A.50)

we find I(∞) = π2/3 and from (A.33)

8

p′ − 1

∫ ∞

−∞

dz e−z/(p′−1)

[ p′−2
∑

n=1

sin
πn

2(p′−1)
logAn(z) + 1

2 logA
(p′−1,−1)(z) + 1

2 logA
(p′−1,+1)(z)

]

=
π2

3

(

1− 6

π2
p′γ2

)

. (A.51)

The underlying identities for dilogarithms (A.36) and (A.38) read in this case I+(ω) = I(ω) = π2/3
and (trivially) I−(ω) = 0. We state the identity for I+(ω) explicitly by using the terminals aj+∞(j =
1, . . . , p′ − 1) as given in (2.76) and writing N for p′ and eiφ for ω:

N−2
∑

n=1

L

(

sin2 φ

sin2 (n+ 1)φ

)

+ L

(

ei(N−1)φ sinφ

sinNφ

)

+ L

(

e−i(N−1)φ sinφ

sinNφ

)

=
π2

6
. (A.52)

This identity holds for general continuous φ from a domain containing the imaginary axis and for
general integer N > 2. Note that the identity may be analytically continued in φ to the entire complex
plane, however avoiding the singularities of the dilogarithmic function and choosing the appropriate
branch. It then also holds on a real interval in a neighborhood of φ = 0, relevant to our calculation
involving γ.

A.2.3 Case A
(2)
2 : Principal series

We rewrite (3.33) by the above explained standard. We avoid the definition of (3.19c) for Ab−1 by
defining

a(b−1,0) = ab−1, A(b−1,0) = 1 + a(b−1,0), (A.53a)

a(b−1,±1) = ω±bab−1, A(b−1,±1) = 1 + a(b−1,±1). (A.53b)

The number of functions an is now b + 2, as it is for An. Note that we tripled the index b − 1 to
(b− 1,−1), (b− 1, 0) and (b− 1,+1). From Section 3.3, we read off the values

r = 1, σn = εn =

{

−1 n = b,

1 otherwise,
δn =

{

2
√
3 n = 1,

0 otherwise.
(A.54)

For the indices m = (b− 1,−1) and p = (b− 1,+1), explicit calculations yield

Ap(∞)

Am(∞)
= ωb−1,

Ap(−∞)

Am(−∞)
= ωb(b−2)/(b−1), φp/m = ±b logω, (A.55)

and hence

µ+ = b− 1, µ− =
b(b− 2)

b− 1
, ν = b. (A.56)
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For the calculation of I(∞), we see that the lower and upper terminals of integration appearing
in (A.19) are identical except for the index n = 1 where the lower terminal is 0 and the upper terminal
is ∞. As

∫ ∞

0
da

[

log(1 + a)

a
− log a

1 + a

]

=
π2

3
, (A.57)

we find I(∞) = π2/3 and from (A.33)

4
√
3

∫ ∞

−∞

dz e−z logA1(z) =
π2

3

(

1− 3

π2

b

b− 1
γ2
)

. (A.58)

The underlying identities for dilogarithms (A.36) and (A.38) read in this case I+(ω) = (b − 1)π2/3
and I−(ω) = (b − 2)π2/3. We state the identity for I+(ω) explicitly by using the terminals aj+∞(j =
1, . . . , b− 1) as given in (3.38) and writing N for b and eiφ for ω:

N−2
∑

n=1

L

(

sin n
2φ sin n+3

2 φ

sin n+1
2 φ sin n+2

2 φ

)

+ L

(

sin N−1
2 φ

2 sin N
2 φ cos 1

2φ

)

(A.59)

+ L

(

ei
N+1

2
φ sin N−1

2 φ

sinNφ

)

+ L

(

e−iN+1
2

φ sin N−1
2 φ

sinNφ

)

+ L

(

sin2 N−1
2 φ

sin2 N+1
2 φ

)

= (N − 1)
π2

6
.

This identity holds for general continuous φ from a domain containing the imaginary axis and for
general integer N > 2. Note that the identity may be analytically continued in φ to the entire complex
plane, however avoiding the singularities of the dilogarithmic function and choosing the appropriate
branch. It then also holds on a real interval in a neighborhood of φ = 0, relevant to our calculation
involving γ. The identity following from I−(ω) = (b−2)π2/3 is the same as (A.59) with the parameters
N = b− 1 and eiφ = ω̄, see (3.42).

A.2.4 Case A
(2)
2 : Dual series

We rewrite (3.73) by the above explained standard. We avoid the definition of (3.55c) for Ab−1 by
defining

a(b−1,0) = ab−1, A(b−1,0) = 1 + a(b−1,0), (A.60a)

a(b−1,±1) = ω±bab−1, A(b−1,±1) = 1 + a(b−1,±1). (A.60b)

The number of functions an is now b + 2, as it is for An. Note that we tripled the index b − 1 to
(b− 1,−1), (b− 1, 0) and (b− 1,+1). From Section 3.4, we read off the values

r = 2b− 3, σn = εn = +1, δn =











4 sin
(

πn
2b−3

)

n = 1, . . . , b− 2,

0 n = (b− 1,−1), (b − 1, 0), (b − 1,+1),

2 n = b.
(A.61)

For the indices m = (b− 1,−1) and p = (b− 1,+1), explicit calculations yield

Ap(∞)

Am(∞)
= ωb+1,

Ap(−∞)

Am(−∞)
= ωb, φp/m = ±b logω, (A.62)

and hence
µ+ = b+ 1, µ− = b, ν = b. (A.63)
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For the calculation of I(∞), we see that the lower and upper terminals of integration appearing
in (A.19) are identical except for the indices n = (b− 1, 0) and n = b where the lower terminals are 1
and 0 and the upper terminals are ∞. As

(∫ ∞

1
+

∫ ∞

0

)

da

[

log(1 + a)

a
− log a

1 + a

]

=
π2

2
, (A.64)

we find I(∞) = π2/2 and from (A.33)

8

2b− 3

∫ ∞

−∞

dz e−z/(2b−3)

[ b−2
∑

n=1

sin
πn

2b−3
logAn(z) + 1

2 logA
b(z)

]

=
π2

3

(

3

2
− 3

π2
bγ2
)

. (A.65)

The underlying identities for dilogarithms (A.36) and (A.38) read in this case I+(ω) = π2 and I−(ω) =
π2/2. We state the identity for I+(ω) explicitly by using the terminals aj+∞(j = 1, . . . , b− 1) as given
in (3.78) and writing N for b and eiφ for ω:

N−2
∑

n=1

L

(

sin 1
2φ sinφ

sin n+1
2 φ sin n+2

2 φ

)

+ L

(

sin N+1
2 φ

2 sin N
2 φ cos 1

2φ

)

(A.66)

+ L

(

ei
N−1

2
φ sin N+1

2 φ

sinNφ

)

+ L

(

e−iN−1
2

φ sin N+1
2 φ

sinNφ

)

+ L

(

sinNφ sinφ

sin2 N+1
2 φ

)

=
π2

2
.

This identity holds for general continuous φ from a domain containing the imaginary axis and for
general integer N > 2. Note that the identity may be analytically continued in φ to the entire complex
plane, however avoiding the singularities of the dilogarithmic function and choosing the appropriate
branch. It then also holds on a real interval in a neighborhood of φ = 0, relevant to our calculation
involving γ. The identity following from I−(ω) = π2/2 is

L

(

1

2

)

+ L

(

ei
N
2
φ

2 cos N
2 φ

)

+ L

(

e−iN
2
φ

2 cos N
2 φ

)

=
π2

4
. (A.67)

A.2.5 Case A
(1)
2 : Principal series

The non-linear integral equations (4.33) may be understood as a doubling of those for the A
(2)
2 case,

see (3.33), with p′ playing the role of b in the case of A
(2)
2 . Here we are dealing with two copies of

the functions an, namely an and ān, which satisfy coupled non-linear integral equations. We use the

definitions of the A
(2)
2 dual case for the objects appearing in the dilog identity, see Appendix A.2.3,

with the number of functions doubled and with p′ playing the role of b. The total number of functions
is now 2(p′ + 2). The data needed to apply (A.35) is obtained from Section 4.3:

r =
3

2
, σn = σ̄n = εn = ε̄n =

{

−1 n = p′,

1 otherwise,
δn = δ̄n =

{ √
3 n = 1,

0 otherwise,
(A.68)

and

µ+ = µ̄+ = p′ − 1, µ− = µ̄− =
p′(p′ − 2)

p′ − 1
, ν = ν̄ = p′. (A.69)

We note that to obtain the correct values for δn, one must not forget the factors of 1
2 appearing in

front of f(z) in (4.41). We obtain

4√
3

∫ ∞

−∞

dz e−2z/3
(

logA1(z) + log Ā
1
(z)
)

=
π2

3

(

2− 6

π2

p′

p′ − 1
γ2
)

. (A.70)
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A.2.6 Case A
(1)
2 : Dual series

We proceed as in the case A
(1)
2 principal series and deal with two sets of functions, namely an and ān.

These satisfy coupled non-linear integral equations. The data needed to apply (A.35) is obtained from
Section 4.4. For the sake of a transparent presentation we focus on one case of the two scaling limits
corresponding to left- and right-movers and choose ρ = +. For convenience, we omit the extra upper
label “+” of the functions.

We rewrite (4.92) by the above explained standard. We avoid the definition of (4.58c) for Ap′−1

by defining

a(p
′−1,0) = ap

′−1, A(p′−1,0) = 1 + a(p
′−1,0), (A.71a)

a(p
′−1,±1) = ω±p′ap

′−1, A(p′−1,±1) = 1 + a(p
′−1,±1). (A.71b)

The number of functions an is now p′ + 2, as it is for An. Note that we tripled the index p′ − 1 to
(p′ − 1,−1), (p′ − 1, 0) and (p′ − 1,+1). From Section 4.4, we read off the values

r =
3

2
(p′ − 1), σn = εn = +1, (A.72a)

δn = −
√
3 e−iǫ1n/r















2 e−iπ(2p′−1)/(6(p′−1)) sin
(

πn
3(p′−1)

)

n = 1, . . . , p′ − 2,

−i (p′ − 1,−1), (p′ − 1, 0), (p′ − 1,+1),
√
3 eiπ/3 n = p′.

(A.72b)

For the indices m = (p′ − 1,−1) and p = (p′ − 1,+1), explicit calculations yield

Ap(∞)

Am(∞)
= ωp′+1,

Ap(−∞)

Am(−∞)
= 1, φp/m = ±p′ log ω, (A.73)

and hence
σp,m = 1, µ+ = p′ + 1, µ− = 0, ν = p′ , (A.74)

where σp,m is the sign σp′−1 = 1.
Analogously we deal with the second set of functions. The number of functions ān is now p′ + 2,

as it is for Ā
n
. Note that we tripled the index p′ − 1 to (p′ − 1,−1), (p′ − 1, 0) and (p′ − 1,+1):

ā(p
′−1,0) = āp

′−1, Ā
(p′−1,0)

= 1 + ā(p
′−1,0), (A.75a)

ā(p
′−1,±1) = ω±p′ āp

′−1, Ā
(p′−1,±1)

= 1 + ā(p
′−1,±1). (A.75b)

From Section 4.4, we read off the values

r =
3

2
(p′ − 1), σ̄n =

{

1 n = 1, . . . , p′ − 2,

−1 (p′ − 1,−1), (p′ − 1, 0), (p′ − 1,+1), p′,
ε̄n = +1, (A.76a)

δ̄n = −
√
3 e−iǫ2n/r















2 eiπ(2p
′−1)/(6(p′−1)) sin

(

πn
3(p′−1)

)

n = 1, . . . , p′ − 2,

−i (p′ − 1,−1), (p′ − 1, 0), (p′ − 1,+1),

2 sin
(

π
3(p′−1)

)

n = p′.

(A.76b)
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For the indices m = (p′ − 1,−1) and p = (p′ − 1,+1), explicit calculations yield

Ā
p
(∞)

Ā
m
(∞)

= ωp′−1,
Ā
p
(−∞)

Ā
m
(−∞)

= 1, φ̄p/m = ±p′ log ω, (A.77)

and hence
σ̄p,m = −1, µ̄+ = p′ − 1, µ̄− = 0, ν̄ = p′ , (A.78)

where σ̄p,m is the sign σ̄p′−1 = −1.
The left side of (A.35) thus has 2(p′ + 2) non-zero contributions (these include the tripled

contributions for the functions a(p
′−1,j) and ā(p

′−1,j)). This yields

2

r

∫

dz e−z/r

(

∑

n

σnδn logAn(z) +
∑

n

σ̄nδ̄n log Ā
n
(z)

)

= I(∞) + Ī(∞)− σp,mν(µ+ − µ−)γ
2 − σ̄p,mν̄(µ̄+ − µ̄−)γ

2,

= I(∞) + Ī(∞)− 2p′γ2 , (A.79a)

where for the last expression we have inserted the parameters (A.74) and (A.78). Now the sum
I(∞) + Ī(∞) has to be evaluated. This is easily done by noting that all lower terminals of integration
and most of the upper terminals of integration are zero, the latter in the limit ω → ∞, except for the
cases

lim
ω→∞

a(p
′−1,0)(∞) = ∞, lim

ω→∞
a(p

′−1,1)(∞) = ∞, lim
ω→∞

ap
′

(∞) = ∞, (A.80a)

lim
ω→∞

ā(p
′−1,1)(∞) = ∞. (A.80b)

Note that for the functions in (A.80a), the signs σn = +1 apply, and for (A.80b) it is σ̄p = −1.
Therefore

I(∞) + Ī(∞) = 2L(1) · (3− 1) =
2

3
π2. (A.81)

Finally we have

rhs of (A.79a) =
π2

3

(

2− 6p′
γ2

π2

)

. (A.82)

Lastly we state the identity for I+(ω) explicitly (I−(ω) is trivially 0) by using the terminals aj+∞, āj+∞

with j = 1, . . . , p′ as given in (4.94) and writing N for p′ and eiφ for ω:

2

N−2
∑

n=1

L

(

sin 1
2φ sinφ

sin n+1
2 φ sin n+2

2 φ

)

+ L

(

sin N+1
2 φ

2 sin N
2 φ cos 1

2φ

)

+ L

(

ei
N−1

2
φ sin N+1

2 φ

sinNφ

)

+ L

(

e−iN−1
2

φ sin N+1
2 φ

sinNφ

)

+ L

(

sinNφ sinφ

sin2 N+1
2 φ

)

− L

(

sin N−1
2 φ

2 sin N
2 φ cos 1

2φ

)

− L

(

ei
N+1

2
φ sin N−1

2 φ

sinNφ

)

− L

(

e−iN+1
2

φ sin N−1
2 φ

sinNφ

)

− L

(

sin2 N−1
2 φ

sin2 N+1
2 φ

)

=
π2

3
. (A.83)
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