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1Introduction

I first became aware of the notion of code-switching when I was living in Portugal

and working in an English-speaking environment. I spoke English, Greek (my native

language) and a little bit of Portuguese on a daily basis, but almost every time I tried to

switch from Portuguese to Greek, I would end up uttering English words instead. This

simple incident sparked an ongoing curiosity as to how the code-switching process

works. It made me realize that code-switching is done by many people who speak

more than one language, and not only by balanced bilingual speakers who grew up in

bilingual communities; it is an important aspect of human language. Despite that, we

still do not fully understand the underlying processes of this phenomenon.

Even though it was the mistakes in language selection that drew my initial

attention, such as producing English rather than Greek words, I soon became interested

in the patterns that bilingual, and multilingual, speakers produce when speaking their

languages, especially when they mix them in a single sentence. The overarching goal

of this dissertation is to come closer to understanding how code-switching works;

I aim to do so by developing a computational cognitive model of code-switching

to investigate certain production patterns. Using this novel method to study code-

switching, I aim to bridge corpus studies, (psycho)linguistic theories and experimental

research, while contributing to further progress in cognitive theories on the (bilingual)

sentence production system and, hopefully in the future, Natural Language Processing

(NLP) applications.

1.1 Code-switching
Code-switching occurs when a multilingual speaker alternates (switches) between

their languages in a single conversation context. Muysken (2000) suggested the

1
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following three code-switching categories, which I will be referring to throughout this

dissertation; all examples are in Spanish–English1:

1. Insertional switching

Insertions of single words or fixed expressions:

• lexical (e.g., noun): e.g., “He leído los terms” (I have read the terms)

• fixed expressions/ interjections/ idiomatic expressions: e.g., “Oh my god,

estamos sin palabras” (we are speechless)

2. Alternational switching

Switch from one language to the other for multi-word sequences, either between

or within sentences:

• Inter-sentential switching: e.g., “¿Por qué no está aquí? What is going on?”

(Why is (s)he not here?)

• Intra-sentential switching: e.g., “I had a hard time finding mis llaves esta

mañana.” (my keys this morning)

3. Congruent lexicalization or dense code-switching

If the languages share syntactic structures and cognate words (i.e., words be-

tween languages that have the same root and have similar meaning, for instance

‘intelligent’ in English and ‘inteligente’ in Spanish), it is possible to use the shared

syntax and insert lexical items from either language: e.g., “Bueno, in other words,

el flight que sale de Chicago around three o’clock” (Fine, ... the flight which

leaves from ...) (Pfaff, 1979)

Code-switching emerges in places where two or more languages come in contact,

e.g., Spanish–English among the Spanish-speaking communities in the United States

(Deuchar et al., 2014; Poplack, 1980), Arabic–French in Morocco (Bentahila, 1983),

and Hindi–English in India (Malhotra, 1980). As a language contact phenomenon,

code-switching initially caught the attention of sociolinguists and theoretical linguists

(e.g., Bullock and Toribio, 2009a; Lipski, 1978; MacSwan, 2014; Muysken, 2000;

Poplack, 1980), but in the past decades it has also been studied by researchers from

other domains such as psycholinguistics and Natural Language Processing (NLP)

(e.g., Dussias, 2003; Fernandez, Litcofsky, and van Hell, 2019; Guzzardo Tamargo,

Valdés Kroff, and Dussias, 2016; Isurin, Winford, and De Bot, 2009; Litcofsky and

van Hell, 2017; Toribio, 2001). These studies revealed that code-switches do not
1I will use this term to denote both “the mix of Spanish constituents in English” and “the mix of English

constituents in Spanish”.

2 Chapter 1 Introduction
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occur randomly but follow systematic patterns, which bilingualism researchers had

already hypothesized before. For instance, as early as the 1970s, Timm (1975) argued

that Spanish-English bilingual speakers do not switch between the subject or object

pronoun and the verb (as in “she swims” or “ella nada”).

1.2 Factors affecting code-switching
In a loose manner, code-switching follows grammatical rules (or patterns), and it is

additionally affected by the following interconnected factors: i) individual preferences

and psychological factors, e.g., one’s linguistic identity, ii) social aspects, such as the

community’s view on code-switching and on the languages involved, or the commu-

nity’s code-switching practices, and iii) contextual factors, such as the domain of the

conversation, the languages of the interlocutor and the formality of the conversation.

More specifically, individual and psychological factors include: a) the bilingual

speaker’s attitudes towards code-switching and towards the individual languages,

especially because one of the languages may be a minority language in the society,

as is often the case with the native language of heritage speakers (Dewaele and Wei,

2014b); b) the speaker’s proficiency in each of the languages; and c) the language

they prefer to use for a specific domain (e.g., a Spanish–English speaker in the U.S.

may use English at school and Spanish for food; Fishman, Cooper, and Newman,

1971). The social aspect includes society’s general attitude towards code-switching

(Dewaele and Wei, 2014a), as well as community-based practices. The latter have such

a strong influence on code-switching that it has been observed that two communities

that code-switch using the same language pair may have opposite code-switching

preferences (e.g., Balam, Parafita Couto, and Stadthagen-González, 2020; Blokzijl,

Deuchar, and Parafita Couto, 2017).

In this dissertation, I focus mainly on the first factor2, namely, code-switching

patterns caused by the interaction of the two languages with the cognitive system.

This has the advantage that one can disentangle internal factors from the effects

of exposure to code-switching (which touches upon the second factor as well), and

investigate whether certain switching patterns can be explained by the distribution

of the languages involved, or whether they are strictly a community-based practice

that can only be explained by exposure to those particular patterns of code-switches.

Furthermore, I focus on Spanish–English code-switching and cross-linguistic phenom-

2The model described in the following chapters also has a conversational setting, which is part of the third
factor, but in the simulations the conversational setting is set to either “monolingual” or “bilingual” (i.e.,
allowed to utilize both languages); I did not otherwise aim to simulate different conversational contexts.

1.2 Factors affecting code-switching 3
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ena because of the large bilingual population that code-switches between these two

languages (for instance, in several locations in the U.S. as mentioned above), and

because it is a well-documented language pair with freely available corpora, such as

the Bangor Miami corpus (Deuchar et al., 2014).

Grammatical constraints on code-switching: Linguistic theories

Different theories have attempted to explain the grammar of code-switching. The most

prominent ones are the following, each paired with a Spanish–English example that

would be considered invalid by the corresponding theory:

• Constraint-based models

– Models proposed by Poplack (1980) and Sankoff and Mainville (1986): The

Equivalence Constraint (EC) (or equivalence of structure constraint) states

that code-switching tends to appear at points in which the two languages

have identical syntax, so that the resulting code-switch does not violate

the syntax of either language (e.g., an invalid combination would be “linea

blue” or “azul line”). The free-morpheme constraint (FMC) states that

code-switching cannot occur between a lexical stem and its morpheme (e.g.,

“está sleepando” for “is sleeping”).

– The Functional Head Constraint (FHC) (Belazi, Rubin, and Toribio, 1994)

claims that no code-switch can occur between a functional head and its

complement (e.g., “Los niños han eaten their vegetables”, meaning “the kids

have eaten ...”).

• The Matrix Language Frame (MLF) model (Joshi, 1982; Myers-Scotton, 1993)

suggests that a code-switched sentence consists of a dominant Matrix Language

(ML) that provides abstract grammatical frames in which the Embedded Lan-

guage (EL) is inserted in the form of single content words or larger constituents.

(e.g., “I would also join los slow ones”, i.e. “the slow ones” (Callahan, 2002), is

disallowed because the Matrix Language is English and only the Spanish function

word (determiner) los is inserted in the sentence.)

All proposed grammatical models have been challenged with counter-examples

from several language pairs. For instance, MacSwan (2005) reviewed counter-

arguments against each theory and presented a counter-proposal that the principles

governing code-switching are the same as those governing monolingual processing,

4 Chapter 1 Introduction
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i.e., there are no constraints other than those of the mixed grammars; this is known as

the “constraint-free approach”.

In the computational model that I will present in the next chapters, I have not

imposed any constraints on code-switched production. This decision was made to

step away from assumptions, and to observe instead whether such constraints emerge

naturally from the combination of the two languages.

1.3 Methods to study code-switching patterns
Munarriz-Ibarrola, Parafita Couto, and Vanden Wyngaerd (2018) present a collection

of methodological suggestions for studying intra-sentential switching. Most of the

suggested methods are on code-switching comprehension, using, for instance, EEG

and/or eye-tracking while reading code-switched sentences. Sentence production, on

the other hand, is more challenging to explore experimentally compared to sentence

comprehension. In this dissertation, I will focus on syntactic patterns in sentence

production using computational cognitive modeling.

Apart from the computational method I will propose, there are a few empirical

methods to study code-switching in production. These include: i) corpus analysis, i.e.,

analyses of spontaneous dialogues collected in bilingual communities (e.g., Balam,

Parafita Couto, and Stadthagen-González, 2020; Deuchar et al., 2014; Poplack, 1980),

ii) shadowing, a task in which participants repeat heard stimuli as quickly as possible

(e.g. Bultena, Dijkstra, and van Hell, 2015; Lipski, 2019), and iii) confederate priming,

where one of the participants is in fact a confederate with a script, who provides

primes for the actual participant (e.g. Kootstra, van Hell, and Dijkstra, 2010; Kootstra,

van Hell, and Dijkstra, 2012).

Additionally, there are several computational models of code-switching, but very

few are cognitive models. In the last decade there has been an increased interest in

NLP applications that can detect (e.g., Solorio and Liu, 2008; Solorio, Blair, et al.,

2014) or translate (e.g., Johnson et al., 2017; Menacer et al., 2019) code-switched

text, recognize code-switched speech (e.g., Adel, Vu, and Schultz, 2013; Shan et al.,

2019; Yılmaz, van den Heuvel, and van Leeuwen, 2016) or even detect emotions

in code-switched text (Wang et al., 2016). However, these models are not cognitive

models, in the sense that they do not aim to explain the code-switching process or to

inform or test linguistic theories, but to develop useful applications for multilingual

text and speech processing. There are a few language models, though, that have been

based on linguistic theories of grammatical constraints on code-switching (see Section

1.3 Methods to study code-switching patterns 5
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1.2). Li and Fung (2014) incorporated the FHC into their language model to improve

code-switched detection in automatic speech recognition, while Pratapa et al. (2018)

used the EC to synthetically generate code-switched data in order to improve a code-

switched language model3. The latter work also showed that randomly generating

code-switched data by combining constituents of monolingual sentences decreases

the performance of the language model compared to a baseline model that uses

only monolingual or real (non-generated) code-switched data; this is to be expected

given that code-switching does not occur randomly, but follows patterns. Last, Bhat,

Choudhury, and Bali (2016) simulated Hindi–English inter-sentential switching based

on the EC and MLF models using grammar-based models. They observed that both

models are highly constrained and do not allow certain patterns that are commonly

observed in Hindi–English code-switching.

As mentioned above, rather than incorporating hard constraints based on a

linguistic theory, I will follow a different modeling approach. The computational cog-

nitive model that I will present does not allow for incorporating linguistic constraints:

any constraint has to be learned from the input or to be implicit in the cognitive

assumptions.

1.4 Models of code-switching and bilingualism
Computational modeling has helped advance the field of cognitive science in general,

and language processing in particular, by i) implementing theoretical models, thereby

specifying all aspects of a verbal model and identifying hidden assumptions, and

ii) testing hypotheses that are difficult to investigate experimentally. Some of the

most prominent computational models in the field of bilingualism are the Bilingual

Interactive Activation (BIA; Dijkstra and van Heuven, 1998) and BIA+ (Dijkstra and

van Heuven, 2002) models of word recognition, the Multilink model (Dijkstra, Wahl,

et al., 2019) of word translation, the Devlex-II model (Li, Zhao, and MacWhinney,

2007) of lexical development that simulates children’s word acquisition, the French

(1998) model of bilingual processing (next-word prediction), and the Self-Organising

Model of Bilingual Processing (SOMBIP; Li and Farkaš, 2002) (see Frank (2021) and

Thomas and van Heuven (2005) for overviews of influential computational models of

bilingual processing).

However, regarding code-switching, computational cognitive modeling as a

means to investigate this phenomenon is still in its infancy. Filippi, Karaminis, and

3Performance measured with a standard evaluation metric in language modeling: perplexity

6 Chapter 1 Introduction
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Thomas (2014) developed two connectionist models to simulate an Italian–English

word naming task, and more specifically the switch cost, which is larger when switching

to the native language (L1) compared to the second language (L2) (Meuter and Allport,

1999). Filippi, Karaminis, and Thomas initially extended the Cohen, Dunbar, and

McClelland (1990) model of the Stroop task to allow it to learn mappings between

orthography, lexical-semantics, and phonology for a number of Italian (L1) and English

(L2) words. This model learned to name words in both languages, and it was faster

when producing L1 words. However, it did not produce a larger L2-to-L1 switch cost.

The authors proceeded to create a second computational model, based on the Gilbert

and Shallice (2002) model of task switching that assumes interference from a carryover

of the previous task set into the switch trials. Filippi, Karaminis, and Thomas combined

this model with a cross-linguistic morphological acquisition model by Karaminis and

Thomas (2010); the combined model replicated the intended asymmetry in switch

costs, and showed that the asymmetry depended on the degree of language imbalance,

the word class (i.e., cognates and homographs vs. unique words in each language),

and the interaction between these factors. Additionally, this model produced a novel

prediction that word naming should be slower for words with different orthographic

cues compared to words with orthographic cues common to both languages, but

that the former induce smaller switch costs because language-specific cues reduce

competition effects.

Goldrick, Putnam, and Schwarz (2016) employed the Gradient Symbolic Compu-

tation framework (Smolensky, Goldrick, and Mathis, 2014), a grammar-based model

using symbolic representations, and used it with probabilistic grammars of two lan-

guages to simulate code-switched processing. Using the model, the authors showed

that the combination of the grammatical principles of the languages involved, as well

as the graded co-activation of the mental representation of the languages, can simulate

aspects of English–Tamil intra-sentential switching.

So far I have mentioned different types of models, such as grammar-based and

connectionist models. Connectionist models, which view the mind as a number of

(neural) networks of interconnected units, are by far the most popular model type in

cognitive sciences. They can be either localist (e.g., Dijkstra and van Heuven, 1998;

Dijkstra and van Heuven, 2002; Dijkstra, Wahl, et al., 2019) or distributed (e.g.,

Filippi, Karaminis, and Thomas, 2014; French, 1998; Li, Zhao, and MacWhinney,

2007), which are also known as Artificial Neural Networks (ANNs). In the localist

approach, connectivity is set by hand and the model is not trained, i.e., no learning

occurs. Distributed models, on the other hand, can learn a task simply by being

1.4 Models of code-switching and bilingualism 7
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exposed to training examples and by creating their own representations. For instance,

a Recurrent Neural Network (RNN), which is the most commonly used connectionist

model in sentence processing, can learn about syntax simply by being exposed to

sentences and by predicting the next word in the sentence. This means that the

number of assumptions is reduced compared to the localist models, because the

model does not work with given syntactic categories such as noun, verb, etc., but it

learns instead (during training) that certain words occur in similar contexts. For an

explanation of the architecture and an overview of the benefits and usage examples of

RNNs for language acquisition and processing, see Frank, Monaghan, and Tsoukala

(2019).

In this dissertation I will be working with this architecture. To be able to

investigate code-switching (the specific research questions are given in Section 1.6),

an important first step is to develop a computational cognitive model of bilingual

and code-switched sentence production by extending an existing RNN-based model of

sentence production. After reviewing implemented models of sentence production, I

chose to work on the Dual-path architecture (Chang, 2002) because, as shown below,

the Dual-path model has been employed to explain a wide range of phenomena in

several languages.

1.5 Neural network models of sentence
production4

Surprisingly, there has been little work done on computational models of bilingual

sentence production, and on sentence production models in general compared to

comprehension models.

A few production models were constructed by running a sentence comprehen-

sion model backwards (Calvillo, Brouwer, and Crocker, 2016; Hinaut et al., 2015).

However, the most successful and empirically validated sentence production models

were specifically designed to simulate production.

The first neural network model of sentence production, the so-called structural

priming model (Dell, Chang, and Griffin, 1999; Chang, Dell, Bock, and Griffin, 2000),

was developed to simulate syntactic priming: the tendency of speakers to repeat the

structure of recently spoken or heard sentences (Bock, 1986). The model assumes a

4Part of this Section has been adapted from Section 4.2 of Frank, Stefan L., Padraic Monaghan, and Chara
Tsoukala (2019). “Neural network models of language acquisition and processing”. In: Human Language:
from Genes and Brains to Behavior. Ed. by Peter Hagoort. The MIT Press, pp. 277–281.

8 Chapter 1 Introduction
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close link between sentence comprehension and production; comprehension of what

has been said or heard so far influences the production of a sentence. The model

encodes the intended meaning (or “message”) by units that represent role-concept

pairs (e.g. “agent-CHILD” or “patient-MAN”), which are given as input to the model

until the whole message has been produced. The output-layer units represent words,

where the most active unit is regarded as the produced word and is fed back into the

network, which thereby receives information about what has been produced so far.

This model was able to successfully account for several structural priming phenomena;

for instance, if “boys chase dogs” was used as prime (i.e., active rather than passive

voice), the model would produce the message “agent-GIRL; action-FEED; patient-CAT”

as “girl feeds cat” instead of “cat is fed by girl” (Dell, Chang, and Griffin, 1999).

However, it failed to show priming between transitive locatives (“boys chase dogs near

car”) and prepositional datives (“boys give dog to girl”) which is empirically shown

by Bock and Loebell (1990). Another limitation of the model was that, because each

concept-role pair is represented in a single unit, the agent-concept MAN is different

from the patient-concept MAN. Consequently, the model is unable to generalize its

ability to produce “the man is chasing a dog” to the ability to produce “the dog is

chasing a man”. This violates the property of systematicity, which Fodor and Pylyshyn

(1988) argued is a fundamental feature of human cognition that neural networks do

not possess.

Chang (2002) proposed and compared two neural network models of sentence

production, Prod-SRN and Dual-path. Prod-SRN was a simple extension of the struc-

tural priming model. It was tested on a more advanced morphology and it was closer

to a Simple Recurrent Network (SRN; Elman 1990), which is the most basic type

of RNN, but the model still lacked systematicity. Dual-path, which is still the most

influential neural network model of sentence production and the one I will base this

dissertation on (see Chapter 2 for a detailed description of the architecture), was the

first to overcome the limitation of generalization. It does so by creating temporary

bindings between a layer for roles and a layer for concepts, so that there is only one

unit for MAN, irrespective of its semantic role. These bindings, along with the event

semantics (information about tense and aspect, e.g., PRESENT SIMPLE), form the

model’s semantic path. The model has a second path (hence its name), the syntactic

path, which is an SRN that allows the model to learn syntactic categories. This way,

the model was not only able to generalize words to new positions, but also to general-

ize a noun as a verb; this is something that speakers usually do with proper nouns,

e.g., “Skype” becomes “skyping”. Chang (2002) compared Prod-SRN to the Dual-path

1.5 Neural network models of sentence production 9
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model, and the latter was able to generalize 82% of the time whereas Prod-SRN only

reached 6%. The models were also tested on unseen adjective-noun pairs and identity

construction (e.g., “a cat is a cat”); Dual-path outperformed Prod-SRN in all tests. The

model also expanded on Gordon and Dell’s (2003) simple model of aphasic production,

offering a natural explanation of two different types of aphasia, agrammatism and

anomia (see also Dell and Chang, 2014).

Chang, Dell, and Bock (2006) applied the Dual-path model to a wider range

of structural priming phenomena. The model displayed similar priming whether the

prime had been produced or only comprehended. It was also able to account for

long-term priming, as the extent of structural priming was not dependent on the

number of fillers between the sentences. Furthermore, Chang, Dell, and Bock (2006)

showed that the strong but short-lived tendency to repeat previously heard or said

words (the so-called lexical boost) is due to a different mechanism from structural

priming. This prediction was confirmed experimentally two years later (Hartsuiker

et al., 2008).

To test whether the model could handle a language that is typologically very

different from English, Chang (2009) tested Dual-path on Japanese. Despite the

different word orders between these two languages, the model was able to exhibit

similar levels of grammaticality (93% for English and 95% for Japanese). Furthermore,

the model was able to explain differences in production preferences between speakers

of these two languages. For instance, in English long phrases are usually placed after

short ones (e.g., “The woman sent a book to the man that she met while traveling” is

preferred over “The woman sent the man that she met while traveling a book”). This

phenomenon is called heavy NP shift (Ross, 1967), and English exhibits a short-before-

long bias whereas Japanese does the opposite. The model was able to account for this

cross-linguistic difference. Chang (2009) showed that the phenomenon is caused by a

difference in the relative importance of the meaning in the positions (“choice points”)

where the word orders differed. For English, the choice point was right after the verb,

whereas in Japanese the choice point is at the beginning of the sentence as verbs tend

to occur at the end of the sentence.

The Dual-path model was further able to account for cross-linguistic differences in

lexical/conceptual accessibility between English and Japanese (Chang, 2009). English

speakers tend to prefer using animate elements early in the sentence (MacDonald,

2013), which can lead to the usage of less common structures such as passives

(e.g., “the man was almost hit by a car”). At the same time, they do not have

animacy preference in conjunctions: speakers of English find “the man and the car”

10 Chapter 1 Introduction
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as acceptable as “the car and the man”. Therefore, it was hypothesized that animacy

can influence the functional level but not the positional level from Garrett’s (1988)

theory of sentence production. However, if this were the case, animacy would not

affect word order in Japanese as this language uses case-markers to indicate roles

and repositioning words does not affect the meaning (e.g., in the passive sentence

above, “man” would be marked as the subject that receives the action “hit”, regardless

of word order). Nevertheless, it has been shown that animacy affects word position in

Japanese (Branigan, Pickering, and Tanaka, 2008). Using Dual-path, Chang (2009)

noticed that these preferences were related to the frequency of the input; by giving it

sentences where animate words were used early in the sentence, the model learned

stronger connections between concepts and words for animates than for inanimates.

More recently, the Dual-path model was employed to explain aspects of sentence

comprehension (Fitz and Chang, 2019) and language acquisition (Fitz and Chang,

2017; Janciauskas and Chang, 2018; Twomey, Chang, and Ambridge, 2014). Specifi-

cally, Fitz and Chang (2019) simulated nine studies on event-related potentials (ERPs),

namely the N400 and P600, and suggested that these signals arise as side effects of

an error-based learning mechanism that is part of linguistic adaptation and language

acquisition. Twomey, Chang, and Ambridge (2014) provided an account as to why

children erroneously overgeneralize certain structures even though these errors are

not available in their input. Using the Dual-path model, the authors explained that

the overgeneralizations are caused by structural biases in language. Fitz and Chang

(2017) modeled the acquisition of auxiliary inversion and argued that these structures

arise because of how the message is structured. Last, by providing the model first

with Korean and then with English sentences, Janciauskas and Chang (2018) used the

model to explain the effect of input and age of acquisition in second language learning,

and more specifically in the L2 English acquisition by L1 Korean speakers.

Because the validity of the Dual-path model and its ability to explain a wide

range of phenomena are well established, I chose to extend this model to handle more

than one language simultaneously and to code-switch.

1.6 Research questions and dissertation overview
In Chapter 2, which is loosely based on Tsoukala, Frank, van den Bosch, et al. (2019),

I will introduce the Bilingual Dual-path model: a Python implementation based on

the Dual-path architecture. The goal of this chapter is to investigate whether code-

switching can be (at least partially) attributed to internal factors and explained by the

1.6 Research questions and dissertation overview 11
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distributions of the two languages involved, or whether it is strictly a community-based

practice that can only be explained by exposure to code-switches. More specifically, I

hypothesize that if the Bilingual Dual-path receives training input in two languages

(Spanish and English), without any code-switched input, it will nevertheless be able to

produce code-switched sentences by combining patterns from the two languages it has

been trained on. The ultimate goal is to simulate balanced Spanish–English bilinguals

and their ability to code-switch.

Building upon the previous chapter, in Chapter 3 (Tsoukala, Broersma, et al.,

2021) I will extend the simulations to model late speakers of English who have Spanish

as a dominant native language, and late speakers of Spanish who have English as a

dominant native language, as well as balanced speakers. The goal of this chapter is

to explore how code-switching patterns differ between balanced and non-balanced

bilinguals, and to compare the patterns produced by the simulations to two corpora

of spontaneous bilingual speech. The hypothesis is that during the early stages of L2

acquisition the Spanish-dominant and English-dominant (non-balanced) models will

code-switch more from their non-proficient L2 into their dominant native language

rather than the other way around. At the later stages of acquisition, however, when

the non-balanced models are also somewhat proficient in their L2, the hypothesis

is that these models will be able to produce code-switches from the L1 into their

L2, even though the frequency and the patterns of code-switches are expected to be

different between the balanced and non-balanced simulation conditions. Additionally,

to validate the model output, I will run an exploratory analysis comparing the simulated

code-switches to bilingual speech corpora.

In Chapter 4 (Tsoukala, Frank, van den Bosch, et al., 2020) I will employ the

model to investigate a code-switching asymmetry, known as the auxiliary phrase

asymmetry; this chapter showcases the advantage of computational modeling and

of the ability to manipulate the miniature languages. Additionally, I will be able to

show in practice that with this method we can investigate whether a specific pattern is

caused by internal factors or due to community practices, as mentioned above. In this

chapter, the hypothesis is that the model will produce the asymmetry, even without

exposing it to any code-switched input, showing that the asymmetry can derive from

the properties of the Spanish and English languages. Using the model, I will test

whether the auxiliary phrase asymmetry exists because of the lack of semantic weight

of one of the Spanish auxiliary verbs. To test this, I will run a simulation similar to

the first one, but this time artificially adding semantic weight to the auxiliary verb in

question. The hypothesis is that by doing so, the asymmetry will disappear. Third, I

12 Chapter 1 Introduction
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will run a final simulation controlling for the relatively low occurrence frequency of

the aforementioned Spanish auxiliary.

In Chapter 5 I will introduce cognates to the model and test their effect on

code-switching, as well as the effect that the percentage of cognates in a language pair

has on code-switching. The hypothesis is that sentences that contain a cognate word

are more likely to be code-switched than sentences that do not contain a cognate, thus

exhibiting the so-called cognate triggering effect. Additionally, I will explore whether

there is a different triggering effect in balanced versus non-balanced models, and

whether the cognate percentage of a language pair affects the overall probability of

code-switching.

In Chapter 6 (Tsoukala, Frank, and Broersma, 2017) I will employ the model to

simulate a language contact phenomenon other than code-switching. In this chapter,

I will focus on a cross-linguistic transfer error that has been observed among native

Spanish speakers of second-language English.

Last, Chapter 7 will conclude this dissertation with a summary of the findings,

overall conclusions, future steps and final remarks.

1.6 Research questions and dissertation overview 13
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2Simulating Spanish-English
code-switching

Multilingual speakers are able to switch from one language to the other (“code-switch”)

between or within sentences. Because the underlying cognitive mechanisms are not

well understood, in this study we use computational cognitive modeling to shed light

on the process of code-switching. We employed the Bilingual Dual-path model, a

Recurrent Neural Network of bilingual sentence production (Tsoukala, Frank, and

Broersma, 2017) and simulated sentence production in simultaneous Spanish-English

bilinguals. Our goal was to investigate whether the model would code-switch without

being exposed to code-switched training input. The model indeed produced code-

switches even without any exposure to such input and the patterns of code-switches

are in line with earlier linguistic work (Poplack, 1980). To our knowledge, this is

the first computational cognitive model that aims to simulate code-switched sentence

production.

This chapter is loosely based on: Tsoukala, Chara, Stefan L. Frank, Antal van den Bosch, Jorge Valdés

Kroff, and Mirjam Broersma (2019). “Simulating Spanish-English code-switching: El modelo está generating

code-switches”. In: Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics.

Minneapolis, Minnesota: Association for Computational Linguistics, pp. 20–29
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2.1 Introduction
People who speak several languages are able to switch from one language to the other,

between or within sentences, a process called code-switching. Code-switching has

been studied for decades by theoretical linguists and sociolinguists (e.g., Poplack,

1980; Muysken, 2000) and more recently by psycholinguists (e.g., Bullock and Toribio,

2009c). In the past few years it has started being studied with a computational

methodology, and it has garnered attention among the natural language processing

(NLP) research community. Several NLP applications have emerged, e.g., to detect code-

switches (Solorio and Liu, 2008; Guzmán et al., 2017), or to automatically recognize

code-switched speech (Yılmaz, van den Heuvel, and van Leeuwen, 2016; Gonen and

Goldberg, 2019). Moreover, there are a small number of cognitive computational

models relevant to code-switching: Filippi, Karaminis, and Thomas (2014) developed

a model of code-switched word production and Janciauskas and Chang (2018), while

simulating age of acquisition effects on native Korean speakers of English, reported

that the models that had been exposed to English later produced code-switches, i.e.,

occasionally used Korean words in their predominantly English production.

The underlying mechanisms of code-switching, however, are still not well un-

derstood. Therefore, we suggest using computational cognitive modeling to simulate

code-switching behavior in multilinguals with the goal of gaining more insight into

the process of code-switching. In this work, we have employed a model of bilingual

sentence production (Tsoukala, Frank, and Broersma, 2017) and tested whether it can

produce spontaneous code-switches without being trained on code-switched sentences.

We wanted to test whether code-switching can be (partially) attributed to internal

factors and explained by the distributions of the two languages involved, or whether

it is strictly a community-based practice that can only be explained by exposure to

code-switches. To test the former, we hypothesized that a model that receives training

input in two languages but no code-switched sentences, will nevertheless be able to

produce code-switched sentences by combining patterns from the two languages it has

been trained on.

To our knowledge, this is the first computational cognitive model that aims to

simulate code-switched sentence production.

16 Chapter 2 Simulating Spanish-English code-switching
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Figure 2.1.: Bilingual Dual-path, the model used in these simulations, is a next-word prediction
model that converts messages into sentences. It is based on an SRN (the lower path, via
the ‘compress’ layers) that is augmented with a semantic stream (upper path) that contains
information about concepts, thematic roles, event semantics, and the target language.

2.2 Model
To simulate code-switched sentence production, we first needed to simulate bilingual

production. For that purpose, we employed the Bilingual Dual-path model (Tsoukala,

Frank, and Broersma, 2017) and trained it to simulate simultaneous Spanish-English

bilinguals, i.e., speakers who acquired both Spanish and English from infancy.

The Bilingual Dual-path model is a modified version of Dual-path (Chang, 2002).

We chose to work with, and extend, the Dual-path model because it is one of the most

successful and empirically validated cognitive models of sentence production. It has

been used to explain a wide range of phenomena in various languages; for an overview

see Section 1.5.

2.2.1 Bilingual Dual-path model
The Bilingual Dual-path model (Figure 2.1) is a Recurrent Neural Network (RNN)

based on the Simple Recurrent Network (SRN; Elman, 1990) architecture. It learns

to convert a message into a sentence by predicting the sentence word by word. Dual-

path (Chang, 2002) got its name because of its two pathways that influence the

production of each word: i) the meaning, or semantic, system that learns to map

words onto concepts (and their realization, see below and Section “Message”), thematic

roles, event semantics and, in the bilingual version, the intended language (“target

language”), and ii) the sequencing, or syntactic, system that is an SRN that learns to

2.2 Model 17
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abstract syntactic patterns. Both paths influence the next word prediction (the “output”

layer).

To express a new message (see Section 2.2.2 for examples of messages), the

following items are fixed and influence the production of the first word: the to-be-

expressed semantic roles have fixed connections with their concepts and realizations,

and the relevant “event semantics” and “target language” units are activated. Ad-

ditionally, the hidden layer’s context units are reset to a default value (0.5 in our

simulations).

The output word is determined as the word with the highest activation in the

output layer. Once an output word has been produced, it is fed back as input (to the

“input” layer). During the training phase, the target word is given as input instead of

the (potentially different) output word.

The sequencing system is a regular SRN that has one recurrent hidden layer

(of 110 units in our simulations) and two 70-unit “compress” layers that are placed

between the input word and the hidden layer, and between the hidden layer and the

output word.

The meaning system learns to map the input word onto a concept and, whenever

relevant, the realization of that concept (PRON for pronoun, INDEF for an indefinite

article and DEF for definite articles; see Section “Message” for concrete examples).

A difference between this architecture and other RNNs is that whenever a new

message needs to be expressed, the network receives fixed connections between

concepts and roles; this allows their separation (instead of having a single unit for,

e.g., ‘AGENT-WOMAN’) and, in turn, enables the model to generalize and to produce

words in novel roles. For instance, if the concept ‘WOMAN’ has only been seen as an

AGENT in the training set, it can still be correctly expressed in novel roles (PATIENT,

RECIPIENT) during the test phase (Chang, 2002).

All layers use the tanh activation function, except the output and predicted

role layers that use softmax1. The model is built in Python and can be found at

https://github.com/xtsoukala/CMCL192.

1The original Dual-path model has an additional “comprehended role copy” layer that helps keep track
of the roles that have been processed. In our implementation it did not improve the performance
of the model; we therefore decided not to use it for reasons of simplicity and symmetry between
“comprehension” (the left part in Figure 2.1) and “production” (the right part).

2The latest version can be found at https://github.com/xtsoukala/dual_path

18 Chapter 2 Simulating Spanish-English code-switching
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2.2.2 Input languages
In order to simulate Spanish-English bilingual sentence production, we generated input

with relevant properties of the two languages. The sentences (and their messages, see

Section “Message”) are generated before the training starts, and they are based on the

allowed structures (Section “Structures”). For each part of speech (POS) a randomly

selected lexical item (from that POS and target language) is sampled from the lexicon

(Section “Bilingual lexicon”). The advantage of using artificial (miniature) languages

is that we can manipulate the frequency and grammar of the input and isolate (and

thereby study) the phenomenon of interest.

Message

The model is trained using generated sentences (as described above) paired with their

message that consists of semantics and their realization, event-semantics, and target

language, which will be explained in turn below.

In these simulations, the semantics contains information regarding 45 unique con-

cepts and 6 thematic roles: AGENT, AGENT-MODIFIER, PATIENT, ACTION-LINKING,

RECIPIENT, and ATTRIBUTE.

ACTION-LINKING is a combined thematic role that can be used for all verb types:

action (e.g., ‘throws’), linking (‘is’) and possession (‘has’). ATTRIBUTE is an attribute

expressed with a linking verb concept (‘BE’). AGENT and RECIPIENT can be expressed

only with animate nouns.

A concept (e.g., WOMAN for the English word ‘woman’ or Spanish word ‘mujer’)

is assigned to each thematic role (during the sentence generation process) along with

a realization attribute (PRON for pronoun, DEF for definite article, and INDEF for

indefinite article) according to the meaning that needs to be expressed. For instance, in

the sentence “the woman runs” the message would include “AGENT=WOMAN, DEF”,

whereas “a woman” would be encoded as “AGENT=WOMAN, INDEF”, and “she” as

“AGENT=WOMAN, PRON”.

Furthermore, the message contains event semantic information (denoted as

EVENT-SEM), which gives information regarding the tense (PRESENT, PAST) and

aspect (SIMPLE, PERFECT or PROGRESSIVE). The EVENT-SEM layer also contains

information regarding the roles needed for that particular message; the model needs

to keep track of the roles expressed and make sure that if, e.g., the role of RECIPIENT

is activated then the recipient has also been expressed.

2.2.2 Input languages 19
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Additionally, the message contains information about the target language so that

the model knows whether it is learning to produce an English or Spanish sentence.

Structures

The allowed structures for both languages are the following in our simulations:

• SV: Subject - Verb, e.g., “a happy dog runs”; “un perro feliz corre”

• SVO: Subject - Verb - Object, e.g., “the boy is carrying a book”; “el niño está

llevando un libro”

• SVDOPP: Subject - Verb - Direct Object - Prepositional Phrase, e.g., “she shows a

book to the girl”; “ella muestra un libro a la niña”

• SVIODO: Subject - Verb - Indirect Object - Direct Object: e.g., “she shows the girl

a book” (Structure occurs only in English)

• SVPPDO: Subject - Verb - Prepositional Phrase - Direct Object: e.g., “ella muestra

a la niña un libro” (“she shows to a girl a book”). Structure only used in Spanish.

The roles can be expressed using either a Noun Phrase (NP) with definite (DEF)

or indefinite (INDEF) article (e.g., ‘the woman’, ‘a woman’). Additionally, AGENT can

be expressed with a pronoun (PRON, e.g. ‘she’). NPs optionally contain a modifier (an

adjective, e.g., ‘a tall woman’).

The verbs are either intransitive (e.g., ‘sleep’), transitive (‘carry’), double transi-

tive (‘show’), linking (‘is’) or possession verb (‘has’). The tense is present or past and

the aspect is simple, progressive, or perfect. Only the simple past was used whereas

the present tense is used with all three aspects:

• simple present: “the man cooks”; “el hombre cocina”

• present progressive: “the man is cooking”; “el hombre está cocinando”

• present perfect: “the man has cooked”; “el hombre ha cocinado”

Bilingual lexicon

The lexicon consists of 194 words (Table 2.1): 88 English words, 105 Spanish words,

and the shared period (‘.’) that marks the end of the sentence. The Spanish lexicon

is bigger because this language is gendered: for instance, ‘tired’ is either ‘cansado’, if

it modifies a masculine noun, or ‘cansada’ for a feminine noun. Syntactic category

information (such as ‘adjective’, ‘participle’) is not given explicitly; the model learns it

through the syntactic path during training.

20 Chapter 2 Simulating Spanish-English code-switching
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Table 2.1.: POS in bilingual lexicon (Spanish in italics)

POS n Examples
Verbs 64

auxiliary 4 is, has, está, ha
intransitive 32 walked, swims, nada
transitive 12 carries, push, lleva
double transitive 12 gives, throws, da
possession 4 has, had, tiene, tenía
linking 1 4 is, was, está, estaba

Participles 2 57 eating, eaten, comido
Nouns 46

animate 10 uncle, aunt, tío, tía
inanimate 36 pen, book, libro

Adjectives 22 busy, ocupado
Determiners 6 a, the, un, una, el, la
Prepositions 2 to, a
Pronouns 4 he, she, él, ella
1 Three of these overlap with the auxiliary verbs.
2 Nine of these have the same form as a verb; e.g.,

‘walked’ is either a perfect participle or a verb.

Input examples

To illustrate the input, here is an example of the message (excluding the target

language):

AGENT=WOMAN, INDEF

AGENT-MOD=TALL

ACTION-LINKING=GIVE

PATIENT=BOOK, INDEF

RECIPIENT=GIRL, DEF

EVENT-SEM=SIMPLE, PRESENT, AGENT, AGENT-MOD,

PATIENT, RECIPIENT

This message would be expressed linguistically in the following manner in

English and Spanish:

• a tall woman gives the girl a book .

• una mujer alta da a la niña un libro . (word-by-word translation: “a woman tall

gives to the girl a book”)

2.2.2 Input languages 21
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If the aspect was PROGRESSIVE instead of SIMPLE, on the other hand, the

corresponding sentences would be “a tall woman is giving the girl a book”; “una mujer

alta está dando a la niña un libro”.

The linking verb messages were encoded in the following manner:

AGENT=WOMAN, DEF

ACTION-LINKING=BE

ATTRIBUTE=TIRED

EVENT-SEM=SIMPLE, PRESENT, AGENT, ATTRIBUTE

and expressed as “the woman is tired”; “la mujer está cansada”.

2.2.3 Training
The model was trained on a total of 3040 randomly generated sentence-message pairs

in English and Spanish (training set; 50% [1520 pairs] per language). Recall that no

code-switched sentences were given as input.

We ran 60 simulations using different input and different random initial weights

per simulation, as the input and the weights are the only non-deterministic parts of

the model. The models were trained for 30 epochs, where 1 epoch corresponds to a

full iteration of the training set (3040 sentences). At the beginning of each epoch, the

training set was shuffled.

The “realization–role” and “role–realization” connection weights were set to 10,

and the “concept–role” and “role–concept” to 30. The initial learning rate was 0.10

and linearly decreased over 10 epochs until it reached 0.02; the momentum was set to

0.9. None of the hyper-parameters was optimized for the task, and they do not play a

crucial role in the results. We selected the values from Tsoukala, Frank, and Broersma

(2017) and increased the “concept–role” connections because this resulted in slightly

better performance (the current experiments use more concepts).

2.2.4 Evaluation and performance threshold
The correctness of a sentence is determined by whether the correct (and complete)

semantic meaning has been expressed in a grammatical sentence but not necessarily in

the target syntactic structure. For instance, if the target sentence is “a sad grandfather

is showing the book to a girl” and the produced sentence is “a sad grandfather is

showing the pen to a girl” it is counted as incorrect, whereas if the produced sentence

22 Chapter 2 Simulating Spanish-English code-switching
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is “a sad grandfather is showing a girl the book” it is counted as correct even though

it was expressed with a different syntactic structure than the target one. If it is

expressed with a different aspect (e.g., perfect instead of progressive) or realization

(e.g., pronoun instead of an NP with an indefinite article) it is also marked as incorrect.

If the sentence contains code-switches it is marked as correct as long as it expresses the

correct meaning, is expressed in one of the allowed structures (Section “Structures”)

and the POS sequence of each phrase (NP, Verb Phase [VP], Prepositional Phrase [PP])

is valid in either language.

For all the experiments, we excluded from the analysis simulations that did

not learn to produce at least 75% of the messages correctly according to the criteria

above.3

2.3 Experiment: Code-switching
In this study, we investigate whether the Bilingual Dual-path would produce code-

switched sentences if trained on Spanish and English (but not code-switched) sentences.

We investigate the occurrence of different patterns of code-switching that have been

observed in the language use of human bilingual speakers.

2.3.1 Background
As mentioned in Section 1.1, Muysken (2000) suggested the following three types of

code-switches: insertional, alternational, and congruent lexicalization. In congruent

lexicalization, the two languages “share a grammatical structure which can be filled

lexically with elements from either language” (Muysken, 2000, p. 6), whereas alterna-

tion is a true switch from one language to the other. The difference, however, between

congruent lexicalization and the occurrence of consecutive alternations has not been

formally operationalized. For that reason, in the simulations reported in this thesis if

there are multiple switches (e.g., Spanish-English-Spanish or vice-versa) we treat it as

alternational switching and do not differentiate it from congruent lexicalization.

Code-switching by syntactic category

In a seminal study, Poplack (1980) observed the Puerto-Rican community in the US.

She found that balanced bilinguals produced mostly complex code-switches, such as

intra-sentential ones, and fewer insertions. Switches at the NP were more frequent

3In later studies (Chapters 3-6) we decided against this strict criterion and did not exclude any simulations.

2.3 Experiment: Code-switching 23
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Figure 2.2.: Percentage of correctly produced sentences and of code-switches among those
sentences. The shaded area shows the Standard Error of the Mean (SEM)a computed over 56
simulations.

aMeans and standard errors are less appropriate for percentage data. In Chapters 3, 4, and 5 I plot
bootstrapped Confidence Intervals instead, which is more appropriate for this type of data. Chapters 2
and 6 were published before the other chapters and I decided to leave the originally published plots
which show the SEM.

than switches at the VP and PP, and noun insertions were the most frequent lexical

insertion whereas determiner insertions occurred rarely.

2.3.2 Method
To simulate code-switching, we trained the model as described in Section 2.2.3 and

tested it on 760 unseen sentences (test set) that were randomly generated in the same

manner as the training set.

During the test (“production”) phase we manipulated the model’s language

control by activating a target language only at the beginning, before the production

of the first word, so as to indicate the conversational setting (intended language).

After the first word had been produced, we activated both target language nodes, thus

allowing the model to produce the sentence in either language or to code-switch.

24 Chapter 2 Simulating Spanish-English code-switching
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Figure 2.3.: Types of insertional switching (upper row) and alternational switching (lower
row). For alternational switches, the POS indicates the first point of switch. All values designate
the percentage of correctly produced sentences. The error bars show the SEM computed over
56 simulations.

2.3.2 Method 25
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We excluded from the analysis four models that did not pass the 75% perfor-

mance threshold (as explained in Section 2.2.4). The reported results are from the

remaining 56 simulations.

2.3.3 Results
As hypothesized, the model produced code-switches even though it had not been

exposed to code-switched input. The model code-switched in 18.09% of the correctly

produced sentences (at the last epoch, see Figure 2.2).

Typology of code-switching in the model’s output

Figure 2.3 shows the insertions per POS and the alternational code-switched types (per

POS at which the first language switch occurred) that were produced by the model

at the end of the training (30th epoch). The model produced alternational switches

more frequently than insertional switches (13.57% vs 4.52%).

Examples of code-switched sentences

Insertional code-switches of different syntactic categories are illustrated below:

• Noun insertion:

Target: un anfitrión feliz ha pateado un bolígrafo . (English: a happy host has

kicked a pen)

Output: un anfitrión feliz ha pateado un pen .

• Verb insertion:

Target: un camarero llevó la llave . (English: a waiter carried the key)

Output: un camarero carried la llave .

• Determiner insertion:

Target: he is showing the book to the father .

Output: he is showing el book to the father .

• Adjective insertion:

Target: a man is sad .

Output: a man is triste .

Examples of alternational switches are provided below:

26 Chapter 2 Simulating Spanish-English code-switching
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• Alternation at the determiner (Noun Phrase):

Target: the uncle has shown a father the toy .

Output: the uncle has shown un padre the toy .

• Alternation at the noun:

Target: the short boy shows a brother a book .

Output: the short boy shows a libro a un hermano .

• Alternation at the preposition (Prepositional Phrase):

Target: the tall waiter has given a brother a book .

Output: the tall waiter has given a un hermano un libro .

• Alternation at the auxiliary verb (Auxiliary Phrase):

Target: the short waiter is showing a dog a toy .

Output: the short waiter está mostrando a un perro un juguete .

Note that in the third example (Prepositional Phrase) the model inserted a prepo-

sition when switching, thus adhering to Spanish grammar: The double object does not

exist with the double noun phrase form in Spanish. This cross-linguistic difference is

even more relevant in the fourth example (Auxiliary Phrase switch) because the verb

is in Spanish and the sentence would have been entirely ungrammatical if the model

had not inserted a preposition (“a un perro”).

2.3.4 Discussion
The model produced spontaneous code-switches through the manipulation of the

target language, without being exposed to code-switched input. This supports the

hypothesis that code-switches can occur due to internal and distributional factors, and

not only because of exposure to code-switching.

Simulating a balanced bilingual speaker, the model produced mostly alterna-

tional switches as opposed to insertional ones. This is in line with Poplack’s (1980)

observation. Furthermore, alternations at the NP (alternational switch at the deter-

miner) were more likely than alternations at the VP (alternational switch at the verb)

or PP (alternational switch at the preposition), which is also in line with the patterns

observed by Poplack. However, the model also produced code-switching patterns that

are not attested in humans. For instance, the model inserted determiners (1.11% of the

correctly produced sentences), especially English determiners in an otherwise Spanish

sentence (0.68% of correctly produced sentences). We hypothesize that the model has

this preference because determiners in English are not gendered. This means both

2.3.4 Discussion 27
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that the model does not need to select a gendered article and that it prefers to use

the English determiner which has twice the frequency of the Spanish ones (as, e.g.,

‘the’ is the translation of both ‘el’ and ‘la’ that are the Spanish definite determiners for

masculine and feminine nouns respectively).4

In bilingual environments where both languages are used, bilingual speakers start

with an intended language that is defined by the conversational environment, but they

are capable of communicating using either of their languages, or by code-switching

(Grosjean, 2001). The top-down language control manipulation in the model (i.e.,

activating both target languages) is analogous to manipulating the conversational

setting in which a speaker is interacting. Spontaneous code-switches occur when there

is no target language preference. We only activate a target language right before the

production of the first word so as to set the conversational environment.

2.4 Conclusion
We have presented a novel method to test hypotheses in code-switched sentence

production. This computational cognitive model can easily be modified to simulate

code-switched production of a different language pair. Additionally, the generated

input allows for manipulations that help test other hypotheses about code-switching,

for instance the idea that cognates can trigger code-switched speech (Clyne, 1980),

which is investigated in Chapter 5.

4In Chapter 3 that reports on both balanced Spanish–English bilinguals and non-balanced bilinguals with
L1 Spanish, this pattern is no longer exhibited by the model.
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3Simulating code-switching in
balanced and non-balanced
bilinguals

Code-switching is the alternation from one language to the other during bilingual

speech. We present a novel method of researching this phenomenon using com-

putational cognitive modeling. We trained a neural network of bilingual sentence

production to simulate early balanced Spanish–English bilinguals, late speakers of

English who have Spanish as a dominant native language, and late speakers of Spanish

who have English as a dominant native language. The model produced code-switches

even though it was not exposed to code-switched input. The simulations predicted

how code-switching patterns differ between early balanced and late non-balanced

bilinguals; the balanced bilingual simulation code-switches considerably more fre-

quently, which is in line with what has been observed in human speech production.

Additionally, we compared the patterns produced by the simulations to two corpora

of spontaneous bilingual speech and identified noticeable commonalities and differ-

ences. To our knowledge, this is the first computational cognitive model simulating

the code-switched production of non-balanced bilinguals and comparing the simulated

production of balanced and non-balanced bilinguals to that of human bilinguals.

This chapter is based on: Tsoukala, Chara, Mirjam Broersma, Antal van den Bosch, and Stefan L. Frank

(2021). “Simulating code-switching using a neural network model of bilingual sentence production”. In:

Computational Brain & Behavior 4, pp. 87–100
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3.1 Introduction
Bilingual speakers are able to switch from one language to the other, between or

within sentences, when conversing with other bilinguals who speak the same lan-

guages. This process is called code-switching and it is common among communities

where two languages come in contact. For instance, Spanish–English code-switching

occurs frequently in the United States among Puerto Rican-Americans (Poplack, 1980)

and Mexican-Americans (Pfaff, 1979), French–Arabic code-switching is common in

Morocco (Bentahila, 1983) and Algeria (Heath, 1984), and Hindi–English in India

(Malhotra, 1980).

It is incorrect to think of code-switching as a speech error; bilinguals only code-

switch when conversing with others who speak the same languages. Grosjean (1997)

suggested that bilinguals utilize their languages differently depending on whom they

talk to: when they converse with someone with whom they only share one language,

they are in a monolingual language mode. When, on the other hand, they are in a

setting in which everybody speaks the same languages, they are in a bilingual mode

which allows them to code-switch. The amount of code-switching differs per speaker,

depending on their personality as well as on the environment and the context of the

conversation (Dewaele and Wei, 2014b).

Another misconception is that bilingual speakers mostly code-switch to fill in

lexical gaps; this is not the case for proficient speakers (Romaine, 1986). However,

in the early stages of language acquisition speakers code-switch more from their less

proficient language into their dominant one, rather than vice-versa, because they lack

the linguistic structures and lexicon needed to communicate; this has been observed

both in child bilingual acquisition (Genesee, Nicoladis, and Paradis, 1995; Petersen,

1988) and second language (henceforth L2) acquisition (Sert, 2005).

Our goal is to simulate code-switching using a computational cognitive model,

with the ultimate aim to further our understanding of the underlying cognitive pro-

cesses. In Chapter 2 (Tsoukala, Frank, van den Bosch, et al., 2019) we showed that a

neural network model designed and validated for monolingual sentence production

can generate realistic code-switches when extended to the bilingual case, by training it

with syntactic properties and lexical items from two languages and by equipping it with

a language control node that allows for the production of either language. Interestingly,

the code-switches occurred in the simulations even without exposure to code-switched

sentences. In the current study, the aim is to expand on the previous study in the

following three ways: First, we will test the robustness of the model’s code-switching
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behavior; we will do this by replicating the study while randomly varying free parame-

ters. Second, we will simulate balanced and non-balanced bilinguals, and shed light

on the code-switching patterns of each simulated group. During the early stages of L2

learning we hypothesize that the non-balanced bilingual models will code-switch more

from their non-proficient L2 into their dominant native language rather than the other

way around, possibly because of gaps in their knowledge of the L2. At the later stages

of acquisition, however, when the non-balanced models are more proficient in their L2,

we hypothesize that these models will also be able to produce code-switches into their

L2, even though we expect to find differences in the frequency and distributions of

code-switches between the balanced and non-balanced simulation conditions. Third,

we will investigate to what extent the simulated code-switches correspond to what is

observed in bilingual speech corpora; this is an exploratory analysis with the goal to

validate the model patterns.

Code-switching in balanced and non-balanced bilinguals
Code-switching has been studied mainly in early bilinguals, specifically in i) early

balanced bilinguals, i.e., people who have acquired both languages from birth or in

early childhood, and ii) heritage speakers whose home language is a minority language

(e.g., Spanish in the U.S.) and whose dominant language is usually the one spoken in

the community (e.g., English) (see, e.g., Poplack, 1978; Bullock and Toribio, 2009b).

Speakers who are exposed to an L2 at a later age (e.g., during adulthood) can also

code-switch, although the frequency and patterns are known to be different in early

balanced bilinguals. Globalization and greater mobility have caused an increase in the

numbers of late non-balanced speakers and there is no social pressure to refrain from

code-switching (Matras, 2013).

Most studies comparing balanced and non-balanced bilinguals have focused on

comprehension rather than production, specifically on reading comprehension (e.g.

using eye-tracking) or grammaticality judgement of code-switched sentences. For

instance, Lederberg and Morales (1985) asked different groups of Spanish–English

bilinguals to rate the grammaticality of code-switches, and correct them if needed; they

compared bilingual children, early balanced bilingual adults, and late non-balanced

bilingual speakers who had Spanish as a native language (hereinafter referred to as L1)

and moved to the US as adults where they acquired their L2 English. They found that

the late non-balanced bilinguals showed differences in the (grammaticality judgment)

acceptance rates compared to the balanced bilinguals; however, the code-switching

patterns that the groups followed were similar, which led to the conclusion that the
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rules governing code-switching are not based on extensive exposure to code-switching,

but rather on “knowledge of the grammars of the two code-switched languages in

combination with some general linguistic knowledge” (Lederberg and Morales, 1985,

p.134).

Guzzardo Tamargo and Dussias (2013) studied the reading processing of Spanish-

to-English auxiliary phrase switches by balanced and non-balanced bilinguals and

found no fundamental differences in the processing patterns between the two groups

either, even though the non-balanced bilingual group was slower.

Unlike comprehension studies discussed above, production studies do report

differences in the code-switched patterns of early balanced and late non-balanced

bilinguals. Poplack (1980) analyzed the code-switching production patterns of Spanish–

English bilinguals with varying degrees of proficiency who live in the Puerto-Rican

community in New York. She observed that balanced bilinguals produced more

complex code-switches (e.g., in the middle of the sentence) whereas speakers who

were less proficient in their L2 were more likely to switch only for idiomatic expressions,

tags (e.g., “you know”), and fillers (e.g., “I mean”). Similarly, Lantto (2012) analyzed

the speech patterns of 22 Basque-English bilinguals (10 among them were early

balanced bilinguals) and observed clear differences between the early balanced and

late non-balanced bilingual groups, with the balanced group producing a wider variety

of switch patterns. Psycholinguistic studies (e.g., Gollan and Ferreira, 2009, using a

picture naming task) have also observed that balanced bilinguals code-switch more

frequently.

In the current study we simulate balanced and non-balanced bilinguals using a

sentence production model. We investigate whether the simulations yield differences

between the balanced and non-balanced bilingual groups that are similar to those

observed in the aforementioned linguistic studies on the production of code-switches

in human speech. We thus assess whether the non-balanced bilingual models show a

large likelihood to code-switch in the early stages of L2 acquisition from L2 to L1 and

whether in later stages of bilingual production the likelihood to code-switch is higher

for the balanced than for the non-balanced models.

The switch directionality of a code-switch (i.e., whether a switch is from the L1

to the L2 or vice-versa), can be determined either in an incremental (i.e., linear, as

in, e.g., Broersma and De Bot (2006)) or a hierarchical manner (using, e.g., one of

the most influential grammatical models, the Matrix Language-Frame (MLF) model

(Myers-Scotton, 1993)). In the following simulations we have taken a linear approach
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Figure 3.1.: The Bilingual Dual-path model receives messages (see Section 3.2.2 for examples
of messages) and expresses them in sentences, word-by-word. The model is based on the
Simple Recurrent Network architecture (the syntactic path, via the ‘compress’ layers), which is
augmented with a semantic path that contains information about concepts and their realization,
and thematic roles. Additionally, the model receives information on the event semantics and the
target language (conversational setting). The numbers in the parentheses indicate the size of
each layer (e.g., 52 concept units); the sizes of the hidden and compress layers vary with each
training repetition (see Section 3.2.6). The solid arrows denote trainable connection weights,
whereas the lines between roles, realization, and concepts correspond to connections that are
given as part of the message-to-be-expressed (e.g., PATIENT is connected to BOOK in a particular
message). The dotted arrow indicates that the produced word is given back as input, influencing
the production of the next word.

because we do not want to make assumptions about the way structural relations affect

processing.

3.2 Bilingual Dual-path model
The computational cognitive model we employed for this task is the Bilingual Dual-

path model (Tsoukala, Frank, and Broersma, 2017) which is an extension of the

Dual-path model (Chang, 2002) of monolingual sentence production. The Dual-path

model has successfully modeled a wide range of phenomena over the past years:

e.g., structural priming and syntax acquisition in English (Chang, Dell, and Bock,

2006; Fitz and Chang, 2017) and in German (Chang, Baumann, et al., 2015), cross-

linguistic differences in word order preference between English and Japanese (Chang,

2009), and input and age of acquisition effects in L2 learning (Janciauskas and Chang,

2018).

We chose to base our model on the Dual-path architecture not only because of

its success in modeling sentence production, but also because it is a learning model (a

3.2 Bilingual Dual-path model 33
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Recurrent Neural Network, RNN), which therefore allows us to investigate whether

code-switched production can emerge from exposure to non-code-switched sentences.

Note, however, that a next-word generator, i.e. a simple language model based on an

RNN alone or any statistical language model, is very unlikely to produce code-switches

without being exposed to code-switched sentences, as the transitional probability

between two words in different languages would be zero. The Dual-path, on the other

hand, contains a semantic stream and a language control on top of the syntactic stream

(the RNN); therefore, it might in theory, and does in practice as our work shows, learn

to code-switch even without exposure to code-switched input.

3.2.1 Model architecture
The Bilingual Dual-path model (Figure 3.1) learns to express a given message word-by-

word (see Section 3.2.2 for examples of messages). The model assumes that there are

two paths influencing sentence production: i) a syntactic path (the lower path in Figure

3.1, via the ‘compress’ layers), which is a Simple Recurrent Network (Elman, 1990),

and ii) a semantic path (the upper path in Figure 3.1), which contains information

about the thematic roles (e.g., AGENT, RECIPIENT), the concepts they are connected

to, and their realization. The syntactic path learns the syntactic patterns of each

language, whereas the semantic path learns to map concepts onto words. Additionally,

the model receives information about i) the event semantics that define when an

event takes place (e.g. PAST, PROGRESSIVE), and ii) the target language, through the

corresponding node, which acts as the only language control of the model. Specifically,

the target language node simulates the conversational setting in which a speaker is

interacting (i.e., one target language in a monolingual setting, both languages in a

bilingual setting). All layers use the tanh activation function, except for role and

output that use softmax.

The two streams, along with the event semantics and target language, work

together to produce grammatically correct sentences that express a specific message.

3.2.2 Messages
A message is represented by i) a target language, ii) event-semantic information, iii)

pairs of thematic roles and concepts, and iv) pairs of thematic roles and realizations

(pronoun, definite, indefinite) whenever applicable in the case of noun phrases.
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The target languages are ENGLISH and SPANISH. The event semantics contain

information regarding the aspect (SIMPLE, PROGRESSIVE, PERFECT) and tense

(PRESENT, PAST), as well as the thematic roles that are used in each message.

The following simulations make use of 52 unique concepts and six thematic roles:

AGENT, PATIENT, AGENT-MODIFIER, RECIPIENT, ACTION- LINKING, and ATTRIBUTE.

The roles AGENT and RECIPIENT are only paired with animate nouns (e.g., ‘son’, ‘cat’).

ACTION-LINKING is a combined thematic role that can be used for all main verb types:

action (e.g., ‘shows’), linking (‘is’) and possession (‘has’). ATTRIBUTE is an attribute

expressed only with a linking verb.

Additionally, AGENT, PATIENT and RECIPIENT are connected to their realization:

pronoun (e.g., ‘he’ for the concept BOY), and definite or indefinite article for concepts

that are expressed as a noun phrase (e.g., ‘the boy’ or ‘a boy’). These roles contain

optionally a modifier (an adjective, e.g., ‘a happy dog’). Note that in English the

adjective comes before the noun (“the intelligent woman”) whereas in Spanish the

modifier comes after the noun (“la mujer inteligente”). This knowledge is learned by

the model through the training examples and not through explicit syntactic labels.

3.2.3 (Message-to-)Sentence production
For a message to be expressed, the following nodes need to be activated in the

model: the event-semantics (e.g., PRESENT, PAST) and the target language (ENGLISH,

SPANISH) that specifies the intended output language. Furthermore, the semantic

roles (e.g., ACTION, PATIENT) are connected to their respective concepts (e.g., READ,

BOOK) and realizations (e.g., INDEF for an indefinite article). For example, if the

message is:

AGENT = WOMAN, DEF

ACTION = GIVE

PATIENT = BOOK, INDEF

RECIPIENT = FATHER, INDEF

TARGET-LANG = ENGLISH

EVENT-SEM = PRESENT, PROGRESSIVE,

AGENT, PATIENT, RECIPIENT

the model would learn to express it in English as “the woman is giving a book to a

father”, and if the target language was Spanish as “la mujer está dando un libro a un

padre”. Following Chang, Dell, and Bock (2006), to express the recipient before the

3.2.3 (Message-to-)Sentence production 35
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patient (“the woman is giving a father a book” or “la mujer está dando a un padre

un libro”) the PATIENT receives less activation through the event semantics, thus

prioritizing the RECIPIENT. In the current example, the event semantics would be:

PRESENT, PROGRESSIVE, AGENT, PATIENT:0.5, RECIPIENT.

When the model receives a message, it produces it word-by-word. The produced

word is the output word with the highest activation. Each produced word is then given

as input in the next time step, and it influences the production of the next word. The

period (‘.’) works as an end-of-sentence marker and the model stops producing words

when it outputs the period or if it has exceeded the length of the target sentence, plus

2 extra words. We allow extra words because the model might produce a different

structure than the target one; for instance, the message of the sentence ‘the boy is

giving the girl a key’ (double object) could also be expressed as ‘the boy is giving the

key to the girl’ (prepositional dative).

3.2.4 Miniature Languages
In order to simulate Spanish–English sentence production, we generated training

sentences that are derived from a small subset of the syntactic properties (Section

“Tense and aspect”) and the lexica (Section “Bilingual lexicon”) of the two languages.

Note that the model does not contain a phonological level because we are only focusing

on the interaction between semantics and syntax, and not on restrictions imposed by

phonology.

Tense and aspect

The allowed tenses used in the structures are past and present, and the aspects: simple,

progressive, and perfect. The past tense is only used in simple aspect sentences (e.g.,

“the girl jumped”), whereas the present tense applies to all three aspects. The allowed

structures for the two languages and all tenses and aspects can be found in Table

3.1.

Bilingual lexicon

The bilingual lexicon (Table 3.2) is an extension of the lexicon used in the Tsoukala,

Frank, van den Bosch, et al. (2019) study (Chapter 2). It contains 202 words: 92

English words, 109 Spanish words, and the shared end-of-sentence marker (‘.’). Recall

that the Spanish lexicon is larger because Spanish is a gendered language. For instance,

nouns and adjectives are usually expressed differently depending on whether they
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Table 3.2.: Syntactic categories in the bilingual lexicon
(Spanish in italics)

Syntactic category n Examples
Verbs 66

auxiliary 4 is, has, está, ha
intransitive 16 walked, swims, nada
transitive 12 carries, pushed, lleva
double 12 throws, gives, tira
possession 4 has, had, tiene, tenía
linking 1 2 is, está

Participles 2 56
progressive 28 walking, caminando
perfect 28 eaten, comido

Nouns 52
animate 40 uncle, aunt, tío, tía
inanimate 12 pen, book, libro

Prepositions 2 to, a3

(Predicate) adjectives 26 busy, ocupado
Determiners 6 a, the, un, una, el, la
Pronouns 4 he, she, él, ella
1 Both linking verbs overlap with the auxiliary verbs.
2 Nine of these have the same form as a verb; e.g.,

‘walked’ is either a perfect participle or a verb.
3 The Spanish preposition ‘a’ and the English indefi-

nite article ‘a’ are differentiated, in that they have
separate nodes in the lexicon.

modify a masculine noun or a feminine one. We also included four common-gendered

Spanish adjectives such as ‘feliz’ (‘happy’) that do not change depending on the noun

it modifies.

The verbs are either intransitive (e.g., ‘swims’), transitive (‘carries’), double

(‘throws’), linking (‘is’, ‘está’), or possession verb (‘has’, ‘tiene’). The two linking verbs

(‘is’, ‘está’) and the English possession verb (‘has’) were also used as auxiliary verbs

for the progressive and perfect forms, respectively, as was the Spanish perfect-form

auxiliary verb ‘haber’. Following the allowed structures, each verb had four forms:

simple present, simple past, present participle and past participle.

Note that syntactic category information (such as ‘noun’, ‘participle’) is not given

explicitly; the model learns through training (via the syntactic path) that words that

occur in similar context tend to be of the same syntactic category.
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3.2.5 Message-sentence pair examples
We hereby illustrate how a message corresponds to (and is expressed with) a sentence.

For instance, the following message:

AGENT = WAITER, DEF

AGENT-MOD = TALL

ACTION-LINKING = SNEEZE

EVENT-SEM = SIMPLE, PAST, AGENT, AGENT-MOD

corresponds to the following sentences in English and Spanish:

• the tall waiter sneezed .

• el camarero alto estornudó . (literally: “the waiter tall sneezed .”)

Changing the tense of the message to PRESENT instead of PAST would corre-

spond to the sentences “the tall waiter sneezes” and “el camarero alto estornuda”,

whereas further changing the aspect to PROGRESSIVE instead of SIMPLE would

correspond to “the tall waiter is sneezing” and “el camarero alto está estornudando”.

Messages that contain direct and indirect objects can be expressed with the

thematic roles of PATIENT and RECIPIENT respectively. For instance, the following

message:

AGENT = FATHER, PRON

ACTION-LINKING = THROW

PATIENT = BALL, DEF

RECIPIENT = DOG, INDEF

EVENT-SEM = SIMPLE, PRESENT, AGENT,

PATIENT, RECIPIENT

is expressed as “he throws the ball to a dog” or “él tira la pelota a un perro”.

Finally, messages that contain linking verbs are encoded using an attribute:

AGENT = MAN, DEF

AGENT-MOD = KIND

ACTION-LINKING = BE

3.2.5 Message-sentence pair examples 39
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ATTRIBUTE = TIRED

EVENT-SEM = SIMPLE, PRESENT, AGENT,

AGENT-MOD, ATTRIBUTE

which is expressed as “the kind man is tired” or “el hombre amable está cansado”.

3.2.6 Model training
The model learns through supervised training. A message is given as input and the

network tries to generate a sentence word-by-word; after a word has been produced,

it is compared to the target word and the weights are adjusted according to the

backpropagation algorithm. All networks were trained for 40 epochs using 2,000

message-sentence pairs.

The backpropagation parameters were the same across all simulations: the

momentum was set to 0.9 and the initial learning rate was 0.10, which linearly

decreased for 10 epochs until it reached 0.02, at which point it was held constant from

epoch 11 onward. This applies to both the Balanced and the Non-balanced bilingual

models (Sections 3.3.1 and 3.3.2, respectively). Note that the Non-balanced models

are exposed to their L2 around the 15th epoch; therefore, they start learning the L2

with a decreased learning rate (0.02).

To increase the generalizability of the reported results and to test the robustness

of the results reported in Tsoukala, Frank, van den Bosch, et al. (2019), we trained 40

networks per simulation, randomizing all free parameters (as seen below), excluding

the backpropagation parameters (i.e., the momentum and learning rate) and the

training set size. The parameters were randomized per training repetition (i.e., for

each of the 40 networks), but the same parameter values were kept across the three

different simulations: e.g., the first training repetition of the balanced bilingual

simulation had the same initialized weights as the first training repetition of the

non-balanced bilingual model(s).

First, the message-sentence pairs were randomly generated for each simulation

before the training started. The sentences were constrained by a set of allowed

structures (Section “Tense and aspect”) and for each syntactic category a randomly

selected word was sampled from the bilingual lexicon (Section “Bilingual lexicon”).

Note that the target sentences were never code-switched.

Second, when sampling the bilingual training set for the balanced and non-

balanced bilingual simulations, we varied the percentage of English and Spanish.

The percentage of English was sampled from a normal distribution with a mean of

40 Chapter 3 Simulating code-switching in balanced and non-balanced bilinguals
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50% (standard deviation: 8) and the rest was Spanish. Third, weights of trainable

connections were initialized using Xavier initialization (Glorot and Bengio, 2010). Last,

the weights of the connections between thematic roles and concepts (‘concept’–‘role’

and ‘predicted role’–‘predicted concept’ in Figure 3.1), which are not trained, were

integer values sampled between 10 and 20 (the exact value was randomized once per

training repetition and was the same for all these connections).

The hidden layer size was also sampled per training repetition (between 70 and

90 units) and the compress layer size was set to the closest integer to 77% of the

hidden layer size.

3.2.7 Code-switching
As mentioned above, the target sentences did not contain any code-switches. To

allow the model to code-switch, we manipulated the model’s language control (target

language node) when testing, which simulates the conversational setting, or language

mode (Grosjean, 1997). Only one of the target languages was activated before the

production of the first word, and the network was thereby biased towards producing

the first word in that language, but once the first word was produced, both languages

were activated. This allowed the model to continue in the same language or to

code-switch.

With regard to the code-switching types, in the current simulations we look

at two types of code-switches, which Muysken (2000) calls (lexical) insertions and

(intra-sentential) alternations1:

• Insertional switching (insertion of single words)

e.g.: “He gave the libro to my niece.” (He gave the book to my niece.)

• Alternational switching (intra-sentential switching)

e.g.: “María prefiere hacer el viaje by train instead.” (Maria prefers to make the

trip by train instead.)

1Muysken also identified other types of code switches (i.e., congruent lexicalization) and sub-categories of
the insertions and alternations (e.g., insertions of fixed expressions, idioms and tags, and alternations
between sentences called “inter-sentential switching”), but these fall beyond the scope of the model
because the model produces single sentences without context and without the usage of fixed expressions
and tags.

3.2.7 Code-switching 41
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3.2.8 Correctness of sentence production
A produced sentence is considered grammatically correct if it consists of an allowed

sequence of syntactic categories, i.e., if the sequence exists in the training set. The

criterion for correct meaning is that the sentence is grammatical and that all thematic

roles are expressed correctly, even if they are code-switched, but with no omitted or

extra attributes (e.g., not “dog” instead of “big dog” or vice versa). In some cases, the

meaning can be correct even if the produced sentence is different than the target. For

instance, if a double object sentence (“the woman gives the cat a ball”) is expressed as

a prepositional dative (“the woman gives a ball to the cat”), the meaning is counted as

correct because the message is expressed correctly.

3.3 Method: Simulations and Corpus Analysis
We address the three goals of this study by running three sets of simulations. First,

having expanded the lexicon and having varied almost all free parameters compared

to the Tsoukala, Frank, van den Bosch, et al. (2019) study (see 3.2.6), we run 40

training repetitions, with different parameters each, to investigate i) whether the

model again produces code-switched sentences, and ii) the sensitivity of this behavior

to the random parameter settings and initial weights.

Second, we simulate balanced and non-balanced Spanish–English bilinguals and

compared their production patterns with respect to code-switching. Specifically, we

measure i) how often a sentence is code-switched in total and per switch direction2

(Spanish-to-English vs English-to-Spanish), ii) what kind of code-switches (alterna-

tional, insertional) are produced and at which syntactic point, and iii) how the patterns

vary with the amount of training and exposure to the two languages. Note that each

epoch corresponds to the amount (time) of learning, not the amount of training exam-

ples per language; the non-balanced bilingual models are initially exposed only to their

L1, whereas the balanced bilingual model directly receives bilingual message-sentence

pairs, thus receiving approximately half the exposure per epoch to each individual

language. Third, we test the validity of the simulated patterns by comparing them to

human data, i.e., code-switched utterances in bilingual speech corpora.

To address the first two goals, we run one early balanced bilingual model and

two late non-balanced bilingual models with different L1 (English, Spanish).

2As mentioned in Section 3.1, our approach is linear. We start from the first word of a code-switched
output sentence; if the word is in Spanish, we mark the switch direction as “Spanish-to-English”, whereas
if the first word is English we count it as “English-to-Spanish”
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For the third goal, we analyze the Bangor Miami corpus (Deuchar et al., 2014)

to obtain code-switched patterns of Spanish–English bilingual speech.

3.3.1 Balanced bilingual model (Balanced model)
The Balanced model was simultaneously exposed to both languages (roughly 50% per

language as described in Section 3.2.6), therefore simulating balanced bilinguals. The

Balanced model was trained for 40 epochs using 2,000 message-sentence pairs and

tested on 500 messages. The training and test sets were unique per training repetition

(40 training repetitions in total) and the distribution of Spanish and English in the test

messages was the same as in the training messages.

3.3.2 Non-balanced bilingual models (L1 English and L1
Spanish models)
The non-balanced bilingual models were first exposed only to their L1 for roughly 15

epochs. Specifically, the L1 English model was trained with English-only sentences

(2,000 message-sentence pairs) for about 15 epochs (the exact number of epochs

was randomly sampled between 13 and 17), whereas the L1 Spanish model was

initially trained on Spanish-only sentences (2,000 message-sentence pairs). For the

remaining epochs (making a total of 40) the networks were exposed to the same 2,000

message-sentence pairs as the Balanced model and tested on the same 500 messages.

Once again, there were 40 training repetitions per model and the message-sentence

pairs and test messages were different for each run.

3.3.3 Corpus analysis
To compare the simulated patterns to human data, we analyzed the transcriptions of

the Bangor Miami corpus (Deuchar et al., 2014)3 that consists of 56 spontaneous and

informal conversations between two-to-five speakers, living in Miami, Florida. Out of

the 84 speakers, 60 were equally fluent in English and Spanish4. Each word in the

conversation file has been automatically tagged with a language code (English or Span-

ish) and a syntactic category (e.g., noun). We selected the sentences that contained

more than one language code, resulting in 2,796 code-switched sentences, which is

3http://bangortalk.org.uk/speakers.php?c=miami
4Fluency was measured by self-reported “Spanish ability” and “English ability”. The questionnaire results

can be found on the corpus website.
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a: Balanced model tested on Spanish

b: Balanced model tested on English

Figure 3.2.: Mean grammaticality, correctness of meaning, and code-switch percentage of the
balanced bilingual model, tested on Spanish (a) and English (b). The dots are jittered and
represent each individual training repetition.
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6.2% of the corpus (45,289 sentences in total). We then divided the code-switches

into alternations, in case the sentence continued in the code-switched language, and

insertions, if the code-switches were single words that were inserted (once or several

times) in the sentence. Meanwhile, we corrected the syntactic categories of erroneous

or missing tags5.

From the 2,796 code-switches observed in the Miami corpus, we included only

the 1,369 that occur at syntactic categories that are relevant to our model; for instance,

we excluded interjection insertions because interjections are out of the scope of the

model.

As an additional corpus, we compared the model’s patterns to the code-switches

observed in Poplack (1980). Note that Poplack’s corpus is not publicly available;

therefore, we could not re-analyze the data. Likewise, out of the 1,835 code-switching

instances observed in Poplack’s study we have only included the syntactic categories

that are relevant for our study.

Note that in both corpora most switches are so-called extra-sentential, which are

not grammatically or semantically related to any other part of the sentence (e.g., tag

insertions, such as “you know” and “right?”) and are therefore not included in the

model.

3.4 Results

3.4.1 Model performance

Balanced model

Figure 3.2 shows the performance (i.e., percentage of sentences with correct grammar

and with correct grammar and meaning) of the balanced bilingual model on its two

native languages: Spanish (3.2a) and English (3.2b). Both languages are learned

equally well: the mean percentage of sentences that are produced with correct meaning

at the last epoch (hereinafter: correct meaning) is 83% for Spanish and 85.4% for

English.

5The scripts used, as well as the resulting sentences, can be found at https://osf.io/vd3wa/.
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a: L1 Spanish tested on Spanish b: L1 English tested on English

c: L1 Spanish tested on L2 English d: L1 English tested on L2 Spanish

Figure 3.3.: Mean grammaticality, correctness of meaning and code-switch percentage of the
non-balanced bilingual models, tested on their L1 (upper row) and L2 languages (lower row)
over 40 training repetitions (L1 Spanish model: left column, L1 English model: right column).
The dots are jittered and represent each individual training repetition.
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a: Spanish → English b: English → Spanish

Figure 3.4.: Model comparison of code-switching types. The percentage is against all correctly
produced sentences of that target language (left: Spanish; right: English) and of that model,
and the numbers denote the absolute number of sentences with that switch type. The error bars
show the 10,000-sample bootstrapped 95% Confidence Interval.

Table 3.3.: Percentage of switch types per model over all correctly produced sentences after
25 epochs of exposure to both languages (25th epoch for the Balanced model and 40th for
the L1 English and L1 Spanish models). The numbers in the brackets show the 10,000-sample
bootstrapped 95% Confidence Interval.

Switch type Balanced L1 English L1 Spanish

Alternation 15.0% [12.7, 17.9] 1.7% [1.0, 3.1] 1.1% [0.8, 1.6]
Insertion 2.3% [1.8, 2.9] 0.1% [0.1, 0.2] 0.0% [0.0, 0.1]
Final-word 3.7% [2.9, 5.0] 0.3% [0.2, 0.5] 0.2% [0.1, 0.3]
Total 21.0% [17.9, 24.9] 2.1% [1.4, 3.6] 1.3% [1.0, 1.8]

L1 English and L1 Spanish models

Figure 3.3 (upper row) shows the performance of the L1 Spanish (3.3a) and L1 English

(3.3b) models on their native language. Note that around the 15th epoch the L2 is

introduced which slightly affects the production of the L1.

The lower row of Figure 3.3 indicates the performance of the non-balanced

bilingual models on their L2, starting from the epoch in which the L2 was introduced.

Note that because the exact starting epoch varies per training repetition, only after

the 18th epoch are all 40 training repetitions introduced to the L2; until then, the plot

shows the mean only of the training repetitions that have already been exposed to the

L2. Figure 3.3c shows the performance of L2 English in the L1 Spanish model and

Figure 3.3d shows the L2 Spanish performance of the L1 English model.

3.4.1 Model performance 47
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3.4.2 Research goal 1: Code-switching in the models
In the final epoch, the Balanced model (Figure 3.2) produces 21.4% Spanish-to-English

and 27.0% English-to-Spanish code-switches, out of all correctly produced sentences.

Examples of code-switched sentences include6:

• a boy pushed la silla (“the chair”)

• a happy cat tiene una pelota (“has a ball”)

• the uncle está triste (“is sad”)

• a dog corrió (“ran”)

The non-balanced models’ code-switching patterns develop over time: at the

early stages of L2 learning they produce very few L2 sentences correctly, most of which

contain code-switches into the L1; for instance, on the 14th epoch the L1 English

model produces 3.5% of Spanish sentences correctly, out of which 87.9% contain

a code-switch into English. Respectively, the L1 Spanish model produces 5.9% of

English sentences correctly, with 90.5% of these containing a switch into Spanish.

Over time, though, the models become more proficient in their L2 and stop reverting

to their L1: at the end of the training the L1 Spanish model reaches 55.1% in meaning

accuracy of English sentences and produces 5.3% switches into Spanish, whereas the

L1 English model reaches 55.9% accuracy on Spanish and switches back into English

3.9% of the time. Code-switches from the L1 into the L2 are more steady throughout

acquisition: the L1 English model code-switches 0.9% from English into Spanish, and

the L1 Spanish model code-switches 1.3% of the time from Spanish into English.

3.4.3 Research goal 2: Balanced versus non-balanced model
comparisons
The second goal of this study is to investigate the differences in code-switch types

produced by the balanced and non-balanced models at the late stages of acquisition,

when both models have been exposed to the bilingual input for 25 epochs (i.e., the 25th

epoch for the balanced model vs. the 40th epoch for the non-balanced models). Table

3.3 presents the percentage of the total code-switch types (alternational, insertional,

and final-word, in case the switch is at the end of the sentence and it is therefore

unclear whether it is an insertion or an alternation) for the three models (balanced

6The full list of output sentences per model can be viewed online at https://osf.io/vd3wa/
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Spanish–English bilingual, non-balanced bilingual with L1 English, non-balanced

bilingual with L1 Spanish). The balanced bilingual model code-switches much more

frequently than the L1 Spanish and L1 English models.

Figure 3.4 compares the three models with respect to the switch type and switch

direction. The percentages shown here are against all correctly produced sentences of

that target language, not of all sentences as in Table 3.3.

Additional information on the exact code-switching patterns per switch type

(alternational, insertional, final-word), language direction (English-to-Spanish and

Spanish-to-English) and syntactic category in which the switch occurs can be found at

https://osf.io/vd3wa/ under results/supplementary_plots.

3.4.4 Research goal 3: Model versus corpus comparison
To test the validity of the produced patterns, we compared the simulated code-switched

patterns to the ones observed in the Miami corpus, as well as in the patterns observed

in Poplack’s (1980) study. The results can be found in Table 3.4.

Both corpora contain code-switches from all participants, both balanced bilin-

guals and Spanish-dominant. To compare the model results to the corpora that contain

both balanced and Spanish-dominant speakers, Table 3.4 reports switches from the

Balanced and L1 Spanish models combined. The simulations produce a high percent-

age of noun phrase alternations, which is also the case in Poplack’s study and the

Miami corpus. Furthermore, both the corpora and the model display a substantial

(but small) amount of verb alternations. The other phrase alternations are fewer in

the models than in Poplack’s data, which is probably due to the fact that with the

current artificial languages we have only simulated prepositional phrases whereas the

phrase alternation in the corpus include other types of phrases as well (i.e., adjective,

adverb and infinitive phrases). Both the simulations and human bilinguals, especially

in Poplack’s study, disprefer preposition insertions.

There are also clear differences between simulated and empirical code-switches.

Unlike human bilinguals, the model seems to favor determiner insertion, and more

specifically Spanish determiners. The most striking difference between corpora and

model results, however, is found in noun insertions: both corpora showcase that noun

insertion is a major switching category among human bilinguals. The model, however,

produces less than 1% of noun insertions, whereas the two corpus data report over

30% of noun insertions.

3.4.4 Research goal 3: Model versus corpus comparison 49
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3.5 Discussion

3.5.1 Code-switching in the models
The first goal of this paper was to verify the robustness of the code-switch model

presented in Tsoukala, Frank, van den Bosch, et al. (2019). Having varied almost

all free parameters in the current simulations, and using an expanded lexicon, we

tested again whether the bilingual model is able to produce code-switches that are

attested in bilingual speech, even without having been exposed to code-switched input.

The models indeed produced code-switches, thus confirming that code-switching

can partially be explained by the distribution of the two languages involved (in

combination with the cognitive architecture of the model, in our simulations). This is

in line with Lederberg and Morales (1985), who claimed that (extensive) exposure to

code-switching is not needed for a bilingual speaker to code-switch.

Importantly, the model is able to code-switch by merely having (and manipulat-

ing) a language control (“target language”) node that sets the conversational setting

and allows the model to produce in either language. No other cognitive control was

required for the model to code-switch.

It is interesting to observe the huge variance in the amount of code-switching

between training repetitions; at the last epoch of the balanced bilingual model tested

on English (Figure 3.2b), the percentage of code-switches produced by the 40 models

ranges from 2.3% to 80.8%. Large individual variance is something that has also been

observed among human bilinguals (Dewaele and Wei, 2014b).

As mentioned in Section 3.2, an RNN alone trained on non-code-switched data

is unlikely to produce code-switched sentences. As a case in point, we trained the

SRN-only part of the model (i.e., the syntactic stream alone) using the same input

and settings as described in the Methods section. It is difficult to directly compare the

Dual-path to an SRN-only version because the former expresses a specific message; for

an approximate comparison, we gave the SRN-only model the first word of the target

message and let it produce any sentence. The SRN-only model learned to produce

grammatical sentences but it did not produce any code-switched sentences.

3.5.2 Balanced versus non-balanced model comparisons
The second aim of this study was two-fold: First, to investigate the development of

code-switches over time in the non-balanced bilingual models. Second, to compare the

production patterns of balanced and non-balanced bilinguals and per switch direction.

3.5 Discussion 51
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On the one hand, at the early stages of L2 acquisition, the non-balanced models have

not been exposed enough to their L2 and they strongly prefer to switch back into their

L1 (i.e., over 87% of the time). This preference is in line with what has been observed

in bilingual language acquisition by children (e.g., Petersen, 1988). When comparing,

on the other hand, the balanced and non-balanced models after an equal amount of

exposure to both languages (25 epochs), the patterns change: the balanced bilingual

model code-switches considerably more frequently than the non-balanced bilingual

models, which is in line with what has been observed in humans (e.g., Poplack, 1980;

Gollan and Ferreira, 2009).

Note that the non-balanced bilingual models perform better in their L1 compared

to the balanced bilingual model: 95.5% accuracy in meaning in the last epoch for the

L1 Spanish model and 95.9% for the L1 English model on their L1 (Figure 3.3), as

opposed to 85.4% for English and 83% for Spanish accuracy in the Balanced model

(Figure 3.2). The reason behind this discrepancy is that the non-balanced bilingual

models receive double the input in their L1 (for the first 15 epochs) compared to the

balanced bilingual model that has two native languages. As mentioned above, an

epoch corresponds to the amount of learning time, not the input received.

In the current simulations we have assumed that the L1 is the dominant language.

However, a large proportion of bilingual speakers in communities that code-switch are

heritage speakers who, as mentioned in Section 3.1, are more exposed to (and fluent

in) their L2, the majority language of the country they live in, rather than the L1 that

is mostly spoken at home. Heritage speakers could also be simulated in the model,

by first exposing the model to the L1 only (similar to the non-balanced models) and

then introducing bilingual input in which the L2 is much more frequent than the L1,

reflecting heritage speakers’ exposure.

3.5.3 Model versus corpus comparison
The third goal of this paper was explorative, aiming to validate the model by investigat-

ing to what extent the simulated patterns correspond to bilingual speakers’ behavior.

We cannot expect a perfect match between the model’s code-switching patterns and

the corpus data because the simulations use an artificial micro version of English and

Spanish. Nevertheless, some patterns are similar to what human bilinguals produced

in the two corpora (see Table 3.4 for percentages of patterns of all three studies).

There are also noticeable differences between the modeled and human code-switched

patterns, with the most striking one being the high amount of noun insertions in the

two corpora compared to the simulations. A possible explanation for this discrepancy
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is that human bilinguals tend to prefer a specific language depending on the domain,

for instance, Spanish for food, English for school- and work-related terms (Fishman,

Cooper, and Newman, 1971). Additionally, bilinguals align with their collocutors and

repeat syntactic structures and utterances (Fricke and Kootstra, 2016). In the Miami

corpus, for instance, when we analyzed the noun insertions per dialogue (chat tran-

scription), we found 117 repetitions out of the 487 insertions. The model, on the other

hand, simulates individual sentences and has no context of what has been produced

before, nor a notion of domain-specific terms; the only context given is the language

control, which specifies whether the setting is monolingual or bilingual. Another minor

reason behind the small number of noun insertions in the model simulations is that we

have excluded from our analysis final-word switches, as we are unable to determine

whether they are insertions or alternations. In the corpus analysis, on the other hand,

we counted 296 final-word noun switches as noun insertions.

3.6 Conclusion
We have shown that the Tsoukala, Frank, van den Bosch, et al. (2019) results are

robust: the Bilingual Dual-Path model can produce code-switching patterns without

exposure to such code-switched patterns, by only having a language control that

allows the model to produce in either language. Furthermore, we simulated three

groups of bilinguals and showed the differences between the early balanced and late

non-balanced simulated bilingual populations, as well as the development of code-

switches over acquisition for the non-balanced bilingual models. Third, we explored

how the patterns of the simulated groups compare to code-switching patterns extracted

by two corpora that contain spontaneous utterances from Spanish–English bilingual

populations.

Having established that the model reliably produces code-switched sentences,

we argue that it can be employed to explain the role of syntax and semantics in

specific code-switching phenomena. As a case in point, in the following chapter

(Tsoukala, Frank, van den Bosch, et al., 2020) we employed the model to shed light

on a well-known effect of verb aspect on Spanish-to-English code-switch probability.

The current study’s results show that the model can also account for differences in the

code-switching patterns between balanced and non-balanced bilinguals.
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4Modeling the auxiliary phrase
asymmetry in code-switched
Spanish–English

Spanish–English bilinguals rarely code-switch in the perfect structure between the

Spanish auxiliary haber (“to have”) and the participle (e.g., “Ella ha voted”; “She has

voted”). However, they are somewhat likely to switch in the progressive structure

between the Spanish auxiliary estar (“to be”) and the participle (“Ella está voting”;

“She is voting”). This phenomenon is known as the “auxiliary phrase asymmetry”.

One hypothesis as to why this occurs is that estar has more semantic weight as it

also functions as an independent verb, whereas haber is almost exclusively used as

an auxiliary verb. To test this hypothesis, we employed a connectionist model that

produces spontaneous code-switches. Through simulation experiments, we showed

that i) the asymmetry emerges in the model and that ii) the asymmetry disappears

when using haber also as a main verb, which adds semantic weight. Therefore, the

lack of semantic weight of haber may indeed cause the asymmetry.

This chapter is based on: Tsoukala, Chara, Stefan L. Frank, Antal van den Bosch, Jorge Valdés Kroff, and

Mirjam Broersma (2020). “Modeling the auxiliary phrase asymmetry in code-switched Spanish–English”. In:

Bilingualism: Language and Cognition. DOI: 10.1017/S1366728920000449
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4.1 Introduction
Multilingual speakers are able to switch from one language to the other (“code-switch”)

between or within utterances. For instance, a Spanish–English speaker might produce

a sentence such as “Los niños están playing in the front yard” (“The kids are playing in

the front yard”). As mentioned in Section 1.1, studies have revealed that code-switches

do not occur randomly but follow systematic patterns.

The aim of the current work is twofold. First, we present a novel method

of researching code-switched sentence production using computational cognitive

modeling. To that end, we employ the Bilingual Dual-path model (Tsoukala, Frank,

and Broersma, 2017) that can produce sentences in two languages, including code-

switched ones. Second, using this method, we shed light on a production phenomenon

that has been observed in the Spanish–English-speaking community in the US and is

known as the “auxiliary phrase asymmetry” (Dussias, 2003; Guzzardo Tamargo, Valdés

Kroff, and Dussias, 2016; Lipski, 1978; Pfaff, 1979; Poplack, 1980). This asymmetry

is observed in the frequency of Spanish-to-English code-switches at the participle

in progressive and perfect structures. On the one hand, Spanish–English bilinguals

rarely produce a code-switch between the Spanish auxiliary haber (“to have”) and the

participle. On the other hand, they are likely, albeit only moderately so, to code-switch

in the progressive structure between the Spanish auxiliary verb estar (“to be” ) and

the participle. Thus whereas Sentence 1 is attested, Sentence 2 is very infrequent and

dispreferred:

1. Las personas están voting (The people are voting)

2. Las personas han voted (The people have voted)

Furthermore, a switch at the auxiliary (i.e., the first word that is switched is the

auxiliary) is approximately equally likely for both structures: “Las personas are voting”,

“Las personas have voted”.

The auxiliary phrase asymmetry has been found both in speech production and

in reading. With respect to speech production, several quantitative analyses of Spanish–

English corpora have reported code-switches at the participle in progressive sentences

but none in perfect sentences (Lipski, 1978; Muysken, 2000; Pfaff, 1979; Poplack,

1980). Guzzardo Tamargo, Valdés Kroff, and Dussias (2016) performed a systematic

analysis on two corpora: the Miami corpus (Deuchar et al., 2014) that contains

spontaneous conversations, and a corpus extracted by Guzzardo Tamargo, Valdés Kroff,

and Dussias (2016) from entries of an online column in a Gibraltarian newspaper
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(“Gibraltar corpus”), which contains fictional code-switched written dialogue. As Table

4.1 indicates, although switches are infrequent in either structure, the asymmetry is

reported in both corpora.

Table 4.1.: Absolute and relative frequencies in the Miami and Gibraltar corpora. Values
reported in Guzzardo Tamargo, Valdés Kroff, and Dussias (2016), Table 1

.

Oral corpus (Miami) Written corpus (Gibraltar)
Progressive Perfect Progressive Perfect

All code-switches 93 100% 28 100% 106 100% 150 100%
Switch at auxiliary 7 7.53% 3 10.71% 8 7.55% 14 9.33%
Switch at participle 7 7.53% 0 0.00% 8 7.55% 1 0.667%

As Dussias (2003) pointed out, because a switch within the auxiliary verb phrase

is not a common phenomenon to begin with, it is difficult to obtain sufficient evidence

from corpus data to establish whether the reported asymmetry is real. To resolve

that, she performed an eye-tracking-while-reading study; she asked English–Spanish

bilinguals to read Spanish-to-English code-switched sentences that i) were either in

the progressive or perfect structure, and that ii) contained a switch either at the

auxiliary (e.g., “La madre sabe que los chicos are going to the park”; English translation:

“The mother knows that the children are going to the park”) or at the participle (“La

madre sabe que los chicos están going to the park”). The analysis showed that for the

perfect-form structures, participants took significantly longer to read switches at the

participle compared to switches at the auxiliary, whereas for the progressive-form

structures they did not show a significant preference for a switch position. Dussias

concluded that auxiliary verb phrase switches are processed differently depending

on the structure. Guzzardo Tamargo, Valdés Kroff, and Dussias (2016) also ran an

eye-tracking-while-reading study in which they confirmed the results reported in the

previous study (Dussias, 2003). Furthermore, Giancaspro (2015) found evidence

for the auxiliary asymmetry from an acceptability judgment study. Specifically, he

asked English–Spanish bilinguals to rate the grammaticality of code-switches; the

participants rejected perfect participle switches and accepted progressive participle

ones, thus supporting the asymmetry.

Two (non-mutually-exclusive) explanations have been proposed for this phe-

nomenon; the “grammaticalization account” and the “exposure-based account” (Guz-

zardo Tamargo, Valdés Kroff, and Dussias, 2016). According to the grammaticalization

account, the source of this asymmetry is the difference in semantic weight between

the auxiliary verbs. Namely, that estar has more semantic weight and is syntactically
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more independent as it also functions as a linking verb (e.g., “el enfermero está

cansado”; “the nurse is tired”), whereas haber is highly grammaticalized because it

is almost exclusively used as an auxiliary. The verb of possession in Spanish is tener

(“el enfermero tiene un libro”; “the nurse has a book”), while haber is only used as an

auxiliary verb or in archaic formulations. The exposure-based account is an alternative

hypothesis, which was suggested, but not attested, by Guzzardo Tamargo, Valdés Kroff,

and Dussias; it states that the asymmetry emerges from community-supported practice,

that is, bilingual speakers learn the asymmetry from exposure to this pattern in the

community. In this study we focus on the grammaticalization account to determine

whether grammaticalization is a plausible reason why the asymmetry emerged. In hu-

man bilinguals, exposure also plays a role, as experience with the language influences

production patterns (e.g., MacDonald, 2013).

The grammaticalization account is difficult to test experimentally with psy-

cholinguistic methods, especially in production. Common experimental paradigms for

production studies, such as shadowing (where participants repeat stimuli as quickly as

possible, e.g. Lipski, 2019) or confederate priming (in which one of the participants

is in fact a confederate with a script, who provides primes for the participant, e.g.

Kootstra, van Hell, and Dijkstra, 2010), could perhaps confirm the presence of the

auxiliary asymmetry. However, to test the grammaticalization account in production,

which states the asymmetry is caused by the lack of semantic weight of the Spanish

auxiliary verb haber, we need to know whether the asymmetry would persist if haber

did have additional syntactic and semantic functions and was used more frequently,

as in the case of the (main and auxiliary) English verb “to have”. It is difficult to

envision a traditional technique that can test explicitly the role of semantic function of

the Spanish auxiliary verb. One could potentially employ artificial language learning

that mimics the acquisition and production of code-switched Spanish and English

progressive- and perfect-forms. However, this would require a complex setting which

would be very challenging for the participants as it would entail advanced learning of

the two artificial languages.

Computational cognitive modeling, on the other hand, allows us to make modi-

fications to the vocabularies and the language structures of the modeled languages

while keeping everything else the same, thus enabling us to focus on the phenomenon

of interest. In this study, we will showcase how we can use computational modeling to

add and remove semantic weight from the Spanish auxiliary verb, thus investigating

whether the asymmetry could be derived from the properties of Spanish and English.

For that reason, we have employed the Bilingual Dual-path model (Tsoukala, Frank,
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and Broersma, 2017), a connectionist model of bilingual sentence production that

produces code-switches.

The model is not exposed to any code-switched sentences; it is only trained

on English sentences and Spanish sentences. Therefore, if this particular asymmetry

emerges in the model it will be due to the distributional patterns of the two languages

(as claimed by the grammaticalization account), in interaction with the properties

of the model, and not because of exposure to the asymmetry (i.e., exposure-based

account). Such a result would show that the distributional patterns are, in principle,

sufficient to lead to the asymmetry.

To investigate whether the asymmetry can emerge in the model and to test the

grammaticalization account, we run three sets of simulations. First, we simulate the

production of participle switches for the progressive and perfect structures; we hy-

pothesize that this simulation will produce more participle switches in the progressive

structure than the perfect one, thus exhibiting the asymmetry. Second, we hypothesize

that artificially adding semantic weight to the Spanish auxiliary verb will make the

asymmetry disappear because it is caused by the lack of semantic weight of haber.

We explicitly test this in the second set of simulations by using the Spanish main

verb tener (“to have”) also as an auxiliary verb. Third, we aim to test whether the

asymmetry exists due to the relatively low occurrence frequency of haber. Namely,

because haber only functions as an auxiliary verb for the perfect-form sentences, it has

lower frequency than the three other auxiliary verbs (be, have, estar) that are also

used as independent verbs. In the third simulation we correct for this confound.

4.2 Method

4.2.1 Obtaining corpus frequencies
As the occurrence frequency of the two structures of interest could influence the

asymmetry, we made sure that we used realistic relative percentages of the progressive

and perfect structures for each of the two languages in the Bilingual Dual-path model.

To achieve that, we ran a corpus analysis on a Spanish–English corpus. We analyzed

the transcriptions of the Bangor Miami corpus (Deuchar et al., 2014)1 that consists of

30 hours of spontaneous and informal conversations between two or more speakers

(84 speakers in total), living in Miami, Florida.

1http://bangortalk.org.uk/speakers.php?c=miami
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For each of the 56 conversations, we separated the sentences into English only,

Spanish only, and code-switched. The corpus is predominantly English. There are

27,835 fully English sentences (61.5% of the whole corpus), 14,631 fully Spanish

sentences (32.3% of the corpus), and 2,823 code-switched sentences (6.2% of the

corpus).

First, we extracted i) the progressive-form sentences that contain the verb “to

be” in the third singular person (“is” for English sentences and “está” for Spanish)

followed by a present-tense participle, or by an adverb and a present-tense participle,

and ii) the perfect-form sentences that contain the third singular person of the verb

“to have” (“has” for English, “ha” for Spanish) followed by an optional adverb and a

past-tense participle. From the English sentence candidates that were selected for the

progressive form, we excluded the ones that were used to indicate the future form

(“is gonna” and “is going to” followed by a verb, e.g., “it is going to rain”). Then, we

inspected each extracted sentence manually and further excluded the ones that had

been mislabeled (e.g., “disgusting” in “is disgusting” was marked as a participle, not a

(participial) adjective, and is therefore not a progressive-form sentence). The results

are shown in Table 4.2: for English, the progressive form is about twice as frequent as

the perfect form, whereas for Spanish the two forms are more balanced. Furthermore,

the simple form is considerably more frequent than the progressive and perfect ones

for both languages.

There are enough sentences of each type in the corpus to obtain a somewhat

reliable estimate of their frequencies. Therefore, these percentages will be used to

generate the corresponding structures of the languages that the model learns (see

Section 4.2.3).

4.2.2 Bilingual Dual-path model

Model architecture

The Bilingual Dual-path model2 (Figure 4.1; Tsoukala, Frank, and Broersma,

2017) is an extension of the Dual-path model (Chang, 2002) of monolingual sentence

production3. The model is called Dual-path because of its two pathways that influence

sentence production: the syntactic path that learns to abstract the syntactic patterns

2The model and the full training and test sets and simulation results can be found at https://osf.io/
ba5ru/.

3Independently from our work (Tsoukala, Frank, and Broersma, 2017), the original Dual-path implementa-
tion was used by Janciauskas and Chang (2018) to simulate bilingual processing, and more specifically
the age of acquisition effects in native Korean speakers of English.

60 Chapter 4 Modeling the auxiliary phrase asymmetry in code-switched Spanish–English

https://osf.io/


556869-L-bw-Tsoukala556869-L-bw-Tsoukala556869-L-bw-Tsoukala556869-L-bw-Tsoukala
Processed on: 9-3-2021Processed on: 9-3-2021Processed on: 9-3-2021Processed on: 9-3-2021 PDF page: 73PDF page: 73PDF page: 73PDF page: 73

Figure 4.1.: The Bilingual Dual-path model generates sentences word-by-word that express a
given message. It is based on a Simple Recurrent Network architecture (the syntactic stream,
via the ‘compress’ layers) that is augmented with a semantic stream (upper path) that contains
information about concepts and their realization, thematic roles, event semantics, and the target
language. The numbers in the parentheses indicate the size of each layer (e.g., 52 concept
units); the sizes of the hidden and compress layers vary with each model run (see Section
4.2.4). The solid arrows denote connections with weights that change during training, whereas
the lines between roles, realization, and concepts correspond to connections that are given as
part of a message-to-be-expressed (e.g., the AGENT is connected to WOMAN in a particular
message). The dotted arrow indicates that once a word is produced, it is given back as input
thus contributing to the production of the next word.
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Table 4.2.: Absolute frequencies per language in the Miami corpus

Language Structure type n
English Auxiliary Structures 248

Perfect Present 81
Progressive Present 167

Simple Structures 2,451
Simple Past 722
Simple Present 1,729

Spanish Auxiliary Structures 187
Perfect Present 83
Progressive Present 104

Simple Structures 2,959
Simple Past 629
Simple Present 2,330

of a language, and the semantic path that receives event semantic information and

learns to map concepts onto words. It is a computational cognitive model based on the

Simple Recurrent Neural Network architecture (Elman, 1990), and it learns to produce

sentences given a message to be expressed (see Section 4.2.3 for an explanation of

messages and for an example of how a message is given and is then expressed as a

sentence).

We chose to work on and extend the monolingual Dual-path model because the

architecture has been employed to explain a wide range of phenomena, for example:

structural priming in English (Chang, Dell, and Bock, 2006) and German (Chang,

Baumann, et al., 2015), and cross-linguistic differences between English and Japanese

(Chang, 2009). Importantly, previous studies using the Dual-path model have focused

on semantic weight effects; Chang (2002) simulated different types of aphasia by

testing the effect of syntactic-path or semantic-path lesions on production of words

with heavy vs no semantic weight (e.g., content words versus function words, heavy

verbs vs light verbs).

Sentence production

As mentioned above, the model generates sentences that express a given message.

To express a message, the following items are provided to the model and influence

production: the to-be-expressed semantic roles (e.g., ‘AGENT’, ‘ACTION’) are connected

to their concepts (e.g., ‘DOG’, ‘SWIM’) and realizations (e.g., ‘INDEF’ for an indefinite

article). The relevant “event semantics” (EVENT-SEM, e.g., ‘PRESENT’, ‘PROGRES-

SIVE’) and “target language” (‘ENGLISH’, ‘SPANISH’) units are activated. For instance,
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the model learns to express the message “AGENT=DOG, DEF; ACTION=SWIM; EVENT-

SEM=PRESENT, PROGRESSIVE” in English as “the dog is swimming.” and in Spanish

as “el perro está nadando.”4. The language units are included as a means to exert

language control: a single language is activated in monolingual contexts and both

languages are activated in bilingual contexts.

When the model is given a message, it produces a sentence one word at a time;

the produced word (“output”) is considered the one with the highest output activation.

Each output word is subsequently provided as input in the next time step, and it

contributes to the next word production.

Correctness of produced sentences

A produced sentence is regarded as correct if it is grammatical and conveys the

target meaning. In some cases, a sentence could be grammatical but incorrect. For

instance, if the target sentence is “the mother is pushing a toy” it is grammatically

correct to produce the sentence “the tired mother is pushing a toy”, even if the meaning

is counted as incorrect because of the extra information that was expressed. The same

applies to incomplete semantics (“the mother” instead of “the tired mother”); the

sentence is counted as incorrect but grammatical.

Code-switching

To allow the model to produce in either language or to code-switch, when testing

the model we manipulated the model’s language control. Specifically, because we

were interested in the Spanish-to-English switch direction, we activated the Spanish

language at the beginning, before the production of the first word, so as to indicate

the conversational setting5 (intended language) and to bias towards the production of

Spanish utterances. Immediately after the first word was produced, we activated both

target language nodes, thus allowing the model to continue in the same language or

to code-switch.

4.2.3 Miniature Languages
The sentences that the model learns to produce are derived from miniature versions

of natural languages. As we are studying the auxiliary phrase asymmetry which is

observed in Spanish–English bilinguals, we focus on Spanish and English sentence

production. Hence, we generated sentences based on the relevant properties of the two

4All sentences end with a period, even if this is not shown explicitly in the examples.
5Note that the sentences are produced independently from one another; the language of the (last word of

the) previously produced sentence does not influence the subsequent sentence production.
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languages, constrained by the corpus analysis (Section 4.2.1). The advantage of using

artificial (miniature) languages is that we can manipulate their structural frequencies,

and even grammar, which in turn allows us to isolate and study the phenomenon of

interest. For instance, in the case of the auxiliary phrase asymmetry, we can change the

frequency and semantic weight of the Spanish auxiliary verb haber and see whether

the asymmetry persists (see Section 4.3 for an explanation of this process).

Bilingual Lexicon

The lexicon consists of 200 lexical items (Table 4.3): 91 English words, 108

Spanish words, and the shared period (‘.’) which indicates the end of the sentence.

The Spanish lexicon is larger because Spanish is a gendered language. For instance,

the adjective ‘tall’ is either ‘alto’, if it modifies a masculine noun, or ‘alta’ for a feminine

noun. We also used four common-gendered Spanish adjectives such as ‘inteligente’

(‘intelligent’) that do not change depending on the noun it modifies. Note that syntactic

category information (such as ‘adjective’, ‘verb’) is not given explicitly; the model

learns during training that words of the same syntactic category occur in similar

contexts.

Table 4.3.: Parts of speech (POS) in bilingual lexi-
con (Spanish in italics)

POS n Examples
Verbs 66

auxiliary 4 is, has, está, ha
intransitive 32 walked, swims, nada
transitive 24 carries, pushed, lleva
possession 4 has, had, tiene, tenía
linking 1 2 is, está

Participles 2 56
progressive 28 eating, comiendo
perfect 28 eaten, comido

Nouns 52
animate 40 uncle, aunt, tío, tía
inanimate 12 pen, book, libro

Adjectives 26 busy, ocupado
Determiners 6 a, the, un, una, el, la
Pronouns 4 he, she, él, ella
1 Both overlap with the auxiliary verbs.
2 Nine of these have the same form as a verb;

e.g., ‘walked’ is either a perfect participle
or a verb.
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Structures

For the two languages we used the present and past tense, and three aspects:

simple, progressive, and perfect. The past tense is only used in simple aspect sentences

(e.g., “the man swam”) whereas the present tense applies to all three aspects. The

allowed structures for the two languages and all tenses and aspects are Subject - Verb

(SV) and Subject - Verb - Object (SVO) (Table 4.4).

Table 4.4.: Allowed structures for English and Spanish

Structure English example Spanish example
Present perfect

SV she has swum ella ha nadado
SVO a man has thrown the key un hombre ha tirado la llave

Present progressive
SV a happy dog is running un perro feliz está corriendo
SVO the boy is carrying a book el niño está llevando un libro

Simple past
SV the girl ran la niña corrió
SVO he threw a book él tiró un libro

Simple present
SV the grandmother sneezes la abuela estornuda
SVO the tall uncle kicks the toy el tio alto patea el juguete
SVO (linking) the aunt is focused la tia está atenta
SVO (possession) the cat has a ball la gata tiene una pelota

The grammatical roles can be expressed using either a Noun Phrase (NP) with

definite (DEF) or indefinite (INDEF) article (e.g., ‘the woman’, ‘a woman’). Additionally,

the subject can be expressed with a pronoun (PRON, e.g., ‘she’). NPs optionally contain

a modifier (an adjective, e.g., ‘a tall woman’). Note that in English the adjective comes

before the noun (“the intelligent woman”) whereas in Spanish the modifier comes

after the noun (“la mujer inteligente”). As mentioned above, the model learns all this

through the training examples and not through explicit syntactic labels.

The verbs are either intransitive (e.g., ‘swims’), transitive (‘carries’), linking (‘is’,

‘está’) or possession verb (‘has’, ‘tiene’). The two linking verbs (‘is’, ‘está’6) and the

English possession verb (‘has’) were also used as auxiliary verbs for the progressive and

perfect forms respectively. As mentioned before, the Spanish perfect-form auxiliary

verb is haber (‘ha’ in the 3rd person singular form), which does not function as a main

6The Spanish language has two linking verbs (estar and ser) that are commonly translated as ‘to be’
in English. For purposes of simplification, in the simulations reported here we have employed only
attributes that are expressed with the former linking verb, estar (está in the 3rd person singular).
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verb. Following the allowed structures, each verb had four forms: simple present,

simple past, present participle and past participle.

Messages

The goal of the model is to express a specified message using a grammatical

sentence, such as the ones described above. A message is represented by (a) a target

language, (b) event-semantic information, (c) pairs of thematic roles and concepts, and

(d) pairs of thematic roles and realizations (pronoun, definite, indefinite) whenever

applicable in the case of noun phrases.

The target languages are ENGLISH and SPANISH. The event semantics contain

information regarding the aspect (SIMPLE, PROGRESSIVE, PERFECT) and tense

(PRESENT, PAST), as well as the thematic roles that are used in each message.

The following simulations make use of 52 unique concepts and five thematic

roles: AGENT, AGENT-MODIFIER, PATIENT, ACTION-LINKING, and ATTRIBUTE. The

AGENT is only paired with animate nouns. ACTION-LINKING is a combined thematic

role that can be used for all main verb types: action (e.g., ‘shows’), linking (‘is’) and

possession (‘has’). ATTRIBUTE is an attribute expressed only with a linking verb.

Additionally, AGENT and PATIENT are not only connected to concepts but also to

their realization: pronoun (e.g., ‘he’ for the concept MAN), and definite or indefinite

article for concepts that are expressed as a noun phrase (e.g., ‘the man’ or ‘a man’

respectively).

Message-sentence pair examples

To incorporate and illustrate all the information given above (Lexicon, Structures,

and Messages), here is an example of how a message is expressed as a sentence:

AGENT=WOMAN, INDEF

AGENT-MOD=TALL

ACTION-LINKING=CARRY

PATIENT=BOOK, INDEF

EVENT-SEM=PRESENT, PERFECT, AGENT, AGENT-MOD, PATIENT

The corresponding sentences in English and Spanish are:

• a tall woman has carried a book

• una mujer alta ha llevado un libro (word-by-word translation: “a woman tall has

carried a book”)
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If the aspect was PROGRESSIVE instead of PERFECT, the corresponding sen-

tences would be “a tall woman is carrying a book”; “una mujer alta está llevando un

libro”. Similarly, for the SIMPLE aspect, the corresponding sentences are “a tall woman

carries a book”; “una mujer alta lleva un libro”.

Linking verb messages are encoded using an attribute:

AGENT=GIRL, DEF

ACTION-LINKING=BE

ATTRIBUTE=TIRED

EVENT-SEM=SIMPLE, PRESENT, AGENT, ATTRIBUTE

and expressed as “the girl is tired” or “la niña está cansada”, depending on the

target language.

A message with a possession verb is encoded similar to a message with a transitive

verb:

AGENT=GRANDFATHER, DEF

AGENT-MOD=SHORT

ACTION-LINKING=HAS

PATIENT=CHAIR, INDEF

EVENT-SEM=SIMPLE, PRESENT, AGENT, AGENT-MOD, PATIENT

The preceding message would be expressed as “the short grandfather has a chair”

and “el abuelo bajo tiene una silla”.

Note that auxiliary verbs do not have an explicit concept and are not assigned

to a thematic role (e.g., for “has carried” the ACTION-LINKING is CARRY). When

“have” (or “tiene”) is used as a possessive verb, as in the example above, the ACTION-

LINKING is HAS which indicates that the verb has a semantic property. The Spanish

auxiliary verb haber does not function as a main verb and, therefore, has no semantic

weight in the model: it is never connected to ACTION-LINKING. This is in contrast to

the verbs “have”, “is”, “está”, which have semantic weight (through a connection to

ACTION-LINKING) when used as main verbs.

4.2.4 Model training
Connectionist models have trainable connection weights that are adapted during the

learning process. During training, the network sees examples (targets) of messages
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and sentences (Section 4.2.3). Before training, the network produces random words

(e.g., “cat cat cat”). After each word has been produced, the model receives feedback

as to whether the word was correct or not, and the connections change their weights

depending on the mismatch between the produced and the target word. Gradually,

through exposure to the examples, the model learns to successfully express a message

using the corresponding sentences.

A set of training examples always contained 2,000 message-sentence pairs. All

three simulations (see Section 4.3) were trained for 40 epochs, where each epoch

corresponds to one pass through the training set. The connection weights were updated

using the backpropagation algorithm after each output word.7

A number of random factors influence the message-to-sentence production and

the overall performance of the model. In order to minimize the risk of choosing param-

eters that are either too specific (i.e., resulting in an effect that does not generalize) or

improper (i.e., causing failure or low performance in the overall sentence production),

we decided to train several networks per simulation. Specifically, for each simulation

we trained 60 different networks (model runs) for 40 epochs while randomizing all

free parameters per network, as explained below, except the training set size and

backpropagation parameters.

The target message-sentence pairs (see Section 4.2.3 for examples of messages)

are randomly generated before the training starts, and the sentences are constrained

by the set of allowed structures (Section 4.2.3). For each part of speech (POS) a

randomly selected lexical item (from that POS and target language) is sampled from

the bilingual lexicon (Section 4.2.3).

As mentioned in the section on corpus analysis (Section 4.2.1), the simple

tense occurs considerably more frequently than the progressive and perfect-form

constructions. Since in the current simulations we are mainly interested in the latter

two forms, to ensure the model encounters these forms sufficiently we increased their

percentage in the training set by downsampling the simple form. At the same time, we

made sure to keep the relative frequencies of the progressive and perfect forms intact.

The percentages used to produce structures in the model are shown in Table 4.5.

Additionally, the percentage of English and Spanish varied slightly: the goal

was to simulate balanced bilinguals, but as it is very unlikely that a human bilingual

receives truly balanced input, we sampled the percentage of English using a normal

7Backpropagation (Rumelhart, Hinton, and Williams, 1986) is a learning algorithm typically used in neural
networks. In our simulations, the momentum was set to 0.9 and the initial learning rate was 0.10 and
linearly decreased after each training sample over 10 epochs until it reached 0.02.
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Table 4.5.: Structure frequencies in the model training sentences

Language Structure type Percentage
English Auxiliary Structures 62%

Perfect Present 20%
Progressive Present 42%

Simple Structures 38%
Simple Past 6%
Simple Present 32%

Spanish Auxiliary Structures 62%
Perfect Present 27%
Progressive Present 35%

Simple Structures 38%
Simple Past 6%
Simple Present 32%

distribution with a mean of 50% and a standard deviation of 8, the rest being Spanish.

Importantly, the target sentences were never code-switched.

Furthermore, the network’s connection weights were randomly initialized from

a normal distribution centered at zero, and the (non-trainable) weights of the con-

nections between the thematic roles and the concepts (‘concept’–‘role’ and ‘predicted

role’–‘predicted concept’, see Figure 4.1) were integer values that were sampled for

each simulation between the values of 10 and 20, whereas the unused roles and

concepts are not connected. These connections are not trained. The size of the hidden

layer was also random, between 90 and 110 units, and the size of the compress layer

was set to roughly 77% of the size of the hidden layer.

4.3 Simulations
To test the grammaticalization account of the auxiliary phrase asymmetry, we ran three

sets of simulations, consisting of 60 model runs each.

4.3.1 Simulation 1: “haber model”
In the first set of simulations, we tested whether the auxiliary phrase asymmetry

can emerge only from the distributional patterns of the two languages, which would

indicate that exposure to the asymmetry is not necessary to explain the phenomenon.

To test that, we trained the model (“haber model”) on 2,000 sentence-message pairs
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using the generated examples described in Section 4.2.3 that contain progressive-,

perfect- and simple-tense sentences. We then tested it on 700 novel messages that had

Spanish as a target language. Only Spanish messages are included because we are

interested in Spanish-to-English code-switches; therefore, we activated the Spanish

language unit until the first word was produced, after which both languages were

activated, allowing the model to continue in the same language or to code-switch. Of

these 700 messages, 350 had a PROGRESSIVE aspect (e.g., “the boy is kicking a ball”)

and 350 were the PERFECT-form equivalent of those sentences (“the boy has kicked a

ball”). We hypothesized that the model would display the auxiliary phrase asymmetry

even though the phenomenon was not present in the training data; as mentioned

before, the model was not exposed to any code-switched sentences during training.

4.3.2 Simulation 2: “tener model”
In the second simulation we tested explicitly whether adding semantic weight to the

Spanish auxiliary verb (i.e., haber) would diminish the asymmetry. This was done

by taking advantage of the fact that the model’s training set is generated and can

therefore be manipulated. To increase the semantic weight of the Spanish auxiliary

verb, we modified the Spanish main verb (tener) of the model to function both as a

main verb and an auxiliary (i.e. similar to English, which uses the verb “to have” both

as a main verb and as an auxiliary verb: “the boy has a dog”; “the boy has left”). More

specifically, we trained the model (“tener model”) with the same training examples

as in the “haber model” simulations, with the only difference that we replaced all

instances of haber with tener. For instance, “el niño ha comido” (i.e., “the boy has

eaten”) became “el niño tiene comido”. We kept everything else the same as in the

“haber model” (the 700 test messages, initialized weights, all the layer sizes, and even

the lexicon size, even though haber was no longer used, were identical), and we ran

60 networks using the modified target sentences. Because in this simulation tener is

used both as an independent main verb with semantic content and as an auxiliary

verb, we hypothesized that this model would not show the asymmetry.

4.3.3 Simulation 3: “synonym model”
Finally, we ran a third simulation to control for the frequency increase of tener which

was caused by using it also as an auxiliary verb in the previous model compared to

the first model. To make sure that a potential disappearance of the asymmetry in the

“tener model” is not simply due to the increase of exposure of tener, we made haber and
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tener perfect synonyms (“synonym model”). Either could be used as a main verb or an

auxiliary verb, whereas we kept the frequency of each verb the same as in the “haber

model”. Once again, we also kept everything else the same as in the “haber model”. If

the “synonym model” shows the asymmetry, this will indicate that the asymmetry in

the “tener model” disappeared because of the increase in the auxiliary verb frequency

and not because of the added semantic weight.

4.4 Results
All three simulations achieved a similar performance on the progressive and perfect

test sentences (see Table 4.6). All 1000-sample bootstrapped 95% Confidence Intervals

reported in this table and the following figures were calculated over the percentages

from each of the 60 model runs.

Table 4.6.: Performance (percentage of test sentences with correct meaning) of the three
models at the last epoch. The numbers in the brackets show the bootstrapped 95% Confidence
Interval.

Progressive Perfect Total (average)
haber 89.5% [85.4, 91.6] 87.1% [83.1, 89.3] 88.3% [84.2, 90.5]
tener 90.9% [88.0, 92.3] 89.8% [87.9, 91.2] 90.4% [88.1, 91.7]
synonym 90.8% [88.7, 92.3] 87.2% [84.5, 89.1] 89.0% [86.8, 90.7]

For each simulation, we ran a logistic mixed-effects regression analysis com-

paring the percentage of progressive and perfect switches at the last (40th) training

epoch; the analyses include a by-model-run random intercept and a slope of sentence

structure (coded as −.5 for the perfect structure and +.5 for the progressive one),

but no by-sentence random effects because test sentences differ between model runs.

Comparisons between simulations were performed by including the factor simulation

(dummy coded with “haber model” as the reference level) and the interaction with

sentence structure; this analysis also included a random slope of simulation8.

4.4.1 Simulation 1: “haber model”
Importantly, the “haber model” clearly produced the auxiliary phrase asymmetry,

as hypothesized. Figure 4.2a shows the average percentage of Spanish-to-English

8All regression analyses were performed using the R package lme4 (Bates et al., 2015). The exact script
can be found at https://osf.io/yn8e9/
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Figure 4.3.: Percentage of code-switches at auxiliary and participle for the progressive and
perfect structures in the “haber model”, computed over 60 network runs. Shaded areas show
the bootstrapped 95% Confidence Interval.

participle switches over 60 model runs for correctly produced sentences per structure

(progressive and perfect). The model output showed a strong preference for progressive

participle switches over perfect participle switches: at the last training epoch, 2.34%

of all correctly produced progressive-form sentences had a switch at the participle

whereas only 0.60% of the correctly produced perfect-form sentences had a switch at

the participle. The logistic mixed-effects regression analysis showed the difference to

be statistically significant9 (b = 1.13; z = 3.25; p < .002).
Figure 4.3 shows the percentages of code-switches at the auxiliary verb and at

the participle for the progressive and perfect structure. A probability of a switch at the

auxiliary verb was not significantly different between structures, and a participle switch

for the perfect structure was the least preferred switch point. For both structures, the

simulations showed a clear preference for a switch at the auxiliary position over the

participle one (10.77% progressive-auxiliary switch vs 2.34% for progressive-participle

switch and 9.01% perfect-auxiliary switch vs 0.60% for progressive-participle switch).

However, the probability of a switch at the auxiliary was not significantly different

between the progressive and perfect structures (b = 0.11; z = 0.93; p > .3).10

9This effect was not caused by the higher frequency of progressive relative to perfect structures; it also
appeared when the two structures occurred with equal frequency (Tsoukala, Frank, van den Bosch, et al.,
2019).

10The switch location (auxiliary vs participle) is not an independent variable; therefore, there is no
interaction between location and structure to be tested. However, whether the effect of structure differs
between locations can be ascertained by comparing the confidence intervals around structure effect
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4.4.2 Simulation 2: “tener model”
When tested on the same 700 messages, the auxiliary phrase asymmetry all but

disappeared. The output of the “tener model” (that substituted the original Spanish

auxiliary verb from the “haber model” for one with more semantic weight) showed at

best a small (non-significant) preference for progressive participle switches over perfect

participle switches (1.30% vs 0.77% in the last epoch; Figure 4.2b). This difference

is not statistically significant (b = 0.10; z = 0.37; p > .7) and is significantly smaller

than in the “haber model” (interaction between sentence structure and simulation:

b = −1.05; z = −5.26; p < .0001).

4.4.3 Simulation 3: “synonym model”
Finally, when tested on the same 700 messages, the “synonym model”, which controlled

for the frequency increase of the auxiliary verb in the “tener model”, did not show a

preference for progressive over perfect participle switches either (1.13% progressive-

form participle switches vs 1.03% perfect-form participle switches; Figure 4.2c). This

difference is not statistically significant (b = −0.48; z = −1.30; p = 0.19) and is

significantly smaller than in the “haber model” (b = −1.62; z = −8.75; p < .0001).

4.5 Discussion
All three simulations support the hypothesis that the asymmetry can be caused by

the lack of semantic weight of the Spanish auxiliary verb haber “to have”. The

“haber model” exhibited the auxiliary phrase asymmetry; adding semantic weight

to the Spanish perfect-form auxiliary verb (“tener model”) was enough to make the

asymmetry all but disappear. If the reason that the effect became significantly smaller

in the “tener model” was the frequency increase of the auxiliary verb, we would have

expected the “synonym model” to produce a similar pattern to the “haber model”. In

the third simulation, when controlling for the increase in the frequency of the Spanish

auxiliary in the second simulation, the “synonym model” did not show a preference for

progressive participle switches either, thus further supporting that the lack of semantic

weight of haber can cause the asymmetry.

The probability of a switch at the auxiliary verb for the progressive structure

did not differ significantly from the probability of a switch at the auxiliary for the

sizes. These are (-0.12, 0.35) and (0.45, 1.82) for auxiliary switches and participle switches, respectively,
indicating that the effect sizes differ between locations.
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perfect structure. Furthermore, a participle switch for the perfect structure was the

least preferred switch point; both patterns reflect prior experimental and corpus-based

results (Guzzardo Tamargo, Valdés Kroff, and Dussias, 2016). However, unlike these

corpus results, in the progressive structure the simulations showed a clear preference

for a switch at the auxiliary position. This indicates that the model does not capture

the finding that in the corpora (Table 4.1) there is no preference between an auxiliary

and a participle switch in the progressive structure. This discrepancy between model

results and corpus data could be attributed, for instance, to the limited number of

structures used in the simulations.

In this study we have only focused on the grammaticalization account. We

speculate, however, that even though in bilinguals the asymmetry is likely driven

by grammaticalization, the overall switching patterns are reinforced by exposure to

code-switched speech in the community (as claimed by the exposure-based account

discussed in the introduction). In principle, the model should be able to simulate

exposure-based explanations as well, by running second-generation simulations that

receive as target the code-switched sentences of the first simulations. We expect that

in this scenario the amount of overall code-switching will increase. Furthermore, we

hypothesize that the perfect-form participle-switch will become even less frequent over

time.

Previous literature on code-switching (e.g., Pfaff, 1979 and Poplack’s 1980

Equivalent Constraint) has argued that code-switching can only occur at points where

the surface word order of the two languages is the same. Similarly, grammatical

constraints on code-switching from a generative framework (e.g., Functional Head

Constraint, Government Constraint) likewise make broad generalizatons on which

syntactic junctures code-switches cannot occur (i.e., no code-switches between an

auxiliary verb and a main verb). The findings reported here, as well as in Dussias

(2003) and Guzzardo Tamargo, Valdés Kroff, and Dussias (2016), have shown that such

constraints are not enough to explain the code-switching patterns; the auxiliary phrase

asymmetry seems to exist because of differences in the semantic weight of the auxiliary

verbs, despite the fact that the structures have the same syntactic patterns. Therefore,

it seems that even though syntax and word order play a role in the places where

code-switching can occur, they are not the only factors governing code-switching.

As is the case with every research method, using computational cognitive model-

ing has certain limitations. First, the languages used in the simulations are miniature,

and therefore artificial, which could be seen as a disadvantage of this research method.

However, using a miniature language is also an advantage as it allows us to remove
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any confounding factors and to focus on the phenomenon of interest. More impor-

tantly, it gives us the unique opportunity to manipulate the languages that the model

learns (i.e., the lexicon and/or structures) and to investigate whether changes in the

language lead to different code-switching patterns. For instance, in this paper we show

that the asymmetry disappears when the Spanish auxiliary verb haber is the same as

the main verb “to have” and therefore has semantic weight like its progressive-form

auxiliary verb equivalent. Second, connectionist models can produce different patterns

depending on the generated training sentences and the connection weights that are

assigned before the learning starts. It is therefore important not to report on a single

model run, nor to hand-pick free parameters that produce the results we would like

to see. In this work, we showed that the result is robust by running three separate

simulations using 60 networks for each while randomizing (within fixed ranges) all

free parameters and the target message-sentence pairs.

The simulations’ goal was to test whether the lexical-syntactic distribution pat-

terns of Spanish and English can lead to the auxiliary phrase asymmetry, and the

simulations have provided evidence that it can indeed. We do not claim to (and did

not aim to) know what mechanism drives the asymmetry in the models’ output. We

speculate, however, that having a higher semantic weight, as in the case of the Span-

ish and English verbs “to be” (“is”, “está”), leads to more possible upcoming words.

Subsequently, this leads to the activation of more output word candidates; the most

activated word is less reliably the correct Spanish word, thus increasing the probability

that the most activated word is the English translation. The Spanish auxiliary verb

haber, on the other hand, only has one sense and a very restricted context, as it can

only be followed by a participle, thus allowing for fewer options to code-switch.

4.6 Conclusion
We tested whether the auxiliary phrase asymmetry in Spanish–English code-switching

could be derived from the properties of the two languages. The “haber model” sim-

ulated the attested asymmetry, and the “tener model” showed that this could be

attributed to the fact that the Spanish auxiliary haber has only a limited, dependent

syntactic function (i.e., is more grammaticalized) and is not used as frequently as the

English equivalent (“have”). The follow-up model (“synonym model”) used haber and

tener as synonyms, and confirmed that the lack of asymmetry in the “tener model” can

be attributed to the syntactic independence of the modified auxiliary verb and not to
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its increased frequency compared to the “haber model”. The three simulations thus

confirm that grammaticalization could be responsible for the asymmetry.

Importantly, we showed that using computational cognitive modeling we can

test hypotheses that cannot be experimentally tested in humans, such as changing

the function of the Spanish auxiliary verb and observing whether the auxiliary phrase

asymmetry persists. We made the grammaticalization hypothesis testable in the model,

and showed that indeed the difference in semantic weight between estar and haber

can cause the observed phenomenon, in line with the grammaticalization account.
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5Simulating the effect of
cognates on code-switching

Cognates are words that share similar meaning and form between languages, such as

‘actor’ or ‘artificial’ in English and Spanish. Clyne (1967; 2003) suggested that cognates

are trigger words that facilitate code-switching; this is called the cognate triggering

effect. In this chapter, we employ the Bilingual Dual-path model to investigate the

cognate triggering effect on balanced and non-balanced (L1 Spanish, L1 English)

bilinguals, as well as the effect that the percentage of cognates in a language pair

has on code-switching for the Balanced simulation. The simulations show a cognate

triggering effect on the L1 English non-balanced simulation, but not on the Balanced

and L1 Spanish non-balanced simulations. Additionally, the percentage of cognates in

a language pair does not affect the model’s code-switching propensity.
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5.1 Introduction
Clyne (1967; 2003) suggested that certain words (“triggers”) facilitate code-switching.

Specifically, he hypothesized that words that have similar meaning and overlapping

form, such as cognates1 are trigger words. Clyne studied the speech patterns of

immigrant populations (from the Netherlands, Germany, Croatia, Hungary, Spain,

Italy, and Vietnam) in Australia and provided several such anecdotal examples from

these bilingual (or multilingual) populations. The code-switching facilitation caused

by cognate words is called the triggering (a.k.a. facilitation) effect. In the current

chapter, we will investigate the cognate triggering effect in balanced and non-balanced

Spanish–English bilinguals, as well as the effect that the percentage of cognates in a

language pair has on code-switching, using the Bilingual Dual-path model.

Broersma and De Bot (2006) statistically tested the triggering hypothesis on a

small Moroccan Arabic–Dutch corpus, consisting of transcriptions of informal conver-

sations between three bilingual speakers living in the Netherlands. This study found

that clauses containing cognates were code-switched 29.6% of the time as opposed

to 12.6% of the time for clauses not containing such words. This work was the first

to statistically support the triggering hypothesis in a language pair that is not related

and, therefore, does not contain many cognate words; only 4.7% of the word tokens

(i.e., 104 out of 2,224) were cognates, with most cognates being (proper) nouns.

In a later study, Broersma (2009) ran a corpus analysis on an interview conducted

with a Dutch–English late bilingual speaker who migrated to New Zealand in her

late 30s. Dutch–English is a highly cognate language pair; in the transcription of

the interview, 71.4% of word tokens (2,035 out of 2,849) were cognates (proper

nouns, content words, and function words). In this corpus analysis, the findings

were similar to Broersma and De Bot (2006): 37.5% of the utterances containing a

cognate word were code-switched, as opposed to 6.9% of utterances without a cognate

word. Broersma, Isurin, et al. (2009) replicated this observation in a corpus study

including both a typologically similar and a less related language pair (Dutch–English

and Russian–English).

Following Broersma and De Bot (2006), Soto, Cestero, and Hirschberg (2018) ran

a corpus analysis on the Bangor Miami corpus (Deuchar et al., 2014), which is the same

corpus that we employed in Chapters 3 and 4. The Bangor Miami corpus consists of

1Strictly speaking, cognates are words that share a common ancestry, such as father-vader in English and
Dutch. However, in psycholinguistic studies the focus is on the perceived similarity of two word forms
and not on the shared origin. Therefore, proper nouns (“Maria”) and loan words (such as “internet”)
would count as cognates.
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242,475 words, transcribed from informal conversations between 84 Spanish–English

speakers. The authors collected a list of (not necessarily identical2) cognate words

and identified 1,305 unique cognate pairs (types) in the Miami corpus. They then

compared utterances with and without cognates with respect to whether they were

code-switched or not. A statistical analysis confirmed that code-switched sentences

were more likely to contain a cognate, thus supporting the triggering hypothesis.

Broersma, Carter, Donnelly, et al. (2020) explored the triggering effect in a

different language pair (Welsh–English) in the Bangor Siarad corpus (Deuchar et al.,

2014). The Bangor Siarad corpus is even larger than the Bangor Miami corpus: it

contains 447,507 words from 69 informal conversations and a total of 151 speakers.

Broersma, Carter, Donnelly, et al. confirmed the triggering hypothesis in this corpus

as well: the odds of producing a code-switch were 65% higher when a cognate was

present in the sentence compared to sentences that did not contain a cognate.

A number of psycholinguistic experiments have also been conducted to explore

the triggering hypothesis, though the results are less conclusive than in the corpus

analyses. Broersma (2011) ran a picture-naming task, with color cues indicating the

intended language (Dutch or English). Preliminary results suggested that the response

time for code-switches following a cognate word were shorter than switches after

a non-cognate word, thus supporting the triggering hypothesis. However, further

analysis of the data found no such evidence (Broersma, Carter, Donnelly, et al., 2020).

In a Dutch–English structure priming experiment, Kootstra, van Hell, and Dijkstra

(2012) found that high-proficient bilinguals tended to produce more L1-Dutch to

L2-English intra-sentential switches when the prime sentences contained a cognate

compared to non-cognate prime sentences; this effect was not found in low-proficient

bilinguals. The authors did not investigate the L2-to-L1 switch direction.

There are studies, on the other hand, that found no evidence for the triggering

hypothesis. For instance, Bultena and colleagues tested whether the presence of a

cognate verb facilitates the comprehension (Bultena, Dijkstra, and van Hell, 2014)

and production (Bultena, Dijkstra, and van Hell, 2015) of intra-sentential language

switching, both from L1 (Dutch) to L2 (English) and from L2 to L1. The presence

of a cognate verb did not have an effect in either experiment or switch direction.

Santesteban and Costa (2016) ran a picture naming task with a color cue. They

tested two groups of bilinguals based on two proficiency levels: L1 Spanish L2 Catalan

(low-proficient) bilinguals and balanced (high-proficient) Spanish-Catalan bilinguals.

The results showed a non-significant trend of cognate triggering in the high-proficient

2Non-identical cognates do not have the same form; for instance, direction and dirección in English and
Spanish.
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group, and no effect nor trend in the low-proficient group. The authors concluded

that the cognate status of the target or preceding word does not affect the response

times in either bilingual group. Last, Broersma, Carter, and Acheson (2016) ran

a picture naming study with Welsh–English bilinguals, who were either balanced,

slightly English-dominant, or slightly Welsh-dominant. The balanced bilingual and

Welsh-dominant participants showed cognate triggering effects, whereas the English-

dominant participants showed cognate inhibition when naming in Welsh, and no

difference between cognates and non-cognates when naming in English.

In the current chapter, we will investigate the cognate triggering effect of noun

concepts using the Bilingual Dual-path model. We decided to focus only on nouns be-

cause it is the most documented word type in the aforementioned studies. Because the

model simulates sentence production, rather than a specific task such as picture nam-

ing3, or forced code-switching in picture description, we hypothesize that the results

will be similar to those of the corpus analyses (Broersma and De Bot, 2006; Broersma,

2009; Broersma, Isurin, et al., 2009; Broersma, Carter, Donnelly, et al., 2020; Soto,

Cestero, and Hirschberg, 2018) and we expect that code-switching will occur more

often in sentences that contain a cognate. Additionally, we will explore i) whether

there is a different triggering effect in balanced versus non-balanced Spanish–English

bilingual models, and ii) whether the cognate percentage of a language pair affects

the overall probability of code-switching or the effect of cognates in the sentence pro-

duction of balanced bilinguals. The latter goal has both a methodological motivation,

i.e., to ensure that the proportion of cognates we selected for the simulations did not

significantly affect the results, and an exploratory theoretical one; to our knowledge,

no study has investigated the effect that the proportion of cognate words in a language

pair has on code-switching.

5.2 Cognate comparison setup

5.2.1 Bilingual Dual-path model: languages
For this study, we trained the Bilingual Dual-path model using structures similar to

the ones used in previous chapters, especially Chapter 3 (see Table 3.1). We were

interested in the cognate status of the words and not in the interaction between specific

syntactic structures, therefore we only kept one variation of a structure expressing

3In fact, because the semantics are given to the model, the process is more similar to a picture-description
task. However, because each sentence is independent from the previous one, there is no forced language
(switching) cue or any other task-related cognitive control needed in the model.
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Figure 5.1.: The Bilingual Dual-path model with the layer size information within parentheses.

a RECIPIENT: the prepositional dative in which the RECIPIENT is expressed at the

end of the sentence (e.g., “the waitress gave a toy to the girl” instead of “the waitress

gave the girl a toy”). We also edited the lexicon by adding 18 more nouns (9 in each

language) compared to the lexicon used in Chapter 3 because we are focusing on

noun cognates only and we wanted to ensure that there is a large number of nouns in

the language pairs. The exact layer sizes can be seen in Figure 5.1; the structure and

lexicon files can be found at https://osf.io/svb8d/.

As in the previous chapters, we simulated a miniature version of Spanish and

English. The percentage of cognates in this language pair depends on the domain, but is

expected to be at least 30% (Moss, 1992). For this reason, in the following simulations

the default percentage of cognates we used was 30%. However, to explore the effect of

the percentage of cognates in a language pair, we ran additional experiments including

simulations that had been trained with up to 70% of cognates (see subsection 5.3.2).

5.2.2 Pairwise cognate experiment setup
The artificial languages allow for a clean pairwise comparison between two identical

models that have been trained with different cognate sets (hereby: “cognate1” and

“cognate2”) that contain the same percentage of cognates. In cognate1, 30% of the

concepts referring to noun entities (across both languages) were randomly selected

and converted to cognates by assigning the English label to both the Spanish and

the English word (e.g., the word for the concept DOG became “dog” in Spanish and

5.2.2 Pairwise cognate experiment setup 83
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English). In cognate2, 30% of non-overlapping (with cognate1) noun concepts were

selected and converted to identical cognates.

As we were interested in the effect of cognates on code-switching, using different

cognate sets we compared the probability of code-switching in a sentence in which

a noun is a cognate versus an identical sentence in which the same concept is not a

cognate. The pairwise comparisons were done using a test set containing messages

with exactly one cognate, that was a cognate for either cognate1 or cognate2. For a test

set sentence with a concept that was a cognate in cognate1, cognate1 was marked as

“cognate” and it was compared against cognate2’s identical sentence (“non-cognate”),

where the same concept was not a cognate. Similarly, if a test set concept was a

cognate in cognate2, this network run was marked as “cognate” and was compared

against the “non-cognate” cognate1. For instance, consider the following message4:

AGENT=ROOSTER, DEF; ACTION=PUSH; PATIENT=BOTTLE, INDEF; EVENT-

SEM=SIMPLE, PAST; TARGET-LANG=ES

If ROOSTER is a cognate in cognate1 the sentence would be expressed in (non

code-switched) Spanish as “el rooster empujó una botella” whereas in cognate2 (in

which ROOSTER is not a cognate) as “el gallo empujó una botella” (“the rooster

pushed a bottle” in English).

When generating test messages for either a pairwise or non-pairwise comparison,

we imposed two restrictions: i) the cognate should not be expressed as a pronoun

and ii) the message should only contain one cognate; it should not contain any other

concept that is a cognate in either cognate set. For instance, if in the sentence “the

waitress gave the man a cup” the cognate word is “waitress”, but another word (e.g.,

“cup”) is also a cognate in either cognate1 or cognate2, this sentence is excluded from

the test set.

5.3 Experiments

5.3.1 Balanced versus non-balanced models
As in the previous chapters, the balanced bilingual model was trained simultaneously

(for 20 epochs in the current study) on both languages, i.e., with Spanish input

randomly sampled using a normal distribution with a mean of 50% and a standard

deviation of 8, and the rest in English. Before the training started, 30% of the concepts

were converted to cognates (i.e., the Spanish and English form of a concept were

4See previous chapters for a thorough explanation of messages; e.g., in section 3.2.2. of Chapter 3.
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identical). To run a pairwise comparison, for each cognate set (cognate1 and cognate2)

we trained 40 model runs with randomly initialized weights (which were the same for

cognate1 and cognate2) and training message-sentence pairs, as done in the previous

chapters, and randomly generated cognate sets.

The non-balanced models were first trained for 10 epochs on the L1 only, with

the same cognates as in the Balanced model, before it was exposed for another 20

epochs to the bilingual Spanish–English input that was generated to train the balanced

bilingual model. The non-balanced models also consisted of 40 model runs per

cognate set (cognate1 and cognate2) with the same randomly initialized weights as

the Balanced model.

We compared the balanced and non-balanced models using a test set with 600

messages, containing one cognate per message, that had the same distribution of

syntactic structures as in the training set. We analyze the effect of cognates on code-

switching, both in total and per switch direction for the non-balanced simulations

(L1-to-L2 and L2-to-L2).

5.3.2 Effect of percentage of cognates in language pair
In the previous simulations we assigned 30% of noun cognates, because this percentage

is realistic for the Spanish–English language pair. To explore the effect of the percentage

of cognates in a language pair, and to ascertain that the percentage we selected for

the previous simulations did not significantly affect the results, we ran two sets of

experiments (a pairwise and a non-pairwise one) on Balanced bilingual models with

different percentages of cognates.

Pairwise experiment

First, we ran three pairs of cognate models containing 10, 15, 20, 25, and 30% of

nouns that are cognates. We evaluated the three pairs using a single test set: the

set consisted of 600 messages, in the same distribution of structures as the training

set, containing one cognate per messages from a pool of cognates seen by all pairs

(i.e., the cognates selected for the 10% models, minus one cognate that had not been

seen by the other four model pairs). The concept could belong to either cognate1 or

cognate2.
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Non-pairwise experiment

With the pairwise setup we could only test up to 30% of cognates, because for each

percentage two cognate sets had to be generated (e.g., for the 30% cognate model,

60% of concepts were converted to cognates; half in cognate1 and the other half in

cognate2). Given the additional restriction that each test sentence should contain only

one cognate concept, generating 600 test sentences for each of the 40 model runs for

a larger percentage of cognates became unfeasible.

To investigate the effect of the percentage of cognates up to 70%, we also

compared cognate groups consisting of up to 70% of cognates (0, 10, 20, 30, 40,

50, 60, and 70% of cognates). The difference between this setup and the pairwise

comparison is that we did not compare the current cognate set to a “non-cognate”

equivalent.

We tested all models using two test sets. First, a test set (“cognate sentences”)

that was similar to the pairwise-comparison test set, i.e., that contained exactly one

cognate per sentence from the ones experienced by the 10% model. The only difference

was that, when excluding cognates (that were unique to the 20-70% cognate sets)

from the test set to only keep one cognate per message, the excluded cognates were

slightly different than the ones excluded in the pairwise experiment generation, thus

resulting in different sentences. Testing on the 0% model was not possible because, as

the name suggests, it has no cognates. Therefore, we tested only 7 models (10-70%

cognates) on this test set.

Second, we evaluated the same models on a test set not containing any cognates

(“non-cognate sentences”), which means that we generated sentences without any

concept that was a cognate in any of the 7 models. For both test sets, we only kept the

sentences that were correctly produced by all models (7 for the “cognate sentences”

set, 8 for the “non-cognate sentences”).

5.4 Results

5.4.1 Balanced versus non-balanced models
Figure 5.2 shows the code-switching percentages out of sentences that have been cor-

rectly produced for all three bilingual simulations (Balanced, L1 Spanish, L1 English)

for the 30% cognate and non-cognate sets (total: 5,922 per simulation and set). In

line with results from Chapter 3, the non-balanced models code-switch much less than

the balanced bilingual model.
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To investigate whether there is an overall cognate effect, we ran a logistic

mixed-effects regression analysis (Bates et al., 2015) comparing the probability of a

code-switch at the last training epoch (i.e., the 20th for the balanced simulation and

30th for the non-balanced simulations) between the cognate and non-cognate models.

The analysis includes a by-model-run random intercept and a slope of the cognate

status and the simulation type of the model, coded as −.5 for non-cognate models and

+.5 for cognate models, and −.5 for non-balanced simulations (L1 English, L1 Spanish)

and +.5 for the balanced simulation. In all statistical analyses reported here there was

no by-sentence random effect because each of the 40 model runs is exposed to different

test sentences. The analysis showed an overall cognate effect (b = 0.12; z = 2.07; p =
0.007). Additionally, it showed a significant interaction between the cognate effect and

the simulation type, indicating that the cognate effect is stronger for the non-balanced

models (b = −0.17; z = −2.49; p = 0.013). To explore the cognate effect per simulation,

we ran three separate analyses, one per simulation, including a by-model-run random

intercept and a slope of the cognate status (coded ±.5 as before). The analyses

showed no cognate effect for the Balanced simulation (b = 0.03; z = 0.59; p = 0.55)
nor for the L1 Spanish simulation (b = 0.05; z = 0.46; p = 0.65). It did, however,

reveal significance for the L1 English simulation (b = 0.26; z = 3.62; p = 0.0003).
This indicates that for the L1 English simulation, there was a higher probability of

code-switching with the cognate than the non-cognate set.

In this section as well as the following ones, we chose to analyze only sentences

that had been correctly produced by all (six, in this case) simulations and cognate sets.

To ensure that the above pattern does not emerge due to the strict sentence selection,

we also analyzed the full set of correctly produced sentences (34,484 for the Balanced

simulation, 29,606 for the L1 English simulation, and 30,114 for the L1 Spanish one)

and the pattern of statistical significance remained the same. Therefore, we only report

here the results based on the identical sentences, so as to ensure a perfect comparison

between simulations.

Non-balanced models: cognate in the L1

Figure 5.3a shows the percentage of L1-to-L2 code-switches for the non-balanced

bilingual models. Note that the percentages are different than in Figure 5.2 that

contains all three simulations because the code-switched percentage plotted here

is against all correctly produced L1 sentences only. Additionally, because in this

case the L1 sentences are different depending on the simulation (English for the L1

English, Spanish for the L1 Spanish simulation) we cannot restrict the comparison

5.4.1 Balanced versus non-balanced models 87
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Figure 5.2.: Percentage of code-switches among correctly produced sentences with vs with-
out cognates for the Balanced and Non-balanced bilingual simulations (5,922 sentences per
simulation and set). The error bars indicate the 1000-sample bootstrapped 68% Confidence
Intervals and the indication of significance comes from the mixed-effects regression analyses per
simulation.

to sentences that were correctly produced by all four cases (simulations and cognate

sets). Therefore, we report on all correctly produced sentences per simulation: there

are 22,036 correctly produced sentences in the L1 English simulations and 24,150 in

the L1 Spanish simulations.

To test whether the cognate effect differs depending on the L1, the switch

direction (L1-to-L2 vs. L2-to-L1) and the non-balanced bilingual simulation (L1 English

vs. L1 Spanish), we ran a logistic mixed-effects regression analysis contrast coding the

cognate status as before, and additionally coding the L1 (+.5 if the target language

was the L1, −.5 if the target language was the L2) and the simulation (+.5 for the L1

English simulation, −.5 for the L1 Spanish). Like in the previous analyses, this analysis

includes a by-model-run random intercept and a slope of the cognate status. The

cognate effect differs between the two simulations (b = 0.39; z = 2.54; p = 0.01) but

not significantly between the two languages (b = 0.17; z = 1.08; p = 0.28). Separate

analyses per simulation revealed a significant L1-to-L2 cognate effect for the L1 English

88 Chapter 5 Simulating the effect of cognates on code-switching



556869-L-bw-Tsoukala556869-L-bw-Tsoukala556869-L-bw-Tsoukala556869-L-bw-Tsoukala
Processed on: 9-3-2021Processed on: 9-3-2021Processed on: 9-3-2021Processed on: 9-3-2021 PDF page: 101PDF page: 101PDF page: 101PDF page: 101

simulation (b = 0.73; z = 5.08; p < 0.0001) but not for the L1 Spanish simulation

(b = −0.03; z = 0.29; p = 0.92).

a: L1-to-L2 b: L2-to-L1

Figure 5.3.: Percentage of (a) L1-to-L2 and (b) L2-to-L1 code-switches, among correctly
produced L1 (22,036 for the L1 English simulation and 24,150 for the L1 Spanish simulation)
and L2 sentences (7,570 for the L1 English, 5,964 for the L1 Spanish simulations) respectively,
with vs without cognates for the non-balanced bilingual simulations. Note that the percentages
are different between the two switch directions and therefore the y-axes differ between the two
panels. The error bars indicate the 1000-sample bootstrapped 68% Confidence Intervals and the
indication of significance comes from separate mixed-effects regression analyses per simulation
and switch direction.

Non-balanced models: cognate in the L2

Figure 5.3b shows the percentage of L2-to-L1 code-switches for the non-balanced

bilingual models (7,570 sentences for the L1 English simulations and 5,964 for the L1

Spanish simulations).

In this switch direction, too, the analyses found a significant effect of the cognate

status for the L1 English simulation (b = 0.27; z = 3.82; p < 0.0002). For the L1

Spanish simulation, the analysis showed no statistical difference between the cognate

and non-cognate sets (b = 0.11; z = 0.99; p = 0.32).

5.4.2 Effect of percentage of cognates in language pair
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Pairwise comparison

Figure 5.4 shows the percentage of code-switches across the five pairs of cognate

models tested on the same 600 messages. To ensure a fair analysis, we only kept

sentences that were produced correctly among all ten simulations (i.e., cognate vs

non-cognate, and 10, 15, 20, 15, 30% cognates). Hence, in these simulations, too,

the percentages are against correctly produced sentences only, which amount to 6,209

per simulation (out of 24,000 test sentences). To ensure that the criterion is not too

strict, we also investigated the model’s behavior for all correctly produced sentences

(not only the ones that had been correctly produced across all simulations), and the

resulting sentences per simulation showed a similar pattern; therefore, these results

are not presented here.

A logistic mixed-effects regression analysis (performed similar to the comparison

between cognate and non-cognate sets, but this time including the percentage of

cognates and their interaction with cognate status) showed no statistically significant

effect of percentage of cognates (b = −0.00; z = −0.39; p = 0.698), no significant

cognate effect (b = −0.07; z = −0.86; p = 0.39), nor an interaction between the two

(b = 0.00; z = 1.43; p = 0.15).

Figure 5.4.: Pairwise comparison of identical sentences with and without cognates; percentage
of code-switches among correctly produced sentences at the 20th epoch (6,209 per model) as
a function of percentage of cognates in the language. Shaded areas indicate the 1000-sample
bootstrapped 68% Confidence Interval.
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Non-pairwise comparison

Figure 5.5 shows the percentage of code-switches for the 8 models (containing 0, 10,

..., 70% cognates), tested on two test sets comprising: i) 600 messages with exactly one

cognate per sentence (“cognate set”) and ii) 600 different messages with no cognate

per sentence (“non-cognate set”). As mentioned in the pairwise comparison, we only

kept sentences that were correctly produced in all models, resulting in 11,583 test

sentences per model for the cognate-containing test set (81,081 sentences in total)

and 13,836 for the non-cognate-containing test set (110,688 in total).

Note that the two sets of test sentences are randomly different, because one

never contains a cognate whereas the other always does; a comparison between the

two sets is possible, but it is not as well controlled as a pairwise comparison. The

main focus here is the comparison between models with different percentages of

cognates. Additionally, the 0% model was not tested on the test set containing a

cognate because, by definition, this model has no cognates. A mixed-effects analysis

performed as in the pairwise comparison did not reveal statistical differences between

the models containing different percentage of cognate in the language pair (b =
−0.05; z = −1.27; p = 0.21). It did, however, show a cognate effect (b = 0.30; z =
9.71; p < 0.00001) and an interaction between the cognate set and the percentage of

cognates (b = 0.03; z = 2.18; p = 0.0291).

5.5 Discussion

5.5.1 Balanced versus non-balanced models
The balanced and L1 Spanish simulations show no cognate triggering effect, whereas

the L1 English simulations do, in both switch directions (L1-to-L2 and L2-to-L1). It

is surprising that only one language pair gets affected by the cognate status of the

produced sentences. If we compare the results to Chapter 3 (e.g., Figure 3.3), it is

obvious that the L1 Spanish model produces a similar percentage of code-switches

compared to that (non-cognate containing) chapter. The lexicon and structures are

slightly different between the two chapters, but the difference is not so big that it

would prohibit an imperfect comparison between the simulations. Whereas the L1

Spanish simulation stays rather unaffected, the code-switched performance of the L1

English model is boosted overall and even more so when there is a cognate in the

sentence, thus supporting the cognate triggering effect.
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Figure 5.5.: Non-pairwise comparison; percentage of code-switches among correctly produced
sentences at the 20th epoch as a function of percentage of cognates in the language, tested
on i) sentences containing a cognate (11,583 correct sentences per model) and ii) sentences
not containing a cognate (13,836 correct sentences per model). Shaded areas indicate the
1000-sample bootstrapped 68% Confidence Interval.

We can only speculate as to why this effect is only apparent in the L1 English

simulation and not in the L1 Spanish and Balanced simulations. First, it may have

to do with our methodological choice to convert all cognate words to the English

form; ‘dog’ and the Spanish equivalent ‘perro’ both became ‘dog’5 when converted to a

cognate, whereas it would have been better to randomly assign the Spanish or English

form each time a cognate was created. However, it is hard to imagine how this could

have affected so dramatically the code-switched performance of the L1 English model.

Second, and more importantly, given that Spanish is a gendered language and English

is not, it is possible that there is an effect of the grammatical gender. Another difference

between the two languages is that the word order differs between NPs that contain

adjectives; in English the adjective comes before the noun whereas Spanish prefers

post-nominal adjectives (“the small house” - “la casa pequeña”). Given that a switch

within an NP between an adjective and a noun is not common (neither among human

nor simulated bilinguals), a Spanish noun cognate would most likely be followed by

a Spanish adjective, and to produce a code-switch the model would need to switch

5In practice, this means that if ‘dog’ is the 4th node (item) in the lexicon and ‘perro’ the 12th, the cognate
word in a Spanish or English sentence would always activate the 4th node; the 12th would remain
unseen throughout training and testing.
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after the adjective, at which point the cognate effect might have decreased, whereas

for English the code-switch is able to occur right after the cognate. We analyzed the

model output to determine whether this is the case with adjective-containing NPs; the

results can be seen in Table 5.1, and they indicate that the cognate effect is indeed

stronger for English-to-Spanish.

Table 5.1.: Absolute frequencies of Spanish-to-English and English-to-Spanish code-switches in
adjective-containing sentences in the non-balanced bilingual models.

Cognate
Switch from Yes No
Spanish 45 42
English 107 49

5.5.2 Effect of percentage of cognates in language pair
With regards to the percentage of cognates in a language pair and its effect on code-

switched production, the simulations do not predict important differences between

different cognate percentages. This indicates that the percentage of cognates we used

for the Bilingual simulations likely did not affect the overall results. Additionally, this

is an interesting prediction that remains to be tested among humans.

The pairwise comparison shows that the cognate and non-cognate models pro-

duce a similar percentage of code-switches; there is a small decline in the non-cognate

model for the 20% cognate models, but it seems to be a non-significant fluke given that

for all other percentages the cognate and non-cognate models produce very similar

percentages of code-switched sentences.

The non-pairwise comparison shows a slight decline in the percentage of code-

switching as the percentage of cognates in the language pair increases but this trend

is not significant either. When inspecting, however, the percentage of code-switches

produced in the cognate and non-cognate test sets, the simulations show that there is

a larger percentage of code-switches in sentences that contain a cognate compared

to sentences that do not contain a cognate (Figure 5.5a). We do not know why

this is; one might think that this is due to the difference between the numbers of

correctly produced sentences: for the cognate-containing test set, the model has

produced 11,583 sentences correctly, whereas for the non-cognate-containing test set

the same model produced 13,836 sentences correctly. However, when we counted

the number of all code-switches (including incorrect ones) for the two test sets, the

5.5.2 Effect of percentage of cognates in language pair 93
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cognate-containing test set still produced more code-switches; this indicates that the

explanation above does not hold.

The main difference between the pairwise and non-pairwise methods is that in

the former different sets of models (“cognate” and “non-cognate”) are tested on the

same messages, whereas in the non-pairwise comparison the same models (containing

0-70% of cognates) are tested on different messages (one set containing and the

other not containing cognate concepts). An additional difference in the non-pairwise

comparison is that the non-cognate sentences only include a restricted set of nouns

(30% of total noun concepts), because 70% of the noun concepts had been converted

to cognates in the 70% cognate model and therefore had to be excluded. Both methods,

however, indicate that the percentage of cognates in a language pair does not affect the

probability of a code-switch. Given that one method (non-pairwise) exhibited a cognate

effect whereas the other method (pairwise comparison) did not, we cannot safely

conclude that there is a triggering effect in the Balanced model for any percentage of

cognates in the (Spanish–English) language pair. It would be interesting, however, to

repeat this work on the L1 English model that exhibited the cognate triggering effect

in our experiments.

5.6 Conclusion
In this chapter, we have presented a novel method to investigate the effect of cognates

on code-switching, as well as the effect that the percentage of cognates in a language

pair has on code-switching probability. Out of the three simulations (Balanced, L1

English and L1 Spanish) only the L1 English simulation produced more code-switches

when encountering a cognate. Further work needs to be done to determine why

the code-switched production of the L1 English model got enhanced with the mere

existence of cognates in the language pair and even more so when presented with

cognates. In the future, it would be interesting to investigate the effect that the position

of a cognate (e.g., whether it is at the beginning or the end of a sentence) has on

code-switched production. More importantly, the model makes predictions on human

code-switched behavior that could be attested in future psycholinguistic experiments

or corpora analyses. Specifically, one could test whether indeed the percentage of

cognates in a language pair does not matter with regards to the probability of code-

switching, and whether there are differences between balanced and non-balanced

human bilinguals, and between L1 Spanish and L1 English speakers, that match the

model’s predictions. The latter prediction (that L1 English speakers are more likely
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than L1 Spanish speakers to code-switch after a noun phrase containing a cognate

noun and an adjective) can be tested using the Bangor Miami corpus (Deuchar et al.,

2014).
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6“He’s pregnant": simulating the
confusing case of gender
pronoun errors in L2 English

Even advanced Spanish speakers of second language English tend to confuse the

pronouns ‘he’ and ‘she’, often without even noticing their mistake (Muñoz, 1991). A

study by Antón-Méndez (2010) has indicated that a possible reason for this error is the

fact that Spanish is a pro-drop language. In order to test this hypothesis, we used an

extension of Dual-path (Chang, 2002), a computational cognitive model of sentence

production, to simulate two models of bilingual speech production of second language

English. One model had Spanish (ES) as a native language, whereas the other learned

a Spanish-like language that used the pronoun at all times (non-pro-drop Spanish,

NPD_ES). When tested on L2 English sentences, the bilingual pro-drop Spanish model

produced significantly more gender pronoun errors, confirming that pronoun dropping

could indeed be responsible for the gender confusion in natural language use as

well.

This chapter is based on: Tsoukala, Chara, Stefan L. Frank, and Mirjam Broersma (2017). ““He’s pregnant”:

simulating the confusing case of gender pronoun errors in L2”. In: Proceedings of the 39th Annual Conference

of the Cognitive Science Society. Ed. by G. Gunzelmann, A. Howes, Tenbrink T., and E.J. Davelaar. London,

UK, pp. 3392–3397
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6.1 Introduction
Second language (L2) speech errors have been employed in the past as a means to

understand bilingual speech production as well as the acquisition process of a foreign

language (Antón-Méndez, 2010; Poulisse, 1999). Certain L2 errors are observed more

often due to discrepancies between the first language (L1) and the L2. For example, if

the expression of a message in the L2 requires the inclusion of a specific feature that

would not be necessary in the L1, then speakers of these two languages may produce

a speech error in their L2 due to L1 transfer (Odlin, 1989). In this study, we focus

on a gender-related L2 pronoun error that has been observed among native speakers

of Spanish; namely, errors involving the third person singular nominative pronouns

‘he’ and ‘she’. Even advanced Spanish speakers of L2 English occasionally confuse the

two pronouns, referring to an actress as ‘he’ or a father as ‘she’, often without even

noticing their mistake (Muñoz, 1991). At first, this phenomenon seems surprising

because the Spanish language does have two equivalent pronouns (‘él’ for ‘he’ and

‘ella’ for ‘she’), and also a very strong separation between the two genders, even more

so than in English. For instance, depending on the suffix a word can be feminine or

masculine (e.g., maestro - teacher [masculine], maestra - teacher [feminine]; niño -

child [masculine, a.k.a. boy], niña - child [feminine, a.k.a. girl]). This means that

the gender mistakes that Spanish speakers make in English cannot be attributed to

the lack of familiarity with the distinction. Furthermore, the challenge the English

pronoun system poses for native speakers of Spanish could not be due to its inherent

difficulty, as this would mean that most non-native speakers of English, regardless of

their L1, would produce the same mistake. As Muñoz noted, a low proficiency level

of the native Spanish speakers is not a reason either. This was also demonstrated in

the experiments of Antón-Méndez, where the participants showed an intermediate

to upper intermediate knowledge of English. Finally, note that the gender mismatch

error cannot be classified as a syntactic error; the produced sentence is grammatically

correct, but it conveys the wrong meaning.

A hypothesis which has been put forward (Muñoz, 1991; Antón-Méndez, 2010)

regarding the cause of errors in the use of English pronouns is the pro-drop status

of the Spanish but not the English language. In pro-drop languages, nominative

personal pronouns are often omitted (1b) because the number and person information

is conveyed in the conjugated verb (Davidson, 1996), whereas in English the omission

of the pronoun would result in an ungrammatical sentence (2b).

1. a) Él/ella tiene un perro (Spanish)
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b) tiene un perro

2. a) He/she has a dog (English)

b) * has a dog

It is hard to imagine, however, how the pro-drop feature of the L1 might result

in a gender pronoun error (“He’s walking", when referring to a woman) instead of an

omission (“Is walking"), which would be the case in a direct language transfer.

As a matter of fact, native speakers of Spanish have been noted to produce an-

other gender-related pronoun error in English, this time regarding possessive pronouns

(‘his’, ‘her’). Due to the high frequency of this type of errors, a lot more emphasis

has been given to the misuse of these pronouns than the subject pronouns (White,

Muñoz, and Collins, 2007; Antón-Méndez, 2011). The reason that English possessive

pronouns pose a challenge for native speakers of Spanish is most likely that in Romance

languages the possessive pronoun agrees in gender and number with the possessum,

namely the noun that follows, whereas in Germanic languages such as English the

possessive pronoun refers to the antecedent. For example:

i His daughters are on vacation. [his: 3rd person masculine singular]

ii Sus hijas están de vacaciones. [sus: 3rd person (feminine) plural]

Due to the different information encoding Spanish speakers of English may

occasionally make gender mistakes such as “He called her mother", where ‘her’ refers

to the antecedent (‘he’) and not a different female person. This is because ‘mother’

is female, and a Spanish speaker would use that gender information to construct the

possessive pronoun in Spanish. The resulting error in English is, of course, confusing,

as a speaker of English would not guess that ‘her’ in this case refers to the same subject

(‘he’). The gender error in the case of L2 English possessive pronouns seems clearly

due to L1 transfer, because the properties of Spanish are directly applied to English. In

the case of the subject pronoun gender errors, on the other hand, it is not evident that

the pro-drop feature of one language would lead to a gender error in L2. The present

study addresses only the latter type of errors.

Antón-Méndez (2010) has investigated the hypothesis that the pro-drop feature

of Spanish is responsible for the gender pronoun errors in L2 English (“pro-drop

hypothesis"). She conducted an experiment eliciting semi-spontaneous speech in

English, where she compared native Spanish and native French speakers of L2 English

with respect to the pronoun errors they produced. French was chosen as it is a

Romance language that is similar to Spanish in several aspects, but which, in contrast
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to the Spanish language, is not a pro-drop language. Each test group consisted of 20

participants who were comparable in terms of education, age of English acquisition,

frequency of use and proficiency. The participants were shown 43 illustrations and were

asked questions designed to elicit pronoun production. The subjects were instructed

to respond freely, and the pronoun errors they produced were recorded. The types

of reported errors fall in the following categories: person errors (e.g., ‘I’ instead of

‘you’), number errors (e.g., ‘I’ instead of ‘we’), gender errors (‘he’ instead of ‘she’

and vice-versa), animacy errors (e.g., ‘he’ instead of ‘it’), omission errors (e.g., ‘is

swimming’), insertion errors (e.g., ‘the boy he played’ instead of ‘the boy played’) and

other errors (e.g., ‘it’ instead of ‘there’ in ‘there is’).

Spanish speakers of L2 English indeed made significantly more gender errors

(4.30%) compared to other types of pronoun errors and to the French group (0.68%)1.

The pronoun errors recorded were not due to erroneous transfer of the Spanish L1

grammar, as the Spanish speakers made no omission errors (‘is swimming’); thus, in

none of the items of Antón-Méndez’s experiment did the subjects omit a pronoun,

which would have been the case in a grammatical transfer. Importantly, even though

there were slightly more ‘he’ than ‘she’ errors (he: 5.68%, she: 2.98%), the difference

is not statistically significant. Therefore, the Spanish speakers were not using a default

pronoun (e.g., always ‘he’ instead of ‘she’). The use of ‘he’ as the default pronoun

would have suggested that another factor might underlie the error, for instance, the

difficulty that the English phonology poses for speakers of Spanish. The Spanish

phonology does not contain the phonemes /S/ in ‘she’ and /h/ in ‘he’, therefore one

explanation for the gender pronoun issue could be at the phonological level. In the

present study we focused only on the pro-drop feature, not because we disregard the

potential role of the phonology, but because we wanted to investigate whether the

pro-drop feature has the capacity of causing this type of gender errors in L2.

In order to focus on the pro-drop feature, we simulated bilingual sentence

production using computational cognitive modeling. The pro-drop feature is not the

sole difference between the French and Spanish languages, and one could argue that

the differences in the error patterns between the two groups could have been partially

attributed to confounding factors, for instance, to a different L2 English teaching

system in Spain and France.

Using computational modeling we can remove all possible confounds and there-

fore minimize the variance by focusing only on the phenomenon of interest, which in

1The percentages are calculated by Antón-Méndez (p. 129, Table 6) and they represent the frequency of
the gender pronoun mistake (68 and 10, respectively) with respect to the total number of pronouns
produced where this particular mistake could have occurred.
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this case is the pro-drop feature and its possible effect on L2 English pronouns. For

this reason, we modified Dual-path (Chang, 2002), a computational cognitive model

of sentence production, to account for bilingualism. We then compared L2 English

speech production of simulated native speakers of Spanish (ES) on the one hand, to

L2 production of simulated native speakers of a Spanish-like language (‘non-pro-drop

Spanish’, NPD_ES) on the other hand. The latter contained all the features of the

Spanish language (lexicon, allowed structures) except the pro-drop feature; therefore,

pronouns needed to be used at all times. All input languages (ES, NPD_ES and EN)

were artificially generated and based on the Spanish and English language, using a

subset of their lexica and syntactic structures. If the bilingual Spanish-English (ES-EN)

Dual-path model produces significantly more subject pronoun errors in English than

its Spanish-like non-pro-drop equivalent (NPD_ES-EN), it will be clear that the pro-

drop feature of the Spanish language is the reason for this particular L2 error in the

simulation, as the two simulated languages differ only in their pro-dropness. If this is

the case, we will have confirmed that the pro-drop feature has the capacity to lead to

gender pronoun errors in L2 English.

6.2 Method
In order to simulate Spanish speakers of L2 English, we developed two bilingual

models using a modified version of Dual-path which is a connectionist model based on

the Simple Recurrent Network (SRN; Elman 1990) architecture (Chang, 2002).

6.2.1 Bilingual Dual-path model
Dual-path (Figure 6.1) learns to convert a message into a sentence by predicting the

sentence word by word (“next word prediction"). It has two pathways that influence

the production of each word; the meaning system which learns concepts, roles and

event semantics, and the sequencing system which is an SRN that learns to abstract

syntactic patterns. Both paths influence the word output layer. The sequencing

system consists of one recurrent hidden layer (of 30 units in our simulations) and

two “compress" layers (of 12 units each) that are placed between the input word, the

hidden layer and the output word.

The meaning system learns to map the input word onto a concept, which is linked

to a specific thematic role (that is given for each sentence through fixed connections).

The fixed connections allow the separation between concepts and roles, which, in turn,
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Figure 6.1.: Bilingual Dual-path model

enables the model to generalize and to produce words in novel places. The thematic

role is connected to the hidden layer, and so is the “event-semantics" layer. The hidden

layer spreads the activation to the next thematic role (in the meaning path, and the

“compress" unit in the syntactic path), which is in turn linked to a specific predicted

concept that is used as input to the output word layer, along with the “compress"

unit.

In the original model, all layers use the tanh activation function, except the

output layer and the (comprehended/input) role layer that use softmax. In the

modified version of the model, we also employed softmax for the predicted role layer.

This led to a stricter selection of the upcoming thematic role which helped overcome a

difficulty that the model had with learning the correct articles regarding gender and

definiteness (e.g., ‘a’ vs ‘the’). Furthermore, our version has a “target language" layer

in the meaning path that is used as an additional input to the hidden layer, along

with the “event-semantics" layer. The “target language" denotes the intended spoken

language and helps the model handle more than one language. The modified model

can be found at https://github.com/xtsoukala/dual_path .

6.2.2 Input languages

Message

Dual-path is trained using randomly generated sentences paired with their mean-

ing (Chang, Dell, and Bock, 2006). The meaning (message) contained information

regarding four thematic roles (AGENT, PATIENT, ACTION, RECIPIENT). A concept

(e.g., ‘WOMAN’ for the English word ‘woman’ or Spanish word ‘mujer’) was assigned

to each thematic role depending on the meaning that needed to be expressed (e.g.,
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in the sentence “the woman run -s" the message would include AGENT= WOMAN,

DEF). Furthermore, the message contained event-semantic information (denoted as

‘EVENT-SEM’), which gave information regarding the tense (PRESENT or PAST) and

aspect (SIMPLE or PROGRESSIVE). The message contained information about the

target language (ES or EN) as well. This information was given at the beginning of

the sentence along with the roles and the event-semantics, so that the model knew

whether it was supposed to produce an English or Spanish sentence.

Structures

The allowed structures for all languages were the following (where ‘S’, the subject, is

omitted in the pro-drop case):

1. (S)V: (Subject) - Verb, e.g., “He runs"

2. (S)VO: (Subject) - Verb - Object, e.g., “She kicked the ball"

3. (S)VIODO: (Subject) - Verb - Indirect Object - Direct Object, e.g., “He gave the

girl a book"

4. (S)VDOIO: (Subject) - Verb - Indirect Object - Direct Object, e.g., “He gave a

book to the girl"

The sentences in English and in non-pro-drop Spanish always started with a

pronoun, and the sentences in pro-drop Spanish never started with a pronoun but

always with a verb.

Lexicon

The total lexicon consisted of 34 nouns: 11 male (‘man’, ‘boy’, ‘father’, ‘brother’,

‘dog’, ‘hombre’, ‘niño’, ‘padre’, ‘hermano’, ‘perro’, ‘maestro’), 11 female (‘woman’, ‘girl’,

‘mother’, ‘sister’, ‘cat’, ‘mujer’, ‘niña’, ‘madre’, ‘hermana’, ‘gata’, ‘enfermera’) and 12

inanimate (‘ball’, ‘stick’, ‘toy’, ‘kite’, ‘key’, ‘bag’, ‘pelota’, ‘palo’, ‘juguete’, ‘cometa’, ‘llave’,

‘bolso’), 24 verbs (e.g., ‘give’, ‘show’, ‘walk’, ‘throw’, ‘present’, ‘dar’, ‘lanzar’, ‘presentar’,

‘nadar’, ‘caminar’) and 26 function words (e.g., articles (‘a’, ‘the’, ‘un’, ‘una’, ‘el’, ‘la’),

pronouns (‘he’, ‘she’, ‘él’, ‘ella’) and auxiliary verbs (‘is’, ‘was’, ‘está’, ‘estaba’)).

The model treats the verb lemma (‘give’) and the suffix (‘-s’) as two different

units. Syntactic information (such as ‘verb’, ‘noun’) is not given explicitly, but is learned

by the model during training through the syntactic path. The syntactic gender was
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also learned implicitly during training through the article of Noun Phrases (NP) and

pronouns. Semantic gender (e.g., ‘ACTRESS, F’, ‘ACTOR, M’) was not included in the

model.

Thematic roles could be expressed using either an NP with definite (DEF) or

indefinite (INDEF) articles (e.g., ‘the woman’, ‘a woman’) or the pronoun (PRON)

equivalent (‘she’).

Example

The following message would be the same across languages:

AGENT=WOMAN, PRON;

ACTION=GIVE;

PATIENT=INDEF, KEY;

RECIPIENT=DEF, GIRL;

EVENT-SEM=SIMPLE, PRESENT, AGENT, PATIENT, RECIPIENT

and it would be expressed linguistically in the following manner for the three

languages:

1. she give -s the girl a key . [EN]

2. d -a a la niña una llave . [ES]

3. ella d -a a la niña una llave . [NPD_ES]

6.2.3 Training
The two models were trained on 2000 randomly generated sentences (training set) and

tested on 500 unseen sentences (test set). The models contained almost identical sets,

with the only difference that the NPD_ES model expressed the subject pronoun at all

times, whereas the ES model never did and always started with a verb. For each model

we ran 100 simulations using the same input, but different random initial weights per

simulation, as the input and the weights are the only non-deterministic parts of the

model. The models were trained for 20 epochs, where 1 epoch corresponds to a full

iteration of the training set (2000 sentences). At the beginning of each epoch, the

training set was shuffled. In order to simulate late L2 acquisition, we first trained the

models for 20 epochs using Spanish input only, and then used the fully trained weights

as initial weights for the bilingual models. The bilingual input consisted of newly
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Figure 6.2.: Performance on the training and test sets over the training period (20 epochs)
averaged over 93 simulations for the two bilingual models. Performance is measured in
percentage of correctly produced Spanish and English sentences.

generated (2000 training and 500 test) sentences, this time using 50% (pro-drop or

non-pro-drop according to the model) Spanish and 50% English. We excluded from

the analysis 7 simulations that did not manage to learn at least 75% of the test set by

the end of the training in one of the two models, leading to a total of 93 simulations.

Both bilingual models were able to perform equally well by the end of the training,

reaching 99.69% correct for ES-EN and 99.70% correct for NPD_ES-EN (Figure 6.2)

on the test set that contained English and Spanish sentences.

6.3 Results
In order to assess the performance of the two bilingual models on L2 pronouns, we

focused only on the English sentences (50% of the test set). If a pronoun error was

detected and the sentence was grammatical, it was classified as a gender pronoun

error. We compared the performance of the two bilingual models with regard to the

gender pronoun error production. If the models had a comparable performance we

would not be able to confirm that the pro-drop feature has the capacity to lead to

gender pronoun errors in L2 English. If, on the other hand, the NPD_ES model made

fewer gender pronoun errors than the ES model it would indicate that the pro-drop

feature is a possible explanation.
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Figure 6.3.: Production of English gender errors (in log scale) averaged over 93 simulations for
the two bilingual models. Note that the gaps in the non-pro-drop model are because log(0), for
0% error rate, is not defined, and therefore not plotted.

The non-pro-drop Spanish-English (NPD_ES-EN) bilingual model (Figure 6.3)

produced almost no gender pronoun errors (maximum percentage: 0.11%) whereas

the bilingual model based on pro-drop Spanish (ES-EN) initially produced 9.75%

pronoun errors, gradually dropping to 0.05%.

Crucially, the ES-EN model never reached 0% (minimum error rate: 0.02%)

whereas the NPD_ES-EN model did. Following visual inspection, we ran a z-test for

proportions from epoch 5 onwards to test for a difference in error rate between the

models. The difference is significant (z=7; p<.001).

6.4 Discussion
Our simulations showed that a bilingual model with L1 pro-drop Spanish and L2

English produced significantly more gender pronoun errors than a similar model with

L1 non-pro-drop Spanish. These sentences were grammatically correct: the only error

they contained was a pronoun with incorrect gender. Given that the only difference

between the two L1s was the pro-drop feature, we have demonstrated that the pro-

drop nature of Spanish can indeed cause the gender pronoun error as observed in L1

Spanish speakers of L2 English.

106 Chapter 6 “He’s pregnant": simulating the confusing case of gender pronoun errors in L2



556869-L-bw-Tsoukala556869-L-bw-Tsoukala556869-L-bw-Tsoukala556869-L-bw-Tsoukala
Processed on: 9-3-2021Processed on: 9-3-2021Processed on: 9-3-2021Processed on: 9-3-2021 PDF page: 119PDF page: 119PDF page: 119PDF page: 119

Why the pro-drop feature does not lead to a direct language transfer (“is walk-

ing") in either the model or humans remains to be investigated, as the current sim-

ulations and results do not explain how pro-dropness in L1 could lead to gender

errors in L2. Nevertheless, having a computational model that simulates the gender

pronoun errors in L2 English can point us in the right direction. Our hypothesis for

the occurrence of the gender error is that the gender information is not as crucial for

the message planning, at least in the subject position, of a pro-drop language, and is

therefore weaker or omitted, even when producing sentences in a non-pro-drop L2.

It is important to point out that the Dual-path model does not contain a phono-

logical level (Garrett, 1988). One might have thought that the reason Spanish speakers

confuse the words ‘he’ and ‘she’ is because of the difficulty the English phonology poses

for native speakers of Spanish. However, our simulations have produced gender errors

without having any phonological representations. This does not mean that phonology

could not play a role, but rather that it is not the only possible explanation.

It is also crucial to note two simplifying assumptions in these simulations. First,

as mentioned in the Method section, the input for all three languages (EN, ES, NPD_ES)

was artificially generated and it only represented a subset of the actual languages.

In general, using natural input would be preferable as it would increase the validity

and naturalness of the results. However, the benefit of miniature languages that

are typically used in cognitive modeling is that they can be easily manipulated. For

instance, in the simulations described here we were able to add and remove the

pro-drop feature at will, leaving everything else the same, and thus to isolate this

important feature from confounding factors.

Second, a crucial simplifying assumption in the miniature language is the absence

of full NP subjects. We therefore repeated the simulations using new input for all

languages, this time including 50% pronouns at the subject position and 50% noun

phrases. Preliminary simulations show no gender errors in either model, which means

that further research is needed using more natural language input, starting with a

more naturalistic proportion of pronouns and NPs in the subject position based on

English and Spanish corpora.

6.5 Conclusion
Computational modeling can be used to validate or generate linguistic hypotheses

while focusing on specific factors of interest and minimizing the variance. In this study,

we have addressed the question as to whether the pro-drop feature of the Spanish
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language has the capacity to cause the gender pronoun errors that Spanish speakers of

L2 English have been shown to produce (Muñoz, 1991; Antón-Méndez, 2010). The

reported simulations showed that the model with L1 pro-drop Spanish produced more

gender pronoun errors in L2 English than the model with L1 non-pro-drop Spanish,

which is a necessary but not sufficient condition for the pro-drop hypothesis.
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7General discussion

7.1 Summary of results
In this dissertation, I have presented a novel method for investigating code-switching

and cross-linguistic influence in bilingual sentence production using computational

modeling. Specifically, in Chapter 2, I introduced the Bilingual Dual-path model and

showed that a computational cognitive model of monolingual sentence production

can be extended to bilingualism by adding a language control node and by training

it with bilingual input. Furthermore, by allowing the bilingual model to produce a

sentence in either language, I demonstrated that the model produces code-switched

sentences, even though it has not been exposed to code-switched input. This indicates

that i) some aspects of code-switching can be attributed to internal factors and to

the distribution of the languages involved, and therefore ii) a bilingual speaker does

not need (extensive) exposure to code-switching in order to code-switch. In this

chapter I simulated balanced bilinguals, i.e., bilinguals who have been exposed to both

languages simultaneously and to a similar extent, and showed that several produced

patterns are in line with those observed among human (balanced) bilinguals, as

reported in psycholinguistic and sociolinguistic studies.

In Chapter 3 I tested the robustness of the model by randomizing almost all free

parameters of the simulations. Additionally, I simulated non-balanced bilinguals, i.e.,

speakers who have first acquired a native language (L1) before becoming exposed to

their second language (L2). At the early stages of L2 acquisition, the non-balanced

models, that had not been exposed enough to the L2, preferred to switch back into the

L1 frequently. However, when these models became somewhat proficient in the L2,

they produced very few code-switches. The balanced models, on the other hand, code-

switched much more frequently than the non-balanced ones. Both the L2-acquisition
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phenomenon and the code-switching differences between balanced and non-balanced

speakers have been observed in human bilinguals. Furthermore, I analyzed the

code-switching patterns in the Miami corpus, which contains spontaneous dialogues

between Spanish–English speakers living in Miami, Florida. I compared the simulated

patterns of balanced and non-balanced speakers to the ones produced by the Miami

corpus speakers and to a corpus analysis reported by Poplack (1980). As mentioned in

this chapter, it would be impossible to observe a perfect match between the model’s

code-switching patterns and the corpus data because the simulations use artificial

miniature languages, which have features of English and Spanish. Nevertheless, some

patterns were similar to what human bilinguals produced in the two corpora.

Having shown that the model reliably code-switches, and that the patterns

sometimes reflect those produced by human bilinguals, in Chapter 4 I employed the

model to shed light on the auxiliary phrase asymmetry observed in Spanish–English

bilingual speech. Through manipulations of the miniature languages, I showed that

this asymmetry can be attributed to the distributional patterns of the two languages,

and more specifically to the differences in the semantic weight of the auxiliary verbs,

even though the structures have the same syntactic patterns. This indicates that even

though syntax and word order play an important role in (dis)allowing code-switching

in certain places, they are not the only factors affecting code-switching. Through this

experiment, I also demonstrated the advantage of using artificial languages; they allow

us to modify the grammar and frequency of the languages involved and to explicitly

test the effect these have on speech patterns. For instance, in this chapter I changed

the function of a Spanish auxiliary verb and consequently observed that the auxiliary

phrase asymmetry disappeared; the role of the auxiliary verb cannot be experimentally

tested in humans, whereas it is easily tested using computational modeling.

In Chapter 5, I tested the effect of cognates on code-switching among balanced

and non-balanced bilinguals, as well as the effect that the percentage of cognates in a

language pair has on code-switching. The artificial languages allow for a clean set-up,

i.e., to compare the production of a non-cognate-containing sentence with that of an

identical sentence in which one of the words is a cognate. The model predicts no

cognate effect for the balanced bilingual model, whereas it does show the so-called

cognate triggering effect for the L1 English model, but not for the L1 Spanish one.

As, to the best of my knowledge, there are no available data comparing the cognate

triggering effect in the sentence production of balanced bilinguals and non-balanced

bilinguals with different L1s, these predictions remain to be tested in humans.
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Last, in Chapter 6 I showed that the model can also be employed to explain

other cross-linguistic phenomena, such as L2 speech errors. I used the model to show

that a subject pronoun error, which is sometimes produced by Spanish speakers of

L2 English, can be attributed to the pro-drop status of the L1 Spanish. Additionally,

in work not included in this chapter, Khoe, Tsoukala, Kootstra, and Frank (2020)

employed the model to simulate cross-linguistic structural priming between Spanish

and English, and showed that cross-language priming does occur in the model; this

study opened a new research possibility to test how syntax is shared across languages

in the bilingual mind.

7.2 Overall conclusions
All the above results show that via computational cognitive modeling of bilingual

sentence production one can remove all extra-linguistic influences in language use and

investigate which patterns are caused by the interaction of the statistical properties

of the languages involved in combination with the cognitive system, rather than by

community norms. However, it is important to acknowledge that no explanation

of the process of code-switching, or any speech pattern, can be complete without

taking into consideration the impact of community practices. Community norms

have been shown to influence code-switching patterns, to the extent that there can

be opposite preferences between communities that use the same language pair; for

instance, Blokzijl, Deuchar, and Parafita Couto (2017) analyzed the Miami corpus

and a Nicaraguan Spanish–English creole corpus and found that speakers in Miami

preferred to use a Spanish determiner in a mixed Determiner Phrase, whereas in

Nicaragua only the English creole determiner was used. Similarly, Balam, Parafita

Couto, and Stadthagen-González (2020) examined three Spanish–English communities

(from Northern Belize, New Mexico, and Puerto Rico) with respect to their preference

for two code-switched compound verb constructions; the U.S. bilinguals showed a

different preference to the Northern Belize community, once again confirming that

there are aspects other than grammar that affect code-switching across communities

that speak the same language pair.

Modeling can help disentangle the linguistic from the extra-linguistic factors. For

example, the simulations in Chapter 3 produced certain patterns and in certain switch

directions (e.g., more Spanish determiners than English ones) even though there were

no extra-linguistic influences available to the model. More importantly, in Chapter 4

the model helped answer the question as to whether the auxiliary phrase asymmetry
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exhibited by Spanish–English speakers arises due to community practices or whether

it can be attributed to the statistical properties of the two languages. The model was

able to simulate the asymmetry without exposure to this phenomenon, thus showing

that at least part of it is due to the properties of the Spanish auxiliary verb.

Note, however, that, as is the case with all psycholinguistic experiments, testing

a hypothesis and showing that a phenomenon can occur because of a specific linguistic

attribute (e.g., the pro-drop feature of Spanish in Chapter 6) does not exclude other

possible explanations for the same phenomenon; it merely supports the plausibility of

the hypothesis under consideration.

Finally, from a cognitive perspective, it is interesting that the model contains no

complex code-switching cognitive control (such as active inhibition). Several cognitive

models of code-switching, such as the Control Process Model of code-switching (CPM;

Green and Wei, 2014), suggest temporary inhibition during the production of alterna-

tions and insertions; however, the minimal computational model presented here can

produce such patterns without any added restrictions. This is also in contrast with

Green’s (2018) statement that “varying language activation levels is an insufficient

mechanism to explain the variety of language use” (p. 1). This is not to say that the

CPM is not a correct model: it aims to explain how different types of output arise in

situations with a different context, something that I have not attempted to do here. It

is interesting, however, that the Bilingual Dual-path model exhibited alternations and

insertions without employing any complex mechanisms.

7.3 Future directions
In this dissertation I focused on Spanish–English code-switching and cross-linguistic

processing because there are corpora, such as the Miami corpus, and several studies

based on communities that code-switch between English and Spanish; this makes

the model output more easily attestable compared to using a language pair that is

less documented. However, the model can be trained on any language pair. More

interestingly, one could use this model to investigate code-switching between (more

than) three languages. The Bilingual Dual-path model should, in principle, be easily

extended to multilingualism by being exposed to several languages simultaneously

during training, and by using the corresponding target language nodes.

As mentioned in several chapters, the model is trained on miniature languages.

The main advantage of this is that it helps us remove the complexity of language and

focus only on the phenomena of interest (such as the auxiliary phrase asymmetry

112 Chapter 7 General discussion



556869-L-bw-Tsoukala556869-L-bw-Tsoukala556869-L-bw-Tsoukala556869-L-bw-Tsoukala
Processed on: 9-3-2021Processed on: 9-3-2021Processed on: 9-3-2021Processed on: 9-3-2021 PDF page: 125PDF page: 125PDF page: 125PDF page: 125

in Chapter 4, the cognate status of a word in Chapter 5, and the subject pronoun

error in Chapter 6). It could be fruitful, however, to extend the language in a

(more) naturalistic manner. The first step towards this action would be to replace

the ‘concept’ layer, which is currently a one-hot vector, with a cross-lingual word

embedding. One-hot vector means that if the concept of interest (e.g., DOG) is the

10th unit in the ‘concept’ layer, only the 10th unit will be activated; each concept is

either on (1) or off (0). This also means that to add one concept one would need to

extend the layer vector by one value, which could become computationally costly for a

large lexicon and set of concepts. A cross-lingual word embedding (e.g., Klementiev,

Titov, and Bhattarai, 2012), on the other hand, is a dense and low-dimensional way

to encode bilingual lexical semantics, thus making it a scalable way of representing a

large number of concepts. In a preliminary experiment, I replaced the concept layer

with a pre-trained English embedding1 and trained the model with the miniature

English sentences. The performance was initially lower (during the first epochs)

compared to using a one-hot vector, but the Bilingual Dual-path quickly learned to

use the embedding. This indicates that only a small architectural change needs to

be made for the model to receive a larger input set. Apart from this change in the

representation of concepts in the computational model, one would presumably want

to use corpus data for training. As is done now with the artificial languages, any

new input sentences would need to be semantically annotated in order to be used as

training input to the model. The model receives as input a message with thematic roles

and the corresponding concepts, therefore, one would need to automatically assign

semantic role labels to the training sentences.

An alternative future direction would be to add phonological information to

the model. As mentioned in several chapters and in Chapter 6 in particular, the

phonology also plays an important role in bilingual production and code-switching. In

this dissertation I have focused on the role of semantics and the syntactic distribution

of the languages involved. In the future it would be interesting to add phonological

information as well to enrich the model and to investigate the role of phonology on

code-switching and cross-linguistic phenomena.

Last, as shown in the previous chapters, the Bilingual Dual-path model can

simulate certain phenomena and test specific hypotheses regarding the interaction of

two languages. However, in this dissertation I did not analyze specific processes of

the model to investigate why it produces certain patterns, and to explain how the

specific cognitive processes of bilingual production and code-switching work.

1Specifically, a word2vec (Mikolov et al., 2013) trained on the text8 corpus, which is a small subset of
Wikipedia data and can be downloaded through Gensim (Řehůřek and Sojka, 2010).

7.3 Future directions 113



556869-L-bw-Tsoukala556869-L-bw-Tsoukala556869-L-bw-Tsoukala556869-L-bw-Tsoukala
Processed on: 9-3-2021Processed on: 9-3-2021Processed on: 9-3-2021Processed on: 9-3-2021 PDF page: 126PDF page: 126PDF page: 126PDF page: 126

Nevertheless, it is important to point out that the model is able to code-switch merely

by being exposed to two languages and by having (and manipulating) a language

control node that sets the conversational setting and allows the model to produce in

either language; no other cognitive control is required for the model to code-switch.

There are two straightforward ways to explore the processes of the model: First,

to test the average activation of specific layer units for certain structures, concepts,

or around a code-switch. Second, to deactivate (a.k.a. “lesion”) the syntactic and

semantic streams and observe the code-switching behavior of the models. Following

Chang (2002), who lesioned the two streams to simulate aphasic production, in two

preliminary experiments I lesioned two trained models on either the syntactic or the

semantic path. Both lesioned models produced code-switches; it would be interesting

to quantitatively analyze the produced patterns so as to make predictions about code-

switching in bilingual aphasia, and to better understand the role of semantics versus

syntactics in code-switching.

7.4 Concluding remarks
In this dissertation I have argued that computational cognitive modeling is an inter-

esting and novel method to research bilingualism and code-switching. The Bilingual

Dual-path model in particular, with its straightforward architecture that consists of

i) a semantic stream, ii) a syntactic stream, iii) a language control node that sets

the conversational setting, shows that no complex code-switching cognitive control

is needed for a model to code-switch. Additionally, the fact that Dual-path, a model

of monolingual sentence production, was altered only minimally to be able to handle

two languages simultaneously, shows that the cognitive mechanisms of bilingualism

may not be that different from those of monolingualism. As far as the syntactic and

semantic levels are concerned, the bilingual cognitive architecture and the monolingual

architecture may be indistinguishable (Frank, 2021).

Furthermore, the model learned to code-switch without exposure to code-

switched input, which indicates that part of code-switching can be attributed to

internal factors and the distribution of the languages involved, and not only on com-

munity practices. This is important when answering questions regarding whether a

pattern emerges due to internal factors or community-based influence, as mentioned

above.

Last, in Chapter 1 (Section 1.2) I discussed several grammatical models that have

attempted to explain code-switching patterns. The EC model, for instance, has argued
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that code-switching can only occur if the word order of the two languages is identical.

However, the Bilingual Dual-path had no hard-coded constraints. Even so, the model

did produce certain constraint-like patterns, such as the dispreference in Chapter 4

to produce a Spanish auxiliary verb together with an English participle. Therefore,

deriving hard constraints from observed code-switched patterns may be too limiting

or not sufficient, because, as discussed in the same chapter, word order and syntax

are not the only factors governing code-switching. Instead, grammatical constraints

can emerge from the interaction between properties of the production system and the

languages involved.
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A.1 English summary
Code-switching occurs when a multilingual speaker alternates (switches) between

their languages in a single conversation context (for instance, in a single sentence).

Code-switching is done by many people who speak more than one language, and

not only by people who grew up in bilingual communities; it is an important aspect

of human language. Despite that, we still do not fully understand the underlying

processes of this phenomenon. The goal of this dissertation was to come closer to

understanding how code-switching works; I aimed to do so by simulating sentence

production using computational cognitive modeling.

Specifically, In Chapter 2 I worked with a computational cognitive model, which

is based on the so-called recurrent neural network architecture, to simulate sentence

production in simultaneous Spanish-English bilinguals (namely, people who grew

up with both languages). The goal was to investigate whether the model would

code-switch without being exposed to code-switched sentences. The model indeed

produced code-switches even without any exposure to such input and the patterns

of code-switches are in line with what human bilinguals produce according to earlier

linguistic work. To my knowledge, this is the first computational cognitive model that

aims to simulate code-switched sentence production.

In Chapter 3, apart from early balanced Spanish–English bilinguals, I simulated

late speakers of English who have Spanish as a dominant native language, and late

speakers of Spanish who have English as a dominant native language. The simulations

predicted how code-switching patterns differ between early balanced and late non-

balanced bilinguals; the balanced bilingual simulation code-switched considerably

more frequently, which is in line with what human bilinguals do. Additionally, I

compared the patterns produced by the simulations to those that human bilinguals

produce and identified noticeable commonalities and differences. Having shown that

the model produces patterns that are somewhat realistic, in Chapter 4 I used this

model to understand why Spanish–English bilinguals produce a code-switch between

an auxiliary verb (“to have”, “to be”) and a verb in a certain grammatical structure (the

progressive structure, e.g., “Maria está voting”; “Maria is voting”) but not so much in a

similar structure called the perfect structure (“Maria ha voted”; “Maria has voted”).

This is called the “auxiliary phrase asymmetry”. Using the model and the code-switches

it produced, I was able to identify a possible reason for this asymmetry, which has to

do with the way the Spanish auxiliary verb haber (“to have”) is used in Spanish.
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In Chapter 5 I focused on cognates, which are words that share similar meaning

and form between languages, such as ‘actor’ or ‘artificial’ in English and Spanish.

Cognates are said to be “trigger words”, which means that if a bilingual speaker hears

or produces a cognate word, they are more likely to code-switch; this is called the

cognate triggering effect. In this chapter, I investigated the cognate triggering effect

on balanced and non-balanced bilinguals, as well as the effect that the percentage of

cognates in a language pair has on code-switching. The model predicted no cognate

triggering effect for the balanced bilingual model, whereas it did show the effect for

the L1 English model, but not for the L1 Spanish one. As, to the best of my knowledge,

there are no available data comparing the cognate triggering effect in the sentence

production of balanced bilinguals and non-balanced bilinguals with different L1s,

these predictions remain to be tested in humans. As for the amount of cognate words,

according to the model the frequency of cognates in a language pair does not affect

the amount of code-switching.

Last, in Chapter 6 I showed that the model can also be employed to explain other

bilingual phenomena, such as mistakes that non-native speakers produce. I used the

model to show that a subject pronoun gender error (e.g., ‘he’ instead of ‘she’), which is

sometimes produced by Spanish speakers when speaking English, can be attributed to

the fact that in Spanish the equivalent of ‘he’ and ‘she’ (él/ella) can be omitted in a

sentence.

Overall, in this dissertation I have argued that computational cognitive modeling

is a useful and novel method to research bilingualism and code-switching. Furthermore,

the model learned to code-switch without exposure to code-switched input, which

indicates that part of code-switching can be attributed to the distribution of the

languages involved, and not only on community-based influence. This is important

when answering questions regarding whether a pattern emerges due to internal factors

or community practices.
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A.2 Nederlandse samenvatting
Codewisseling vindt plaats wanneer een meertalige spreker in één gesprekscontext

(bijvoorbeeld in één zin) afwisselt tussen zijn of haar talen. Veel mensen die meer

dan één taal spreken, en niet alleen mensen die in tweetalige gemeenschappen zijn

opgegroeid, doen aan codewisselen; het is een belangrijk aspect van menselijke taal.

Desondanks begrijpen we de onderliggende processen van dit fenomeen nog steeds

niet volledig. Het doel van dit proefschrift was om beter te begrijpen hoe codewisseling

werkt; ik heb geprobeerd dit te doen door zinproductie te simuleren met behulp van

computationele cognitieve modellen.

Om preciezer te zijn, heb ik in Hoofdstuk 2 gewerkt met een computationeel

cognitief model dat gebaseerd is op de zogenaamde recurrent neuraal netwerk archi-

tectuur, om zinsproductie te simuleren in simultaan Spaans-Engels tweetaligen (dat

wil zeggen, mensen die zijn opgegroeid met beide talen). Het doel was te onderzoeken

of het model codewisselingen zou produceren zonder te zijn blootgesteld aan zinnen

met codewisseling. Het model produceerde inderdaad codewisselingen, zelfs zonder

blootstelling aan dergelijke input, en de patronen van codewisseling zijn vergelijkbaar

met de producties van menselijke tweetaligen volgens eerder taalkundig onderzoek.

Voor zover ik weet, is dit het eerste computationeel cognitieve model dat als doel heeft

om codewisseling in zinnen te simuleren.

In Hoofdstuk 3 heb ik niet alleen gebalanceerde, vroege Spaans-Engels tweetali-

gen gesimuleerd, maar ook late sprekers van het Engels met Spaans als dominante

moedertaal, en late sprekers van het Spaans die Engels als dominante moedertaal

hebben. De simulaties voorspelden hoe codewisselingspatronen verschillen tussen

gebalanceerde vroege en niet-gebalanceerde late tweetaligen; de gebalanceerde tweet-

alige simulaties codewisselden aanzienlijk vaker, wat overeenkomt met wat menselijke

tweetaligen doen. Bovendien heb ik de patronen die de simulaties produceerden

vergeleken met die van menselijke tweetaligen, en heb ik opmerkelijke overeenkom-

sten en verschillen geïdentificeerd. Nadat ik heb laten zien dat het model patronen

produceert die enigszins realistisch zijn, heb ik in Hoofdstuk 4 dit model gebruikt om te

begrijpen waarom Spaans-Engels tweetaligen codewisselen tussen een hulpwerkwoord

(“to have”, “to be”) en een hoofdwerkwoord in een bepaalde grammaticale structuur

(de “progressive” structuur, zoals “Maria está voting”; “Maria is voting”) maar niet

zozeer in een vergelijkbare structuur (de voltooide tijd: “Maria ha voted”; “Maria has

voted”). Dit wordt de “hulpwerkwoord-asymmetrie” genoemd. Met behulp van het

model en de codewisselingen die het produceerde, kon ik een mogelijke reden voor
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deze asymmetrie identificeren, die te maken heeft met de manier waarop het Spaanse

hulpwerkwoord haber (“hebben”) wordt gebruikt in het Spaans.

In Hoofdstuk 5 concentreerde ik me op cognaten, woorden die eenzelfde beteke-

nis en vorm hebben in verschillende talen, zoals ‘actor’ of ‘artificial’ in het Engels en

Spaans, of ‘effect’ in het Engels en Nederlands. Cognaten zouden “triggerwoorden” zijn,

wat betekent dat als een tweetalige spreker een cognaat hoort of produceert, hij/zij

eerder geneigd is te codewisselen; dit wordt het cognaat-triggeringseffect genoemd.

In dit hoofdstuk heb ik het cognaat-triggeringseffect onderzocht bij gebalanceerde en

niet-gebalanceerde tweetaligen, evenals het effect dat het percentage cognaten in een

talenpaar heeft op codewisseling. Het model voorspelde geen cognaat-triggeringseffect

voor het gebalanceerde tweetalige model, terwijl het wel het effect liet zien voor het

L1 Engelse model, maar niet voor het L1 Spaanse model. Aangezien er, voor zover

ik weet, geen data beschikbaar zijn die het cognaat-triggeringseffect vergelijken in

zinsproductie van gebalanceerde tweetaligen en niet-gebalanceerde tweetaligen met

verschillende L1’s, moeten deze voorspellingen nog getest worden bij mensen. Wat

betreft het aantal cognaten, heeft volgens het model de frequentie van cognaten in

een talenpaar geen invloed op de hoeveelheid codewisseling.

Ten slotte heb ik in Hoofdstuk 6 laten zien dat het model ook kan worden gebruikt

om andere tweetalige fenomenen te verklaren, zoals fouten die niet-moedertaalsprekers

maken. Ik gebruikte het model om aan te tonen dat een fout in het geslacht van het

voornaamwoord (bijv. ‘he’ [‘hij’] in plaats van ‘she’ [‘zij’]), die soms door Spaanstaligen

wordt gemaakt wanneer ze Engels spreken, kan worden toegeschreven aan het feit

dat in het Spaans het equivalent van ‘hij’ en ‘zij’ (él/ella) in een zin kan worden

weggelaten.

In dit proefschrift heb ik betoogd dat computationele cognitieve modellering een

nuttige en nieuwe methode vormt om tweetaligheid en codewisseling te onderzoeken.

Bovendien leerde het model codewisselingen zonder blootstelling aan input met

codewisseling, wat aangeeft dat codewisseling deels kan worden toegeschreven aan de

patronen in de betrokken talen, en niet alleen aan invloed vanuit de gemeenschap. Dit

is belangrijk bij het beantwoorden van de vraag of een patroon ontstaat door interne

factoren of door praktijken in de gemeenschap.
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και την Κεφαλονιά, ειδικά το τελευταίο καραντινοκορονοέτος (επίσης ευχαριστώ που δε

ρωτάγατε πότε θα παραδώσω τη διατριβή!)

Και, τέλος, Σπύρο (“αυτό το τραγούδι το’γραψα πριν από 45 χρόνια”), σε ευχαρι-

στώ παραπάνω απ’ο,τι μπορώ να εκφράσω με λόγια για τη στήριξη σου και που είσαι ο

τέλειος συνταξιδιώτης (sputnik, όπως μάθαμε στο Kennedy Space Center) στη ζωή και

τα ταξίδια.
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