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ABSTRACT

Viral immune evasion by sequence variation is a significant barrier to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
vaccine design and coronavirus disease-2019 diffusion under lockdown are unpredictable with subsequent waves. Our group has developed a
computational model rooted in physics to address this challenge, aiming to predict the fitness landscape of SARS-CoV-2 diffusion using a
variant of the bidimensional Ising model (2DIMV) connected seasonally. The 2DIMV works in a closed system composed of limited interac-
tion subjects and conditioned by only temperature changes. Markov chain Monte Carlo method shows that an increase in temperature impli-
cates reduced virus diffusion and increased mobility, leading to increased virus diffusion.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0044061

INTRODUCTION

Coronaviruses are a large family of viruses known to cause dis-
eases ranging from the common cold to more severe illnesses such as
the Middle East respiratory syndrome (MERS) and severe acute
respiratory syndrome (SARS). They are positive-stranded RNA
viruses with a crown-like appearance under an electron microscope.
The subfamily Orthocoronavirinae of the Coronaviridae family has
been classified into four coronaviruses (CoV) genera: Alpha-, Beta-,
Delta-, and Gamma-coronavirus. The betacoronavirus genus is fur-
ther separated into five subgenres (including Sarbecovirus).
Coronaviruses were identified in the mid-1960s and are known to
infect humans and some animals. The primary target cells are the
epithelial cells of the respiratory and gastrointestinal tracts. Seven
coronaviruses are capable of infecting humans. There are more com-
mon human coronaviruses (HCoV) HCoV-OC43, HCoV-HKUI,
HCoV-229E, and HCoV-NL63, causing the common cold and severe
infections of the lower respiratory tract. Also, less common
Betacoronaviruses such as SARS-CoV, MERS-CoV, and 2019-nCoV
(currently called SARS-CoV-2) are known. =7

SARS-CoV-2 is a new strain that has never been previously iden-
tified in humans and has been reported initially in Wuhan, China, in
December 2019.° '* Following the identification and labeling of the
new coronavirus and the spread of the infection worldwide, The

World Health Organization (WHO) declared a pandemic of COVID-
19 (coronavirus disease-2019). Currently, more than 100 000 000 cases
and more than 2500000 deaths are recorded worldwide. The death
rate is 2.22%, while the WHO estimates that up to 650 000 people die
of flu-related causes every year worldwide. The death rate for the flu is
more difficult to calculate because the flu is not a reportable disease in
most parts of the world.

Mathematical modeling is one of the most critical tools for ana-
lyzing infectious diseases’ epidemiological characteristics and can pro-
vide some valuable insights into the disease dynamics. Various models
have been used to study different aspects of the COVID-19 pan-
demic.'" " Notably, recent studies have proposed mathematical mod-
els for predicting virus diffusion. Fortaleza CMCB et al. used
geographic models of population mobility to check for patterns for the
spread of SARS-CoV-2 infection in Brazil,”’ while Siam et al. proposed
an epidemiological model to predict the lockdown effect on COVID-
19 diffusion in Bangladesh, showing that lockdown had a positive
impact in reducing the virus diffusion. Still, it was disastrous for
human welfare and national economies.”'

Analogous results were obtained by Spelta et al, using a simple
model for the spreading disease represented by a Susceptible-Infected-
Recovered (SIR) model.”” The positive lockdown impact on virus dif-
fusion was confirmed by Lillery et al. in an Italian study, also.”
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Also, Borro et al. proposed a computational fluid dynamic
model.”* These authors evaluated the impact of ventilation and air
conditioning systems on increasing or reducing the spreading of the
infection in indoor environments.”*

Giuliani et al. proposed an endemic-epidemic time-series mixed-
effects generalized linear model for areal disease counts that have been
implemented to understand and predict a spatiotemporal diffusion of
COVID-19.”

Our study describes a mathematical diffusion model of COVID-
19 under lockdown using a variant of a bidimensional (2D) Ising
model (2DIMV). We describe the COVID-19 diffusion in a closed sys-
tem composed of subjects with limited interactions due to lockdown
conditions and considering only the temperature changes. For this
scope, we used a variant of the 2D Ising model with external field
h =0 and the Markov chain Monte Carlo (MCMC) methods to simu-
late the systems considered.

MATERIALS AND METHODS
Ising model

Ising model is a straightforward and fundamental model in statis-
tical mechanics, which can be used in several areas.”” " It is often
used to describe the phenomena of magnetization, liquid/gas coexis-
tence, or in the image analysis as reported in recent papers.”” >

This model consisting of a lattice of “spin” variables s; which can
only take the values +1(T) o —1(]). Every spin can interact with its
nearest neighbors (2 in 1D) as well as with an external magnetic field
h. The Hamiltonian is an operator that describes the full power of the
Ising model,

H({si}) = —];sisj—hzsi, (1)
ij !

where ] is a constant specifying the strength of interaction, and the
sum (i,j) is over nearest neighbors. The Ising model is usually studied
in the canonical ensemble. In the canonical group, the probability of
finding a particular spin configuration {s;} is as follows:

1 1
p{si}) =z p=1r, @

where Z = Z{s,»} e PAUsY s the partition function, and e #H({s1})

represents the Boltzmann factor that induce to prefer spin configura-
tions with lower energies in an Ising model. Particularly, it describes
the effect of h and J on the behavior of the spins. With regard to h,
when h >0, s;=+1 is favored, while when h <0, s;=-1 is favored.
This aspect means that the spins want to align with the direction of h.
With regard to J, when ] > 0, neighboring spins prefer to be parallel
(ie,s;j=+1lands;,,=+1ors;=-1ands;,; =-1), while when J < 0,
neighboring spins prefer to be anti-parallel (i.e., s;=+1 and 5;, ;= —1
ors;=-lands; ;=-+1).

Also, in the 2D Ising model at low enough temperature, all spins
will cooperate and spontaneously align themselves (e.g., most spins
become —+1) even in the absence of the external field (h = 0).”° This
phenomenon is called “spontaneous magnetization.” At high enough
temperatures, the spontaneous magnetization is destroyed by thermal
fluctuation. Hence the 2D Ising model has a critical temperature T,
below which a spontaneous magnetization occurs and above which it
does not occur. In other words, there is a transition phase at Tc, from
ordered (T < Tc) to disordered phase (T > Tc).

ARTICLE scitation.org/journal/phf

Lockdown conditions

The confinement measures, containment measures, and blocking
actions, also indicated with the lockdown anglicism, constitute an
emergency protocol that imposes restrictions on people’s free move-
ment for various reasons, ranging from health related to public safety
issues. Recently, many countries have used this protocol to limit
COVID-19 diftusion.

2D Ising model variant for modeling of COVID-19
diffusion under lockdown conditions

To describe the COVID-19 diffusion in a city with lockdown
conditions, we used a 2D Ising model variant (2DIMV-COVID-19),
where the fundamental parameters, like temperature (T), magnetiza-
tion (M), and energy (E), were reinterpreted in temperature, diffusion,
and mobility, respectively. In particular, about the mobility, we consid-
ered the spins with more energy as spins with more capacity of move-
ment or vibration in comparison to others, regarding a lattice
structure, and therefore associable to subjects with more but limited
mobility, similar to the lockdown conditions.

About the magnetization, we considered the “spin” variables s;
with a value equal to —1 as a subject negative to COVID-19, i.e., a sub-
ject in health status, while a “spin” variables s; with a value equal to +1
as a subject positive/infected with COVID-19. Mainly the temperature
was considered variable into range 0°C-42°C. In other words, we
considered the seasonality, i.e., winter-spring-summer, because it is
connected to virus diffusion, such as other similar infections. We
introduced a statistical parameter A to characterize the seasonality and
virus diffusion. It considers the seasonality and virus diffusion con-
nected to temperature change. We obtained it considering the distri-
bution of similar viruses associated with respiratory deficiency, such as
influenza, infective diseases of the upper and lower respiratory tract,
etc.”” This parameter described in (3) is a probability distribution
represented by the Gaussian distribution and defined by

A= aef%(¥)z, a=1;

u=10; o =10. (3)

We show in Fig. 1 the A parameter distribution.

It is possible to observe that the lambda parameter increases
from 0°C to about 10°C and decreases to 50 °C, but we consider in
our model 42 °C as the maximum value.

Simulating 2DIMV-COV19 with Markov chain Monte
Carlo method

We considered a 2D Ising model variant defined over a square
lattice of 400 “spins” variables is in this step. The Hamiltonian is again
equal to Eq. (1). J describes the strength of interaction, while # is the
external magnetic field. The sum (s;s;) is the nearest-neighbor pairs,
considering no or impaired mobility connected to lockdown status.
Mainly, periodic boundary conditions have been applied. The spins on
one edge of the lattice are neighbors of the corresponding spins on the
other side. This aspect ensures that all spins have the same number of
neighbors and local geometry and that there are no distinctive edge
spins with different properties from the others. All the spins are equiv-
alent, and the system is entirely translationally invariant. The MCMC
algorithm is a simple and widely used approach to generate the canon-
ical ensemble. It is convenient to implement the 2DIMV. The initial
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FIG. 1. Lambda (/) parameter distribution.

configuration is characterized by the strength of interaction J =1, the
Boltzmann constant k=1, and the external field h equal to zero in the
Hamiltonian distance. It indicates, in the initial configuration, that all
subjects are healthy (all spins had a value equal to —1). In the event T
increases, the thermal energy kT available to flip the spins is infinitely
more massive than the energy due to the spin-spin interaction J, so the
spins are oriented randomly up or down in an uncorrelated fashion.

The simulations are often performed consecutively in a range of
different T values, particularly for all values of T. The system’s initial
state is represented by an ensemble of spins with instantaneous magne-
tization equal to -1, i.e., associates with sane subjects. The first step in
the simulation is to generate a new state that should differ from the pre-
sent one by the flip of one spin (an algorithm that does this is said to
have single-spin-flip dynamics). Every such state should be exactly as
likely as every other to be generated. This aspect is accomplished by
picking, at random, a single spin p from the lattice to be flipped. The
difference in energy between the new state and the old is then calcu-
lated. The only term in the first term of the Hamiltonian that change
involves the flipped spin.

The others remain unchanged and so cancel out when the differ-
ence Ev — Eu is taken. The change in energy between the two states is
as follows:

B = Ey=—] Y s/ +1 Y sist =]y si(ss—s). @
(i) (i)

In the second line, the sum is over only those spins i of the nearest
neighbors of the flipped spin p, and all of the spins do not themselves
flip, so that: s} = s¥. Particularly,

if s; = +1 then after spin p has been flipped s, = —1, so that:

s; - s; = -2
if s, = —1 then after spin p has been flipped s, = —1, so that:
Vv u __
S, =Sy = +2.
v U _ v
Thus, we have s =S = 25P, and
AE=E, —E,=2] ) sisi=2Jss ) st (5)

This aspect involves summing over four terms in a square lattice case,
where the nearest neighbors are the squares above, below, left, and

ARTICLE scitation.org/journal/phf

right. If a new state is selected, which has energy lower than or equal
to the current, then the transition to that state should always be
accepted. If it has higher energy, then it may be obtained according to
the probability ¢~ i, where k is the Boltzmann constant. The tempera-
ture is measured in energy units, so that k= 1. This is done by choos-
ing a random number 0 < # < 1. If the random number is less than
the probability, ie., n < e*%, then the spin is flipped; otherwise, the
spin remains unchanged.” This selection method uses the Metropolis
algorithm introduced by Metropolis et al. in the simulation of gas par-
ticles, where each particle was considered a solid sphere.”** In our
2DIMV-COVID-19, the prior probability described changes in e 7,
where / represents the statistical parameter introduced in (3).

The simulation phase begins with the same initial configuration
for each temperature value, i.e., all subjects are healthy. All sites are
blank or with instantaneous magnetization equal to —1 with the
MCMC method. For each temperature value, a group of 12000 spin
configurations is generated until T =42°C, with a total of 1020000
spin configurations generated for this study. We observed that the
temperature is the independent parameter, while the magnetization,
and internal energy, are dependent parameters, ie., they vary in
dependence on the temperature only.

Our simulation begins by considering the initial temperature
equal to zero (T= 0). Considering a lattice where for every site, the
spin has an instantaneous magnetization value equal to —1, mainly
this condition was represented in the simulation with a lattice site in
black.

Increasing the temperature, some spins change their state. This
event is crucial for the interpretation. Initially, every spin, with an
instantaneous magnetization value equal to -1, could be associated
with a healthy subject (black site). In contrast, a change status, ie., a
magnetized spin with reverse orientation (blank spot) or value equal
to 1 of instantaneous magnetization, could be interpreted with a sub-
ject positive/infected by COVID-19.

RESULTS

In Figs. 2(a) and 2(b), we reported mean magnetization simula-
tions depending on both temperature and mean internal energy. The
mean magnetization was obtained considering the mean of all instan-
taneous magnetizations of the 20 ensemble spin configurations
obtained for each temperature value. Analogous for internal energy.

From Fig. 2(a) (upper graphic), we observed that considering a
closed system, i.e., a city isolates and under lockdown conditions, the
virus diffusion increases rapidly between about 2.5 and 10°C.
Subsequently, there is an equilibrium between the number of infected
and no infected, with minor fluctuations between 10 and 25 °C. From
26°C to 37°C, there is a gradual reduction of infected or positive to
COVID-19. Finally, after 37 °C, the positive/infected subjects lean to
zero. Figure 2(b) (lower graphic) shows the relationship between
COVID-19 diffusion and mobility. It is possible to observe that an
increase in mobility under lockdown conditions implicates increased
virus diffusion. In other words, the absent or reduced mobility contrib-
utes to a decrease in contagiousness. Significantly, maximum internal
energy, i.e., the whole possibility of movement in lockdown conditions,
is associated with the maximum number of positive/infected subjects
(Fig. 3). In Fig. 3, we showed some simulated system configurations at
different temperatures.
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DISCUSSION In this paper, we propose the forecast of COVID-19 diffusion

Mathematical models represent a powerful tool in predicting and
describing events and are recently used in predicting COVID-19 diffu-
sion. In the fight against COVID-19, it is crucial to find out how to
quickly overcome this virus and save as many human lives as possible.
For this purpose, researchers in every field try to contribute to stop or
contain the pandemic. In this direction, strong collaborations among
researchers with different skills are consolidated. Numerous mathe-
matical models are being produced to forecast the future of COVID-
19 epidemics worldwide, as described in a recent overview, particularly
if the virus becomes seasonal.”*

T=22.00, M =-0.06, E =-0.42

T=233.00, M =-0.91, E =-3.42

T=235.00, M=-0.97, E =-3.82

T

considering a close system and lockdown condition to evaluate the
impact of this restriction and the temperature change on the diffusion.
For this scope, a 2D Ising model variant was considered. In this case,
the 2D Ising model’s use was adequate in describing the virus diffusion
in lockdown status in a closed system considering the seasonally and
consequently the temperature only as an independent variable. In fact,
we hypnotized a closed system with reduced mobility (for example, a
city where the lockdown is active) correspondent at a two-dimensional
lattice of spins, where the spins (subjects) can only take two values
—1= healthy and +1= positive/infected. Also, the lattice is a rigid

FIG. 3. MCMC simulations of 2D Ising
model variant at a different temperature,
considering a square lattice of 400 “spins.”
In the figure were reported the tempera-
ture (T), mean magnetization (M), and
mean internal energy (E).

=42.00, M = -1.00, E = -4.00
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structure. Therefore, every spin can interact with its nearest neighbors.
In this way, the virus diffusion can be interpreted analogously to the
phase transition in the Ising model when spins change state under the
magnetization effect.

MCMC algorithm was used to simulate the probabilistic canoni-
cal ensemble considering different T values, starting from the same ini-
tial configuration represented by all subjects sane.

In a recent study, the Ising model was used by Padhi et al.*” to
compare their SIRD model, used to analyze the extent to which this
multi-phased lockdown has been active in flattening the diffusion
curve and lower the threat. Notably, the authors emphasize how the
Ising model could be used combined with a quantum computational
approach, considering time as an independent variable.

Our results show that with a temperature less than about
2.5°C, the virus diffusion is null. This aspect could be not only to
reduced mobility of the subjects lead to lockdown status, but it
could be due to low propensity of movement at very low tempera-
tures. Consequently, there is minimal virus diffusion. With a T
> T, (about 2.5°C), we observed that by starting all subjects as
healthy, the virus diffusion rapidly increased between about
2.5-10°C. In contrast, between about 10-25 °C, the diffusion is at
maximum and similar to the range. After 25°C, there is a gradual
decrease in virus diffusion until 37 °C. Finally, after 37 °C the virus
diffusion tends to zero, showing the seasonal incidence on
COVID-19 diffusion. We underline that these temperature values
should be considered reference values and orientation values that
guide the impact of seasonality on COVID-19 diffusion.

Additional considerations are connected to the mobility of the
subjects on virus diffusion. Significantly an increase in mobility is con-
nected to the possibility of interactions among subjects. Consequently,
our results show that the COVID-19 diffusion is maximum in relation
to full mobility admitted in lockdown status. Our results are compara-
ble to some modeling data.** Still, in our modeling of COVID-19 diffu-
sion, we considered the lockdown status, i.e., the reduced mobility of
subjects and the seasonally, not considered in other studies.

In conclusion, the results obtained in this study may be highly
relevant now that several countries are contemplating a lockdown at
the national level due to the emergency of virus variants and decide
the best time to activate the lockdown.
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