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Perinatal alcohol exposure affects ontogenic neurodevelopment, causing physical
and functional long-term abnormalities with limited treatment options. This study
investigated long-term consequences of continuous and intermittent maternal alcohol
drinking on behavioral readouts of cognitive function and alcohol vulnerability in
the offspring. The effects of environmental enrichment (EE) during adolescence
were also evaluated. Female rats underwent continuous alcohol drinking (CAD)—or
intermittent alcohol drinking paradigm (IAD), along pregestation, gestation, and lactation
periods—equivalent to the whole gestational period in humans. Male offspring were
reared in standard conditions or EE until adulthood and were then assessed for
declarative memory in the novel object recognition test; spatial learning, cognitive
flexibility, and reference memory in the Morris water maze (MWM); alcohol consumption
and relapse by a two-bottle choice paradigm. Our data show that perinatal CAD
decreased locomotor activity, exploratory behavior, and declarative memory with respect
to controls, whereas perinatal IAD displayed impaired declarative memory and spatial
learning and memory. Moreover, both perinatal alcohol-exposed offspring showed
higher vulnerability to alcohol consummatory behavior than controls, albeit perinatal
IAD rats showed a greater alcohol consumption and relapse behavior with respect
to perinatal-CAD progeny. EE ameliorated declarative memory in perinatal CAD,
while it mitigated spatial learning and reference memory impairment in perinatal-IAD
progeny. In addition, EE decreased vulnerability to alcohol in both control and perinatal
alcohol-exposed rats. Maternal alcohol consumption produces drinking pattern-related
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long-term consequences on cognition and vulnerability to alcohol in the offspring.
However, increased positive environmental stimuli during adolescence may curtail the
detrimental effects of developmental alcohol exposure.

Keywords: alcohol, perinatal binge alcohol drinking, perinatal continuous alcohol drinking, declarative memory,
spatial memory, alcohol vulnerability, environmental enrichment

INTRODUCTION

Perinatal exposure to alcohol can affect in utero
neurodevelopment, causing both physical and functional
long-term alterations (Dejong et al., 2019). Despite
pre-conceptional alcohol cessation is recommended, alcohol
drinking during pregnancy is prevalent worldwide, especially
in Europe (Popova et al., 2017). One of the best predictors of
alcohol use throughout the perinatal period is the pattern of
alcohol use before pregnancy; indeed, women who report binge
or heavy drinking prior to pregnancy likely maintain it during
pregnancy and throughout lactation (Davidson et al., 1981;
Ethen et al., 2009; Mallard et al., 2013; Anderson et al., 2014;
Kitsantas et al., 2014), increasing the risk for growth deficits,
facial dysmorphology, and behavioral and neurocognitive
abnormalities in the progeny (Viljoen et al., 2005; May et al.,
2007; Urban et al., 2008). Aside from the more severe fetal
alcohol syndrome (FAS), ‘‘fetal alcohol spectrum disorders’’
(FASD) have been recently characterized as a broad range of
deficits observed in the child when exposed to alcohol at any
time prenatally (Dejong et al., 2019). Those alterations involve
memory, attention, affective and social behavior, abnormal
responses to stress and natural rewards (American Psychiatric
Association, 2013), and susceptibility to drug and alcohol abuse
later in life (Baer et al., 2003; Alati et al., 2006; Glantz and
Chambers, 2006).

While the consequences related to heavy prenatal alcohol
exposure are generally acknowledged, the assessment of the
neurobehavioral alterations potentially produces by low-to-
moderate alcohol exposure in humans displays mixed results
(Kelly et al., 2013; Flak et al., 2014; Kilburn et al., 2015). This may
be due to a number of methodological issues—most of the studies
focus on physical malformations—and confounding variables,
such as the unreliable self-reports about the degree of alcohol
exposure (number of drinks per week rather than amount at
one session) and the underestimation of subtle neurobehavioral
deficits which may appear later in life (Conover and Jones, 2012).

Preclinical models of maternal alcohol drinking can enhance
our understanding of the adverse outcomes secondary to
developmental alcohol exposure. Indeed, fetal alcohol exposure
in humans can be modeled by perinatal alcohol exposure in rats,
since the full gestational period in rodents is equivalent to the
first and second trimesters in humans, while the first 10 postnatal
days in rats correspond to the third trimester in humans (Patten
et al., 2014). Besides, high levels of alcohol consumption can
be induced in Sardinian alcohol-preferring and Wistar female
rats by manipulating the schedule of alcohol access (Loi et al.,
2014; Brancato et al., 2016). First developed and characterized
in male rats (Wise, 1973; Simms et al., 2008), the intermittent

access procedure in the two-bottle choice paradigm, consisting
of cycles of drinking and abstinence, leads to a rapid increase in
voluntary alcohol consumption, in comparison with continuous
access to alcohol (Carnicella et al., 2014). Rats exposed to this
procedure consume the most abundant amount of their daily
total intake within the first hour of availability of the alcohol
bottle, reaching intoxicating blood alcohol levels in a short period
of time (about mg/dl after the first 30 min–1 h, Simms et al.,
2008; Carnicella et al., 2009; Loi et al., 2014). This procedure
models a voluntary binge-like drinking pattern (Crabbe et al.,
2011; Sprow and Thiele, 2012; Sabino et al., 2013; Carnicella
et al., 2014; Spear, 2018; Jeanblanc et al., 2019) and, as such, may
represent a valuable tool to model drinking trajectories during
pregnancy and lactation. Interestingly, when female rats are
exposed to a long-term binge-like intermittent alcohol drinking
(IAD) paradigm, they display a significant decrease in alcohol
consumption during pregnancy and resume excessive alcohol
consumption during the lactation period (Brancato et al., 2016).

Thus, in the present study, we aimed at investigating whether
the binge-like IAD paradigm, resulting in higher and irregular
peaks of blood alcohol levels in the dams, could lead to
distinct long-term consequences on cognition and vulnerability
to alcohol abuse in the offspring, with respect to continuous
alcohol drinking (CAD), which produces steady lower peaks
of blood alcohol levels, even in the face of overall high levels
of exposure. On the other hand, even the exposure to low to
moderate blood alcohol concentrations can cause significant
neuronal damage, when it occurs during the neurodevelopmental
window such as throughout gestation (Patten et al., 2014).
Therefore, it follows that according to time, dosage, and duration
of perinatal alcohol exposure, different developmental alterations
thus, may occur.

The long-term cognitive effects of perinatal alcohol exposure,
either continuous or intermittent, were assessed in the adult
offspring, through a multidimensional behavioral battery,
including declarative memory in the novel object recognition
test, spatial learning, cognitive flexibility, and reference memory
in the Morris water maze (MWM). Vulnerability to excessive
alcohol drinking, in terms of rate of voluntary alcohol
consumption and relapse behavior after a period of forced
abstinence, was assessed using a two-bottle ‘‘alcohol vs. water’’
choice drinking paradigm.

It is worth noting that treatment strategies to prevent or
mitigate perinatal alcohol-related deficits are currently very
limited (Murawski et al., 2015). In this regard, growing evidence
supports a beneficial role of the exposure to positive stimuli
during sensitive time windows of brain development. Indeed,
the environmental-enrichment (EE), experimental paradigm
consisting of housing conditions that include novelty, social
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interaction and exercise, enhances sensory, cognitive, and
motor stimulation, which, in turn, translates into increased
neuroplasticity in brain regions critical for emotional regulation,
cognitive functions and reward sensitivity (Bayat et al., 2015;
Crofton et al., 2015; Morera-Herreras et al., 2019). However,
conflicting evidence is reported when the effect of EE was
evaluated toward motivational effects of drugs of abuse,
including alcohol (Nithianantharajah and Hannan, 2006; Solinas
et al., 2009; Pautassi et al., 2017; Rae et al., 2018). Thus, while it is
critical to identify maternal alcohol consumption as a primary
target to prevent fetal consequences, we investigated whether
EE during adolescence could prevent or mitigate the effects of
perinatal alcohol exposure on behavioral readouts of cognitive
function and alcohol vulnerability.

MATERIALS AND METHODS

Animals, Perinatal Alcohol Exposure,
and Rearing Conditions
The methods used for perinatal alcohol exposure and breeding
have been previously reported in detail (Brancato et al., 2018).

Briefly, adult female Wistar rats (200–220 g, Envigo, Italy)
were housed individually in standard rat cages (40 × 60 cm,
20 cm in height), with ad libitum access to water and food, in
a temperature- (22 ± 2◦C) and humidity- (55 ± 5%) controlled
room, on a 12-h light/dark cycle (08:00–20:00).

Rats were gently handled for 3 min per day for a week before
the experimental procedures, when they were randomly assigned
to one of the three experimental groups, according to the
two-bottle choice self-administration paradigm: water drinking
controls (CTRL), CAD, and IAD. Female rats underwent the
self-administration procedure during pre-gestation (12 weeks),
gestation (3 weeks), and post-gestation (3 weeks) periods,
accordingly to the respective home-cage two-bottle ‘‘alcohol vs.
water’’-choice-drinking paradigm.

Indeed, CTRL rats were given two bottles of tap water. CAD
rats were given a 24-h free choice between one bottle of alcohol
(20% v/v) and one of tap water, 7 days per week; IAD rats were
given 24-h alcohol (20% v/v) access during 3 days per week,
i.e., on Monday, Wednesday, and Friday, while they received
two bottles of tap water on the intervening days.

Plastic bottles (120 ml; metal cap 0.8-mm-diameter hole,
Tecniplast, Italy) were filled every day with 100 ml of 20%
alcohol (daily prepared from alcohol 96◦ (Carlo Erba Reagents,
Italy) diluted with tap water) and presented at lights-off in an
alternative left–right position in order, to avoid side preference.
Rats were weighed daily, and alcohol and water intake was
measured 1 h after lights-off and the day after, immediately
before lights-off, by weighing the bottles. Possible fluid spillage
was monitored by using multiple bottles filled with water and
alcohol 20%, allocated in empty cages interspersed in the racks
(Loi et al., 2014).

At the end of the 12-week two-bottle choice drinking
paradigm, each female rat was housed with a single breeder.
The day when pregnancy was confirmed by vaginal smear
(Cannizzaro et al., 2008; Plescia et al., 2014b), designed as

gestational day 1 (GD1), eight female rats were randomly
selected from each experimental group (n = 12), housed in
standard maternity cages, filled with wood shavings. Dams were
inspected twice daily for delivery until the day of parturition,
considered as postnatal day 0 (PND 0); dams and litters were kept
in a nursery (24± 2◦C) and not separated until weaning, in order
to model the human condition and avoid confounding factors
(Subramanian, 1992; Wilson et al., 1996; Santangeli et al., 2016).
Mean alcohol consumption at 1 h and 24 h by CAD and IAD
rat dams during pre-conception period, gestation, and lactation
was recorded and reported as g/kg ± SEM. After weaning, two
male rats from each litter of the three drinking groups were
randomly assigned to either the standard (SE) or enriched (EE)
rearing environment, so that the experimental groups of
rat offspring were perinatal water-exposed controls
(p-CTRL SE, n = 8); perinatal continuous alcohol-exposed rats
(p-CAD SE, n = 8); perinatal intermittent alcohol-exposed
rats (p-IAD SE, n = 8); perinatal water-exposed controls + EE
(p-CTRL EE, n = 8); perinatal continuous alcohol-exposed rats
+ EE (p-CAD EE, n = 8); and perinatal intermittent alcohol-
exposed rats + EE (p-IAD EE, n = 8). In detail, from PND
21 onward, the rats reared in SE conditions were housed in pair
in standard rat cages and left undisturbed by the experimenters
except for weekly cage change, whereas the EE rats were group-
housed (8/cage) in large cages (60 × 45 × 76 cm) with pet toys,
pots, hideouts, ropes, running wheel, ladder, tunnel and plastic
boxes, etc., which were relocated or changed daily to create
novelty (Griva et al., 2017).

Experiments were approved by the Committee for the
Protection and Use of Animals of the University of Palermo,
in accordance with the current Italian legislation on animal
experimentation (D.L. 26/2014) and the European directive
(2010/63/EU) on care and use of laboratory animals. Every
effort was made to minimize the number of animals used and
their sorrow.

Behavioral Procedures
The offspring were tested for behavioral reactivity in the
open-field test at PND 55, for declarative memory in the
novel object recognition test at PND 56–58, and for spatial
learning, memory, and cognitive flexibility in MWM from
PND 60 to PND 65. Afterward, they were assessed for alcohol
vulnerability, in terms of rate of voluntary alcohol consumption
in the induction and relapse-like phases of the two-bottle choice
drinking paradigm, from PND 66 to PND 143.

The experiments were carried out in a sound-isolated room
between 9:00 and 14:00. On the test days, rats were acclimatized
to the testing room for 60 min before the experimental session.
Rats’ performance was recorded and monitored in an adjacent
room. The equipment was thoroughly cleaned in between each
test, to avoid that rats’ behavior was affected by the detection of
other rats’ scent.

Open-Field Test
Behavioral reactivity in a novel environment was tested
in the open-field test. The open-field arena is a Plexiglas
square box (44 × 44 × 44 cm where locomotor activity
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and explorative behavior were measured) by employing an
automatic video-tracking system (AnyMaze, Ugo Basile,
Italy), in a mean light- (100 lx) illuminated chamber. Each
experimental session lasted 5 min (Cannizzaro et al., 2016).
The video-tracking system produces a quali-quantitative
mapping of the motor pattern, measuring total distance
traveled (TDT, m), as a measure of locomotor activity in a
novel environment.

Novel Object Recognition Test
Declarative learning and memory were tested in the novel
object recognition test, as previously described (Brancato et al.,
2020). On day 1, a 5-min habituation session was performed at
10.00 a.m., in order to let the animals freely explore the arena
(44× 44× 44 cm) in a dim light-illuminated room. Twenty-four
hours after the habituation session, rats underwent a 5-min
training session when they were presented with two identical,
nontoxic objects (i.e., two red metal cans) which were placed
against a wall in the open-field arena. To prevent coercion to
explore the objects, rats were released against the center of the
opposite wall with its back to the objects. The time spent on
exploring each object was recorded by using the AnyMaze video-
tracking system (Stoelting Europe); a 2-cm2 area surrounding
the objects was defined such that nose entries were recorded
as time exploring the object. After the training session, animals
were placed in their home cage for the retention interval. Then,
animals were returned to the arena for the test session, 24 h after
the training session. During the 5-min test session, the arena
was equipped with two objects, one was identical to the one
presented in the training session (i.e., familiar); the other was
a novel object (a yellow hard plastic cup/ a green hard plastic
pepper). Objects were randomized and counterbalanced across
animals. Objects and arena were thoroughly cleaned at the end
of each experimental session. Time spent on exploring familiar
and novel objects was recorded during both training and test
sessions. The recognition index (RI%), i.e., the percentage of
time spent on investigating the novel object, out of the total
object investigation time [RI % = Time novel object /(Time novel
object + Time familiar object)%], is a measure of novel object
recognition and the main index of recognition memory. If RI%
is higher than 50%, it indicates that the rat spent more time
investigating the novel object, thus recalling the memory of the
familiar one.

Morris Water Maze
Spatial learning, cognitive flexibility, and reference memory were
assessed in the MWM, by employing place learning, new place
learning, and probe tasks (Cacace et al., 2011, 2012; Plescia et al.,
2015) as described in detail below.

Apparatus
The MWM apparatus consisted of a circular, light-blue
swimming pool with a diameter of 160 cm, and walls 70 cm
high. It was filled with tap water to a depth of 50 cm. The water
temperature was carefully maintained at 23 ± 2◦C, and no agent
was added to make the water opaque. The pool was divided
into four quadrants of equal size by two imaginary diagonal
lines running through the center, designated NW, NE, SW, and

SE. A removable transparent escape platform (10 cm × 10 cm)
was positioned in the middle of the quadrant, with the center
30 cm away from the wall and 1.5 cm below the water level,
and not visible to the swimming rat. The pool was placed in
an experimental room, decorated with several extra-maze cues
(e.g., bookshelves and posters), and not modified throughout
the entire experimental period. The experimental room was
illuminated by a white light (60 W). The paths taken by the
animals in the pool were monitored by a video camera mounted
in the ceiling and recorded by the automatic video-tracking
system (ANYMAZE, Ugo Basile, Italy).

Experimental Design
Place Learning (Days 1–3)
The Place learning task was employed to assess spatial learning
and consisted of training the rats to escape from the water and
reach the hidden platform placed in the SE zone, where it was
maintained throughout the experimental session. The rat was
introduced into the pool facing the wall of each quadrant, in the
following order of starting points: NE, SW, NW, SE. Each rat
underwent four trials a day, along 3 days, and was allowed to
swim until the escape on the platform for a maximum of 90 s;
escape latency was recorded as a measure of spatial learning and
memory and reported as mean value of the four trials performed
on each day of the experiment.

If the escape platform was reached, the rat was allowed
to remain 15 s on it to reinforce the information on the
visual–spatial cues in the environment. If the rat did not find the
escape platform within 90 s, the experimenter guided gently the
rat to the platform and allowed it to stay on it for 15 s. During the
5-min intertrial interval, rats were placed into their home cages
and warmed under a heating lamp.

New Place Learning (Days 4–5)
The new place learning task was aimed at assessing rats’ cognitive
flexibility. On the first day of task, the position of the escape
platform was moved to the opposite quadrant (NW) compared
to the place learning session. In this task, the rat was required
to learn the new location of the platform during four trials,
and escape latency was recorded as a measure of new spatial
information acquisition, i.e., reversal learning. On the second
day, the position of the platform was maintained in the same
quadrant as in the first day of the new place learning task.
The escape latency was recorded as a measure of acquisition
and retrieval of the spatial information necessary to reach
the platform location. Starting points, trial duration, inter-trial
interval, reinforcement time on the platform, and any other
experimental condition were the same as in the previous days.

Probe Test (Day 6)
Twenty-four hours after the last place learning session, rats were
returned to the water maze for the probe test, aiming at assessing
reference memory at the end of learning. The hidden platform
was removed from the pool, and rats were allowed to swim freely
for 90 s. The amount of time spent in the quadrant where the
platform was previously located (target quadrant) was used as an
index of the rat’s spatial reference memory.
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Two-Bottle “Alcohol vs. Water” Choice
Drinking Paradigm
The offspring underwent the two-bottle ‘‘alcohol vs. water’’-
choice drinking paradigm (modified from Cacace et al., 2011)
and were given 24-h free choice between one bottle of alcohol
(10% v/v) and one of tap water, 7 days per week, for 8 weeks
(induction period), followed by a 2-week relapse period, after
7 days of alcohol deprivation. 10% alcohol was daily prepared by
diluting alcohol 96◦ (Carlo Erba Reagents, Italy) with tap water.

Plastic bottles (120 ml; metal cap 0.8 mm diameter hole,
Tecniplast, Italy) were filled with 100 ml solution every day and
presented at lights-off in an alternative left–right position, to
avoid side preference. Alcohol and water intake were measured
by weighing the bottles. Possible fluid spillage was monitored
by using multiple bottles filled with water and 10% alcohol,
positioned in empty cages interspersed in the cage racks (Loi
et al., 2014). Rats’ body weight was daily monitored, and rats’
consummatory behavior was measured, in terms of g/kg of
alcohol consumed along the drinking paradigm.

Statistical Analysis
Statistical analysis was performed using Prism 8, GraphPad
Software, LLC, and IBMStatistical Package for the Social Sciences
(SPSS) Statistics software (IBM, Armonk, NY, USA). Data
were assessed for variance and normality by employing the
Brown–Forsythe test and D’Agostino–Pearson omnibus K2 test,
respectively, and for sphericity, by the Mauchly test. When data
showed equal variance and normal distribution, the analysis
included two-way analysis of variance (ANOVA), followed by
Tukey’s multiple-comparison test to assess simple effects of
the two different perinatal alcohol exposures, and repeated-
measure ANOVA using the generalized linear model, with
Bonferroni correction for pairwise comparisons. When data did
not show normal distribution or sphericity, log-transformation
and Geisser–Greenhouse correction were employed. Data are
reported as mean ± SEM. Statistical significance was set at
p < 0.05.

RESULTS

Perinatal Alcohol Exposure and
Developmental Data
Alcohol intake of CAD and IAD dams is reported in Table 1.
Alcohol consumption did not affect maternal weight gain, litter
size or pup birth weight, compared to controls.

TABLE 1 | Mean alcohol consumption (g/kg) of continuous alcohol drinking
(CAD) rats and intermittent alcohol drinking (IAD) rats at pre-conception,
gestation, and lactation time.

CAD IAD

Period 1 h 24 h 1 h 24 h
Pre-conception 0.8 ± 0.2 3.5 ± 0.1 3.4 ± 0.2 8.1 ± 0.3
Gestation 2.1 ± 0.2 3.4 ± 0.4 2.6 ± 0.3 5.4 ± 0.6
Lactation 3.1 ± 0.3 5.6 ± 0.6 3.6 ± 0.4 8.5 ± 0.4

Data refer to mean ± SEM of n = 8 female rats along the alcohol drinking paradigm.

EE Prevents Alcohol-Induced Alteration in
Behavioral Reactivity in p-CAD Offspring
Two-way ANOVA on log-transformed TDT data, including
perinatal alcohol exposure and rearing conditions as statistical
factors, highlights a significant main effect of perinatal alcohol
exposure (F(2,42) = 0.6.412, p = 0.01742). The Tukey multiple-
comparison test indicates that p-CAD SE offspring showed a
significant decrease in locomotor activity with respect to p-CTRL
SE rats (q = 5.184, df = 42, p = 0.0019) and p-IAD SE rats
(q = 4.752, df = 42, p = 0.0047). No significant difference was
observed among EE offspring (Figure 1A).

EE Rescues Recognition Memory
in p-CAD Offspring
The results of the two-way ANOVA on the total time spent
on the exploration of the two identical objects during the
sample phase reveal a significant main effect of perinatal alcohol
exposure (F(2,42) = 11.21, p = 0.0001) and EE (F(1,42) = 9.658,
p = 0.0034). Tukey’s post hoc test shows that p-CAD SE offspring
spent significantly less time exploring the objects than p-CTRL
SE rats (q = 4.378, df = 42, p = 0.0382) and p-IAD SE rats
(q = 4.797, df = 42, p = 0.0178). EE rats showed increased
total exploration than SE offspring, with no significant pattern
influence (Figure 1B).

Data analysis from familiar- and novel-object exploration
during the test session included perinatal alcohol exposure
and environmental rearing conditions as the between-subject
factors and object as the within-subject factor. The results
indicate a significant main effect of object (F(1,42) = 62.673,
p< 0.001), perinatal alcohol exposure (F(2,42) = 8.501, p< 0.001),
and rearing environment (F(1,42) = 13.489, p < 0.001) and a
significant interaction between perinatal alcohol exposure and
rearing environment (F(2,42) = 4.796, p = 0.013), object and
perinatal alcohol exposure (F(2,42) 13.506, p < 0.001), and
object, perinatal alcohol exposure, and rearing environment
(F(2,42) = 14.367, p < 0.001). Pairwise comparisons with
Bonferroni correction show that both p-CAD SE and p-IAD SE
rats displayed a significant decrease in the exploration of the
novel object, when compared to p-CTRL SE offspring (p< 0.001;
p < 0.001; Figure 1C). In addition, while p-CTRL EE rats
showed decreased exploration of the novel object, with respect
to p-CTRL SE offspring (p < 0.001), p-CAD EE rats increased
the exploration of the novel object with respect to their SE
counterparts (p < 0.001; Figure 1C).

When RI% values from the test session were analyzed,
two-way ANOVA, considering perinatal alcohol exposure and
EE as statistical factors, showed a significant main effect of
perinatal alcohol exposure (F(2,42) = 6.812, p = 0.0027) and
EE (F(1,42) = 4.577, p = 0.0383) and a significant interaction
(F(2,42) = 6.348, p = 0.0039). In detail, Tukey’s post hoc test
indicates a significant decrease in RI% of p-CAD SE- (q = 6.188,
df = 42, p = 0.0010) and p-IAD SE rats (q = 4.835, df = 42,
p = 0.0165), with respect to p-CTRL SE rats. EE rescued the RI%
deficit in p-CAD rats (q = 5.581, df = 42, p = 0.0038), whereas
no significant difference was observed between SE and EE p-IAD
progeny (q = 1.121, df = 42, p = 0.9673; Figure 1D).
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FIGURE 1 | Effects of perinatal alcohol exposure and rearing conditions on locomotor activity and declarative memory. (A) In the open-field test, p-CAD SE
offspring showed a significant decrease in locomotor activity (**p < 0.01 vs. p-CTRL SE, ∧∧p < 0.01 vs. p-IAD SE). (B) In the sample phase of the NOR test, p-CAD
SE progeny showed a significant decrease in total object exploration (*p < 0.05 vs. p-CTRL SE; ∧p < 0.05 vs. p-IAD SE). (C) During the test phase of the NOR test,
p-CAD SE and p-IAD SE rats displayed decreased exploration of the novel object, which was increased by environmental enrichment (EE) only in p-CTRL and p-CAD
rats (◦◦◦p > 0.001 vs. novel–p-CTRL SE; ***p > 0.001 vs. respective SE groups). (D) p-CAD SE and p-IAD SE rats showed decreased object discrimination in terms
of recognition index. EE during adolescence was able to ameliorate the declarative memory performance in p-CAD offspring (*p < 0.05; **p < 0.01 vs. p-CTRL
SE, ��p < 0.01 vs. p-CAD SE). Each bar represents the mean ± SEM of n = 8 rats. p-CTRL, perinatal control; p-CAD, perinatal continuous alcohol drinking; p-IAD,
perinatal intermittent alcohol drinking; SE, standard rearing environment; EE, enriched rearing environment. TDT, total distance travelled; NOR, novel object recognition.

EE Mitigates Spatial Learning and Memory
Deficits in p-IAD Offspring
Spatial Learning in the Place Learning Task
Data analysis performed on escape latency during the place
learning task, when the offspring were trained to find the hidden
platform over 3 days, considered perinatal alcohol exposure
and rearing environment as the between-subject factors, and
days as the repeated-measure factor. The results indicate a
significant main effect of days (F(2,84) = 80.256, p < 0.0001)
and rearing environment (F(1,42) = 5.636, p = 0.022) and a
significant interaction between days and rearing environment
(F(2,84) = 12.319, p < 0.001), perinatal alcohol exposure and
rearing environment (F(2,42) = 5.048, p = 0.011), and among
day, perinatal alcohol exposure, and rearing environment
(F(4,84) = 4.54, p = 0.002). Pairwise comparisons with Bonferroni
correction show that p-IAD SE rats displayed increased escape
latency with respect to p-CTRL SE (p = 0.003) and p-CAD
SE (p = 0.004) offspring on day 1; in addition, p-CAD
EE rats showed a significant decrease in escape latency
with respect to p-CAD SE (p = 0.005) on day 3, whereas
p-IAD EE offspring displayed a significantly decreased latency
with respect to p-IAD SE rats (p < 0.001) on day 1
(Figures 2A–D).

Cognitive Flexibility in the New Place Learning Task
Statistical analysis on escape latency during the new place
learning task, when the platformwasmoved to the NWquadrant,
included perinatal alcohol exposure and rearing environment as
the between-subject factors and days as the repeated-measure
factor. The results reveal a significant main effect of days
(F(1,42) = 14.541, p < 0.001); perinatal alcohol exposure, rearing
environment and their interactions displayed no significant effect
(Figures 2A–D).

Spatial Reference Memory in the Probe Task
Data analysis performed on time spent in each of the MWM
quadrants during the probe task included perinatal alcohol
exposure and rearing environment as the between-subject factors
and quadrant as the within-subject factor. The results show
a significant main effect of quadrant (F(2.250,94.499) = 85.652,
p < 0.001) and a significant interaction between quadrant and
perinatal alcohol exposure (F(4.5,94.499) = 3.889, p = 0.004),
quadrant and rearing environment (F(2.25,94.499) = 3.051,
p = 0.046), and perinatal alcohol exposure and rearing
environment (F(2,42) = 4.667, p = 0.015). Pairwise comparisons
with Bonferroni correction indicate that p-IAD SE offspring
spent significantly less time in the NW quadrant (p = 0.003),
and longer time in the NE quadrant (p = 0.042) than p-CTRL
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FIGURE 2 | Effects of perinatal alcohol exposure and rearing conditions on spatial learning, cognitive flexibility, and reference memory. (A) p-IAD SE offspring
showed a significant impairment in spatial learning (**p > 0.01 vs. p-CTRL SE; ∧∧p < 0.01 vs. p-CAD SE). (B) p-CTRL rats exposed to EE during adolescence did
not differ from their SE counterparts. EE ameliorated the spatial learning performance in (C) p-CAD and (D) p-IAD offspring (**p < 0.01; ***p < 0.001 vs. respective
SE counterparts). In addition, (E) p-IAD SE rats showed a reference memory deficit in the probe task, which was rescued by EE (*p < 0.05; **p < 0.01 vs. p-CTRL
SE; �p < 0.05 vs. p-IAD SE). Each dot and each bar represent the mean ± SEM of n = 8 rats. p-CTRL, perinatal control; p-CAD, perinatal continuous alcohol
drinking; p-IAD, perinatal intermittent alcohol drinking; SE, standard rearing environment; EE, enriched rearing environment. MWM, Morris water maze; NW,
nord—west quadrant; NE, nord—east quadrant; SW, sud—west quadrant; SE, sud—east quadrant.

SE rats. On the other hand, p-IAD EE rats spent increased time
in the NW quadrant with respect to p-IAD SE rats (p = 0.028;
Figure 2E).

EE in Adolescence Blunts Long-Time
Alcohol Vulnerability in p-CAD
and p-IAD Offspring
Induction Period
Data analysis performed on mean alcohol intake along
the 8 weeks of the two-bottle choice paradigm included
perinatal alcohol exposure and rearing environment as the
between-subject factors and weeks as the repeated-measure
factor. The results show a significant main effect of weeks
(F(2.37,99.521) = 14.091, p < 0.001), rearing environment
(F(1,42) = 18.554, p < 0.001), and perinatal alcohol exposure
(F(2,42) = 13.807, p < 0.001) and a significant interaction
between perinatal alcohol exposure and rearing environment
(F(2,42) = 10.225, p < 0.001), weeks and perinatal alcohol
exposure (F(4.739,99.521) = 6.668, p < 0.001), weeks and rearing
environment (F(2.37,99.521) = 9.576, p < 0.0001), and among
weeks, perinatal alcohol exposure, and rearing environment
(F(4.739,99.521) = 7.559, p < 0.001). Pairwise comparisons
with Bonferroni correction indicate that p-CAD SE offspring
displayed decreased alcohol intake on week 1 (p = 0.012)
and increased alcohol consumption on week 6 (p < 0.001), 7
(p = 0.003) and 8 (p = 0.011) with respect to p-CTRL SE rats.

Moreover, p-IAD SE rats showed increased alcohol consumption
on weeks 2 (p< 0.001), 3 (p< 0.001), 5 (p< 0.001), 6 (p< 0.001)
7 (p < 0.001), and 8 (p < 0.001) with respect to p-CTRL SE rats,
along with increased alcohol intake on weeks 1 (p < 0.001), 2
(p < 0.001), and 8 (p < 0.001) with respect to p-CAD SE rats
(Figure 3A).

EE modified alcohol consumption in p-CTRL rats, with a
significant increase on week 2 (p = 0.001) and a decrease on
week 4 (p = 0.001), when compared with the SE rearing condition
(Figure 3B). Similarly, the enriched rearing environment
increased alcohol intake in p-CAD offspring on week 2
(p = 0.007) and significantly decreased it afterward, on weeks 3
(p = 0.005), 4 (p = 0.016), 6 (p < 0.001), and 7 (p = 0.001) with
respect to p-CAD SE rats (Figure 3C).

On the other hand, EE decreased alcohol intake in p-IAD
progeny on weeks 1 (p = 0.021), 5 (p = 0.010), 6 (p < 0.001), 7
(p < 0.001), and 8 (p < 0.001) when compared with p-IAD SE
counterparts (Figure 3D).

Relapse Period
The analysis of data from mean alcohol intake over the 2 weeks
of the relapse paradigm included perinatal alcohol exposure
and rearing environment as the between-subject factors and
weeks as the repeated-measure factor. The results indicate a
significant main effect of weeks (F(1,42) = 76.57, p < 0.001),
rearing environment (F(1,42) = 17.112, p < 0.001), and perinatal
alcohol exposure (F(2,42) = 12.215, p < 0.001) and a significant
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FIGURE 3 | Effects of perinatal alcohol exposure and rearing conditions on alcohol consummatory behavior. (A) Apart from the first week of the two-bottle choice
paradigm, both p-CAD- and p-IAD SE offspring showed increased alcohol intake with respect to p-CTRL SE rats; moreover, p-IAD SE rats displayed increased
alcohol consumption with respect to p-CAD SE offspring (#p < 0.05; ##p < 0.01; ###p < 0.001 p-CAD SE vs. p-CTRL SE; ***p < 0.001 p-IAD SE vs. p-CTRL SE;
∧∧∧p < 0.001 p-IAD SE vs. p-CAD SE). EE exposure during adolescence. (B) Altered alcohol consumption in p-CTRL rats in (C) p-CAD rats and (D) decreased
alcohol consumption p-IAD offspring (*p < 0.05; **p < 0.01; ***p < 0.001 vs. respective SE). (E) When offspring were assessed for alcohol deprivation effect during
the relapse-like weeks, p-IAD-SE offspring showed higher alcohol intake with respect to p-CTRL SE and p-CAD SE rats; ***p < 0.001 vs. p-CTRL SE; ∧∧∧ vs.
p-CAD SE). EE exposure during adolescence (F) decreased alcohol deprivation effect in p-CTRL offspring, (G) did not alter alcohol-related behavior in p-CAD rats,
and (H) prevented alcohol deprivation effect in p-IAD offspring (**p < 0.01; ***p < 0.001 vs. respective SE). Each dot represents the mean ± SEM of n = 8 rats.
p-CTRL, perinatal control; p-CAD, perinatal continuous alcohol drinking; p-IAD, perinatal intermittent alcohol drinking; SE, standard rearing environment; EE,
enriched rearing environment.

interaction between perinatal alcohol exposure and rearing
environment (F(2,42) = 18.4513, p < 0.001), weeks and perinatal
alcohol exposure (F(2,42) = 5.371, p = 0.008), weeks and
rearing environment (F(1,42) = 24.567, p < 0.001), and among
weeks, perinatal alcohol exposure, and rearing environment
(F(2,42) = 5.648, p = 0.007). Pairwise comparisons with Bonferroni
correction indicate that p-IAD SE offspring showed higher
alcohol intake than p-CTRL SE and p-CAD SE rats on week
1 (p < 0.001; p < 0.001) and week 2 (p < 0.001; p < 0.001;
Figure 3E).

EE significantly decreased alcohol consumption in p-CTRL
rats on week 1 (p = 0.008) with respect to their SE counterparts
(Figure 3F) whereas no difference was observed between p-CAD
SE and EE offspring (Figure 3G). On the other hand, p-IAD
EE offspring displayed significantly lower alcohol intake on both
week 1 and 2 (p < 0.001; p < 0.001), when compared to p-IAD
SE rats (Figure 3H).

DISCUSSION

The present study aimed at evaluating the long-term
consequences of maternal continuous- and binge-like
intermittent alcohol drinking, from pre-conceptional time
to lactation, on the adult male offspring’s cognitive behavioral

readouts, including behavioral reactivity, declarative and spatial
learning and memory, and alcohol vulnerability.

Moreover, we also exposed the offspring to an enriched
rearing environment during adolescence, in order to evaluate
whether sensorimotor stimulation and social interaction at that
age could result in a rescue strategy able to mitigate or prevent
perinatal alcohol-induced adverse effects.

In human studies, records on maternal blood alcohol levels
are generally not available; however, estimates suggest that blood
alcohol levels of over 200mg/dl may be responsible for the severe
FAS phenotype, while lower levels (80 mg/dl) may produce
milder forms of FASD (Maier and West, 2001). In addition,
high peaks of blood alcohol concentrations, rather than steady
levels, as a result of both dose and pattern of alcohol exposure
(i.e., binge-drinking vs. daily) during the brain developmental
time-window, are associated with increased neurotoxicity (Ieraci
and Herrera, 2007; Parnell et al., 2009).

In our experimental conditions, female rats were trained
to voluntarily consume 20% alcohol in the drinking water
prior to pregnancy (Patten et al., 2014) and consumed relevant
amounts throughout pregnancy and lactation. In particular,
CAD dams showed a mean daily alcohol consumption of
3.4 ± 0.4 g/kg during pregnancy, and 5.6 ± 0.6 g/kg during
lactation, resulting in a daily low-to-moderate perinatal exposure
for p-CAD offspring (Marquardt and Brigman, 2016). On the
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other hand, IAD dams engaged in a binge-like drinking pattern
by every-other-day intermittent alcohol access to 20% alcohol,
which resulted in mean alcohol consumption of 5.4 ± 0.6 g/kg
during pregnancy and 8.5 ± 0.4 during the postpartum period.
In particular, the IAD dams’ mean alcohol intake during
the lactation period, measured after the first hour following
alcohol presentation, is suggestive of an intermittent exposure
to intoxicating blood alcohol concentrations for p-IAD offspring
(>80 mg/dl, Loi et al., 2014). This evidence is particularly
relevant since the intermittent pattern of exposure causes high
peaks of blood alcohol concentrations during lactation in the
rat dams, and this time window corresponds to the third
developmental trimester in humans (Patten et al., 2014).

Our first data on the behavioral sequelae of perinatal alcohol
exposure show pattern-related consequences on behavioral
reactivity. In detail, p-CAD rats displayed a decrease in
locomotor activity in the novel environment of the open field,
with respect to p-CTRL and p-IAD rats, whereas p-IAD rats
showed no alteration in total distance traveled, in comparison
to p-CTRL. These results confirm early findings from this
laboratory showing that perinatal long-term continuous
exposure to alcohol decreased behavioral reactivity in the
adolescent male offspring (Brancato et al., 2018). While
moderate- and heavy-alcohol exposure during early-middle
pregnancy either increased behavioral reactivity (Riley et al.,
1993; Abel and Berman, 1994; Thomas et al., 2004; Kim
et al., 2013) or did not affect locomotion (Dursun et al., 2006;
Hellemans et al., 2010; Brady et al., 2012), the exposure to
moderate alcohol concentration throughout gestation and the
early postnatal period decreased locomotion in mice (Kleiber
et al., 2011). Our data further suggest that the developmental
effects of alcohol on locomotion and behavioral reactivity are
affected not only by the dose and timing but also by the pattern
of alcohol exposure.

In accordance with our first evidence, the analysis of the
behavior in the sample phase of the novel object recognition test
revealed that p-CAD rats showed a significant decrease in the
exploration of the two identical objects when compared to both
p-CTRL and p-IAD, while p-IAD rats explored the objects at
the same extent as the control group did. Similarly, a decrease
in exploration during the sample phase of the novel object
recognition test was reported in Sardinian alcohol-preferring
rats exposed to 3% alcohol from day 15 of gestation to day
7 after parturition (Tattoli et al., 2001) and interpreted as an
altered responsiveness to situations requiring adaptation to novel
environmental stimuli (Colombo et al., 1995).

On the other hand, the analysis of the test phase of the novel
object recognition test suggested a deficit in declarative explicit
memory, since both prenatal alcohol-exposed groups displayed a
significant decrease in discrimination of the novel object: indeed,
they spent the same time in the exploration of the familiar and
the novel object, and this led to a significant decrease in the
recognition index with respect to control offspring.

Preclinical findings have provided inconsistent evidence
on the consequences of perinatal alcohol exposure on object
discrimination, and the discrepancies are likely dependent on
different times of exposure and blood concentrations.

In detail, alcohol exposure (dose range from 4.00 to 5.25 g/kg)
during the developmental equivalent of the second and/or third
trimesters in humans did not impair recognition memory in rats
(Jablonski et al., 2013; Tattoli et al., 2001; MacIlvane et al., 2016),
but when Sprague–Dawley female rats were given continuous
unlimited access to alcohol from pre-conceptional period until
weaning time, the offspring failed to discriminate the novel object
in the object recognition test (Dandekar et al., 2019; Sanchez
et al., 2019). Interestingly, maternal binge-like drinking during
both gestation and lactation was reported to decrease recognition
memory along with the expression of brain-derived neurotrophic
factor (BDNF), the main neurotrophin involved in learning and
memory (Montagud-Romero et al., 2019). Notably, even low
levels of alcohol administered by oral gavage from GD 10–16 are
able to exert a disruption in object recognition in the NOR,
but not in object-place location; accordingly, this was associated
with alterations in BDNF expression in the perirhinal cortex—a
brain area which plays a crucial role in object discrimination-
—rather than in the hippocampus, which is more involved in
place location (Plescia et al., 2014c; Terasaki and Schwarz, 2017).

In our experimental conditions, perinatal alcohol exposure
induced memory deficits regardless of the drinking pattern,
suggesting an impairment in the regional circuitries
underpinning declarative memory and that deserve attention
from a translational point of view. However, it should not be
overlooked that the recognition memory performance displayed
by p-CAD rats could have been affected by their low behavioral
reactivity and object exploration, rather than a pure deficit in
declarative memory formation.

On the other hand, when offspring were tested for spatial
learning and memory in the MWM, spatial navigation of p-CAD
rats did not differ from control offspring, with no difference in
spatial learning, in terms of latency to find the hidden platform
over the 3 days of place learning, and in cognitive flexibility,
along the 2 days of new place learning task. The evidence of no
impairment in spatial reference memory supports the presence
of regular spatial learning abilities in p-CAD progeny, since they
searched the platform in the target quadrant during the probe
trial, 24 h after the last new place learning session.

Taken together, our data are in line with previous reports
demonstrating that chronic prenatal exposure to low-to-
moderate doses of alcohol is sufficient to induce decreased
behavioral reactivity in the open field (Kleiber et al., 2011) and
declarative memory deficits in the novel object recognition test
(Dandekar et al., 2019), together with a detrimental impact on
the neuroimmune function of the perirhinal cortex (Terasaki
and Schwarz, 2017). On the other hand, repeated low-dose
prenatal alcohol exposure does not produce detrimental effects
on pyramidal cells within the dorsal hippocampus or does not
impair spatial learning and memory performance in the MWM
(Cullen et al., 2014).

When interpreting these data, the stressful nature of the
MWM task needs to be taken into account. The training in
the MWM task increases the neuroendocrine stress response
in rats, inducing high serum corticosterone concentrations that
may affect the cognitive response in accordance with the positive
role of glucocorticoids on learning and memory consolidation
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(Aguilar-Valles et al., 2005). It is reported that chronic alcohol
exposure during pregnancy induces a reduction in ACTH basal
levels while corticosterone secretion is not modified; besides, the
exposure to some stressors induces an increase in corticosterone
and CRH secretion, more than in controls (Lu et al., 2018).
It is therefore reasonable to hypothesize that the stressful
contingency of the MWM may boost the coping strategies of
p-CAD progeny, by an ‘‘ad hoc’’ compensatory response of the
HPA axis that makes p-CAD performance as ‘‘fair’’ as controls’
(Franks et al., 2020).

On the contrary, p-IAD offspring displayed a spatial learning
impairment, in terms of increased latency to reach the hidden
platform in the place learning test on day 1, compared to
control offspring. In addition, p-IAD rats showed reference
memory deficits, since they spent less time in the target
quadrant in the probe trial, compared to p-CTRL groups. The
impairment in spatial learning and reference memory in the
water maze tasks is suggestive of hippocampal dysfunction
likely resulting from the perinatal exposure to the binge-like
alcohol drinking in the intermittent access. Indeed, despite some
inconsistencies about alcohol-induced developmental effects
on BDNF expression in the rat hippocampus (Feng et al.,
2005; Ceccanti et al., 2012), binge-like alcohol exposure from
one-to-third trimester-equivalent causes significant deficits in
hippocampal and cortical neuroplasticity, resulting in alterations
in dendritic arborization, adult, neurogenesis, neuroimmune
activation in the hippocampus, and spatial learning impairment
(Blanchard et al., 1987; Christie et al., 2005; An and Zhang,
2013; Harvey et al., 2019). Thus, due to the strong correlation
between BDNF, hippocampal function and HPA axis reactivity,
it is possible to interpret the current data on the basis of a pattern-
specific effect exerted by the perinatal exposure to IAD on the
stress axis response.

To our knowledge, the study by Wieczorek et al. (2015) is
the only one focusing on HPA axis and behavioral sequelae
of prenatal binge-like alcohol exposure. According to their
findings, male mice exposed to an early binge-like dose of alcohol
on gestational day 7 showed no difference in corticosterone
levels with respect to controls, whereas they observed a
blunted ACTH response to an acute stressor. Thus, it is
reasonable to hypothesize that the exposure to intermittent
alcohol drinking, which produces the cycling repetition of
intoxications and withdrawals (Plescia et al., 2014a), when
‘‘brain growth spurt’’ and synaptogenesis occur (Patten et al.,
2014), may impair spatial learning and memory in the MWM
through a pronounced alteration in the neurodevelopmental
programming of corticosteroid signaling in the hippocampus
(Conrad et al., 1999).

The complex relationship between stress and alcohol is
bidirectional, and the dysregulation of the stress response is a
well-known risk factor for alcohol abuse vulnerability (Lee et al.,
2018). The present data extend our previous findings and show
that perinatal alcohol exposure is able to produce an alcohol-
prone phenotype in adult rats in a pattern-related fashion. While
p-CAD offspring increased their alcohol intake with respect
to controls in the long-term, p-IAD rats showed a higher
vulnerability to alcohol consummatory behavior starting from

the first weeks of the two-bottle choice paradigm. In addition,
while p-CAD-rats did not show higher consumption of alcohol
after a week of deprivation with respect to control offspring,
p-IAD progeny displayed a pronounced relapse behavior, when
compared to both p-CAD and p-CTRL progenies. The alcohol
deprivation effect is a reliable proxy of increased motivation to
seek and consume alcohol, loss of control, and relapse (Spanagel
and Hölter, 2000; Martin-Fardon and Weiss, 2013), and our
data indicate that the perinatal exposure to a drinking pattern
that promotes high peaks of blood alcohol level is discretely
crucial in conferring a permanent vulnerability to alcohol
abuse, whose occurrence can be detected since adolescence
(Brancato et al., 2018).

This evidence supports clinical data showing that prenatally
alcohol-exposed offspring display increased vulnerability to the
rewarding properties of alcohol (Barbier et al., 2008) and risk
for alcohol abuse and drug dependence later in life (Baer
et al., 2003; Alati et al., 2006). This phenotype may result from
morpho-functional alterations in the ventral tegmental area, such
as decreased number of dopamine neurons and spontaneous
action potentials, reduced size of their cell bodies, increased
activated microglia (Shen et al., 1999; Aghaie et al., 2020),
and persistent expression of immature excitatory synapses onto
dopaminergic neurons (Wang et al., 2006). As far as the pattern-
related behavioral abnormalities observed in this study concern,
we could speculate that a dysregulation in the HPA axis may
critically impact memory performance especially in the stressful
setting of the MWM and may predispose to alcohol vulnerability
(Brancato et al., 2014; Maniaci et al., 2015; Lee et al., 2018).

Notably, enriched rearing conditions ameliorated the
behavioral performance of p-CAD rats in the novel object
recognition test, likely remodeling p-CAD rats’ behavioral
reactivity, decreasing emotionality and restoring those perceptive
and attentive skills that make them able to overcome the
cognitive impairment resulting from the perinatal continuous
alcohol exposure. Accordingly, previous evidence showed that
EE in early adulthood can recover cognitive impairment due
to alcohol exposure during adolescence (Rico-Barrio et al.,
2019). On the other hand, in our experimental conditions,
declarative memory performance of p-IAD EE rats was not
different from their SE counterparts’ one, suggesting that the
abnormalities in declarative memory formation due to the
perinatal intermittent exposure to alcohol are not rescued by
the EE. Besides, the repeated exposure to environmental stimuli
has been reported to decrease the incentive value of novelty
(Cain et al., 2006; Garcia et al., 2017), suggesting that a lower
interest in the novel object may explain its lower exploration
by the EE offspring. Interestingly, our data show that EE
mitigated the spatial learning and reference memory deficits
induced by the perinatal intermittent alcohol paradigm. These
findings are in agreement with previous reports, indicating
that enriched environment attenuates hippocampal-dependent
memory impairment induced by prenatal alcohol exposure,
via an increase in hippocampal BDNF (Tipyasang et al., 2014;
Di Liberto et al., 2017). The interpretation of the effects of
EE upon alcohol vulnerability in the first weeks of the two-
bottle-choice paradigm is not univocal since we observed
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mixed effects in the control offspring. In this regard, EE has
been reported to promote the formation of conditioned place
preference to alcohol in adolescent mice, likely recruiting
the oxytocin signaling (Pautassi et al., 2017; Rae et al., 2018).
However, the postweaning exposure to EE substantially
rescued the increased vulnerability induced by perinatal
alcohol exposure in p-CAD and p-IAD offspring. Indeed, EE
decreased alcohol consumption in p-CAD and p-IAD rats,
with respect to standard housing, during the last weeks of the
self-administration paradigm. Thus, the increase in alcohol
consumption, as time goes by, is a hallmark feature of early
stages of the addiction cycle and represents a substantial risk
factor predicting the development of alcohol addiction (Crabbe
et al., 2011).

In addition, our data show that the enriched rearing
environment decreases the deprivation effect after a week
of forced abstinence, in p-IAD offspring and in p-CTRL
rats. These observations are consistent with previous reports
showing that exposure to enriched environmental conditions
mitigates VTA dopamine neurons’ dysfunction due to perinatal
alcohol exposure (Wang et al., 2018; Aghaie et al., 2020)
and, overall, decreases the occurrence of an addictive-like
phenotype (Galaj et al., 2020). Notably, the effect of the EE
against the development of excessive alcohol intake seems to be
protective when the exposure occurs during adolescence, while
its protective role is limited when EE occurs during adulthood
(Rodríguez-Ortega et al., 2018). To date, circumstantial evidence
suggests that its protective effect against alcohol drinking
is due to decreased CRH signaling in the amygdala and its
downstream target (Sztainberg et al., 2010). Whether CRH
abnormalities may be the primum movens for the occurrence
of the dysfunctional phenotype consequent to perinatal alcohol
exposure observed in this study, and at what extent alteration in
maternal care can contribute to alcohol developmental effects,

are interesting questions to address in further cross-fostering
experiments. Moreover, studies including female offspring
are needed to explore sex differences in the developmental
effects of alcohol, and their underlying mechanisms. Overall,
subsequent developmental periods, such as adolescence, provide
a window of opportunity for inducing positive experience-
based neuroplasticity in brain regions critical for emotional
regulation, cognitive functions, and reward sensitivity, which
allow curtailing the lifetime consequences of developmental
alcohol exposure.
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