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A B S T R A C T   

The late Miocene evolution of the Mediterranean Basin is characterized by major changes in connectivity, climate 
and tectonic activity resulting in unprecedented environmental and ecological disruptions. During the Messinian 
Salinity Crisis (MSC, 5.97-5.33 Ma) this culminated in most scenarios first in the precipitation of gypsum around 
the Mediterranean margins (Stage 1, 5.97-5.60 Ma) and subsequently > 2 km of halite on the basin floor, which 
formed the so-called Mediterranean Salt Giant (Stage 2, 5.60-5.55 Ma). The final MSC Stage 3, however, was 
characterized by a "low-salinity crisis", when a second calcium-sulfate unit (Upper Gypsum; substage 3.1, 5.55- 
5.42 Ma) showing (bio)geochemical evidence of substantial brine dilution and brackish biota-bearing terrigenous 
sediments (substage 3.2 or Lago-Mare phase, 5.42-5.33 Ma) deposited in a Mediterranean that received relatively 
large amounts of riverine and Paratethys-derived low-salinity waters. The transition from hypersaline evaporitic 
(halite) to brackish facies implies a major change in the Mediterranean’s hydrological regime. However, even 
after nearly 50 years of research, causes and modalities are poorly understood and the original scientific debate 
between a largely isolated and (partly) desiccated Mediterranean or a fully connected and filled basin is still 
vibrant. Here we present a comprehensive overview that brings together (chrono)stratigraphic, sedimentological, 
paleontological, geochemical and seismic data from all over the Mediterranean. We summarize the paleo
environmental, paleohydrological and paleoconnectivity scenarios that arose from this cross-disciplinary dataset 
and we discuss arguments in favour of and against each scenario.   
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1. Introduction 

At the end of the Miocene, orbital and tectonic drivers combined to 
alter the amount of water delivered to the Mediterranean Basin by the 
Atlantic Ocean from the west, the brackish Eastern Paratethys (i.e. 
Euxinic-Caspian Basin system) from the east and the major peri- 
Mediterranean freshwater drainage systems (e.g. African rivers and 
Rhône; Griffin, 2002; Gladstone et al., 2007; Van der Laan et al., 2006; 
Hilgen et al., 2007; Ryan, 2009; Flecker et al., 2015; Marzocchi et al., 
2015, 2016, 2019; Simon et al., 2017; Krijgsman et al., 2018; Capella 
et al., 2020). The changes in extra and intrabasinal connectivity resulted 
in unprecedented paleoceanographic and paleohydrological budget 
changes that led to a relatively short-lived environmental and ecological 
crisis (approx. 660 kyr; 5.97-5.33 Ma), for which the term Messinian 
Salinity Crisis (MSC) was coined (Selli, 1954, 1960). Most conspicuous 
was the rapid accumulation of several kilometers of halite (i.e. ~1 
million km3) on the Mediterranean abyssal plains (e.g. Hsü, 1972; Ryan, 
1973; Montadert et al., 1978; Haq et al., 2020). This happened within 50 
kyr, from 5.60-5.55 Ma, according to Roveri et al. (2014a) and Manzi 
et al. (2018), or in >300 kyr, when starting at 5.97 Ma, as put forward by 
Meilijson et al. (2018, 2019). 

During the ~200 kyr lapse (i.e. MSC Stage 3 following Roveri et al., 
2014a; Fig. 1a) between the end of salt precipitation (5.55 Ma) and the 
restoration of the still enduring marine conditions (5.33 Ma), the Med
iterranean underwent a sequence of paleohydrological and base-level 
changes that are the topic of intense and long-standing debates. The 
initial and still widely endorsed hypothesis was that the Mediterranean 
Sea, following the major drawdown event that led to halite deposition (i. 
e. Stage 2), maintained the isolated, deeply-desiccated geography con
taining a series of hypersaline (substage 3.1; 5.55-5.42 Ma) and 

hyposaline (substage 3.2; 5.42-5.33 Ma) ponds which only received 
water from local streams and were colonized by Black Sea organisms 
carried by aquatic migratory birds (Fig. 1b; e.g. Ruggieri, 1967; Decima 
and Sprovieri, 1973; Decima and Wezel, 1971, 1973; Cita et al., 1978; 
Müller et al., 1990; Benson and Rakic-El Bied, 1991; Benson et al., 1991; 
Müller and Mueller, 1991; Butler et al., 1995; Orszag-Sperber et al., 
2000; Rouchy et al., 2001; Kartveit et al., 2019; Madof et al., 2019; 
Camerlenghi et al., 2019; Caruso et al., 2020; Raad et al., 2021). As 
morphological and seismic reflection studies at the Strait of Gibraltar 
documented a ~400 km long erosional trough connecting the Gulf of 
Cadiz (Atlantic Ocean) to the Mediterranean Sea, this scenario of a 
lowered Mediterranean Sea was promptly linked to the termination of 
the MSC (McKenzie, 1999; Blanc, 2002; Garcia-Castellanos et al., 2009, 
2020). This conclusion has recently been reinforced by the discovery of 
vast chaotic deposits sitting at the claimed Miocene/Pliocene transition 
in the area of the Malta Escarpment-Ionian Abyssal Plain (Micallef et al., 
2018, 2019; Spatola et al., 2020). 

In more recent years, the desiccated basin model was challenged by 
the observation of deposits that are uniform in terms of sedimentology 
and stratigraphic architecture (Roveri et al., 2008a), ostracod content 
(Gliozzi et al., 2007; Stoica et al., 2016) and geochemistry (McCulloch 
and De Deckker, 1989; García-Veigas et al., 2018; Andreetto et al., 2021) 
throughout the Mediterranean marginal belt and of δDn-alkanes and 
δDalkenones sharing similarities with the coeval Atlantic Ocean and Black 
Sea, respectively (Vasiliev et al., 2017). A model of a (relatively) full 
Mediterranean Sea developed (Fig. 1c), where the debate mainly con
cerns the provenance of the hydrological fluxes and the resultant 
hydrochemical composition of the water mass. In this scenario, the 
Mediterranean was first, during substage 3.1, transformed into a new 
gypsum-precipitating basin filled with marine and continent-derived 

Fig. 1. (a) Consensus chronostratigraphic model for the MSC events (Roveri et al., 2014a). Stage 3, here of interest, spans between 5.55 Ma and 5.332 Ma, the 
astronomical ages of the base of the Upper Gypsum Unit (following Manzi et al., 2009) and Trubi Formation (Van Couvering et al., 2000) in the Sicilian Eraclea Minoa 
section, respectively. CdB: Calcare di Base; PLG: Primary Lower Gypsum; RLG: Resedimented Lower Gypsum; UG: Upper Gypsum. (b), (c) Map of the Mediterranean 
region showing the two extreme and mutually exclusive paleoenvironmental scenarios proposed to have featured the Mediterranean during Stage 3 (see discussion in 
Chapter 7; modified after Krijgsman et al., 2018). 
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Fig. 2. Map of the Mediterranean Basin (modified from Lofi, 2018) showing: a) the location of the key intermediate and deep basins as well as physical thresholds 
that influenced the connectivity history of the Mediterranean; b) the onshore (i.e. basins and/or sections) and offshore (DSDP/ODP/Industrial drill sites) localities 
where deposits attributed to MSC Stage 3 have been studied. Mixed assemblages of Paratethyan-like ostracods and foraminifera are known from all mentioned 
onshore localities and some offshore locations (see text). The present-day spatial extent of the MSC seismic units, except for the Lower Unit, is also shown. The 
paleogeography of the (Eastern and Central) Paratethys and of the North Aegean domain is contoured after Van Baak et al. (2017) and Krijgsman et al. (2020a), 
respectively. W-E onshore localities: 1-6 Betic Cordillera (SE Spain): 1-Marbella and 2-Malaga basins (Guerra-Merchán et al., 2010); 3-Sorbas Basin (Roveri et al., 
2009, 2019a); 4-Nijar Basin (Fortuin and Krijgsman, 2003); 5-Vera Basin (Fortuin et al., 1995); 6-Bajo Segura Basin (Soria et al., 2005, 2008a, 2008b); 7-Mallorca 
(Mas and Fornós, 2020); 8-Melilla Basin (Rouchy et al., 2003); 9-Boudinar Basin (Merzeraud et al., 2019); 10-Chelif Basin (Rouchy et al., 2007); 11-Sahel area (Frigui 
et al., 2016); 12-Aléria Basin and 13-Rhône Valley (Carbonnel, 1978); 14-Piedmont Basin (Dela Pierre et al., 2011, 2016); 15-Po Plain (Ghielmi et al., 2010, 2013; 
Amadori et al., 2018); 16-Fine Basin (Cava Serredi section; Carnevale et al., 2006a, 2008). 17-21 Apennine system: Romagna sections (17, Roveri et al., 1998), Trave 
section (18, Iaccarino et al., 2008), Maccarone section (19, Bertini, 2006, Grossi et al., 2008; Sampalmieri et al., 2010; Pellen et al., 2017), Colle di Votta (20)-Fonte 
dei Pulcini (21)-Stingeti (22) sections (Cosentino et al., 2005, 2012, 2013, 2018), Mondragone 1 well (23, Cosentino et al., 2006), Crotone Basin (24, Roveri et al., 
2008a); 25-27 Sicily: Villafranca Tirrena (25) and Licodia Eubea (26) sections (Sciuto et al., 2018), Caltanissetta Basin (27, Manzi et al., 2009); 28-Corfu (Pierre et al., 
2006); 29-Zakinthos (Karakitsios et al., 2017b); 30-Crete (Cosentino et al., 2007); 31-Cyprus (Rouchy et al., 2001; Manzi et al., 2016a); 32-Adana Basin (Radeff 
et al., 2016). 
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waters (e.g. Manzi et al., 2009; Roveri et al., 2014c; Flecker et al., 2015; 
Vasiliev et al., 2017; García-Veigas et al., 2018; Grothe et al., 2020). 
Then, during substage 3.2, it became a brackish lake-sea comparable to 
the present-day Black Sea or Caspian Sea (Roveri et al., 2008a; Stoica 
et al., 2016; Andreetto et al., 2021), depending on whether a marine 
connection with the Atlantic was active (Manzi et al., 2009; Roveri et al., 
2014b, 2014c; Flecker et al., 2015; Marzocchi et al., 2016; Vasiliev et al., 
2017; García-Veigas et al., 2018) or not (e.g. McCulloch and De Deckker, 
1989; Roveri et al., 2008a), and with a base-level fluctuating by hun
dreds of meters with precessional periodicity (Fortuin and Krijgsman, 
2003; Ben Moshe et al., 2020; Andreetto et al., 2021). In the relatively 
full scenario, the revival of marine conditions is ascribed to either 
connectivity changes (Marzocchi et al., 2016) or to a moderate sea-level 
rise (Andreetto et al., 2021). In contrast, Carnevale et al. (2006a, 2006b, 
2008, 2018) and Grunert et al. (2016), based on the recovery of fish 
remains ascribed to marine species, proposed that fully marine condi
tions were in force in the Mediterranean already at the end of substage 
3.1. 

After nearly 50 years of research on both onshore and offshore lo
calities (Fig. 2), the observations backing up the competing desiccated 
and full-basin Mediterranean models remain extremely difficult to 
reconcile. Uncertainties regarding the chronostratigraphic framework of 
Stage 3 deposits, the origin and migration of its characteristic biota, the 
meaning of the data derived from the applied geochemical techniques 
and the relationship between the Mediterranean and its surrounding 
water bodies (i.e. Atlantic Ocean, Indian Ocean and Paratethys) all 
inhibit a clear understanding of the Mediterranean base-level and its 
hydrochemical structure. 

In this paper we attempt to summarize all the existing, but heavily 
scattered, data resulting from ~50 years of cross-disciplinary studies 
with the aim of providing a comprehensive overview of the stratigraphic 
arrangement of Stage 3 onshore and offshore deposits, as well as of their 
sedimentological, paleontological, geochemical and seismic properties. 
Subsequently, we assemble the observations favoring both end-member 
scenarios of a relatively desiccated and relatively full Mediterranean. 
Finally, we focus on novel future analytical techniques and approaches 
that have the potential to constrain Mediterranean base-level during 
MSC Stage 3 as well as the changing hydrological fluxes and connec
tivity phases between the intra-Mediterranean basins and the neigh
boring Atlantic Ocean and Paratethyan domains as a mean of 
reconstructing the state of the art of the complex history of this enig
matic period of the Mediterranean history once and for all. 

2. The terminal Stage 3 of the MSC 

2.1. Historic overview of nomenclature and concepts 

The final phase of the MSC (i.e. substage 3.2), also known as “Lago- 
Mare”, finds its sedimentary expression in cyclically-arranged terrige
nous and evaporitic sediments hosting unique faunal assemblages of 
ostracods, mollusks and dinoflagellate cysts (dinocysts). They are 
related, at species level, to those inhabiting, during the Miocene, the 
brackish basins of the Paratethys realm (e.g. Gliozzi et al., 2007; Stoica 
et al., 2016). But what exactly is the “Lago-Mare”? This widely 
employed expression in the MSC literature encompasses a variety of 
meanings that make its application doubtful and misleading. The root of 
the wording “Lago-Mare” is to be found in the Russian scientific litera
ture of the late 1800s. Nikolai Andrusov (1890) used the corresponding 
Russian term with a geographical and chronological connotation in 
reference to the series of central-eastern European basins that during the 
Miocene turned from marine settings to desalinized semi-isolated lakes 
with an endemic fresh-brackish water biota association (e.g. Popov 
et al., 2006 and references therein). The original monograph of 
Andrusov (1890) was not widely available outside Russia, but his 
attendance of international conferences allowed his research to spread 
outside the Russian borders. From the publications of the French 

geologists Suzette Gillet (Gillet, 1932, 1933) and Maurice Gignoux 
(Gignoux, 1936a) we can state with relative certainty that the original 
meaning of the word “Lago-Mare” (here reported with the French 
counterpart “Lac-Mer”) had its provenance in the Russian literature: 

“[…] An isolation of the basin, that became a brackish, isolated basin. 
Then, a uniform fauna populated this immense lac-mer which was divided 
[…] into Pannonian basin, […] Dacique Basin, and Euxin and Caspian 
basin […]” (Gillet, 1932). 
“[…] During the Volhynien (Sarmatique inferior) there was a lac-mer of 
uniform fauna that extended through all the eastern Europe. […] and the 
fauna of the eastern regions of that huge lac-mer was completely differ
enciated [sic] from the one in the western regions. […]” (Gillet, 1933). 
“[…] The Pontien fauna is not anymore a fauna characteristic of an 
internal saline sea, as in the Sarmantien, but is a fauna of a “desalinated 
lagoon”, a lac-mer, as the Russian geologists named it. […]” (Gignoux, 
1936b). 

In the late 19th (Capellini, 1880) and 20th century (Ogniben, 1955; 
Ruggieri, 1962, 1967; Decima, 1964), late Messinian ostracod- and 
mollusk-bearing deposits in the Mediterranean were described at several 
Italian localities. Initially, the expressions “Congeria beds” (Capellini, 
1880) and "Melanopsis beds" (Ruggieri, 1962) were used. Later on, 
Ruggieri (1967) pointed out the affinity of these faunal elements with 
those of the Pontian of the Paratethys. Consequently, he speculated on a 
feasible Paratethys-like paleoenvironmental configuration for the Med
iterranean in the latest Messinian and he coined the Italian translation (i. 
e. "Lago-Mare") from the French “Lac-Mer” in reference to the shallow- 
water lakes claimed to be widely distributed across the Mediterranean. 
Progress in the 1970s in onshore and offshore exploration highlighted 
the temporally well-constrained distribution of the Paratethyan organ
isms in the Mediterranean (Carbonnel, 1978). On this premise, Hsü et al. 
(1978a) proposed to use "Lago-Mare" to "designate the latest Messinian 
oligohaline environment, postdating evaporite deposition and predating 
Pliocene marine sedimentation […] in order to distinguish it from "lac mer" 
which, strictly speaking, was a Paratethyan environment". Notwithstanding 
the new definition, in various parts of the text they used "Lago-Mare" to 
refer to the Paratethyan lakes (pp. 1071-1072: "[…] The upper Messinian 
Mediterranean was floored by a series of desert basins, some with salt lakes, 
prior to inundation by the Lago-Mare."), thus giving rise to the confusion 
on how to use the term properly. 

In the most recent stratigraphic overview of the MSC (Fig. 1a; Roveri 
et al., 2014a), the terminal MSC stage is called Stage 3, which is in turn 
subdivided into substages 3.1 and 3.2 (also termed Lago-Mare). Beside 
such a chronostratigraphic definition, the term “Lago-Mare” has also 
been used for a typical biofacies of the late Messinian Mediterranean (e. 
g. Fortuin et al., 1995; Gliozzi, 1999; Gliozzi and Grossi, 2008; Sciuto 
et al., 2018), for the pelitic beds encasing the Paratethyan-related fauna 
(i.e. a lithofacies; e.g. Fortuin and Krijgsman, 2003; Sciuto et al., 2018), 
as the name of an informal lithostratigraphic unit (usually distinguished 
by its fossil content) sandwiched between the Sicilian Upper Gypsum 
and the Arenazzolo Fm. (Fig. 4b; Clauzon et al., 2005; Londeix et al., 
2007; Popescu et al., 2009; Bache et al., 2012) and to denote multiple (3 
to 4) spilling events of the Paratethys into the Mediterranean (Clauzon 
et al., 2005, 2015; Popescu et al., 2007, 2009, 2015; Suc et al., 2011; 
Bache et al., 2012; Do Couto et al., 2014; Frigui et al., 2016; Mas and 
Fornós, 2020). 

This being a review, we use the widely employed definition of the 
model of Roveri et al., 2014a) (Fig. 1a) and regard the Lago-Mare as a 
“phase of massive biota migration from the Paratethys realm, cyclo
stratigraphically constrained between 5.42 Ma and 5.332 Ma (Roveri 
et al., 2008a; Grossi et al., 2011), during which the Mediterranean 
sedimentary environments underwent an impressive freshening”. 
Nevertheless, we call for caution in the use of this definition of “Lago- 
Mare” in future studies, since 5.42 Ma as the (astronomical) age of the 
first entrance of Paratethyan organisms into the Mediterranean is likely 
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to be incorrect (see subsection 5.1) and evidence of ‘impressive fresh
ening’ are already present much earlier (e.g. at Eraclea Minoa; Vasiliev 
et al., 2017; García-Veigas et al., 2018). 

2.2. Development of a chronostratigraphic framework 

Issues of the timing and duration of the MSC only began to be tackled 
in the 1990s, in parallel with discussion concerning the nature of its 
extreme paleoenvironments (Schmalz, 1969; Hsü et al., 1973a, 1973b, 
1973c, Hsü et al., 1978a, 1978b; Nesteroff, 1973; De Benedetti, 1982). 
While published models (Butler et al., 1995; Clauzon et al., 1996; 
Krijgsman et al., 1999a; Rouchy and Caruso, 2006) mostly converged on 
the (astronomical) age of the marine replenishment at the beginning of 
the Pliocene (5.332 Ma; Van Couvering et al., 2000), there were dis
agreements about the age of the onset of the MSC (synchronous vs 
diachronous) and of specific events within it (see discussion in Roveri 
et al., 2014a). Among these, the work of Krijgsman et al. (1999a) has 
obtained wide consensus. Their cyclostratigraphic tuning and correla
tion of continuous and bio-magnetostratigraphically constrained pre- 
evaporitic sections in Spain (Sorbas), Sicily (Gibliscemi/Falconara) 
and Greece (Metochia) resulted in a synchronous age of 5.96±0.02 Ma 
for the MSC onset (later refined to 5.97 Ma by Manzi et al., 2013). The 
astronomical ages for the onset (Krijgsman et al., 1999a) and termina
tion (Van Couvering et al., 2000) of the MSC are not contentious since 
the characteristic sedimentary cyclicity and sediments’ properties (e.g. 
color of the lithologies and biota content) of the pre- and post-MSC 
successions fit robustly with the insolation curve (see also Van der 
Laan et al., 2006 and Topper and Meijer, 2015). 

The cyclic arrangement of the MSC sediments (Fig. 3a) led scientists 
to interpret that the same cyclostratigraphic approach could be used to 

gain precise dates for events within the MSC (e.g. Hilgen et al., 1995; 
Vai, 1997; Krijgsman et al., 1999b, 2001), bypassing the challenge posed 
by the unsuitability of the classic biomagnetostratigraphic tools for the 
MSC successions. Characteristic interference patterns of eccentricity and 
precession have been tentatively recognized in the Sicilian Eraclea 
Minoa section (see subsection 3.8; Van der Laan et al., 2006). However, 
clear orbital signals are typically poorly expressed in MSC records and, 
when they are present, like in Sicily, they are not (vertically) repeated 
with sufficient frequency to establish clear phase relations with the as
tronomical cyclicity. For this reason, the simple counting of cycles with 
no analysis of cyclostratigraphic pattern in proxy records has mostly 
been employed as a correlation method (Roveri et al., 2008a; Manzi 
et al., 2009; Manzi et al., 2016a; Cosentino et al., 2013). 

The age of the base of Stage 3 is largely determined by correlating the 
sedimentary cycles of the Upper Gypsum unit (UG) at Eraclea Minoa 
(Sicily) with the astronomical curve La2004 (Laskar et al., 2004). The 
UG sedimentary cyclicity consists of alternating gypsum and mudstone 
beds of variable thickness (Figs. 5g-i; see subsection 3.8). Precessional 
variation of the Mediterranean freshwater budget tied tightly to the 
African monsoon and Atlantic storms are the drivers interpreted to lie 
behind the gypsum-mudstone cycles (e.g. Marzocchi et al., 2015, 2019; 
Simon et al., 2017). Variations of the freshwater discharge cause the 
pycnocline to shift vertically, resulting in brine concentration and gyp
sum precipitation during to the arid/dry phases of the precession cycles 
(precession maxima-insolation minima) and brine dilution and 
mudstone deposition during the humid/wet phases (precession minima- 
insolation maxima) (Van der Laan et al., 2006; Manzi et al., 2009). Two 
different tuning options exist in literature (Van der Laan et al., 2006 
versus Manzi et al., 2009; Fig. 3a): 

Fig. 3. (a), (b) Available astronomical tunings to astronomic curves of climatic precession (P), 100 kyr eccentricity (E) and 65◦N insolation curve (I) of Laskar et al. 
(2004) of the lithological cyclicity of onshore Stage 3sections (a) and of the seismic cycles and/or well logs (gamma ray and resistivity) of the MU in the Levant Basin 
(b). Tunings of onshore sections in (a) are carried out downward from the M/P boundary (conformable in all sections). Astronomically-tuned glacial (even numbers) 
and interglacial (odd numbers) stages (i.e. TG) as defined by Hodell et al. (1994) are also indicated. 
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1. Van der Laan et al. (2006) tentatively recognized sedimentary pat
terns that they correlated with the astronomical curves by using the 
same phase relationships between the sedimentary cycles and the 
astronomical cycles as are seen in Plio-Pleistocene sapropel-bearing 
marine successions of the Mediterranean (Hilgen, 1991). The four 
closely spaced gypsum beds III to VI were regarded as a cluster, i.e. 
the sedimentary expression of a 100 kyr eccentricity maximum 
(Hilgen, 1991; Strasser et al., 2006), whereas the preceding and 
following evaporite-free marly interval were attributed to a phase of 
low-amplitude precession oscillations caused by a 100 kyr eccen
tricity minimum (Fig. 3a). Tuning downward from the conformable 
Miocene/Pliocene boundary (Fig. 6d) and arguing that the preces
sion peak at ~5.38 Ma, which has an extremely low amplitude, is not 
expressed in the sedimentary record, Van der Laan et al. (2006) 
correlated gypsums III to VI with the four successive precession/ 
insolation peaks of the 100 kyr eccentricity maximum dated around 
5.44 Ma and the overlying and underlying gypsum-free marly in
terval fell within 100 kyr eccentricity minimum cycles (Fig. 3a, right 
log). This tuning resulted in an astronomical age of ~5.51 Ma for the 
first gypsum bed in their log (i.e. gypsum II in the log of Manzi et al., 
2009), and an approximate duration of 175 kyr for Stage 3 as whole.  

2. An alternative tuning by Manzi et al., 2009; Fig. 3a, left log) argued 
that every precessional/insolation peak must have an expression in 
the rock record. Manzi et al. (2009) agreed with the solution of Van 
der Laan et al. (2006) on the sedimentary inexpressiveness of the 
(barely visible) insolation minima peak at ~5.38 Ma. However, these 
authors considered the insolation minima peaks immediately above 
and below of too low amplitude to promote the conditions required 
for gypsum precipitation, but also too high not to have some sedi
mentary expression. They therefore identified sandstone horizons VI’ 
and VI" as the sedimentary response to these weak insolation/pre
cession signals. The addition of two precessional cycles (i.e. a total of 
9) resulted in an astronomical solution that was adjusted one pre
cessional cycle lower than that of Van der Laan et al. (2006), trans
lating into an age of 5.53 Ma for the base of the UG and a total 
duration of ~200 kyr for Stage 3. But the more conspicuous differ
ence between the two astronomical solutions discussed lies in the 
timing at which gypsum precipitation occurred, restricted to the 100 
kyr eccentricity maxima according to Van der Laan et al. (2006), 
extended to the 100 kyr eccentricity minima by Manzi et al. (2009). 

An age of 5.53 Ma for the first gypsum bed was also obtained by the 
astronomical tuning of the Upper Gypsum in Cyprus (Manzi et al., 
2016a), but there the tuning is performed just by following the recog
nition, from the base up, of 6 gypsum beds just like in Sicily and 
therefore arguing for a bed-to-bed correlation with the Sicilian gypsums 
I-VI. In the consensus model of Roveri et al. (2014a) the base of Stage 3 
coincides with the base of the Sicilian UG, placed by Manzi et al. (2009) 
at 5.55 Ma (Fig. 1A). However, in the model of Manzi et al. (2009) this 
age is attributed to a cumulate gypsum horizon interpreted as laterally 
equivalent of the Halite (i.e. Stage 2), and therefore implying the kickoff 
of Stage 3 at 5.53 Ma (Fig. 3a). 

The post-evaporitic successions of the Romagna (Cusercoli and 
Sapigno sections; Roveri et al., 1998) and Marche (e.g. Trave and 
Maccarone sections; Iaccarino et al., 2008; Cosentino et al., 2013) areas 
provided evidence that led to the splitting of Stage 3 into substage 3.1 
and 3.2. In the resulting composite section (Roveri et al., 2008a), a shift 
in the sedimentary facies and stacking pattern is observed (see 
description in subsection 3.7). Correlation of the sedimentary cyclicity 
in Romagna was from the (conformable) base of the Pliocene down
wards (or from an U-Pb-dated ash layer upward; Cosentino et al., 2013) 
and linked three fluvial conglomerates and two black mudstone layers of 
unknown sedimentological significance to the arid phases of the pre
cession cycles (Fig. 3a; Roveri et al., 2008a). The greater thickness of the 
oldest conglomerate was possibly assumed to be evocative of an oscil
lation of the amplitude of the corresponding precession minima peak 

rather than the amplitude of the peaks responsible for the formation of 
the other facies. This approach resulted in an age of 5.42 Ma for the first 
conglomerate (i.e. the substage 3.1/3.2 transition; Fig. 5g) and an 
approximate duration of 90 kyr for substage 3.2 (the Lago-Mare phase). 
The same astronomical age is obtained by tuning the Upper Member of 
the Feos Formation in the Nijar Basin (Omodeo-Salé et al., 2012), where 
four pelite-conglomerate cycles plus one sandstone capped by the 
Miocene/Pliocene boundary mark the interval attributed to Stage 3.2 
(Fortuin and Krijgsman, 2003). 

Although the substage 3.1/3.2 transition is linked to a major 
Mediterranean-scale hydrological re-organization possibly coinciding 
with the migration of the Paratethyan biota (Roveri et al., 2008a; Grossi 
et al., 2011), the facies change used for its definition is hardly recog
nizable elsewhere (see Chapter 3). As such, other tools have been used to 
equip fragmentary and/or lithological cyclicity-lacking sections with an 
age model: the (highly controversial) ostracod biozonation (see sub
section 5.1; e.g. Stoica et al., 2016; Karakitsios et al., 2017a; Cosentino 
et al., 2018; Caruso et al., 2020) and the astronomical tuning of mag
netic susceptibility records (e.g. Fonte dei Pulcini section, Central 
Apennines; Cosentino et al., 2012). 

Comparison of Atlantic oxygen isotope records (Van der Laan et al., 
2005, 2006) and the chronostratigraphy of Roveri et al. (2014a) 
revealed that Stage 3 sedimentation started during a prominent global 
eustatic lowstand associated with oxygen isotope (glacial) stage TG12, 
followed by a latest Messinian deglacial interval which comprised 
multiple obliquity- and possibly precession-forced global eustatic pha
ses. As documented by Hodell et al. (2001) (later revised by Drury et al., 
2018), Van der Laan et al. (2006) and Roveri et al. (2014a), the marine 
replenishment of the Mediterranean did not coincide with any major 
deglaciation, so non-eustatic causes of the Zanclean megaflood hy
pothesis are required. 

3. Onshore domain: key sections, sedimentary expression and 
faunal content 

3.1. The Alborán region 

The westernmost outcrops of Stage 3 deposits in the Mediterranean 
are located in the Alborán region, close to the present-day Strait of 
Gibraltar (Fig. 2b). MSC deposits on the margins of this region are poorly 
developed, possibly because of a late Tortonian uplift that raised the 
margins above the Mediterranean water level (López-Garrido and Sanz 
de Galdeano, 1999). Near Malaga, however, two facies associations 
consisting of m-thick conglomerate-sandstone beds alternating with 
laminated pelites are documented in the Rio Mendelín section (infor
mally referred to as “LM unit”; Guerra-Merchán et al., 2010) and 
attributed to (part of) the Lago-Mare phase (Fig. 4a) based on their 
paleontological content. These sediments are squeezed between the 
Paleozoic basement units, with an erosive contact and associated 
angular unconformity, and the Pliocene, from which they are separated 
by another erosional surface draped by conglomeratic accumulations 
(Fig. 6a). A well-preserved and diverse in situ Paratethyan-type ostracod 
and molluskan fauna (i.e. Lymnocardiinae and Dreissenidae) typical of 
shallow waterbodies (up to 100 m deep; Grossi et al., 2008; Gliozzi and 
Grossi, 2008) with low salinities (5-18‰) is reported from the pelitic 
units (Guerra-Merchán et al., 2010). The overlying Pliocene in the 
deeper depocenters starts with 30 m-thick littoral conglomerates with 
marine mollusks passing progressively upwards into deeper water facies, 
while fan deltas developed at the basin margins (López-Garrido and Sanz 
de Galdeano, 1999; Guerra-Merchán et al., 2010, 2014). Notably, the 
overall thickness of the Pliocene deposits reaches 600 m. The detailed 
regional studies by López-Garrido and Sanz de Galdeano (1999) and 
Guerra-Merchán et al. (2014) concluded that accommodation space was 
created during (Zanclean) sedimentation by local fault-driven subsi
dence, and that movement on these faults only reversed at the end of the 
Zanclean causing uplift. 
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An alternative scenario, based on the finding of (a few) specimens of 
the nannofossil Ceratolithus acutus, ascribed the LM unit of Guerra- 
Merchán et al. (2010) to the earliest Zanclean (Fig. 4b; Do Couto et al., 
2014). 

On the southern Alborán margin in Morocco, latest Messinian de
posits are reported from the Boudinar and Melilla basins (Fig. 2b). Up to 
100 m-thick chaotic deposits containing selenite gypsum fragments, 
azoic conglomerates, sandstones yielding planktic foraminifera and 
nannofossils and lacustrine limestones are capped by early Pliocene 
marine marls (Rouchy et al., 2003; Azdimousa et al., 2006; Cornée et al., 
2016; Merzeraud et al., 2019). Due to their stratigraphic position, these 
continental to lacustrine deposits are interpreted as the local expression 
of the Lago-Mare phase (Cornée et al., 2016) or alternatively as Zanclean 
successions (Azdimousa et al., 2006). 

3.2. Algeria 

The Chelif Basin in Algeria (Fig. 2b) displays the typical marginal 
Messinian succession comprising Tortonian to lower Messinian blue 
marls, diatomite-bearing sediments (Tripoli unit), cyclically-arranged 
primary evaporites (13 couplets), ostracod-rich post-evaporitic de
posits and Zanclean foraminiferal marls (Rouchy et al., 2007). The post- 
evaporitic sediments show a great lateral variability in both thickness 
(from few meters up to 125 m) and facies. They are mainly dominated by 
terrigenous clastic lithologies, associated in the marginal areas with 
sandy carbonates and stromatolitic limestones. A mixed faunal assem
blage of non-marine (Paratethyan-like ostracods) and marine (benthic 
and planktic foraminifera) organisms is present, showing an increase in 
ostracod species diversity from the bottom to the top (Rouchy et al., 
2007). 

3.3. Neogene basins of the Eastern Betics (Spain) 

The external Neogene basins (Sorbas, Nijar, Vera and Bajo Segura) of 
the eastern Betic Cordillera (SE Spain; Fig. 2b) represent an important 
laboratory for understanding Messinian events. In particular, the Sorbas 
and Nijar basins preserve two allegedly continuous successions spanning 
the entire MSC (e.g. Roveri et al., 2009; Omodeo-Salé et al., 2012). The 
two basins are similar in many respects. Their stratigraphic organiza
tion, for example, suggests they were connected for much of the late 

Miocene up until MSC Stage 1 (Fortuin and Krijgsman, 2003), which is 
represented by the gypsiferous Yesares Member (e.g. Lu, 2006). How
ever, facies differences are prominent in the Stage 3 formations ac
cording to the chronostratigraphic frameworks of Roveri et al. (2009) 
for the Sorbas Basin and Omodeo-Salé et al. (2012) for the Nijar Basin 
(Fig. 4a). Lithostratigraphically, two members are discerned between 
the Yesares Member and the basal Zanclean: the Sorbas and Zorreras 
members in the Sorbas Basin (Figs. 4a, 5a) and the lower and upper 
members of the Feos Fm. in Nijar (Figs. 3a, 4a; Roep et al., 1998; 
Krijgsman et al., 2001; Fortuin and Krijgsman, 2003; Braga et al., 2006; 
Roveri et al., 2009, 2019a; Omodeo-Salé et al., 2012). 

The Sorbas Member (see Roep et al., 1998 and Aufgebauer and 
McCann, 2010 for a more detailed sedimentological description) con
sists of three overlapping coarsening-upward depositional sequences 
made of offshore clays and marls passing upward into shelf muds and 
coastal sandstone bodies. Still unclear is the chemistry of the subaqueous 
environment during the formation of the Sorbas Member and the 
provenance of the water fluxes. These shallow-water deposits are 
conformably replaced upward by the Zorreras Member that comprises 
alternations of reddish siltstones and sandstones (Fig. 5a) organized in 
five (or eight) lithological cycles expressing continental environments 
(Martín-Suárez et al., 2000; Aufgebauer and McCann, 2010). Up to four 
lenticular white limestone beds bearing brackish Paratethyan-like os
tracods (Cyprideis, Loxocorniculina djafarovi and freshwater species of 
the family Limnocytheridae), bivalves and Chara oogonia (Roep and 
Harten, 1979; Aufgebauer and McCann, 2010) are found interrupting 
the fluviatile sequence (Fig. 5a) and are linked to either episodic 
flooding by local rivers (Braga et al., 2006; Aufgebauer and McCann, 
2010) or episodic Mediterranean ingressions (Fortuin and Krijgsman, 
2003; Andreetto et al., 2021). A correct interpretation of the paleo
depositional environment of these limestone beds is crucial for the dis
cussion concerning the Mediterranean base-level position during the 
Lago-Mare phase. In fact, if the Sorbas Basin was relatively shallow 
during Zorreras deposition (50-100 m; Roveri et al., 2019a, 2020), 
repeated and sudden Mediterranean incursions would indicate that the 
Mediterranean Basin was relatively full and that its base level was 
oscillating, possibly with precessional periodicity (Andreetto et al., 
2021). The contact between the Zorreras Mb. and the overlying near
shore Pliocene (<50 m depositional paleodepth; Roveri et al., 2019a) in 
the Sorbas Basin is conformable and expressed differently around the 

Fig. 4. Schematic overview of different chronostratigraphic models for some of the Messinian successions presented in Chapter 3. Note the large controversies in 
timing, duration and chronostratigraphic position of the main erosion phase between models in (a) and (b). Models in (a) follow the recently established MSC 
chronostratigraphic model of Roveri et al. (2014a), according to which the Mediterranean base-level dropped and halite deposited on sea floor during Stage 2 and the 
Upper Gypsum/Upper Evaporites-Lago-Mare sequence followed. Models in (b) were proposed following the alternative scenario of Clauzon et al. (1996, 2005), which 
envisaged two Lago-Mare episodes (LM1 and LM3) that occurred before and after the main Mediterranean drawdown event, during which LM2 was deposited in the 
deep desiccated basins (Do Couto et al., 2014; Popescu et al., 2015; see Roveri et al., 2008c and Grothe et al., 2018 for further explanations). Note, in (b), the shifting 
of the position of the main erosional phase in Sicily through time as well as the time of the marine replenishment in the Apennines. 
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Fig. 5. Sedimentary expression of Stage 3 from selected onshore Mediterranean localities. (a) Photograph from the Sorbas Basin showing the red continental 
sediments of the Zorreras member with intercalated white limestones (white arrows; from Andreetto et al., 2021). The conformable resting of the Zorreras Mb. above 
the Sorbas Mb. and underneath the Gochar Fm. of Pliocene age is also appreciable. Car for scale. (b) One typical lithological (and precessional) cycle of the Upper Mb. 
of the Feos Fm. in the Nijar Basin, here constituted by an ostracod-bearing, white and laminated mudstone bed overlain by an azoic fluvial sandstone (courtesy of 
Anne Fortuin). (c) Panoramic view of the Cuevas del Almanzora section (from Andreetto et al., 2021). Red rectangle indicates the position of the section straddling 
the Messinian (M)/Zanclean (Z) transition and studied by Fortuin et al. (1995), Stoica et al. (2016), Caruso et al. (2020) and Andreetto et al. (2021). Buildings for 
scale. (d) The sub-unit a of the Piedmont Basin composed of azoic grey mudstones grading into yellowish, mammal-rich overbank deposits. (e) WNW-ESE seismic 
profile in the Po Plain showing incised valleys filled during Stage 3 by suggested clastic deposits and sealed by deep-water turbidites in the Zanclean (modified from 
Amadori et al., 2018). (f) Typical aspect of the di Tetto/San Donato Formation in the Northern Apennines composed by grey mudstones (detail in the inset) with 
interbedded sandstone bodies (white arrows). The picture is taken from the Maccarone section. (g) The di Tetto Fm.-Colombacci Fm. transition in the Cusercoli area 
(Eastern Romagna, Fig. 2b), defined by the facies change underlined by the appearance of a fluvial conglomerate. This lithostratigraphic boundary also corresponds 
to substage 3.1/3.2 boundary of Roveri et al. (2014a). (h), (i), (l) Lithological cycles of the Upper Gypsum Unit in Eraclea Minoa (h), Siculiana Marina (i) and Polemi 
(l) sections. Cycles are several m-thick and primarily composed by beds of primary gypsum alternating with mudstones bearing Paratethyan ostracods (at least in 
Eraclea Minoa). 
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basin, ranging from a bivalves-rich bed overlain by a yellow, fossilif
erous calcarenite floored by a gravelly lag deposit (Mather et al., 2001) 
to a grey marl horizon with marine foraminifera assemblages followed 
by a second shell-rich bed (Roveri et al., 2019a). Similar to the situation 
in Malaga, the rare identification of Ceratolithus acutus in sediments of 
the continental Zorreras Mb. led Clauzon et al. (2015) to put forward an 
alternative chronostratigraphic and paleoenvironmental interpretation 
for the Sorbas MSC succession, shifting the Zorreras Mb. into the Plio
cene (Fig. 4b) and thus associating the presence of brackish Paratethyan- 
like ostracods with exchanges between the Mediterranean and Para
tethys following the Mediterranean re-filling, at high sea level. 

In the Nijar Basin (Fig. 2b), the latest Messinian Feos Formation is 
bracketed at the base and top by an erosional surface along the basin 
margins and its correlative conformity in the deeper parts (Fig. 3a; 
Fortuin and Krijgsman, 2003; Aguirre and Sánchez-Almazo, 2004; 
Omodeo-Salé et al., 2012). The Lower Feos Member consists of azoic, 
graded and locally slumped siliciclastic-carbonate beds alternating with 
gypsarenites and gypsiltites and including a laterally continuous Mn- 
rich bed (Fortuin and Krijgsman, 2003; Omodeo-Salé et al., 2012). In 
the basin center (e.g. Barranco de los Castellones section; Fig. 3a) the 
Upper Feos member comprises four complete lithological cycles of m- 
thick conglomerate to sandstone beds alternating with laminated pelites 
(Fig. 5b), and one incomplete cycle, which only consists of a sandstone 
horizon conformably capped by the Pliocene Cuevas Fm. (Fig. 6b; For
tuin and Krijgsman, 2003). A rich fauna of mixed brackish ostracods and 
marine foraminifera is found in all four pelitic beds (Bassetti et al., 
2006). Its origin is questionable. These ostracods were regarded as 
endemic to the Mediterranean and inhabiting endorheic lakes by Bas
setti et al. (2006). However, later they were shown to have been mis
identified and were instead considered Paratethys-derived by Stoica 
et al. (2016; see subsection 5.1). Planktonic and deep-water benthic 
foraminifera are widely considered reworked by Fortuin and Krijgsman 

(2003), Bassetti et al. (2006) and Omodeo-Salé et al. (2012), in place by 
Aguirre and Sánchez-Almazo (2004). 

In the Vera Basin (Fig. 2b), in situ gypsum deposits are missing 
because of widespread erosion or non-deposition and MSC deposits are 
only represented by ~12 m of laminated varicolored marly clays (Unit 2 
Fig. 4a), which are best exposed in the Cuevas del Almanzora section 
(Fortuin et al., 1995; Fig. 5c). These clays contain a well-preserved and 
diversified in situ fauna of Paratethyan-like ostracod and shallow-water, 
benthic foraminifera mixed with physically reworked (mostly from the 
lower Messinian Abad marls) planktic and deep-water benthic forami
nifera (Fortuin et al., 1995; Stoica et al., 2016; Caruso et al., 2020). The 
marly clays are assigned by Stoica et al. (2016) and Caruso et al. (2020) 
to (roughly) the whole late Messinian Lago-Mare phase (Fig. 4a) based 
on the ostracod biozonation of Grossi et al. (2011) and are considered to 
represent either sedimentation in an isolated lake subject to base-level 
and salinity fluctuations (Caruso et al., 2020) or deposition in a 
coastal lagoon that was connected to the water mass filling the open 
Mediterranean (Stoica et al., 2016; Andreetto et al., 2021). Similar to 
Malaga, these sediments are topped by an erosive surface draped by a 
conglomeratic accumulation which is overlain by the open marine 
fauna-rich sediments of the basal Zanclean (Fortuin et al., 1995; Caruso 
et al., 2020). This erosion feature likely indicates that the Miocene/ 
Pliocene transition followed a base-level lowstand in the Vera Basin. 

Stage 3 deposits (Garrucha Fm.) in the easternmost basin of the Betic 
Cordillera, the Bajo Segura Basin (Fig. 2b), are bounded below and 
above by two erosional surfaces related to lowered Mediterranean base- 
levels and discontinuously present due to the widespread fluvial erosion 
that occurred at the Miocene/Pliocene boundary (Soria et al., 2005, 
2008a, 2008b). The Garrucha Fm. shows a maximum thickness of 100 m 
in its type section (Soria et al., 2007, 2008b). It consists of 20-50 cm 
thick sandstone bodies interrupting a dominantly marly succession 
deposited in a subaqueous environment inhabited by Cyprideis sp. and 

Fig. 6. Photographs of the Miocene/Pliocene boundary (yellow lines) from selected onshore Mediterranean localities. (a) Erosive M/P transition in the Mendelín 
section (Malaga Basin). Note the conglomeratic lag draping the erosional surface and sharply overlain by foraminifera-rich marls. (b) Conformable stratigraphic 
contact between the uppermost Messinian sandstone of the Feos Fm. and the Zanclean biocalcarenites of the Cuevas Fm. in the Barranco de los Castellones section, 
Nijar Basin (hammer for scale; modified from Andreetto et al., 2021). (c) The Messinian/Zanclean boundary in the Pollenzo section (Piedmont Basin) marked by a 
characteristic black layer interbedded between Paratethyan ostracods-rich mudstones and marine foraminifera-rich marls (modified from Dela Pierre et al., 2016). 
(d) Uppermost segment of the Eraclea Minoa section (Caltanissetta Basin, Sicily) displaying the (non erosive) contact between the Pliocene Trubi Formation above 
and the sandy Arenazzolo Formation below. The inset is a close view of the transition, which occurs above a ~50 cm-thick burrowed mudstone horizon rich in 
Paratethyan ostracods and marine foraminifera. (e) Lago-Mare sediments in the Kalamaki section (Zakynthos) unconformable, through an erosional surface (i.e. the 
Messinian Erosional Surface, MES), over the PLG unit and also unconformable beneath the Trubi Fm. (modified from Karakitsios et al., 2017b). (f) Close view of the 
M/P boundary in the Pissouri Basin, where the foraminifera-rich Trubi marls lie above a black layer (paleosol according to Rouchy et al., 2001). 
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euryhaline, shallow-water benthic foraminifera (Ammonia beccarii, 
Elphidium granosum, Elphidium macellum, Haynesina germanica and 
Quinqueloculina laevigata). Planktic foraminifera are also observed and 
for a long time were considered to be physically reworked (Soria et al., 
2005, 2008b). However, some stratigraphic levels contain dwarf tests of 
long-ranging taxa such as Globoturborotalita decoraperta, Globigerina 
bulloides, and Neogloboquadrina spp. which recently have been inter
preted as being in-situ mostly due to the absence of notable signs of 
reworking (Corbí and Soria, 2016). Among these dwarf taxa is Neo
globoquadrina acostaensis (dextral; Corbí and Soria, 2016). Since this 
group is mainly dextral in the latest Messinian Atlantic successions (e.g. 
Sierro et al., 1993; Bassetti et al., 2006), this may indicate that Atlantic 
inflow to the Mediterranean occurred during the late Messinian and the 
base level of the Mediterranean was high enough to reach the marginal 
Bajo Segura Basin. The Miocene/Pliocene boundary is, once again, 
marked by an erosional surface which outlines up to 200 m deep pale
ovalleys engraved down into the pre-MSC sediments and filled with 
conglomerates and sandstones of claimed coastal and shallow marine 
environments (Soria et al., 2005, 2008b; García-García et al., 2011; 
Corbí et al., 2016). 

3.4. Mallorca 

Mallorca, which constitutes an emerged segment of the Balearic 
Promontory (Fig. 2), does not expose the classical MSC evaporite 
sequence. Instead, two main MSC-related units are found above late 
Tortonian-Messinian reefal carbonates (Reef Complex Unit) and beneath 
the Pliocene: the Santanyí limestones and the Ses Olles Formation (Mas 
and Fornós, 2020 and references therein). The Santanyí limestones are 
microbialites and oolite-dominated sediments in which a baleen whale 
neurocranium has been found (Mas et al., 2018a). This unit was inter
preted either as a Terminal Carbonate Complex (TCC) laterally equiva
lent to the Primary Lower Gypsum (PLG) which has been drilled in the 
deeper parts of the bay of Palma (Mas and Fornós, 2020) or as time- 
equivalent to the Reef Complex Unit (e.g. Arenas and Pomar, 2010; 
Suárez-González et al., 2019). The Ses Olles Formation consists of marls, 
sandy-marls and marly-calcareous lacustrine deposits rich in in-situ 
freshwater Chara spp., brackish water Paratethyan-like mollusks and 
ostracods and littoral benthic foraminifera (Elphidium sp., Ammonia sp.). 

The upper contact of the Ses Olles Formation with the Pliocene 
corresponds to an erosional ravinement surface draped by a trans
gressive lag of coastal deposits usually containing coquinas and/or 
conglomerates (Mas, 2013, 2015; Mas and Fornós, 2020). The lower 
contact of the Ses Olles Formation with the Santanyí limestones is 
sporadically marked by a well-developed reddish paleosol (Mas, 2013, 
2015; Mas and Fornós, 2020), which indicates that a (unquantified) 
period of subaerial exposure occurred before the emplacement of the Ses 
Olles Fm. However, in their more recent study, Mas and Fornós (2020) 
surprisingly conclude that the Ses Olles Formation has a conformable 
contact with the Santanyí limestones, ascribed to part of Stage 1. This 
led Mas and Fornós (2020) to conclude that the emplacement of the Ses 
Olles Fm. pre-dated the MSC peak and that the erosional surface 
marking the Miocene/Pliocene boundary is associated with a 270 kyr 
hiatus linked to the main MSC base-level drawdown (Fig. 4b). This 
conclusion is, however, in disagreement with the unconformity at the 
base of the Ses Olles Fm., which instead points to the deposition of the 
Ses Olles Fm. (and therefore to the arrival of the Paratethyan fauna in 
Mallorca) at some point during Stage 3 of Roveri et al. (2014a). 

3.5. Piedmont Basin 

The Piedmont Basin (NW Italy) contains the northernmost record of 
the MSC (Fig. 2b). The terminal MSC sediments (i.e. the Cassano Spinola 
Conglomerates Fm.) overlay pre-MSC units, the PLG deposits (Gessoso 
Solfifera Fm.) or reworked evaporites (Valle Versa chaotic complex, 
VVC) and underly the Zanclean marls of the Argille Azzurre Fm. (Dela 

Pierre et al., 2011). 
The Cassano Spinola Conglomerates is splitted in two sub-units by 

Dela Pierre et al. (2016). Sub-unit a consists of azoic grey mudstones 
turning to yellowish silty mudstones (Fig. 5d) typified by in situ root 
traces, paleosols and mud cracks and including three/four intercalated 
lens-shaped, cross-bedded conglomeratic layers (Ghibaudo et al., 1985; 
Dela Pierre et al., 2011, 2016). Abundant land plant leaves and a diverse 
terrestrial vertebrate fauna are found in the yellowish siltstones, which 
have been interpreted as overbank deposits (Harzhauser et al., 2015; 
Colombero et al., 2017 and references therein). In this continental in
terval, a low-diversity fish fauna consisting of otoliths of marine and 
Paratethyan species is found (Grunert et al., 2016; Carnevale et al., 
2018; Schwarzhans et al., 2020). These otoliths were Sr-dated to the 
early-middle Miocene (Grunert et al., 2016). Nevertheless, they were 
concluded not to be physically reworked, but rather to have been 
transported by large marine predators, therefore implying a Piedmont 
Basin-(marine) Mediterranean connection was in force (Grunert et al., 
2016; see subsection 5.6). Sub-unit b (i.e. Strati a Congeria sensuSturani, 
1973) is made of grey mudstones bearing a mixture of in-situ brackish 
water mollusks (Sturani, 1973; Esu, 2007) and ostracods (Trenkwalder 
et al., 2008) of Paratethyan affinity along with physically reworked 
foraminifera and calcareous nannofossils (Trenkwalder et al., 2008; 
Violanti et al., 2009). The transition to the Pliocene Argille Azzurre Fm. 
is sharp above a characteristic black and azoic sandy layer (Fig. 6c) rich 
in terrigenous and intrabasinal (i.e., glaucony and phosphates) grains 
and disarticulated valves of both brackish-water and continental bi
valves, but barren of in-situ fossils (Trenkwalder et al., 2008). The 
occurrence, at its top and directly below the Argille Azzurre Fm., of 
abundant Thalassinoides trace fossils filled with Pliocene sediments led 
Trenkwalder et al. (2008) and Dela Pierre et al. (2016) to interpret the 
top surface of this layer as an omission surface. This surface indicates a 
period of basin starvation (and therefore a hiatus) due to a sudden in
crease in water-depth, ascribed by Trenkwalder et al. (2008) to the 
Zanclean reflooding. This hiatus may have lasted for only part of the late 
Messinian (Violanti et al., 2009; Dela Pierre et al., 2016) or may have 
endured into the Pliocene (Trenkwalder et al., 2008). 

3.6. Po Plain 

To the east, the Messinian sediments in the Piedmont Basin disappear 
beneath the km-thick Plio-Quaternary succession of the Po Plain- 
Adriatic Foredeep (PPAF; Fig. 2a). By definition of Ghielmi et al. 
(2010) and Amadori et al. (2018), the PPAF includes two main elon
gated depocenters enclosed within the northern Apennines to the South 
and the Southern Alps to the North: the easternmost portion of the Po 
Plain and the whole present-day northern Adriatic Sea. Here, for 
simplicity, we include in the definition of PPAF also its westernmost 
depocenters of the Western Po Plain Foredeep. 

The Messinian-Pleistocene sedimentary sequence, studied through 
the integration of seismic and borehole observations, is mostly repre
sented by thick sequences of turbidite deposits in the foreland depo
center passing, towards the margins, to fluvial and deltaic systems 
related to the proximity of the marginal thrust-fold-belts (Cipollari et al., 
1999; Ghielmi et al., 2010, 2013; Rossi et al., 2015a; Rossi, 2017). 
During MSC Stage 1, primary evaporites and dolomicrites were depos
ited in some shallow-water settings, while evaporitic deposition was 
inhibited in the deep-water settings, where it was replaced by deposition 
of anoxic mudstones (Ghielmi et al., 2010). Instead, the post-evaporitic 
deposits consist of large thicknesses (up to 1 km) and volumes of coarse- 
grained clastics (LM1 and LM2 of Rossi and Rogledi, 1988; ME3 or 
Fusignano Fm. of Ghielmi et al., 2010; ME4 of Ghielmi et al., 2013; 
ME3b and possibly ME3a of Rossi et al., 2015a). Several authors 
(Ghielmi et al., 2010, 2013; Rossi et al., 2015a; Amadori et al., 2018; 
Cazzini et al., 2020) showed that these post-evaporitic sediments are the 
infilling of ca. N-S and NW-SE trending, V-shaped valleys (Fig. 5e). 
These valleys were carved at least as far as 50 km into the Alps, to a 

F. Andreetto et al.                                                                                                                                                                                                                              



Earth-Science Reviews 216 (2021) 103577

11

depth up to 1 km into the pre- and syn-evaporitic Messinian deposits and 
nicely shape the present-day river network of the southern Alps (Ama
dori et al., 2018). 

Different mechanisms for the incision have been proposed, with 
major implications for the desiccated vs full Mediterranean controversy 
(Figs. 1b-c). Ghielmi et al. (2010, 2013), Rossi et al. (2015a), Amadori 
et al. (2018) and Cazzini et al. (2020) ascribed the valley incision along 
the PPAF northern margin to fluvial erosion, whose basinward shifting 
was triggered by the Stage 2 Mediterranean drawdown, estimated to 
have been around 800-900 m (Ghielmi et al., 2013; Amadori et al., 
2018). In this case, Stage 3 deposition in the PPAF occurred in endorheic 
lakes fed by the Alpine rivers and kept isolated until the Zanclean, when 
the sudden sea-level rise following the Zanclean reflooding was enough 
to bypass morphological highs (e.g. Gargano-Pelagosa and/or Otranto 
paleosills) located in the southern Adriatic foredeep (Fig. 2a; see Pellen 
et al., 2017; Amadori et al., 2018; Manzi et al., 2020). Conversely, 
Winterberg et al. (2020) suggested that the over-deepened valleys on the 
southern slope of the Alps are related to Pleistocene glacial erosion. 
Although Winterberg et al. (2020) do not address the paleoenvironment 
during the Messinian, this interpretation does not rule out the possibility 
that (at least part of) Stage 3 sedimentation occurred in a PPAF con
nected to the Mediterranean water mass and that no catastrophic 
reflooding occurred at the Miocene/Pliocene boundary. The conclusion 
of a non-catastrophic refilling was also drawn by Pellen et al. (2017) on 
the basis of the onshore Adriatic record (see subsection 3.7). 

3.7. Apennine system 

The Messinian deposits resurface to the south of the PPAF sector and 
extensive sections are found in several basins on both the foreland 
domain (Adriatic side of the partially uplifted Apennine chain), sub
jected to compressional tectonics during the late Messinian, and the 
back-arc domain (Tyrrhenian side), contemporaneously affected by 
extension (Fig. 2b; Cipollari et al., 1999; Schildgen et al., 2014; Cosen
tino et al., 2018). Overall, the MSC record of the Apennines is subdivided 
into an evaporitic and post-evaporitic interval squeezed in between two 
marine units (Messinian Euxinic Shales Fm. at the base and Zanclean 
Argille Azzurre Fm. atop; Fig. 4a). Different vertical motions related to 
ongoing Apenninic tectonics resulted in the deposition of Stage 3 sedi
ments with highly variable sedimentary expression and stratigraphic 
resolution from basin to basin. The post-evaporitic deposits are alter
natively found resting unconformably, with an erosional contact asso
ciated to an angular unconformity, above the alternations of the Gessoso 
Solfifera Fm./PLG, or conformably above evaporitic-free cycles lateral 
equivalent of the marginal PLG (Fig. 4a; e.g. Roveri et al., 1998, 2008a). 
This led to the conclusion that both shallow and deep-water successions 
are present in the Apennine foredeep system (Roveri et al., 2001). 

The physical-stratigraphic model developed for the post-evaporitic 
interval in the Romagna area (i.e. Northern Apennines) and applied to 
the whole Apennine domain was subdivided into two allounits (named 
p-ev1 and p-ev2) based on a basin-wide shift in facies, overall stacking 
patterns and depositional trends (i.e. progradational and retrograda
tional, respectively; Roveri et al., 1998, 2001, 2005, 2008a; Manzi et al., 
2005, 2007, 2020). Allounit p-ev1 only accumulated in deep-water 
settings (e.g. Cusercoli, Sapigno, Maccarone and Trave sections; 
Roveri et al., 1998; Iaccarino et al., 2008; Cosentino et al., 2013) during 
the subaerial exposure of the basin margins (e.g. Vena del Gesso Basin, 
Monticino quarry, Pellen et al., 2017). It starts with resedimented clastic 
evaporites (i.e. Sapigno Fm.) followed by a coarsening- and shallowing- 
upward succession (i.e. di Tetto or San Donato Fm.) of mudstones with 
intercalated turbiditic sandstones (Fig. 5f) and a volcaniclastic marker 
bed dated initially by 40Ar-39Ar at ~5.5 Ma (Odin et al., 1997) and later 
by 238U-206Pb at 5.5320±0.0046/0.0074 Ma (Cosentino et al., 2013; 
Fig. 3a). Allounit p-ev2 (i.e. Colombacci Fm.) occurs in the deeper 
depocenters in 4/5 sedimentary cycles consisting of three > 5 m-thick 
coarse-grained bodies (conglomerates and sandstones) and two black- 

colored mudstone beds alternating with fine-grained mudstones/clays 
with intercalated three micritic limestones (known in literature as 
Colombacci limestones; Figs. 3a, 5g; Bassetti et al., 2004). By contrast, an 
incomplete Colombacci Fm. deposited in the shallower thrust-top basins 
(e.g. Vena del Gesso Basin and Molise sections; Pellen et al., 2017; 
Cosentino et al., 2018). The p-ev2 cycles have been interpreted as 
reflecting the alternation of wet (mudstones and Colombacci limestones 
in Eastern Romagna) and dry (coarse-grained facies and Colombacci 
limestones in the Maccarone section) phases controlled by 
Milankovitch-driven climatic factors (Fig. 3a; Roveri et al., 2008a; 
Cosentino et al., 2013) and, as such, they have been used for the as
tronomical tuning of the Colombacci Fm. to the Lago-Mare phase 
(Figs. 3a, 4a; see subsection 2.2). By contrast, Clauzon et al. (2005) and 
Popescu et al. (2007) moved the Colombacci Fm. into the Pliocene 
(Fig. 4b). However, this conclusion has been proven to rely on wrong 
stratigraphic and paleontological arguments (see Roveri et al., 2008c, 
Grothe et al., 2018 and subsection 5.5). Substage 3.2 records in the 
Apennines do not always contain the three prominent conglomeratic 
facies as in Romagna, but only laminated to massive clays with sandy 
intercalations equivalent to the ones typifying substage 3.1 records (e.g. 
Maccarone section; Sampalmieri et al., 2010; Cosentino et al., 2013; 
Fig. 5f). The absence of a lithological cyclicity that clearly mimics an 
orbital signal largely hampered the astronomical tuning of these clay- 
dominated sections, although an attempt has been made with the 
Maccarone section (Cosentino et al., 2013). The only exception is rep
resented by the Fonte dei Pulcini section, which has been equipped with 
an age framework by astronomical tuning of the magnetic susceptibility 
record (Cosentino et al., 2012). Despite the lack of outstanding litho
logical changes these sections are often provided with a lithostrati
graphic subdivision using the same nomenclature as in the Romagna 
area. When applied, the di Tetto Fm.-Colombacci Fm. boundary is 
placed high in the sections, i.e. few tens of meters underneath the 
Miocene/Pliocene boundary, resulting in a much different thickness of 
the formations compared to the Romagna area. 

Stage 3 sediments are poorly exposed on the Tyrrhenian Sea onshore 
side of Italy (Fig. 2b). The best known succession crops out in the Cava 
Serredi quarry in the Fine Basin (Tuscany; Bossio et al., 1978, 1993; 
Carnevale et al., 2006b, 2008). Here the MSC has a thickness of ~150 m, 
of which only the uppermost ~100 m are attributed, without clear ar
guments, to Stage 3 by Carnevale et al. (2006b). The lowermost ~40 m 
of the Stage 3 unit consists of mudstone with alternating sandstone 
bodies which have been attributed to Roveri et al. (1998)’s p-ev1 
allounit, while the uppermost ~60 m form the p-ev2 allounit and include 
two prominent conglomerate bodies alternating with mudstones inter
bedded with sandstone horizons and black, organic-rich layers (Carne
vale et al., 2006b). A few and more fragmented sections are also 
described on the Tyrrhenian Sea side of Italy by Cipollari et al. (1999). 

The Miocene/Pliocene boundary is variably expressed through the 
Apennine system: unconformable above the ostracod-bearing clays and 
highlighted by erosional surfaces draped by conglomeratic accumula
tions (e.g. Stingeti section in Molise; Cosentino et al., 2018), conform
able above 0.5-1 m-thick black mudstones similar to how it is observed 
in Piedmont and of equally unknown paleoenvironmental significance 
(e.g. Romagna area and Maccarone section; Roveri et al., 1998; Gennari 
et al., 2008) or conformable above the ostracod-rich mudstones (e.g. 
Maccarone and Fonte dei Pulcini sections; Cosentino et al., 2005, 2012, 
2013; Sampalmieri et al., 2010). 

All p-ev1 deposits studied are almost devoid of in-situ biota, except 
for fish otoliths and three fish skeletons found in the upper substage 3.1 
part of Cava Serredi (Carnevale et al., 2006b). The p-ev2/Colombacci 
deposits, instead, host typical Paratethyan assemblages of brackish- 
water mollusks, ostracods, dinocysts and fish (Bassetti et al., 2003; 
Bertini, 2006; Popescu et al., 2007; Grossi et al., 2008; Iaccarino et al., 
2008; Cosentino et al., 2012, 2018; Schwarzhans et al., 2020). A diverse 
array of marine fossils (benthic and planktic foraminifera, calcareous 
nannofossils, dinocysts and fish otoliths and skeletons) has also been 
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reported from the horizons containing these Paratethyan taxa (Bertini, 
2006; Carnevale et al., 2006a; Popescu et al., 2007; Pellen et al., 2017). 
While the autochthony of ostracods, when considered, is unquestioned, 
the allochthonous vs autochthonous character of the other mentioned 
fossils is disputed and still unclear (see Chapter 5). 

3.8. Sicily 

The MSC record is widely exposed on Sicily, mainly in the Calta
nissetta Basin and in scattered locations on the Hyblean Plateau (i.e. 
Ragusa-Siracusa area) and the Messina area (Fig. 2b; Butler et al., 1995; 
Manzi et al., 2009; Sciuto et al., 2018). Like the Northern Apennines, it 
shows a complex distribution and variable stratigraphy that mirrors the 
structuring of Sicily into basins with different characters, geometries 
and depocenters which subsided at different times and rates (Butler 
et al., 1995; Catalano et al., 2013). This structural setting permitted the 
simultaneous deposition of shallow and intermediate-water sediments 
(Roveri et al., 2008b). Mostly found in the Caltanissetta Basin, these 
intermediate-water successions have for decades been considered the 
onshore counterpart of the offshore evaporitic trilogy seen in seismic 
data from the Western Mediterranean Basin (Decima and Wezel, 1973). 
More recently, Raad et al. (2021) attempted a similar onshore-offshore 
correlation but with the intermediate Central Mallorca Depression. 
The currently endorsed stratigraphic model (Fig. 4a), refined over the 
years by Decima and Wezel (1971, 1973), Decima et al. (1988), Butler 
et al. (1995), García-Veigas et al. (1995), Rouchy and Caruso (2006), 
Roveri et al. (2008b) and Manzi et al. (2009), envisages two ‘evaporitic 
cycles’. The ‘First cycle’, overlying both alluvial and deep-water sedi
ments (Tripoli Fm., Licata Fm. and Terravecchia Fm.; see Maniscalco 
et al., 2019 and references therein), comprises the disputed Calcare di 
Base (Manzi et al., 2011, 2016b vs Caruso et al., 2015), PLG or Gessi di 
Cattolica Fm. (Decima and Wezel, 1973; Lugli et al., 2010) and the 
Halite Unit (Lugli et al., 1999). The ‘Second cycle’ comprises the Upper 
Gypsum (UG) or Gessi di Pasquasia Fm., which is only present in 
depocenters of the Caltanissetta Basin (see Manzi et al., 2009 for a 
detailed overview), sporadically overlain by the siliciclastic Arenazzolo 
Fm. (Decima and Wezel, 1973; Cita and Colombo, 1979). The whole 
succession is sealed by the Pliocene marine Trubi Fm. (Fig. 4a). The two 
evaporite cycles are separated by an erosional surface (MES) associated 
with an angular discordance broadly linked to the main Mediterranean 
drawdown event (e.g. Butler et al., 1995; Roveri et al., 2008b). Clauzon 
et al. (1996), however, placed the MES at the Arenazzolo Fm.-Trubi Fm. 
transition, implying that the entire evaporitic deposition in the Calta
nissetta Basin pre-dated the offshore one, but they do not provide evi
dence of erosion at that level. In more recent publications from the same 
research group, the MES is shifted towards the base of the Arenazzolo 
Fm. (e.g. Bache et al., 2012), again without evidence of major erosion, 
and different ages are assigned (see Fig. 4b and Grothe et al., 2018 for 
details). 

The Upper Gypsum successions are commonly incomplete in many of 
the Caltanissetta Basin sections (Pasquasia-Capodarso, Casteltermini, 
Alimena, Nicosia, Siculiana-Marina; Decima and Sprovieri, 1973; Rou
chy and Caruso, 2006; Manzi et al., 2009; Fig. 5i). In the most complete 
section, Eraclea Minoa (Fig. 3a), the Upper Gypsum Unit consists of 6 
(Van der Laan et al., 2006) to 7 (Manzi et al., 2009) primary gypsum 
beds with a repetitive internal organization of facies (see Schreiber, 
1997 and Manzi et al., 2009 for facies description) interbedded with 
marls and lenticular terrigenous sandstone bodies, gypsarenites and 
gypsrudites (Fig. 5h). Two of the terrigenous sandstone bodies are 
highlighted by Manzi et al. (2009) in the thick (~60 m), Cyprideis 
agrigentina-rich (Grossi et al., 2015), marly interval dividing gypsum VI 
and VII for its alleged astronomical significance (Fig. 3a; see subsection 
2.2). A mixed (physically reworked) marine (foraminifera and dino
cysts) and (in-situ) brackish biota (ostracods and dinocysts) of Para
tethyan origin characterizes the marly interbeds from at least gypsum III 
upwards (following the investigations carried on the Eraclea Minoa 

section; Bonaduce and Sgarrella, 1999; Rouchy and Caruso, 2006; 
Londeix et al., 2007; Grossi et al., 2015; Fig. 3a). Calcareous nannofossils 
have been found along with the above organisms in a more northerly 
location by Maniscalco et al. (2019) and considered reworked. Above 
the last gypsum, the ~6-7 m-thick Arenazzolo Fm. is found, represented 
by reddish arkosic cross-laminated and poorly consolidated sand 
(Bonaduce and Sgarrella, 1999; Roveri et al., 2008b) and interpreted as 
the expression of a shallow-water delta, albeit without a sedimento
logical investigation (e.g. Decima and Wezel, 1973; Cita and Colombo, 
1979). The whole Stage 3 sequence is conformably overlain by the 
Zanclean marine Trubi Fm. in the basin center (e.g. at Eraclea Minoa and 
Capo Rossello; Fig. 6d; Brolsma, 1975; Cita and Colombo, 1979; Van 
Couvering et al., 2000; Rouchy and Caruso, 2006; Manzi et al., 2009; 
Fig. 6d) and unconformably in the shallower, marginal areas (Manzi 
et al., 2009; Roveri et al., 2019b). Only Decima and Wezel (1973) and 
Raad et al. (2021) report the Miocene/Pliocene transition in the key, 
intermediate water-representative section of Eraclea Minoa as erosive. 
However, they do not provide evidence (e.g. photographic documenta
tion) for the presence of an erosional unconformity and, moreover, Raad 
et al. (2021) erroneously refer to Cita and Colombo (1979), where no 
erosion is mentioned at the M/P boundary in Eraclea Minoa. 

The bathymetric jump between the <100 m of water depth during 
the late Messinian and the >200 m at the base of the Trubi Fm. is often 
regarded as a key onshore evidence of the sudden and catastrophic 
Mediterranean-Atlantic re-connection at the Miocene/Pliocene bound
ary (e.g. Caruso et al., 2020). However, the real depth of the base of the 
Trubi is all but obvious. In fact, variable estimates have been proposed 
based on the observed benthic foraminifera and/or psychrospheric os
tracods at Capo Rossello and Eraclea Minoa: 200-500 m (Decima and 
Wezel, 1973), 600-800 m (Sgarrella et al., 1997, 1999; Barra et al., 
1998), 1400-2400 m (Cita and Colombo, 1979). 

3.9. Greece 

Several MSC localities are reported from the Greek Ionian Islands 
(Corfu, Cephalonia and Zakynthos) and from Crete (Fig. 2b). 

On the NW coast of Corfu (Aghios Stefanos section), the PLG unit is 
missing and only a 32 m-thick cyclically-arranged terrigenous succes
sion is present comprising three m-thick conglomerate beds alternating 
with fine-grained deposits rich in unspecified species of brackish water 
ostracods (Pierre et al., 2006). 

In the southern part of Zakynthos, an evaporitic succession 
composed of eight gypsum cycles (Kalamaki section) occurs above ma
rine marly deposits (Karakitsios et al., 2017b). These gypsum beds were 
initially ascribed to the UG unit (Pierre et al., 2006) and later to the PLG 
(Karakitsios et al., 2017b). The gypsum unit is overlain by approxi
mately ~13 m of siltstones and marls with scattered, cm-thick beds of 
sandstones, conglomerates and carbonates with nodular texture (Pierre 
et al., 2006; Karakitsios et al., 2017b). Although no ostracods are re
ported from this interval, due to its stratigraphic position the post- 
evaporitic unit is correlated to the Lago-Mare phase (Karakitsios et al., 
2017b). Except for the rare presence of marine nannofossils (Ceratolithus 
acutus together with Reticulofenestra zancleana) just below the Miocene/ 
Pliocene boundary, only reworked marine fauna has been reported from 
the post-evaporitic package (Karakitsios et al., 2017b). This dominantly 
terrigenous succession is unconformably overlain by the Zanclean Trubi 
Formation (Fig. 6e; Karakitsios et al., 2017b). 

MSC deposits on Crete (e.g. Meulenkamp et al., 1979; Delrieu et al., 
1993; Cosentino et al., 2007; Roveri et al., 2008a; Zachariasse et al., 
2008, 2011) were deposited in Miocene extensional, fault-bound basins 
driven by tectonic subsidence that ceased in the late Pliocene and 
Pleistocene (Van Hinsbergen and Meulenkamp, 2006). Because of the 
strong tectonic and eustatic sea-level-related fragmentation of the 
stratigraphic record, reconstructing the late Miocene stratigraphy of 
Crete has not been straightforward (Zachariasse et al., 2008, 2011). 
Several primary and clastic gypsum facies are recognized, but their 
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correlation with the MSC stratigraphy is disputed (see Cosentino et al., 
2007; Roveri et al., 2008a, 2014a; Zachariasse et al., 2008). Coarse- 
grained, mammal-bearing terrigenous facies irregularly alternating 
with marls are in places found unconformably overlying the gypsum and 
separated from the Pliocene facies by an erosion surface (see Meu
lenkamp et al., 1979; Delrieu et al., 1993; Cosentino et al., 2007). In two 
localities on the Messarà Plain, Cosentino et al. (2007) described a 
highly diversified ostracod fauna with Paratethyan affinity in some 
marly intervals. 

Messinian evaporites and/or Lago-Mare deposits are also reported 
from the North Aegean region onshore in the Strymon Basin (Snel et al., 
2006; Suc et al., 2015; Karakitsios et al., 2017a) and Dardanelles region 
(Melinte-Dobrinescu et al., 2009) and offshore (Prinos-Nestos Basin; 
Karakitsios et al., 2017a), but recent integrated studies suggested that 
the sections studied by the above listed authors are older than the MSC 
(see Krijgsman et al., 2020a, 2020b). In particular, Krijgsman et al. 
(2020a) proposed that for most, if not all, of the MSC the North Aegean 
was a brackish water, mostly Paratethyan-fed basin restricted by the 
Cyclades sill to the south (Fig. 2a) and forming a passageway for Para
tethyan overspill waters towards the Mediterranean. 

3.10. Cyprus 

MSC deposits on Cyprus outcrop in the Pissouri, Psematismenos, 
Mesaoria and Polemi basins on the southerly fringe of the Troodos 
massif (Fig. 2b; Rouchy et al., 2001; Manzi et al., 2016a). According to 
Rouchy et al. (2001) and Orszag-Sperber et al. (2009), sediments 
belonging to all MSC stages of Roveri et al. (2014a) are preserved in the 
Cypriot basins. By contrast, Robertson et al. (1995) and Manzi et al. 
(2016a) considered that PLG evaporites on Cyprus are only present as 
fragments reworked within a chaotic unit (the Lower Gypsum and In
termediate breccia units of Orszag-Sperber et al., 2009) and that the only 
in situ evaporites belong to the overlying Upper Gypsum Unit, which 
encompasses the whole of Stage 3 (Figs. 3a, 4a). A continuous, Eraclea 
Minoa-like section is not known in Cyprus (Manzi et al., 2016a). The best 
exposure of the lower 60 m of this unit is found in the Polemi Basin 
(Manzi et al., 2016a). It comprises up to six gypsum beds (the lower 
three of which are mainly selenitic, while the upper three are predom
inantly laminated; Fig. 3a). Gypsum beds range in thickness from 1 to 6 
m and are separated by laminated marls (Fig. 5j) occasionally inter
bedded with conglomerates and sandstones (e.g. between the 5th and 6th 

gypsum layers; Rouchy, 1982; Rouchy et al., 2001; Manzi et al., 2016a). 
The sixth gypsum bed is reported by Rouchy et al. (2001) to be hollowed 
in the upper part with the cavities filled with overlying sediments. The 
similarity of the cyclicity and facies association of this Cyprus succession 
with the substage 3.1 interval of the Sicilian UG led Manzi et al. (2016a) 
to propose a bed-to-bed correlation and to recognize the substage 3.1/ 
3.2 boundary at the top of the last gypsum bed (Fig. 3a). According to 
Orszag-Sperber et al. (2000) and Rouchy et al. (2001), this chro
nostratigraphic boundary coincides with a Mediterranean-scale sea- 
level drop, a conclusion that arises from the interpretation of the cavities 
in the uppermost gypsum as the product of karstic dissolution following 
a prolonged period of subaerial exposure. 

The sedimentary sequence overlying the last gypsum bed and 
assigned by Manzi et al. (2016a) to the Lago-Mare phase lacks a clear 
and rhythmic sedimentary cyclicity. In the Pissouri Basin this interval 
(up to 25-30 m-thick) mostly consists of conglomerates, sandstones, 
limestones, paleosols (which appear as dm to m-thick dark marly hori
zons, in one case with pulmonated gastropods) and subordinated clay- 
marly horizons (Rouchy et al., 2001). By contrast, in the Polemi sec
tions the clay-marly facies dominates this interval (Rouchy et al., 2001). 
In situ fresh-brackish water species of articulated mollusks (Limno
cardiidae, Melanopsis), Paratethyan (Loxocorniculina djafarovi, Euxyno
cythere praebaquana) and Mediterranean (Cyprideis agrigentina) 
ostracods and foraminifera (Ammonia beccarii), Characeae, abundant 
fragments of the marine euryhaline fish Clupeidae and a fish skeleton of 

the euryhaline Aphanius crassicaudus are described from some of the 
substage 3.1 and 3.2 fine-grained facies and within the terrigenous 
laminae of some balatino gypsum (Orszag-Sperber et al., 2000; Rouchy 
et al., 2001; Orszag-Sperber, 2006; Manzi et al., 2016a). The upward 
change in diversity of the ostracod fauna seen elsewhere (e.g. Malaga, 
Nijar, Vera, Apennines and Eraclea Minoa) is not reported in Cyprus but 
this may be because no detailed study of ostracod assemblages in Stage 3 
sediments has been published. The Miocene/Pliocene boundary, near 
Polemi village is described by Manzi et al. (2016a) as a sharp contact 
above a dark, organic-rich layer (Fig. 6f). It appears to be similar to the 
boundary reported from Piedmont (Fig. 6c; Trenkwalder et al., 2008; 
Dela Pierre et al., 2016) and Northern Apennines (Gennari et al., 2008; 
Grossi et al., 2008), if not for the presence, in Cyprus, of (possibly) in- 
situ Cyprideis agrigentina (Manzi et al., 2016a). A layer with the same 
field appearance, thickness (~ 1 m) and stratigraphic position is re
ported in Pissouri by Rouchy et al. (2001), which they interpreted as a 
paleosol based on mottling, oxidized roots, carbonate concretions and 
plant fragments. 

3.11. Southern Turkey 

The tectonically active, during the Miocene, thrust-top basin of 
Adana in southern Turkey (Radeff et al., 2017) retains the most com
plete and better exposed easternmost successions of the MSC (Fig. 2b), 
whose deposits were attributed to the Handere Fm. (Cosentino et al., 
2010; Radeff et al., 2016). 

MSC Stage 3 finds expression in a >1 km thick continental unit 
unconformable, through an erosional surface, above the pre-evaporitic, 
Stage 1 anhydrite-shale alternations (Radeff et al., 2016) and resedi
mented gypsum-bearing Stage 2 deposits (Cosentino et al., 2010; 
Cipollari et al., 2013). This unit mainly consists of fluvial coarse- and 
fine-grained deposits representing channel fill and overbank deposits. 
Sporadically, some fine-grained intercalations are found containing a 
mixed brackish (ostracod) and marine (foraminifera and calcareous 
nannofossils) fauna. The ostracod fauna has affinity with the Para
tethyan fauna but, unlike to many other Mediterranean onshore local
ities, is poorly diversified, with monospecific assemblages of Cyprideis 
agrigentina (Avadan section and T-191 borehole; Cipollari et al., 2013) or 
with Cyprideis agrigentina accompanied by rare to abundant specimens of 
Loxoconcha muelleri, Euxinocyhere (Maeotocythere) praebaquana, and 
Loxoconcha sp. (Adana section; Faranda et al., 2013). Ostracods are 
often associated with Ammonia beccarii and rare Elphidium and Cri
broelphidium, which are the only foraminifera considered as autoch
thonous. Conversely, the entire nannoflora is interpreted as physically 
reworked (Cipollari et al., 2013; Faranda et al., 2013). 

The Handere Fm. is followed by early Zanclean marine sediments 
(Avadan Fm.) deposited, according to the paleoecology of the benthic 
foraminifera species recognized, at bathymetries ranging from 200 to 
500 m (Cipollari et al., 2013). The lithological nature of the Miocene/ 
Pliocene boundary in the Adana Basin is not clear, but it occurs either 
above the continental or subaqueous, ostracod-bearing facies. 

A similar stratigraphic sequence is present in the subsurface. Here, 
however, chaotic gypsum-bearing deposits are not found and two halite 
bodies ~20 and ~170 m-thick are present, separated and followed by 
fluvial gravels, sands and silts (Cipollari et al., 2013). 

3.12. Summary of the onshore Stage 3 record 

Most of the onshore Stage 3 records formed in shallow marginal 
Mediterranean basins, which underwent substantial uplift from the 
Messinian till nowadays and are assumed to have had their depocenter 
at ~200 to 50 m below the Atlantic level during the late Messinian 
(Roveri et al., 2014a, 2019a; Radeff et al., 2016, 2017). The Calta
nissetta Basin (Sicily), some basins along the Apennines and (possibly) 
Cyprus represent, instead, possible onshore representative of interme
diate basins. The nature and duration of these records is quite variable, 
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and there are only six sections that may record an entire Stage 3 
sequence (i.e. Sorbas, Nijar, Northern Apennines, Eraclea Minoa and 
Cyprus; Fig. 3a). Reasons for the fragmentary nature of the Stage 3 
sedimentary record include different durations of subaerial exposure 
following the Stage 2 drawdown, local tectonics and associated syn- 
depositional erosion and deposition. One of the consequences of this is 
that any sedimentary cyclicity that resulted from orbital fluctuations is 
typically either less well developed or poorly preserved, making the 
chronology of Stage 3 rather uncertain or controversial in places. 

Despite this variability, several fairly consistent characteristics are 
widely expressed. These are:  

1) Stage 3 sedimentation follows a period of intensive tectonic and/or 
eustatic-driven erosion of the margins, as demonstrated by the 
frequent presence of erosional unconformities and/or chaotic Stage 2 
deposits (RLG unit); 

2) Stage 3 lithologies are mostly terrigenous (conglomerates, sand
stones and mudstones) and deposited in a variety of continental (fan 
delta, fluvial channels and alluvial plains) and shallow water envi
ronments (endorheic lakes or water bodies connected with the 
Mediterranean water mass is the riddle). Carbonate intercalations 
are sometimes present (e.g. Sorbas Basin and Colombacci limestones 
in the Apennines). Stage 3 gypsum is only found in deeper-water 
intermediate basins of Caltanissetta in Sicily and Cyprus. 

3) A diversified fossil assemblage with Paratethyan affiliation (ostra
cods, dinocysts, mollusks) is commonly found in the shallow-water 
sediments of Lago-Mare successions. Only in the intermediate Cal
tanissetta Basin (Sicily) do these diversified Paratethyan forms (only 
ostracods) occur earlier, in the sediments from substage 3.1. Where 
these have been studied in detail, these assemblages typically show 
an increase in diversity with time (possibly every wet phase of the 
precession cycles). Some of these sediments also contain marine 
fossils and there is controversy over whether these are in situ and 
contemporaneous or reworked. 

4) In outcrop, the Miocene/Pliocene boundary has four main sedi
mentary expressions: erosive and followed by a conglomeratic lag (e. 
g. Malaga, Vera, Mallorca; Fig. 6a); conformable above continental 
facies (e.g. Nijar Basin; Fig. 6b); conformable above ostracod-rich 
mudstones (e.g. Eraclea Minoa; Fig. 6d); sharp contact above a 
black layer of still largely unknown paleoenvironmental significance 
(Piedmont, Apennines and Cyprus; Fig. 6c, f). 

For a better understanding of how Stage 3 developed across the 
Mediterranean these marginal records now need to be considered 
alongside the evidence from intermediate to deep offshore settings. 

We note that alternative chronostratigraphic frameworks have been 
proposed for several onshore (Malaga, Sorbas, Mallorca, Apennines, 
Sicily) and offshore (Sites 134B, 976B, 978A) locations (see Fig. 4b for 
references), but we have omitted them as they are shown to rely on 
incorrect (bio)stratigraphic arguments (see Roveri et al., 2008c, Grothe 
et al., 2018 and subsection 5.5). 

4. Offshore domain 

The offshore Mediterranean is a complex array of variable-depth and 
morphologically complex subbasins framed by morphological highs or 
sills. Traditionally it is divided into two main domains (Fig. 2a), the 
Western and Eastern Mediterranean, with the intervening divide (or 
Sicily sill) situated in the Sicily channel at present with a maximum 
depth of 316 m. The Alborán Basin, the depressions on the Balearic 
Promontory, the Corsica, Valencia, Algero-Balearic, Liguro (or Sardo)- 
Provençal and Tyrrhenian basins belong to the "Western Mediterranean" 
(Fig. 2a). The Adriatic foredeep, the Ionian, Sirte, Aegean and Levant 
basins belong in the "Eastern Mediterranean" (Fig. 2a). Smaller-sized 
depressions, again surrounded by sills of variable depth, are identified 
and labelled within each of these subbasins. 

Although the exact topography and hypsometry of the Messinian 
Mediterranean is difficult to reconstruct, this present-day geography is 
generally assumed to have been in place, with five main differences: (1) 
the Alborán Basin was split into a Western (WAB) and Eastern Alborán 
(EAB) by a volcanic arc (Booth-Rea et al., 2018); (2) the Tyrrhenian 
Basin was only partly opened (Lymer et al., 2018); (3) the precise depth 
and width of the ancient Sicily Sill are difficult to estimate, but may have 
been much deeper than today (~300 m; Meijer and Krijgsman, 
2005Jolivet et al., 2006). Paleodepth estimations for the Messinian 
configuration range from 380 m (Just et al., 2011) to 430 m (Garcia- 
Castellanos et al., 2009); (4) one or two sills were present at the southern 
termination of the Adriatic foredeep (Pellen et al., 2017; Amadori et al., 
2018; Manzi et al., 2020); (5) the North Aegean was partially isolated 
from the Mediterranean by the Cyclades Sill and with high Paratethys 
affinity (Krijgsman et al., 2020a). Following the schematic classification 
of the Messinian sub-basins by Roveri et al. (2014a), all these subbasins 
are regarded as either intermediate (i.e. relatively deep-water, 
200–1000 m) or deep (water depth > 1000 m). 

Compared with the onshore domain, the offshore basins hold a far 
greater percentage of the total volume of MSC sediments (Ryan, 1973; 
Haq et al., 2020). The architecture, geometry and main lithologies of the 
MSC and younger deposits are well known thanks to the high density of 
seismic data and the fact that evaporites (halite particularly) are easily 
identified on seismic profiles due to their unusual seismic properties, 
especially compared to those of terrigenous and carbonate sediments 
(see Lofi et al., 2011a, 2011b; Lofi, 2018; Haq et al., 2020). However, the 
detailed lithological, sedimentological, paleontological and geochem
ical nature and their chronostratigraphy are still poorly constrained 
offshore because these cannot be univocally defined on the basis of 
seismic data alone (Roveri et al., 2019b) and direct information about 
these deep MSC successions is limited to a small number of cores (16) 
drilled during the DSDP (Ryan et al., 1973; Hsü et al., 1978b) and ODP 
(Kastens et al., 1987; Comas et al., 1996; Emeis et al., 1996) drilling 
campaigns that penetrated exclusively the uppermost tens of meters of 
the deep MSC suite in very scattered localities (Fig. 2b). Only recently, 
access to industrial boreholes crossing the base of the halite in the deep 
Levant Basin has been granted, providing a rare glimpse of the deep MSC 
deposits in the easternmost part of the Mediterranean (Gvirtzman et al., 
2017; Manzi et al., 2018; Meilijson et al., 2018, 2019). 

The MSC is commonly described as tripartite (‘Messinian trilogy’ 
after Montadert et al., 1978) in the Western Mediterranean (Lower- 
Mobile-Upper units: LU-MU-UU, respectively). However, in the Ionian 
Basin is described as bipartite (MU-UU) by Camerlenghi et al. (2019) 
while according to Lofi et al. (2011a), Gvirtzman et al. (2013, 2017), 
Lofi (2018) and Camerlenghi et al. (2019), the Levant Basin consists of 
the MU and the UU is only present locally and possibly represented by 
evaporite-free terrigenous accumulations (Kartveit et al., 2019; Madof 
et al., 2019). The lack of many age constraints within the offshore MSC 
successions hampers unambiguous correlation with onshore sequences 
(Fig. 1a; Roveri et al., 2014a). Nevertheless, different authors have 
proposed onshore-offshore correlation of specific events (e.g. onset, 
Ochoa et al., 2015; and termination of the MSC, Biscaye et al., 1972, 
Iaccarino et al., 1999) and stratigraphic schemes (Decima and Wezel, 
1971; Raad et al., 2021) based on and biostratigraphic evidence 
(Cosentino et al., 2006), 87Sr/86Sr isotope ratios (Roveri et al., 2014b; 
Gvirtzman et al., 2017; Manzi et al., 2018) and astronomical tuning of 
the deep seismic record (Ochoa et al., 2015, 2018; Manzi et al., 2018; 
Meilijson et al., 2018, 2019). Here we focus on the seismic and 
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Fig. 7. Seismic profiles from intermediate- 
deep Western Mediterranean basins con
taining MSC markers/units. (a) Seismic 
reflection line CAB01-104 from the WAB 
(modified from Booth-Rea et al., 2018). The 
line shows the variable geometry of the 
inferred M/P boundary, erosive in proximity 
of mud diapirs, (para)conformable in 
tectonically undisturbed sectors. Chaotic 
reflectors are occasionally imaged below the 
inferred M/P boundary. (b) Seismic profile 
SF12-09 imaging the lower slope of the 
south Algero-Balearic margin and part of the 
Algero-Balearic abyssal plain (modified from 
Mocnik et al., 2014). Here a high reflecting 
and horizontally stratified UU covers a thin 
layer of MU evidenced by salt diapirism. 
Note the concordant deformation of the UU 
and MU. (c) Line MS-39 from the abyssal 
plain of the Liguro-Provençal Basin showing 
the Messinian trilogy and non-erosive bot
tom and top surfaces (BS and TS; Dal Cin 
et al., 2016). Halokinesis of MU gives rise to 
domes that deform the UU and PQ units. (d) 
Interpreted seismic profile from the lower- 
middle slope of the west Sardinian margin 
(modified from Dal Cin et al., 2016). Thin 
MU and UU are present on the lower slope, 
while on the middle slope (and upper slope 
here not shown) they converge in the margin 
erosion surface MES. (e) Line drawing of 
seismic line imaging from the Catalan 
margin (or Ebro Basin) to the abyss of the 
Liguro-Provençal basin (modified from 
Maillard et al., 2011b). Note the pinch out of 
the MU in the Valencia Basin and of the UU 
in the Ebro Basin, which is MSC free. (f) 
Interpreted seismic profile Simbad 15 
crossing the depocenter of the CMD showing 
all the MSC units and erosional surfaces 
(modified from Raad et al., 2021). (g) 
Interpreted seismic profile MYS40 illus
trating the MU-UU-PQ units in the East- 
Sardinia Basin and Cornaglia Terrace, sepa
rated by the MSC deposits-free Quirra Sea
mounts (modified from Lymer et al., 2018).   
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geological (core-derived)1 properties of the Upper Unit (and laterally 
grading/interfingering sediments when present), stratigraphically 
below the Plio-Quaternary deposits (PQ) suggesting that it belongs to (at 
least part of) Stage 3. 

4.1. Western Alborán Basin and westernmost East Alborán Basin 

The Alborán Basin has received particular attention because of its 
proximity to the Gibraltar Corridor (Estrada et al., 2011; Popescu et al., 
2015 and references therein). Evaporites only occur on the eastern side 
of the EAB (which is treated in subsection 4.2; Fig. 2a). To the west of the 
volcanic archipelago (Booth-Rea et al., 2018, i.e. the WAB) and imme
diately to the east on the western side of the EAB only terrigenous 
sediments occur in the MSC interval (Booth-Rea et al., 2018; de la Peña 
et al., 2020). Sediments at the Miocene/Pliocene boundary appear in the 
seismic reflection data as parallel reflectors with increasing reflectivity 
(Comas et al., 1996, 1999; Booth-Rea et al., 2018). Locally, just below 
the M discontinuity, some of the reflectors suggest a chaotic seismic 
facies (Fig. 7a; Booth-Rea et al., 2018; Bulian et al., 2021). Miocene 
sediments with a maximum thickness of 100 m have been recovered 
from two out of nine holes drilled in the region (ODP 976B, 978A; Comas 
et al., 1996, 1999). These sediments mostly consist of claystones, silt
stones and sandstones with Chondrites and Zoophycos ichnofacies at site 
976B and include a conglomerate close to the Miocene/Pliocene 
boundary at Site 978A. The lack of age-diagnostic fossils hampers their 
correlation with the Geologic Time Scale (GTS). However, the presence, 
high in the Miocene section, of an oligotypic association of ostracods 
(Candona sp., Loxoconcha muelleri, and Cyprideis sp.) with different 
stages of growth (Site 978A; Iaccarino and Bossio, 1999) and Para
tethyan dinocysts (including Galeacysta etrusca; see subsection 5.2; 
Popescu et al., 2015) indicates a latest Messinian (substage 3.2) age and 
brackish paleodepositional conditions. Foraminifera and nannofossils 
are also present, but all species recognized are of no help in narrowing 
down the paleoenvironmental interpretation because they are consid
ered either definitely or likely to be reworked (Iaccarino and Bossio, 
1999). By contrast, Popescu et al. (2015) interpreted some species of 
calcareous nannofossils (Reticulofenestra pseudoumbilicus, Discoaster 
quinqueramus, Ceratolithus acutus, Triquetrorhabdulus rugosus, Amaur
olithus primus) and marine dinocysts as autochthonous. 

The nature of the Miocene/Pliocene boundary is also uncertain. 
According to some authors, the “M” discontinuity is a high-amplitude 
reflector with evidence of erosion attributed to subaerial processes 
(Estrada et al., 2011; Urgeles et al., 2011) and locally (e.g. close to Site 
121; Ryan et al., 1973) associated with an angular unconformity that 
abruptly truncates the upper Miocene deposits and morphological highs 
(Comas et al., 1999; Estrada et al., 2011; Garcia-Castellanos et al., 
2020). Although the M-reflector was drilled at Sites 976B, 977A and 
978A, a lithological contact was only recovered at Site 976B coinciding 
with a major erosional surface between the early Messinian and the base 
of the Pliocene (Bulian et al., 2021). Only at Site 978A (and possibly 
977A) was a few meters of what may be the contact interval recovered 
(Comas et al., 1996). This comprises a 25 m-thick cemented succession 
containing pebbles of volcanic and sedimentary rocks likely to derive 
from the Alborán substrate (46R, 620.9-630.67 mbsf, between the 
Pliocene-bearing core 45R and the Messinian-bearing core 47R; Comas 
et al., 1996). In contrast, Booth-Rea et al. (2018) concluded that the M- 
reflector is an unconformity only close to the mud diapirs and owes its 
erosive shape and angular discordance to the activity of these structures 

(Fig. 7a). In more undisturbed sectors these authors argue that the 
boundary is a paraconformity with no evidence of erosion (Fig. 7a). The 
lack of Messinian erosion in the shallow regions of the WAB margins has 
prompted the hypothesis that this area did not desiccate during the MSC 
(Booth-Rea et al., 2018; de la Peña et al., 2020). This contradicts much of 
the interpretation made of the DSDP and ODP cores of this interval in the 
Alborán Sea. The succession recovered by drilling from beneath the 
Pliocene comprises gravels that contain a mixed Miocene fauna. These 
sediments and their faunal content are thought to have been reworked 
from older sediments exposed as Alborán substrate with no evidence of 
an extensive wet Lago Mare interval immediately before the Zanclean 
(Comas et al., 1996). 

Two W-E-aligned erosional channels straddling the Strait of Gibraltar 
and stretching for 390 km from the easternmost Gulf of Cádiz (Atlantic 
Ocean) into the Alborán Basin are clearly observed in seismic profiles 
(Garcia-Castellanos et al., 2009; Estrada et al., 2011). There is 
disagreement, however, concerning the timing and nature of their for
mation. These incisions are classically considered to occur at the very 
top of the MSC suite (when present) and to be the consequence of the 
Zanclean megaflood (Garcia-Castellanos et al., 2009, 2020; Estrada 
et al., 2011 among others). More recently, Krijgsman et al. (2018) 
highlighted that an accurate age determination for these channel in
cisions is lacking and that they might have been formed earlier during 
the MSC as a result of the Mediterranean-Atlantic gateway currents. 
Interpretation of E-W seismic profiles across the Alborán Basin com
bined with mammal records in Africa and Iberia led Booth-Rea et al. 
(2018) to suggest the existence of an emergent volcanic archipelago that 
temporarily connected southeastern Iberia with northern Africa, sepa
rating an open marine, Atlantic-influenced West Alborán Basin realm 
from a restricted, hydrologically complex Mediterranean realm to the 
east. 

4.2. Eastern Alborán, Algero-Balearic and Liguro-Provençal basins 

From the eastern margin of the EAB as far east as the Tyrrhenian 
coast of Italy, the Messinian (evaporites-bearing) trilogy LU-MU-UU is 
found and sealed by the PQ. The MU and UU are interpreted to fill the 
deepest depocenters (Algero-Balearic, Valencia and Liguro-Provençal 
basins; with minor interruptions due to seamounts) and the lower slope 
domain, where they comprise ~500 to ~800 m of UU and ~1000 m of 
MU/halite (Figs. 7b-d; Camerlenghi et al., 2009; Lofi et al., 2011a, 
2011b; Geletti et al., 2014; Mocnik et al., 2014; Dal Cin et al., 2016; Lofi, 
2018). Upslope, a thinner, possibly incomplete UU is locally described 
on the middle-upper continental slopes of Western Corsica (Guennoc 
et al., 2011) and Sardinia (Mocnik et al., 2014; Dal Cin et al., 2016) and 
the northern (Maillard et al., 2006) and southern (Maillard and Mauf
fret, 2013; Mocnik et al., 2014; Dal Cin et al., 2016) flanks of the Balearic 
Promontory, even though the structural settings of these locations are 
mostly dominated by erosion (Fig. 7d). MSC evaporites are absent on the 
continental shelves bordering the deep Algero-Balearic and Liguro- 
Provençal basins, where the PQ directly overlies the MES which, in turn, 
cuts through the middle Miocene deposits (Gorini et al., 2005; Lofi et al., 
2005). The only late Messinian sediments are present as Complex Units 
(Gulf of Lion, Bessis, 1986; Gorini et al., 2005; Lofi et al., 2005; Algerian 
Basin, Medaouri et al., 2014; Arab et al., 2016; Fig. 7e). CUs can have 
various origin (Lofi et al., 2011a, 2011b), but when identified at the 
outlet of drainage systems, they are commonly interpreted as Messinian 
clastics supplied by rivers (Lofi et al., 2005). In the Gulf of Lion, the MES 
is a high angle unconformity with substantial erosion along highly 
rugged relief thought to have been generated by fluvial incision (Lofi 
et al., 2005). In contrast, Roveri et al. (2014c) suggested that the 
drainage networks visible on the seismic could be of subaqueous origin. 

When not involved in MU-related deformation processes, the UU 
appears as a highly reflective series of flat reflectors alternating with less 
reflective, but concordant, reflectors (Figs. 7b-c; Lofi et al., 2011a, 
2011b) aggrading in the basin center and onlapping the margins 

1 Lithostratigraphic and biostratigraphic information from DSDP and ODP 
cores are primarily extracted from the Scientific Shipboard Party documents, 
accessible from https://www.marum.de/en/Research/Cores-at-BCR.html. 
These documents are referenced in the text as follows: Ryan et al. (1973): DSDP 
120-134; Hsü et al. (1978b): DSDP 371-378; Kastens et al. (1987): ODP 650- 
656; Comas et al. (1996): ODP 974-979; Emeis et al. (1996): ODP 963-973. 
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(Fig. 7b; Camerlenghi et al., 2009; Lofi et al., 2011a, 2011b; Geletti 
et al., 2014; Mocnik et al., 2014; Dal Cin et al., 2016). The aggrading 
nature, shelf-ward thinning and the onlap terminations of the UU are 
interpreted as evidence of sedimentation in a lake with fluctuating base 
level (e.g. Lofi et al., 2005; Lofi et al., 2011a). In the abyssal plains 
(Figs. 2a, 7c), nine to ten cycles have been interpreted on high resolution 
seismic profiles as corresponding to gypsum-marl alternations (Geletti 
et al., 2014; Mocnik et al., 2014). At Sites 124 and 372, ~40-50 m of the 
UU have been drilled at the feet of the east Menorca continental rise and 
the northern Menorca slope, where 3-4 gypsum-marl cycles are recog
nized (Fig. 2b; Ryan et al., 1973; Hsü et al., 1978a). Primary gypsum 
facies are widely overprinted by post-depositional diagenetic processes, 
but the still recognizable laminated and clastic primary textures indicate 
precipitation at the water-air interface and emplacement by gravity 
flows, respectively (Lugli et al., 2015). The marl interbeds are made 
from stiff to firm dolomitic mud containing substantial quantities of 
detrital material intercalated with current-bedded sandstones and, at 
Site 124, with diatomites (Ryan et al., 1973). Cyprideis sp. specimens are 
reported from some mudstone interbeds at Site 372, while dwarf 
planktonic foraminifera are present just below the Miocene/Pliocene 
boundary at Site 124 (Ryan et al., 1973). 

The Miocene/Pliocene boundary coincides with the top of the UU 
where present (labelled TES when erosional and TS when conformable; 
Lofi et al., 2011a, 2011b). In the abyssal plain-lower slope domain it 
appears to be undulating, although this geometry is related to the 
deformation of the underlying salt (Figs. 7b-c), and it actually corre
sponds to a sharp surface lacking signs of erosion (Lofi et al., 2011a, 
2011b; Geletti et al., 2014; Mocnik et al., 2014). By contrast, the UU-PQ 
boundary commonly appears strongly erosional in the middle-upper 
slope and shelf domain, where it coincides with the MES (Fig. 7d; Lofi 
et al., 2005; Maillard et al., 2006; Geletti et al., 2014; Mocnik et al., 
2014). Among the six DSDP-ODP Sites drilled in this region (Fig. 2b), 
only Hole 975B recovered the Miocene/Pliocene boundary (Iaccarino 
and Bossio, 1999; Marsaglia and Tribble, 1999). Here the Messinian is a 
few centimeters thick and consists of banded micritic silty clays with 
minor calcareous siltstones to sandstones typified by a diverse faunal 
assemblage consisting of dwarf planktonic foraminifera, Ammonia tepida 
tests and brackish Paratethyan ostracods (Loxocorniculina djafarovi, 
Euxinocythere praebaquana, Amnicythere idonea, Leptocythere limbate, 
Candona sp., and Cyprideis sp.; Iaccarino and Bossio, 1999). 

Halite is present at the bottom of Hole 134 drilled within the UU 
(Ryan et al., 1973; Sage et al., 2005; Lugli et al., 2015). High-resolution 
seismic profiles from both the Algero-Balearic and Ligurian-Provençal 
basins confirm the presence of a halite layer high in the UU sequence 
(Geletti et al., 2014; Mocnik et al., 2014). This layer is up to 50 m thick 
(Dal Cin et al., 2016) and is correlated with an erosional surface (called 
IES: Intermediate Erosional Surface by Lofi et al., 2011a, 2011b) asso
ciated with an angular unconformity which is better developed on the 
lower slope (Fig. 7d). Geletti et al. (2014) and Mocnik et al. (2014) 
interpreted this layer as autochtonous and indicative of at least one 
important sea level drop during UU deposition. However, this intra UU 
halite layer is always described from areas strongly affected by salt 
diapirism (just like in the Ionian Abyssal Plain; see subsection 4.6.1) and 
is never found in adjacent, undisturbed areas (see Camerlenghi et al., 
2009; Geletti et al., 2014; Mocnik et al., 2014; Dal Cin et al., 2016), two 
features that may suggest it has an allochthonous origin. 

Site 134 shows evidence of a “desiccation crack" cutting through a 
sandy silt layer interbedded with unaffected laminated halite (Hsü et al., 
1973c). Unfortunately, the core photograph of this crack has been 
published in two different orientations (Hsü et al., 1973a, 1973b), 
leading both Hardie and Lowenstein (2004) and Lugli et al. (2015) to 
question the evidence for subaerial desiccation. Because of these am
biguities, we suggest to dismiss this example from the book of evidence. 

4.3. Valencia Basin 

The Valencia Basin (VB; Fig. 2a) is an aborted rift formed during the 
late Oligocene-early Miocene opening of the back-arc Liguro-Provençal 
Basin (e.g. Jolivet et al., 2006). It is located between the Spanish Ebro 
Margin to the west and the Balearic Promontory to the east, while it 
grades into the Liguro-Provençal Basin to the E/NE (Fig. 7e; Maillard 
and Mauffret, 2006; Maillard et al., 2006). 

Numerous exploratory boreholes exist on the western Ebro margin. 
These boreholes, tied to seismic data, confirm that MSC-related sedi
ments on the northwestern shelf are missing (Fig. 7e; Urgeles et al., 
2011; Pellen et al., 2019). The only MSC feature present is a prominent 
erosional surface (the MES) incising Serravallian-early Messinian sedi
ments (Urgeles et al., 2011). By contrast, on the southwestern and 
southern part of the margin, well data show the presence of evaporitic 
sediments (e.g. Delta L and Golfo de Valencia D1 boreholes; Del Olmo, 
2011; Del Olmo and Martín, 2016; Lozano, 2016). Del Olmo and Martín 
(2016) described these evaporites as primary selenites and ascribed 
them to MSC Stage 1 (their unit M7). Lozano (2016) described the same 
evaporitic deposits in the same boreholes as ‘white anhydrites’, leaving 
open the question as to whether the anhydrite is primary (sabhka’s) or 
secondary at the expense of a primary gypsum facies. On the eastern 
margin of the VB boreholes and seismic studies suggest there are no MSC 
units with only a prominent MES cutting pre-MSC sediments (Driussi 
et al., 2015; Raad et al., 2021). All authors conclude that the shelves of 
VB were exposed to subaerial erosion during and following the main 
drawdown. 

MSC deposits are also absent along the slopes and, where present, 
consist of coarse- and fine-grained terrigenous facies filling valleys 
largely related to fluvial incision (Fig. 7e; Stampfli and Höcker, 1989). 

A different situation features in the depocenter. Despite its present- 
day depth of > 2000 m, no MU is observed in the depocenter, as the 
salt pinches-out at the edge of the deeper Provençal Basin (Fig. 7e). Only 
the seismic properties of UU suggest that it is roughly continuous from 
the Provençal Basin into the VB (Fig. 7e; see subsection 4.2), although it 
thins from ~1000 m to < 500 m. The UU is characterized by aggrading 
and onlapping geometries towards the slopes, where it also thins out 
until it disappears along the middle-upper slope (Fig. 7e; Maillard et al., 
2006; Cameselle and Urgeles, 2017). Maillard et al. (2006), Urgeles et al. 
(2011), Cameselle et al. (2014) and Cameselle and Urgeles (2017) all 
stated that the UU formed during an important Mediterranean-level 
lowstand (~1000 m). Several Complex Units (CU), with different 
origin, have been observed and described as belonging to the MSC 
(Cameselle and Urgeles, 2017). 

DSDP Site 122, drilled at the mouth of a valley incision, recovered a 
few meters of sand-gravels made of well-rounded basalt, marine lime
stones, nodules of crystalline gypsum and mollusk fragments in a clay- 
silty matrix rich in deep-water benthonic foraminifera and early Plio
cene nannofossils, all interpreted as erosional products of the VB seabed 
(Ryan et al., 1973). The uppermost Messinian in two industrial wells 
(Ibiza Marino and Cabriel boreholes; see Lozano, 2016) is represented 
by intercalations of clastic gypsum/anhydrite and marls (unit M8-P1 of 
Del Olmo and Martín, 2016). These are interpreted as turbidites sourced 
from the shelf and/or slope during a lowstand phase of the Mediterra
nean base level (Del Olmo, 2011; Del Olmo and Martín, 2016; Cameselle 
and Urgeles, 2017). 

In seismic profiles, the UU/PQ transition (M-reflector or TES) is 
locally both sharp and smooth (in more distal settings) and erosional (in 
more proximal settings; Fig. 7e). Maillard and Mauffret (2006) indicate 
that the smooth parts have been caused by increasing fresh water influx 
during the Lago-Mare phase, leading to dissolution of the evaporites, 
and the rough erosional segments are of subaerial origin. For Cameselle 
and Urgeles (2017), the top of the UU is a smooth and conformable 
downlap surface, representing the rapid inundation of the basin with 
only local minor erosional features. 
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4.4. Balearic Promontory 

Sticking out from the surrounding deep-water locations, the Balearic 
Promontory (BP; Fig. 2a) is a continental high that has undergone tec
tonic extension since the late Serravallian (Roca and Guimera, 1992; 
Sabat et al., 2011). During the Messinian, it comprised in topographic 
lows/subbasins at different water depths and separated by structural 
highs/sills (Maillard et al., 2014; Driussi et al., 2015; Roveri et al., 
2019b; Raad et al., 2021). The area has been the subject of multiple 
studies (Maillard et al., 2014; Driussi et al., 2015; Ochoa et al., 2015; 
Roveri et al., 2019b; Raad et al., 2021) and several controversies arose 
after the publication of Roveri et al. (2019b). 

The first controversy concerns the Messinian paleodepth of the BP’s 
subbasins. According to Roveri et al. (2019b) the subbasins were 
shallow during the Messinian and acquired today’s paleodepths 
following a strong post-MSC subsidence; Maillard and Mauffret (2011), 
Maillard et al. (2014) and Raad et al. (2021), instead, consider the 
tectonic movements in the BP to have been minor since the late Miocene 
(Messinian) and the region to have been already structured as it is today 
during the MSC. Well-to-seismic ties in the shallower basins closer to the 
Spanish coast (i.e. Bajo Segura, San Pedro and Elche basins) comprise up 
to 14 Stage 1 primary gypsum-marl cycles similar to the onshore PLG 
unit (Lugli et al., 2010) truncated at the top by the MES (Soria et al., 
2008a, 2008b; Ochoa et al., 2015). At first, Ochoa et al. (2015) 
concluded that all sediments overlying the MES are Pliocene in age. A 
later re-appraisal of the same downhole logging data and cuttings led 
Ochoa et al. (2018) to attribute the first ~13 m-thick micritic and 
evaporite-free sediments to the late Messinian (stage 2 or 3 of the MSC 
according to the authors). The MSC stratigraphy of the shallowest 
offshore basins of the BP closely resembles that described from cores and 
outcrops onshore Mallorca (see subsection 3.4; Roveri et al., 2019b). 

High resolution seismic reflection data in the Central Mallorca 
Depression (CMD) highlighted up to 500 m of MSC deposits made of a 
Bedded Unit (BU) and a thin salt layer (Maillard et al., 2014; Driussi 
et al., 2015). This BU has never been drilled and, therefore, lacks lith
ological and chronostratigraphic constraints. Two contrasting chro
nostratigraphic and lithological interpretations are proposed: Roveri 
et al. (2019b) ascribed these sediments to Stage 2 and 3 and suggested 
that only reworked evaporites and halite are present. By contrast, 
following the seismostratigraphic description of Maillard et al. (2014), 
Ochoa et al. (2015) and Raad et al. (2021) inferred the presence of Stage 
1 gypsum also in the CMD. 

Raad et al. (2021) made a step forward by disclosing a possible tri
partition of the BU unit (Fig. 7f). In their seismostratigraphic framework, 
Raad et al. (2021) noticed that the uppermost evaporite-bearing unit 
(called BU3), ~120 m-thick in the CMD, has geometric, stratigraphic 
and facies analogies with the astronomically-tuned UG unit of the Cal
tanissetta Basin (Fig. 3a) that endorse its attribution to Stage 3. Similar 
to the UU in the deepest basins (see subsection 4.2), BU3 consists of up to 
9 low- and medium-amplitude reflectors that are interpreted as alter
nating terrigenous and gypsum beds (Maillard et al., 2014; Raad et al., 
2021). Reflectors are parallel and continuous in the more distal areas, 
while they appear more chaotic in the more proximal sectors (Raad 
et al., 2021). The base of BU3 coincides with the erosional top of the salt, 
interpreted as created by salt exposure, dissolution and locally salt 
gliding towards the depocenter (Fig. 7f; Raad et al., 2021). By contrast, 
the top of BU3, which corresponds to the Miocene/Pliocene boundary, is 
largely flat without signs of erosion (Fig. 7f; Maillard et al., 2014; Raad 
et al., 2021). An irregular geometry is sometimes visible, but is likely to 
be related to deformation of the underlying salt (Fig. 7f; Raad et al., 
2021). 

4.5. Tyrrhenian Basin 

The Tyrrhenian Basin to the east of Sardinia is a back-arc basin that 
opened by continental rifting and oceanic spreading related to the 

eastward migration of the Apennine subduction system from middle 
Miocene to Pliocene times (Gaullier et al., 2014; Lymer et al., 2018; 
Loreto et al., 2020 and references therein). Three main domains are 
traditionally identified (Lymer et al., 2018 and references therein): 1) 
the East Sardinia Basin, with present-day water depths between 200- 
2000 m consisting of a system of seamounts and depressions that do 
not contain MSC sediments (Lymer et al., 2018); 2) the Cornaglia 
Terrace (2000-3000 m deep), a wide, flat area with dispersed structural 
highs; 3) the Tyrrhenian Basin s.s., with water depths varying from 
3000-3600 m. Whether the Tyrrhenian Basin acquired the present-day 
topography and hypsometry before the MSC (Lymer et al., 2018) or at 
least part of it (e.g. Eastern Sardinia margin, where Site 654 is located, 
and Northern Tyrrhenian) was much shallower (possibly comparable to 
the Caltanissetta Basin; Roveri et al., 2014b) and underwent extension 
and subsidence during the Messinian-Pliocene (e.g. Kastens and Mascle, 
1990; Loreto et al., 2020) is still unresolved. 

The MSC units in seismic profiles from the Tyrrhenian Basin (Fig. 7g) 
are very similar to the ones described in the Algero-Balearic and Liguro- 
Provençal basins (Fig. 7b-c; Gaullier et al., 2014; Lymer et al., 2018). 
ODP Sites 652, 653 and 654 confirmed the seismic-inferred lithological 
nature of UU as consisting, of gypsum-mudstone alternations (8 are 
counted at Site 654; Kastens et al., 1987; Borsetti et al., 1990; Roveri 
et al., 2014b). Intercalations of ripple–cross-laminated, fine-grained, 
azoic sandstones occur within the mudstone intervals in places (Cita 
et al., 1990; Iaccarino and Bossio, 1999). In some mudstone samples, the 
ostracod Cyprideis sp. (Site 654) and Candona sp. (DSDP Hole 974B) and 
the foraminifera Ammonia beccarii and Ammonia tepida have been found, 
indicating a shallow-water (< 50 m) brackish environment (see sub
sections 5.1 and 5.4; Cita et al., 1990; Iaccarino and Bossio, 1999). 
87Sr/86Sr isotope ratios of UU gypsum and planktic foraminifera of the 
overlying Pliocene (Unit 1 at Site 654) show values much lower (from 
0.708627 to 0.708745) and roughly equivalent (from 0.708935 to 
0.709112) to coeval ocean water (~0.709020-30; McArthur et al., 
2012), respectively (Müller et al., 1990; Müller and Mueller, 1991). 
Similar 87Sr/86Sr values were obtained from the gypsum cored at Site 
652 (0.708626-0.708773; Müller and Mueller, 1991). 

The Miocene/Pliocene boundary at DSDP Site 132 is placed above a 
cross-bedded sand rich in quartz, mica, pyrite, rounded fragments of 
gypsum and specimens of Ammonia beccarii and Elphidium macellus 
(Ryan et al., 1973). In the adjacent ODP Site 653 a similar sandstone is 
found slightly below the biostratigraphically-defined Messinian/Plio
cene boundary and ~70 cm of grey mudstones with foraminifera and 
nannofossils of undisclosed provenance are squeezed in between (Cita 
et al., 1990). These mudstones also contain rare dwarf planktic fora
minifera (Globorotalia acostaensis, Orbulina universa, and Globigerina 
bulbosa; Cita et al., 1990). 

Overall, the uppermost Messinian sediments of the Tyrrhenian Basin 
are interpreted as having been deposited in lakes with periodic episodes 
of increased salinity and dilution under the strong influence of high 
energy rivers and, perhaps ocassionally, of the Atlantic (Cita et al., 1990; 
Müller et al., 1990; Müller and Mueller, 1991). 

4.6. Ionian Basin 

The deepest basin in the Mediterranean today is the Ionian Basin, 
with its lowest point at 5,267 meters. The so-called Ionian Abyssal Plain 
(IAP) is bounded on all sides by pre-MSC structural highs (Fig. 2a; 
Camerlenghi et al., 2019): the Malta Escarpment to the west; the Medina 
Escarpment to the south separating it from the Gulf of Sirt (Fig. 8a); the 
Gargano-Pelagosa and/or Otranto sill to the north dividing it from the 
Adriatic Foreland and, finally, an unnamed sill to the east, separating the 
IAP from the Levant Basin. Evidence from recent high-resolution seismic 
studies across the region have been used to support Stage 3 desiccation 
models (e.g. Hsü et al., 1978a, 1978b; Bowman, 2012; Micallef et al., 
2018, 2019; Camerlenghi et al., 2019; Spatola et al., 2020). 
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4.6.1. Ionian Abyssal Plain 
The typical “trilogy” of seismic units representing the MSC deposi

tion in the Western Mediterranean is recognized also in the IAP by 
Gallais et al. (2018) and Mocnik et al. (2018). However, Camerlenghi 
et al. (2019) states the MSC sequence in the IAP is ~1,300 m-thick and 
composed of only two units (Fig. 8a). The lowermost 150-700 m-thick 
Mobile Unit (MU) is seismically transparent without discernible bedding 
and with diapiric structures, all features diagnostic of halite. By contrast, 
the 350-1,000 m-thick Upper Unit (UU) alternates highly reflective with 
acoustically transparent reflectors (Figs. 8a-b), similar to those 
described of the UU sequences of the Western Mediterranean (Figs. 7b- 
c). These are therefore assumed to represent gypsum-mudstone cycles 
(Camerlenghi et al., 2019). The uppermost 80 m of UU has been 
recovered from DSDP Site 374 (Hsü et al., 1978b), confirming the 
presence of gypsum (both primary cumulate and clastic; Lugli et al., 
2015) alternating with mudstones (Unit III; Hsü et al., 1978b). These 
mudstones are largely barren of in situ fossils. However, the presence of 
some foraminifera and siliceous microfossils led Cita et al. (1978) and 
Hsü et al. (1978a) to suggest that sporadic marine incursions, possibly 
from the Indian Ocean, took place during Stage 3. Similar to Site 372, 
the basal part of Hole 374 intercepted one thin (~3.5 m) halite layer 
within the UU (Hsü et al., 1978b). 

The UU and the overlying Zanclean (subunit PQc of Camerlenghi 
et al., 2019) reflectors are conformably folded throughout most of the 
abyssal plain, locally showing chaotic internal structure, irregular 
folding mimicking V-shaped incisions and truncations (Fig. 8b; Camer
lenghi et al., 2019). These features are interpreted by Camerlenghi et al. 
(2019) as fluvial valleys carved in subaerially exposed evaporites by the 
Eso-Sahabi fluvial system, the closest fluvial drainage network to the 
area (see Micallef et al., 2018) that drained Libya in the late Miocene 
(Griffin, 2002) and has been traced across the Gulf of Sirt offshore 
(Sabato Ceraldi et al., 2010; Bowman, 2012). Several arguments coun
teract this interpretation: 1) the coherent, deformation, mostly of post- 
Messinian age, of both the UU and the lower Zanclean; 2) the absence 
of fluvial facies above the bottom of the “valleys”, which instead 
correspond to a mudstone interval that underwent post-depositional 
dolomitization (Unit II; see below; Fig. 8b); 3) the unlikelihood that 
the Eso-Sahabi fluvial system managed to bypass the Medina Ridge 
divide (Fig. 8a). Alternatively, the apparent incisions at the M/P 
boundary in the IAP may represent post-sedimentary folds resulting 
from post-Messinian tectonic and/or salt movements-driven deforma
tion (e.g. Mocnik et al., 2018). At Site 374 the Miocene/Pliocene 
boundary has been recovered (Unit II), but its primary nature (likely a 
mudstone) is obscured by diagenesis (cementation by dolomite; Hsü 
et al., 1978b). A lithified dolostone at the (seismic) predicted depth of 
the M-Horizon is a characteristic of several sites. Sometimes this interval 
has been recovered (e.g. Sites 125 and 374; Ryan et al., 1973; Hsü et al., 
1978b; Comas et al., 1996); at others the hard lithology is inferred by the 
torqueing of the drill string (resistance to turning) accompanied by 

bouncing of the drill bit at the (e.g. Sites 122, 124, 125, 132, 133 and 
134; Ryan et al., 1973). Dolomitization was (Hsü et al., 1973a, 1973b; 
Ryan et al., 1973) and still is (e.g. Ryan, 2009) largely considered a 
"diagnostic feature of tidal (sabkha) sediments" (Friedman, 1973, pp. 705). 
Its occurrence at locations with present-day water depth exceeding 2000 
m was therefore considered strong evidence that the Mediterranean 
floor was subaerially exposed prior to the Zanclean marine replenish
ment (e.g. Ryan et al., 1973). It is, however, now widely accepted that 
dolomite precipitation is not exclusive of sabkha environments, but 
rather is a common process also in bottom sediments under a relatively 
deep water column (see Dela Pierre et al., 2012, 2014 and references 
therein). In the specific case of the offshore Mediterranean’s M/P 
boundary on the Ionian Abyssal Plain, already in the ‘70s dolomitization 
was thought to have occurred after burial (Hsü et al., 1978b), a 
conclusion recently reinforced by McKenzie et al. (2017). 

4.6.2. Malta Escarpment 
At the foot of the Malta Escarpment, Micallef et al. (2018, 2019) and 

Spatola et al. (2020) amalgamated the MU and UU into one seismic unit, 
Unit 3, which is separated from the Plio-Quaternary marine sediments 
(Unit 1) by Unit 2, a chaotic transparent seismic package (Fig. 8c). Unit 2 
has a maximum thickness of 760-860 m, a volume of 1430–1620 km3 

and a wedge-shaped geometry that thins eastwards, disappearing before 
reaching the IAP (Micallef et al., 2018). Micallef et al. (2018) and Spa
tola et al. (2020) proposed a lithological/sedimentological interpreta
tion of this chaotic body, suggesting it is composed of well-sorted 
sediments of the Pelagian Platform to the west of the Malta Escarpment, 
with coarser material at the mouth grading into more distal finer sedi
ments. This chaotic body has recently been attributed to the Zanclean 
megaflood during its passage from the western to the eastern Mediter
ranean via a gateway located in south-eastern Sicily (Micallef et al., 
2018, 2019; Spatola et al., 2020). Given the rapidity of the reflooding (≤
2 years, Garcia-Castellanos et al., 2009, 2020), this interpretation im
plies rapid mass deposition. Other interpretations of this Unit 2 include 
being the result of extensive marine mass movement (Polonia et al., 
2011), being folded UU (Butler et al., 2015) or being a complex unit built 
during lower sea level phases (Lofi et al., 2011a, 2011b). 

4.6.3. Gulf of Sirt 
The Gulf of Sirt (or Sirt embayment; Figs. 2a, 8a), the offshore 

extension of the Sirt Basin onshore Libya (Griffin, 2002 and references 
therein), is cross-cut by high-density seismic and well datasets as a result 
of oil potential of the region (Fiduk, 2009). However, only few studies 
have tackled the MSC (e.g. Hallett, 2002; Fiduk, 2009; Bowman, 2012). 

In the Sirt embayment the MSC unit(s) is unevenly distributed in sub- 
basins controlled by a pre-existing topography, there is little distinction 
between the MU and UU, the overall thickness of the MSC unit(s) is 
lower and the degree of deformation is higher than in the adjacent IAP 
(Fig. 8a; Camerlenghi et al., 2019). The presence of halite in the Sirt 

Fig. 8. Seismic profiles from intermediate-deep Eastern Mediterranean basins containing MSC markers/units (see Fig. 7 for abbreviations). (a) High-resolution 
seismic line MS27 imaging the PQ and the uppermost MSC’s UU and MU in the Ionian Abyssal Plain and Gulf of Sirt (modified from Camerlenghi et al., 2019). 
Note how the MSC units are thinner, more difficult to distinguish and more deformed in the Sirt Abyssal Plain than in the IAP. PQ, UU and MU all onlap the structural 
highs of the Medina Ridge and VHS-2 sill. (b) High-resolution imaging of the lower part of the Plio-Quaternary (PQc unit) and upper part of the Messinian (UU) in the 
IAP (Camerlenghi et al., 2019). The MSC-PQ boundary is a highly irregular surface, describing apparent V-shaped incisions (symbol V) of controversial origin (see 
subsection 4.6.1 for insights). Note the coherent deformation of PQc with the underlying MSC sequence and the absence of fluvial facies within the incisions (Unit II is 
made of lower Pliocene dolomitic marls recovered in Site 374 drilled nearby the seismic line; see text). (c) Multichannel seismic reflection profile MEM-07-203 
running approximately parallel to the Malta Escarpment and showing the relationship between Unit 2 of Micallef et al. (2018) with the overlying and underlying 
Zanclean and Messinian sediments, respectively (modified from Spatola et al., 2020). (d) Uninterpreted (left) and interpreted (right) seismic profiles showing the 
cyclic and channelized nature of the uppermost Messinian observed in the offshore Sirt Basin (modified from Bowman, 2012). (e) Interpreted 2D regional WNW–ESE 
seismic profile crossing the continental shelf and offshore Levant Basin and the Herodotus Abyssal Plain (Jagger et al., 2020). Note the lateral continuity of the 
Messinian MU. (f) Seismic profile from the Levant Basin showing the 6 sub-units distinguished inside the MU as well as its lower (N-reflector) and upper (M-reflector) 
boundaries (modified from Gvirtzman et al., 2013). (g) High-resolution seismic reflection image with wireline logs from Aphrodite-2 well illustrating that M-reflector 
previously considered as top evaporitic sequence and M/P boundary here consists of a ~100-m-thick unit (i.e. Unit 7 of Gvirtzman et al., 2017) in which different 
layers are distinguished (modified from Gvirtzman et al., 2017). (h) Interpreted and uninterpreted seismic profiles imaging the Mavqi’im and Afiq formations 
described in the canyons on the Levant continental margin (modified from Ben Moshe et al., 2020). 
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embayment is debated, but most authors think it is absent (see Fiduk, 
2009; Sabato Ceraldi et al., 2010; Lofi, 2018; Jagger et al., 2020; 
Fig. 2b). Bowman (2012) distinguishes seven seismic units within the 
MSC-related sequence (Fig. 8d). On the basis of high-resolution 3D and 
2D data, each seismic unit has been interpreted consisting of clastics 
filling erosional channels cutting up to 100 m deep and wide (Fig. 8d) 
and evaporites (gypsum and anhydrite) alternating with precessional 
cyclicity (Bowman, 2012). The presence of anhydrite in the topmost part 
of the sequence is confirmed by the B1 NC 35A well (Hallett, 2002). 
Sabato Ceraldi et al. (2010) and Bowman (2012) envisaged a three-step 
evolution of each unit: 1) evaporitic deposition during precession 
maxima in a dried out Sirt embayment; 2) erosion of the valleys during 
the arid-wet transition fed by the Eso-Sahabi paleofluvial system; 3) 
filling of the valleys with the fluvial sediments during the wet phase. 
Based on this chronostratigraphic interpretation, the evaporite cycles 
should be time equivalent to most of Stage 3, with the upper four seismic 
units reflecting the Lago-Mare phase (Fig. 1a). 

4.7. Levant Basin 

4.7.1. Abyssal plain 
Old seismic data in the Levant Basin show an up to 2 km-thick, high 

velocity, acoustically transparent sequence bounded by the N-reflector 
at the base and the M-reflector at the top (Figs. 8e-f; Ryan, 1978; Net
zeband et al., 2006). This sequence thickens and extends for tens of ki
lometers towards WNW and thins eastward along the continental margin 
(Fig. 8e), where the N and M-reflectors converge forming the condensed 
MSC section of the Mavqiim and Afiq formations (described in subsec
tion 4.7.2; Gvirtzman et al., 2017; Manzi et al., 2018). High resolution 
2D and 3D industrial seismic and well data from the southern Levant 
Basin revealed that this transparent sequence is largely made of pure 
halite with internal stratification picked out by diatomite, clay- and 
clastic-rich layers that allowed the division of the sequence into six sub- 
units, basinward-tilted and truncated at the top by the flat TES (Fig. 8f; 
Gvirtzman et al., 2013, 2015, 2017; Feng et al., 2016, 2017; Manzi et al., 
2018; Meilijson et al., 2018, 2019). Clastic beds ~3 to 20 m-thick are 
abundant in the highly reflective and chaotic Unit 5 (i.e. Interbedded 
evaporites of Meilijson et al., 2019; MC2 unit of Feng et al., 2016; 
Figs. 3b, 4a), where they are interbedded with evaporites (probably 
halite with minor occurrences of anhydrite) varying in thickness from 
~6 to 30 m (Manzi et al., 2018; Meilijson et al., 2019). Paleontological 
analyses of cuttings probably belonging to one of the clastic beds 
revealed the presence of a few mollusk fragments, ostracods, echinoid 
spines and a relatively rich assemblage of benthic and planktic forami
nifera which Meilijson et al. (2019) concluded to be reworked. Based on 
seismic and well-log data, clastic intercalations (probably of clays, silts 
and sands) within a halite-dominated sequence are thought to persist in 
the overlying Unit 6, although they diminish in thickness and frequency 
(Gvirtzman et al., 2013; Feng et al., 2016; Meilijson et al., 2019). The 
expression of the end of the MSC is highly controversial. Until recently, 
the M-reflector of Ryan (1978) (later renamed as the Top Erosion Sur
face, TES; Lofi et al., 2011a, 2011b) bounding Unit 6 at the top was 
considered to be the Miocene/Pliocene boundary (Fig. 8f; Ryan, 1978; 
Gvirtzman et al., 2013; Feng et al., 2016). Instead, Gvirtzman et al. 
(2017) showed that in higher resolution seismic data the M-reflector/ 
TES is a bundle of reflectors forming a distinct layer (Unit 7) overlying a 
truncation surface (i.e. Unit 6/7 boundary) that they re-labelled intra- 
Messinian truncation surface (IMTS; Fig. 8g) and ascribed to subaqueous 
dissolution rather than subaerial incision (e.g. Bertoni and Cartwright, 
2007; Lofi et al., 2011a, 2011b; Kartveit et al., 2019; Madof et al., 2019). 
This conclusion was recently corroborated by the independent study of 
Kirkham et al. (2020). Analysis of gamma-ray and resistivity logs in 
three deep basin wells (Aphrodite-2, Myra-1, Sara-1; Fig. 2b) and cor
relation with the Or-South-1 well (located between the deep basin and 
the shelf) showed that Unit 7 maintains a constant thickness of ~100 m- 
thick and consists of clastic-rich anhydrite of undisclosed provenance. 

Meilijson et al. (2019)’s lithological interpretation of industrial bore
holes slightly farther to the NE (Fig. 2b) give Unit 7 a significantly 
smaller thickness (5 m; Fig. 3b). Independent studies offshore Lebanon 
and Syria (Kartveit et al., 2019; Madof et al., 2019) describe a unit (Nahr 
Menashe complex) interpreted as a thicker (up to 300 m; Madof et al., 
2019), but lateral equivalent of Gvirtzman et al. (2017)’s Unit 7. Based 
on its channelized morphology identified upslope near the Lebanese 
coast, Kartveit et al. (2019) and Madof et al. (2019) interpreted the Nahr 
Menashe Unit and the IMTS underneath as fluvial in origin, deposited/ 
formed on a subaerially exposed floor of the Levant Basin. Six (Madof 
et al., 2019) to eight (Madof and Connell, 2018) lobes were identified 
and are proposed to have stacked with precessional frequency. The Nahr 
Menashe sequence has been correlated by the same authors with the Abu 
Madi Fm. located within the Messinian canyons offshore Egypt (Abdel 
Aal et al., 2000; Loncke et al., 2006; Abdel-Fattah, 2014), the Handere 
Formation offshore Turkey (Radeff et al., 2017) and with the Eosahabi 
deposits offshore Libya (Bowman, 2012). This interpretation implies a 
low base-level during the final stage of the MSC. 

Manzi et al. (2018) and Meilijson et al. (2018, 2019) attempted as
tronomical dating of the abyssal MSC succession of the Levant Basin by 
integrating biostratigraphy on the pre-MU succession, reflector counting 
within the MU (only Meilijson et al., 2019) and well-log data (Fig. 3b). 
They achieved two contrasting results that gave rise to an outstanding 
controversy (Figs. 3b, 4a). Manzi et al. (2018) proposed that Stage 1 in 
the deep Levant is represented by a foraminifera-barren, evaporite-free 
shales interval labelled FBI (foraminifer barren interval) observed in the 
deep Aprodite-2 well and in the more proximal Myra-1 well. In this 
interpretation Unit 7 comprises the whole of Stage 3 (with the IMTS 
corresponding to the Stage 2/3 transition) and all halite deposition took 
place in ~50 kyr estimated during Stage 2 of the MSC (Fig. 1a; Roveri 
et al., 2014a). By contrast, the FBI is not present in the Dolphin well 
targeted by Meilijson et al. (2019), which is located in an intermediate 
position between the Aprodite-2 and Myra-1 wells studied by Manzi 
et al., 2018; Fig. 2b). Instead, in the Dolphin well a relatively open- 
marine, foraminifera-rich sequence extends below the (conformable) 
base of the MU, placed in correspondence to a ~2 to 5.5 m-thick 
anhydrite/shale (Unit 0; Manzi et al., 2018 and Meilijson et al., 2018, 
respectively). Astronomical tuning of the ~33 cycles counted in the MU 
in the Dolphin well, which are assumed to be precessional, results in the 
Main Halite body (i.e. Unit 0-4 of Gvirtzman et al., 2013 and Manzi 
et al., 2018) spanning MSC Stage 1 and 2, the Interbedded Evaporites/ 
Unit 5 covering substage 3.1 and the Argillaceous Evaporites/Unit 6-7 to 
encompass the Lago-Mare phase (Figs. 3b, 4a). In this interpretation 
from Meilijson et al. (2019), halite deposition in the Levant Basin started 
in Stage 1 and persisted throughout the entire MSC, including Stage 3, 
during which more allochthonous material was delivered to the basin 
(Fig. 3b). Madof and Connell (2018) and Madof et al. (2019) also 
attempted an astronomical tuning of the Nahr Menashe Unit, concluding 
that it spans throughout substage 3.2 and part of substage 3.1. Feng et al. 
(2016) claim, however, that the impressive thickness of clastics found in 
the Levantine MU is more indicative of distinct short-term events 
(shorter than the precession cycle) associated with transport of 
extraordinary power and magnitude. 

Late Messinian sediments have also been recovered at several DSDP 
(129, 375, 376; Ryan et al., 1973; Hsü et al., 1978b) and ODP Sites (965, 
967, 968; Emeis et al., 1996), but the assignment of the retrieved sedi
ments to seismostratigraphic units is problematic. Nevertheless, they 
provide several key nuggets of precious information about the Stage 3 
paleoenvironment:  

- Sites 965 and 966, located roughly on the crest of the Eratosthenes 
Seamount, just south of Cyprus (Fig. 2b), recovered soil structures 
above the evaporites indicating exposure above sea level (Robertson, 
1998a, 1998b; Maillard et al., 2011a; Reiche et al., 2016).  

- ODP Sites 967 and 968, located at the base of the northern and 
southern slope of Eratosthenes Seamount (Fig. 2b), respectively, 

F. Andreetto et al.                                                                                                                                                                                                                              



Earth-Science Reviews 216 (2021) 103577

22

revealed the presence, within the MSC interval, of calcareous turbi
dites with Cyprus-derived clasts and clays containing Ammonia tep
ida, Cyprideis pannonica and pulmonate gastropods (Blanc-Valleron 
et al., 1998; Robertson, 1998a,b; Reiche et al., 2016).  

- Abundant Cyprideis pannonica specimens were also recovered from 
DSDP Sites 375 and 376 drilled on the crest of the Florence Rise, west 
of Cyprus (Fig. 2b; Hsü et al., 1978b).  

- Abundant, well-preserved Ammonia tests and Cyprideis specimens are 
also known from Site 129A (Fig. 2b), occurring with dwarf plank
tonic foraminifera (Ryan et al., 1973). 

All the evidence listed above suggest that a base-level fall leading to 
subaerial exposure occurred at some point(s) during Stage 3 in the 
Eastern Mediterranean (Ryan, 2009). However, it must be kept in mind 
that both the Florence Rise and Eratosthenes Seamount are likely to have 
been much more elevated during the Messinian than they are today 
because of Pliocene-Quaternary subsidence related to the Cyprus sub
duction zone (Robertson, 1998a, 1998b; Maillard et al., 2011a; Reiche 
et al., 2016). 

Sites 375 and 376 display several discrete layers of primary and 
clastic gypsum interbedded in the Cyprideis-rich mudstones (McCulloch 
and De Deckker, 1989; Lugli et al., 2015). This succession shares several 
similarities with sites drilled in the Western Mediterranean (e.g. ODP 
654A) and Ionian Basin (DSDP 374), where they have been correlated 
with the seismic Upper Unit (see subsections 4.5 and 4.6). This may 
suggest that a Western Mediterranean-like gypsum-bearing UU was also 
locally deposited in the easternmost abyss of the Mediterranean (see 
Güneş et al., 2018). 

4.7.2. Levant continental margin 
Evaporitic and non-evaporitic deposits are buried beneath PQ de

posits (Yafo Formation) along the Levant continental margin, where 
they are mostly preserved within canyons carved underwater in pre- 
Messinian time (Druckman et al., 1995; Lugli et al., 2013). Within the 
Afiq canyon, Druckman et al. (1995) distinguished three formations in 
the Messinian sequence: the evaporitic Mavqi’im Formation, 115 m- 
thick and mostly composed of anhydrite in places interbedded with 
micritic limestones; the Be’eri Formation, cmprising gypsum; the Afiq 
Formation, varying in thickness from 30 to 90 m and consisting of 
conglomerates, sandstones and marls interpreted as representing fluvial 
and lacustrine-marsh environments (Druckman et al., 1995). The Afiq 
Fm. is only present in the deepest portions of the canyon where it 
overlies the Mavqi’im Fm. By contrast, the Be’eri gypsum is only found 
along the canyon shoulders covered by the Pliocene, at elevations > 600 
m with respect to the Mavqi’im Fm. Based on Sr values, Druckman et al. 
(1995) attributed the Mavqi’im Fm. to MSC Stage 1, the Be’eri Fm. to 
substage 3.1 and the Afiq Fm. to the Lago-Mare phase. These authors 
also suggested that gypsum precipitation occurred under subaqueous 
conditions, with the water level ~600 m (i.e. the difference in altitude 
between the Mavqi’im and Be’eri fms.) higher during the deposition of 
the Be’eri Fm. Two base-level falls of approximately the same magnitude 
are thought to have occurred between the evaporitic phases and after 
Mavqi’im deposition. A lowstand phase was therefore in force during 
Afiq deposition (Druckman et al., 1995). 

However, combining stratigraphic, sedimentological and geochem
ical (Sr isotopes) considerations, Lugli et al. (2013) revealed the clastic 
nature of both the Mavqi’im and Be’eri evaporites and suggested the 
persistent drowning of the canyon(s), filled with turbidites (Lugli et al., 
2013). Due to the presence of clastic evaporites, Gvirtzman et al. (2017) 
suggested that the Mavqiim Formation is a condensed section encom
passing MSC Stage 2 and early Stage 3, while the evaporite-free Afiq 
Formation represents the Lago-Mare phase. 

Ben Moshe et al. (2020) ascribed (at least part of) the Afiq Fm. to the 
whole of Stage 3 as a wedge-shape clastic complex lying on top of the 
Mavqi’im Fm. and with the basal surface corresponding to the correla
tive conformity of the MES developed landward, at the expense of the 

Mavqi’im Fm (Fig. 8h). Ben Moshe et al. (2020) distinguished a lower 
sub-unit composed of clastic gypsum and with fore-stepping and down- 
stepping internal geometry typical of progradational wedges, and an 
upper sub-unit containing anhydrite fragments and marls with Lago- 
Mare fauna (e.g. Cyprideis torosa; Rosenfeld, 1977) and with seismic 
characteristics typical of a transgressive systems tract. Incisions are re
ported throughout the Afiq Fm. at different depths, while erosional 
surfaces bound both sub-units (Ben Moshe et al., 2020). In particular, 
the surface capping the upper subunit and correlated to the M horizon or 
TES basinward (see subsection 4.7.1) shows dendritic drainage patterns 
of gullies and channels (Ben Moshe et al., 2020). 

Ben Moshe et al. (2020) identify the variation of base level specif
ically during Stage 3 by analyzing the morphology of truncation surfaces 
bounding the Afiq Formation on the continental margin of the Levant 
Basin. This suggests high amplitude fluctuations of base-level in the 
order of one hundred meters, with development of subaerial erosion 
surfaces and the deposition of clastics and incision by fluvial drainage 
systems that occurred during the lowstand phases, while aggradational 
units (of unknown lithological nature) accumulated during the high
stand phases. According to their analysis, base level dropped down to a 
maximum 535 m during Afiq deposition (i.e. below the maximum 430 m 
estimated paleodepth of the Sicily Sill; Garcia-Castellanos et al., 2009), 
implying hydrological disconnection between the Eastern and Western 
basins at various times during Stage 3. A regression to 615-885 m is 
proposed to have occurred at the top of the Afiq Fm., pre-dating the 
abrupt refilling at the base of the Zanclean (e.g. Micallef et al., 2018, 
2019; Garcia-Castellanos et al., 2020; Spatola et al., 2020). 

4.8. Summary of the offshore Stage 3 record 

Knowledge of the Stage 3 sequence offshore is mainly based on the 
integration of seismic interpretations and analysis of material recovered 
from fragmentary and unevenly distributed DSDP/ODP/industrial 
cores.  

▪ MSC sediments are absent on the eroded continental shelves 
bordering the deep basins, except in the Messinian thalwegs 
and at their mouth. Here the PQ lies directly above the MES 
which, in turn, cuts through the pre-MSC deposits (Fig. 7e). A 
similar stratigraphic arrangement is found along the middle- 
upper slopes (Fig. 7d), although the presence of a thin, 
possibly incomplete UU in morphological depressions is 
sometimes postulated. Seamounts also lack MSC Stage 3 sedi
ments and are strongly incised by the MES (Fig. 7g).  

▪ The thick UU is widespread and roughly present everywhere in 
the abyssal plains from west of the Alborán volcanic arc to the 
eastern edge of the Ionian Basin (Fig. 2b). In the abyssal plains 
its seismic facies appears homogeneous, comprising parallel 
and relatively continuous high amplitude reflections (Figs. 7b- 
c). The UU pinches out towards the foot of continental slopes 
and seamounts (Figs. 7b, d-g), where it can be irregularly 
bedded or relatively well bedded (Lofi et al., 2011a, 2011b). 
The uppermost part of the Bedded Units (defined in depressions 
physically disconnected from the abyssal plains and, therefore, 
from the UU; e.g. CMD and Corsica Basin; Maillard et al., 2014; 
Thinon et al., 2016; Raad et al., 2021) shows seismic features 
comparable to those of the UU.  

▪ Drill Sites revealed that the reflections of relatively high 
amplitude in seismic profiles correspond to gypsum and 
mudstone alternations with sporadic intercalations of massive 
to cross-bedded sandstones. Some mudstone interbeds contain 
low-diversity assemblages of benthic organisms (ostracods, 
foraminifera and diatoms) indicative of shallow to neritic en
vironments. Except for dwarfed forms of planktonic forami
nifera and the monospecific nannofossil assemblages described 
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Fig. 9. Photomicrographs of the key micro- 
and macrofossils featuring Stage 3 sedi
ments. (a) Scanning electron microscope 
(SEM) photographs of the more common 
Paratethyan ostracod species in substage 3.1 
and 3.2 sediments (compiled from Stoica 
et al., 2016, Cosentino et al., 2018 and 
Sciuto et al., 2018). (b) Photomicrographs of 
the Paratethyan dinoflagellate cyst Galea
cysta etrusca under the optical microscope 
(left) and SEM (right) (modified from Do 
Couto et al., 2014 and Grothe et al., 2018). 
Scale=20 μm. (c) SEM microphotographs of 
the euryhaline, shallow-water benthic fora
minifera Ammonia beccarii (1-spiral side, 2- 
umbilical side) and Ammonia tepida (3-spi
ral side; Carnevale et al., 2019) and of the 
dwarf fauna of planktonic foraminifera from 
the Bajo Segura Basin (4; Corbí and Soria, 
2016). (d) Photographs in polarized light 
(crossed nicols) of some specimens of Cera
tolithus acutus (1-3) described in the Lago- 
Mare unit of Malaga (1-Do Couto et al., 
2014), the Zorreras Mb. of Sorbas (2-Clau
zon et al., 2015) and the Colombacci Fm. of 
the Northern Apennines (3-Popescu et al., 
2017) and of destroyed (4) and intact (5) 
ascidian spicules of Micrascidiscus sp. 
(Golovina et al., 2019). Note that C. acutus 
specimens closely resemble ascidian spicules 
of Micrascidiscus sp., which may lead to 
misinterpretation of the C. acutus (see 
Golovina et al., 2019), and that pictures 1 
and 2 are identical, despite they are attrib
uted to samples taken from two different 
localities. (e) Articulated skeletons of marine 
fish from substage 3.1 mudstone horizons in 
Cyprus (1-Aphanius crassicaudus; Manzi 
et al., 2016a) and substage 3.2 deposits in 
Cava Serredi (2-Mugil cf. cephalus; Carnevale 
et al., 2018).   
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by Castradori (1998), the rest of planktonic foraminifera and 
nannofossils are largely regarded as reworked.  

▪ The deep Levant Basin contains a ~1.8-2.0 km-thick MU 
(Figs. 8e-f), consisting of 6 to 7 seismic units depending on the 
resolution of the seismic employed. In high resolution seismic 
data, the lateral equivalent of part of the UU is identified as a 
~100-m-thick, clastic-rich, anhydrite layer (Unit 7 of Gvirtz
man 1207) offshore Israel, thickening to 300 m offshore 
Lebanon (Nahr Menashe complex, Madof et al., 2019). The 
Levant Basin still has major controversies concerning the 
timing of halite deposition (~50 kyr vs ~550 kyr; Manzi et al., 
2018 vs Meilijson et al., 2019), the origin of the clastic accu
mulations overlying the halite (fluvial vs subaqueous) and the 
presence or absence of gypsum-mudstone cycles.  

▪ Apart from the halite flow-related deformation, the Miocene/ 
Pliocene boundary (i.e. UU/PQ transition) is conformable in 
intermediate (e.g. Balearic Promontory) and deep (WAB, EAB, 
Algero-Balearic, Liguro-Provençal, Tyrrhenian, Ionian and 
Levant) depocenters, while it shows signs of erosion on the shelf 
domain and along the upper-middle continental slopes and 
seamounts. Clear arguments of floor exposure at the M/P 
boundary are absent in all drill sites but 978A. 

5. The paleontological perspective 

Paleontological data have been used to define and identify Stage 3 
sediments, but have also been a source of profound contention over the 
interpretation of its paleoenvironmental and paleohydrological nature. 
Biotic groups impacted by the evolution of the gateways linking the 
Mediterranean with the Atlantic, Indian Ocean and Paratethys include 
marine species (e.g. foraminifera, calcareous nannofossils, fish) and 
brackish water-species (ostracods, fish, mollusks and dinocysts endemic 
or with affinity to species of the Paratethys region) that were unable to 
migrate when these corridors were closed, and terrestrial species (e.g. 
mammals) that, conversely, got across the gateway during periods of 
exposure (see Colombero et al., 2017; Booth-Rea et al., 2018; Mas et al., 
2018b). Analysis of these faunal datasets provides key insights into 
likely gateway dimensions and the timing of their opening, restriction 
and closure (e.g. Palcu et al., 2017). Furthermore, they are a key 
constraint on the water sources likely to have been affecting the Medi
terranean during MSC Stage 3. 

5.1. Ostracods 

Ostracods are by far the most prolific faunal group during Stage 3. 
Brackish species are known from both land sections and deep-sea cores 
across the whole Mediterranean (see Fig. 2b for sites and references; 
Fig. 9a). Two characteristic biofacies are commonly distinguished: 
Biofacies 1 (Bonaduce and Sgarrella, 1999) or Cyprideis assemblage 
(Iaccarino and Bossio, 1999) consists of an monospecific population of 
Cyprideis species or of an oligotypic population dominated by Cyprideis 
species alongside rare specimens of Tyrrhenocythere ruggierii, Loxoconcha 
kochi, Loxoconcha muelleri and Caspiocypris alta); Biofacies 2 (Bonaduce 
and Sgarrella, 1999) or Loxocorniculina djafarovi assemblage (Iaccarino 
and Bossio, 1999) has a higher species diversity characterized by the 
abundant occurrence of truly Paratethyan species belonging to the 
genera Amnicythere, Loxoconcha, Loxocauda, Cytheromorpha, Cyprinotus 
and Tyrrenhocythere (see species names in Fig. 9a). The number of spe
cies reported in the onshore sections is variable, ranging from a dozen (e. 
g. Caruso et al., 2020) to more than sixty (e.g. Gliozzi et al., 2007; Grossi 
et al., 2008). This variability is not explained, but it may result from the 
application of different taxonomic concepts that resulted in the recog
nition of more or fewer species (Stoica et al., 2016) or from local envi
ronmental conditions that differed from basin to basin and resulted in 
different patterns of colonization. 

Compared to the onshore domain, the ostracod fauna offshore is 

impoverished. Monospecific assemblages of Cyprideis sp. (Sites 372, 
129A, 376, 654A, 967, 968; Ryan et al., 1973; Cita et al., 1990) or oli
gospecific assemblages dominated by Cyprideis and rare specimens of 
Candona sp. (Hole 974B, Iaccarino and Bossio, 1999) and L. muelleri 
(Hole 978, Iaccarino and Bossio, 1999) are the more widely reported. 
Interestingly, these assemblages are always associated with Ammonia sp. 
tests and, in some cases, with other species of shallow-water, euryhaline 
benthic foraminifera (see subsection 5.4). Only in Hole 975, close to the 
M/P boundary is a more heterotypic ostracod assemblage found (Euxi
nocythere praebaquana, Amnicythere idonea, Leptocythere limbate, Lox
ocorniculina djafarovi, Candona sp., and Cyprideis sp.; Iaccarino and 
Bossio, 1999) and lacking of euryhaline benthic foraminifera. The likely 
cause of the widespread barrenness of ostracods in most of the offshore 
samples is perhaps because environmental conditions in the deep basins 
(depth and/or salinity) where not suitable to permit population by this 
benthic fauna (see below for the ecological requirements; e.g. Hsü et al., 
1978b in reference to Site 374). Finally, one must bear in mind that 
studying these organisms require much more material (some hundreds 
of grams) than the quantity of core sediments usually processed (i.e. 
~10 cm3; Iaccarino and Bossio, 1999). 

The paleoecology (salinity and depth ranges) of Stage 3 ostracods has 
been based on both observations of few species that still live in the 
Caspian and Black seas today and have affinities with the Stage 3 species 
and on the interpretation of sedimentological, geochemical and miner
alogical data of the surrounding sediments (see Gliozzi and Grossi, 2008 
and Grossi et al., 2008 for insights). Biofacies 1 is thought to represent 
very shallow water environments (i.e. <15 m) with salinity fluctuating 
between mesohaline and hypersaline when the euryhaline Cyprideis is 
dominant. Instead, more stable oligo-mesohaline water is inferred when 
the other species are more abundant in Biofacies 1. The variegated 
Biofacies 2, on the other hand, is thought to represent somewhat deeper 
environments (up to 100 m) and less salty conditions (oligo-low meso
haline; Gliozzi and Grossi, 2008; Grossi et al., 2008; Caruso et al., 2020). 

Some authors consider the time when the Paratethyan ostracods 
arrived in the Mediterranean to be well constrained (e.g. Roveri et al., 
2008a; Grossi et al., 2011; Cosentino et al., 2018) by the scarce occur
rence of the first Paratethyan immigrant Loxoconcha muelleri 20 cm 
below the ash layer in the Colla di Votta section, which has a 238U-206Pb 
age of 5.5320±0.0074 Ma (Cosentino et al., 2013), and in the chaotic 
deposits of the Adana Basin, ascribed to Stage 2 (Faranda et al., 2013). 
Instead, the first appearance of Loxocorniculina djafarovi has been 
considered to coincide with the biofacies 1-2 shift and to have occurred 
Mediterranean-wide synchronously at 5.40 Ma (Roveri et al., 2008a; 
Grossi et al., 2011; Cosentino et al., 2013). Roveri et al. (2008a) also 
showed Biofacies 2 diversity as increasing linearly through the Lago- 
Mare phase, reaching its maximum diversity just beneath the 
Miocene/Pliocene boundary and before disappearing in the Pliocene. 
Following the claimed synchronicity of the FO of both Loxoconcha 
muelleri and Loxocorniculina djafarovi, Roveri et al. (2008a) and Grossi 
et al. (2011) recognized one biozone in each biofacies: the Loxoconcha 
muelleri Biozone, spanning from 5.59 to 5.40 Ma, and the Loxocorniculina 
djafarovi Biozone, whose boundaries correspond respectively to the first 
(5.40 Ma) and last occurrence (5.33 Ma) of L. djafarovi in the Mediter
ranean. This biozonation, erected by Grossi et al. (2011), is often used 
for dating incomplete successions (e.g. Vera Basin; Stoica et al., 2016; 
Caruso et al., 2020). However, the first appearance of a diversified 
ostracod assemblage (including Loxocorniculina djafarovi) occurred in 
already cycle 3 of the Sicilian Upper Gypsum at Eraclea Minoa (Fig. 3a; 
Grossi et al., 2015), which has an astronomical age of 5.45 Ma (Van der 
Laan et al., 2006) or 5.47 Ma (Manzi et al., 2009). Furthermore, the 
sudden appearance of Biofacies 2 and its linear, upward increase in di
versity have not been recognized in localities like Nijar and Malaga, 
where biofacies 1 and 2 are found stacked in more than one lithological 
(possibly precession-controlled) cycle in the Lago-Mare succession 
(Bassetti et al., 2006; Guerra-Merchán et al., 2010). These findings argue 
that the appearance of Paratethyan ostracods in the Mediterranean may 
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not have been synchronous, therefore casting serious doubts upon the 
biostratigraphic relevance of the Mediterranean ostracods. 

Except for Cyprideis specimens, where species attribution is debated 
(see discussion in Stoica et al., 2016), the affinity of all other ostracod 
species observed in Mediterranean Stage 3 sediments (Fig. 9a) with 
those of the Eastern Paratethys basins (i.e. Dacian, Euxinic and Caspian) 
has been demonstrated in several publications (e.g. Ruggieri, 1967; 
Gliozzi et al., 2007; Stoica et al., 2016; Sciuto et al., 2018). Only Bassetti 
et al. (2003, 2006) have questioned the Paratethyan affinity by sug
gesting that species from the Northern Apennines and Nijar Basin have 
ambiguous affinities with Paratethyan fauna as described in the mainly 
Russian literature from the ’60-’70s. However, these differences be
tween the late Messinian Mediterranean and Paratethyan ostracods 
resulted from misidentifications and/or a different use of species 
nomenclature (Stoica et al., 2016). Recently acquired knowledge of the 
Pontian assemblages of the Dacian, Euxinic and Caspian basins now 
permit to trace the provenance of Mediterranean Stage 3 ostracod spe
cies from the entire Black Sea region (Stoica et al., 2016) and, for a few 
species, from the Dacian (Stoica et al., 2013; Lazarev et al., 2020), 
Caspian (Van Baak et al., 2016) and North Aegean (see references in 
Krijgsman et al., 2020a) basins. 

The means by which the ostracods travelled from the Paratethys to 
and across the Mediterranean during Stage 3 is as crucial for recon
structing the Stage 3 paleoenvironment as it is poorly addressed in 
onshore studies or overlooked in seismic and computational studies. 
Two migratory mechanisms have been suggested: 

1) the aerial dispersion of ostracods through the migration of aquatic 
birds (Benson, 1978; Caruso et al., 2020); this hypothesis was proposed 
because, in a Mediterranean concluded to have been desiccated, it was 
the only possible migration mechanism. 

2) direct aqueous migration by the ostracods themselves (which are 
planktonic in the larval stage) through the establishment of similar 
paleoenvironmental conditions; by this mechanism, the dispersion of 
Paratethyan ostracod fauna from right across the Mediterranean re
quires E-W intraconnection and a Mediterranean water-level high 
enough to reach the marginal basins (Gliozzi et al., 2007; Stoica et al., 
2016; Sciuto et al., 2018; Sciuto and Baldanza, 2020). 

Finally, Carnevale et al. (2006a, 2006b, 2008, 2018) recognized the 
Paratethyan affinity of the Mediterranean Stage 3 species but, in view of 
their occurrence with in-situ species of marine fish, they suggested that 
Stage 3 ostracods descended from a Paratethyan stock that migrated into 
the Mediterranean well before the MSC and survived the extreme 
salinity conditions of Stage 1 and 2 in marginal, fresher water refugia. In 
this scenario the brackish water ostracod assemblages found in Stage 3 
have no paleoecological significance for Stage 3 paleoenvironment 
(Carnevale et al., 2006a, 2006b, 2008, 2018). However, there are two, 
unflagged problems with this hypothesis: 1) the Mediterranean-Central 
Paratethys connection through the Trans-Tethyan gateway in Slovenia 
already closed in the early Tortonian (Kováč et al., 2007; Sant et al., 
2017; Palcu et al., 2017); 2) No Paratethyan ostracod species have been 
found in the Mediterranean before the MSC (see Gliozzi et al., 2007). 

5.2. Dinoflagellate cysts 

Dinoflagellate cysts (dinocysts) are the fossil remains of unicellular 
protists that live in the upper water column of many water bodies (e.g. 
Zonneveld et al., 2013; Mudie et al., 2017). They can be used as pale
oenvironmental indicators and for biostratigraphy, providing the ages of 
speciation and extinction events, as well as supplying evidence of age 
diagnostic dispersals of characteristic taxa/assemblages. Influxes of 
these microorganisms into a basin may occur as the result of intercon
nection with another basin and dinocysts can therefore be useful in
dicators of the open gateways between adjacent basins and the resultant 
changes in conditions (e.g. Grothe et al., 2018). In the case of the MSC, 
presence of in situ marine and/or Paratethys dinocyst assemblages in a 
marginal basin are likely to indicate the presence of Atlantic and/or 

Eastern Paratethys water (respectively) in the Mediterranean and 
(relatively) high water level conditions (e.g. Pellen et al., 2017). 

Palynological studies on the late Messinian Mediterranean dinocysts 
record are rather scarce, confined to a limited number of outcrops 
(Malaga Basin, Do Couto et al., 2014; Northern Apennines, Bertini, 
2006; Popescu et al., 2007; Iaccarino et al., 2008; Cosentino et al., 2012; 
Pellen et al., 2017; Caltanissetta Basin, Londeix et al., 2007) and deep 
wells (976B, 977A, 978A and 134B, Popescu et al., 2015). These studies 
describe substage 3.1 as being barren of dinocysts. By contrast, substage 
3.2 dinocyst assemblages are diverse particularly a few meters/tens of 
meters below the Miocene/Pliocene boundary and show recurrent ver
tical variation in abundance between brackish, Paratethyan-type taxa 
and marine stenohaline and euryhaline species. Taxa with Paratethyan 
affinities are largely considered to be autochthonous by all aforemen
tioned authors. The extent to which reworking may have affected the 
marine assemblages is more controversial and debated between none (in 
Malaga and in the Apennines; Popescu et al., 2007; Do Couto et al., 
2014; Pellen et al., 2017), partial (in the uppermost part of the Sicilian 
Upper Gypsum; Londeix et al., 2007) and total (in the Apennines; e.g. 
Bertini, 2006; Iaccarino et al., 2008; Cosentino et al., 2012). Given the 
extent of the implications (i.e. re-establishment of a Mediterranean- 
Atlantic flow or connection earlier than the Zanclean; e.g. Pellen 
et al., 2017), this is an issue that will require further clarification. 

A key dinocyst influencing our understanding of the late Miocene 
Lago-Mare phase is Galeacysta etrusca (Fig. 9b; see Bertini and Corradini, 
1998; Popescu et al., 2009 and Grothe et al., 2018 for more insights). 
This species was originally described from sediments in the Mediterra
nean (Corradini and Biffi, 1988), but has since been discovered in much 
older deposits in Paratethys (Magyar et al., 1999a, 1999b). The earliest 
recorded occurrence of Galeacysta etrusca is in sediments from the 
Pannonian Basin dated at ~8 Ma (Magyar et al., 1999a, 1999b). It 
subsequently dispersed throughout Paratethys at ~6 Ma and was pre
sent in the Black Sea throughout the MSC interval (Grothe et al., 2014, 
2018). Despite a Mediterranean-Eastern Paratethys connection that is 
thought to have been established at ~6.1 Ma (Krijgsman et al., 2010; 
Van Baak et al., 2016; Grothe et al., 2020), G. etrusca is not found in the 
Mediterranean during MSC Stages 1, 2 and 3.1 (5.97-5.42 Ma; Bertini, 
2006, Londeix et al., 2007, Manzi et al., 2007, Iaccarino et al., 2008, 
Gennari et al., 2013) and is only reported in the uppermost part of the 
Lago-Mare phase, very close to the transition to the Pliocene (e.g. Ber
tini, 2006; Londeix et al., 2007; Popescu et al., 2007; Iaccarino et al., 
2008; Cosentino et al., 2012; Pellen et al., 2017). This implies that 
Galeacysta etrusca may have migrated from Paratethys into the Medi
terranean after 5.42 Ma or that environmental conditions in the Medi
terranean and in its marginal basins were only suitable for this species 
(and more generally the whole dinocysts Paratethyan contingent) to 
proliferate in the uppermost Messinian. Several authors report multiple 
occurrences of Galeacysta etrusca within the Zanclean (e.g. Clauzon 
et al., 2005; Londeix et al., 2007; Popescu et al., 2007, 2015; Do Couto 
et al., 2014; Clauzon et al., 2015), but these interpretations are based on 
the use of an alternative stratigraphic model for the MSC sections 
(Fig. 4b; see Grothe et al., 2018 for details). 

5.3. Diatoms 

Among the fresh-brackish organisms found in Stage 3 sediments are 
also species of diatoms. To date (and to our knowledge), there are no 
onshore studies that have ever looked for these organisms. By contrast, 
two samples from DSDP Site 124 in the Algero-Balearic Basin (Fig. 2b) 
revealed the presence of littoral planktonic forms accompanied by 
brackish water, and even freshwater, euryhaline, benthonic, and 
epiphytic species in considerable numbers (Hajós, 1973). Diatoms of 
undisclosed paleoecological significance are also reported from the ~60 
cm-thick mudstone bed between an anhydrite and halite bed found in 
the last core of Site 134 (Ryan et al., 1973). According to Hajós (1973) 
and Ryan (2009), the diatoms found in these drill cores attest to an 
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extremely low salinity and a base level in the Balearic and Valencia 
basins below wave action. Further study of these indicative species and a 
wider distribution is required to apply this interpretation more 
generally. 

5.4. Foraminifera 

A reasonably diverse benthic and planktic foraminiferal assemblage 
containing no age-diagnostic taxa have been found co-occurring with 
the brackish Paratethyan fauna in both the onshore and offshore record 
throughout the Mediterranean (Fig. 2b for localities and references). 

The benthic foraminifera assemblage is dominated by euryhaline 
representatives of the genus Ammonia, which today dwell in marginal 
marine (lagoons, estuaries, fjords and deltas) and lacustrine environ
ments at depths < 50 m and tolerate salinities of up to 50‰ (Milker and 
Schmiedl, 2012; Consorti et al., 2020). Ammonia tepida and Ammonia 
beccari (Fig. 9c) are by far the most abundant species in both onshore 
(see Fig. 2b for localities and references) and offshore (e.g. Site 968A, 
Blanc-Valleron et al., 1998; Sites 375, 376, 965-968, Orszag-Sperber, 
2006) localities, where they co-occur with ostracods belonging to Bio
facies 1. Other commonly occurring benthic euryhaline taxa are Elphi
dium sp., Cribroelphidium excavatum, Haynesina sp., Nonion sp., 
Quinqueloculina sp., Discorbis sp. and Trichohyalus sp., Brizalina dentel
lata, Bulimina echinate and Bolivina spp. (Ryan et al., 1973; Hsü et al., 
1978a, 1978b; Rouchy et al., 2001, 2003, 2007; Iaccarino et al., 2008; 
Caruso et al., 2020). These species are frequently mixed with poorly 
preserved and older in age bathyal species (e.g. Caruso et al., 2020). 

Planktic foraminifera are represented both by species whose last 
occurrence pre-dates the MSC (e.g. Praeorbulina spp., Paragloborotalia 
partimlabiata, P. siakensis, Neogloquadrina atlantica praeatlantica, Globi
gerinoides subquadratus, Globorotalia saheliana, Globorotalia conomiozea, 
Acarinina sp., Hedbergella sp.) and by taxa with extended biostratigraphic 
ranges (e.g. Sphaeroidinellopsis seminulina, Turborotalita quinqueloba, 
Globorotalia miotumida, Globoturborotalita decoraperta, Neogloboquadrina 
acostaensis, Neogloboquadrina spp., Orbulina universa, Globigerinoides tri
lobus, Globigerinoides obliquus, Globorotalia scitula, Globigerina bulloides, 
G. Mediterranea and G. humerosa; see Fig. 2b for references). 

The mixing of foraminifera species with different ecological and 
salinity requirements and the widespread agreement that the brackish 
Paratethyan fauna are autochthonous (see subsection 5.1) has always 
complicated the interpretation of the origin of the foraminiferal as
semblages. Among the benthic species, Ammonia taxa and the other 
benthic euryhaline taxa are generally considered autochthonous 
because they are typically well-preserved and their ecological and 
salinity requirements could be compatible with those of the Paratethyan 
ostracods. 

The habitat of these benthic foraminifera today in environments both 
influenced by and disconnected from the open ocean indicates that the 
Stage 3 sediments in which they occur were deposited in a shallow- 
water environment subject to salinity fluctuations (Caruso et al., 2020 
and references therein), but they do not provide insights into the water 
provenance. By contrast, the poor preservation, older age and low di
versity of the bathyal taxa strongly suggest that these species are 
reworked (Bassetti et al., 2006; Iaccarino et al., 2008; Caruso et al., 
2020). Their mode of life is also incompatible with the shallower water 
elements of the faunal assemblage. The planktic species which went 
extinct before the MSC are also undoubtedly reworked (Iaccarino et al., 
2008; Caruso et al., 2020). It is more challenging to discriminate be
tween in situ and reworked specimens of the long range Neogene taxa. 
Most of them are considered to be reworked because of their scarcity, 
their occurrence with in-situ brackish organisms and their poor preser
vation (e.g. Iaccarino et al., 2008; Caruso et al., 2020). A more complex 
controversy surrounds the long-range dwarf specimens (Fig. 9c) occur
ring in onshore substage 3.1 (di Tetto Fm. in the Trave section; Iaccarino 
et al., 2008) and Lago-Mare sediments (Upper Mb. of the Nijar Feos Fm., 
Fortuin and Krijgsman, 2003; Aguirre and Sánchez-Almazo, 2004; 

Bassetti et al., 2006; Sorbas Basin, Roveri et al., 2019a; Bajo Segura 
Basin, Corbí and Soria, 2016; Colombacci Fm. in Northern Apennines 
localities, Casati et al., 1976; Colalongo et al., 1976; Rio and Negri, 
1988; Popescu et al., 2007; Cyprus, Rouchy et al., 2001) and in some 
offshore localities (e.g. Sites 124, 125, 129A, 132, 134, 372, 376, 653, 
974B, 975, 978; Cita, 1973; Cita et al., 1978; Kastens et al., 1987; Cita 
et al., 1990; Iaccarino and Bossio, 1999). This fauna is variably inter
preted as: 

1) reworked and size-sorted during transport, therefore lacking any 
paleoenvironmental significance (e.g. Kastens et al., 1987; Iaccarino and 
Bossio, 1999; Fortuin and Krijgsman, 2003; Bassetti et al., 2006); 

2) in situ and indicating normal marine conditions (Aguirre and 
Sánchez-Almazo, 2004; Braga et al., 2006) or temporary Atlantic in
cursions (Rouchy et al., 2001); 

3) in situ and indicative of high-stress environments (Keller and 
Abramovich, 2009), such as restricted and/or diluted marine environ
ments (Corbí and Soria, 2016; Corbí et al., 2016, 2020). However, the 
paleoecological significance of dwarfism in foraminifer tests is not well 
understood and, given its potential implications for the Lago-Mare 
environment, it needs to be explored in greater detail. 

5.5. Calcareous nannofossils and the C. acutus conundrum 

Calcareous nannofossils are the fossil remains of coccolithophores, 
single-celled marine algae which dwell in the eutrophic and photic zone 
of the ocean (e.g. Ziveri et al., 2004). The potential recognition of ma
rine calcareous nannofossils in marginal Stage 3 deposits would there
fore have implications for the Mediterranean base-level and the 
hydrological riddle of MSC Stage 3. However, like foraminifera and 
dinocysts, the in situ versus reworking issue also impacts the nannoflora. 

MSC Stage 3 is crossed by three important nannofossil bio-events 
astronomically calibrated in the ocean record: the top of Discoaster 
quinqueramus at 5.537 Ma, the base of Ceratolithus acutus at 5.36 Ma and 
the top of Triquetrorhabdulus rugosus at 5.231 Ma (Backman et al., 2012; 
Agnini et al., 2017). Most of the (few) studies that addressed the nan
noflora component of Stage 3 deposits did not report taxa belonging to 
the biozones defined by these bio-events, but only taxa of Cenozoic and 
Cretaceous age, clearly physically reworked (e.g. Sites 132, 134, 653, 
654A, 967A, 969B, Ryan et al., 1973; Hsü et al., 1978b; Müller et al., 
1990; Castradori, 1998; Piedmont Basin, Trenkwalder et al., 2008; 
Violanti et al., 2009; Trave, Fonte dei Pulcini and Stingeti sections and 
Mondragone well in the Apennines, Cosentino et al., 2006, 2012, 2018; 
Iaccarino et al., 2008). An exception is the nannoflora observed in the 
uppermost Messinian sediments at Sites 978A, 975B and 967A (Levant 
Basin; Fig. 2b). Here, among the plethora of reworked and long-ranging 
Neogene taxa, Castradori (1998) reported the anomalous abundance of 
Sphenolithus spp (mostly Sphenolithus gr abies/moriformis). Although the 
assemblage points to the absence of a primary marine signature, the 
unlikely possibility that reworking and/or sorting lies behind the 
observed peak of Sphenolithus spp. led Castradori (1998) to conclude 
that at least one incursion of marine water occurred during the (up
permost) Lago-Mare. 

By contrast, some authors (i.e. Popescu et al., 2007, 2015; Do Couto 
et al., 2014; Clauzon et al., 2015; Pellen et al., 2017) described the 
nannofossil assemblage the Lago-Mare LM Unit in Malaga, the Zorreras 
Member in Sorbas, the uppermost di Tetto/Colombacci Fm. in some 
Apenninic localities and offshore in the Alborán Basin as having good 
preservation and showing no erratic fluctuations, all characteristics that 
led to their interpretation as autochthonous and to the conclusion that 
these sediments were deposited in a Mediterranean already replenished 
of Atlantic water (Fig. 4b). In addition, these authors reported the low 
abundance, but continuous presence of the biostratigraphic markers for 
the Zanclean Triquetrorhabdulus rugosus and Ceratolithus acutus (Fig. 9d) 
below the formally defined Miocene/Pliocene boundary (Van Couvering 
et al., 2000) in several onshore and offshore Mediterranean (as wells as 
Paratethyan) localities (see Popescu et al., 2017 for details and a 
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complete list of finding locations). 
Such findings (especially that of C. acutus) are in sharp disagreement 

with most of the existing literature and have resulted in an important 
debate amongst the MSC community (e.g. Popescu et al., 2007, 2008 vs 
Roveri et al., 2008c and Stoica et al., 2016 vs Popescu et al., 2017), not 
only for their paleoenvironmental implications (i.e. presence of Atlantic 
water in the Mediterranean), but also for the chronostratigraphic re
percussions (Fig. 4b). The chronostratigraphic value of C. acutus lies in 
its short temporal distribution straddling the M/P boundary (astro
chronologically calibrated at 5.332 Ma; Van Couvering et al., 2000; 
Lourens et al., 2004). However, the corresponding biozone is established 
in oceanic areas (Zone CNPL1: 5.36-5.05 Ma; Backman et al., 2012; 
Agnini et al., 2017) and is considered not applicable to the Mediterra
nean region during the MSC due to the harsh physicochemical condi
tions that are unsuitable for marine biota (Di Stefano and Sturiale, 
2010). The interpretation of these nannofossil assemblages in the 
westernmost areas of the Mediterranean has been countered with 
several observations: (1) the observation of these age-diagnostic taxa is 
often not replicated by other studies (e.g. Roveri et al., 2008a; Van Baak 
et al., 2015; Krijgsman et al., 2020b); (2) Ceratolithus acutus is very rare 
also in fully marine open-ocean sediments (e.g. Di Stefano and Sturiale, 
2010); (3) despite being rare in the late Messinian Mediterranean, this 
species has never been documented together with other long-range taxa, 
generally predominant in the assemblage, in Stage 3 deposits (see dis
cussion in Krijgsman et al., 2020b). Recently, Golovina et al. (2019) 
showed that the morphology and size of C. acutus overlaps with the 
shape and dimensions of destroyed ascidian spicules (i.e. calcareous 
elements produced by benthic tunicates; Fig. 9d), providing an expla
nation for erroneous identification of C. acutus in the Black Sea Basin 
(Golovina et al., 2019) and perhaps in the western Mediterranean Lago- 
Mare sediments as well. 

5.6. Fish 

Fossil fish remains provide information about salinity and depth and 
have been used to contradict the brackish nature of the Lago-Mare de
posits by Carnevale et al. (2006a, 2006b, 2008, 2018) and Grunert et al. 
(2016). Euryhaline fish species inhabit marine to brackish environments 
and dominate settings with strong salinity variations while stenohaline 
fish have specific salinity requirements (marine, brackish, or freshwater) 
and cannot survive under different conditions. Demersal fish (i.e. those 
living in or immediately above the sea floor) have specific depth re
quirements, whereas pelagic fish occupy the water column within a wide 
range of depth variable from species to species. Fossil fish remains are 
found either as articulated or disarticulated skeletal parts, including 
teeth and otoliths, which are identified to the species level. Articulated 
fish skeletons typically indicate autochthonous deposition because of 
the difficulty in reworking and transporting intact skeletons. Otoliths 
and fish teeth are much more likely to be transported. 

Otoliths and rare articulated skeletons (Fig. 9e) of marine and Par
atethyan species have been reported from Stage 3 deposits, but 
commonly huge volumes of sediment are required to find even quite 
small numbers of these fossils (e.g. 20 tons from Moncucco, 6 tons from 
Cava Serredi, 700 kg from Capanne di Bronzo; Schwarzhans et al., 
2020), much more than what is expected for normal marine deposits (i. 
e. < 30 kg; Agiadi et al., 2017; Karakitsios et al., 2017b). 

Substage 3.1 sediments contain articulated skeletons (Fig. 9e) of the 
marine fish species Lampanyctus licatae and Maurolicus muelleri, and the 
shallow water, euryhaline species Aphanius crassicaudus in the Lower 
Feos Member in the Nijar Basin (de la Chapelle and Gaudant, 1987) and 
the marls of the first UG cycle in the Polemi Basin (Manzi et al., 2016a; 
Fig. 3a). Cava Serredi (Tuscany), Verduno and Moncucco (Piedmont) are 
the only other localities in which fish remains (only otoliths) in 
(claimed) substage 3.1 sediments are known (Carnevale et al., 2006a, 
2008, 2018; Grunert et al., 2016). 

The more diverse and abundant ichtyofaunal record occurs in 

substage 3.2 in a few marginal sections on the Italian peninsula (Ciabot 
Cagna in the Piedmont Basin; Cava Serredi and Podere Torricella in 
Tuscany; Capanne di Bronzo, La Vicenne and Ca’ Ciuccio in thrust-top 
basins of the Northern and Central Apennines). The Lago-Mare fish re
mains mainly comprise otoliths of both euryhaline and stenohaline taxa 
indicative of marine, brackish, and freshwater habitats (Carnevale et al., 
2018). Three articulated skeletons of the euryhaline marine taxa Mugil 
cf. cephalus (Fig. 9e), the marine Indo-Pacific species Spratelloides gracilis 
and of Gobius sp. have been identified at Cava Serredi in a horizon < 1 m 
below the Miocene/Pliocene boundary (Carnevale et al., 2006b). The 
dominant stenohaline families in these assemblages are Gobiidae, a 
family of demersal fish occupying shallow-water marine, brackish and 
freshwater environments, and Myctophidae, which are marine meso
pelagic fish that live below 200 m depth during the day, but feed at night 
in surface waters. A recent review of the Tortonian-Zanclean Gobiidae of 
the Mediterranean (Schwarzhans et al., 2020) showed that the otoliths 
of this family, described by Carnevale et al. (2006a, 2008, 2018) and 
Grunert et al. (2016) as belonging to marine Atlantic species, instead 
belong to brackish and freshwater species of Paratethyan affinity 
inhabiting sheltered prodelta environments. In fact, no normal marine 
demersal taxa were recognized in these assemblages by Schwarzhans 
et al. (2020). As for the Myctophidae, the vast majority of the taxa 
belonging to this family were recovered in Moncucco and Verduno from 
alluvial plain silty mudstones along with terrestrial mammals (Dela 
Pierre et al., 2011; Colombero et al., 2017 and references therein), 
pointing to a physically reworked origin. When 87Sr/86Sr isotope ratios 
are measured (Carnevale et al., 2008; Grunert et al., 2016), the resulting 
Sr-based age of the otoliths is > 7 Ma, therefore further arguing against 
their in-situ origin. Since the good preservation of the otoliths suggests 
they did not suffer physical reworking (Carnevale et al., 2006a, 2006b, 
2008, 2018; Grunert et al., 2016), predators foraging in open marine 
settings and migrating to marginal environments are proposed as a way 
out of the enigma (Carnevale et al., 2008, 2018; Grunert et al., 2016; 
Colombero et al., 2017). However, Carnevale et al. (2006a) also rule out 
that so well preserved otoliths may have suffered post-mortem transport 
and action of the digestive acids in the stomach of predators. Rare 
findings of Myctophidae from Ciabot Cagna (3 species), Cava Serredi (1 
species), Capanne di Bronzo (1 species) and Podere Torricella (6 species) 
(Carnevale et al., 2018) are all from sections where the host sediments 
have not been studied in sufficient detail to be clear about the in situ or 
reworked nature of the fossil assemblage. This lack of sedimentological 
uncertainty also extends to the stratigraphic position of many samples, 
because a stratigraphic log is provided for only a few sections (i.e. Ca’ 
Ciuccio, Cava Serredi and Moncucco; Carnevale et al., 2006a, 2006b). 
What this stratigraphic information suggests is that euryhaline fish taxa 
are widespread throughout substage 3.2, whereas strictly Myctophidae, 
which are an oceanic, marine stenohaline species, only occur very close 
to the base of the Pliocene, plausibly corresponding to the uppermost 
lithological cycle in substage 3.2 (~5.35-5.33 Ma; Carnevale et al., 
2018). 

5.7. Summary of the Stage 3 paleontological record 

The aquatic fossil record of MSC Stage 3 indicates that substage 3.1 
in onshore sections is mostly barren, while diverse assemblages char
acterize substage 3.2 deposits. By contrast, the deep record as a whole 
contains relatively few, low diversity assemblages. This might be as a 
consequence either of the limited sample locations recovered from the 
offshore areas (see Fig. 2b) or because the environmental conditions in 
the intermediate-deep basins were less favorable for sustaining the life 
forms typical of the onshore domain. Nevertheless, the assemblages that 
are found in both marginal and deep locations comprise mixed brackish 
and marine species. 

Brackish species are mostly represented by ostracods and dinocysts 
(and mollusks here not addressed because poorly studied; see Esu, 2007 
and Guerra-Merchán et al., 2010). Prominent is the affinity of these late 
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Messinian Mediterranean brackish species with the same species that 
were simultaneously dwelling in the Eastern Paratethyan basins 
(Dacian, Euxinic and Caspian) and in the North Aegean. Since these 
organisms were not present in the Mediterranean at any time before the 
MSC, they are considered, with a broad consensus, as in situ. This 
conclusion is further corroborated by the mixing of adult and juvenile 
forms in the ostracod assemblages and by the good preservation of the 
specimens, which do not show typical evidence of physical reworking 
like abrasion, dissolution, or fragmentation. Still problematic is the time 
of their arrival in the Mediterranean and their likelihood as biostrati
graphic tool. From our review it seems more likely that truly Para
tethyan species of ostracods entered the Mediterranean already during 
substage 3.1, when they colonized intermediate-deep settings, while 
they entered the marginal basins at different times during substage 3.2. 
As for dinocysts, characteristic is their occurrence only in the uppermost 
Messinian. However, it must be noted that samples from the substage 3.1 
interval are rarely processed for dinocysts, especially in age model- 
equipped sections (Fig. 3a). The route followed by the Paratethyan im
migrants is equally contested and important for paleoenvironmental and 
paleohydrological interpretations. In view of a desiccated Mediterra
nean, their migration can only have taken place passively by means of 
aquatic migratory birds. Conversely, the homogeneity of the ostracod 
assemblages throughout the Mediterranean marginal basins is more 
indicative of the presence of a water body fed by Eastern Paratethys and 
connecting all Mediterranean subbasins, therefore implying relatively 
high water-level conditions (at least at times when ostracod-bearing 
sediments deposited; see Andreetto et al., 2021). 

Marine assemblages are composed by foraminifera, nannofossils, 
dinocysts and calcareous nannofossils. Their reworked or in situ nature is 
in many cases contested but critical for paleoenvironmental interpre
tation. The picture that emerges from our review is that an open marine 
signature is questionable in the foraminifera, nannofossils, dinocyst and 
fish records, as well as in other biotic groups (e.g. corals, echinoids and 
mammals) here not tackled (and for which we refer the reader to 
Dominici et al., 2018 and Carnevale et al., 2019). All marine represen
tatives of the above mentioned categories were reintroduced into the 
Mediterranean only at the beginning of the Pliocene and at the expense 
of the Paratethys species that, instead, disappeared. Collectively, these 
observations lead us to conclude that the marine model as conceived by 
Carnevale et al. (2006a, 2006b, 2008, 2018) and Grunert et al. (2016) 
has no foundation and therefore will not be further discussed. 

6. The geochemical perspective 

Variations in the water sources draining into the Mediterranean are 
expected to be reflected also in (geo)chemical properties of the paleo
depositional environments. Important information about the nature of 
the connectivity framework of the Mediterranean can be gained by 

interpreting geochemical signals that respond to the presence or absence 
of an exchange with a chemically-unique water body. Four main 
geochemical proxies have been applied so far to MSC Stage 3 sedi
mentary and paleontological records. These includes both radiogenic (Sr 
isotope ratios) and stable isotopes (sulfate and oxygen) measured on 
fossils and minerals and hydrogen isotopes on molecular biomarkers. 
This section summarizes the dataset available for geochemical proxies 
(Fig. 10; Supplementary material 1) and its interpretation(s) for MSC 
Stage 3. 

6.1. Strontium isotope ratios (87Sr/86Sr) 

The available strontium isotope data for Stage 3 (Fig. 10a; Supple
mentary material 1) derive from measurements on both Ca-bearing 
fossils (ostracod valves, mollusk shells, fish otoliths; Fig. 9a) and min
erals (calcite and gypsum), where Sr2+ dissolved in an aqueous solution 
substitutes Ca atoms due to their similar ionic radius (e.g. Hajj et al., 
2017). Here we screen the available dataset and discuss only results that 
(1) reflect the original primary isotopic signal, i.e. the isotopic signal of 
the fluid at time of shell calcification or mineral precipitation, and (2) 
for which timing of mineral precipitation can be constrained. This 
screening excludes bulk carbonate samples (e.g. Colombacci limestones; 
Bassetti et al., 2004), which contain carbonate compounds of various 
and/or unknown provenance, measurements from mollusk shells and 
otoliths (e.g. Carnevale et al., 2008; Grunert et al., 2016; Roveri et al., 
2019a), because they are made of mineral phases easily altered during 
diagenesis (e.g. aragonite; Marcano et al., 2015), and data coming from 
reworked material (e.g. all reworked gypsum or transported forami
nifera). 87Sr/86Sr isotope ratios have also been measured by Müller and 
Mueller (1991) and Roveri et al. (2014b) on the halite beds recovered at 
Sites 134, 374 and 376 (Ryan et al., 1973; Hsü et al., 1978b). Although 
they provide interesting interpretative aspects, we do not consider these 
Sr measurements because the position of Sr in the crystal lattice of halite 
is unknown and the removal of all contaminants, that is not a straight
forward procedure (see Meilijson et al., 2019), is not clear it was ach
ieved by Müller and Mueller (1991) and Roveri et al. (2014b). As a 
matter of fact, there is no consistency between data generated from 
roughly the same interval in Core 134 by Müller and Mueller (1991) 
(0.708968) and Roveri et al. (2014b) (0.708800-0.708896). Added to 
this is the uncertainty over the provenance of halite in Sites 134 and 374 
(see subsections 4.2 and 4.6.1), which violates both criteria mentioned 
above. 

The general trend of the Mediterranean 87Sr/86Sr isotope ratio dur
ing the MSC deviates from the ocean curve towards the less radiogenic 
values of the major peri-Mediterranean rivers and Paratethys and 
returns abruptly to oceanic values at the Miocene/Pliocene boundary 
(Fig. 10a inset). This trend is regarded to reflect the progressive re
striction of Mediterranean-Atlantic exchange and the relative increase in 

Fig. 10. Isotopic record of MSC Stage 3 for the Mediterranean Basin. (a) Compilation of MSC Stage 3 87Sr/86Sr isotope data sourced from ostracod valves and gypsum 
crystals (see Supplementary material 1 and subsection 6.1 for references). Data are plotted with the global 87Sr/86Sr seawater curve (McArthur et al., 2012). Error 
bars indicate analytical error, which is so small in some cases that no error bars are visible at this scale. To not complicate the figure, horizontal error bars have not 
been added for the sections/cores unprovided of a chronostratigraphic framework and for which age uncertainties are present (i.e. all but Nijar and Vera basins, 
Eraclea Minoa and onshore Cyprus; see Fig. 3). Note that none of the 87Sr/86Sr isotope ratios but one from Nijar plot on the ocean curve. In the inset is shown the 
Mediterranean Sr record for the entire MSC as well as the time-equivalent Eastern Paratethys record (modified after Andreetto et al., 2021). (b) Plot of δ34SSO4 and 
δ18OSO4 in Stage 3 gypsum and anhydrite beds from onshore and offshore localities (see Supplementary material 1 and subsection 6.2 for references). No measures 
are available from the marginal basins, where gypsum did not deposit during Stage 3. The dark blue and black rectangles represent the sulfate isotopic composition of 
the Global Messinian ocean and Stage 1 (PLG) evaporites, respectively. The light blue area represents the sulfate isotopic composition of mixtures of Messinian 
marine waters with non-marine sources. The red area represents the isotopic composition of the residual sulfate ion in a basin where marine Messinian sulfate is 
consumed by microbial sulfate reduction to produce H2S. The arrow represents the isotope trajectory of dissolved sulfate resulting from the mixing of residual 34S- 
enriched sulfate produced by MSR and 34S-depleted sulfate produced by H2S oxidation. All the published δ34SSO4 and δ18OSO4 values are provided corrected with the 
fractionation factors δ34S=+1.65‰ and δ18O=+3.5‰ to smooth the isotopic fractionation effects experienced by dissolved sulfate and to reason on values repro
ducing the isotopic composition at the time of gypsum precipitation. (c) δD isotopes of C29 and C31n-alkanes and C37 and C38 long chain alkenones recorded in the 
Stage 3 gypsums and marls of the Eraclea Minoa section (modified from Vasiliev et al., 2017). Blue lines indicate the values recorded in the present day lacustrine 
settings for the n-alkanes (Sachse et al., 2006) and in the alkenones from the Mediterranean in the recent times (Van der Meer et al., 2007). Error bars indicate 
standard errors of the mean. 
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the proportion of non-marine source waters (Topper et al., 2011; Roveri 
et al., 2014a). At first glance it seems that each MSC Stage was char
acterized by a well-defined range of Sr ratios (Fig. 10a inset), an 
observation that led Roveri et al. (2014b) to attribute a chronostrati
graphic value to MSC 87Sr/86Sr ratios. A closer look, however, shows 
that MSC substages are anything but homogeneous with respect to 
87Sr/86Sr ratios. At least in the marginal basins, local lithological dif
ferences in the catchments (each lithology carries a unique 87Sr/86Sr 
fingerprint; see subsection 8.1.1) explain the different Sr isotopic com
positions from basin to basin (see Schildgen et al., 2014; Modestou et al., 
2017; Andreetto et al., 2021), therefore arguing against the use of 
87Sr/86Sr ratios for chronostratigraphic purposes in the MSC record. 

Most of the data characterizing substage 3.1 (Fig. 10a) are from the 
Eraclea Minoa gypsum (Fig. 5h). These data define a narrow range of Sr 
isotope ratios between 0.708747 and 0.708793 (García-Veigas et al., 
2018). Similar values were reported from both Eraclea Minoa and the 
nearby Siculiana Marina section (0.708710-0.708760; Keogh and But
ler, 1999; Fig. 5i). The dominance of Sicily samples gives the appearance 
of a consistent Sr isotope signal for gypsum beds. However, data points 
from elsewhere (Cyprus, Manzi et al., 2016a; DSDPs 122, 371 and 372 in 
the Algero-Balearic Basin, ODPs 652, 653 and 654 in the Tyrrhenian 
Basin, DSDP 374 in the Ionian Basin; Müller et al., 1990; Müller and 
Mueller, 1991; Roveri et al., 2014b) display a wider range (from 
~0.7087 to 0.708847; Fig. 10a) that may indicate a different hydro
logical regime for each basin (e.g. Müller et al., 1990; Müller and 
Mueller, 1991; Ryan, 2009). The one published Sr isotope value for 
ostracods found within one of the marl interbeds at Eraclea Minoa also 
has a lower value outside the typical Sicily gypsum range (Grossi et al., 
2015). This suggests that a different hydrological regime may also have 
characterised precession minima stages of the precessional cycle. 

The Sr isotope dataset for the Lago-Mare phase includes the lowest 
values measured on MSC sediments (~0.7085 from between gypsum VI 
and VII at Eraclea Minoa; Fig. 3a; Grossi et al., 2015) and the widest 
range of ratios spanning from 0.7085 to 0.7091, which is above coeval 
oceanic values (Fig. 10a). Again, the conspicuously high Sr isotope 
values in substage 3.2 come from two areas, the marginal basins of 
southern Spain (Andreetto et al., 2021 and references therein; Figs. 5a-c) 
and the intermediate Polemi Basin on Cyprus (McCulloch and De 
Deckker, 1989). The lower values are drawn from right across the 
intermediate-deep Mediterranean (Algero-Balearic, Sicily, Levant; 
Fig. 2a) and are therefore more likely to represent a Mediterranean-wide 
Sr isotope signal. 

New Sr isotope data from Eastern Paratethys (i.e. Dacian and Caspian 
basins; Fig. 2b) are now available for the interval corresponding to MSC 
Stage 3 (inset Fig. 10a). The 87Sr/86Sr ratios of the Dacian Basin 
(0.708865-0.708982; Vasiliev et al., 2010; Grothe, 2016) are slightly 
lower than coeval ocean water (0.709020), but much higher than coeval 
Mediterranean values. However, the Dacian Basin is regarded as highly 
restricted from the Mediterranean throughout the MSC (Vasiliev et al., 
2010). By contrast, the Caspian has very low values (0.708402 to 
0.708473, Grothe et al., 2020) which are thought to reflect both the very 
low Sr isotope ratio of the Volga river (0.708020; Vasiliev et al., 2010 
and references therein) and some input from the Mediterranean (Grothe 
et al., 2020). 

6.2. Sulfate isotopes 

Sulfur isotopic investigations have been carried out only on sulfate 
minerals (gypsum and more rarely anhydrite) of the MSC Stage 3 de
posits with samples drawn from both onshore intermediate sequences 
(Caltanissetta Basin and Cypriot basins) and deep basinal records (Sites 
122, 124, 125A, 132, 134, 372, 374, 375, 376, 652, 653, 654, 968, 969, 
970; Fig. 10b; Fontes et al., 1973; Pierre, 1974, 1982; Pierre and Fontes, 
1978; Ricchiuto and McKenzie, 1978; Pierre and Rouchy, 1990; Blanc- 
Valleron et al., 1998). Because the incorporation of dissolved sulfate into 
gypsum produces a nearly constant fractionation of δ18O (+3.5‰) and 

δ34S (+1.65‰) at earth surface temperatures (Thode and Monster, 1965; 
Lloyd, 1968; Warren, 2016), δ18O and δ34S isotopic values measured in 
gypsum should be corrected with the above mentioned fractionation 
factors in order to reconstruct the sulfate isotopic composition of the 
basin waters at the time of gypsum formation. 

The deep Mediterranean samples exhibit a wide range of δ34SSO4, but 
the majority of samples display δ34SSO4 values between 18 and 22‰, 
strongly indicative of a marine origin of the sulfate forming the gypsum 
(Fig. 10b; Fontes et al., 1973; Pierre, 1974, 1982; Pierre and Fontes, 
1978; Pierre and Rouchy, 1990; Blanc-Valleron et al., 1998). The δ34SSO4 
values lower than marine sulfate in the dataset are generally considered 
to represent a greater influence of continental sulfate input to the basin 
(Fig. 10b; Pierre, 1974; Pierre and Fontes, 1978; Pierre and Rouchy, 
1990). By contrast, the data display δ18OSO4 isotopic values that deviate 
substantially from marine δ18OSO4 values towards higher values 
(Fig. 10). This is consistent with the influence of sulfate produced by 
reoxidation of reduced sulfur compounds generated by microbial sulfate 
reduction (MSR; Kaplan and Rittenberg, 1964; Brunner and Bernasconi, 
2005; Sim et al., 2011; Leavitt et al., 2013). The microbial use of 
SO4

2-leads to an equilibration of δ18OSO4 with ambient water oxygen, 
whereas the δ34SSO4 returns towards its initial value as a higher fraction 
of sulfide produced by MSR is re-oxidated. This mechanism has been 
suggested for Sites in the Algero-Balearic, Tyrrhenian and Ionian basins 
and offshore Cyprus (Pierre, 1974; Pierre and Fontes, 1978; Pierre and 
Rouchy, 1990). Although some authors have suggested that partial 
equilibration of sulfate oxygen toward δ18OH2O values of the basin 
enriched in heavy oxygen isotopes by evaporation have led to an in
crease in δ18OSO4 values without significant changes in δ34SSO4 (Fontes 
et al., 1973; Pierre, 1974; Ricchiuto and McKenzie, 1978), this hy
pothesis seems highly unlikely as the abiotic equilibration between 
sulfate and water oxygen take about 20 Myr at normal marine pH 
(Lloyd, 1968; Longinelli and Craig, 1967; Turchyn et al., 2006). More
over, the microbial sulfate reduction process is supported by the pres
ence of pyrite at Sites 132, 654A and 968 (Pierre, 1982; Pierre and 
Rouchy, 1990; Blanc-Valleron et al., 1998) and the existence of fila
ments of possible microbial origin at Site 654A (Pierre and Rouchy, 
1990). 

The sulfate isotopic values reported by Longinelli (1979) and Pierre 
(1982) from the Upper Gypsum of Eraclea Minoa (Caltanissetta Basin, 
Sicily) are considerably more scattered than those from a recent study by 
García-Veigas et al., 2018; Fig. 10b). Such discrepancies are probably a 
consequence of different sample selection: García-Veigas et al. (2018) 
analyzed only pristine whitish selenite and balatino samples, while 
Longinelli (1979) and Pierre (1982) analyzed all types of gypsum- 
bearing samples such as “gypsiferous marl” and gypsum laminae inter
calated in carbonate or diatomaceous intervals. These less pristine 
samples probably contain high quantities of 34S-depleted solid sulfides 
or diagenetic gypsum formed by oxidation of sulfides (see Liu et al., 
2017 for more details on this process) and are therefore unlikely to be 
representative of the primary gypsum facies. Once these data are 
excluded, the Eraclea Minoa sulfate values (δ18OSO4 from 12.4 to 14.6‰ 
and δ34SSO4 from 21.0 to 22.3‰) suggest a marine origin of the sulfate 
and stable redox conditions during gypsum deposition (Fig 9.b; García- 
Veigas et al., 2018). Interestingly, the Eraclea Minoa sulfate values are in 
compliance with the isotopic values (δ18OSO4=15.2 to 16.8‰; δ34SSO4=

20.4 to 21.9‰) measured by Pierre (1982) in the Polemi Basin (Cyprus). 

6.3. Hydrogen isotopes on molecular biomarkers 

From the point of view of the application of organic geochemistry 
proxies, the Miocene Mediterranean Basin received little attention so 
far, with biomarker-based proxies that have been mostly applied to (a 
limited number of) pre-MSC sequences (Tzanova et al., 2015; Herbert 
et al., 2016; Mayser et al., 2017; Natalicchio et al., 2017, 2019; Vasiliev 
et al., 2019) and pre-Stage 3 sedimentary records (Lower Evaporites on 
Sicily, Andersen et al., 2001; Vena del Gesso Basin, Sinninghe Damsté 
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et al., 1995 and Vasiliev et al., 2017; Levant Basin, Meilijson et al., 
2019). To date, only one study analyzed Stage 3 samples (Vasiliev et al., 
2017). This study used compound specific hydrogen isotope (δD) ana
lyses, measured on both terrestrial (long chain C29 and C31n-alkanes; 
Sachse et al., 2006) and aquatic (alkenones; Englebrecht and Sachs, 
2005) biomarkers from the gypsum beds of the Upper Gypsum at Eraclea 
Minoa to reconstruct the hydrological cycle during gypsum 
precipitation. 

Both δDC29n-alkane and δDalkenones results (Fig. 10c) suggested that 
conditions in Sicily were significantly dryer than today, with highly 
enriched values of δDC29n-alkanes (up to − 125‰). The δDalkenones varied 
between values suggesting evaporative conditions (− 125‰) and values 
typical for present-day δDalkenones in the Mediterranean (− 203‰) 
(Vasiliev et al., 2017). 

No time-equivalent biomarker data from the open ocean settings are 
currently available. Instead, Vasiliev et al. (2017) compared their 
Mediterranean data with data from the Black Sea (DSDP 42B Hole 380 
and Taman peninsula; Vasiliev et al., 2013, 2015). The Upper Gypsum 
δDn-alkanes were more enriched when compared to their time equivalent 
deposits of the DSDP 42B 380 borehole of the Black Sea (− 180‰). This 
probably reflects the more intracontinental position of the Black Sea 
which commonly translates into more depleted values for δDprecipitation 
used by the vegetation, resulting in more depleted δDC29n -alkanes. 
However, there is a 30 to 40‰ enrichment relative to present in the δDn- 

alkanes (i.e. δDprecipitation) in both Mediterranean and Paratethys domains, 
indicating concurrent changes in both areas during the latest phase of 
the MSC. 

Both the Mediterranean and Paratethyan samples contain δDalkenones 
with low values (~-200‰) (Fig. 10c) leading Vasiliev et al. (2017) to 
suggest that either the surface water from the Upper Gypsum was 
derived from the Black Sea, or that the Mediterranean and Paratethys 
were exchanging surface water during gypsum precipitation. Similarity 
between the relative contribution of the C37, C38 and C39 alkenones at 
Eraclea Minoa and one of the Black Sea samples may suggest common 
alkenone producers for the two areas, again supporting the idea of a 
Mediterranean-Paratethys connection during Stage 3 (Vasiliev et al., 
2017). 

A final speculative insight from this biomarker dataset is that the 
relative contribution of alkenones found in the Upper Gypsum of Eraclea 
Minoa is strikingly similar to present-day open marine samples, even 
though Emiliania huxleyi, the principal ocean alkenone producer today, 
did not exist in the late Miocene. Vasiliev et al. (2017) suggested that 
this could imply the existence of a connection to the open ocean during 
Upper Gypsum deposition in Sicily (i.e. throughout Stage 3; Fig. 3a). 

6.4. Oxygen isotopes 

Oxygen stable isotope data (δ18O) are available from bulk samples 
(Rouchy et al., 2001, 2003, 2007; Pierre et al., 2006; Cosentino et al., 
2012), gypsum (Pierre and Fontes, 1978; Ricchiuto and McKenzie, 1978; 
Lugli et al., 2007), mollusk shells (Carnevale et al., 2008; Grunert et al., 
2016) and ostracod valves (Cosentino et al., 2012; Grossi et al., 2015). 

For all the sub-basins for which there is latest Messinian data (e.g. 
Sites 974 and 975; Eraclea Minoa section, Sicily; Aghios Stefanos sec
tion, Corfu; Kalamaki section, Zakynthos; Pissouri Basin, Cyprus; Rou
chy et al., 2001, Pierre et al., 2006), each has its own range of oxygen 
isotopic compositions and its own degree of variability. Values from 
above the Miocene/Pliocene boundary regain seawater values of 0.3 to 1 
‰ (e.g. Pierre et al., 2006). 

In marginal marine settings and lakes, the controls over δ18O are 
poorly constrained as oxygen does not respond simply to the freshwater 
flux, but to a combination of variables such as temperature, rainfall and 
evaporation (e.g. Placzek et al., 2011). Freshwater input may contribute 
to the signal, resulting in δ18O more negative than seawater (0.3‰ to 
0.8‰ SMOW; Dettman et al., 2004), but under prevailing evaporating 
conditions it is likely that the δ18O will be primarily influenced by 

evaporation, leading to δ18O more positive than seawater (e.g. Dettman 
et al., 2004), making any data very difficult to interpret. Furthermore, 
the lack of a unique δ18O signature for each water source makes oxygen 
isotopes a difficult tracer proxy to use. 

6.5. Summary of the Stage 3 geochemical dataset 

The variety of paleoenvironmental and connectivity proxies applied 
to MSC Stage 3 record provide valuable insights into the hydrological 
conditions during Stage 3. The more outstanding results from all dis
cussed proxies are that:  

1) Paleodepositional subaqueous environments where gypsum was 
precipitating and ostracods and biomarker-producers were thriving 
were strongly dominated by non-oceanic inputs;  

2) an indisputable marine signal is absent and only regained above the 
M/P boundary. 

Sulfate and oxygen isotopes are currently difficult to use for water 
provenance reconstruction because the non-marine sources (local and 
major rivers and Eastern Paratethys) that are likely to be of influence 
lack distinctive isotopic signatures and, especially for oxygen, respond 
to a combination of controls (e.g. temperature, rainfall, evaporation) 
with local variability. δ34SSO4 are claimed by several authors to be an 
evidence of the presence of an Atlantic inflow (δ34SSO4=22‰; Turchyn 
and Schrag, 2004) in a Mediterranean strongly affected by non-marine 
waters (Manzi et al., 2009, 2016a; García-Veigas et al., 2018 among 
others). However, the same values can be obtained by means of the 
recycling of PLG deposits (~23‰; Lu et al., 2001; Lugli et al., 2010; 
García-Veigas et al., 2018). 

Similarities between the δDalkenones of the Upper Gypsum at Eraclea 
Minoa and coeval Black Sea sediments and δDn-alkanes similar to present- 
day marine settings, suggest that Eastern Paratethys and the Atlantic 
were simultaneously contributing to the Mediterranean hydrological 
budget. 87Sr/86Sr isotope ratios are a useful water-mass tracer because 
each water body carries a unique Sr isotope fingerprint (see subsection 
8.1.1). Our plotting of Stage 3 87Sr/86Sr isotope values (Fig. 10a) high
lights the large geographical variability of the values and the sharp di
vision between Sr isotope ratios measured in marginal basins versus 
those in intermediate-deep water locations. This is only noticeable in 
substage 3.2, since no (or not enough) material suitable for Sr analysis is 
present in substage 3.1 deposits from the marginal basins. Some authors 
see this variability as an indication of isolated subbasins with unique 
hydrological conditions driven by their catchment rivers (e.g. Müller 
et al., 1990; Müller and Mueller, 1991; Ryan, 2009). If some degree of 
connection was present, it involved only neighbouring basins (e.g. 
Tyrrhenian subbasins; Müller et al., 1990; Müller and Mueller, 1991). A 
recent comparison of the Sr isotope record of the Spanish marginal ba
sins of Sorbas, Nijar and Vera with the Sr isotope ratios likely to have 
typified the local riverine sources demonstrated that a local sources- 
mixed signal expected from an endorheic lake in that location is ab
sent. In this instance mixing of intrabasinal water sources with a non- 
marine Mediterranean water mass is used to explain the measured 
values (Andreetto et al., 2021). If this explanation is more widely 
applicable, then it may result in a re-interpretation of the spread of Sr 
isotope data from the latest Messinian interval. 

To conclude, geochemical proxies have great potential to test the 
different scenarios, but data are currently too numerically and 
geographically limited to be robust. 

7. Paleoenvironmental scenarios for freshening the salt giant: 
desiccated versus full Mediterranean 

The riddle of the Mediterranean environmental and hydrological 
conditions during Stage 3 is a highly debated topic and it is key to un
derstanding the means by which open marine conditions were restored 

F. Andreetto et al.                                                                                                                                                                                                                              



Earth-Science Reviews 216 (2021) 103577

32

at the base of the Zanclean and on the potential impact that the Atlantic- 
Mediterranean re-connection had on the Atlantic and global climate 
(Flecker et al., 2015; Capella et al., 2019). In this chapter, the paleo
environmental scenarios, in terms of base-level position (desiccated or 
full Mediterranean) and hydrological configuration (connections to the 
Atlantic and/or Paratethys), proposed for the Mediterranean during 
Stage 3 are described, as well as the different timings of the reflooding 
(instantaneous, gradual, step-like increments). The low-salinity Stage 3 
followed the hypersaline Stage 2 and the transition between the two 
likely influences the plausibility of the various paleoenvironmental 
scenarios proposed for the terminal stage. We therefore first summarize 
the current understanding of the configuration of the Mediterranean 
during Stage 2 and the enduring controversies (see Roveri et al., 2014a 
for a more extensive review). 

7.1. Stage 2 (5.59-5.55 Ma): formation of the Mediterranean salt giant 

Numerical modelling based on hydrological budget calculations 
shows that in order to reach salinity levels compatible with halite 
saturation and to accumulate the substantial thicknesses of halite 
observed in the seismic profiles (Ryan, 1973; Haq et al., 2020), the 
Atlantic-Mediterranean gateway needs to have permitted inflow from 
the Atlantic, but may have completely blocked outflow (Blanc, 2002; 
Krijgsman and Meijer, 2008). Numerical models also showed that 
without Atlantic inflow into the Mediterranean Sea its base level is 
forced to drop on time scales in the order of a few thousand years by 
virtue of the basin’s negative hydrological budget, where more water is 
lost to the atmosphere by evaporation than is received from rainfall and 
river runoff (e.g. Meijer and Krijgsman, 2005; Krijgsman and Meijer, 
2008; Simon et al., 2017). The idea of a drawdown is supported by 
several arguments: (1) the widespread presence, from the margins to the 
slopes, of the Messinian Erosional Surface cutting through Stage 1 and 
pre-MSC deposits and canyon incisions following today’s drainage net
works (e.g. Chumakov, 1973; Clauzon, 1982; Lofi et al., 2005, 2011a, 
2011b; Loget et al., 2006; Maillard et al., 2006, 2020; Estrada et al., 
2011; Just et al., 2011; Urgeles et al., 2011; Amadori et al., 2018; Lymer 
et al., 2018; Cazzini et al., 2020; Figs. 5e, 7e); (2) their morphology 

interpreted as subaerial in origin; (3) the clastic fans at the outlet of the 
valleys onlapped by Stage 3 deposits and interpreted as fluvial accu
mulations (e.g. Lofi et al., 2005; Maillard et al., 2006; Pellen et al., 
2019). A number of studies have tried to quantify the magnitude of the 
sea-level fall by compensating for the isostatic vertical motion since the 
Messinian to obtain the original depth of the erosional features and 
Messinian deposits. However, this depends on the assumptions about 
when the drawdown occurred relative to the halite precipitation: before 
(e.g. Cartwright and Jackson, 2008; Bache et al., 2009, 2012), during (e. 
g. Ryan, 2008, 2009) or after (e.g. Ryan, 1978; Bertoni and Cartwright, 
2007; Lofi et al., 2011a, 2011b). How shallow the Mediterranean 
became during Stage 2 is also a matter of disagreement. Estimates in the 
Western Mediterranean vary from a maximum drawdown of 2500 m 
(Ryan, 1976) to 1000-1500 m (Bache et al., 2012) in the Gulf of Lion, 
800-1200 m in the Balearic promontory (Mas et al., 2018b) and 400 m in 
the Ebro delta region (Frey-Martinez et al., 2004). A later backstripping 
analysis of this delta yielded a drawdown of ~1300 m (Urgeles et al., 
2011). East of the Sicily sill, backstripping studies estimated base-level 
drops of 1800-2000 m in the Ionian basin (Micallef et al., 2018, 2019; 
Camerlenghi et al., 2019; Spatola et al., 2020), 800-900 m in the Adri
atic foredeep and Po plain (Ghielmi et al., 2013; Amadori et al., 2018), 
800-1300 m (Ben-Gal et al., 2005), 600 (Druckman et al., 1995) and 800 
m (Cartwright and Jackson, 2008) in the Levant Basin. 

None of these quantifications could unequivocally constrain the 
timing of the drawdown within the MSC sequence, but numerical 
modeling studies show that, if the blocking of the outflow was controlled 
by a tectonic uplift counteracted by inflow erosion across the Strait of 
Gibraltar, then the expected drawdown of the Mediterranean Sea should 
be moderate (< 400 m; and possibly harmonic) due to an equilibrium 
between incision and uplift before the complete blocking of inflow and 
larger (up to complete desiccation) only after tectonic uplift overcame 
incision rates (Garcia-Castellanos and Villaseñor, 2011). The same 
model suggests that the initiation of halite precipitation might overlap in 
time with the late primary gypsum deposition, right before the full 
disconnection from the Atlantic Ocean. 

The interpretation of the deep evaporites and their associated seismic 
markers (erosional surfaces and deep engravings along the shelf-slope 

Fig. 11. (a), (b) Schematic W-E profiles across the Mediterranean Basin showing the contrasting paleoenvironmental, paleohydrological and paleoconnectivity 
interpretations proposed for Stage 3. When a water flow is present (green arrow) from and/or to an extra-Mediterranean water mass (i.e., A: Atlantic Ocean; I: Indian 
Ocean; P: Eastern Paratethys), the direction of the arrow gives the direction of flow. For simplicity, water added by the major and local rivers is not shown, but it adds 
to the hydrological budget at any time in each scenario. Note the main difference between the isolated (a) and density-stratified (b) scenario lies in the connectivity 
framework (Atlantic connection closed and negligible influence from the Paratethys in the isolated scenario; influence from both Atlantic and Paratethys in the 
density-stratified scenario), which affects the position of the base level of the Mediterranean water mass and its hydrochemistry (see extensive discussion in sub
section 7.2). Abbreviations: Sp.: SE Spain; V-B: Valencia Basin; Tyr: Tyrrhenian Basin; Calt: Caltanissetta Basin; IAP: Ionian Abyssal Plain; GS: Gulf of Sirt; Cyp: 
Cyprus; Ada: Adana Basin. See Fig. 2 for the geographic position of each basin. (c) Schematic plot showing the evolution of the Mediterranean base-level during Stage 
3 according to both the isolated (red line) and half-full (black line) scenarios. The critical sills for controlling intra- and extra-Mediterranean connectivity are 
also shown. 
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systems) is not straightforward. Recently, it was suggested that the deep 
evaporitic facies and the seismic morphological features could have 
been produced without a significant drop of the Mediterranean base- 
level, therefore promoting the persistence of a relatively deep-water 
Mediterranean basin even during halite deposition (Lugli et al., 2013, 
2015; Roveri et al., 2014b). For example, Roveri et al. (2014c) proposed 
that downslope flows of dense, hypersaline waters sourced from evap
oration in shallower water areas could have generated both the observed 
shelf-slope erosion and have created a deep brine, supersaturated in the 
ions necessary for precipitating halite. These subaqueous hyperpycnal 
flows are consistent with the observed clastic evaporites that filled the 
Levant margin canyons (Lugli et al., 2013) and, more generally, with the 
widespread presence of Complex Units at the outlet of the MES drainage 
systems (see Lofi et al., 2005, 2011a, 2011b; Lofi, 2018). These sedi
ments are dominated by reworked PLG that would have been exposed by 
a sea-level fall as little as 200 m (Lugli et al., 2010). However, the hy
persaline environment that is presumed to be established by these 
hyperpycnal flows during the deposition of the RLG is in contrast with 
the occurrence of the Paratethyan ostracod L. muelleri within the clastic 
evaporites (RLG) in several marginal sections (e.g. Adana Basin, Faranda 
et al., 2013; Radeff et al., 2016, 2017). 

Whatever the state of Mediterranean base-level during Stage 2, the 
more commonly used chronostratigraphic model for the MSC (Fig. 1a; 
Roveri et al., 2014a) states that massive halite precipitation ceased at 
5.55 Ma and was superseded by an environment that, with precession 
periodicity (Fig. 3a), cycled between gypsum precipitation and condi
tions that saw fresh-brackish organisms thriving. The question is 
whether these conditions cycled homogeneously in several isolated 
lakes or in basins largely connected to the same Atlantic and Eastern 
Paratethys-influenced water mass (Fig. 11). 

7.2. Stage 3 (5.55-5.33 Ma): resumption of (upper) gypsum precipitation 
and Paratethys fauna invasion 

7.2.1. An isolated Mediterranean dotted by sabkhas and lakes 
The first and long-lasting paleoenvironmental interpretation of the 

evaporite-bearing UG/UU units and (possibly) time-equivalent evapo
rite-free units (e.g. LM Unit in Malaga, Sorbas and Zorreras Mb. in 
Sorbas, Feos Fm. in Nijar, Cassano Spinola Conglomerates in Piedmont, 
San Donato/Colombacci fms. in the Apennines, Handere Fm. in Turkey) 
envisaged their sedimentation in a Mediterranean mostly isolated from 
the Paratethys (which may have added water only to some basins in the 
Eastern Mediterranean) and totally isolated from the Atlantic where, in 
each subbasin, continental settings (e.g. alluvial plains, river channels, 
alluvial fans, playa lakes, sabkhas) alternated/interfingered with 
shallow, endorheic lakes (Figs. 11a, c; e.g. Ruggieri, 1962, 1967; Decima 
and Sprovieri, 1973; Decima and Wezel, 1973; Friedman, 1973; Hsü 
et al., 1973a, 1973b, 1973c, Hsü et al., 1978a, 1978b; Ryan et al., 1973; 
Selli, 1973; Sturani, 1973; Sissingh, 1976; Benson, 1978; Bossio et al., 
1978; Cita et al., 1978, 1990; Ricchiuto and McKenzie, 1978; Ryan, 
1978, 2008, 2009; Cita and Colombo, 1979; Orszag-Sperber and Rou
chy, 1979; Ghibaudo et al., 1985; Müller et al., 1990; Benson and Rakic- 
El Bied, 1991; Benson et al., 1991; Müller and Mueller, 1991; Orszag- 
Sperber et al., 2000; Rouchy et al., 2001, 2003, 2007; Blanc, 2002; Lofi 
et al., 2005, Lofi et al., 2011b; Bassetti et al., 2006; Rouchy and Caruso, 
2006; Bertoni and Cartwright, 2007; Cameselle and Urgeles, 2017; 
Amadori et al., 2018; Camerlenghi et al., 2019; Kartveit et al., 2019; 
Madof et al., 2019; Ben Moshe et al., 2020; Caruso et al., 2020; Cazzini 
et al., 2020; Raad et al., 2021). The full disconnection is also supported 
by observations that support an abrupt Zanclean reflooding (e.g. Blanc, 
2002; Micallef et al., 2018, 2019; Garcia-Castellanos et al., 2020; Spa
tola et al., 2020), since a rapid outburst flood requires a large sea level 
difference prior to the flood that can only be developed in a scenario of a 
full Mediterranean-Atlantic disconnection (Garcia-Castellanos et al., 
2009; Garcia-Castellanos and Villaseñor, 2011). Although rarely 
explicitly stated, all these studies must assume that:  

1) all Paratethyan biota (and possibly other organisms of undisclosed 
provenance like diatoms) migrated passively via aquatic migratory 
birds across the entire Mediterranean (Fig. 11a; Benson, 1978; Ben
son and Rakic-El Bied, 1991; Caruso et al., 2020);  

2) chemical and physical conditions (brackish water and water depth 
not exceeding 100 m; e.g. Hajós, 1973; Gliozzi and Grossi, 2008) that 
allowed alternated conditions suitable for gypsum to precipitate and 
Paratethyan biota and euryhaline benthic foraminifera to thrive 
were related to changes in the local freshwater budget;  

3) The marine isotopic signals in UU/UG gypsum (Fig. 10) are entirely 
the reflection of the lithologies that are leached by continental wa
ters in surficial and/or underground drainage areas (e.g. Ryan, 2009; 
Raad et al., 2021);  

4) Stage 3 gypsum precipitated in extremely shallow-water (playa 
lakes) to completely dried environments (sabkhas) and the excessive 
sulfate necessary is completely derived from “clastic reworking, 
dissolution, re-precipitation and diagenesis of materials belonging to 
the PLG and halite of the previous MSC Stage 2” (Ryan, 2009). 

Observations supporting a Mediterranean isolated throughout Stage 
3 and only at the mercy of local freshwater inputs (Fig. 11a) are: (1) the 
lack of evidence for in situ marine fauna and flora in UU (e.g. Ryan et al., 
1973; Hsü et al., 1978a; Cita et al., 1990; Ryan, 2009; Lofi et al., 2011a); 
(2) the shallow-water mode of life and highly likely in-situ nature of 
ostracods and euryhaline, shallow-water benthic foraminifera observed 
in DSDP/ODP wells from intermediate and deep basins (e.g. Cita et al., 
1978; Iaccarino and Bossio, 1999; Figs. 9a-c); (3) the bathymetric 
contrast (up to several hundred meters) between the late Messinian 
paleoenvironments and the marine Zanclean on top (e.g. Cita and 
Colombo, 1979; Bonaduce and Sgarrella, 1999; Caruso et al., 2020); (4) 
the presence of paleosols in Cyprus (Orszag-Sperber et al., 2000; Rouchy 
et al., 2001) and on the crest of the Eratosthenes seamount (Robertson, 
1998a, 1998b); (5) the erosional features preserved both offshore on the 
continental shelves and lower-middle slope domain and interpreted in 
most seismic stratigraphic studies as the result of subaerial exposure (e. 
g. Lofi et al., 2005; Lofi et al., 2011b; Lymer et al., 2018; Ben Moshe 
et al., 2020); (6) the pinching out of the UU/BU units towards evaporite- 
free pre-Messinian structural highs (Figs. 7b-g; Figs. 8a, e; Ryan, 2009; 
Lymer et al., 2018; Camerlenghi et al., 2019; Raad et al., 2021); (7) the 
more abundant terrigenous clasts and reworked calcareous fossils in 
Stage 3 samples compared to the overlying, deep-water Pliocene (Ryan 
et al., 1973; Hsü et al., 1978b; Ryan, 2009); (8) the erosional nature of 
the M-reflector/TES/IMTS in the Levant Basin (Figs. 8e-g), by some 
linked to subaerial exposure of the Levant seafloor (e.g. Bertoni and 
Cartwright, 2007; Lofi et al., 2011a, 2011b; Maillard et al., 2011a) 
before the emplacement of deposits interpreted as fluvial from seismic 
observations (Bowman, 2012; Radeff et al., 2017; Leila et al., 2018; 
Kartveit et al., 2019; Madof et al., 2019). Furthermore, (9) isolated 
hydrological circuits with unique chemical composition are regarded by 
Camerlenghi et al. (2019) as the most plausible explanation for the W-E 
change in the MSC sedimentary expression in the deep basins, repre
sented by the trilogy LU-MU-UU in the Algero-Balearic and Liguro- 
Provençal basins, missing the LU in the Tyrrhenian and (possibly) Ionian 
basins, by terrigenous deposits with hiatuses in the WAB and Adriatic 
foredeep and by halite, anhydrite and clastics in the Levant Basin 
(Interbedded and Argillaceous evaporites of Meilijson et al., 2019; 
Fig. 3b). 

The main problems with the isolated scenario lasting throughout 
Stage 3 are: (1) it does not provide an explanation neither for the ho
mogeneity of Paratethyan ostracod assemblages in the marginal basins 
(e.g. Gliozzi et al., 2007; Stoica et al., 2016), an aspect difficult to 
explain when fauna migration takes place passively via either birds or 
wind, nor for the biomarkers (Vasiliev et al., 2017), which cannot be 
transported effectively by aquatic birds; (2) it does not explain the 
mismatch between 87Sr/86Sr isotope ratios measured on marginal os
tracods and Sr values expected from endorheic lakes fed with local 
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freshwaters (e.g. Andreetto et al., 2021); 3) it misses to substantiate, 
with geochemical arguments, the precipitation of gypsum in lakes, a 
process that is everything but straightforward (see Warren, 2016 for 
insights); 4) except for the salt-bearing basins, the source(s) of solutes 
which makes freshwater-fed endorheic lakes brackish and causes similar 
physico-chemical conditions to exist in each lake is also difficult to 
explain in the context of a Mediterranean only at the mercy of local 
rivers. 

7.2.2. The half-full, density-stratified Mediterranean scenarios 
An alternative concept to the isolated scenario envisages the Medi

terranean connected with the Atlantic and/or the Eastern Paratethys and 
relatively full of water connecting the different subbasins (Fig. 11b). To 
our knowledge, this scenario was first developed by McCulloch and De 
Deckker (1989) on the basis of the similar 87Sr/86Sr ratios from marginal 
(Spain and Cyprus) and deep (Levantine and Algero-Balearic) basins. 
This intuition was a significant departure from the far more in vogue 
desiccated scenario (see conclusion of Hsü et al., 1973b), and for this 
was long overlooked. Sr isotope ratios lower than contemporary ocean 
water led McCulloch and De Deckker (1989) to conclude that a brackish 
water mass created by the mixing of water from the peri-Mediterranean 
rivers (e.g. Nile, Rhône and African rivers that no longer flow today, etc.; 
see Griffin, 2002 and Gladstone et al., 2007) with water of the Eastern 
Paratethys filled the Mediterranean, resembling the Caspian Sea today. 
This conclusion is consistent with the impoverished (or absent) marine 
fauna and flora of Stage 3 sediments and the enhanced assemblage of 
fresh-brackish water biota (see subsection 5.7; Figs. 9a-c), but is prob
lematic as a viable origin for Stage 3 gypsum to precipitate at depth. 
Furthermore, climate models for the late Miocene fail to fill the Medi
terranean Basin with fluvial and Paratethys waters alone (Gladstone 
et al., 2007; Marzocchi et al., 2016, 2019; Simon et al., 2017). A marine 
contribution is therefore required to fill the Mediterranean (Marzocchi 
et al., 2016). In the event, the contribution is most likely to have derived 
from the Atlantic via the Gibraltar Corridor (Flecker et al., 2015; Booth- 
Rea et al., 2018; Krijgsman et al., 2018) either through a karst system 
(Krijgsman et al., 2018) or an emerged volcanic archipelago in the 
Alborán Basin (Booth-Rea et al., 2018). In fact, although an Indian 
Ocean contribution was proposed (Cita et al., 1978; Hsü et al., 1978a) 
and the possibility discussed (Ryan, 2009; Vai, 2016), palinspastic re
constructions concluded that the Neo-Tethys Mediterranean-Indian 
Ocean connection via southern Turkey and Iran already closed before 
the Tortonian (Rögl, 1998; Popov et al., 2004; Gargani et al., 2008; 
Bialik et al., 2019; Gülyüz et al., 2020), while a seaway via the Red Sea 
and Gulf of Aden, although not completely ruled out (e.g. Schütz, 1994; 
Bosworth et al., 2005; Gargani et al., 2008; Ryan, 2009), is highly 
contested (e.g. Meulenkamp and Sissingh, 2003; Segev et al., 2017). 

In light of this, Roveri et al. (2014c), Gvirtzman et al. (2017), Vasi
liev et al. (2017), García-Veigas et al. (2018) and Grothe et al. (2020) 
suggested that the Mediterranean was likely density-stratified during 
this interval as a result of the simultaneous influx of isotopically- 
different marine and non-marine (major Mediterranean rivers and 
Eastern Paratethys) water sources (Fig. 11b). This connectivity frame
work resulted in a brackish layer carrying low-salinity (mostly Para
tethyan) biota (Gliozzi et al., 2007; Stoica et al., 2016; Grothe et al., 
2018, 2020; Figs. 9a-b) to lay on top of a more saline layer formed by 
Atlantic-derived seawater from which UU/UG gypsum (Figs. 5h-j, 7b-g, 
8a-d), that facies analyses demonstrated to result from subaqueous 
deposition (Hardie and Lowenstein, 2004; Lugli et al., 2015), precipi
tated at intermediate and greater depths (e.g. García-Veigas et al., 
2018). A dense, anoxic deep-water mass, possibly inherited from Stage 
2, is envisaged at the bottom of the Mediterranean by Marzocchi et al. 
(2016) and García-Veigas et al. (2018), albeit without conclusive ar
guments, and by Gvirtzman et al. (2017) following the observation that 
the tilted halite body of the Levant Basin was simultaneously eroded 
landward and preserved basinward (Fig. 8f). 

This scenario accounts for the erosive/non-depositional features 

(Figs. 5e, 6a, e) and continental/lacustrine facies (Figs. 5a-b, d-g) 
widespread around the margins and shelves and suggestive of a Medi
terranean base-level somewhat lower than the Atlantic level suggesting 
a one-way inflow from both the Atlantic and the Eastern Paratethys after 
Stage 2 (e.g. Marzocchi et al., 2016; Figs. 11b, c), a connectivity 
configuration that effectively translates in a half-full Mediterranean (e.g. 
Krijgsman and Meijer, 2008). Refilling as a result of persistent Atlantic 
inflow, in part perhaps because of the latest Messinian deglaciation (see 
subsection 2.2; Van der Laan et al., 2006; Hilgen et al., 2007), would 
have resulted in the establishment of two-way exchange first with the 
Paratethys at some point during the Lago-Mare phase and later, i.e. 
slightly before or at the Messinian/Zanclean boundary, with the Atlantic 
Ocean (Fig. 11c; Marzocchi et al., 2016). The moment the Mediterra
nean base-level reached the sill with the adjacent water body (Para
tethys and Atlantic) and a two-way exchange was initiated, the density 
contrast will have prompted an enhanced inflow into the Mediterranean 
(Marzocchi et al., 2016). The overall transgressive trend leading to the 
Zanclean marine replenishment was accompanied by base-level fluctu
ations in the order of 400±100 m every precessional cycle (Fig. 11c; 
Fortuin and Krijgsman, 2003; Ben Moshe et al., 2020; Andreetto et al., 
2021). These fluctuations are ascribed to switch in the Mediterranean 
freshwater budget driven by the African summer monsoon and Atlantic 
winter storms (e.g. Marzocchi et al., 2015, 2019; Simon et al., 2017). 
Since higher freshwater discharge rates occur at precession minima 
times and their Stage 3 sedimentary expression is considered to be the 
mudstone intervals (Fig. 3a; Manzi et al., 2009), mudstone interbeds 
(both onshore and offshore; e.g. Figs. 5h-j) represent the highstand ep
isodes (e.g. Manzi et al., 2009; Roveri et al., 2008a; Omodeo-Salé et al., 
2012; Fig. 3), while continental facies onshore (e.g. conglomerates in the 
Apennines; Fig. 5g) and offshore (clastic beds in the Levant Basin) and 
gypsum beds (Algero-Balearic, Liguro-Provencal, CMD, Tyrrhenian, 
Caltanissetta, Ionian, Sirte and Polemi-Pissouri basins; Figs. 5h-j) 
represent the lowstand (e.g. Roveri et al., 2008a; Manzi et al., 2009; 
Meilijson et al., 2019; Fig. 3). If Atlantic was the major source of sulfate 
for Stage 3 gypsum (e.g. García-Veigas et al., 2018) and an intervening, 
relatively shallow (Sicily) sill was establishing Western and Eastern 
Mediterranean division during the MSC (e.g. Garcia-Castellanos et al., 
2009, 2020; Micallef et al., 2018), the presence of Stage 3 gypsum to the 
east of the Sicily sill (Fig. 2b) implies that the Mediterranean base level 
never dropped below the (maximum estimated) paleodepth of the sill (i. 
e. ~430 m; Garcia-Castellanos et al., 2009) during Stage 3 and Western 
and Eastern Mediterranean remained connected also during the arid 
(lowstand) phases of the precession cycles. 

A Mediterranean step-wise refilled and at times filled with water up 
to the marginal belt agrees with: (1) Paratethyan biota being present 
only in intermediate-deeper settings during substage 3.1, but more 
widespread including marginal settings during substage 3.2; (2) the W-E 
homogeneity of Paratethyan ostracod assemblages around the Medi
terranean marginal belt (Gliozzi et al., 2007; Stoica et al., 2016; Sciuto 
et al., 2018; Sciuto and Baldanza, 2020; Fig. 9a); (3) the presence, in 
marginal basins, of Paratethyan fish (Bannikov et al., 2018; Schwarz
hans et al., 2020), dinocysts (e.g. Pellen et al., 2017; Fig. 9b) and bio
markers (Vasiliev et al., 2017; Fig. 10c); (4) the occurrence of a 
monospecific assemblage of abundant Sphenolithus spp. just below the 
M/P boundary at ODP Sites 978, 975 and 967 (Castradori, 1998); (5) the 
requirement of water from the Mediterranean to explain the Sr isotope 
ratios of ostracods that inhabited marginal subaqueous environments 
(Andreetto et al., 2021); (6) the Atlantic-like sulfate values (although 
variably diluted and affected by microbial processes; Fig. 10b) of the 
UU/UG gypsum beds (García-Veigas et al., 2018); (7) the presence of 
long chain alkenones in the Sicilian UG beds similar to those observed in 
present-day marine settings (Fig. 10c; Vasiliev et al., 2017). 

Major problems also exist with the half-full stratified scenario: (1) it 
does not provide a proper mechanism for gypsum precipitation at 
several hundreds, or thousands, meters water depth; (2) it fails to 
explain how unquestionable shallow-water (< 50 m) benthic organisms 
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such as Ammonia tepida and Cyprideis sp. could survive at hundreds of 
meters of depth and beyond; (3) it does not provide an explanation for 
the high abundance of coarse-grained detritus at intermediate and deep- 
water locations, especially when compared to deep-water Pliocene 
samples, as well as for the broad absence of MSC deposits in the shelf 
domain; (4) a persistent Atlantic inflow without outflow seems to be a 
configuration that cannot be maintained stable for ~200 kyr. Indeed, 
models coupling the inflow of marine waters with the erosion of the 
gateway channel concluded that, if the Mediterranean level was lowered 
by at least several hundred meters below present sea level, any small 
overtopping of water from the Atlantic would inevitably trigger a fast 
refill of the basin that, if responsible for the erosion trough the Alborán 
Basin, should have involved an unprecedented water discharge and be 
completed within a few years or less (Garcia-Castellanos et al., 2020 and 
references therein). The scenario arising from Meilijson et al., 2019, 
Figs. 3b, 4a) is also problematic for a high base-level Mediterranean. In 
order to simultaneously reach precipitation of gypsum and halite in 
different basins sharing the same water, the water has to be of high 
salinity and stratified. Simon and Meijer (2017) demonstrated that this 
can be achieved with slow overturning circulation, but it is currently 
unclear how realistic this process is. 

7.3. Demise of the MSC (5.33 Ma): the Zanclean marine replenishment 

The conspicuous and abrupt transition to normal marine sediments 
in the Mediterranean is globally and historically important because it is 
the origin of the stratigraphic position of the Miocene/Pliocene 
boundary (Van Couvering et al., 2000). From an ocean perspective, it is 
not an ideal stratigraphic location being difficult to locate from biozone 
data even in the adjacent Atlantic (Hodell et al., 2001; Krijgsman et al., 
2004; Van den Berg et al., 2015). However, from a Mediterranean 
perspective it provides a clear and unambiguous end to the MSC and the 
restoration of normal marine conditions. All evidence show that the 
onset of the Zanclean marine replenishment followed a period of relative 
lowstand that exposed all the Mediterranean margins (see subsection 
3.12; Figs. 6a-b, f) and kept intermediate and deep basins underwater 
(see subsection 4.8). Yet again, the key dispute concerns the exact depth 
of the Mediterranean base level preceding the Miocene/Pliocene 
transition. 

Building on the isolated Mediterranean scenario, base level imme
diately before the early Zanclean was more than thousand kilometers 
below eustatic sea level (Fig. 10e; e.g. Hsü et al., 1973a; Blanc, 2002; 
Loget et al., 2006; Garcia-Castellanos et al., 2009; Pérez-Asensio et al., 
2012; García-Alix et al., 2016; Amadori et al., 2018; Micallef et al., 2018, 
2019; Camerlenghi et al., 2019; Kartveit et al., 2019; Madof et al., 2019; 
Ben Moshe et al., 2020; Caruso et al., 2020; Cazzini et al., 2020; Mas and 
Fornós, 2020; Spatola et al., 2020). Hydrodynamic erosional models 
allowed a reinterpretation of the erosional features across the strait of 
Gibraltar (Campillo et al., 1992; Blanc, 2002) suggesting that a sudden 
breach of the Mediterranean-Atlantic divide at Gibraltar resulted in a 
vast cascade of Atlantic water that refilled the entire Mediterranean in 
less than 2 years (i.e. rates of ten meters per day) spilling first into the 
Western Mediterranean (see the extensive review in Garcia-Castellanos 
et al., 2020) and then, after reaching the level of the Sicily sill, pouring 
into the Eastern Mediterranean (Micallef et al., 2018, 2019; Ben Moshe 
et al., 2020; Spatola et al., 2020). This concept of catastrophic refilling 
has led to terms such as “Zanclean flood” or “deluge”. Evidence sup
porting the catastrophic flood mechanism mostly comes from the 
seismic reflection dataset and includes: 1) the presence of >250 m deep 
and 390-km-long incisions on both sides of the Gibraltar Strait (Garcia- 
Castellanos et al., 2020); 2) the detection of (allegedly) Pliocene-aged 
chaotic sedimentary bodies stretching for kilometers in the Alborán 
Basin (Garcia-Castellanos et al., 2020 and references therein) and Ionian 
Basin at the foot of the Malta Escarpment (Micallef et al., 2018, 2019; 
Spatola et al., 2020; Fig. 8c). A further argument is the bathymetric jump 
of several hundred meters between the late Messinian and the early 

Pliocene sediments (e.g. Caruso et al., 2020; Fig. 6d). 
Instantaneous sea level rise is not the only possible refilling model. 

Bache et al. (2012) suggested the reflooding occurred in two steps at 
~5.60 Ma, accompanied by a moderate (≤ 500 m) rise, followed by a 
rapid rise of 600-900 m at around 5.46 Ma tracking the deposition of the 
deep basin evaporites and resulting from the collapse of the Gibraltar 
divide. There is also the reconnection model that follows from a Stage 3 
Mediterranean that is already relatively full and with the base level 
possibly oscillating of 400 ± 100 m with precessional frequency 
(Fig. 10h; Fortuin and Krijgsman, 2003; Ben Moshe et al., 2020; 
Andreetto et al., 2021). In this case, only a sea level rise of a few hundred 
meters is required to restore the Mediterranean to the Atlantic level 
(Fig. 10h), which was hypothesized to have occurred in the last pre
cessional cycle of the Messinian (Marzocchi et al., 2016; Fig. 3a). 

In detail, the re-establishment of a fully marine faunal diversity and 
oceanic geochemistry (e.g. 87Sr/86Sr ratios and δ18O) occurred more 
gradually over one or more precessional cycles in the earliest Zanclean 
(e.g. Iaccarino et al., 1999; Pierre et al., 1998, 2006; Cipollari et al., 
2013; Roveri et al., 2019a; Bulian et al., 2021). This suggests that 
stressed ecological conditions at first only suitable for opportunistic 
organisms to survive (e.g. Bulian et al., 2021) developed (or persisted) in 
the Mediterranean as marine replenishment occurred (e.g. Rouchy et al., 
2003). One possible mechanism for achieving this may be the physico- 
chemical turnover in the water column triggered by the re-established 
two-way exchange with the Atlantic which, for reasons that are 
largely unknown, took time (at least oneprecession cycle; Pierre et al., 
2006) to displace surficial Paratethyan water and restore normal marine 
conditions (Marzocchi et al., 2016). 

8. Methods and proxies to better reconstruct base level and 
connectivity changes 

Chronological uncertainty and spatial variability limit the use of 
both sedimentological and paleontological information to achieve a 
comprehensive and coherent basin-wide interpretation of the conditions 
and drivers of Stage 3 environments and water levels. Alternative 
methods are therefore required to clarify connectivity relationships and 
constrain base-level conditions. This section explores the principles and 
potential of geochemical, backstripping and numerical modelling tech
niques that could be used to further test existing hypotheses and 
enhance understanding of the complex environmental conditions 
experienced by the Mediterranean during the latest Messinian. 

8.1. Geochemical proxies 

Radiogenic strontium isotopes. Radiogenic strontium isotope ratio 
(87Sr/86Sr) is a widely applied geochemical tool in provenance studies, 
including the reconstruction of the hydrological circuit and connectivity 
of basins with little or null oceanic entries. Its potential to detect the 
provenance of the hydrological fluxes derives from the unique 87Sr/86Sr 
ratio that typifies each water source and from the negligible effects of 
isotopic fractionation during the liquid-solid transition (see Hajj et al., 
2017). 

Mineral phases precipitating in endorheic lakes uptake Sr with 
87Sr/86Sr ratio that reflects the mixing of all feeding surficial and un
derground streams and whose 87Sr/86Sr fingerprint hinges on the 
composition and age of watershed bedrock (see Peucker-Ehrenbrink and 
Fiske, 2019; Andreetto et al., 2021 and references therein). When river 
water mixes with seawater such as in the oceans, semi-enclosed basins or 
estuaries, mineral phases uptake Sr with oceanic 87Sr/86Sr ratios 
because the high oceanic Sr concentration (~7.8 mg/l today; Veizer, 
1989) masks the impact of the ~100 times lower concentrated conti
nental Sr-sources (~0.0780 mg/l; Palmer and Edmond, 1992). This is 
valid as long as a certain ratio of continental-marine water mixing is 
fulfilled, beyond which 87Sr/86Sr ratios deviate towards the 87Sr/86Sr 
ratios of the non-marine source(s) (Ingram and Sloan, 1992). For the 
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Mediterranean to attain non-marine 87Sr/86Sr ratios (like during the 
MSC), Topper et al. (2014) calculated a mixing of at least 1:4 (Atlantic: 
freshwater) to be required. 

If Mediterranean subbasins hosted endorheic lakes (Figs. 10c, e), the 
87Sr/86Sr isotope ratios measured on ostracod valves or gypsum crystals 
of each lake are expected to generate a scattered distribution by virtue of 
the different geology in the hinterland of each basin. By contrast, some 
degree of connection between different basins and the Mediterranean 
water mass (Figs. 10d, f) is expected to result in more homogeneous 
87Sr/86Sr ratios because, although isotopically-different, local rivers mix 
with a water mass that has the same 87Sr/86Sr value and (much higher) 
Sr concentration for each basin (Andreetto et al., 2021). In this scenario, 
differences in the 87Sr/86Sr ratios between basins are likely the reflection 
of the different 87Sr/86Sr ratio of the local input in each basin (Andreetto 
et al., 2021). The application of numerical models assists to identify and 
quantify the different water sources feeding the basin(s) in question and 
(e.g. Placzek et al., 2011; Topper et al., 2011, 2014; Doebbert et al., 
2014; Rossi et al., 2015b; Modestou et al., 2017; Grothe et al., 2020; 
Andreetto et al., 2021). 

Sulfate isotopes. When sulfate-bearing minerals precipitate in a basin 
they uptake dissolved S and O with δ34SSO4 and δ18OSO4 isotopic 
composition that, once corrected for the fractionation effects during 
liquid-solid transition (see subsection 6.2), can be assimilated to that of 
the mother brine. The higher concentrated source of sulfate is seawater 
(with present-day δ34SSO4=21.15±0.15‰ and δ18OSO4=8.67±0.21‰, 
Johnston et al., 2014; with Messinian values of ~22±0.2‰ for the 
δ34SSO4 and ~9±2‰ for the δ18OSO4; Turchyn and Schrag, 2004; Mar
kovic et al., 2016; Masterson et al., 2016). Significantly higher inputs 
from the ~1000 times less concentrated riverine freshwater (both sur
ficial and underground) with respect to the ocean water (more than 1:5 
according to Lu et al., 2001) can modify the marine δ34SSO4 and δ18OSO4 
isotopic composition of the mother brine (Utrilla et al., 1992; Lu et al., 
2001) and have it deviated from that of the ocean (Lu et al., 2001). This 
deviation is normally towards lower values, because river-derived dis
solved sulfate is generally depleted in heavy isotopes 34S and 18O 
compared to oceanic sulfate because these isotopes mainly come from 
the oxidation of 34S-depleted pyrite (FeS2) on the continents and to a 
lesser extent from the dissolution of older sulfate-bearing minerals 
(Claypool et al., 1980; Turchyn and Schrag, 2004; Burke et al., 2018). 
However, when marine sulfate is preferentially leached in the catch
ment, 34S of the freshwater-dissolved sulfate and [SO4

2-] likely increase, 
therefore reducing the continental-marine mixing ratio necessary to 
deviate the resulting sulfate isotopic signature away from marine values. 
Unfortunately, the sulfate isotopic composition is not provided for a 
number of major Mediterranean rivers (Burke et al., 2018) nor for the 
Eastern Paratethys and it is hardly assessed with the catchment-forming 
lithologies (Liu et al., 2017; Burke et al., 2018), making sulfate isotopes 
still an unsuitable tracer of non-marine water provenance in Mediter
ranean subbasins. 

Deviation of δ34SSO4 and δ18OSO4 from the marine average can also 
be the result of isotopic fractionation during microbial sulfate reduction 
(MSR; Fritz et al., 1989; Berner, 1999). MSR produces 34S-depleted 
hydrogen sulfide (~0 to 70‰ lighter than initial sulfate; Brunner and 
Bernasconi, 2005; Sim et al., 2011; Leavitt et al., 2013) and induces the 
enrichment in 34S and 18O of the residual sulfate pool (Kaplan and Rit
tenberg, 1964; Thode and Monster, 1965; Turchyn et al., 2006; Wort
mann et al., 2007). Therefore, if isotopically light H2S produced by MSR 
leaves the system as a sulfide mineral (most likely pyrite), the resulting 
dissolved sulfate would have δ34SSO4 and δ18OSO4 isotopic signatures 
higher than the oceanic one (Brunner et al., 2005). However, if the MSR- 
produced H2S is re-oxidized back to sulfate through abiotic or microbial 
sulfide oxidation, isotopically light sulfate will be brought back to the 
34S-enriched sulfate pool, producing little or no enrichment in 34S 
observed in the resulting sulfate (Gomes and Johnston, 2017 and ref
erences therein; Pellerin et al., 2019). Slight deviations from marine 
δ18OSO4 and δ34SSO4 values of sulfate reflect both biological sulfur 

cycling and/or freshwater riverine inputs (e.g. Utrilla et al., 1992; Lu 
et al., 2001; Turchyn et al., 2009) (Fig. 10b). Untangling the relative 
importance of these processes is key to understanding the Mediterra
nean sulfur isotope record and gleaning paleoenvironmental insights 
into Stage 3. 

Hydrogen isotopes. Organic geochemistry biomarker-based tools can 
be used as independent proxies for reconstructing sea surface tempera
tures, relative changes in the basin hydrology and, indirectly, salinity. 
Basin water properties are reflected in a variety of life forms. Different 
types of organisms produce specific organic compounds that serve as 
molecular biomarkers. These large biomolecules record the changes in 
the hydrogen isotopic composition of the water used by different groups 
of biomarker producers (i.e. different organisms). The principle behind 
the method is to measure δD on biomarkers produced in Mediterranean 
Sea waters (e.g. alkenones, produced by a few species of haptophyte 
coccolithophores algae) during the MSC and compare the results with 
the δD signals retrieved from biomarkers produced in the open ocean 
ideally at the same time intervals. The influence of precipitation on the 
changes in hydrological budget can be monitored by measuring the δD 
of long chain n-alkanes (Sachse et al., 2006), biomarkers predominantly 
produced by higher terrestrial plants that rely on precipitation for plant 
growth, therefore reflecting the changes in the δD of the precipitation. 
The extreme base level drop(s) suggested for the Mediterranean during 
the MSC would, in principle, indicate a negative precipitation (P) +
runoff (R) – evaporation (E) ratio. Such a negative water budget 
(E>P+R) results in waters increasingly enriched in δD whereas, a pos
itive water balance (E<P+R) results instead in a negative shift of δD 
values. The analysis of compound specific δD of alkenones, long and 
short chain n-alkanes can be used to constrain E/(P+E) relationships. 

8.2. Backstripping analyses 

Backstripping uses paleobathymetry, sea level and sediment thick
ness to quantify the tectonic and isostatic components of subsidence. If 
tectonic subsidence or uplift history are known relative to the current 
position and depth of paleoshoreline markers, an inverse approach al
lows base level to be estimated. A number of approaches have been 
applied to the MSC, using erosional surfaces (e.g. Amadori et al., 2018), 
terraces (Micallef et al., 2018) or fluvial network characteristics (Urgeles 
et al., 2011) as paleoshoreline indicators. The relief on erosional features 
has also been used to estimate minimum base-level variation (Frey- 
Martinez et al., 2004). 

Apart from the quantitative constraints on base level that back
stripping provides, consideration of the regional implications of isostatic 
subsidence and the gravitational impact of redistributing water masses 
(such as in the cascading model of Roveri et al., 2014c; Fig. 10b) and 
evaporite precipitation is important in gateway regions like Gibraltar, 
which due to their shallow and restricted nature are exceptionally sen
sitive to vertical motions. Here, both flexural effects and gravitational 
effects on local sea level on the Atlantic side of the strait has the po
tential to influence Mediterranean-Atlantic connectivity driving paleo
environmental changes in the basin itself (Coulson et al., 2019). 

8.3. Modelling 

Numerical models can be used complementary to lab- and field- 
based studies, or to find answers to open questions by testing the 
physical plausibility of hypotheses and their compatibility with the 
available sedimentological/stratigraphic/paleontological/geochemical 
data, which have to constrain model results and not adjust to it. For 
example, whether gypsum beds in marginal/intermediate basins can 
precipitate at the same time as the halite in deep basins is an intriguing 
question that circulates in the MSC literature (e.g. Van Couvering et al., 
1976), but whether this is physically and geochemically possible is yet to 
be answered. In a first model analysis, Simon and Meijer (2017) found 
that the required stratification can indeed be achieved for specific 
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conditions including a slow overturning circulation. A different 
approach is needed to determine whether such slow circulation is to be 
expected or if other scenarios should be considered. A thermo-haline 
stratification that enables coeval precipitation of two evaporites for a 
considerable time span might also influence the degree of heterogeneity 
of other parameters, such as strontium concentration. Previous models 
showed the influence of the Atlantic Ocean and major rivers (Topper 
et al., 2014) and of evaporation (Flecker et al., 2002) on the Sr value of a 
basin with restricted oceanic inflow and assuming a homogeneous dis
tribution of strontium throughout the water column (Flecker et al., 
2002; Topper et al., 2011, 2014; Modestou et al., 2017), but it is un
certain if this holds true in conditions of water stratification. New in
sights into this behavior would have consequences for the way the 
strontium dataset (Fig. 10a) must be interpreted. Another loose end 
where the model approach can provide insight relates to the question 
whether a high water level could have been reached without an inflow 
from the Atlantic. Climate simulations conducted by Gladstone et al. 
(2007), Simon et al. (2017) and Marzocchi et al. (2019) indicate that this 
is not possible with today’s bathymetry. A quantitative analysis 
exploring the Mediterranean water level reached in different situations 
(i.e. with or without an Atlantic or Paratethys in and outflow) and with 
information on the Mediterranean hypsometry that may be provided by 
isostatic restoration of the seafloor topography (flexural backstripping) 
could help understanding how the Messinian Salinity Crisis ended. 

9. Certainties, open problems and future directions 

Our understanding of the nature of MSC Stage 3 has evolved 
considerably over the last fifty years. However, there are still such 
disparate models for the paleoenvironmental conditions and basin 
connectivity that led to Stage 3 deposition and that express the chal
lenges that the study of this interval presents: it is a relatively short 
interval and its sedimentary expression varies spatially. It is no surprise 
that the main point of contention lies in reconciling the observations 
from seismic profiles and well data, which are largely interpreted as 
favoring the desiccated scenario, with the sedimentological, paleonto
logical and geochemical data from the marginal basins record, largely 
discontinuous and unaddressed from seismic-based and computational- 
based studies and mainly supporting the full-Mediterranean hypothesis. 

To a large extent this mismatch is the result of the lack of intersection 
of the two datasets. Some Stage 3 onshore localities are meticulously 
studied from the stratigraphic, sedimentological, paleontological and 
geochemical point of view, showing remarkably consistent and ho
mogenous trends and patterns (as previously highlighted by Roveri 
et al., 2008a). However, changes at precessional and subprecessional 
scale are difficult to trace from one exposure to another and are well 
below the level of seismic resolution, making onshore-offshore correla
tion at this scale impossible. Even correlation between onshore sections 
is problematic since most of the stratigraphic sections are incomplete, 
with erosion surfaces at the bottom and/or top (i.e. the Miocene/Plio
cene boundary), and this lack of stratigraphic continuity frustrates at
tempts to constrain ages by cyclostratigraphy. A future focus on 
strengthening the available chronostratigraphic framework (Fig. 3) and 
making it inclusive of the fragmented outcrops is required to better 
understand the paleoenvironmental and paleohydrological changes 
suffered by the Mediterranean marginal belt through time. The suc
cessful drilling of the three IODP proposals currently in the scheduling 
pool (see Camerlenghi and Aloisi, 2020), all of which propose to recover 
Stage 3 sediments, will also provide transformative information 
enabling far better offshore-onshore correlation and interpretation of 
currently enigmatic seismic data. In the meantime, re-evaluation of 
existing DSDP and ODP material, particularly through the application of 
more novel geochemical techniques and, where possible, access to ma
terial collected during industrial drilling would be helpful for under
standing the deep Mediterranean Basin during this interval. 

Extensive paleontological studies have established that Stage 3 

contains in situ biota assemblages of Paratethyan provenance implying 
brackish water conditions. More problematic is the differentiation of in 
situ and reworked marine microfauna and flora and the paleoecological 
significance of dwarfism in marine calcareous microfossils/algae. These 
have important repercussions for the Mediterranean connectivity and 
base-level reconstruction. 

The geochemical dataset for Stage 3, particularly strontium isotopes 
and hydrogen isotopes on biomarkers, is both demonstrably valuable in 
providing key constraints on connectivity and environmental condi
tions, and frustratingly inadequate in terms of data distribution. It has 
great potential as a constraint on quantitative sensitivity analysis of the 
different hydrochemistry scenarios that follow from the endmember 
Stage 3 hypotheses, but substantially more data is required. 

An approach which combines geological, geochemical, geophysical 
and paleontological data with numerical modelling (e.g. climate simu
lations, backstripping analyses and paleoceanographic models) will 
provide a more accurate reconstruction of Mediterranean paleogeog
raphy and the processes that occurred during the final phase of the 
Messinian Salinity Crisis. 
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Kaya, F., 2016. Updating the Europe-Africa small mammal exchange during the late 
Messinian. J. Biogeogr. 43 (7), 1336–1348. 

Garcia-Castellanos, D., Villaseñor, A., 2011. Messinian salinity crisis regulated by 
competing tectonics and erosion at the Gibraltar arc. Nature 480, 359–363. https:// 
doi.org/10.1038/nature10651. 

Garcia-Castellanos, D., Estrada, F., Jiménez-Munt, I., Gorini, C., Fernàndez, M., 
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699–710. 

García-Veigas, J., Cendón, D.I., Gibert, L., Lowenstein, T.K., Artiaga, D., 2018. 
Geochemical indicators in Western Mediterranean Messinian evaporites: 
Implications for the salinity crisis. Mar. Geol. 403, 197–214. https://doi.org/ 
10.1016/j.margeo.2018.06.005. 

F. Andreetto et al.                                                                                                                                                                                                                              

https://doi.org/10.1144/petgeo2015-096
https://doi.org/10.1144/petgeo2015-096
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0520
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0520
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0520
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0525
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0525
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0525
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0530
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0530
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0535
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0535
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0540
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0540
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0540
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0545
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0545
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0550
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0550
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0550
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0555
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0555
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0555
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0560
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0560
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0565
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0565
https://doi.org/10.1016/j.paleo.2011.07.017
https://doi.org/10.1016/j.paleo.2011.07.017
https://doi.org/10.1016/j.palaeo.2012.05.022
https://doi.org/10.1016/j.margeo.2014.05.010
https://doi.org/10.3301/GFT.2016.03
https://doi.org/10.3301/GFT.2016.03
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0590
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0590
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0590
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0590
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0590
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0595
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0595
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0595
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0595
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0600
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0600
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0600
https://doi.org/10.1016/j.marpetgeo.2014.01.018
https://doi.org/10.1016/j.chemgeo.2014.04.008
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0615
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0615
https://doi.org/10.1016/j.marpetgeo.2014.09.008
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0625
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0625
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0625
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0630
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0630
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0630
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0635
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0635
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0640
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0640
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0640
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0645
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0645
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0645
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0645
https://doi.org/10.1016/j.geobios.2006.10.003
https://doi.org/10.1016/j.geobios.2006.10.003
https://doi.org/10.3906/yer-1205-11
https://doi.org/10.3906/yer-1205-11
https://doi.org/10.1016/j.margeo.2016.04.004
https://doi.org/10.1016/j.margeo.2016.04.004
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0665
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0665
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0665
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0670
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0670
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0675
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0675
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0675
https://doi.org/10.1016/j.earscirev.2015.08.007
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0685
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0685
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0685
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0685
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0685
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0685
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0690
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0690
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0690
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0695
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0695
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0695
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0700
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0700
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0700
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0705
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0705
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0705
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0705
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0705
https://doi.org/10.1016/j.jafrearsci.2016.07.007
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0715
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0715
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0715
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0720
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0720
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0720
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0720
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0725
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0725
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0725
https://doi.org/10.1038/nature10651
https://doi.org/10.1038/nature10651
https://doi.org/10.1038/nature08555
https://doi.org/10.1016/j.earscirev.2019.103061
https://doi.org/10.1016/j.earscirev.2019.103061
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0745
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0745
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0745
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0750
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0750
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0750
http://refhub.elsevier.com/S0012-8252(21)00076-3/rf0750
https://doi.org/10.1016/j.margeo.2018.06.005
https://doi.org/10.1016/j.margeo.2018.06.005


Earth-Science Reviews 216 (2021) 103577

41

Gargani, J., Moretti, I., Letouzey, J., 2008. Evaporite accumulation during the Messinian 
Salinity Crisis: the Suez rift case. Geophys. Res. Lett. 35 (2) https://doi.org/10.1029/ 
2007GL032494. 

Gaullier, V., Chanier, F., Lymer, G., Vendeville, B., Maillard, A., Thinon, I., Lofi, J., 
Sage, F., Loncke, L., 2014. Salt tectonics and crustal tectonics along the Eastern 
Sardinian margin, Western Tyrrhenian: new insights from the «METYSS 1» cruise. 
Tectonophysics. https://doi.org/10.1016/j.tecto.2013.12.015. 

Geletti, R., Zgur, F., Del Ben, A., Buriola, F., Fais, S., Fedi, M., Forte, E., Mocknik, A., 
Paoletti, V., Pipan, M., Ramella, R., Romeo, R., Romi, A., 2014. The Messinian 
Salinity Crisis: new seismic evidence in the West-Sardinian Margin and Eastern 
Sardo-Provençal basin (West Mediterranean Sea). Mar. Geol. 351, 76–90. https:// 
doi.org/10.1016/j.margeo.2014.03.019. 

Gennari, R., Iaccarino, S.M., Di Stefano, A., Sturiale, G., Cipollari, P., Manzi, V., 
Roveri, M., Cosentino, D., 2008. The Messinian–Zanclean boundary in the Northern 
Apennine. Stratigraphy 5, 307–322. 

Gennari, R., Manzi, V., Angeletti, L., Bertini, A., Biffi, U., Ceregato, A., Rosso, A., 2013. 
A shallow water record of the onset of the Messinian salinity crisis in the Adriatic 
foredeep (Legnagnone section, Northern Apennines). Paleogeogr. Paleoclimatol. 
Paleoecol. 386, 145–164. 

Ghibaudo, G., Clari, P., Perello, M., 1985. Litostratigrafia, sedimentologia ed evoluzione 
tettonico-sedimentaria dei depositi miocenici del margine sud-orientale del bacino 
terziario ligure-piemontese (Valli Borbera, Scrivia e Lemme). In memoria di Carlo 
Sturani. Boll. Soc. Geol. Ital. 104 (3), 349–397. 

Ghielmi, M., Minervini, M., Nini, C., Rogledi, S., Rossi, M., Vignolo, A., 2010. 
Sedimentary and tectonic evolution in the eastern Po-Plain and northern Adriatic 
Sea area from Messinian to Middle Pleistocene (Italy). Rendiconti Lincei 21 (1), 
131–166. https://doi.org/10.1007/s12210-010-0101-5. 

Ghielmi, M., Minervini, M., Nini, C., Rogledi, S., Rossi, M., 2013. Late Miocene-Middle 
Pleistocene sequences in the Po Plain-Northern Adriatic Sea (Italy): the stratigraphic 
record of modification phases affecting a complex foreland basin. Marine and 
Petroleum Geology, Special Issue: The Geology of the Periadriatic Basin and of the 
Adriatic Sea 42, 50–81. https://doi.org/10.1016/j.marpetgeo.2012.11.007. 
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Medaouri, M., Déverchère, J., Graindorge, D., Bracene, R., Badji, R., Ouabadi, A., 
Yelles, K., Bendib, F., 2014. The transition from Alboran to Algerian basins (Western 
Mediterranean Sea): chronostratigraphy, deep crustal structure and tectonic 
evolution at the rear of a narrow slab rollback system. J. Geodyn. 77, 186–205. 
https://doi.org/10.1016/j.jog.2014.01.003. 

Meijer, P.T., Krijgsman, W., 2005. A quantitative analysis of the desiccation and re-filling 
of the Mediterranean during the Messinian Salinity Crisis. Earth Planet. Sci. Lett. 240 
(2), 510–520. 

Meilijson, A., Steinberg, J., Hilgen, F., Bialik, O.M., Waldmann, N.D., Makovsky, Y., 
2018. Deep-basin evidence resolves a 50-year-old debate and demonstrates 
synchronous onset of Messinian evaporite deposition in a non-desiccated 
Mediterranean. Geology 46 (3), 243–246. https://doi.org/10.1130/G39868.1. 

Meilijson, A., Hilgen, F., Sepúlveda, J., Steinberg, J., Fairbank, V., Flecker, R., 
Waldmann, N.D., Spaulding, S.A., Bialik, O.M., Boudinot, F.G., Illner, P., 
Makovsky, Y., 2019. Chronology with a pinch of salt: integrated stratigraphy of 
Messinian evaporites in the deep Eastern Mediterranean reveals long-lasting halite 
deposition during Atlantic connectivity. Earth-Sci. Rev. 194, 374–398. https://doi. 
org/10.1016/j.earscirev.2019.05.011. 

Melinte-Dobrinescu, M.C., Suc, J.-P., Clauzon, G., Popescu, S.-M., Armijo, R., Meyer, B., 
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bassins peu profonds avec dépot d’évaporites lagunaires. In: Drooger, C.W. (Ed.), 
Messinian Events in the Mediterranean. North-Holland Publ. Co., Amsterdam, 
pp. 68–81. 

Netzeband, G., Hübscher, C., Gajewski, G., 2006. The structural evolution of the 
Messinian evaporites in the Levantine Basin. Mar. Geol. 230, 249–273. 

Ochoa, D., Sierro, F.J., Lofi, J., Maillard, A., Flores, J.A., Suárez, M., 2015. Synchronous 
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Gürbüz, K., 2017. Sedimentary evidence for late Messinian uplift of the SE margin of 
the Central Anatolian Plateau: Adana Basin, southern Turkey. Basin Res. 29, 
488–514. https://doi.org/10.1111/bre.12159. 

Reiche, S., Hübscher, C., Ehrhardt, A., 2016. The impact of salt on the late Messinian to 
recent tectonostratigraphic evolution of the Cyprus subduction zone. Basin Res. 28 
(5), 569–597. https://doi.org/10.1111/bre.12122. 

Ricchiuto, T.E., McKenzie, J.A., 1978. Stable Isotopic investigation of Messinian sulfate 
samples from DSDP. LEG 42. Eastern Mediterranean Sea. In: Texas A M University, 
O.D.P.C.S., TX, United States (Ed.), Initial reports of the Deep Sea Drilling covering 
Leg 42 of the cruises of the drilling vessel Glomar Challenger. Malaga, Spain to 
Istanbul, Turkey. April-May 1975. University of California. Scris Institution of 
Oceanography, National Science Foundation. National Ocen Sediment Coring 
Program, pp. 657–660. 

Rio, D., Negri, A., 1988. Calcareous nannofossils (Monticino Quarry, Faenza). In: De 
Giuli, C., Vai, G.B. (Eds.), Fossil Vertebrates in the Lamone Valley, Romagna 
Apennines. Field Trip Guidebook of the International Workshop “Continental faunas 
at the Miocene/Pliocene boundary”, Faenza, pp. 55–57. 

Robertson, A.H.F., 1998a. Late Miocene paleoenvironments and tectonic settings of the 
southern margin of Cyprus and the Eratosthenes Seamount. In: Robertson, A.H.F., 
Emeis, K.C., Richter, C., Camerlenghi, A. (Eds.), Proc. ODP, Sci. Res., vol. 160 Ocean 
Drilling Program, College Station, TX, pp. 453–463. 

Robertson, A.H., 1998b. Tectonic significance of the Eratosthenes Seamount: a 
continental fragment in the process of collision with a subduction zone in the eastern 
Mediterranean (Ocean Drilling Program Leg 160). Tectonophysics 298 (1-3), 63–82. 

Robertson, A.H.F., Eaton, S., Follows, E.J., Payne, A.S., 1995. Depositional processes and 
basin analysis of Messinian evaporites in Cyprus. Terra Nova 7, 233–253. 

Roca, E., Guimera, J., 1992. The Neogene structure of the eastern iberian margin: 
structural constraints on the crustal evolution of the Valencia trough (western 
mediterranean). Tectonophysics 203, 203–218. 

Roep, Th.B., Van Harten, D., 1979. Sedimentological and ostracodological observations 
on Messinian post-evaporite deposits in some southeastern Spanish basins. Annales 
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Sciuto, F., Baldanza, A., Temani, R., Privitera, G., 2018. New reports of Paratethyan 
ostracods affinity from the Mediterranean Basin (Sicily, Italy). Paleontologia 
Electronica 21 (1), 1. https://doi.org/10.26879/800. 

Segev, A., Avni, Y., Shahar, J., Wald, R., 2017. Late Oligocene and Miocene different 
seaways to the Red Sea-Gulf of Suez rift and the Gulf of Aqaba-Dead Sea basins. 
Earth Sci. Rev. 171, 196–219. https://doi.org/10.1016/j.earscirev.2017.05.004. 

Selli, R., 1954. Il Bacino del Metauro. Giorn. Geol. 24, 1–294. 
Selli, R., 1960. Il Messiniano Mayer-Eymar 1867. Proposta di un neostratotipo. Giornale 

di Geologia 28, 1–33. 
Selli, R., 1973. An outline of the Italian Messinian. In: Drooger, C.W. (Ed.), Messinian 

Events in the Mediterranean, pp. 150–171. Amsterdam (Kon. Nedl. Akad. 
Wetensch.).  

Sgarrella, F., Sprovieri, R., Di Stefano, E., Caruso, A., 1997. Paleoceanographic 
conditions at the base of the Pliocene in the Southern Mediterranean Basin. Riv. Ital. 
Paleontol. Stratigr. 103, 207–220. 

Sgarrella, F., Sprovieri, R., Di Stefano, E., Caruso, A., Sprovieri, M., Bonaduce, G., 1999. 
The Capo Rossello Bore-Hole (Agrigento, Sicily): cyclostratigraphic and 

paleoceanographic reconstructions from quantitative analyses of the Zanclean 
foraminiferal assemblages. Riv. Ital. Paleontol. Stratigr. 105, 303–322. 

Sierro, F.J., Flores, J.A., Civis, J., Gonza, J.A., France, G., 1993. Late Miocene 
globorotaliid event-stratigraphy and biogeography in the NE-Atlantic and 
Mediterranean. Mar. Micropaleontol. 21 (1-3), 143–167. 

Sim, M.S., Bosak, T., Ono, S., 2011. Large sulfur isotope fractionation does not require 
disproportionation. Science 333, 74–77. 

Simon, D., Meijer, P.T., 2017. Salinity stratification of the Mediterranean Sea during the 
Messinian crisis: A first model analysis. Earth Planet. Sci. Lett. 479, 366–376. 

Simon, D., Marzocchi, A., Flecker, R., Lunt, D.J., Hilgen, F.J., Meijer, P.T., 2017. 
Quantifying the Mediterranean freshwater budget throughout the late Miocene: New 
implications for sapropel formation and the Messinian Salinity Crisis. Earth Planet. 
Sci. Lett. 472, 25–37. 
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Snel, E., Mărunţeanu, M., Meulenkamp, J.E., 2006. Calcareous nannofossil 
biostratigraphy and magnetostratigraphy of the upper Miocene and lower Pliocene 
of the Northern Aegean (Orphanic Gulf-Strimon Basin areas), Greece. Paleogeogr. 
Paleoclimatol. Paleoecol. 238 (1-4), 125–150. https://doi.org/10.1016/j. 
paleo.2006.03.022. 
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Lesić, V., Tomić, D., Sokoutis, D., Meyer, B., Macalet, R., Rifelj, H., 2015. Marine 
gateway vs. fluvial stream within the Balkans from 6 to 5 Ma. Mar. Pet. Geol. 66 (1), 
231–245. https://doi.org/10.1016/j.marpetgeo.2015.01.013. 

Thinon, I., Guennoc, P., Serrano, O., Maillard, A., Lasseur, E., Réhault, J.P., 2016. 
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