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Abstract: One of the goals of new CAE (Computer Aided Engineering) software is to reduce both
time and costs of the design process without compromising accuracy. This result can be achieved,
for instance, by promoting a “plug and play” philosophy, based on the adoption of automatic mesh
generation algorithms. This in turn brings about some drawbacks, among others an unavoidable loss
of accuracy due to the lack of specificity of the produced discretization. Alternatively it is possible
to rely on the so called “meshless” methods, which skip the mesh generation process altogether.
The purpose of this paper is to present a fully meshless approach, based on Radial Basis Function
generated Finite Differences (RBF-FD), for the numerical solution of generic elliptic PDEs, with
particular reference to time-dependent and steady 3D heat conduction problems. The absence of
connectivity information, which is a peculiar feature of this meshless approach, is leveraged in
order to develop an efficient procedure that accepts as input any given geometry defined by a
stereolithography surface (.stl file format). In order to assess its performance, the aforementioned
strategy is tested over multiple geometries, selected for their complexity and engineering relevance,
highlighting excellent results both in terms of accuracy and computational efficiency. In order to
account for future extensibility and performance, both node generation and domain discretization
routines are entirely developed using Julia, an emerging programming language that is rapidly
establishing itself as the new standard for scientific computing.

Keywords: meshless; RBF-FD; heat conduction; CAE; Julia

1. Introduction

Engineering design often involve the solution of some boundary value problem,
e.g., heat conduction problems, with the aid of numerical approaches. Well-known Finite
Volume (FVM) [1] and Finite Element (FEM) [2] methods are usually employed to discretize
the governing equations, i.e., partial differential equations (PDEs), in order to obtain a
finite dimensional problem that can be solved numerically.

The solution attained in the end is indeed bound to be just an approximation, due to
an unavoidable loss of information that takes place already at this stage, and the quality of
the discretization determines how much information is lost and how much is preserved.

Usually the discretization process begins with the creation of a mesh, i.e., a subdi-
vision of the domain in many discrete cells, which is often generated by some computer
algorithm under the supervision of a specialist. Sometimes, due to time and/or budget
constraints, the mesh is automatically generated, and the designer is left free to focus
on other topics. In both cases the key point is the introduction of a mesh in the formu-
lation stage; therefore, any numerical method applied afterwards relies on the related
connectivity information.

This procedure presents some important weaknesses [3], two of them are:

• the cost of the mesh creation and the size of the consequent data structure,
• the inability to allow large (geometric) deformations of the domain.
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The first one refers to both computational and economical costs; indeed operator costs
now outweigh the cost of CPU time for the computer [3], and if the operator intervention
is avoided it becomes mandatory to use a finer automated mesh generation algorithm.
This in turn gives as output a greater data structure and thus slows down successive
numerical manipulations.

The second weakness becomes of interest in many practical cases, for example when
the solver is paired with some optimization algorithm and the geometry is changed many
times. At each step the mesh is degraded in quality, and even when morphing algorithms
are employed, the solution becomes less reliable at every iteration. In some cases a periodic
complete re-meshing of the domain becomes necessary.

These facts led to the development of various meshless or meshfree methods for the
solution of partial differential equations over complex shaped domains encountered in
practical problems [4–7]. Some authors have successfully experimented with the use of
meshfree methods in order to enforce specific boundary conditions, for example Absorbing
Boundary Conditions (ABCs), while the state equation is solved using the more traditional
Finite Element Method (FEM) [8]. Meshfree methods are also destined to play a key role in
the development of new implementations of peridynamic (PD) models, as shown in [9].
Numerical methods belonging to this class allow to skip the mesh generation procedure
altogether and, therefore, overcome its inherent shortcomings.

Most meshless methods (also called meshfree methods) can be classified according to
three different criteria [3]:

• according to the formulation procedure,
• according to the function approximation schemes, and
• according to the domain representation.

The common characteristic is the use of the so-called field nodes: at first a set of nodes
is scattered over the domain (and/or over the boundaries). Then, shape functions are
constructed for each node of interest and are based on selected local nodes; the shape
functions can change when the node of interest changes [3].

This paper discusses the implementation of one such method and its integration with
a novel node generation procedure. In order to reach maximum compatibility with com-
mercial software, the domain is assumed as defined by a generic stereolithography (.stl)
file, like those used in the fields of computer graphics and 3D printing. Furthermore the
obtained data structure is more efficient than that of a traditional mesh, since it carries no
information about the connectivity between nodes. To the best of the authors’ knowledge,
this is the first time a fully meshless approach, based on the RBF-FD method, is employed
for the accurate solution of heat conduction problems over arbitrary 3D domains defined
by a generic stereolithography CAD file.

The greater geometric flexibility of truly meshless approaches is therefore fully lever-
aged, with the aim of making them more accessible and user-friendly in the future.
More precisely, the RBF-generated Finite Differences (RBF-FD) method is employed [10,11],
similar to the one described in [5]. This method has been successfully employed for solv-
ing various heat transfer problems [12–15]. Interested readers might also refer to [16]
for further details and comparisons between the performance attained with different
RBF schemes.

This method belongs to the following classes, according to the aforementioned classi-
fication criteria:

• formulation procedure: collocation technique. The problem to be solved is formulated
in the strong form, i.e., strong forms of governing equations and boundary conditions
are directly discretized at the field nodes.

• function approximation scheme: point interpolation (PIM). All functions are approxi-
mated at a certain node using RBFs defined on a compact support around the field
nodes. In order to achieve greater accuracy and stability the RBF scheme is augmented
with a polynomial term [17,18].

• domain representation: both domain and boundaries are represented by field nodes.
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See Figure 1 for a schematic representation of the differences between the RBF-FD
meshless method and traditional mesh-based methods. It must be remarked that the
solution procedure is totally independent of the particular shape of such domain.

GEOMETRY

RBF-FDMESH-BASED

Mesh generation

Shape functions based

on a pre-defined element

Weighted residuals

DISCRETIZED

SYSTEM OF EQUATIONS

Node generation

polynomial augmented RBF

Shape functions based on

Collocation method

defined on local node support

Figure 1. Flowchart for FEM and meshless methods, inspired by that reported in [3].

The whole code is developed using Julia programming language [19] and can be
executed in parallel on multiple cores, allowing extensive code reuse and excellent compu-
tational performances already at the development stage.

Several tests over different 3D geometries with different boundary conditions will be
presented in order to illustrate the numerical properties of the proposed truly meshless
approach. Excellent results in terms of both accuracy and computational efficiency have
been obtained in each of the presented cases, confirming the ability of RBF-FD method to
easily deal with problems of engineering relevance.

2. Materials and Methods
2.1. Governing Equation

The generic heat equation with internal heat generation (see [20]) can be written in
the form

∂u
∂t
−4u = f (1)

In this paper the steady-state version of Equation (1) will be considered; therefore, the
governing equations are given by the following boundary value problem:{

−4 u = f in Ω
au + b ∂u

∂n = g on ∂Ω
(2)

where Ω is an open subset of R3 and ∂Ω its boundary; f , a, b, and g are known functions;
and n is the unit normal vector of ∂Ω. The second equation in (2) represents, therefore, a
boundary condition (b.c.).

The presented method can also be employed to solve transient heat conduction
problems, as well as generic heat transfer problems with time-dependent behavior, allowing
the implementation of standard explicit or implicit time integration schemes as shown
in [7,13,21].
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2.2. Node Generation

The first step of the employed meshless approach is to generate a 3D node distribution
in Ω and on ∂Ω, i.e., nodes are placed both inside the domain Ω and on the boundary
∂Ω according to a prescribed spacing function s. Although traditional mesh generation
software could be employed, it is obvious that truly meshless node generation could bring
great benefits in the whole meshless simulation chain. Different meshless-based node
generation algorithms have been proposed [22–25], with particular reference to the ones
based on the node-repel approach [26–28], which is employed in this work. The latter
approach consists of two sequential steps:

• generation of a volumetric node distribution in Ω that satisfies the spacing function s
on average;

• refinement of the initial node distribution through a node-repel approach that provides
a suitable node distribution also on ∂Ω.

In the last step, i.e., the refinement step, nodes are moved according to the mutual
repulsion forces of the nearest neighbor nodes in order to obtain isotropic node arrange-
ments, i.e., the spacing between the nodes is independent of the direction and matches
the prescribed spacing function s. This node-repel approach can be viewed as an iterative
process that minimizes the total potential energy U of the node distribution by moving one
node at a time. In this work 50 refinement iterations and a constant spacing function s have
been considered [27,28].

The nodes leaving the domain due to the repulsion forces during the refinement step
are projected onto the nearest boundary point, resulting in a boundary-conforming node
distribution. This projection operation is efficiently performed by exploiting an octree
data structure [29,30] for the boundary triangles of the stereolitography surface (.stl file),
which is used to determine the distance between a given node and the nearest boundary
triangle, i.e., the minimum distance between the node and the boundary.

The triangle-based octree partitioning of the space around the object is performed by
recursive subdivision of the space into octants while fulfilling the following rules:

• each leaf-box, i.e., box with no children, can not contain more than TM = 5 triangles;
• the minimum size of each leaf-box is hm = 5× 10−3 (the domain is assumed to lie in

the unit cube);
• the first constraint can be ignored if a box and its parent-box both contain exactly one

vertex of the triangulated surface, which is also the same vertex;

where the last rule avoids infinite octree subdivisions around nodes connected to more
than TM triangles. Graphical representations of generated node distributions are shown in
Figures 2 and 3 for the employed models.

(a) Boundary nodes (b) Inner nodes

Figure 2. Example of node distribution with N ≈ 50k nodes in the sphere: boundary nodes are
represented in red, inner nodes in black.
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(a) Enlarged view of a particular (b) Enlarged view of a particular

(c) Boundary nodes (d) Enlarged view of a particular
Figure 3. Enlarged views of some details of the .stl crankcase model and an example of node
distribution with N ≈ 75k nodes.

2.3. Function Approximation

The value of a function at a generic point is approximated applying the Radial Point
Interpolation Method (RPIM) using Radial Basis Functions (RBFs) augmented with polyno-
mial terms [3]. Given a boundary-conforming node distribution as outlined in Section 2.2,
this method is based on the assumption that the value u(x) taken by the function u at the
generic point x ∈ Ω can be locally approximated by the quantity uh(x) defined as follows:

u(x) ≈ uh(x) :=
n̄

∑
i=1

αi ϕ(‖x− xi‖2) +
m

∑
j=1

β j pj(x) (3)

where

• {ϕ(‖x − xi‖2) : i = 1, . . . , n̄} is a set of n̄ RBFs, each of which is associated to the
corresponding node xi. The set of the considered nodes is local, i.e., x1, . . . , xn̄ are
the n̄ nearest nodes to x. For brevity of notation, ϕ(x, xi) will be used instead of
ϕ(‖x− xi‖2).

• {pj : j = 1, . . . , m} is a complete polynomial basis of degree P.

The adoption of the polynomial is motivated by the need to solve those accuracy and
stability issues affecting pure RBF schemes [17].

In this implementation of the method, multiquadric functions [31] have been used:

ϕ(r) :=
√

1 + (εr)2 (4)

where the actual shape factor ε := ε̄/s(x) is obtained by normalizing the shape factor
parameter ε̄ with the local nodal spacing defined by the spacing function s(x).

Since the number of nodes is finite, uh is a finite-dimensional approximation of u;
therefore, great care must be taken in the choice of such number in order to balance
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efficiency and accuracy. From now on we will assume that a small number of neighbors
n̄� N located within a neighborhood of the point x is used, where N is the total number
of nodes generated. From this assumption it is implicitly understood that the RBFs have
compact support, i.e., they are zero for ‖x− xi‖ > δ for a certain δ. The employment of
compactly supported RBFs was made compulsory by two closely related reasons: the great
number of nodes required to properly describe complex shaped domains, such as those
presented in the following sections, and the consequent necessity to deal with large-scale
matrices. Local RBF expansions lead to sparse linear systems that can be efficiently solved,
in contrast to global approaches that lead to dense and ill-conditioned matrices, which
preclude any application to large scale problems [14,32–34]. Accuracy and stability issues
affecting global methods are clearly addressed in [35,36], where further possible solutions
are discussed.

This in turn means that the value assumed by uh at a certain point x only depends on
uh(xi) estimated at the closest nodes {x1, . . . , xn̄}, from now on called the stencil:

u(x) ≈ uh(x) :=
n̄

∑
i=1

αi ϕ(x, xi) +
m

∑
j=1

β j pj(x) (5)

The calculation of the weights {α1, . . . , αn̄} and {β1, . . . , βm} depends on the posi-
tion of the stencil. Therefore, if some nodes of the stencil belongs to the boundary ∂Ω,
then boundary conditions must be taken into account.

2.3.1. Stencil Contained within Ω

In this case none of the nodes belonging to the stencil lies on the boundary ∂Ω. Assum-
ing the values of the function u at the nodes of the stencil {x1, . . . , xn̄} are known, then a
linear system of equations can be solved by imposing the exactness of the approximation
uh at each of those nodes:

uh(xi) = u(xi), i = 1, . . . , n̄ (6)

Substituting the definition of uh(x) given in Equation (5) and evaluating at the n̄
points {x1, . . . , xn̄} leads to the following linear system of equations:

Φ α + P β = ū (7)

where Φ is a (n̄× n̄) square matrix with entries Φi,j = ϕ(xi, xj) as defined in Equation (4),
P is the (n̄×m) matrix of the polynomial coefficients, α ∈ Rn̄ and β ∈ Rm are the vectors
with a total of (n̄ + m) unknowns. ū is instead the (n̄× 1) column vector with entries u(xi)
for each xi node of the stencil.

In order to make the system solvable, m more rows are needed, this is why the
following additional orthogonality conditions are imposed:

n̄

∑
i=1

αi pj(xi) = 0, j = 1, . . . , m (8)

The final linear system can thus be written using block matrices notation in the
following form: [

Φ P
PT 0

]{
α
β

}
=

{
ū
0

}
(9)

which has a unique solution in the set of weights {α1 . . . αn̄, β1, . . . βm} if the n̄ nodes
x1, . . . , xn̄ are distinct.

2.3.2. Stencil with Boundary Nodes

When some boundary nodes are included in the stencil, then instead of assuming the
true value of the function u, the appropriate condition must be imposed. In the attempt of
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providing a general description we shall assume that a Robin b.c., as defined in Equation (2),
is applied to such nodes:

a(xi) uh(xi) + b(xi)
∂uh

∂n
(xi) = g(xi), xi ∈ ∂Ω (10)

where a, b, g are all known functions defined on the boundary.
Now suppose the nodes are listed in the following order: the first n̄I indices correspond

to the nodes lying within the domain Ω, the following n̄B indices correspond instead to the
nodes lying on ∂Ω, and n̄I + n̄B = n̄. More formally:{

xi ∈ Ω ⇐⇒ i ∈ I := {1, . . . , n̄I}
xi ∈ ∂Ω ⇐⇒ i ∈ B := {n̄I + 1, . . . , n̄I + n̄B}

(11)

Building on what was done when dealing with inner nodes, the problem to be solved
is the following: {

uh(xi) = u(xi), i ∈ I
a(xi) uh(xi) + b(xi)

∂uh

∂n (xi) = g(xi), i ∈ B
(12)

By substituting once again the definition of uh given in Equation (5) we get

n̄

∑
k=1

αi ϕ(xi, xk) +
m

∑
j=1

β j pj(xi) = u(xi), i ∈ I (13)

a(xi)

[
n̄

∑
k=1

αk ϕ(xi, xk) +
m

∑
j=1

β j pj(xi)

]
+

+b(xi)

[
n̄

∑
k=1

αk
∂ϕ

∂n
(xi, xk) +

b

∑
j=1

∂pj

∂n
(xi)

]
= g(xi), i ∈ B

(14)

By reordering the terms for case i ∈ B of Equation (14) in order to isolate unknown
coefficients (α’s and β’s), we obtain the following linear system:

n̄

∑
k=1

αk

(
a(xi)ϕ(xi, xk) + b(xi)

∂ϕ

∂n
(xi, xk)

)
+

+
m

∑
j=1

β j

(
a(xi)pj(xi) + b(xi)

∂pj

∂n
(xi)

)
= g(xi), i ∈ B

(15)

Once again we can now impose the orthogonality conditions of Equation (8) and
obtain a linear system of the following form:

[
Φ′ P′

PT 0

]
︸ ︷︷ ︸

M

{
α
β

}
=


ū
ḡ
0

 (16)

where the block matrix PT and the vector of unknowns {α1, . . . , αn̄} are the only unchanged
terms inherited from the previous system (9). The other terms in Equation (16) are fully
expanded below for clarity.
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[
Φ′] =



ϕ(x1, x1) . . . ϕ(x1, xn̄)
...

. . .
...

ϕ(xn̄I , x1) . . . ϕ(xn̄I , xn̄)

aϕ(xn̄I+1, x1) + b ∂ϕ
∂n (xn̄I+1, x1) . . . aϕ(xn̄I+1, xn̄) + b ∂ϕ

∂n (xn̄I+1, xn̄)
...

. . .
...

aϕ(xn̄, x1) + b ∂ϕ
∂n (xn̄, x1) . . . aϕ(xn̄, xn̄) + b ∂ϕ

∂n (xn̄, xn̄)



[
P′] =



p1(x1) . . . pm(x1)
...

. . .
...

p1(xn̄I ) . . . pm(xn̄I )

a p1(xn̄I+1) + b ∂p1
∂n (xn̄I+1) . . . a pm(xn̄I+1) + b ∂pm

∂n (xn̄I+1)
...

. . .
...

a p1(xn̄) + b ∂p1
∂n (xn̄) . . . a pm(xn̄) + b ∂pm

∂n (xn̄)



ū
ḡ
0

 =



u(x1)
...

u(xn̄I )
g(xn̄I+1)

...
g(xn̄)

01
...

0m


Please note that a and b are two known functions; therefore, they may have different

values in different rows. Finally we remark that Equation (9) can be considered as a special
case of Equation (16) with no boundary nodes, i.e., where none of the neighbors lie on
the boundary.

2.4. Collocation Technique

Considering the boundary value problem in (2), an approximation of the solution
u with a finite dimensional function uh leads to a certain error. uh is now defined over
the whole domain Ω, and its value at each point is interpolated using local information,
as explained in Equation (5). The numerical procedure adopted in order to solve the
linear problem in (2) aims at finding a “good” finite dimensional representation of the
solution u. The Weighted Residual Method in combination with the Collocation Technique
is employed, here follows a brief discussion of such procedure, see [3] for further details.

The linear PDE in (2) is applied to the approximate solution uh given by Equation (5)
instead of u. Therefore, the initial PDE will not be solved exactly, in general, and a nonzero
residual function Rs will appear:

Rs(x) := 4uh(x) + f (x) 6= 0, x ∈ Ω (17)

The Weighted Residual Method now consists in forcing to zero the following integrals,
where NI is the total number of nodes generated inside the domain Ω:∫

Ω
WiRs dΩ = 0, i = 1, . . . , NI (18)
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Substituting the definition of the residual functions leads to the following system
of equations: ∫

Ω
Wi(4uh + f ) dΩ = 0, i = 1, . . . , NI (19)

In order to get rid of the integrals in the above equations, many techniques are
proposed, among others the Collocation Method has been chosen. The main advantage is
its ability to discretize the Boundary Value problem expressed in strong form, thus leading
to a real fully meshless approach (see again [3,28]).

The basic idea behind the Collocation Method is to choose the solution with vanishing
residuals at the nodes only. Formally, this is achieved by defining the weight functions Wi
as Dirac Delta Functions as follows:

Wi(x) = δ(x− xi), i = 1, . . . , NI (20)

As a result, uh is required to send the residual function Rs to zero at the nodes xi:∫
Ω

δ(x− xi)(4uh + f ) dΩ = 4uh
∣∣∣
x=xi

+ f (xi) = 0, i = 1, . . . , NI (21)

At this point we are allowed to substitute the definition of uh, as defined in Equation (5),
into Equation (21). From now on let us focus our attention on a specific node xi ∈ Ω:

4
(

n̄

∑
k=1

αk ϕ(x, xk) +
m

∑
j=1

β j pj(x)

)∣∣∣∣∣
x=xi

+ f (xi) = 0 (22)

Finally, because of the linearity of the Laplace differential operator, it can be distributed
over the basis functions (radial and polynomial), thus yielding the following equation:

n̄

∑
k=1

αk4 ϕ(x, xk)
∣∣
x=xi

+
m

∑
j=1

β j4 pj(x)
∣∣
x=xi

+ f (xi) = 0 (23)

Equation (23) can be recast into the following compact form:{
Ψ(xi)
Π(xi)

}T{
α
β

}
+ f (xi) = 0 (24)

where Ψ(xi) and Π(xi) are defined as follows:

Ψ(x) :=


4ϕ(x, x1)

...
4ϕ(x, xn̄)

 , Π(x) :=


4p1(x)

...
4pm(x)

 (25)

whereas α = {α1, . . . , αn̄} and β = {β1, . . . , βm} are unknown vectors of the expansion
coefficients. Then, Equation (16) can be formally solved for α and β, assuming the value of
uh to be formally known at the nodes belonging to the stencil:

{
α
β

}
=
[
M
]−1


ūh

ḡ
0

 (26)

This result can then be substituted back into Equation (24), thus yielding the follow-
ing equation: {

Ψ(xi)
Π(xi)

}T[
M
]−1


ūh

ḡ
0

+ f (xi) = 0 (27)
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We might now observe that the first two factors of Equation (27) are known and their
product yields to a row vector cT . Therefore, instead of performing the inversion of matrix
M, we can therefore solve the following adjoint linear system for c, where the right-hand
side is known: [

M
]T{c

}
=

{
Ψ(xi)
Π(xi)

}
(28)

The scalar Equation (27) written in terms of the known vector c reads as follows:

{
c
}

ūh

ḡ
0

+ f (xi) = 0 (29)

which represents the ith scalar equation of the following sparse linear system:[
C
]{

uh} = q− f (30)

where uh = {uh(x1), . . . , uh(xNI )}, f = { f (x1), . . . , f (xNI )} and q = {q1, . . . , qNI} are
referred to all the NI internal nodes, i.e., those contained in Ω, while vector q comes from
the imposition of the boundary conditions at the interpolant level.

2.5. Solution Procedure

The final sparse system of Equation (30) can now be solved using an iterative method,
thus obtaining the value of unknowns uh = {uh(x1), . . . , uh(xNI )} at all internal nodes.

In the current implementation, a LU decomposition is performed for the solution
of the small linear systems (28) associated to each inner node xi, while the final sparse
system (30) is solved instead by performing an Incomplete LU Factorization (ILU) [37]
(package IncompleteLU in Julia) of the sparse matrix C followed by the application of
the Biconjugate Gradient Stabilized Method [38] (package IterativeSolvers in Julia)
employing a relative norm tol = 10−14 on the residuals.

2.6. Julia Programming Language

The Julia Programming Language [19] was announced as an open source project
in February 2012, in the attempt of taking advantage of modern techniques for executing
dynamic languages effectively and providing a single solution, capable of being both fast
and dynamic at the same time.

High-level dynamic languages on one side provide great advantages in terms of
convenience and productivity and are often preferred even in the fields of data analysis,
applied math, engineering, and other sciences. On the other hand, lower-level languages
like C and Fortran remain the gold standard for computationally intensive problems,
since high-level dynamic languages tend to lack sufficient performance [39].

C and Fortran, however, tend to be harder to work with and require more specific
skills; therefore, they might become less productive and sometimes slow down the whole
development process.

If a compromise between convenience and performance is desired, then one of the
following two approaches were available at the time Julia came out.

• Two-tiered architecture solutions: programmers express high-level logic in a dynamic
language (like MATLAB, Octave, R, or SciPi), while heavy lifting is done in C and
Fortran [39].

• Enhanced versions of existing dynamic languages: specific libraries need to be used
for this purpose; however, the same programmer is given the possibility to contribute
to the whole process without completely loosing understanding.

Julia was therefore designed from the ground up and succeeded in providing a
new and radically different alternative for the aforementioned compromise. It has indeed
the performance of a statically compiled language while providing interactive dynamic
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behavior and productivity comparable to those of Python, LISP, or Ruby [39]. On top of
that, a large community rapidly grew around the initial project, and many open source
packages and excellent integration with text editors have become available to date.

For these reasons, Julia was chosen for the development of all the components of the
RBF-FD solver presented in this paper, allowing optimal management of data structures
and also taking into account future extensibility and high performance.

2.7. MATLAB PDE Toolbox

In order to compare the results of the presented approach with other numerical
methods, MATLAB Partial Differential Equation Toolbox was employed [40]. This toolbox
offers the user a complete package (including both discretization and solution routines)
based on FEM with tetrahedral elements in 3D.

Quadratic elements, i.e., 10-node tetrahedrals, have been used. The aforementioned
toolbox was chosen in order to allow a comparison with the FEM, which is one of the
most employed methods for the numerical simulation of engineering problems. It is
important to point out that the tetrahedral mesh that was generated is patch-conforming,
i.e., the dimension of the elements adapts to the size of the features of the geometry. On the
other side, the meshless node distributions are obtained with constant spacing functions
for simplicity. Therefore, FEM results are expected to be truly optimal since they are
attained using a fully developed adaptive meshing, while meshless results, on the other
side, are expected to improve substantially in the case of the engine domain. The accuracy
of the meshless method would indeed be improved significantly with the adoption of
an advanced node generation routine, capable of performing some local reduction in the
nodal spacing in proximity to complex geometrical features.

3. Results
3.1. Code Verification

In order to assess correctness, accuracy, and efficiency of the presented meshless
implementation, the Method of Manufactured Solution (MMS) [41] is applied:

1. a sufficiently smooth function u(x) is chosen,
2. the boundary conditions and the internal heat generation f are analytically computed

in order to ensure u(x) to be the exact solution of the Boundary Value Problem (2),
3. the RBF-FD method is employed to solve the Boundary Value Problem, thus leading

to an approximated solution uh(x). Much information concerning order of accuracy
and efficiency is collected during the calculations,

4. uh(x) is finally compared to u(x) according to various metrics, and the performance
of the method is assessed.

3.2. Analytical Solution

The analytical solution chosen for the verification of the correctness of the code is
simply any polynomial u(x) of degree P̄. For simplicity, the following polynomial has
been chosen:

u(x) = xP̄
1 + xP̄

2 + xP̄
3 (31)

with P̄ = 1, . . . , 6 and which can be exactly solved by the RBF-FD method as long as the
degree P of the augmented polynomial fulfills the condition P ≥ P̄.

The analytical solution chosen for the assessment of the accuracy of the presented
implementation of the RBF-FD method is the following function, defined for every x ∈ R3

and continuously differentiable infinitely many times:

u(x) = exp(x1 + x2 + x3) (32)

3.3. Choice of the Domain

By taking into account the final accuracy alone, one might underestimate the impor-
tance of the node generation routine, since the performances of the solver strongly depend
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on the quality of this previous step. In our case both elements, i.e., node generator and
solver, are written using Julia and developed from the very beginning to be seamlessly
integrated. For this reason two very different domains are selected: one is very regular
and the other is complex and can be considered to be a good representative for the class
of problems usually met in engineering design. Both domains are described by standard
stereolitography surfaces encoded in the .stl format:

• The first is given by the 3D sphere highlighted in Figure 2. This surface is chosen for
its regularity, and the absence of any sharp edge is an especially forgiving feature
when the stencil around each node is chosen. The accuracy and the robustness of the
whole approach are therefore expected to be very high: the final accuracy depends
almost exclusively on the solver.

• The second is given by a 3D model of the crankcase of a V8 ICE (Internal Combustion
Engine). This surface, shown in Figure 3, is chosen for its complexity since it presents
different features: there are both regular surfaces (cylindrical and flat) as well as sharp
and rounded edges. If the integration between node generator and solver is capable
of providing reliable results on this scenario, then it is safe to conclude its applicability
to many other shapes of engineering relevance.

The quality of the generated node distributions can be assessed visually, for , by care-
fully inspecting the plotted result. For instance, one might check whether the normal
vectors associated to the surface nodes are correctly oriented, especially in correspondence
with the edges or vertices at the intersection between different triangles of the stereolithog-
raphy.

Another visual test is to check whether there are inner nodes too close to the surface
since such nodes repel those belonging to the boundary, thus leading to a suboptimal
enforcement of the boundary conditions.

We also point out that, for simplicity, the spacing function s is always set to be uniform
for all the results presented in this paper. This is not an issue for regular domains, like
the sphere, but might harm the accuracy when the geometry presents some strong 3D
curvature localized at certain spots, for example in the case of the crankcase domain.

3.4. RBF-FD Parameters

The achieved performances mainly depend on four parameters:

• ñ, number of nodes included in each stencil, see Equation (5),
• ε̄, shape parameter of the Radial Basis Function, see Equation (4),
• N, total number of nodes generated on both Ω and ∂Ω,
• P, degree of the polynomial term in the definition of uh, see Equation (5).

The number of nodes included in each stencil ñ is linked to P in the sense that a
minimum number of nodes is required for any given order of the polynomial term. It has
been shown that the choice of larger stencils, like n̄ = 2m given in Equation (33), overcomes
stability and accuracy problems due to Runge’s phenomenon [17]:

n̄ = 2m = 2
(

P + d
P

)
(33)

where m is the number of terms in the polynomial basis function, and d is the number of
dimensions (d = 3 in 3D problem).

The shape parameter ε̄ defines the flatness of the Radial Basis Function (RBF) reported
in Equation (4); its value must be selected carefully due to the following trade-off:

• in the limit ε̄ −→ 0 the RBF becomes increasingly flat, until some typical oscillations
appears due to the Runge’s phenomenon [28], on top of that, too little values of ε̄ might
also lead to numerical issues, due to an ill-conditioning of the interpolation matrix,

• as ε̄ increases, on the other side, the solution becomes more stable but less accurate.
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A reasonable choice based on previous numerical studies [21,28,42] is ε̄ = 0.3, while the
influence of parameters N and P is instead discussed in succeeding paragraphs, since they
are strongly related to the order of accuracy.

3.5. Sphere

In Figure 4 the convergence curves for the solution (Figure 4a,c) and for the Laplacian
(Figures 4b,d) are shown for polynomial degrees P = 2, . . . , 6 on the spherical domain,
where the total number of nodes ranges from N = 5k to N = 500k nodes. Dirichlet b.c.,
i.e., a = 1 and b = 0 in Equation (2), and Robin b.c., i.e., a = 1 and b = 1, have been
considered. Errors are normalized with respect to the norm of analytical values.

(a) Solution error, Dirichlet b.c. (b) Discretization error, Dirichlet b.c.

(c) Solution error, Robin b.c. (d) Discretization error, Robin b.c.
Figure 4. Convergence curves for solution and Laplace operator (or Discretization Error) for Dirichlet
and Robin b.c., Ω: Sphere.

Errors in the approximation of the Laplacian operator, presented in Figure 4b,d ,
are simply attained as the result of the matrix-vector product reported in Equation (34),
where C is the sparse matrix from (30) and u is the analytical solution evaluated at the
inner nodes. Therefore Figure 4b,d represents an estimation of the mean discretization
error, calculated as {

4hu
}

:=
[
C
]{

u
}
−
{

q
}

(34)
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Figure 4a shows an increase in the order of accuracy, which ranges from σ = 2.2 to
σ = 5.5, when the polynomial degree P is increased from P = 2 to P = 6. The order of
accuracy σ is defined by the following equation:

error ∝ hσ (35)

where h ∝ N−1/3 is a reference value for the nodal spacing in 3D.
Figure 4c shows slightly lower σ’s when Robin b.c. are enforced, even if present,

the degradation in performance with these boundary conditions can still be considered
more than acceptable. We believe that the apparent lack of convergence appearing in the
case P = 6 for N > 300k nodes is due to numerical instabilities caused by the large size
of the local stencils when Robin boundary nodes are included. Indeed, with P = 6 quite
a large local stencil is employed, i.e., n̄ = 168 nodes, leading to an ill-conditioned dense
local matrix M. However, this is not a problem since P = 6 is a limit case in 3D, and
such instabilities seem to only play a non-negligible role once the method has come to
convergence near machine epsilon in the global error.

From Figure 4a,c it can also be observed that it is always convenient to choose a
polynomial basis of even degree P in order to solve a Poisson equation, which is a second-
order PDE: odd degrees not only provide negligible improvements in terms of solution
errors, but even lead to worse orders of accuracy. Furthermore, we point out that, in the case
P = 6 and N > 200k nodes, the normalized error becomes quite close to machine epsilon in
double precision, and any further increase in N will not reduce the error. FEM convergence
curves are also displayed in Figure 4a,c for comparison; it can be observed that the FEM
curve is very similar to the ones for the cases P = 2, 3 for Dirichlet b.c., while for Robin b.c.
the FEM curve lies between the cases P = 3 and P = 4.

The convergence curves represented in Figure 4b,d show a continuous improvement
in both the order of accuracy σ and absolute value of the discretization error when P is
increased, and they seem to follow the rule of thumb σ ≈ 1.1× (P− 1).

Figure 5 can instead be used to compare the different choices of P under the aspect
of time efficiency. Figure 5a gives a rough idea of the actual computational time required
for the calculation of the solution uh. The values are referred to a portable computer
equipped with Intel i7-6700 HQ CPU (4 cores) and 16 GB of RAM. The total computational
time accounts for the time required for node generation, calculation of RBF-FD stencil,
Equation (28), and final sparse linear system solution, Equation (30). Both node generation
and RBF-FD stencils calculations are explicitly parallelized in Julia using Distributed
package and Base.Threads module for multithreaded computations distributed over
multiple cores.

(a) Total Time (b) Time per Node
Figure 5. Total time required for the final solution, Ω: sphere, Dirichlet b.c.



Energies 2021, 14, 1351 15 of 20

Figure 5b shows instead the specific total times in terms of seconds per node, where
it can be seen that, whatever the value of P, the specific time tends to constant values for
sufficiently large N, where the total time is dominated by node generation, and RBF-FD
stencils calculations which are perfectly linear in N. As N increases further, the specific time
shows a slight increase due to the asymptotic cost of the ILU-preconditioned BiCGStabl
algorithm, which scales more than linearly. The total and specific computational times
required for the FEM solution are also displayed in Figure 5, showing a significant increase
beyond N = 100k nodes.

Figure 6 shows an analysis of the time efficiency allowed by each choice of the poly-
nomial degree P. For better visualization only the results attained with more than 20k
nodes are included. It is possible to see that, when the geometry is sufficiently smooth as
the spherical one, choosing a higher even polynomial degree is always advisable for the
solution of a Poisson equation. Figure 6 also shows that the time efficiency of the FEM
approach is very similar to the cases P = 2, 3.

Figure 6. Error vs time (the lower the better), allowed by different values of P, Ω: sphere, b.c.:
Dirichlet, N > 20k nodes.

The estimation of the condition number κ(C) of the final sparse matrix C is shown in
Figure 7 for both Dirichlet and Robin b.c., where κ(C) is defined as κ(C) = ‖C‖2‖C−1‖2
using the 2-norm. The condition number grows approximately with order O(N0.7) in both
cases, regardless of P, thus very much comparable with the order O(N2/3) of classic finite
difference schemes for the 3D Laplacian operator on uniform grids [43]. The condition
number for Robin b.c. (a = b = 1 in Equation (2)), Figure 7b, is approximately 7 times
larger than the condition number for Dirichlet b.c., Figure 7a, which is again comparable to
the value 5.78 of classic finite difference schemes with the same b.c.

(a) Dirichlet b.c (b) Robin b.c

Figure 7. Condition number of the sparse matrix C, Ω: sphere.
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3.6. Engine

Convergence curves for the solution and for the Laplacian are shown in Figure 8,
again for both Dirichlet b.c., i.e., a = 1 and b = 0 in Equation (2), and Robin b.c., i.e., a = 1
and b = 1. The chosen values for the polynomial degree are P = 2, 3, 4, and the total
number of nodes ranges from N = 5k to N = 750k nodes.

(a) Solution error, Dirichlet b.c. (b) Discretization error, Dirichlet b.c.

(c) Solution error, Robin b.c. (d) Discretization error, Robin b.c.
Figure 8. Convergence curves for solution and Laplace operator (or discretization error) for Dirichlet
and Robin b.c., Ω: Engine.

In the case of Dirichlet b.c., the order of accuracy for the solution, Figure 8a, varies from
σ = 3.0 to σ = 4.5 when the polynomial degree is increased from P = 2 to P = 4. Similarly
to the sphere, passing from P = 2 (even) to P = 3 (odd) does not increase the order of
accuracy, which instead decreases from σ = 3.0 to σ = 2.4, while an improvement in
absolute terms appears. A further increase to P = 4 (odd) results in both increased order
of accuracy, i.e., σ = 4.5, and reduced errors in absolute terms. FEM convergence curves
are also shown in Figure 8a, revealing an order of accuracy σ = 5.7, which is significantly
higher than the ones for P = 2, 3, 4, but the FEM error has larger absolute value than P = 2
below N = 1M nodes.

The convergence curves for the Laplacian, Figure 8b, show instead a continuous
increase in the order of accuracy when P grows, analogously to the corresponding re-
sults on the spherical domain. Unlike the case of the sphere, the convergence curves for
P = 4 in both the previous figures exhibit some irregularities compared to the curves for
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P = 2, 3. This is probably due to the fact that the large stencil, required by the condition
of Equation (33) in the case P = 4, i.e., n̄ = 70 nodes, leads to very distorted 3D nodal
arrangements in the proximity of particular features of the complex surface, giving rise
to unstable RBF interpolants. This problem, which is mainly due to the employment of
a constant spacing function, can be alleviated through some proper refinement of the
node distribution, for instance some reduction in the nodal spacing in proximity to such
geometrical features.

In the case of Robin b.c., it has been necessary to impose three additional requirements
for the inclusion of boundary nodes in the stencil:

• Angle rule:
xb − xi
‖xb − xi‖

· n(xb) > 0.6 (36)

where xb is a boundary node and xi is an inner node where the Laplacian is required
to be approximated. Equation (36) states that a boundary node xb can be included
in the stencil only if the angle γ between the outer normal n(xb) associated to the
boundary node xb and the line connecting xb to xi satisfies γ < arccos(0.6) ≈ 53◦.

• Distance rule: ‖xb − xi‖ < 2s, i.e., only boundary nodes closer to the center xi than
twice the spacing function can be included in the stencil.

• Number rule: no more than 10 boundary nodes can be included in the stencil.

The resulting convergence curves for the solution and for the Laplacian are shown in
Figure 8c,d, respectively. The comparison with the corresponding curves for Dirichlet b.c.,
Figure 8a, shows a general loss in accuracy in absolute terms due to the effects of Robin b.c.,
i.e., the curves are shifted upwards, while the apparent order of accuracy for the solution
ranges from σ = 4.4 to σ = 5.9 when the polynomial degree is increased from P = 2 to
P = 4. FEM results are very much comparable to the case P = 3 in terms of both absolute
error and order of accuracy. The convergence curves for the Laplacian highlight a similar
behavior, with a continuous improvement in the order of accuracy when P is increased.
The graphical comparison between the convergence curves of Dirichlet b.c. and Robin
b.c. also reveals a higher sensitivity to boundary node arrangements for the latter case,
as expected. Again, local node refinement in the neighborhood of particular geometrical
features of the boundary should mitigate this problem.

Figure 9 shows the analysis of computational times. The curves for the specific time,
i.e., time per node, depicted in Figure 9a, are very similar to the ones obtained for the
spherical domain, depicted in Figure 5b. The presented approach is thus almost perfectly
linear in the range N = 100k–1M nodes; the specific times for the FEM solution are instead
always slightly larger than the case P = 4.

(a) (b)
Figure 9. Time per node (a) and error vs. time (b), Ω: Engine, Dirichlet b.c.
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Figure 9b shows the curves of the solution error versus computational time in the case
of Dirichlet b.c. These curves reveal that it is always convenient to employ high-degree
polynomials, e.g., P = 4, also in this case where a very complex-shaped domain is subjected
to analysis. Figure 9b shows that the FEM approach appears to be the less efficient. Indeed
it required longer times than P = 4, as can be seen in Figure 9a, still not being able to
further reduce the corresponding errors, see Figure 8a.

4. Conclusions

In this work a fully meshless approach is applied to the simulation of heat conduction
problems. The code is verified according to the Method of Manufactured Solutions, and it is
proven to be reliable and suitable for practical applications, even with convective boundary
conditions. Indeed, the results presented in this paper exceeded the most optimistic
expectations, especially on complex domains.

The potential of the RBF-FD meshless method lies both in its geometrical flexibility
and its inclination towards parallelization: the root of its advantages can be found in the
lack of connectivity information between the nodes.

As many simulations were carried over it became apparent that a key role was played
by the node generation algorithm and the nearest-neighbors search algorithm. Different im-
plementations of these routines yielded very different results when the code was verified
over the engine domain. The proposed node generator allowed to properly leverage the
great flexibility of the RBF-FD method, favoring performances over complex domains
very much comparable to the ones attained on the spherical domain, both in terms of
accuracy and consistency. Very interestingly such improvements were reached without
any measurable increase in the computational cost of the whole solution procedure.

Speaking of computational cost, from the comparison between different polynomial
basis it emerged an advantage of the ones with higher degrees when error vs. time was
considered. We remark that most mesh-based commercial CFD CAE software only allow
second-order accuracy and therefore cannot take advantage of the gain in performance
permitted by higher orders. Such an advantage seems somehow reduced when Robin b.c.
are applied to complex geometries; however, the results exposed above were attained with
uniform spacing between nodes. Great improvements in the results are expected by the
application of some local refinement algorithm, as usually employed also in mesh-based
solvers. Such a refinement routine would be required to generate more inner nodes in close
proximity to those geometrical features where the available space is otherwise insufficient,
thus providing better RBF interpolants. Nonetheless, the presented meshless approach
allowed better performances in terms of both absolute errors and computational efficiency
when compared with patch-conforming quadratic FEM, highlighting the great advantages
of the employed RBF-FD approach.

Julia language proved to be very convenient and highly efficient at the same time,
allowing extensive code reuse and making parallelization fairly easy. Furthermore, the use
of a single programming language ensured better integration between the node generator
and the solver and made it possible to measure the total computational times reported in
the results.

Future developments in the short term are the implementation of an autonomous
node-refinement algorithm and an algebraic multilevel solver. Finally, the simulation of
problems based on Navier–Stokes equations is planned for the near future.

Overcoming the need to generate a mesh constitute a great advantage over traditional
CAE software, potentially making the design process far more convenient and democratic.
This is why, also encouraged by the promising results reported in the present work, we be-
lieve that RBF-FD method will rapidly grow in popularity and become a major resource in
the years to come.
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