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Abstract

We study the reciprocal position of nine points in the plane, according
to their collinearities. In particular, we consider the case in which the
nine points are contained in an irreducible cubic curve and we give their
classification. If we call two configurations different when the associated
incidence structures are not isomorphic, we see that there are 131 config-
urations that can be realized in P2

Q, and there are two more in P2
K , where

K = Q[
√
−3] (one of the two is the Hesse configuration given by the

nine inflection points of a cubic curve). Finally, we compute the possible
Hilbert functions of the ideals of the nine points.

1 Introduction

The study of the reciprocal position of a finite number of points in the plane and a
finite set of lines joining some of the points is a classical problem whose origin dates
back to the past and that has been considered from many different points of view.
Recall, for instance, the Pappus configuration which takes its name from Pappus of
Alexandria, or the Sylvester problem (see [6]), formulated by Sylvester in the last
decade of the nineteenth century, or the Orchard Planting Problem (see [4]), which
takes its origin from the book “Rational Amusement for Winter Evenings” by John
Jackson (1821) ([15], see also [21]).

In general, (pγ, lπ) usually denotes a configuration of p points and l lines such that
each point is contained in γ lines and each line contains π points (hence pγ = lπ).
The configurations (pγ, lπ) have been intensively studied with several different tools
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(they can be seen, for instance, as an application of matroid theory or of graph
theory); for a more complete survey of the results we refer to [3, 14, 5, 7, 8, 9] and
the references given therein.

Consider now the well-known Hesse configuration. It is realized by the nine
inflection points of a smooth cubic curve, hence it is quite natural to generalize the
problem and look for cubic curves which contain points with some other collinearity
conditions. For instance, in [10] cubic curves somehow associated to triangles are
studied, while in [18] the question of whether a plane cubic curve contains the Pappus
or the Desargues configuration is raised.

In this paper we focus our attention on the case of 9 points in the plane (like in
the Pappus or the Hesse configurations) and we consider only the constraint that at
most triplets of points are collinear. Then we associate to such a 9-tuple of points
the corresponding incidence structure (two configurations of points are considered
equivalent if the corresponding incidence structures are isomorphic). First of all we
briefly classify all the possible configurations and we determine realizability in the
projective plane P2

K , where K is Q or a suitable algebraic extension of Q. Succes-
sively, we add the condition that the points lie on an irreducible cubic curve and
we determine which configurations survive. In this way, we get a complete list of
9-tuples of points on a cubic curve that satisfy all the possible kinds of collinearities
(the total number is 131 if we consider the points with coordinates in Q, while if
we extend the coordinates in Q[

√
−3] the two well-known Möbius-Kantor and Hesse

configurations are added). We see that there are several 9-tuples of points which
are realizable in the plane, but that, when considered on a cubic they are either not
realizable or have to satisfy further collinearities. We show that all these cases are
consequences of the Cayley-Bacharach Theorem.

In Section 2 we give an algorithm which computes all the possible incidence
structures (up to isomorphism) that can be obtained from the possible collinearities
of 9 points and we sketch how to determine if they are realizable in projective planes.
In Section 3 we give the final classification of those incidence structures which lie on
an irreducible cubic curve; finally, in Section 4, we determine the possible Hilbert
functions of all the sets of points of the incidence structures of Section 3.

In order to make the computations, we have intensively used the computer algebra
packages [20] and [1].

2 Notations and search for possible configurations

Let P0, . . . , P8 be 9 points of the plane. First of all, we want to find the possible
configurations they can assume, according to the constraint that there can be triplets
but not quadruplets of collinear points. We can represent a configuration of points
by an incidence structure (see, for instance, [19]), i.e. by a couple of sets (B,P),
where P is the set of the points P0, . . . , P8 and B is a set of blocks, where each block
contains a triplet of collinear points. For brevity, the block (Pi, Pj, Pk) will be denoted
by (i, j, k) or, in a more concise way, by ijk. Two configurations of points represented
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by the incidence structures (B,P) and (B′,P ′) will be considered equivalent if the
two incidence structures are isomorphic, i.e. if there exists a bijection f : P −→P ′

such that B′ = {f(B) | B ∈ B} (where f(B) = (f(b), b ∈ B)). Sometimes it will
be convenient to denote our incidence structures by simply the set of blocks B (the
points can be deduced from the elements of the blocks). For instance, the incidence
structure B = {(0, 1, 2)} represents the configuration of points in which P0, P1, P2

are collinear (and are the only triplet of collinear points) and it is isomorphic to the
incidence structure given by B′ = {(3, 4, 7)}.

The cardinality l of the set B will be called the level of the incidence structure.
Given an incidence structure B of level l, to obtain a new incidence structure de-
scribing possible collinearities of the points of level l + 1 it suffices to add to B a
block (i, j, k) with the precaution though that (i, j, k) has at most one element in
common with the blocks of B (otherwise we would have more than 3 collinear points
in the configuration of P0, . . . , P8). This remark allows one to obtain the following
algorithm (see also [2]) which finds all the possible configurations Cl of 9 points of the
plane of level l for all possible levels, in which at most triplets of points are collinear.
Since with 9 points we can form at most b =

(
9
3

)
= 84 triplets, termination of the

algorithm is guaranteed.

Algorithm Construction of incidence structures of each level.
Output: A list C1, C2, . . . , such that Cl is the list of all incidence structures (up to
isomorphisms) of 9 points in the plane in which there are l triplets of collinear points
(but no 4 collinear points).

Let C1 = [{(0, 1, 2)}]
Let T = {(i, j, k) | 0 ≤ i ≤ 6, i+ 1 ≤ j ≤ 7, j + 1 ≤ k ≤ 8} be the set of all the
triplets that can be formed with 9 points.
For each l = 1, 2, . . . , do

Set Cl+1 = [ ]
For each B ∈ Cl do

For each τ ∈ T do
If τ has at most one point in common with each element of B then

Let B′ = B ∪ {τ}
If B′ is not isomorphic to any element of Cl+1 then

Add B′ to Cl+1

If Cl+1 = [ ] then
Set m = l
Return the list Cl, l = 1, 2, . . . ,m.

Remark 2.1. The main loop, as stated, can be repeated at most 84 times and from
this we get the termination of the algorithm, however, as soon as we have that from
the list of incidence structures Cl we do not obtain any incidence structure of level
l+ 1, the algorithm has produced all the possible incidence structures and can stop.
In particular, in our case we get that the main loop stops with the value m = 12.

The results of the algorithm are summarized by lines 1 and 2 and lines 5 and 6
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l = 1

l = 2

l = 3

Figure 1: First three levels of incidence structures

of Table 1, Section 4. The first values of Cl are (see Figure 1).

C1 = [{012}]
C2 = [{012, 345}, {012, 034}]
C3 = [{012, 034, 056}, {012, 034, 135}, {012, 034, 156}, {012, 034, 567},

{012, 345, 678}]

while the last two values of Cl are:

C11 = [{012, 034, 056, 078, 135, 147, 168, 238, 246, 257, 367}]
C12 = [{012, 034, 056, 078, 135, 147, 168, 238, 246, 257, 367, 458}]

3 Realizability of the configurations in the plane

We sketch here how to see which of the several incidence structures can be realized
in the projective plane P2

K (K a suitable algebraic extension of Q). As is clear from
Figure 1, the configurations of level l = 1, 2, 3 can surely be obtained in P2

Q. It turns
out that all the higher level incidence structures representing the possible configu-
rations of points contain the blocks (0, 1, 2), (0, 3, 4). Hence the points P1, P2, P3, P4

are in general position and, up to a projective transformation, their coordinates can
be fixed (therefore also the coordinates of P0 are determined). In particular, we can
choose for P0, . . . , P4 the following points:

P0 = (0: 0 : 1), P1 = (1: 0 : 1), P2 = (2: 0 : 1), P3 = (0: 1 : 1), P4 = (0: 2 : 1) (1)

We can now assign coordinates to the remaining points (depending on new variables
t0, t1, . . . ). Any collinearity (i, j, k) among three points Pi, Pj, Pk can now be con-
verted into the equation given by imposing that the determinant of the matrix whose
rows are the coordinates of Pi, Pj, Pk, is zero. In this way we get an ideal I in the
polynomial ring Q[t0, t1, . . . ] and we have to study its zeros. Of course, in order to
make computations, it is quite important to keep the number of new variables as
reduced as possible. For instance, if we have the collinearity (1, 3, 5), the point P5

can be expressed as P1 + tP3 and its coordinates depend only on one new variable t
(and t is not zero, since we consider only distinct points).
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Remark 3.1. In order to speed up the computations, to prove that a configuration
is realizable in P2

Q, it suffices to give random values to some of the variables and check
if nevertheless a solution can be found. If this happens, we have avoided having to
consider the general case that could require cumbersome computations. Of course,
the cases in which the configuration is not realizable in the plane or requires an
algebraic extension of the field Q, cannot be treated in this way.

The following holds:

Theorem 3.2. Among the configurations given in the second and sixth line of Ta-
ble 1, Section 4, we have that the configurations represented by the following blocks
are not realizable in P2

K, for any algebraic extension K of Q:

• Level 7: B0 = {012, 034, 056, 135, 146, 236, 245} (the “Fano plane 73”);

• Level 8: B0 ∪ {078};

• Level 10: {012, 034, 056, 078, 135, 146, 237, 248, 368, 457}.

The following configurations can be realized in P2
Q, but one (or more) further collin-

earities appear (written in bold):

• Level 8: {012, 034, 056, 137, 158, 248, 267, 368}, further collinearity: 457;

• Level 9: B1 = {012, 034, 056, 078, 135, 147, 168, 238, 246}, further collinearity:
257;

• Level 10: B1 ∪ {367}, further collinearities: 257,458;

• Level 11: B1 ∪ {367, 257}, further collinearity: 458;

Finally, the following configurations are not realizable in P2
Q, but are realizable in

P2
K, where K is an algebraic extension of Q (written on the right):

• Level 8: B2 = {012, 034, 056, 135, 147, 246, 257, 367}, (K = Q[
√
−3]);

• Level 9: {012, 034, 056, 078, 135, 147, 168, 367, 458}, (K = Q[
√
−3]);

• Level 10: {012, 034, 056, 078, 135, 146, 237, 258, 368, 457}, (K = Q[
√
−1]);

• Level 12: B2 ∪ {078, 168, 238, 458}, (K = Q[
√
−3]).

All the other configurations are realizable in P2
Q.

Proof. As soon as we have assigned coordinates to the points, the proof is quite
straightforward. Here we prove that the configuration given by B0 is not realizable.
Since we have the collinearity (1, 3, 5), we get that P5 = P1 + t0P3 = (1 : t0 :
t0 + 1). Analogously, from the collinearity (2, 3, 6), we get P6 = (2 : t1 : t1 + 1). The
collinearity (0, 5, 6) is satisfied if 2t0− t1 = 0, (1, 4, 6) holds if t1− 2 = 0 and (2, 4, 5)
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holds if t0 + 1 = 0. The alignment ideal associated to the blocks of B0 is therefore
I = (2t0− t1, t1−2, t0 +1) whose Gröbner basis is {1}, hence the configuration is not
realizable in P2

K where K is any field of characteristic zero. Let us see the case given
by the incidence structure of level 10 whose blocks are the set B3 = B1 ∪ {367}.
Here the coordinates of the points can be the following: P5 = (1 : t0 : t0 + 1),
P6 = (2 : 2t1 : t1 + 1), P7 = (1 : 2t2 : t2 + 1), P8 = (2 : t3 : t3 + 1), hence the
alignment ideal is I = (t23−2t3 +4, t0−1/2t3 +1, t1−1/2t3 +1, t2−1/4t3). The block
(2, 5, 7) gives the condition 2t0t2− t0 + 2t2 and the block (4, 5, 8) gives the condition
2t0− t3 + 2 and both are in the ideal I, this shows that when the configuration given
by B3 is realized in a plane P 2

K , then necessarily there are two further collinearities.
The other cases can be solved in a similar way, although many computations can be
simplified thanks to Remark 3.1.

As a consequence of the theorem, we can complete Table 1, with the third and
seventh line.

Remark 3.3. An alternative proof can be obtained with the techniques developed
in [3].

4 Points on a cubic curve

In this section we address the problem of determining which of the configurations of
points described in the third line of Table 1 can stay on an irreducible cubic curve
of the plane.

Given a configuration of a 9-tuple of points represented by an incidence structure
(B,P), it is often easy to see if the nine points of P can lay on an irreducible cubic
curve: it is enough to take the parametrization of the points and the alignment ideal
constructed in the previous section, to give some specific values to the parameters
in such a way that the prefigured collinearities are satisfied (and no more appear)
and finally to compute the cubic curve through the nine points. If it exists and is
irreducible, we are done. There are however several exceptions that can happen, it
is indeed possible that in the set of blocks B there are three blocks that contain all
the nine points. In this case a cubic passing through the nine points is given by the
three lines through the three blocks, hence is reducible. Therefore, in a situation like
this, we have to see if there exists also an irreducible cubic or if it is possible to find a
specific value of the parameters such that the points are contained in an irreducible
cubic curve. We distinguish the following cases:

(a) It is possible to find an irreducible cubic curve through the points which satisfy
the prescribed alignment.

(b) If an irreducible cubic curve contains the points, then necessarily other collin-
earities among the points appear, so the configuration belongs to a higher level.

(c) There does not exist an irreducible cubic curve passing through the points, so
the configuration has to be discarded.
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The following well-known result (a particularization of the Cayley-Bacharach
Theorem) will be a very useful tool:

Proposition 4.1. If two cubic curves intersect in 9 distinct points and there is a
conic passing through 6 of them, then the remaining 3 points are collinear.

Proof. See [12], Proposition 2 of chapter 5.

As a consequence, we have:

Lemma 4.2. Let (B,P) be an incidence structure such that B contains three blocks
i1j1k1, i2j2k2, i3j3k3 containing all the nine points P0, . . . , P8 and suppose that B
contains two other blocks B1 = l1m1n1 and B2 = l2m2n2 which are disjoint. Let
B3 = l3m3n3 be the triplet given by the points which are not in B1 ∪ B2. Then, if
B3 6∈ B, it is not possible to have an irreducible cubic curve passing through the nine
points satisfying only the alignments of B; if B3 has at most one element in common
with the blocks of B, then an irreducible cubic through the points may exist, but the
points have to satisfy also the collinearity given by B3.

Proof. It is clear that, if B3 has more than one point in common with some of the
blocks of B, then we have at least four collinear points, which is not possible. Let C0

be the cubic curve which splits into the three lines passing through the points which
contain, respectively, {Pi1 , Pj1 , Pk1}, {Pi2 , Pj2 , Pk2}, {Pi3 , Pj3 , Pk3}, and suppose C
is an irreducible cubic through the nine points. Let D be the conic which splits into
the lines which contain {Pl1 , Pm1 , Pn1} and {Pl2 , Pm2 , Pn2}. Then, by Proposition 4.1,
the points {Pl3 , Pm3 , Pn3} are collinear.

Lemma 4.2 allows us to rule out several configurations:

Example 4.3. Consider the incidence structure of level 7:

B = {012, 034, 056, 135, 147, 238, 267}

which is realizable in P2
Q. Here 056, 147, 238 are three blocks of B which contain all

the 9 points. From the blocks 034, 267 we get that also the points P1, P5, P8 must
be collinear, but the block 158 has two points in common with the block 135 ∈ B,
so the four points P1, P3, P5, P8 should be collinear, which is not possible: the above
configuration has to be discarded.
Consider now the incidence structure (again of level 7):

B = {012, 034, 056, 137, 158, 248, 368}

Here 056, 137, 248 give a reducible cubic. From the conic given by 012, 368 we see
that the block 457 has to be added to B; similarly, the two blocks 034, 158 give the
new block 267. Therefore, if nine points are on an irreducible cubic curve C and
satisfy the collinearities given by B, then necessarily the points have also to satisfy
the collinearities 457 and 267. So far, we do not know yet that C exists, but we do
know that the set of blocks B cannot be considered in level 7. We can however verify
that the incidence structure B ∪ {267, 457} is isomorphic to an incidence structure
of level 9.
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Lemma 4.2 allows us to find cases of type (c) and to have candidates for cases of
type (b) of the previous list, but we still have to see if there are other configurations
that, for some reason, cannot exist or do not exist in the expected level.

Consider the example given by the incidence structure (of level 7):

B = {012, 034, 056, 135, 146, 367, 458}

Lemma 4.2 does not give information, so in order to see if there exists an irre-
ducible cubic passing through the 9 points of the above incidence structure, we
need a different approach. The generic points of the corresponding configuration are
P0, P1, P2, P3, P4 given in (1) and:

P5 = (1: t0 : t0 + 1), P6 = (1: 2t1 : t1 + 1), P7 = (t2 : 2t1t2 + 1: t1t2 + t2 + 1),
P8 = (t3 : t0t3 + 2: t0t3 + t3 + 1)

It is easy to verify that, with the condition t0 − 2t1 = 0, on the parameters (i.e.
in this case the alignment ideal is (t0 − 2t1)), the points satisfy the collinearities of
the set of blocks B. In general, the only cubic containing these points is reducible
and comes from the blocks 012, 367, 458, hence we have to find conditions on the
coordinates of the points in order to have other cubic curves. We consider the linear
system of cubic curves passing through P0, . . . , P4, which is:

ax3 + bx2y + cxy2 + (1/2)dy3 − 3ax2z + exyz − (3/2)dy2z + 2axz2 + dyz2 = 0 (2)

The condition that the remaining 4 points satisfy (2) gives a system of four linear,
homogeneous equations in the variables a, b, c, d, e whose coefficients are polynomials
in t0, t1, . . . . In order to have other solutions, the rank of the matrix M associated
to the system must be less than 4. Hence we collect the order 4 minors of M and
we get a new ideal (in t0, t1, . . . ) that has to be added to the alignment ideal of the
points. After some manipulation (the ideal can be saturated w.r.t. the variables) we
get the ideal J :

J =
(
2t21t2t3 − 4t21t2 + 2t21t3 − 1, t0 − 2t1

)
A zero of J is for instance t0 = 6, t1 = 3, t2 = −13/18, t3 = −5 which gives the
points: P5 = (1 : 6 : 7), P6 = (1 : 6 : 4), P7 = (13 : 60 : 34), P8 = (5 : 28 : 34). The
collinearities satisfied by these points are precisely those of the incidence structure
B. A cubic curve containing the 9 points is:

456x3 − 78x2y + 623xy2 − 26y3 − 1368x2z − 1340xyz + 78y2z + 912xz2 − 52yz2

which is irreducible (and smooth). In conclusion, concerning this case, we can find
nine points which satisfy the described alignments and that are contained on an
irreducible cubic curve. This configuration is of type (a).

These kind of computations can be done for each of the cases we have to consider
and, together with Lemma 4.2, allow to obtain the following conclusion:

Level 1, 2, 3, 4 : there are no restrictions.
Level 5. There is one incidence structure of type (b) (in black the further alignment):
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• 012, 034, 156, 278, 357, 468, (it belongs to level 6).

Level 6. There is one incidence structure of type (b) (in black the further alignment):

• 012, 034, 056, 137, 158, 248, 267, (it belongs to level 7);

and one incidence structure of type (c):

• 012, 034, 056, 137, 248, 578.

Level 7. The incidence structures of type (b) are (in black the further alignments):

• 012, 034, 056, 078, 135, 147, 238, 246, (it belongs to level 8);

• 012, 034, 056, 135, 147, 238, 246, 078, (it belongs to level 8);

• 012, 034, 056, 137, 158, 248, 368, 267, 457, (it belongs to level 9);

The incidence structures of type (c) are:

• 012, 034, 056, 135, 147, 238, 267;

• 012, 034, 056, 135, 147, 238, 678;

• 012, 034, 056, 137, 158, 248, 467.

Level 8. The incidence structures of type (b) are:

• 012, 034, 056, 078, 135, 147, 168, 238, 246, 257, (it belongs to level 10);

• 012, 034, 056, 078, 135, 147, 238, 257, 168, 246, (it belongs to level 10);

the incidence structures of type (c) are:

• 012, 034, 056, 078, 135, 146, 367, 458;

• 012, 034, 056, 078, 135, 147, 238, 267;

• 012, 034, 056, 135, 146, 278, 367, 458;

• 012, 034, 056, 135, 147, 238, 246, 578;

• 012, 034, 056, 135, 147, 238, 267, 468.

Level 9. The incidence structures of type (b) are:

• 012, 034, 056, 078, 135, 147, 168, 367, 458, 246, 257, 238, (it belongs to level
12);
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Level → 1 2 3 4 5 6
# inc. struct. 1 2 5 11 19 34
# realiz. conf. 1 2 5 11 19 34

# realiz. conf. on a cubic 1 2 5 11 18 32

Level → 7 8 9 10 11 12
# inc. struct. 41 31 12 4 1 1
# realiz. conf. 40 29∗ 11 2∗∗ 0 1∗

# realiz. conf. on a cubic 34 22∗ 6 1 0 1∗

∗ one to be realized needs the field K = Q[
√
−3]

∗∗ one to be realized needs the field K = Q[
√
−1]

Table 1: Line 2 and 6: Number of incidence structures of 9 points in the plane;
Line 3 and 7: number of realizable configurations of 9 points in the plane;
Line 4 and 8: number of configurations of 9 points on an irreducible cubic curve.

• 012, 034, 056, 078, 135, 147, 168, 238, 367, 246, 257, 458, (it belongs to level
12);

the incidence structures of type (c) are:

• 012, 034, 056, 078, 135, 146, 237, 368, 457;

• 012, 034, 056, 078, 135, 147, 238, 257, 468;

• 012, 034, 056, 135, 147, 238, 267, 468, 578;

Level 10. The incidence structure of type (c) is:

• 012, 034, 056, 078, 135, 146, 237, 258, 368, 457;

In particular, we have the following conclusion:

Theorem 4.4. Let P0, . . . , P8 be 9 points in the projective plane P2
Q laying on an

irreducible cubic curve. If we distinguish the configurations of the points according
to the possible collinearities satisfied by them (and we consider two configurations
different if and only if the corresponding incidence structures are not isomorphic),
we have that the number of possibilities is given by the last line of Table 1.

Remark 4.5. To complete the information of Table 1, we add here that the con-
figuration 012, 034, 156, 278, 357 of level 5 which belongs to level 6 when considered
on a cubic curve (with the additional collinearity 468) appears in [17], page 50 and
in [16]; the configuration of level 8 which needs Q[

√
−3] to be realized is: 012, 034,

056, 135, 147, 246, 257, 367 (this configuration is also known as the Möbius-Kantor
configuration), the configuration of level 10 which needs Q[

√
−1] is: 012, 034, 056,
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Figure 2: The configuration 012, 034, 056, 078, 135, 147, 168, 238 of level 8 which
contains two further collinearities when constrained on a cubic curve.

078, 135, 146, 237, 258, 368, 457 and, as said above, it is of type (c) and cannot
be contained in an irreducible cubic curve. Finally the configuration of level 12 (re-
alizable in Q[

√
−3]) is the Hesse configuration: 012, 034, 056, 078, 135, 147, 168,

238, 246, 257, 367, 458 and is an extension of the above configuration of level 8. In

Figure 2 we show the example of the configuration 012, 034, 056, 078, 135, 147, 168,
238 of level 8, introduced in the level 8 of the previous list, which can be realized in
the plane, but that can be contained in an irreducible cubic curve only if point 5 (of
Figure 2) coincides with point 5′ and point 6 coincides with point 6′; this gives the
only configuration of level 10 contained in a cubic curve (and contains the well-known
Pappus configuration). Note that, as a consequence of the above computations, we

see that, when some collinearities of 9 points on a cubic curve force some other
collinearities, this can always be explained as an application of Proposition 4.1.

5 The Hilbert functions of the nine points

In the previous section we classified points on an irreducible cubic curve, according
to the possible collinearities. It is therefore quite natural to ask about the Hilbert
functions of the ideal of the nine points of each configuration. First, observe that
the linear system of nine points on an irreducible cubic curve has dimension either
0 or 1 (see [13] and [11]); hence, if I is the ideal of the nine points P0, . . . , P8, then
dim (R/I)3 = 9 or dim (R/I)3 = 8, where R = K[x, y, z]. Suppose F ∈ R is the
generic homogeneous polynomial of degree d ≥ 3, with coefficients a0, a1, . . . , am−1,
m =

(
d+2
d

)
, and let M(d, P ) be the 9 ×m matrix whose rows are the coefficients of

a0, a1, . . . in F (Pi) (i = 0, . . . , 8). The matrix M(d, P ) has rank at most 9.

Lemma 5.1. If M(d, P ) has rank 9, then also M(d+ 1, P ) has rank 9.

Proof. We can assume that (after a change of coordinates, if necessary) all the points
Pi have the last coordinate different from zero and hence can be chosen equal to 1.
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Let F = a0x
d + a1x

d−1y+ a2x
d−1z+ · · · , then the generic polynomial of degree d+ 1

can be seen as F · z + H(x, y), where H is the generic homogeneous polynomial of
degree d + 1 in x, y. With these notations, the first m columns of M(d + 1, P ) are
the matrix M(d, P ). From this, the result follows.

This lemma allows one to obtain the following:

Theorem 5.2. The Hilbert function of R/I, where I is the ideal of points of the
configurations described in Theorem 4.4 is either 0 7→ 1, 1 7→ 3, 2 7→ 6, 3 7→ 9, 4 7→
9, . . . , if there exists only one irreducible cubic containing the points, or 0 7→ 1, 1 7→
3, 2 7→ 6, 3 7→ 8, 4 7→ 9, 5 7→ 9, . . . in the other case, when the linear system of the
cubic curves through the points is of dimension 1.

Proof. If the nine points are contained on a unique cubic curve, the result immedi-
ately follows from Lemma 5.1. If we have two irreducible cubic curves through the
nine points, the result is a consequence of the fact that the points are a complete
intersection.

It is possible to verify that, when the level of a configuration is 5 or more, only
one of the two Hilbert functions is possible for that configuration; meanwhile, it can
happen that a configuration of level 4 or less admits both Hilbert functions.

Example 5.3. Consider the configuration of level 4: 012, 034, 056, 078. In general,
the linear system of 9 points in this configuration is of dimension 0 but there are
suitable positions of the points which are contained in two irreducible cubic curves,
like the following: P0 = (0 : 0 : 1), P1 = (1 : 0 : 1), P2 = (2 : 0 : 1), P3 = (0 : 1 : 1),
P4 = (0 : 2 : 1), P5 = (2 : −3 : 1), P6 = (4 : −6 : −5), P7 = (30 : −19 : 9),
P8 = (60: −38: 15).
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