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ABSTRACT
Cosmological N-body simulations represent an excellent tool to study the formation and evolution of dark matter (DM) haloes
and the mechanisms that have originated the universal profile at the largest mass scales in the Universe. In particular, the
combination of the velocity dispersion σ v with the density ρ can be used to define the pseudo-entropy S(r) = σ 2

v /ρ 2/3, whose
profile is well described by a simple power law S ∝ r α . We analyse a set of cosmological hydrodynamical re-simulations of
massive galaxy clusters and study the pseudo-entropy profiles as traced by different collisionless components in simulated galaxy
clusters: DM, stars, and substructures. We analyse four sets of simulations, exploring different resolution and physics (N-body
and full hydrodynamical simulations) to investigate convergence and the impact of baryons. We find that baryons significantly
affect the inner region of pseudo-entropy profiles as traced by substructures, while DM particles profiles are characterized
by an almost universal behaviour, thus suggesting that the level of pseudo-entropy could represent a potential low-scatter
mass-proxy. We compare observed and simulated pseudo-entropy profiles and find good agreement in both normalization and
slope. We demonstrate, however, that the method used to derive observed pseudo-entropy profiles could introduce biases and
underestimate the impact of mergers. Finally, we investigate the pseudo-entropy traced by the stars focusing our interest in the
dynamical distinction between intracluster light and the stars bound to the brightest cluster galaxy: the combination of these two
pseudo-entropy profiles is well described by a single power law out to almost the entire cluster virial radius.

Key words: methods: numerical – galaxies: clusters: general.

1 IN T RO D U C T I O N

Galaxy clusters are associated with the collapse of the largest
gravitationally bound overdensities in the initial density field of
the Universe. Their abundance and their clustering properties are
important cosmological probes that allow us to test the initial
conditions of the Universe and to constrain the cosmological pa-
rameters (e.g. Allen, Evrard & Mantz 2011). Their formation and
evolution are driven by gravity-induced dynamics, while several
baryonic processes – e.g. radiative cooling, star formation, and Active
Galactic Nuclues (AGN) feedback – play a major role in determining
their observational properties at different wavelengths (Kravtsov
& Borgani 2012). The hierarchical assembly of clusters through
the dynamical instability of dark matter (DM)-dominated density
perturbations should leave its imprint on the phase-space structure
of these objects. In this context, cosmological numerical simulations
are instrumental to describe in detail the phase-space structure of
galaxy clusters and, ultimately, to capture the complexity of their
formation process. In fact, cosmological simulations demonstrated
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that the equilibrium configuration of DM haloes is characterized by a
quasi-universal density profile at least out to the virial radius (Navarro
1996; Navarro, Frenk & White 1997; NFW). On the other hand,
several studies (e.g. Taylor & Navarro 2001; Dehnen & McLaughlin
2005) have shown that rather than to its density profile, cluster and
DM halo formation and evolution might be more deeply connected to
another, possibly more fundamental quantity: the ‘pseudo-entropy’
profile S(r). This quantity is defined in terms of the velocity dispersion
profile σ v(r) and the density profile ρ(r):

S(r) = σ 2
v (r)

ρ 2/3(r)
. (1)

The ‘phase-space density’ Q(r) = S−3/2(r) is equivalently discussed in
the literature. Empirically, it has been shown that S(r) (or analogously
Q) closely follows a power law in radius in simulated galaxy-sized
(Taylor & Navarro 2001) and cluster-sized haloes (Ascasibar et al.
2004; Rasia, Tormen & Moscardini 2004), a result that has been
confirmed by observations (e.g. Biviano et al. 2013, 2016; Capasso
et al. 2019). Taylor & Navarro (2001) found from N-body simulations
Q ∝ r−1.82, corresponding to S(r) ∝ rα with α = 1.21. Similarly,
Rasia et al. (2004) derived Q ∝ r−1.85, i.e. α � 1.23, in agreement
with the analysis of Dehnen & McLaughlin (2005). Moreover, the
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universality of halo density profiles can be recovered starting from
the power-law behaviour of the phase-space density profile and the
Jeans equation, under the assumption of an isotropic, spherically
symmetric equilibrium mass distribution (Dehnen & McLaughlin
2005). This result motivates the study of pseudo-entropy as a quantity
intrinsically connected to the process of halo formation. However,
the underlying physical reason leading to the power-law dependence
of pseudo-entropy is still unclear.

The power-law behaviour of pseudo-entropy profiles in DM haloes
was also independently derived by Faltenbacher et al. (2007), starting
from the analogy with the entropy of the intracluster gas SX(r),
which is generally defined as SX ∝ Tg ρ−2/3

g , where Tg is the gas
temperature and ρg is the gas density. Spherical gas accretion models
predict gas entropy to scale with the clustercentric distance as SX ∝
r1.1 (Tozzi & Norman 2001; Voit et al. 2003). Indeed outside the
central region, mostly affected by non-gravitational processes (e.g.
Borgani & Kravtsov 2011), the slope obtained in non-radiative
hydrodynamical simulations agrees with the observed values (e.g.
Voit, Kay & Bryan 2005) and gas and DM entropy profiles follow
one another very closely.

In this paper, we analyse an extended set of cosmological hydro-
dynamical simulations to investigate the pseudo-entropy profiles of
simulated galaxy clusters. For the first time, we present the pseudo-
entropy profiles associated with different collisionless components in
clusters, namely DM, stars in the main halo, and substructures whose
dynamic is expected to trace that of galaxies within clusters. The
possibility of combining simulations including different resolution
and physics (i.e. N-body and hydrodynamical simulations with
several baryonic effects) allows us to study in detail both numerical
and dynamical/physical processes that determine the phase-space
structure of galaxy clusters.

Stars in the main halo, which have been proven to be composed
of two different dynamical populations, were further investigated.
Several studies of both observational data and simulations have
shown the existence of two different stellar components in the
main halo of galaxy clusters. A substantial fraction of these stars is
confined within the brightest cluster galaxy (BCG). Dubinski (1998)
investigated the origin of the BCG showing that close encounters
and halo merging naturally produce a massive central galaxy with
surface brightness and velocity dispersion profiles resembling those
of the BCGs. The other fraction is not gravitationally bound to
any particular galaxy and constitutes the so-called ‘intracluster
light’ (ICL). The distribution of the ICL involves physical scales
comparable to those over which the DM component is distributed
(e.g. Dubinski 1998), so it is reasonable to expect that this component
traces the global gravitational potential of its hosting cluster (Montes
& Trujillo 2018). Simulations predict that the ICL forms at relatively
late times (z < 1; e.g. Monaco et al. 2006; Murante et al. 2007;
Contini et al. 2013) and it is thought to arise primarily from the tidal
stripping of stars from infalling groups and satellite galaxies during
the hierarchical accretion of the cluster (e.g. Murante et al. 2004).
We test the differences in their dynamical properties in relation to the
pseudo-entropy profiles traced singularly by the two to disentangle
the distinct contributions to the pseudo-entropy profile of all the stars.
Indeed, in the hypothesis of a strong correlation between distinct
formation mechanisms and phase-space structure, we expect to detect
a corresponding difference in the pseudo-entropy profiles.

In recent years, some observational analyses have deepened the
study on the pseudo-entropy as traced by the hosted galaxies in galaxy
clusters (Biviano et al. 2013; Annunziatella et al. 2016; Capasso
et al. 2019). These results have shown the existence of the power-
law feature, also for this tracer. We plan to provide a computational

Table 1. A summary of the main characteristics of the analysed simulations.
For each set of simulations, we report: DM and gas particles mass; DM,
gas, star particles, and black hole (Plummer equivalent) softening lengths at
redshift z = 0; and the total number of clusters analysed.

Hydro-1× Hydro-10× DM-10× DM-100×
MDM (108 h−1 M�) 8.3 0.83 1.00 0.10
Mgas (108 h−1 M�) 3.3 0.33 – –
εDM (kpc h−1) 3.75 1.4 1.4 0.6
εgas (kpc h−1) 3.75 0.375 – –
εstar (kpc h−1) 1.0 0.35 – –
εBH (kpc h−1) 1.0 0.35 – –
N clusters 29 11 29 12

counterpart in that regard: the dynamics of real galaxies is expected
to be traced by the substructures within the simulated haloes.

This paper is organized as follows: in Section 2, we briefly describe
the details of the simulation setup. In Section 3, we discuss the
universality of the pseudo-entropy profiles. Section 4 presents our
results for the properties of the pseudo-entropy profiles associated
with DM particles. In Section 5, we discuss the properties of the
pseudo-entropy profiles associated with substructures while the
pseudo-entropy profiles associated with stars (including the ICL
component) are shown in Section 6. Section 7 presents a comparison
with observational results on the phase-space density traced by
the total matter and galaxies within a real cluster sample. Finally,
Section 8 summarizes our main results.

2 SI MULATI ON D ETAI LS

Simulations were performed with the code GADGET-3, an improved
version of the Tree/PM Smoothed-Particle-Hydrodynamics (SPH)
public code GADGET-2 (Springel 2005). We analyse a set of DM-
only simulations (to which we will refer as ‘DM’) and a set of
hydrodynamical simulations (‘Hydro’). For each set, we carried out
simulations at two different levels of resolution (see Table 1). At
the base resolution (1× hereafter), for the Hydro set we adopt a
DM mass particle of 8.3 × 108 h−1 M� and an initial mass of the
gas particle of 3.3 × 108 h−1 M�. At intermediate (10× hereafter)
resolution, we have both DM-only and hydrodynamical simulations,
while at high resolution (100× hereafter), we include a set of DM-
only simulations. The characteristics of the four sets of simulations
are summarized in Table 1.

The set of simulated clusters, named Dianoga (Bassini et al. 2020,
and references therein), was extracted from a parent N-body box
of size 1 h−1 Gpc and resimulated adopting the zoom-in technique
as implemented by Tormen & Bertschinger (1996). The adopted
cosmology is a �CDM model with �M = 0.24, �b = 0.037 for the
total matter and baryon density parameters, ns = 0.96 for the slope
of the primordial power spectrum, σ 8 = 0.8 for the normalization
of the power spectrum, and h0 = 0.72 for the Hubble parameter in
units of 100 km s−1Mpc−1. At the base resolution, each simulation
describes the evolution of a Lagrangian region centred on the 24
most massive clusters in the initial simulated box, all having mass
M200 ≥ 8 × 1014 h−1 M� and five isolated smaller clusters with M200

in the range (1 − 4) × 1014 h−1 M�; however, for the other resolu-
tions, the number of clusters employed is different and varies for each
simulation (we report the exact numbers in the last row of Table 1).

The version of the GADGET-3 code used for the hydrodynamical
simulations presented here includes a higher order kernel function
for the SPH interpolation, a time-dependent artificial viscosity, and
artificial conduction as described by Beck et al. (2015) to which we
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refer for further details. The sub-resolution model for star formation
and galactic outflows driven by SN feedback is implemented accord-
ing to the original model by Springel & Hernquist (2003) while metal
enrichment and chemical evolution, whose stellar yields are specified
in Biffi et al. (2017), Biffi, Mernier & Medvedev (2018a), and Biffi
et al. (2018b), follow the formulation described in Tornatore et al.
(2007). In addition, the AGN feedback model is implemented as
outlined in Appendix A of Ragone-Figueroa et al. (2013) with a new
prescription for the coupling of the AGN feedback energy to the gas
particles (Planelles et al. 2013a, b). We note that the set of Hydro-1x
simulations is the one originally presented in Ragone-Figueroa et al.
(2018), while the set of Hydro-10x has been presented in Bassini
et al. (2020).

2.1 Identifying substructures and stellar dynamical
components

To identify precisely locally overdense and self-bound particle
groups distinct from the main structure, we run the SubFind algorithm
(Springel et al. 2001; Dolag et al. 2009) on catalogues of groups
of particles identified by a Friend-of-Friend (FoF) algorithm with
a linking length of b = 0.16 in units of the mean inter-particle
separation. We assume a substructure to be resolved if it includes a
minimum of 50 (DM or stellar) particles.

Although this procedure works well for identifying substructures
in a simulation with different particle species, it does not split the
stellar population into the diffuse ICL and the stars bound to the
BCG. In order to identify the two stellar components within our
simulations, we employed a modified version of SubFind (Dolag,
Murante & Borgani 2010), which resorts to a criterion of dynamical
segregation of BCG and ICL stars to separate such two components.
The algorithm starts by fitting the velocity distribution of all the stars
with a double Maxwellian; each single Maxwellian distribution is
assumed to correspond to one of the two distinct stellar components:
namely the ICL, associated with the distribution with the larger
velocity dispersion, and the BCG with the smaller one. Then, the
algorithm computes the gravitational potential contributed by the star
particles contained within a sphere of a given fiducial radius, centred
on the centre of the halo. The radius of the sphere is initially assumed
to be a fraction of the virial radius and divides the star particles into
two components; for each subgroup, the fitting procedure of the
velocity distribution is performed again with a single Maxwellian.
By varying the radius and recomputing the gravitational potential,
the procedure is repeated until the velocity distributions of the two
components converge to the two velocity distributions inferred from
the original global fit. This last step unbinds the star particles in
the two components. Unlike in the observational studies whereby
the ICL is identified by projected surface brightness criteria, this
method provides a more physically motivated result using the full
6D phase-space information, although the resulting ICL cannot be
directly compared to that obtained from observations.

2.2 Dynamical state

Estimates of the dynamical state of single clusters became important
when investigating the impact of the internal equilibrium of these
systems in relation to their pseudo-entropy profile. We classify only
the clusters in the Hydro-1x sample. This is performed following
the prescription described in Biffi et al. (2016) to which we refer for
further details.

The method is based on two properties: the centre shift (identified
as the distance between the position of the minimum of the gravita-
tional potential xmin and the centre of mass xcm) and the fraction of

mass in substructures fsub. A halo is classified as relaxed if both the
following conditions are satisfied:⎧⎨
⎩

δr = ||xmin − xcm||/r200 < 0.07

fsub = MTOT,sub

MTOT
< 0.1

, (2)

where MTOT is the total mass and MTOT, sub is the total mass in
substructures. If neither is satisfied, then the cluster is classified as
disturbed, while it is tagged as partially disturbed if only one of the
above two criteria is not satisfied. After applying this classification
on the 29 main clusters of the Hydro-1x set at redshift z = 0, we find
six relaxed, eight disturbed systems, and 15 intermediate cases.

3 SELF-SIMILARITY OF PSEUDO-ENTRO PY
PROFILES

Ludlow et al. (2010) found that the pseudo-entropy profiles may not
hold the power-law behaviour when approaching the virial radius
due to the proximity of the last accreted shell. Our aim is to broaden
the analysis of the universality of the pseudo-entropy profiles traced
by different collisionless components in the simulated clusters.

Our analysis is extended out to redshift z = 2, which is the
epoch when massive clusters assemble. All the particle positions
and velocities are computed in the rest frame of the cluster centre,
which is identified as the particle within the central FoF group or the
main halo having the minimum value of the gravitational potential.
Cluster radii are defined in units of the virial radius rvir in order to
better capture the universal behaviour of the self-similar scaling of the
simulated clusters. The virial radius of a halo at redshift z is defined
as the radius encompassing a mean halo density of 
vir(r)ρc(z),
where ρc(z) is the critical cosmic density at redshift z and 
vir

is the redshift-dependent virial overdensity predicted by spherical
collapse for a given cosmological model (e.g. Eke, Cole & Frenk
1996; Bryan & Norman 1998).1 We provide here below a short
description of the scaling associated with the velocity dispersion
profiles, and consequently to the pseudo-entropy profiles, while the
full derivation is provided in the Appendix A.

In the self-similar model, particles within a sphere of radius rvir

at redshift z have a measured velocity dispersion profile σ̃v(r, z)
that scales as a function of the virial radius rvir (i.e. halo mass) and
redshift

σv(r, z) = σ̃v(r, z)

rvir

[

vir(z)


vir(0)
E2(z)

]−1/2

, (3)

where E(z) = [�M(1 + z)3 +��]1/2 provides the redshift dependence
of the Hubble parameter: H(z) = E(z)H0. From this relation, we
derive the scaling on the measured pseudo-entropy S̃(r, z):

S(r, z) = S̃(r, z)

r2
vir E

2/3(z)

(

vir(z)


vir(0)

)1/3 . (4)

We show in Fig. 1 how the rescaling proposed in equations (3)
and (4) effectively captures the universal behaviour of the individual
pseudo-entropy profiles. More in detail, we illustrate the radial
profiles of density, velocity dispersion, and pseudo-entropy, as
traced by DM particles in the main halo given by Subfind within 2
rvir for the entire cluster sample of the Hydro-10x simulation at z =
0. Individual cluster density profiles are shown as thin grey lines,

1In a similar way, we can define r
 as the radius encompassing a mean
overdensity equal to 
 times the critical density of the universe at that redshift
ρc(z).
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Figure 1. From the top panel: density, velocity dispersion, and pseudo-
entropy profiles as traced by the DM particles in the Hydro-10x at z = 0. The
coloured lines report the profiles traced by each cluster while the black is the
median. In the middle panel, the grey and pink lines represent the velocity
dispersion profiles σ v(r) and σ̃v(r) of each cluster, respectively, scaled and
not scaled according to equation (3). The black lines trace the median profiles.
Similarly, in the bottom panel, the grey and pink lines represent the scaled
and not scaled profiles of the pseudo-entropy S(r) according to equation (4),
and the black solid line illustrates the median trend while the dashed one is
the best fit.

while the solid black line represents the median profile. We note
that no further scaling needs to be applied to the density profiles
(upper panel) once the radial distance is expressed in terms of the
virial radius. On the other hand, simply rescaling radii in units of
the virial radius is not sufficient to properly capture the universality
of the other two phase-space quantities (velocity dispersion σ̃v and
pseudo-entropy S̃ profiles), shown in pink thin lines in the central
and bottom panels. For velocity dispersion and pseudo-entropy
profiles, universality is recovered once such quantities are expressed
in terms of σ v and S, or in other words, are rescaled according to
equations (3) and (4) (thin grey lines).

Fig. 1 confirms the remarkable power-law shape of the pseudo-
entropy profiles (dashed black line) of the DM component, which
is stable from the innermost resolved radius out to nearly the
virial radius, in simulations including hydrodynamics and baryonic
physics. As discussed in Ludlow et al. (2010), the outer region is most
likely associated with the transition from the inner, relaxed parts to the
dynamically more active outer parts, where infalling material has not
yet had time to undergo phase-mixing and relaxation. Such an upturn
is present also in the self-similar solution of Bertschinger (1985) and
it might be a general feature of the outer pseudo-entropy profiles of
DM haloes. On the other hand, the density profile corresponding to
the Bertschinger solution (a power law with constant slope) differs
significantly from the density profiles of DM haloes as shown in the
top panel of Fig. 1, which are better described by NFW profiles,
whereby the logarithmic slope smoothly changes from –1 in the
central regions to –3 in the outer regions. Similarly, in the central
panel, we show velocity dispersion profiles, which are also clearly
showing departures from a scale-free behaviour. As the main driver
of the mechanisms involved in halo formation (phase-mixing and
violent relaxation) is gravity (which has a scale-free behaviour), it
is reasonable to expect that closely associated phase-space density
quantities retain a scale-invariant behaviour. A simple power law
suggests, therefore, the possibility of interpreting the pseudo-entropy
as a key quantity in structure formation, thanks to its power-law
behaviour that provides a more fundamental dynamical attractor
than either the velocity dispersion or the density profile, which
individually does not have a power-law trend (surprisingly, given
the fact that it is derived from the combination of the density and the
velocity dispersion profiles which, we stress, are not power laws if
taken singularly).

In the following sections, we present our results on the simulated
clusters in more detail, focusing on the different tracers of the phase-
space, namely DM particles, substructures, stars belonging to the
BCG, and the diffuse stellar component surrounding the BCG.

4 PSEUDO-ENTRO PY PROFILES TRAC ED BY
D M

Having motivated why the pseudo-entropy profile traced by DM
particles is considered as a fundamental diagnostic for the description
of halo formation, we now investigate its behaviour for simulations
with different resolutions and including the description of different
physical processes as well as studying its evolution. This will allow us
to assess the robustness of its shape against both numerical resolution
and physical processes that add to gravitational instability.

4.1 The effect of resolution

As shown in Fig. 1, DM particles in simulated clusters distribute
in phase-space in such a way to predict a tight power-law shape
of the pseudo-entropy profile. Fig. 2 presents the pseudo-entropy
profiles traced by the DM particles in the stack of clusters common

MNRAS 500, 3462–3480 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/500/3/3462/5974301 by guest on 11 February 2021



3466 I. Marini et al.

Figure 2. Comparison of the pseudo-entropy profiles traced by DM particles
at redshift z = 0 to test the convergence among the distinct simulations. In
the top panel, we compare the median pseudo-entropy profiles obtained from
the clusters in the Hydro-1x (in ocher) and Hydro-10x (in red) runs. In the
central panel, we show the median pseudo-entropy profiles obtained from the
DM-10x (in green) and DM-100x (in blue) simulations. The bottom panel
reports the median pseudo-entropy profiles from the simulated clusters in the
Hydro-10x (in red) and DM-10x (in green). For all the curves, we plot the
68-th percentile region given by the cluster samples as a shaded area.

Table 2. Best-fitting results for the normalization S0 and exponent α in the
power-law expression of equation (5) for the median pseudo-entropy profiles
at z = 0 traced by DM particles.

S0 α

Hydro-1x
(

2.79+0.04
−0.04

)
× 10−4 1.20+0.01

−0.01

Hydro-10x
(

2.72+0.05
−0.05

)
× 10−4 1.19+0.01

−0.01

DM-10x
(

2.32+0.02
−0.02

)
× 10−4 1.23+0.01

−0.01

DM-100x
(

2.39+0.06
−0.06

)
× 10−4 1.25+0.01

−0.01

to the four sets of simulations, all at z = 0. The upper and the
central panels compare each a pair of simulation sets including
the same physics but with different resolution: fully hydrodynamics
and DM-only simulations, respectively. The bottom panel compares
instead DM-only and Hydro simulations at the same resolution.
Despite resolving structures with different sensitivity, due to the
different mass resolutions and the presence of baryons, the phase-
space robustly describes a similar power-law pseudo-entropy profile
in all cases. We report the median profiles (solid lines) and the 68
per cent dispersion (shaded areas) given by the cluster samples. The
profiles are all in excellent agreement with each other, with small
differences only in the innermost regions, where the effects of both
resolution and baryonic processes become more relevant.

We then quantify the dependence of the pseudo-entropy profiles,
traced by DM particles, on the resolution by computing the normal-
ization S0 and the logarithmic slope α for the DM-only and Hydro
runs. We assume a power-law behaviour as:

S(r) = S0

(
r

0.5 rvir

)α

. (5)

The fitting procedure is carried out with EMCEE (Foreman-Mackey
et al. 2013), a PYTHON implementation of the affine-invariant en-
semble sampler for Markov Chain Monte Carlo. We use the median
profile and the associated error to fit the profiles. Results are reported
for the four sets of simulations in Table 2. We find that results on the
normalization and slope for both the DM-only and Hydro runs are
consistent within 2σ for the different resolutions, thus guaranteeing
the convergence of our results against the resolution.

4.2 The impact of baryons

The bottom panel of Fig. 2 shows the profiles for DM-only (in
green) and Hydro (in red) simulations at the same resolution. Pseudo-
entropy profiles derived from the DM particles in the Hydro runs
have been rescaled by (1 − �b/�M)2/3 to properly compare them
to their DM-only counterparts. After this correction, we observe the
two profiles to be almost indistinguishable over the entire radial
range, besides the core regions, where the impact of baryons mostly
influences the distribution of the DM particles. A new fit of the
Hydro simulations, considering the aforementioned correction factor,
gives values consistent with the DM-only results: for the Hydro-
1x S0 = 2.48+0.04

−0.04 and for the Hydro-10x S0 = 2.42+0.04
−0.04. We note

that the logarithmic slope α of the Hydro run profiles is slightly
shallower (�3σ ) than its DM-only counterpart. Thus, the emerging
picture of the pseudo-entropy profiles traced by the DM particles in
the simulations agrees with the general result of a power law with a
fixed slope, a result that is supported against numerical resolution,
indicating that this is a key quantity in the description of the gravity-
driven collapse of non-linear structures.
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Figure 3. Top panel: median of the pseudo-entropy profiles traced by DM
particles at different redshifts (as indicated in the legend in the bottom panel)
for the clusters in the Hydro-10x simulation. Bottom panel: median of the
pseudo-entropy profiles traced by DM particles at different redshifts for the
clusters in the DM-10x simulation.

4.3 Evolution in redshift

Fig. 3 describes the redshift evolution of the pseudo-entropy profiles.
The top panel shows the median profiles traced by DM particles in
the Hydro-10x runs for six different redshifts within 0 ≤ z ≤ 1.6.
The bottom panel illustrates the median profiles when traced by
DM particles in the DM-10x. To not overload the plot, we do not
show the associated 68-th percentile regions (which we verify do
not change significantly as a function of redshift). In both cases,
the close similarity of the profiles highlights the self-similar scaling
of the redshift evolution of pseudo-entropy profiles, as discussed in
Section 3. In particular, we note that the profiles are well described
by a power-law behaviour, within the considered redshift range.

The hydrodynamical run presents some tension in the innermost
regions against the pure self-similar behaviour in the DM-only case.
These small deviations emerge for clusters at early times, because
they tend to present higher entropy profiles with respect to their lower
redshift descendant. This reflects in a resulting systematic trend of
decreasing in the slope α as a function of redshift.

4.4 The Mvir –Svir relation

Simple scaling relations between basic cluster properties, such as
the total virial mass Mvir and the dispersion velocity within the virial
radius σ v,vir (Bryan & Norman 1998; Borgani et al. 1999; Evrard et al.
2008; Munari et al. 2013; Saro et al. 2013), are naturally predicted by
the self-similar model (Kaiser 1986, 1992). From the analysis of an
extended set of N-body simulations of galaxy clusters, Evrard et al.
(2008) found that massive DM haloes closely adhere to the relation:

σv,vir(Mvir, z) = σv,15

(
E(z)Mvir

1015 h−1 M�

)γ

(6)

with a remarkably modest scatter σσv,vir|Mvir � 0.04, where σv,15 =
1082.9 ± 4.0 km s −1 is the normalization at mass 1015 h−1 M� and
γ = 0.3361 ± 0.0026 is the logarithmic slope found to be within
the virial expectation γ = 1/3 considering the associated uncertainty.
The tight scatter in this relation, in fact, makes σ v,vir a rather accurate
mass proxy. The best-fitting scaling for our Mvir – σ v,vir relation is
quite close to the virial expectation: we obtain γ = 0.347 ± 0.013
and an intrinsic logarithmic scatter of σσv,vir|Mvir = 0.048 ± 0.007,
corresponding to a fractional uncertainty in mass at fixed observable
of σMvir|σv,vir = 0.132 ± 0.003.

Given the strong similarity of pseudo-entropy profiles, we can
argue whether pseudo-entropy computed within the virial radius
could also provide an accurate, low-scatter halo mass proxy. To this
purpose, we define Svir to be the integrated pseudo-entropy enclosed
within the virial radius rvir :

Svir = 4π

∫ rvir

0
S̃(r) r2dr. (7)

We assume the following scaling of the integrated pseudo-entropy
with virial mass:

Svir(Mvir, z) = S15

(
E(z)Mvir

1015 h−1 M�

)γ ′

. (8)

We study DM particles in clusters from the Hydro-1x simulation at
z = 0 and compare the results obtained computing Svir and the 3D
velocity dispersion σ v,vir as reported in the top and bottom panels
of Fig. 4, respectively. For the Mvir – Svir relation, we find the slope
γ

′ = 1.74 ± 0.05 with an intrinsic logarithmic scatter of σSvir|Mvir =
0.20 ± 0.03, therefore, corresponding to a fractional uncertainty in
mass at fixed observable Svir equal to σMvir|Svir = 0.11 ± 0.02. This
is a strong indication that the integrated pseudo-entropy might be a
better mass proxy than the velocity dispersion, because its scatter
against halo mass is even smaller than that of σ v,vir. This would
be of particular relevance because, to estimate both quantities, one
needs the same information on the cluster dynamics. However, to
fully verify this claim, one requires a larger sample of clusters over
a reasonably wider mass range to enhance the statistics. Moreover,
observationally speaking, the integrated pseudo-entropy is recovered
from the combination of two quantities which both carry their own
uncertainties, thus one might expect to have an increase in the internal
distribution due to the associated observational scatter.

4.5 Outliers

Self-similarity can be broken down if the scale-free evolution of a
halo is distressed. In this event, one expects the disturbed cluster
to not follow the scaling relation but rather to be an outlier in the
overall distribution. To this end, we note the presence of an obvious
outlier in the Mvir –Svir relation shown in Fig. 4 represented by the
second most massive cluster, which we signal in the plot with a
black cross. To understand the nature of the outlier, we show in
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Figure 4. Scaling relation of the integrated pseudo-entropy (upper panel)
and of the virial velocity dispersion (lower panel), both computed over all
the DM particles within rvir, as function of the virial mass of the clusters in
the Hydro-1x simulation at z = 0. The dashed grey lines are the best-fitting
profiles for the scaling relations. The second most massive halo in the sample
is marked with a black cross to signal an outlier in the distribution of the
integrated pseudo-entropy profile, as pointed out in Section 4.5.

Fig. 5 the recent evolution of its density maps. The four panels
illustrate the density maps traced by DM particles within a region
centred on the cluster centre with size 4 rvir at four redshifts. Brighter
colours indicate higher densities. The white circle marks the virial
radius. The red smaller circle indicates a second halo, which is falling
into the cluster potential and reaching the central regions at around
z = 0.13, as displayed in the left bottom panel. The size of the
circle is equal to the virial radius of this second halo, as provided
by SubFind. At this late redshift, the second halo has crossed the
volume enclosed by the virial radius of the main halo and it is being
incorporated. This merging process is completed by z = 0. The mass
ratio 1:5 is fairly large, thus the recent merging represents an event
that strongly impacts the dynamical equilibrium of the main halo.
Indeed, the sudden change in the internal dynamics is reflected in
the pseudo-entropy, which significantly increases at late times, while
the system has not yet had the time to virialize and settle into a
new equilibrium. The same tension is not registered as significantly
in the velocity dispersion distribution. It seems plausible that the

recent major merger may have affected the pseudo-entropy in a much
stronger way than it has on the velocity dispersion. If this is the
case, we expect in the near future that the system will virialize and
reduce the scatter with the scaling relation. Therefore, this reasoning
advocates that entropy (or pseudo-entropy) has the potential of being
a good estimator for detecting recent major mergers. After removing
this outlier, the logarithmic scatter is further reduced to σSvir|Mvir =
0.12 ± 0.02, with α = 1.72 ± 0.03, which in turn corresponds to a
lower fractional uncertainty in mass at fixed observable Svir equal to
σMvir|Svir = 0.067 ± 0.003.

Inferring Svir from observations relies on integrating the pseudo-
entropy profile within the virial radius, whose knowledge is equiv-
alent to that of the virial mass. Therefore, the use of Svir as a mass
proxy may be plagued by a circularity in the argument. The issue can
be addressed via an iterative procedure, which is similar in spirit to
that described by Kravtsov, Vikhlinin & Nagai (2006) for estimating
cluster masses from the YX mass proxy. This quantity is defined
as the product of gas mass and core-excised ICM temperature, both
estimated within R500 from X-ray observations. In fact, the procedure
allows to estimate the mass Mvir when one does not know a priori rvir.
Our approach would require relying on the velocity dispersion σ v,vir

in place of the X-ray temperature to make a first rough estimate of
the virial radius through a Mvir – σ v,vir relation. Relying then on a pre-
calibrated Mvir –σ v,vir relation (e.g. from high-quality observations of
a selected cluster sample and/or from simulations), one can then com-
pute rvir. The procedure can then be iterated until convergence. While
exploiting the potential of σ v,vir as a mass proxy goes beyond the
scope of this paper, we plan to address this issue in a future analysis.

In conclusion, we have shown that pseudo-entropy is not only
a faithful tracer of the phase-space structure of a halo but also
a potentially useful proxy of its total mass, thus making it an
interesting tool for both dynamical studies of galaxy clusters and
their cosmological application.

5 PSEUDO-ENTRO PY PROFILES TRAC ED BY
SUBSTRUCTURES

Having established a remarkable regularity in the pseudo-entropy
structure of the DM halo component, we now move to the analysis of
the same quantity as traced by substructures. As previously discussed,
observational studies (e.g. Biviano et al. 2013, 2016; Capasso et al.
2019) demonstrated the power-law relation of the pseudo-entropy
profile traced by galaxies in clusters. In our simulated clusters,
bona fide galaxies correspond to gravitationally bound substructures,
which we identify through the SubFind algorithm (see Section 2).
We estimate the phase-space halo structure, as traced by such
substructures, from their number density profiles N(r) and velocity
dispersion profiles σ v(r),

S(r) = σ 2
v (r)

N 2/3(r)
. (9)

This case differs from the previous one with DM particles, since the
density employed is not the mass density but rather the substructure
number density within each cluster and the velocity dispersion
profiles are derived from the statistical distribution of velocities of
the substructures. For this analysis, we used the full hydrodynamical
set (Hydro-1x and Hydro-10x) although we show in Fig. 6 only the
profiles of the 10 clusters in the Hydro-10x. The plot illustrates the
resulting number density (upper panel), velocity dispersion (central
panel), and pseudo-entropy (lower panel) profiles of the single
clusters along with the associated median value (solid black). In
each panel, we show with the dashed curve the corresponding median
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Phase-space of galaxy clusters 3469

Figure 5. The evolution of the density maps in logarithmic scale traced by the DM particles in the second most massive cluster reported in the top panel of
Fig. 4, which appears as an outlier from the Svir − Mvir scaling relation. The region is centred at the cluster centre and spans a square of four times the virial
radius of the main halo. The white circle marks the virial radius. The red smaller circle marks the trajectory of the second most massive halo in the region and its
growth, given that the radius of the circle is equal to its virial radius (as provided by SubFind). The orbiting object at redshift z � 0.13 crosses the virial radius
to merge with the main halo by redshift z = 0.

profile obtained for the DM particles (as seen in Fig. 1). The density
(and correspondingly, the pseudo-entropy) is normalized to match the
substructures number density profiles at 0.5 rvir: at these large radii,
the two distributions are very close to each other and with this normal-
ization, one can better appreciate the differences in the central region.

Note that the same universal rescaling with mass and redshift
discussed in Section 3 has been applied to the quantities shown in
Fig. 6. Although we do not report the not-scaled σ̃v and S̃ as we did
in Fig. 1, the internal scatter within profiles is significantly reduced
after applying equations (3) and (4). The fact that both the number
density and the velocity dispersion profiles of substructures present

the same universal scaling as the mass density and velocity dispersion
profiles traced by DM particles confirms that the self-similarity of
the gravity-driven internal dynamics of clusters is preserved when
traced by substructures.

As for the density profiles, we note that substructures trace profiles
that are shallower than the NFW profile traced by DM particles. This
result confirms previous findings (eg. Saro et al. 2006; van den Bosch
& Ogiya 2018; Green & van den Bosch 2019), which pointed out that
tidal removal of mass from merging substructures makes them more
fragile in the central cluster regions, thus causing the corresponding
number density profiles to flatten with respect to that traced by
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Figure 6. From top to bottom panel: number density, velocity dispersion,
and pseudo-entropy profiles as traced by the substructures in the Hydro-10x
simulation at z = 0. The grey lines show the single cluster profiles, whereas
the black ones reproduce the median profiles. We also report with the dashed
black lines the DM particles profiles (as seen in Fig. 1) normalized to match
the number density profile at 0.5 rvir.

Table 3. Best-fitting results for the normalization S0 and exponent α in the
power-law fitting of the median pseudo-entropy profiles at z = 0 traced by
substructures.

S0 α

Hydro-1x
(

4.44+0.16
−0.16

)
× 104 0.89+0.06

−0.06

Hydro-10x
(

4.34+0.15
−0.15

)
× 104 0.86+0.03

−0.03

DM. While the velocity dispersion profiles traced by DM particles
and substructures look more similar than their density profiles, we
still see that substructures are characterized by a generally higher
velocity dispersion, an effect that is more pronounced in central
regions. This velocity bias that has been also pointed out in previous
studies (e.g. Diemand, Moore & Stadel 2004; Faltenbacher et al.
2005, 2007; Faltenbacher & Diemand 2006; Lau, Nagai & Kravtsov
2009; Munari et al. 2013; Armitage et al. 2018) is due to the effect of
tidal stripping, which is more effective for substructures moving with
lower orbital speed. As a result, these structures tend to merge into
the main halo. This effect turns into a selective removal of lower
velocity substructures, thereby increasing the velocity dispersion
of substructures. The resulting profiles of pseudo-entropy are thus
shallower than those of DM particles, an effect that is mainly driven
by the change in the density profiles.

The best-fitting parameters describing the power-law shape of the
pseudo-entropy profiles are reported in Table 3 for the Hydro-1x
and Hydro-10x sets of simulated clusters. Confirming the visual
impression from Fig. 6, the slope α � 0.9 is shallower than the one
of S(r) traced by DM particles. Furthermore, these profiles are robust
against resolution, both in shape and in normalization.

5.1 The impact of baryons on substructures

The results discussed so far and presented in Fig. 6 refer to
substructures identified in radiative hydrodynamical simulations. As
such, they contain not only DM but also gas and, most importantly,
star particles. The latter, being originated from the dissipative
collapse of gas undergoing radiative cooling, are expected to have
a colder dynamics and, therefore, lower pseudo-entropy than the
DM component of the subhaloes (Dolag et al. 2009). As such, star
particles are also expected to be more gravitationally bound and then
more resilient against tidal disruption than the DM component. To
elaborate more on this point, we compare in Fig. 7 the profiles traced
by substructures in the DM-10x and Hydro-10x sets of simulations.
Having the same resolution, this comparison allows us to determine
the effect of dissipative gas dynamics on the (nearly) dissipationless
dynamics traced by substructures. The top panel of Fig. 7 shows
that while the pseudo-entropy profiles of substructures in these
two simulation sets agree in the outer cluster regions (r > 0.5 rvir),
they significantly differ at radii r < 0.5 rvir. In particular, in DM-
only simulations, substructures are characterized by a plateau of
pseudo-entropy in the cluster core, with no substructure found
within 0.05 rvir. On the other hand, pseudo-entropy profiles traced
by substructures in the Hydro-10x simulations are consistent with
a power-law behaviour over the whole 0.05 � rvir � 1. We further
investigate the origin of this difference and find that the velocity
dispersion profiles of subhaloes are consistent between the DM-only
and Hydro runs. On the other hand, the number density profiles of
substructures (central panel of Fig. 7) highlight the relative deficit of
subhaloes in the cluster core for the DM-only case. This is expected,
since the presence of baryons (and, in particular, their stellar content
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Figure 7. Comparison of profiles traced by substructures in DM-10x and
Hydro-10x simulated clusters. Upper and central panels: the pseudo-entropy
and number density profiles traced by the stack sample of substructures at z =
0. Solid curves are for the median profiles, while the shaded area encompasses
the 16-th and 84-th percentiles. In the upper panel, the dashed line shows the
best-fitting power-law relation for the pseudo-entropy profile of substructures
in the Hydro-10x simulations (plotted in Fig. 6). Lower panel: The baryon
fraction profile of substructures in the Hydro-10x simulations. Green and dot–
dashed red curves are the median profiles of baryon fraction when including
stars and gas, and only stars, respectively. The horizontal dashed line marks
the cosmic baryon fraction of the simulations (�b/�M = 0.154).

that dominates the central region of subhaloes) has the effect of
making galaxies more gravitationally bound, therefore making them
more resistant against disruption caused by the strong central tidal
fields (Dolag et al. 2009).

The deficiency of subhaloes in the DM-only simulations compared
to the hydrodynamical simulation could also be attributed to artificial
disruption. Several authors (e.g. Muldrew, Pearce & Power 2011)
argue that the halo finder may be incorrectly identifying subhaloes
in DM-only, while others suggest that DM simulations suffer from
significant overmerging due to numerical artefacts and could be
avoided by following certain criteria (van den Bosch & Ogiya 2018).
Nonetheless, others assessed results compatible with our findings
claiming the differences in the radial distribution to be the result of
tidal stripping (e.g. Weinberg et al. 2008).

To further reinforce this hypothesis, we computed the baryonic
fraction within substructures (fb) as a function of clustercentric
distance in the Hydro-10x runs. The baryonic fraction of each
substructure is defined as the ratio of the baryonic mass (which
is the sum of the stellar mass M�, the gas mass Mgas, and the black
hole mass MBH) over the total mass contained in the substructure
(that includes also the DM component):

fb = M� + Mgas + MBH

MTOT
. (10)

The bottom panel of Fig. 7 describes the radial distribution of the
baryon fraction within substructures. In this panel, the grey line
displays the median baryon fraction in substructures, while the
orange shaded area is its 68 per cent dispersion within the set of
simulated clusters sample. Tidal forces in the cluster centre strip more
easily the outer region of substructures, which is dominated by the
DM component. As a result, subhaloes in the central cluster region
– where tidal forces are stronger – are characterized by a higher
baryon fraction, which even exceeds the cosmic baryon fraction
assumed in our simulations for r � 0.2 rvir. Previous studies (e.g.
Armitage et al. 2018) have already shown this effect, highlighting that
galaxies selected by their stellar mass, rather than by their total mass,
have a significantly lower scatter in dynamical scaling relations.
Substructures in the outskirt of clusters, which have yet not felt
significant effects of tidal forces, have on average baryon fractions
that decrease with radial distance. In these regions, the baryon
fraction within substructures falls well below the cosmic value
assumed in the simulation (�b/�M = 0.154). This is because the
gas, which surrounds the subhaloes, is ram-pressure stripped by the
cluster hot atmosphere, thus leaving behind only the DM component
and a minor fraction of cold star-forming gas. This hypothesis is
supported by the median distribution of the baryon fraction in the
cluster when accounting only for M� in equation (10), shown with the
red curves in the bottom panel of Fig. 7: when approaching rvir, the
baryon budget of substructures is entirely dominated by stars, while a
significant contribution of gas is detected when approaching � 2 rvir.
Therefore, substructures retain gas particles only when they are at
radial distances of r > rvir, just before starting orbiting closer to the
centre of the cluster and being completely deprived (Annunziatella
et al. 2016; Lotz et al. 2019).

We believe that our results are not definite, and they would
certainly require some more investigation to undoubtedly resolve
the controversy.

5.2 Mass segregation in substructures

Tidal stripping is only one of the two main mechanisms responsible
for the bias between DM and galaxies. As pointed out in the
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previous sections, we expect this phenomenon to shape the num-
ber density profile of substructures by selectively removing lower
velocity substructures, thereby increasing their velocity dispersion
and, consequently, causing a density profile shallower than that
traced by DM particles. As a further test of the robustness of
our results, we investigate whether the mass of the substructures
introduced biases due to selection effects on the construction of
the phase-space of clusters. These effects may originate from the
impact of dynamical friction, which depends on the infalling mass
of the orbiting substructures (Chandrasekhar 1943), while mass
selection biases might also be associated with the early disruption
of low-mass subhaloes that are more easily stripped by the strong
gravitational tidal fields in the cluster central regions. To test for
these effects, we split the subhalo population of each cluster within
the Hydro-10x sample at their median mass M0.5. We then compute
the spatial and velocity radial distribution and the pseudo-entropy
profiles for these two equally populated subsamples of subhaloes.
Fig. 8 displays the median phase-space properties (and associated
68 per cent standard deviation) of the 10 clusters in the Hydro-10x
divided into the high-mass group (in blue) and the low-mass group
(in orange). No significant evidence of mass segregation is found
in pseudo-entropy, velocity dispersion, and number density profiles
at least within the statistics allowed by our simulations. This result
provides evidence that no significant mass segregation effects given
by dynamical friction impacts on our results.

In conclusion, the general picture emerging from the analysis of
our simulations on how substructures evolve within a galaxy cluster
can be summarized as follows.

(i) Subhaloes in the outer regions are deprived of most of their dif-
fuse gas component presumably through the ram-pressure stripping,
which takes place already at distances beyond the virial radius.

(ii) During the infall within the cluster potential, substructures
are stripped of their DM component, which is less resistant to tidal
forces, while still preserving part of the baryonic component in the
form of stars; this causes an increase of the baryonic fraction within
substructures at small clustercentric radii.

(iii) In the central regions, we find substructures with high baryon
fractions (of about 25–45 per cent) for the most part due to the
presence of star particles that are gravitationally more bound, thus
more resilient to tidal disruption.

(iv) These effects seem to be independent on the mass of the
subhaloes populating our sample of clusters because we report no
evidence of mass segregation.

As a general consequence, substructures in DM-only simulations,
which do not include a stellar component, are more easily destroyed
and do not survive for long times in the central regions of galaxy
clusters.

6 PSEUDO-ENTRO PY PROFILES TRAC ED BY
STARS

Stars represent a collisionless component in hydrodynamical sim-
ulations, as the above discussed DM particle component. However,
since they are generated from the dissipative collapse of gas particles,
their phase-space structure is expected to be different from that of DM
particles, whose collapse is completely non-dissipative. Therefore,
we investigate the pseudo-entropy profile as traced by the stellar
component as a tool to understand the different physical processes
involved in its formation.

Fig. 9 illustrates the comparison between the median pseudo-
entropy profiles traced by the stars belonging to the main haloes

Figure 8. Effect of mass segregation on the distribution of substructures in
the Hydro-10x set of simulations. In each panel, we show with blue (orange)
curves results for subhalo populations with masses larger (smaller) that
the median subhalo mass found in each cluster. Shaded areas encompass
the 16th–84th percentile of the distribution of profiles. From top to bottom
panels, we show results for pseudo-entropy, velocity dispersion, and number
density profiles.
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Figure 9. Pseudo-entropy profiles traced by the stars in the main halo in the
Hydro-1x (solid red line) and in the Hydro-10x (solid orange line) at z = 0. For
both profiles, we also report the respective intrinsic scatter of the simulated
cluster samples (the shaded areas) and the best-fitting profiles (dashed lines),
using the same colour code. To help the comparison, we report the best-fitting
profile for the DM particles (dotted black line) in the Hydro-1x simulation.

Table 4. Best-fitting results for the normalization S0 and exponent α in the
power-law fitting of the median pseudo-entropy profiles at z = 0 traced by
stars.

S0 α

Hydro-1x
(

8.70+0.37
−0.36

)
× 10−3 1.96+0.02

−0.02

Hydro-10x
(

8.39+0.21
−0.22

)
× 10−3 1.95+0.02

−0.02

of the clusters in the Hydro-1x (in red) and in the Hydro-10x (in
orange) simulations. This means that here we are including only
the stars belonging to the main halo, while excluding all the star
particles bounded to substructures. For both profiles, we also report
the respective intrinsic scatter of the simulated cluster samples
(the shaded areas) and the best-fitting profiles (dashed lines). For
reference, the dotted black line represents the best-fitting curve
traced by the DM particles in the Hydro-1x simulation. The stellar
component recovers the power-law feature in the pseudo-entropy
profiles only for r � 0.55 rvir in both the Hydro-1x and Hydro-10x
runs, which corresponds to the clustercentric distance within which
most of the stellar mass of the main halo is contained (more than
90 per cent in all the clusters). In Table 4, we show the best-fitting
parameters for both simulations: we find that the two simulations are
consistent within 1σ for the different resolutions, thus guaranteeing
the convergence of our results against the resolution.

6.1 ICL and BCG

In the hypothesis of tracing the real structure of the phase-space,
one can further investigate whether the distinct dynamics and the
structure of the ICL and BCG composing the stars in the main halo
of galaxy clusters emerge in tracing the pseudo-entropy profile.
Therefore, we make use of the modified version of SubFind based
on the definition of binding energy, as described in Section 2.1,
to split the stars in ICL and BCG and we recover their single
pseudo-entropy profiles.

The decomposition assigns on average 65 per cent of the total
stellar mass in the main halo to the ICL, while the rest is concentrated
in the central BCG. This definition of ICL is not fully comparable
with the majority of definitions often applied in simulations and
observations (Rudick, Mihos & McBride 2011). For instance, several
authors have identified the ICL from observational data as the stellar

Figure 10. Pseudo-entropy profiles traced by the stars bound to the BCG
(in green), ICL (in yellow), and the two combined (in red) in the Hydro-1x
simulation at z = 0. The dashed black line is the best-fitting profile traced by
all the stars while the dotted black line is the best-fitting profile for the DM
particles, which has been shifted in order to match the pseudo-entropy value
of the ICL profile at 0.1 rvir. The vertical grey line helps the eye to visualize
until which radius (∼0.55 rvir) the power law holds for the sample of all the
stars at this resolution.

component with luminosity below a limiting surface brightness (e.g.
Zibetti et al. 2005), while other authors have modelled idealized
galaxy profiles and subtracted them from the total stellar luminosity,
taking the excess as ICL (e.g. Gonzalez, Zaritsky & Zabludoff 2007).
Recent attempts to separate the diffuse component from the BCG in
simulations were oriented in excluding a given central aperture (e.g.
Pillepich et al. 2018; DeMaio et al. 2020) and orbiting substructures.
Whereas these approaches are closer to the ones followed in the
observational analysis, they implicitly make the assumption of
spherical symmetry that could result in a considerable simplification
of the problem. Accordingly, this may lead to possible contamination
from the two dynamical components that in turn can lead to biases
in an analysis that aims at identifying differences in the phase-space
structure of the two components. A detailed investigation of the
different approaches used to separate the ICL and BCG components
is beyond the purpose of this paper, and we refer the reader to Dolag
et al. (2010) for a more comprehensive description of the method
adopted in this work.

Fig. 10 shows the median pseudo-entropy profiles in the Hydro-1x
run: namely the sample of all the stars (red line), the BCG (in green),
the ICL (in yellow), and best-fitting power-law relation for stars
(reported with the dashed black line) and DM particles (the dotted
black line normalized to match the ICL profile at 0.1 rvir). According
to Fig. 10, the pseudo-entropy profile traced by the stars bound to
the BCG follows a power-law shape within r � 0.3 rvir with a slope
shallower than in the BCG + ICL case. On the contrary, the ICL
significantly deviates from a power-law shape at all radii. However,
their composition clearly follows a power law marked by the dashed
curve, at least out to the grey vertical line at 0.55 rvir. Seemingly,
despite having distinct dynamics and formation histories, ICL and
BCG combine together in the phase-space so as to form a power
law over a fairly large radial range, much like for DM particles,
albeit with a different slope. In the innermost region (for r < 0.04
rvir), the pseudo-entropy traced by stars resembles the behaviour
followed by the BCG. The dissipative collapse that generates these
stars in the core strongly affects their dynamics: on average, they are
characterized by a ‘colder’ dynamics, with relatively lower their
velocity dispersion, which reduces the entropy and impacts the
pseudo-entropy profile. However, moving away from the cluster core,
the contribution of the high-velocity dispersion of the ‘thermalized’
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Figure 11. Phase-space density profiles as traced by DM particles within the Hydro-10x (in blue), DM-10x (in orange), and from the observed data set from
Capasso et al. (2019) (in red). We also report the phase-space density traced by both DM particles and baryons (stars and gas) within the Hydro-10x simulations
(in green). The profiles are shown for the same five different redshift bins within which the analysis of observational data has been carried out. Profiles from
DM particles in the Hydro-10x have been rescaled by (1 − fb) (fb: cosmic baryon fraction assumed in the simulations). For simulations, lines show the median
profiles while shaded areas encompass the 16-th to 84-th percentiles.

population of the ICL becomes more dominant. For distances
r > 0.05 rvir, the ICL component prevails in the total profile.

Having been stripped from merging galaxies by tidal interactions
and having undergone phase mixing during the hierarchical halo
assembly, the diffuse stellar component is often found to be closely
mapping the distribution of the DM particles (e.g. Montes & Trujillo
2018). However, Alonso Asensio et al. (2020), Contini & Gu (2020),
and Sampaio-Santos et al. (2020) have demonstrated that, even if
this seems plausible, their radial profiles differ substantially. In this
regard, we expect to observe these differences to emerge also in
their phase-space structure. By plotting the best-fitting profile of the
pseudo-entropy traced by the DM particles, we provide support to
this claim: not only in our simulation we find a significant tension
in the pseudo-entropy traced by DM particles and ICL but these
differences are significant in their density and velocity dispersion
profiles too (which we do not show).

In conclusion, the remarkable picture arising is the universal
power-law behaviour given by the composition of two dynamically
distinct stellar components, which have different formation histories
and are characterized by different, non-power-law, pseudo-entropy
profiles.

7 C O M PA R ISON W ITH OBSERVATIONA L
RE SULTS

Comparing our findings with observational data is fundamental to
understand the capability of our simulations to correctly describe
the dynamical processes leading to the formation and evolution of
galaxy clusters and, ultimately, their predictive power. We compare
our results from the DM-10x and Hydro-10x simulations with
those in Capasso et al. (2019). Capasso et al. (2019) carried out
an analysis of the phase-space density of clusters selected using

the Sunyaev-Zel’dovich (SZ) effect in the 2500 deg2 South Pole
Telescope (SPT)-SZ survey in the redshift range 0.2 < z < 1.3.
The reconstruction of the phase-space of these objects is performed
with MAMPOSSt (Mamon, Biviano & Boué 2013), which, adopting
parametric expressions for the mass and velocity anisotropy profiles,
solves the Jeans equation in spherical symmetry and recovers the
3D velocity dispersion and tracers distribution. The central 50-kpc
region is excluded from their analysis, because it is identified as the
cluster region affected by the presence of the BCGs. In Appendix B,
we discuss more in details the limits built in the method used to
derive the observed pseudo-entropy profiles. We see that these may
introduce potential biases and underestimate the impact of mergers.

7.1 Q from phase-space density

From the recovered mass density and velocity dispersion profiles,
Capasso et al. (2019) derived the profile of phase-space density,
Q(r), by combining results from clusters within different redshift
intervals. The results of this observational analysis are shown with
the red dashed lines in Fig. 11. The five different redshifts at
which simulation results are shown have been chosen by selecting a
snapshot at a redshift within the interval reported in each panel.

In the same figure, we also report with the orange and blue curves
the median profiles traced by the DM particles of the DM-10x and
Hydro-10x simulated clusters, respectively. For the latter, the profiles
have been rescaled by a factor (1 − fb)−1 to take into account the
baryon fraction. Finally, the green curves report the median profiles
of the total mass density in the Hydro-10x simulations, i.e. adding to
the DM also the contribution from the baryonic components in gas
and stars.

Quite remarkably, simulations and observations produce profiles
with a similar slope for all the redshift ranges. The only exception
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Figure 12. Phase-space density profiles as traced by substructures within the Hydro-10x simulations (in blue) and galaxies in the observational analysis in
Capasso et al. (2019). For each redshift interval, profiles have been normalized so as to match at 0.5 rvir. Lines and shaded areas have the same meaning as in
Fig. 11.

is represented by the redshift interval 0.46 < z < 0.56, for which
the observed phase-space density profile is significantly different
not only from the simulated ones but also from the observed ones
at the other redshifts. Most likely, this is due to the reconstructed
velocity dispersion profile in this redshift bin, which is quite irregular
in comparison with that recovered in the other redshift intervals.
Despite such good agreement in slope, we note a slight systematic
offset in normalization between observed and simulated profiles
that amounts to about 20–30 per cent. While the origin of this
difference is not clear, it is worth reminding that the Q(r) profiles
from simulations have not been obtained by reproducing as close as
possible the observational procedure based on the application of the
Jeans equations and the deprojection of observed profiles of number
density of tracers and line-of-sight velocity dispersion. Nevertheless,
we regard as quite relevant that a power-law shape of Q(r) is
consistently produced by observational data and simulations, when
using matter density in the definition of phase-space density. Finally,
we note that profiles traced by DM particles tend to slightly flatten
in the innermost regions, r � 3 × 10−2 rvir, even if in this region the
observational results are extrapolated. On the other hand, including in
the analysis of the Hydro-10x simulations also the contribution of the
baryonic (mostly stellar) components preserves a power-law profile
extending to the innermost regions resolved in the simulations.

7.2 Q from galaxy number density

As a further term of comparison, we also use the results by Capasso
et al. (2019) on the profiles of Q(r) obtained by using the number
density of tracers (galaxies), instead of the mass density profiles.
Their results are shown with the red curves in Fig. 12, while the
blue curves show the Q(r) profiles obtained from simulations using
substructures as tracers of halo phase-space. Owing to the difficulty
of properly normalizing the number density profiles of the simulated
substructures and observed galaxies, we arbitrarily fixed the normal-
ization in such a way that simulated and observed profiles match at

0.5 rvir. Quite remarkably, pseudo-entropy profiles from simulations
are shallower than in observations if substructures/galaxies are used
to trace the phase-space structure of clusters at r � 0.4 rvir, while the
two profiles recover the same slope at larger radii (Meneghetti et al.
2020). This result is in line with previous findings from simulations,
indicating that the observed phase-space traced by cluster galaxies
is not accurately described by substructures identified in simulated
clusters (Weinmann et al. 2012; Hirschmann, De Lucia & Fontanot
2016; Nierenberg et al. 2016).

Thus, while the slopes of phase-space density profiles traced by
the total mass density are quite consistent in observational data and
in simulations, the latter tend to produce lower values of phase-
space density traced by substructures than in observational data.
Simulations at higher resolution are needed to understand whether
this is due to resolution effects, which could make substructures in
simulations exceedingly fragile against the action of the tidal field in
central cluster regions.

8 SU M M A RY

In this paper, we presented an extensive analysis of the phase-space
structure of simulated galaxy clusters. In particular, we studied the
pseudo-entropy profiles S(r), or equivalently the phase-space density
Q(r), traced by different collisionless components: DM particles,
substructures, and star particles. The analysis is based on the Dianoga
set of cosmological simulations of galaxy clusters (Bassini et al.
2020) that have been carried out with the GADGET-3 code at different
resolutions and including different physics: pure N-body and hydro-
dynamical simulations with radiative cooling, star formation. and
stellar feedback models implemented following Springel & Hern-
quist (2003), metal enrichment, and chemical evolution following
the formulation described in Tornatore et al. (2007); AGN feedback
as described by Ragone-Figueroa et al. (2013). Our analysis aimed
at investigating the mechanisms involved in building the phase-
space structure of galaxy clusters and in comparing predictions of
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simulations to observational data. We note that our analysis provides
for the first time an analysis of the pseudo-entropy profiles traced by
substructures, which should correspond to galaxies, and stars within
the main halo of galaxy clusters.

The main results can be summarized as follows:

(i) Pseudo-entropy profiles from simulations, as traced by all
the three collisionless components (substructures, DM, and star
particles), are always close to power laws for radii smaller than
the virial radius. Furthermore, these profiles scale self-similarly with
mass and redshift, at least from z = 2, which is the largest redshift we
analysed. Substructures present a profile shallower than that outlined
by DM particles as an effect of the change in the density profile. Stars,
on the other hand, show a steeper pseudo-entropy profile, which is a
consequence of the dissipative collapse of gas by radiative cooling
leading to star formation.

(ii) Stars in the main halo (i.e. not belonging to substructures)
have been separated into two dynamically distinct components:
those bound to the BCGs and those belonging to the ICL. These
two components have been shown to be characterized by different
pseudo-entropy profiles, e.g. BCG stars, that dominate in central
regions, have a steeper slope for S(r), thus turning into a lower
level of pseudo-entropy at small radii. Quite remarkably, while the
only BCG S(r) profile is a power law out to 0.3 rvir, they combine
to provide an accurate power law for the S(r) profiles of the total
stellar component of the main halo, extending at least out to 0.55
rvir. We verified the BCG to be responsible for the shape of the total
profile in the core regions (r ≤ 0.04 rvir): stars here originate from
the dissipative collapse of gas, lowering their velocity dispersion and
reducing the entropy. For r > 0.55 rvir the total profile follows the
profile traced by the ICL, formed by the stripping of the stellar matter
from satellite galaxies.

(iii) The pseudo-entropy of DM particles integrated within the
virial radius provides an accurate proxy for the total mass of galaxy
clusters, with an intrinsic scatter at fixed mass of σMvir|Svir = 0.067 ±
0.003. This is even smaller, by about a factor of 2, than that associated
to the velocity dispersion σ v,vir (σMvir|σv,vir = 0.132 ± 0.003), which
is considered the tightest proxy of cluster mass. The predicted scaling
follows Svir = SDM(h(z)Mvir10−15 M−1

� )γ
′
, where h(z) is the Hubble

parameter in units of 100 km s−1 and γ
′ = 1.74 ± 0.05.

(iv) Several factors contribute to affecting the phase-space struc-
ture of clusters, resulting in relative deviations in the power-law
feature. More in detail, we found the presence of baryons to
cause modest differences in the pseudo-entropy profiles traced by
DM particles between the hydrodynamical and DM-only runs, but
most significantly, it intervened in the phase-space distribution of
substructures within clusters (leading to a flattening of the pseudo-
entropy profile in the central regions of clusters evolved in DM-
only simulations). Furthermore, as discussed in Appendix B, the
dynamical state of the single cluster can also impact the phase-
space structure of these objects. This was shown to introduce a non-
trivial bias in the analysis of observational data when estimates of
the mass profiles were made through the resolution of the Jeans
equation. The resulting pseudo-entropy profile in disturbed objects
appeared to deviate in both normalization and slope from the true
profile.

(v) The comparisons with the observed phase-space density pro-
files described in Capasso et al. (2019) offered the opportunity
to assess the capability of simulations to predict the phase-space
structure of galaxy clusters and which evolutionary processes are
responsible for it. The phase-space structure traced by DM particles

is generally in good agreement with observed clusters out to the
highest redshift, z � 1.3, at which these studies have been carried
out so far. On the other hand, the profiles traced by the real galaxies (in
Fig. 12) are found to be significantly steeper than those constructed
by the substructures in simulated clusters. This result is specifically
evident in the central regions at all redshifts and it establishes the
existing limits in cosmological simulations in reproducing the phase-
space traced by satellite galaxies in clusters, a well-known problem
in the literature.

One of the general conclusions of our analysis is that pseudo-
entropy profiles provide an important characterization of the phase-
space structure of cluster-size haloes: despite being defined from the
combination of density and velocity dispersion profiles, each having
a non-power-law shape, S(r) as traced by DM particles has a shape
that is accurately described by a power law over a fairly wide range
of scales and redshift, with a normalization that scales self-similarly.
Quite interestingly, also the stellar halo component develops a power-
law shape of the pseudo-entropy profiles, which extends over a fairly
large radial range, despite the fact that only the BCG S(r) tends
to form a power law, albeit over a narrower radial range. Different
shapes for S(r) of DM and stars are understood in terms of the
different nature of the gravitational collapse determining their re-
spective evolution, non-dissipative for the former and dissipative for
the latter. These results lend support to the idea that pseudo-entropy
is a fundamental quantity, possibly more fundamental than density
profiles, to characterize the non-linear evolution of a collisionless
self-gravitating fluid, leading to the formation of galaxy clusters.
This is also reinforced by the tiny scatter that pseudo-entropy has
in the scaling relation against the total halo mass, thus possibly
promoting it also to the role of precise mass-proxy for cosmological
applications of galaxy clusters.

Quite interestingly, our comparison with observational data shows
that a good agreement is attained only when using total density to
trace pseudo-entropy. In this respect, substructures in simulations
appear to trace a pseudo-entropy level in central regions, which
is higher than that traced by galaxies in observational data. This
is caused by the tidal disruption that causes substructures with
relatively lower orbital velocity to become fragile in central re-
gions. As a result, only a relatively small number of substructures,
with relatively high orbital velocities, survives, thus causing an
excess of the pseudo-entropy with respect to what observed. A
detailed analysis, also based on higher resolution simulations, will
be required to assess whether this disagreement is merely due to
numerical limitations of our simulations, or it is rather indicating
a more fundamental lack of understanding of the processes deter-
mining the evolution of substructures inside massive cosmological
haloes.
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APPENDIX A : N ORMALIZATION/SCALING

In this appendix, we provide a sketch of the derivation of the self-
similar scaling with mass and redshift for the normalization of the
velocity dispersion and pseudo-entropy profiles. Let us consider
rvir as the radius of a sphere within which the mean density is

vir(z) (Bryan & Norman 1998) times the critical density ρc(z) =
3H2(z)/8πG at that redshift. The mass Mvir enclosed in the spherical
volume is given by:

Mvir(z) = 4

3
πr3

vir [
vir(z)ρc(z)] . (A1)

Since ρvir(z) = 
vir(z)ρc(z) and the redshift-dependent Hubble
constant reads

H (z) = 100 h E(z) km s−1Mpc,

where E2(z) = [�M(1 + z)3 + ��] for a flat �CDM cosmology, we
can explicitly write

ρvir(z) = 
vir(z)


vir(0)
E2(z)ρvir(0). (A2)

For an isothermal density profile, it is (Binney & Tremaine 1987):

ρ(r) = σ 2
v

2πGr2
,

where σ v indicates the 1D velocity dispersion. The relation between
σ v and the virial radius (i.e. the virial mass) then reads:

σ 2
v,vir ∝ r2

vir


vir(z)


vir(0)
E2(z). (A3)

Given equations (A2) and (3), the dependence of the pseudo-entropy
on the cosmology is described by

Svir(z) = σ 2
v,vir

ρ
2/3
vir (z)

∝ r2
vir E

2/3(z)

[

vir(z)


vir(0)

]1/3

. (A4)

Therefore, by following this prescription on the density, the velocity
dispersion, and the pseudo-entropy, we scale the vertical axis in such
a way that profiles at all redshifts should overlap as long as this
simple self-similar model holds. It is worth noticing that in equation
(A3), for z = 0, the velocity dispersion is proportional to rvir, so,
even when considering clusters at the same redshift, we examine
σ v(r)/rvir instead of σ v(r). This has also its impact on the pseudo-
entropy scaling, which motivated us to examine S(r)/r2

vir.
We note that assuming the singular isothermal profile allows one to

compute the constant of proportionality in equations (A3) and (A4).
However, the scaling against mass and redshift provided by these
equations holds more in general for haloes whose structural prop-
erties (i.e. halo density, velocity dispersion, and orbital anisotropy
profiles) do not depend on mass and redshift (see also Bryan &
Norman 1998). While this does not strictly hold for the NFW profiles,
the residual mass and redshift dependencies introduce only minor
deviations from the purely self-similar expectation.

APPENDIX B: M ASS R ECONSTRUCTION FRO M
J E A N S E QUAT I O N

The profiles of phase-space density from observational studies that
we considered in Section 7 have been obtained by using the Jeans
equation for a spherical system to recover the mass density profiles
of galaxy clusters (Wolf et al. 2010; Mamon et al. 2013). However, a
possible lack of dynamical equilibrium or departure from spherical
symmetry could introduce biases in the recovery of such mass
profiles. In addition, uncertainties in the correct modelling of the

orbit anisotropy profile are also expected to affect a correct mass
density reconstruction (Merritt 1987). Therefore, one may wonder
whether our comparison between observed and simulated profiles of
phase-space density is affected by the assumptions underlying the
application of the Jeans equation. To address this issue, we decided
to reconstruct pseudo-entropy profiles in simulated clusters using the
Jeans equation and compare them with the intrinsic profiles.

For a spherically symmetric system in equilibrium, the Jeans
equation in spherical coordinates can be cast as

d
(
νσ 2

v,r

)
dr

+ ν

r

[
2σ 2

v,r − (
σ 2

v,θ + σ 2
v,φ

)] = −ν
dφ

dr
, (B1)

where ν is the number density profile of the tracer galaxy population,
φ is the gravitational potential and σ v,i are the components of the
velocity dispersion along the three spherical coordinates r, θ , φ. After
integrating this equation for the radial component of the velocity
dispersion profile, one obtains

σ 2
v,r(r) = 1

ν(r)

∫ ∞

r

exp

[
2
∫ s

r

β(t)
dt

t

]
ν(s)

GM(s)

s2
ds, (B2)

where G is the gravitational constant, M(r) is the mass enclosed

within r, and β ≡ 1 − σ 2
v,θ +σ 2

v,φ

2σ 2
v,r

is the velocity anisotropy profile.

From this equation, the main idea is to provide a mass modelling
technique which performs a Maximum Likelihood fit of the tracers
distribution ν(r), assuming parametric shapes for the gravitational
potential φ [or equivalently M(r), the mass profile], and the velocity
anisotropy profile β. In observational analyses, this computation
also involves a deprojection method to pass from the observed
velocity dispersion and tracer number density profiles to their 3D
counterparts. In the following, we do not address the issue of
deprojection that we leave to a future analysis, while we directly
start from 3D information provided by simulations, so as to focus
on the assumptions entering in the Jeans equation. Since the tracer
population ν(r) does not necessarily follow the mass distribution
M(r), we must treat the two separately in the best-fitting evaluation.
Owing to the accurate fit provided to the density profiles produced
by simulations, the NFW profile (Navarro 1996; Navarro et al. 1997)
defined by

ρ(r) = ρ0

x(1 + x)2
(B3)

is the functional form assumed for both the mass density and
tracers number density profiles. In the above equation, x = r/rs,
where the scale radius rs is by definition the radius at which the
logarithmic slope is –2. In this way, the profile is determined by
rs and by the normalization ρ0, which are two parameters to be
fitted independently for the mass profile M(r) and the tracers number
density profile ν(r).

As for the velocity anisotropy profile β(r), we assume its ex-
pression to be given by the Tiret model (Tiret et al. 2007), which
proved to provide a good description for cosmological simulations
of cluster–mass haloes (Mamon, Biviano & Murante 2010; Mamon
et al. 2013):

β(r) = β0 + r

r + rs
θB, (B4)

with rs the scale radius of the NFW profile of the tracer distribution,
β0 a normalization, and θB the asymptotic value of the orbit
anisotropy.

For each simulated cluster, we perform the best fit of the tracer
distribution ν(r) and its anisotropy velocity β(r) profiles from simu-
lation data. In order to recover the mass profiles in a way similar to
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Figure B1. On the left: pseudo-entropy profiles (DM particles) for a relaxed and a disturbed cluster in the Hydro-1x simulation at z = 0. The dashed lines are
obtained by stacking the true profiles (in cyan) or those obtained by the Jeans equation procedure (in orange), while the solid lines are for the profiles of the
specific cluster. On the right: density maps in logarithmic scale traced by the DM particles in the same objects. The brightest colours indicate the areas at higher
density. The white circles identify the 0.5 rvir spherical region centred on the cluster centre as computed by SubFind.

what is done with observational data, we apply a maximum likelihood
method to recover the normalization ρM

0 and scale radius rM
s of the

mass profile, so that the radial velocity dispersion profile inferred
from equation (B2) matches the true one measured in simulations.
For each cluster, the total velocity dispersion profiles (normalized
by

√
3) can be computed for a given model of velocity anisotropy

according to σv(r) = σv,r(r)
√

3 − 2β(r). Having reconstructed the
mass density profile from the Jeans equation and the profiles of total
velocity dispersion, we finally derive the reconstructed profiles of
pseudo-entropy to be compared with the true profiles.

Furthermore, in order to verify the accuracy of this procedure
based on the Jeans equation to recover pseudo-entropy profiles as
a function of the dynamical state of a cluster, we divided our set
of simulated haloes into relaxed and disturbed. To carry out this
classification, we followed the prescription in Biffi et al. (2016) and
described here in Section 2.

In Fig. B1, we compare pseudo-entropy profiles recovered from
the Jeans equation procedure with the true intrinsic profiles for both

relaxed and disturbed systems from the Hydro-1x simulation. In the
right-hand panels, we show their density maps in logarithmic scale
traced by the DM particles in two clusters within the 0.5 rvir spheres
(in white). In each of the two panels on the left, we compare recovered
and intrinsic profiles of S(r) for both the selected cluster (solid lines),
whose density map is reported on the right, and the entire cluster
sample (dashed lines). Upper panels display the profiles for relaxed
clusters, while lower panels are for disturbed systems. The solid
lines are specific to the single cluster, being in cyan the true profile
and in orange the one produced by the Jeans equation procedure
while the dotted lines refer to the median values of all 29 clusters
in the simulation set. In the upper panel, we see that true and Jeans
equation profiles overlap at almost all radii, showing that the Jeans
equation procedure has correctly reproduced the true profile, which
is also in line with the median result. In the lower panel, we show the
same profiles but when obtained for a cluster labelled as ‘disturbed’,
since a major merger is occurring as shown by its density map. In
this cluster, the true profile consistently deviates from the median
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Table B1. The best-fitting values obtained for the logarithmic slope in the
true profile and the one recovered through the Jeans equation procedure
for the relaxed and disturbed cluster shown in Fig. B1 with the 68 per cent
uncertainty. In the last row, the results obtained when fitting the median profile
from the stack sample of 29 clusters in the Hydro-1x simulation at z = 0. In
the latter, the uncertainties reported are the standard deviation derived from
the distribution of best-fitting values for the sample.

α True Jeans equation

Relaxed 1.203+0.002
−0.001 1.204+0.002

−0.001

Disturbed 1.050+0.002
−0.001 1.211+0.003

−0.002

Stack 1.222 ± 0.002 1.238 ± 0.003

and the Jeans equation profiles. The latter, in turn, suffers a shift in
normalization but not in the slope with respect to the median profiles.

To quantitatively describe the differences between recovered and
true pseudo-entropy profiles, we follow the same procedure described
in Section 3 to fit a power-law profile, which depends on two
parameters, and concentrate our interest on the accuracy in recovering
the slope α. In the first two lines of Table B1, we report the true
and the Jeans equation-recovered slopes for the two relaxed and the
disturbed clusters shown in Fig. B1. Consistently with the results

shown in this figure, the slope is accurately recovered for the relaxed
cluster, while a significant difference is found for the disturbed object.
This is in line with the expectation that the procedure based on the
Jeans equation, which implicitly assumes dynamical equilibrium,
can introduce biases when applied to unrelaxed systems. The results
from the combination of 29 simulated clusters are reported in the
last row of Table B1. On average, the Jeans equation sample seems
to slightly overestimate the true value of the slope, although the
difference between true and recovered slopes is relatively small once
averaging over a sample of clusters with a representative mix of
dynamical state.

In conclusion, the assumption of dynamical equilibrium imposed
by the Jeans equation is shown to potentially introduce a significant
bias in the reconstruction the phase-space structure of unrelaxed
clusters. It is worth reminding that the analysis presented here
assumes the knowledge of the 3D distribution of tracers and of
the velocity dispersion profiles. A full analysis aimed at including
observational effects on the measurements of phase-space density of
galaxy clusters would require a proper account for projection effects,
which we defer to future analysis.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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