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Abstract. In order to prevent seismic damage on building heritage built before Seismic 

Standards, constructions require to be assess to verify the structural response in the case of 

multi-level intensity seismic actions. This problem especially concerns those buildings with a 

social function as schools, hospitals, etc., or with historical and architectural value as that 

designed by important builders of the past. 

This is the case of the bar-restaurant building of “Bellariva” Sport Centre, designed and built in 

Florence by the World-famous Italian engineer Pier Luigi Nervi in the Sixty years. Its structure 

is characterized by reinforced concrete frames and hosts the locker rooms of the swimming 

pool and a bar on the first floor, a restaurant on the second, where a long crack was observed. 

The presence of a large balcony with heavy perimeter planters near the cracked zone motivated 

the execution of on-site tests finalized to determine the steel bars connecting the restaurant 

floor to the balcony. A Ground Penetrating Radar survey was performed in order to determine 

the internal structure of the floor, dimensions and disposition of steel bars, and to gather 

information about the connections between perimeter beams and balcony at the level of the 

restaurant. The experimental campaign allowed to refine a computational Finite Element 

Model that was utilized for the performance analysis of the structure in the current state. The 

paper presents the main results of a preliminary seismic analysis carried out on the structure, 

on the basis of which some retrofit intervention are suggested.  

1.  Introduction 

The high vulnerability of some constructions built in Italy before the issue of the Seismic Standards [1, 

2], makes it necessary to plan investigation campaigns to assess the response of the same buildings 

subjected to seismic actions, especially when they have a social function like hospitals and schools, or 

have an historical and architectural value. Among this last type of constructions can be considered the 

bar-restaurant building of the “Bellariva” Sport Centre, built in Florence in the Sixty years of the last 

Century by the World-famous Italian engineer Pier Luigi Nervi and his son Antonio. This paper 

presents a summary of the phases of geometric reconstruction, carried out by means of the 

consultation of original design tables and the execution of on-site surveys, of modeling and final 

seismic analysis of the structure in current state conditions.  
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2.  The structural assessment of “Bellariva” bar-restaurant building   
Seismic vulnerability analysis of a construction of historical-architectural interest requires a careful 

preliminary investigation aimed at redrawing the main structural details, starting from the original 

design documentation. With regard to the case study examined in this paper, a consistent part of the 

original design was found at the historical CSAC archive in Parma. In a next step of the study, the 

original design must be then compared to the actual structure, in order to define a computational 

model to utilize for seismic analysis of the construction. Regarding this, it can be observed that the 

actual strength properties of the materials constituting main structural members schematized in the 

same model should be confirmed by on-site testing campaign as those performed for the bar-restaurant 

“Bellariva” building. Next figures 1-3 show the plans of the ground floor, which houses the dressing 

rooms and the bar (figure 1), of the first floor where the restaurant is located (figure 2), and the roof 

(figure 3).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Ground floor plan of the building with numbering of beams and columns; localization of 

columns with variable section, squared in red, and of columns laterally placed with respect to the bar, 

squared in green. 

 

Figure 2. First floor plan with localization of lateral columns of the restaurant (squared in green), 

terraces and balcony (squared in blue). 

Description of the structure 2.1.  

The building has a reinforced concrete structure with an irregular plan, characterized by maximum 

dimensions of 64.35×13.60 m×m on the ground floor, 25.05×11.40 m×m on the first storey. On this 

last level the restaurant has two large 8.5 m wide terraces on the sides, while in front there is a 1.5 m 

wide balcony (figure 2). In figure 4 are represented the main sections of central columns having 

dimensions of (260×300) mm×mm and (300×300) mm×mm in the ground floor, reduced to (200×250) 

mm×mm in the second storey. Perimeter columns squared in green on the plan in figures 1 and 2, have 

axes that are not aligned in the two interstoreys due to the presence of cavities passing through them.  

X 

Y 
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As shown by the details in figure 4, they have C-type sections in the first storey (figure 4e), 

rectangular-type with dimensions of 420×250 mm×mm, in the upper level (figure 4f). The six columns 

squared in red in figure 1 have a section variable in height as detailed in figure 5 with reference to the 

central alignments, in figure 6 for the lateral positions. This particular shape is a characteristic also of 

other important structures designed by Nervi in the same time such as the Washington Bridge Bus 

Station in New York, and the “Palazzo del Lavoro” in Turin [3].  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Roof plan with numbering of beams and columns. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Structural details of columns with constant sections in the first (a, c, e) and second (b, d, f) 

interstoreys. 

 

  

Figure 5. Front view and sections of an internal column of the first interstorey with variable 

dimensions and shape. 
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P1,RC P2,RC P5,RI 

P3,RC P4,RC P6,RI 
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Figure 6. Front view and sections of a lateral column in the first interstorey with variable dimensions 

and shape. 

 

R/C beams have section dimensions, steel bars and stirrups detailed in table 1, identified according to 

the nomenclature reported in figures 1-3.  
 

Table 1. Sections, steel bars and stirrups of beam elements. 

 

 

Beams 

 

Dimensions 

(mm×mm) 

 

 

Floor 

Half-span section  

 

End section  

 

 

 

Stirrups superior bars inferior bars superior bars inferior bars 

T1 260×500 1F 2φ8 6φ16 6φ16+2φ8 2φ16 φ8/20 

T2 260×600 1F 2φ6 6φ12 6φ12+2φ6 2φ12 φ8/20 

T3 260×550 1F 2φ6 6φ12 6φ12+2φ6 2φ12 φ6/20 

 T4 

  250×550–

250×750  1F 

 

2φ12 

 

8φ16 3φ16+2φ12 

 

2φ16 φ8/20 

T5a 850×260 1F 4φ6 8φ16 6φ16 4φ16 φ6/20 

T5b 850×250 1F 4φ16 4φ16 3φ6+3φ16 4φ16 φ6/20 

T6 

  250×500– 

250×750  1F 

 

2φ12 

 

6φ16 7φ16/3φ16 

 

4φ16/6φ16 φ8/20 

T7a 260×500 1F 2φ6 6φ12/5φ12 5φ12 3φ12 φ8/20 

T7b 260×500 1F 2φ6 4φ12/5φ12 2φ12/2φ6 2φ12 φ6/20 

T7c 260×500 1F 2φ6/2φ6+2φ12 4φ12/5φ12 4φ16+2φ6 2φ12 φ6/20 

T8 250×450×10×500 1F 1φ8+2φ10 4φ10 1φ8+2φ10 4φ10 φ6/20 

T9 260×200 1F 2φ12 2φ12 2φ12 2φ12 φ6/20 

T10 250×450 2F 2φ8 4φ16/5φ16 2φ16/4φ16 2φ16 φ8/20 

T11 250×650 2F 2φ8 5φ16/6φ16 2φ16/4φ16+2φ8 2φ16 φ8/10-20 

T12 250×370 2F 2φ8 6φ16/7φ16 3φ16/6φ16+2φ8 3φ16 φ8/10-20 

        

The first floor structure is composed by prefabricated R/C joists, with length of 5.0 m, 3.0 m, and 3.8 

m in three different zones. The second floor is instead partly constituted by two types of V-section 

prefabricated tiles, shown in figure 7. The remaining portion of the floor is of the joist-brick type, with 

slab thickness ranging from 30 mm to 50 mm. Two external side staircase with single ramp allow the 

vertical connection between the two floors; they are supported by knee beams contained within the 

infill walls. 
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Figure 7. Prefab V-shaped beams of type A, with variable section (a), and of type B, with constant 

section (b). 

On-site experimental tests 2.2.  

An extensive on-site testing campaign was carried out on the building to identify the mechanical 

characteristics of the constituting materials and draw the main structural details, starting from the 

original design documentation. The on-site testing programme consisted of: core drillings, pacometer 

tests, and extraction of steel reinforcement samples on the ground storey R/C members. The following 

main properties of the constituting materials resulted from the characterization tests: mean cubic 

compressive strength of concrete equal to 37.35 N/mm
2
 (corresponding to a concrete material of class 

R/C 35/45) for beams and columns; to 45.65 N/mm
2
 (class-type R/C 45/55) for the prefab beams; 

21.25 N/mm
2
 (class-type R/C 20/25) for the slab; yield stress of reinforcing steel equal to 304.11 

N/mm
2
, corresponding to a AQ 60 steel-type, according to the nomenclature adopted at the time the 

building was constructed. The information gained from the testing campaign made it possible to reach 

the highest “knowledge level” (named LC3) established by the current Italian Technical Standards [4, 

5] in the structural assessment analysis of existing buildings. The corresponding value of the 

“confidence factor” FC is equal to 1.  

The pacometric surveys carried out generally allowed verifying the positions and diameter 

dimensions of the most superficial reinforcements, but not the detail of anchoring longitudinal bars of 

the terrace to the floor of the restaurant, a section detail of which is shown in figure 8a, extracted from 

the original design project. The verification of this information was made necessary by the detection, 

on the floor of the restaurant, of a long crack parallel to the X direction, as shown on the plan in figure 

8b, perhaps generated by the execution of an elevator, placed in the East corner of the building, several 

years after its construction. Aiming this, the limit of pacometer tests was overcame by means of more 

refined instruments such as Ground Penetrating Radar (GPR), commonly used for investigating 

concrete pavement, floor and for identifying steel bars placed in deeper alignments.   

 

 

 

 

 

 

 

 

Figure 8. Original drawing of a detail of the balcony section (a), and representation in plan of the 

crack in the first floor. 

 

The GPR survey allows to gather information about structures without any destructive test [6, 7]. The 

aim of this GPR survey is to investigate the structural characteristics of the damaged floor, to identify 

the spacing of steel bars and to gather information about the connections between the edge beams and 

the cantilever balcony. Indeed, the original drawings of the long side of the balcony have been lost and 

there are no evidences about the type of the beam - cantilever connection. A drawing of the short side is 

shown in figure 8a. In this side the balcony is 1.5 m large and the bars pass through the perimeter beam 

(a) (b) 

Step 0.20 m 

Elevator 

Crack 

(a) (b) 
Floor Anchorage Balcony 
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for 1 m. The bars are positioned with a step of 0.20 m. For analogy we presume to have the same 

disposition of bars on the long side of the balcony where the bars are passing through the beam for 2 m. 

In figure 9 is shown the GPR equipment used. This system, called ORFEUS, was designed in the frame 

of a European Project [6]. As shown in figure 10, 12 longitudinal scans (L-scans) and 42 transversal 

scans (T-scans) on the internal floor were acquired with the GPR. Seven L-scans and one T-scan were 

acquired on the balcony. The step between two parallel scans was 0.5 m. The GPR results of this survey 

were reported in [7]. For sake of brevity in the following section only the useful radar gram has been 

shown. 

 

 (a)     (b)     (c) 

Figure 9. Detail of the crack on the first floor and of the ORFEO GPR radar, (a) and (b); detail of the 

balcony and flowerpot (c). 

 

 

 

 

 

 

 

 

 

 

Figure 10. Scan grid of the Bellariva survey. 

 

Figure 11 shows the results of the 3
rd

 L-scan (in red in figure 10). This scan was taken at 1.5 m from 

the edge beam therefore the targets represent the bar connected to the edge beam. In the 3
rd

 scan it is 

possible to count 47 targets in 10 m with an average step of 0.21 m. The same bars density was 

measured in the 2
nd

 scan (in red in figure 10) These results confirm the analogy with short side of the 

balcony (figure 8a). In the 4
th
 and 5

th
 L-scan (in light blue in figure 10) the average step of targets was 

0.52 m. The results of 4
th
 scan is reported in figure 11b. The two consecutive L-scans (the 6

th
 and 7

th
) 

gives an analogous result. Therefore, in the middle of the floor span the bars were positioned with a 

step of 0.5 m. In the 3
rd

 L-scan (and also in the 2
nd

 L-scan [7]) a echo is visible at 0.5 m depth. In the 

4
th
 (and also 5

th
 L-scans [7]) this continuous echo is not visible.  By comparing this result with the 

original drawing in figure 8a we can deduce that the steel bars from balcony pass through the 

perimeter beam for more than 1.5 m. The 8
th
 L-scan (in yellow in figure 10) was performed close to a 

beam and it is able to survey three different floor-span [7]. From the starting of the scan to 7.25 m and 

from 12 m to the end we can measure 3.6 targets each meter with an average step between bars of 0.28 

m. Indeed, in these areas the bars from different spans floor are overlapped on the beam and the step 

has to be about 0.25 m. In the central area (from 7.25 m to 12 m) of 8
th

 L-scan the absence of 

reinforcement is probably due to a different orientation in that part floor. Anyway, due to the presence 

of the kitchen we are not able to scan this floor in transversal direction for confirming this hypothesis. 

The results of T-scans of the internal floor are similar to each other. With the T-scan we measured 

the bars overlapping on the beam and it results to be about 1.2 m [7]. In whole T-scan of the internal 

floor we are able to see 6 targets that probably can associate to some longitudinal bars. Figure 11c 

Elevator 
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shows the result of the 7
th
 L-scan of the terrace (in green in figure 10). In this case we measured a bars 

density of 5.2 bars/m that correspond to an average step of 0.23 m. 

 

     
Figure 11. a) 3

rd
 scan, 1.5 m from the perimeter beam; b) 4

th
 scan, 2 m from the perimeter beam; c) 7

th
 

L-scan of the balcony taken close to the its final part 

 

Finally, the T-Scan of the terrace (in green in figure 10) correspond to the original drawing (figure 8a). 

In this scan it is possible to measure an average step between targets of 0.21 m that corresponds to 

the original drawing in figure 8a. The beam is also visible in this scan. In conclusion, the GPR survey 

confirmed what is reported in the original drawings, both for rebars density and for the design of the 

structure.   

3.  Assessment analysis in current conditions 

The seismic response of the building in current conditions has been verified by utilizing the finite 

element model shown in figure 12, generated by SAP2000NL calculus program [8]. It is composed by 

frame elements reproducing beams and columns with rectangular sections and multi-frame elements for 

V-shaped beams and columns with variable section. Geometric and mechanical characteristics of the 

materials constituting the main structural elements correspond to those identified in the previous phase 

of the present study.  

 

 
Figure 12. Finite Element model defined for the structure with details of V-shaped beams and variable 

section columns. 

 

The verification enquiry in current conditions is articulated in a modal analysis to calculate the 

vibration periods and associated modal masses, and in a time-history analysis to assess the seismic 

performance in terms of stress states and displacements. The modal analysis carried out by the model 

shows a first horizontal roto-translational mode along Y with period of 0.62 s, a second horizontal 

mode mainly translational along X for the first interstorey and roto-translational for the second storey, 

with period of 0.35 s; a third rotational mode around Z with period of 0.31 s. The sum of modal 

masses exceeds the 85% after the tenth mode along X and Y, resulting of 98.4% (X) and 85.4% (Y). 

The performance evaluation enquiry was carried out for the four reference seismic levels fixed in 

the Italian Standards [4], that is, Frequent Design Earthquake (FDE, with 81% probability of being 

exceeded over the reference time period VR); Serviceability Design Earthquake (SDE, with 50%/VR 

probability); Basic Design Earthquake (BDE, with 10%/VR probability); and Maximum Considered 

Earthquake (MCE, with 5%/VR probability). The VR period is fixed at 75 years, which is obtained by 

multiplying the nominal structural life VN of 50 years by a coefficient of use Cu equal to 1.5, imposed 

to structures whose seismic resistance is of importance in view of the consequences associated with 

their possible collapse, like the case-study school gym building. By referring to topographic category 

T1 (flat surface) and C-type soil, the resulting peak ground accelerations for the four seismic levels 

referred to the city of Florence are as follows: 0.082 g (FDE), 0.098 g (SDE), 0.223 g (BDE), and 
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0.270 g (MCE). Time-history analyses were developed by assuming artificial ground motions as 

inputs, generated in families of seven by the SIMQKE-II software [9] from the spectra above. In each 

time-history analysis the accelerograms were assumed in groups of two simultaneous horizontal 

components, with the first one selected from the first generated family of seven motions, and the 

second one selected from the second family. The results of the analyses carried out at the FDE and 

SDE are evaluated in terms of interlevel drift ratio (i.e., the ratio of the interlevel drift to the interlevel 

height of the columns) ILDr. With reference to the SDE level, the maximum ILDr values induced by 

the most severe among the seven groups of input motions, ILDr,max, are as follows: 0.22% (SDE) in X, 

and 0.10% (SDE) in Y, on the first level; 0.098% (SDE) in X, 0.099% (SDE) in Y, on the second level. 

The drift ratios in X and Y are then far below the 0.33% limitation adopted by [4] at the Operational 

(OP) performance level for frame structures interacting with drift-sensitive non-structural elements. 

The BDE- and MCE-related response was assessed also in terms of stress levels. The shear-related 

checks are met in both directions for both levels, up to the MCE. On the other hand, for some beams 

of first floor (T2,RC and T4,RC) and roof (the end beams T10,RC and T11,RC on the roof), the stress state 

checks evidenced maximum stresses overcoming the corresponding resistance values of about 20% 

already at the BDE. With reference to this columns, the combined axial-force and biaxial-bending-

moment stress state checks are met only for the internal columns with constant sections, and for those 

with variable sections on the first level at the BDE. The response of the corner columns (P1,RC, P2,RC, 

PV,RC) at this level, as well as of all columns in the corners on the second level (P5,RC) is unsafe starting 

from the BDE. 

4.  Conclusions 

The paper presents a summary of the seismic vulnerability analysis carried out on the bar-restaurant of 

the “Bellariva” Sport Centre in Florence. This study provides an example of how to conduct the 

structural analysis for the seismic assessment of heritage buildings like that herein examined. It is also 

demonstrated how the execution of GPR non-destructive surveys can be useful in the on-site testing 

phase, allowing some structural details to be identified without the need for other destructive tests.  
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