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Abstract

In 1884 the German mathematician Karl Rohn published a substantial paper on
[11] on the properties of quartic surfaces with triple points, proving (among many
other things) that the maximum number of lines contained in a quartic monoid
surface is 31.

In this paper we study in details this class of surfaces. We prove that there exists
an open subset A ⊆ P1

K (K is a characteristic zero field) that parametrizes (up to a
projectivity) all the quartic monoid surfaces with 31 lines; then we study the action
of PGL(4,K) on these surfaces, we show that the stabiliser of each of them is a
group isomorphic to S3 except for one surface of the family, whose stabiliser is a
group isomorphic to S3 × C3. Finally we show that the j-invariant allows one to
decide, also in this situation, when two elements of A give the same surface up to a
projectivity.

To get our results, several computational tools, available in computer algebra
systems, are used.
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1 Introduction

Algebraic quartic surfaces are a classical subject of algebraic geometry and
the study of their rich properties has been developed in research papers and
books since the XIX century. Many different classifications for several classes of
quartic surfaces where introduced (for instance, see [11], the books [6] and [4];
for a more complete discussion, see [7], [10] and the references given there).

In more recent years, many classical results have been reconsidered and pre-
sented in a modern language. In particular, a big effort has been dedicated
to study the possible singularities on quartic surfaces [5], the number of lines
contained in quartic surfaces [7], and to study as well the characteristics of
monoid surfaces, as in [13], [14], where an explicit description of them in terms
of equations can be found (see also [9] and [2]). Unlike the well-known case
of smooth cubic surfaces, which contain 27 lines, the generic quartic surface
does not contain lines. However there are classes of quartic surfaces which do
contain lines, and it has been shown that the maximum number is 64 (see the
paper [7] and its references).

An interesting class of quartic surfaces is given by the quartic monoid surfaces,
that is, surfaces with a triple point. Their classification in terms of other
singularities is given in [13] and [14], while in the forthcoming paper [3], it
is described a classification according to the possible configuration of lines
they can contain. In particular, it is shown that a quartic monoid surface can
contain at most 31 lines; indeed such a result was already obtained by Rohn
in a paper published in 1884 (see [11]).

In this paper we aim to study into details the class of quartic monoid surfaces
with 31 lines. In particular, we want to describe the natural action of the group
PGL(4, K) on these surfaces, which means that we are interested in quartic
monoid surfaces up to projectivity. We show that quartic monoid surfaces
with 31 lines can be parametrized by an open subset A of P1

K and, moreover,
that for any given points a, b ∈ A the corresponing surfaces Q(a) and Q(b)
are projectively equivalent if and only if a and b have the same j-invariant.
Furthermore, if a ∈ A is not a primitive root of −1, then the stabiliser of the
corresponding surface Q(a) is a group isomorphic to the group of permutations
S3 of three elements (which does not depend on the parameter a), while if a
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is a primitive root of −1, then the stabiliser of the corresponding surface is a
group with 18 elements, isomorphic to S3 × C3, where C3 denotes the cyclic
group of order 3. If the parameter a is rational, then all the 31 lines of Q(a)
are rational (i.e. obtained by joining two points with rational coordinates).
The approach we have followed is quite constructive so that we get (or we can
easily obtain) the explicit equations of all the considered geometric objects.
We have therefore intensively used symbolic computation tools, and precisely
the computer algebra systems CoCoA [1] and Sage [12].

2 Basic properties

Let K be a characteristic zero field. By a quartic monoid of P3
K we mean a

quartic surface of P3
K which has a triple point (that, w.l.o.g. can be assumed

the origin O = (0, 0, 0, 1)). Hence the polynomial defining a quartic monoid is
of the form:

Q(x, y, z, t) = tF3(x, y, z) + F4(x, y, z) (1)

where F3, F4 ∈ K[x, y, z] are two forms of degree three and four, respectively.
From now on, for shortness, we also denote byQ the quartic surface of equation
Q(x, y, z, t) = 0.

Let π be the plane of P3
K of equation t = 0. We consider on this plane the

two curves of equation F3 = 0 and F4 = 0, which intersect in 12 points
P0, . . . , P11 on π. The quartic monoid Q contains the 12 lines given by O+Pi.
Moreover, if a line r is contained in the surface Q and does not pass through
the origin, then its projection from O to the plane π gives a line joining three
of the points Pi’s, see [7] and [11] (indeed, the intersection {r + O} ∩ Q is
a quartic planar curve which splits into r and three other lines through the
origin, which represent the three possible collinearities of three points of π).
This remark has an immediate consequence: the number of lines a quartic
monoid can contain depends on the collinearities of 12 points of the plane.
In particular, Rohn claimed in [11] that the maximum number of collinear
triplets of points among 12 points in the plane is 19, so that the maximum
number of lines contained in a quartic monoid is 31 (19 from the collinearities,
12 from the lines through the singular point). He also gave an explicit (very
elegant) equation of a quartic surface with 31 lines, which can be expressed
(according to the formulation of [7]) in the form:

t
(
(x+ y + z)3 + xyz

)
+ (x+ y + z)(x− y)(y − z)(z − x) (2)

In the present paper, we want to study into details the quartic monoid surfaces
with maximum number of lines, with particular effort to describe their possible
symmetries.
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Fig. 1. The 19 collinearities of the points described by (3). They can be realized
starting from the 15 diagonals of an hexagon (of vertices 0, 3, 10, 5, 1, 8) that meet
in the further points 4, 6, 7 and 2, 9, 11 (these last points lie on the line at infinity).

First of all, the combinatorial problem of finding the maximum number of
collinear triplets of 12 points of the plane can easily be solved with the help
of a computer. The solution we get (unique, up to permutations of the labels)
is the following (see also Figure 1) (where, from now on, (i, j, k) is a shortcut
to denote the triplet (Pi, Pj, Pk)):

(0, 1, 2), (0, 3, 4), (0, 5, 6), (0, 7, 8), (0, 9, 10), (1, 3, 7), (1, 4, 5),

(1, 6, 8), (1, 10, 11), (2, 3, 5), (2, 6, 7), (2, 9, 11), (3, 6, 10),

(3, 8, 11), (4, 6, 9), (4, 7, 11), (4, 8, 10), (5, 7, 10), (5, 8, 9)

(3)

In order to make computations, it is necessary to assign coordinates to the
points. Up to a projectivity of the plane π, we can assume that the coordinates
(x, y, z, t) of the points P0, P1, P2, P3, P4 are the following:

P0, P1, P2, P3, P4 = (0, 0, 1, 0), (1, 0, 1, 0), (2, 0, 1, 0), (0, 1, 1, 0), (0, 2, 1, 0)

The remaining points have to satisfy two constraints: they must satisfy condi-
tions (3) and they have to lie on a plane cubic curve. Consequently, the only
possible coordinates of the remaining points turn out to be expressed in terms
of a free parameter a ∈ K as follows:

P5, P6, P7 = (1, 1, 3/2, 0), (1, 1, 1/2a+ 2, 0), (a+ 1, 1, a+ 2, 0),

P8, P9 = (a+ 1, 1, 3/2a+ 2, 0), (1,−a+ 1, 2, 0),

P10, P11 = (1,−a+ 1,−1/2a+ 2, 0), (a+ 1,−a+ 1, 1/2a+ 2, 0)
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An easy computation shows the following fact.

Lemma 1. The points P0, . . . , P11 are all distinct if and only if a 6= −1
or a 6= 0. If the 12 points are distinct, then they satisfy the collinearities
conditions given by (3) and no more if and only if a 6= 1/2, a 6= 1 or a 6= 2.

We denote by D the set {−1, 0, 1/2, 1, 2} ⊆ K corresponding to the degenerate
cases of the points.

For a given a ∈ K \ D, the cubic curve C3(a) passing through the 12 points
P0, . . . , P11 has equation F3(a) = 0, where:

F3(a) = (a− 1)x3 + (2a2 + 6a− 1)x2y − 3(a− 1)x2z + (a2 + 4a+ 1)xy2 (4)

+2(a− 1)xz2 − 2a(a+ 4)xyz + (a+ 1)y3 − 3(a+ 1)y2z + 2(a+ 1)yz2

In order to construct the quartic monoids, we need quartic curves of the plane
π passing through the 12 points. For a fixed a ∈ K \D, let La be the linear
system of quartic curves through the 12 points.

Lemma 2. The linear system La of quartic curves through the 12 points
P0, . . . , P11 has dimension 4. If `1, `2, `3 are three fixed, generic lines in the
plane and if r1, r2, r3, r4 are the four lines passing through the triplets of
collinear points (P0, P1, P2), (P3, P6, P10), (P4, P7, P11), (P5, P8, P9), then a ba-
sis for the linear system La is given by the four quartics:

C3(a) + `1, C3(a) + `2, C3(a) + `3, r1 + r2 + r3 + r4 (5)

Proof. To compute the dimension of the linear system, it is enough to take
a generic quartic curve of P3 and to impose that it passes through the 12
points. The computation of the rank of the 12 × 15 matrix associated to the
system, gives the dimension of La. In order to speed up the computation,
it is convenient to observe that the points P0, . . . , P5 have fixed coordinates.
Therefore, to find the dimension of La we can solve six of the equations in
terms of the others, hence it suffices to find the rank of a 6× 9 matrix (whose
entries are polynomials in a). It turns out that all the maximal minors are
zero, while the 5 × 5 minors are zero if and only if a = 0, which is excluded
by our hypothesis. Finally, all the four quartic curves of (5), contain the 12
points and they are clearly linearly independent.

The equation of the quartic curve which splits into the lines r1, . . . , r4 is:

F4(a) = y(3ax− 2az + x− y)(2ax+ ay − 2az + 3x+ y − 2z)

(ax+ 2x+ 2y − 2z)

5



Thus, as a consequence of the previous lemma one sees that all the quartic
monoids with 31 lines (up to a change of coordinates) have equation:

tF3(a) + (α0x+ α1y + α2z)F3(a) + bF4(a) = 0

where a, α0, α1, α2, b are parameters in K. If we change the coordinates
writing t−α0x−α1y−α2z in place of t, we finally get that, up to a change of
coordinates, all the quartic monoids with 31 lines have equation Q(a, b) = 0,
where:

Q(a, b) = tF3(a) + bF4(a) (6)

with a ∈ K \ D, b 6= 0. Moreover, starting from the same given points
P0, . . . , P11, different values of b give different quartic monoids.

We conclude this section with the following proposition, which shows that the
surface (6) does not have singular points (apart from the origin).

Proposition 3. If a 6∈ D and b 6= 0, then the only singular point of the quartic
surface (6) is the origin.

Proof. If T is a singular point of Q = Q(a, b) different from the origin O, then
the line joining O and T is contained in Q, therefore every singular point of
Q lies on one of the 12 lines of Q passing through the origin. Hence we have
to look for singular points among the points T

(i)
λ = O + λPi (where λ is a

parameter). If we substitute T
(i)
λ into the gradient of Q and we saturate the

ideal w.r.t. the polynomial a(a− 1)(a+ 1)(a+ 2)(a+ 1/2)b we always get the

ideal (λ2) which means that T
(i)
λ cannot be singular.

3 Convergent sextuples

In this section we consider a special configuration of points.

Definition 4. Let E = (E0, . . . , E5) be six points in P3 satisfying the following
properties.

• All the points are distinct and all are different from the origin O;
• The three lines E0 +E1, E2 +E3, E4 +E5 meet in a common, new point A;
• There are no other collinearities among the points;
• The six points are not contained in a plane.

The sextuple E will be called a convergent sextuple.

A simple example of a convergent sextuple is the following:
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((1, 0, 0, 1), (2, 0, 0, 1), (0, 1, 0, 1), (0, 2, 0, 1), (0, 0, 1, 1), (0, 0, 2, 1)) (7)

Convergent sextuples fulfil the following property.

Proposition 5. If E and F = (F0, . . . , F5) are two convergent sextuples, then
there exists precisely one projectivity which sends Ei to Fi, i = 0, . . . , 5.

Proof. We call R1 the intersection point of the lines E0 +E3 with E1 +E2, R2

the intersection point of the lines E0+E5 with E1+E4, and R3 the intersection
point of E2+E5 with E3+E4. Then it is possible to verify that the lines R1+E4,
R2+E2 andR3+E0 meet in a common pointA1. LetA be the intersection point
of the lines E0 +E1, E2 +E3, E4 +E5 as in Definition 4. Then the five points
A, E0, E2, E4, A1 are in generic position. Let now S1 = (F0 +F3)∩ (F1 +F2),
S2 = (F0 + F5) ∩ (F1 + F4) and S3 = (F2 + F5) ∩ (F3 + F4). Then, as above,
the lines S1 + F4, S2 + F2 and S3 + F0 meet in a common point B1. Let B
the intersection point of F0 + F1, F2 + F3, F4 + F5. Also now the points B,
F0, F2, F4, B1 are in generic position, then, from the fundamental theorem
of projectivities, there exists exactly one proiectively which sends A to B, E0

to F0, E2 to F2, E3 to F3 and A1 to B1. It is easy to see that, consequently,
E1, E3, E5 are also sent to, respectively, F1, F3, F5.

Remark 6. It is worthy of note a nice geometric property of a convergent
sextuple: if we compute in the same way the point A2 as the intersection of
the three lines R1 + E5, R2 + E3 and R3 + E1, then the points A, A1, A2 are
collinear.

In every quartic surface Q defined by (6) we can find convergent sextuples E
with the further condition that the six lines (E0 +E1, E2 +E3, E4 +E5, E0 +
E2, E3 +E5, E1 +E4) are contained in the surface. To see this, we can proceed
as follows. Take three points Pi, Pj, Pk among the 12 points of intersection of
F3 = 0 and F4 = 0, with the following properties:

• Pi, Pj, Pk are not collinear (i.e. (i, j, k) is not in the list (3));
• for each of the three couples (Pi, Pj), (Pi, Pk), (Pj, Pk) we can find a point
Pij, Pik, Pjk such that the triplets (Pi, Pj, Pij), (Pi, Pk, Pik), (Pj, Pk, Pjk) are
in (3).

The plane O+Pi+Pj intersects Q along the three lines O+Pi, O+Pj, O+Pij
and a further line `ij which does not pass through O. Similarly, we find a line
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`ik and a line `jk of Q. Then a convergent sextuple is given by the points:

E0 = (O + Pi) ∩ `ij, E1 = (O + Pi) ∩ `ik,

E2 = (O + Pj) ∩ `ij, E3 = (O + Pj) ∩ `jk,

E4 = (O + Pk) ∩ `ik, E5 = (O + Pk) ∩ `jk.

(8)

A convergent sextuple of this form is called a standard convergent sextuple.
For example, we can choose for i, j, k, the indices 0, 1, 3 (in this order). In
this case the points E0, . . . , E5 are:

(0, 0, 1, 0), (0, 0, 1, 4ab), (1, 0, 1, 0), (1, 0, 1,−(a+ 1)b),

(0, 1, 1, 2(2a+ 1)b), (0, 1, 1, (2a+ 1)b)
(9)

The relevance of the standard convergent sextuples is given by the following
proposition, whose proof is an immediate consequence of Proposition 5.

Proposition 7. Suppose we have two quartic surfaces Q = Q(a, b) and Q′ =
Q(a′, b′) of the family (6), for a, a′, b, b′ ∈ K. Then the two quartic surfaces
are projectively equivalent if and only if we can find a standard convergent
sextuple E on Q and a standard convergent sextuple E ′ on Q′ such that the
projectivity which sends E into E ′ (according to Proposition 5) sends Q to Q′.

Let us point out another consequence of Proposition 5. Fix a convergent sex-
tuple E0, as in (7), and take a basic convergent sextuple E (as in (9)) on the
quartic surface Q(a, b). Then the projectivity which sends E to E0 transforms
the quartic monoid Q into a quartic monoid passing through the convergent
sextuple (7). In other words, we can assume that all the quartic monoids pass
through the sextuple (7), and, moreover, that such a convergent sextuple is a
standard one.

The relevant fact is that in this way the equation of the transformed quartic
monoid has a new equation which does not contain the parameter b (as soon
as we assume it is not zero). Therefore, all quartic surfaces of (6) obtained by
different values of b are projectively equivalent.

Here is the family of polynomials giving the quartic monoids for which (7) is
a basic convergent sextuple:
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Q(a) = 2ax3y + 4ax2y2 + 2axy3 − (2a− 1)(a− 2)x3z + (10)

−(5a2 − 17a+ 5)x2yz − 3(a2 − 4a+ 1)xy2z + ay3z +

−3(2a− 1)(a− 2)x2z2 − (7a2 − 19a+ 7)xyz2 + 2ay2z2 +

−2(2a− 1)(a− 2)xz3 + ayz3 − 2atx2y − 2atxy2 + 2(2a− 1)(a− 2)tx2z +

4(a2 − 3a+ 1)txyz − 2aty2z + 2(2a− 1)(a− 2)txz2 − 2atyz2

The polynomial Q(a) is obtained from the basic convergent sextuple of (6)
constructed from the triplet (11, 10, 9), since this choice allows us to obtain
a simpler equation for Q(a). Clearly, we assume a 6∈ D = {−1, 0, 1/2, 1, 2}
so that the surface Q(a) is smooth outside the origin and its 31 lines do not
degenerate. We have therefore the following:

Theorem 8. Let K be a field of characteristic zero and let a 6∈ {−1, 0, 1/2, 1, 2}.
Then all quartic monoid surfaces of P3

K with no other singularities outside of
the the triple point and with the maximum number of lines are projectively
equivalent to a surface of equation (10).

Finally, the points P̄0, . . . , P̄11 of intersection of the 12 lines of Q(a) passing
through the origin with the plane t = 0 have now the following coordinates:

(0, 1,−1, 0), (1,−1, 0, 0), (1, 0,−1, 0), (1, 2a− 1,−a, 0), (1, a− 2, 1, 0),

(a,−2a+ 1,−1, 0), (1, a− 2,−a, 0), (a,−a+ 2,−1, 0), (a,−2a+ 1, a, 0),

(0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0)

(11)
They still respect the collinearities given by (3).

4 Stabilisers

Starting from relations (3), it is possible to construct all the triplets of points
(i, j, k) with the property introduced in the previous section, i.e. such that the
sextuple E given by (8) is standard and convergent in the sense of Definition 4.
Note that the number of the possible triplets is 720 (indeed, any set of points
{i, j, k} gives six standard convergent sextuples, one for each permutation of
the indices i, j, k).

Let M ∈ PGL (4, K). We consider the natural action of the matrix M on
P3
K : given a point R in P3

K of coordinates (u0, u1, u2, u3), we send it to the
point M · R, whose coordinates are (the transpose of) M · t(u0, u1, u2, u3).
Hence PGL (4, K) also acts on homogeneous polynomials in a natural way:
if F (x, y, z, t) is a homogeneous polynomial, then M · F is the polynomial
F (M−1 · t(x, y, z, t)). According to this definition, if a point R ∈ P3 is a zero
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of F , then the point M ·R is a zero of M · F .

Let us consider the following problem: given a quartic monoid Q(a) (a ∈
K \D), compute its stabiliser w.r.t. the action of PGL (4, K), i.e. the group
(in the following, by M · Q(a) = Q(a) we mean that the surfaces defined by
the equations Q(a) = 0 and M ·Q(a) = 0, respectively, coincide)

Ga = StabPGL(4,K)Q(a) = {M ∈ PGL (4, K) | M ·Q(a) = Q(a)}

The quartic monoid surface Q(a) has the convergent sextuple E0 as in (7)
among its standard convergent sextuples. If E is another standard convergent
sextuple of Q(a), letM be the unique (up to a multiplicative constant) matrix
such that M · E0 = E (see Proposition 5). If we compute QM = M · Q(a),
we have to select those matrices M such that QM and Q(a) define the same
surface (moreover, we can also check if there are some specific values of a such
that for that specific value QM andQ(a) coincide). Of course, this construction
has to be repeated for the 720 standard convergent sextuples E of Q(a). The
computations are not too hard; the obvious way to see when QM and Q(a)
define the same surface, is to construct the 2×35 matrixW = (wrs) whose rows
are, respectively, the coefficients of QM and of Q(a) w.r.t. the 35 monomials
of degree 4 in the variables x, y, z, t. The two surfaces coincide if and only
if the rank of this matrix is one. In principle, the number of minors (595)
might seem problematic, but the computation can greatly be reduced by the
following observations: (i) in the matrix W we can erase all the columns in
which both entries are 0; (ii) if in the matrix W the element w1s is not zero but
the element W2s is zero, then the two surfaces cannot coincide and no other
computations are needed; (iii) if w1s = 0, then among the equations which
test the coincidence of the two surfaces, we have to add w2s = 0.

The following result holds true.

Theorem 9. If a ∈ K \ {−1, 0, 1/2, 1, 2} is not a root of x2− x+ 1 = 0, then
the stabiliser Ga of Q(a) is isomorphic to the group S3, and is generated by
the following two matrices:



2 2 2 0

0 −2 0 0

−2 0 0 0

0 1 3 −2


,



2 2 2 0

0 −2 0 0

0 0 −2 0

0 −2 −3 2



If a = ε is a solution of the equation x2 − x+ 1 = 0, then the equation of the
quartic monoid surface Q(ε) becomes Q′ = 0 where:
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Q′=x3y + 2x2y2 + xy3 + 3/2x3z + 6x2yz + 9/2xy2z + 1/2y3z + 9/2x2z2

+6xyz2 + y2z2 + 3xz3 + 1/2yz3 − x2yt− xy2t− 3x2zt− 4xyzt

−y2zt− 3xz2t− yz2t

In this case, its stabiliser Gε has order 18, is isomorphic to S3 × C3 and is
generated by the following two matrices:

2 2 2 0

0 −2 0 0

0 0 −2 0

0 −2 −3 2


,



0 2ε− 2 2ε− 4 0

0 −4ε+ 2 0 0

2ε− 4 2ε− 2 0 0

−3 −3ε −3ε 4ε− 2



We finally complete Theorem 8 answering the following question: how many
vales of a in (10) give the same quartic monoid up to a projectivity?

We can answer the question by mean of computations quite similar to the
previous ones. Let E0 be the convergent sextuples given by (7) (remember that
E0 is a standard convergent sextuple for all the surfaces of the family (10)).
If Q(a) and Q(b) are two surfaces of the family (10) which are projectively
equivalent, then there exists a standard convergent sextuple E of Q(a) such
thatM·Q(a) and Q(b) coincide, whereM is the 4× 4 matrix which sends E
into E0.

By repeating the above computation for all the 720 standard convergent sex-
tuples and by selecting the cases leading to a positive answer to the question,
we get the following result.

Theorem 10. Let a, b ∈ K \ {−1, 0, 1/2, 1, 2} be two elements and consider
the two quartic surfaces Q(a) and Q(b) from the family (10). Then Q(a) and
Q(b) are projectively equivalent if and only if a has one of the following values:

b,
1

b
,

1

1− b
,

b

b− 1
, 1− b, b− 1

b
(12)

We conclude by noticing how conditions (12) show that the action of PGL (4, K)
on quartic monoid surfaces of P3

K with maximum number of lines is quite sim-
ilar to the action of PGL (3, K) on cubic curves of P3

K (see [8], Lecture 10).
In particular, two quartic monoid surfaces Q(a) and Q(b) are projectively
equivalent if and only if a and b have the same j-invariant.

Remark 11. Among the lines of Q(a), the lines O+ P̄2, O+ P̄9 and O+ P̄11

can be distinguished from the others: they are the only three lines through the
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singular point of Q(a) which intersect only 4 other lines of Q(a) (see (3) or
figure 1). The group Ga corresponds to the permutations of these three lines.
Analogously, the group Gε corresponds to the permutations of the three lines
above and the cyclic permutation of the three lines P̄1 + P̄3 + P̄7, P̄0 + P̄5 + P̄6,
P̄4 + P̄8 + P̄10.
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