
Vol.:(0123456789)

SN Computer Science (2021) 2:223
https://doi.org/10.1007/s42979-021-00642-4

SN Computer Science

ORIGINAL RESEARCH

Gaussian Based Non‑linear Function Approximation for Reinforcement
Learning

Abbas Haider1  · Glenn Hawe1 · Hui Wang1 · Bryan Scotney1

Received: 11 November 2020 / Accepted: 9 April 2021
© The Author(s) 2021

Abstract
Reinforcement learning (RL) problems with continuous states and discrete actions (CSDA) can be found in classic examples
such as Cart Pole and Puck World, as well as real world applications such as Market Making. Solutions to CSDA problems
typically involve a function approximation (FA) of the mapping from states to actions and can be linear or nonlinear. Linear
FAs such as tile-coding (Sutton and Barto in Reinforcement learning, 2nd ed, 2009) suffer from state information loss due to
state discretization, whilst non-linear FAs such as DQN (Mnih et al. in Playing atari with deep reinforcement learning, https://​
arxiv.​org/​abs/​1312.​5602, 2013) are practically infeasible in infinitely large state spaces due to their cubic time complexity
( O(n3) ). In this paper, we propose a novel, general solution to CSDA problems, called Gaussian distribution based non-
linear function approximation (GBNLFA). Experimentation on three CSDA RL problems (Cart Pole, Puck World, Market
Marking) demonstrates the superiority of GBNLFA over state-of-the-art FAs, namely tile-coding and DQN. In particular,
GBNLFA resolves the state information loss problem with linear FAs and provides an asymptotically faster algorithm (O(n))
than linear FAs ( O(n2) ) and neural network based nonlinear FAs ( O(n3)).

Keywords  Function approximation · Reinforcement learning · Gaussian distribution · Probability density function

Introduction

Function approximation (FA) in reinforcement learning (RL)
solves the dimensionality curse problem in continuous state
RL tasks. Tabular RL method maintains a table of state-
action pairs and the associated action-value or Q(s, a) value,
where s and a denotes the state and the action, respectively.
In continuous state space, there can be a huge number of
state-action pairs. The tabular RL technique is computation-
ally greedy and expensive in continuous state spaces. Hence,
using tabular RL method to store the learning experience,
becomes practically infeasible in real-life applications. In

continuous state space RL problems, FA is the most suitable
way of approximating the mapping function (Q(s, a)) of state
space over the action space. The Q(s, a) function estimates
the quality of an action a in state s and the RL agent learns
this function during the interaction with the environment.

There are two categories of FAs, namely parametric and
non-parametric. Parametric FA involves a function of a fixed
number of basis functions or features. Parametric FAs are further
categorized into two groups: linear, e.g. tile-codings; non-linear,
e.g. Deep Q Network (DQN). The FAs which do not assume the
form of underlying function, are known as non-parametric FAs.
The number of features in non-parametric FAs can be variable
and can not be predicted before hand, these features are derived
from the data during training phase. The Q(s, a) function is a
linear combination of n number of features ( � ) which represents
the relevant features of a state. This linear combination of state
features, denoted by Eq. (1), is known as parametric linear FA.

Parametric class of FAs comprises of two main steps: (1) deter-
mine the form of RL model prior learning; (2) learn the RL

(1)Q(s, a) =

n∑

i=1

�(s, a)i ∗ wi

 *	 Abbas Haider
	 haider-a@ulster.ac.uk

	 Glenn Hawe
	 gi.hawe@ulster.ac.uk

	 Hui Wang
	 h.wang@ulster.ac.uk

	 Bryan Scotney
	 bw.scotney@ulster.ac.uk

1	 School of Computing, Ulster University, Jordanstown,
Northern Ireland, UK

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/427515916?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orcid.org/0000-0003-1802-3086
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00642-4&domain=pdf

	 SN Computer Science (2021) 2:223 223   Page 2 of 12

SN Computer Science

model parameters from interactive experience of agent and envi-
ronment. There are several advantages of parametric methods: (1)
they are fast and learn parameters of the RL model quickly; (2)
the flexibility to design the model as per the problem complexity;
(3) require less experience and can perform well even in a case
of imperfect model fit. Few disadvantages of parametric FAs
are: (1) they are bounded to a fixed form of model; (2) they may
derive a poor fit of the underlying model. Despite the discussed
disadvantages, many real world applications have been solved
recently using parameteric FAs. Russo et al. [20] and Spooner
et al. [22] used tile-codings to determine the efficient elasticity
policies for data stream processing systems and to design a RL
based market making (MM) agent, respectively. Narvekar and
Stone [14] used tile-codings to solve the curriculum Markov
Decision Process for continuous state space. Ghiassian et al. [6]
reduce learning interference in ReLu gates due to the geometric
nature of tile-codings similar to ReLu gates. Li et al. [11] devel-
ops a multipath congestion control approach using tile-codings
for state aggregation of high dimensional state space. Wang et al.
[26] and Oroojlooyjadid et al. [15] both use DQN to direct the
scheduling of multi-workflows in multi-agent RL and to design
an optimized decision making algorithm for beer game, respec-
tively. Han et al. [8] propose a novel DQN algorithm with dueling
architecture for visual object detection problem.

Linear parametric FAs discretize the continuous state
space by aggregating the similar states together. These simi-
lar states are represented by n number of hand crafted fea-
tures ( � in Eq. (1)). Tile-codings, a well-known and widely
used practical solution of linear parametric FA, developed
by Sutton and Barto [24], belongs to the linear parametric
FA class. Tile-codings partitions the continuous state space
into a fixed size grid known as tiling. Each tiling contains
a fixed number of blocks known as tiles. Similar states are
grouped together in the same tile; this way a compact dis-
crete representation of the entire continuous state space is
achieved. In non-linear parametric class, a NN is used as the
FA method, where state variables are treated as neurons of
the input layer. The NN backpropagates the error between
the actual and the observed Q(s, a) function values to adjust
the weights of input layer neurons.

We propose a novel FA method for continuous state and
discrete action (CSDA) RL domain. This proposed method
is referred as Gaussian based Non-linear Function Approxi-
mation (GBNLFA) throughout the paper. In GBNLFA,
each discrete action is represented by a Gaussian distribu-
tion with two standard parameters ( � and

∑
 ). The Gauss-

ian distribution fits over temporal-difference (TD) error
= �(r + � max(Q(s�, a�)) − Q(s, a)) . Each distribution clus-
ters the Q(s, a) values based on the action selected during
agent-environment interaction. The purpose of using a Gauss-
ian distribution as a model of learning is the ubiquitousness
nature and wide applicability of Gaussians in real-life applica-
tions and phenomenon. Moreover, the Gaussian distribution

requires only a few hundred samples to fit over the data, hence
model generalization from experience to unseen data is fast.

Linear parametric FAs suffer from two problems: (1) they
require domain expertise for manual features extraction; (2) they
discard lot of crucial state information while state aggregation.
Though, the non-linear parametric FAs e.g. fully connected
DQN also resolves these two problems, but they suffer from
cubic running time complexity ( O(n3) , where n is the number
of state variables). The main contributions of this paper are: (1)
provides a novel FA method based on Gaussian distribution for
CSDA RL domain; (2) GBNLFA resolves the state informa-
tion loss problem; (3) GBNLFA grows linearly O(n) with the
dimension of the state-space, and hence is faster than DQN and
tile-codings, asymptotically. The empirical results show the sig-
nificance of GBNLFA method in terms of the scores from three
RL problems (Cart Pole, Puck World and MM). Nonetheless,
the proposed method uses multiple Gaussian distributions in
comparison to the single NN as an approximator.Hence, a group
of multiple Gaussians leads to the better generalization (evident
via improved scores in empirical analysis) of RL learning expe-
rience over unseen states from sampled states.

Related Work

Linear Parametric Methods

Basis functions, also termed as features [3], are the incep-
tion of linearly parameterized function approximators; Eq.
(1) denotes a linear function of basis functions ( �’s) associ-
ated with their weights. Lagoudakis and Parr [10] propose
the linear combination of state variables directly with a sin-
gle constant basis function ( � = 1 ), termed as polynomial
basis functions. Another instance of linear FAs involves
radial basis functions, where � is a normalized Gaussian
distribution over the number of states. Sutton [23] proposes
TD learning based function approximation method known as
TD-FA; then Rummery and Niranjan [19] combined Q learn-
ing [28] with TD learning to develop a connectionist Q learn-
ing known as TDQ-FA. Watkins and Dayan [29] developed
a Q-learning based function approximator known as QL-FA
and showed that Q learning converges to optimum action
values. Geist et al. [5] developed a parametric FA method
termed as Kalman temporal difference (KTD) for determin-
istic MDPs to derive the value function and a policy.

Discrete action function approximators uses state aggre-
gation to discretize the continuous states by partitioning
the state space into disjoint sets. All the similar states are
grouped together to form a large aggregate, and hence the
total number of aggregates become finite. For each action,
the function approximator allocates the same value to all
of the similar states in an aggregate. As all subsets are dis-
joint, at any discrete point in time any one of them is taken

SN Computer Science (2021) 2:223 	 Page 3 of 12  223

SN Computer Science

into consideration for action, and the others remain inac-
tive. A typical example of a discrete action approximator
is tile-codings, developed by Sutton and Barto [24], where
state space is partitioned into square-shaped tiles. Davies [4]
designed an interpolation algorithm using triangulation of
n-dimensional state space and Munos and Moore [13] use
Kuhn triangulation to generate improved RL policies.

Non‑linear Parametric Methods

Linear parametric FA methods involve linear combination
of features or basis functions, which requires domain exper-
tise in selecting potential basis functions. NNs resolve this
problem by automatic feature extraction from the input data
when state and action spaces are continuous in nature. NNs
in RL has been a widely known research area, and the well
known RL algorithm, which uses simple neural nets (a shal-
low network with one hidden layer), is TD backgammon
[25]. Riedmiller [17] proposed Neural Fitted Q Iteration for
estimating the V function offline through weight updating
using the RPROP [18] algorithm. This research route of
using NN function approximators in RL is formally known
as deep RL, and the most recent ground-breaking applica-
tions of deep RL involve ATARI 2600 games.

Researchers of DeepMind developed a technique called Deep
Q Networks (DQN) [12], which is an improvement on Neural
Fitted Q Iteration. DQN combines deep convolutional neural net-
works (CNN) with a Q-learning algorithm to play ATARI 2600
games through processing screen pixels data. With the advent of
processing technology such as graphical processing units, DQN
becomes a popular choice of solving problems using RL and that
involve raw input data. Also, DQN is based on large deep CNNs
that are responsible for powerful feature extraction and representa-
tion. Moreover, DQN uses experience replay to resolve the issues
of stable performance due to correlation among states. These

features make DQN a powerful solution to real-world problems,
and hence is considered as a benchmark non-linear parametric
function approximator for comparison. Some of the popular vari-
ants of DQN include double DQN [9], dueling DQN [27], prior-
itized DQN [21] and averaged-DQN [1].

Proposed Method

Sutton and Barto [24] describe RL as the method of mapping
situations to actions by assessing the scalar reward signal.
Markov Decision Processes (MDPs) are known as the best
way to solve sequential decision making problems includ-
ing RL problems [16]. From the MDP perspective, an RL
framework contains four key components:

•	 A set of states, �.
•	 A set of actions, �.
•	 Pa(s

�, s) = P(s�|s, a) , is the probability of transition from
state s to s′ , when action a is taken.

•	 Ra(s
�, s) =

∑n

i=1
� i ⋅ Ri , where n is the total number of

time steps, � is the discount factor, and a is the selected
action.

GBNLFA

We propose to use a group of independent Gaussian distri-
butions (Fig. 1a) as FAs for the RL agent. Here, the actions
left and right relate to a simple example described below.

These distributions are independent, since each Gaussian
represents an action in a discrete action space. The probability
density function (pdf) serves as the Q(s, a) of the RL agent.
The Q(s, a) estimates the quality of an action a in state s based
on the probability density of the corresponding Gaussian
distribution. The dimensions of the Gaussian depend on the

(a) (b)

Fig. 1   a Univariate Gaussian based GBNLFA. b A Needle attached to a fixed surface can move freely towards both sides (left or right). The
angle from the positive x-axis is the state variable. The needle needs to be balanced at 90° by two actions (Left and Right)

	 SN Computer Science (2021) 2:223 223   Page 4 of 12

SN Computer Science

dimensionality of the state space. The parameters of the RL
model are the parameters of a Gaussian distribution, namely
mean ( � ) and covariance ( 

∑
 ). These parameters are estimated

by the RL agent while interacting with the environment.
To make GBNLFA clearer, we consider a simple CSDA

problem, where a needle is fixed to a surface using a pivot,
as shown in Fig. 1b. The state space in this problem has one
dimension, i.e. angle from the positive x-axis. The action space
is discrete with two actions, namely left and right. The reward
function here is 1∕(90 − �) , the value of (90 − �) has to be min-
imized by maximizing the angle � . The aim is to maximize the
reward function by maximizing angle � . In Fig. 1a, two Gauss-
ian distributions with different � and � are shown, representing
two discrete actions. For a particular angle value � , the two dis-
tributions denoting left and right actions have different values
of probability density using Eq. (2). As the needle falls towards
the right side, a force pushing the needle towards the left is
required. Suppose that the Gaussian distribution corresponding
to the left action has a higher Q(s, a) (using Eq. (2), as shown
in Fig. 1a; the Gaussian corresponding to the left action has a
larger area than the Gaussian corresponding to the right action
in the range [�, �] . The updated parameters � and � represent
the GBNLFA based RL model of this simple CSDA problem.

The radial basis functions uses Gaussian distribution over
the number of states to solve the CSDA RL problem. In more
practical and complex CSDA RL problems, the state space is
multi-dimensional in nature. A multivariate Gaussian based
GBNLFA addresses this concern by directly integrating the
entire continuous state space with each action, contrary to
the radial basis functions. Since, the number of states could
be infinite, hence a Gaussian distribution over the number
of states still suffers from state information loss. The Q(s, a)
function in multivariate Gaussian is represented by Eq. (3),
where � and

∑
 are the parameters to be estimated through

sequential agent-environment interaction.

(2)Q(s, a) =
1

√
2��a

exp
�
−1

2�2
(s − �a)

2
�

The parameters of each Gaussian, representing a particular
discrete action, are updated using TD RL algorithm, denoted
by Eq. (4) [23].

The ultimate goal of the GBNLFA-based RL agent is to
identify the optimal Q(s, a) denoted by Q∗ (Eq. (5)) through
repetitive interaction with its intended environment using
the TD learning method.

The RL agent chooses an action corresponding to the
Gaussian distribution with maximum pdf value among
all the independent Gaussian distributions. The estimated
TDupdate = �(r + � max(Q(s�, a�)) − Q(s, a)) , from Eq. (4),
is used to update the parameters of the corresponding the
Gaussian distribution representing the selected action. In
this manner, the selected Gaussian distribution receives
sequential TD updates throughout the learning experience
following �-greedy RL policy.

The pdf of a Gaussian distribution denotes the distance
of an n-dimensional point s in space from the mean ( � )
of the distribution. The area between these two points
denotes the probability density of point s. Using Eq. (5),
we obtain the maximum Q(s, a) value among all independ-
ent Gaussians. The maximum pdf represents the maximum
distance of point s from �a of a Gaussian distribution cor-
responding an action a. The maximum distance spans the
maximum area under the curve (between s and � ), which
represents the maximum probability of action a in state
point s. The inputs to the Algorithm 1 are: (1) state point
s; (2) action a with maximum pdf; (3) Gaussian associated
with action a.

(3)
Q(s, a) =

1

(2�)n∕2∣
∑

a ∣
1∕2

exp(−1∕2(s − �a)
T
∑−1

a
(s − �a)),

where s,� ∈ Rnand
∑

a ∈ Mnxn

(4)Q(s, a) = Q(s, a) + �(r + � max(Q(s�, a�)) − Q(s, a))

(5)Q∗(s, a) = argmax Q(s, a)

Algorithm 1 GBNLFA
1: Input: s ∈ S, a ∈ A, Ga is Gaussian of action a and n is the sample size.
2: Output: Q(s, a) and Ga

3: Ga ∼ N (µa, a)
4: Qvalue = Q(state, action) (Eq. (2) or Eq. (3))
5: Obtain TDupdate (Eq. (4))
6: Obtain µa and a (diagonal matrix) from Ga

7: µ = µa + (TDupdate−µa)
n+1 (Corollary 1)

8: = diag(n
n+1 (a + (TDupdate−µa)2

(n+1))) (Corollary 2) (a remains diagonal)
9: if(| | > 0) then
10: update µa with µ and a with (if determinant is positive then diagonal matrix is

positive definite)
11: else
12: no update

SN Computer Science (2021) 2:223 	 Page 5 of 12  223

SN Computer Science

Table 1   Hyperparameters of cart pole and puck world

Serial no. Hyperparameter Value Range

1 No. of state variables for cart pole 4
2 No. of actions for cart pole 2
3 No. of state variables for puck world 6
4 No. of actions for puck world 5
5 RL algorithm Sarsa
6 RL policy �-greedy
7 Number of tiles 8
8 Initial Gaussian N(0, 1)

9 Discount rate 0.95 0–1
10 Exploration rate 0.5 0–1
11 Learning rate 0.001 0–0.1
12 Activation function ReLu
13 Optimizer function Adam

The algorithm updates the parameters of the Gaussian
corresponding to the action a with TDupdate.

The Gaussian distribution based RL model, denoted by Ga
in Algorithm 1, clusters the Q(s, a) in the form of distribu-
tion parameters. On observing a new state, an action a with
maximum pdf value is identified and used in Algorithm 1 to
further update the �a and

∑
a of Ga . The matrix, denoted by

∑
a ,

represents the variances of the state variables along the diago-
nal. The correlation between the state variables is not known,
hence the covariance matrix contains individual variances. The
determinant of

∑
a is the product of the diagonal elements.

Hence, the positive determinant indicates the positive definite-
ness of the matrix and negative determinant means the matrix
is negative definite. Each Gaussian distribution gets updated
independently (without affecting the other distributions) dur-
ing the sequential decision making process of the RL agent.

The proposed FA scheme can be scaled for high dimen-
sional state space RL problems easily as compared to DQN
due to the linear order growth. However, the empirical
results evidently confirm that the GBNLFA performs better
than both benchmark FA methods in the CSDA RL problems
of low dimensional state space, considered here. Hence, the
shallow NNs containing only 3 layers (input, hidden and
output) were employed in DQN replication, with adam opti-
mizer and mean-squared-error loss function.

Experiments

Hardware and Software Libraries

An empirical study is conducted on two classic RL prob-
lems, namely Cart Pole balancing and Puck World, and one
advanced problem from the financial domain, known as
market making (MM). In classical problems, openAI gym
environment is used to simulate the environment.

In MM, Boost-c++ and Yaml-c++ are used for handling
utilities including filesystem operations. An open source
c++ library for linear algebra, known as Armadillo, is used
for handling matrix operations. Pycharm is used for python,
and Microsoft visual studio for c++ programming. The
hardware infrastructure used is described below:

•	 processor: Intel64 Family 6 Model 142 Stepping 10 Gen-
uineIntel 1600 Mhz

•	 system type: x64-based PC
•	 os: Microsoft Windows 10 Pro
•	 system model: Dell Latitude 5590

Cart Pole

Cart pole balancing is a well known classic problem in
the CSDA RL domain. A pole is fixed using a passive

pivot joint with a moving cart on a fixed platform. The
cart moves either left or right in order to maintain the
balance of the pole. The left and right actions of the cart
prevent the pole from falling off. The cart has a con-
tinuous state space containing four real-valued variables,
namely position, velocity, angle and angular-velocity.
The reward function returns a scalar value for every
action taken within an episode. The goal of the agent
is to get maximum reward value in a minimum number
of episodes. An episode terminates in two cases: (1) if
the angle of the pole is more than 12° on either side
from the vertical axis; or (2) if the position of the cart
is more than 2.5 cms on either side from the centre. The
cart pole system is considered balanced whilst these two
conditions are satisfied, otherwise the system becomes
unbalanced. The hyperparameter configuration used in
empirical analysis is shown in Table 1.

Results

The score in Fig. 2a denotes the cumulative time in mil-
liseconds for which the pole maintains a vertical balance
until the termination step (pole falls off) starting from
initial state. The GBNLFA method maintains a higher
cumulative score than the DQN and linear FA method over
100 consecutive episodes (Fig. 2a). Moreover, the GBN-
LFA based RL agent successfully converges to an opti-
mal behaviour (Fig. 2b) encoded in the reward function,
similar to the benchmarks. The curves shown represent
the cumulative score value (score summed up at the end
of each episode), and therefore the uppermost line receives
the highest cumulative score during the agent-environment
interaction phase.

	 SN Computer Science (2021) 2:223 223   Page 6 of 12

SN Computer Science

Puck World

The puck world game contains a random moving target
within a grid of fixed size. Puck agent (RL agent) fol-
lows the green target slowly, based on the state space vec-
tor containing six variables. This problem belongs to the
CSDA RL domain, and hence is suitable for evaluating the
GBNLFA method. The state space vector contains agentX,
agentY, agentVelocityX, agentVelocityY, targetX, targetY,
whereas the action space has 5 discrete actions, namely
left, right, up, down, standStill. The RL based puck agent
receives the reward based on its distance from the target.
The lower the distance, the higher the reward. The goal of
the puck agent is to minimize its distance from the ran-
domly moving target in a minimum number of episodes.
The hyperparameter configuration used in empirical analy-
sis is shown in Table 1.

Results

The score in Fig. 3a denotes the distance, the lower the score
the better the behaviour of the agent. The reward function is
the inverse of the distance between puck agent and the target,
and the learned behaviour of the GBNLFA based puck agent
is shown in Fig. 3b. The convergence of GBNLFA is evident
from the reward behaviour similar to the benchmark FAs.
Figure 3a depicts the comparative performance between
GBNLFA, DQN and the tile-codings.

Market Making

MM is a well known strategy of high frequency trading. In
stock markets, market makers are responsible for providing
and enhancing the market liquidity by ensuring smoothness
in order arrival and execution [7].

(b)(a)

Fig. 2   a Cumulative vertical standing time (in milliseconds) of the pole (score) vs episodes. b GBNLFA convergence in cart pole

(a) (b)

Fig. 3   a Cumulative distance (in millimeters) of the puck agent from the target (score) vs episodes. b GBNLFA convergence in puck world

SN Computer Science (2021) 2:223 	 Page 7 of 12  223

SN Computer Science

MM preserves the trading interest of the participants by
maintaining sufficient liquidity of the stock market. Market
makers earn money from the difference between their quoted
ask (sell) price and quoted bid (buy) price, known as quoted
spread (QS). We study this problem from an RL perspec-
tive, and a recent work [22] uses a linear method of function
approximation, i.e. tile-codings to design a RL based MM
agent. We consider this work as a benchmark and refer to it
as RMM-Spooner. Moreover, we also use a traditional MM
model developed by Avellaneda and Stoikov [2] as another
benchmark for this problem. We call this traditional MM
model the AS-model. From an RL viewpoint, MM is taken
as a CSDA problem. The market maker or RL based MM
agent uses a limit order book (LOB) as the trading environ-
ment. The state space of a MM agent is a tuple of 7 real-
valued variables, namely volatility, relative strength index,
book imbalance, inventory, ask level and bid level. The
action space constitutes a fixed number of discrete actions,
and each action specifies the ask and bid level in the LOB.
The action space contains 8 actions, namely quote(1, 1),
quote(2, 2), quote(3, 3), quote(1, 0), quote(0, 1), quote(2, 0),
quote(0, 2) and clear inventory. The reward is a function of
the investment return (profit/loss) of the MM agent and the
inventory holding (Eq. (6)). The RL based MM agent rein-
forces to maximize the return ( � ) and minimize the product
of � (inventory controling parameter) times the inventory
position (inv) and price of an equity ( �).

Data and Hyperparameter Settings

We collect level 2 order book data from an open source
data provide, namely namely Chicago Boards of Options
Exchange (CBOE). CBOE provides level 2 Trade and Quote
(TAQ) data between market opening and closing hours. The
technique used in data gathering is Web Scraping using
beautiful-soup (a python library). The Exchange Traded
Funds (ETFs) are well-known and a popular choice of
investment among traders these days. Therefore, we gathered
TAQ data for 5 ETFs and 5 Options for empirical analysis
of GBNLFA, tile-codings and DQN in MM domain. These
10 equities are randomly selected from top 100 in the list on
Yahoo finance. The data collected through scraping requires
preprocessing such as discarding redundant rows, discarding
rows containing nulls, discarding extra columns in rows. We
write our own scripts (github link1) for data preprocessing.
The preprocessed and cleaned data is splitted in training,
validation and test sets with 80%, 20% of training data and
20%. The RL agent draws a sample of size 3 (Markovian

(6)Reward = � − (� ×max((inv × �), 0))

property states that the current state of RL agent depends on
the immediate past and the immediate future state, therefore
three states are drawn) from training, validation and test sets
at every discrete time step in each episode.

Some hyperparameters, shown in Table 2, are same across
all CSDA RL problems considered (Cart Pole, Puck World
and MM) such as discount rate, exploration rate, learning
rate, RL algorithm, RL policy, number of tiles, and the rec-
ommended values from Sutton and Barto [24] are used. The
hyperparameters specific to RL based MM, namely number
of state variables, number of actions, inventory range, order
size, are adopted from the benchmark [22].

GBNLFA based MM agent is trained for 100 episodes.
Whereas, the RMM-Spooner benchmark is trained for 2000
episodes on all datasets. The out-of-sample backtesting,
shown in Table 3, is conducted on 20% of the total amount
of preprocessed data for 20 episodes both for GBNLFA and
RMM-Spooner.

Results and Statistical significance

RL based MM agents with two variants of FAs, GBN-
LFA and RMM-Spooner, are compared on two parameters,
namely the investment return of the MM agents and the QS
as an indicator of market liquidity provided. The higher the
investment returns and lower the quoted spread, the higher
is the market liquidity provided by the MM agent. GBNLFA
has shown consistent performance and outperforms RMM-
Spooner in terms of both parameters. From the analysis of
Table 3, the proposed method yields a profit in 9 out of 10
equities whereas RMM-Spooner obtains profit in 3 out of
10 cases. Moreover, the average quoted spread provided by
GBNLFA is lower in 9 out of 10 equites compared with

Table 2   MM empirical settings

Serial no. Hyperparameter Value Range

1 No. of state variables 7
2 No. of actions 8
3 RL algorithm Sarsa
4 RL policy �-greedy
5 Training data (split %) 80
6 Validation data (split %) 20
6 Testing data (split %) 20
7 Backtesting episodes 20
8 No. of tillings in tile-codings 8
9 Initial Gaussian N(0, 1)

10 Inventory range [− 100, 100]
11 Order size 10
12 Discount rate 0.95 0–1
13 Exploration rate 0.5 0–1
14 Learning rate 0.001 0–0.1

1  https://​github.​com/​Haide​r93/​mm_​data/​blob/​main/​prepr​ocess_​data.​
py.

https://github.com/Haider93/mm_data/blob/main/preprocess_data.py
https://github.com/Haider93/mm_data/blob/main/preprocess_data.py

	 SN Computer Science (2021) 2:223 223   Page 8 of 12

SN Computer Science

RMM-Spooner. Hence, lower quoted spread means higher
market liquidity. GBNLFA outperforms the traditional AS-
model in terms of the investment returns in all equities.
However, the traditional MM method is seen to provide
lower spread than the other two methods. The convergence
of GBNLFA, as shown in Fig. 4, proves that the proposed
algorithm successfully converges to an optimal MM behav-
iour. These out-of-sample backtesting performances show
that GBNLFA is a better function approximation method for
designing an RL based MM agent.

We also conduct a t-test and ANOVA test to determine the
significance of the differences between the results among the
3 groups, namely GBNLFA, RMM-Spooner and AS-model.
Null-hypothesis 1: There is a significant difference between
the returns of GBNLFA and RMM-Spooner.

Null-hypothesis 2: The returns of GBNLFA and AS-
model are equivalent.

Significance level: 0.05 (default value)
The t-test between the 10 observations of GBNLFA

and RMM-Spooner generates a p-value = 0.115 . The t-test

between GBNLFA and AS-model gives a p-value = 0.026 .
In case of ANOVA, the p-value between GBNLFA and
RMM-Spooner is 0.110, whereas between GBNLFA and
AS-model is 0.016. Conclusively, the Null-hypothesis 1 can-
not be rejected (the associated p-value is higher than 0.05)
and Null-hypothesis 2 cannot be accepted (the associated
p-value is lesser than 0.05).

Description of Experiments

The Cart Pole and Puck World are two well-known classical
CSDA RL benchmarks. To compare GBNLFA with tile-cod-
ings and DQN, we use openAI-gym library in python to simu-
late Cart Pole2 and Puck World3 environments. These three
algorithms provides three variants of a RL agent for both Cart
Pole and Puck World, as shown in empirical results. OpenAI-
gym provides built-in libraries for Cart Pole and Puck World,
the RL agent instantiates these environments to train itself for
a fixed number of episodes. The agent observes a sequence
state-action-reward-state’-action’ [24] in a discrete time step
in each episode. For each state-action pair, the environment
generates a reward signal which is a feedback for the agent.
The agent uses this feedback signal to learn and fit the model
provided by three algorithms (GBNLFA, tile-codings and
DQN). In each episode, the cumulative scores (pole vertical
standing time in ms for Cart Pole and distance between Puck
agent and target in Puck World) and the cumulative reward
values are collected. These scores and reward, as shown in
Figs. 2a, b, 3a, b, are the assessment metrics or statistics for
both classical problems. The average running times of GBN-
LFA, tile-codings and DQN for Cart Pole and Puck World are
0.36s, 0.38s, 0.38s per episode, respectively.

In MM4 problem, the Trade and Quote data is gathered
and preprocessed to simulate a level 2 order book. The order

Table 3   Out-of-sample
backtesting comparison between
GBNLFA, tile-codings and
traditional MM model

Criteria GBNLFA RMM-spooner AS-model

Return QS Return QS Return QS

SPY 134.1685 0.049 40.9792 0.1515 − 3.60791 0.10000
DIA 234.601 0.1035 119.4805 0.136 −4.47948 0.03818
XLF 36.5150 0.025 −0.4012 0.05 −4.59474 0.00909
GDX 27.7250 0.025 −5.8076 0.0471 −4.80450 0.00909
IEUR 37.2099 0.0155 −3.1850 0.06185 −4.73971 0.01818
VOD 20.4435 0.0578 9.7375 0.0568 −4.79472 0.00909
CVX 25.6002 0.067 −14.2416 0.1895 −4.69314 0.00909
UPS 49.5496 0.08 −1.775 0.1175 −4.55836 0.02636
TXN 2.5601 0.0675 −15.7651 0.147 −4.76562 0.02455
GSK −1.006 0.08303 −5.3405 0.1263 −4.45971 0.05455

Fig. 4   GBNLFA convergence in market making

2  https://​github.​com/​Haide​r93/​cart-​pole.
3  https://​github.​com/​Haide​r93/​puck-​world.
4  https://​github.​com/​Haide​r93/​market-​making.

https://github.com/Haider93/cart-pole
https://github.com/Haider93/puck-world
https://github.com/Haider93/market-making

SN Computer Science (2021) 2:223 	 Page 9 of 12  223

SN Computer Science

book acts as the environment for the RL based MM agent.
The MM agent is responsible for placing ask and bid quotes
in order book, simultaneously. We use historical Quotes data
for simulating the actual order book and executing the trades
occured in past to generate the investment returns (PnL in
USD) using hyperparameters shown in Table 2. In each epi-
sode, the MM agent simulates a level 2 order book from
Quotes data and updates the order book at a frequency of 5
seconds. Then, the agent places an ask and bid order on both
sides and at same or different levels of the order book. The
book is updated with the historical trades, the ask and bid
orders of the MM agent also get executed during updation. If
both ask and bid orders get executed, then the bid-ask spread
of these orders are accumulated to reckon the final return
value. The average return in USD and Quoted-Spread(QS),
as shown in Table 3, are the assessment metrics or statistics
in MM problem. The average running time of an episode for
GBNLFA, RMM-Spooner and AS-model are 0.3s, 0.5s and
0.4s, respectively.

Description of Algorithms

We compare three algorithms, namely GBNLFA, tile-cod-
ings and DQN both in both classical RL problems (Cart
Pole and Puck World) and an advance MM problem from
finance domain. In GBNLFA, a group of Gaussian distribu-
tions represents a model for the RL agent. Each Gaussian
distribution is responsible for storing the learning experience
i.e. state-action mapping as mentioned in “GBNLFA” sec-
tion. The temporal difference error (refer Eq. (4)) is used to
fit the parameters of each Gaussian distribution in the group.
The formulas used for updating the Gaussian parameters
are depicted at step 7 and 8 in Algorithm 1 along with their
mathematical proofs. The RL agent learns from the collec-
tion of sequences state-action-reward-state’-action’ known
as learning experience. Each such sequence generates the
temporal difference error which is further used to update
the distribution parameters.

In tile-codings, the continuous state space is discre-
tized using a fixed number of tiles or groups. The states
are aggregated based on their similarity with each other.
Each tile represents a discrete state, which is a combi-
nation of multiple similar states. The similarity among
states is measured using the distance similarity metric e.g.
Euclidean distance. Then, these tiles are used to derive a
state-action mapping or a RL policy of action selection.
In DQN, a fully connected feed-forward NN represents
the learning model or more specifically the RL policy.
The NN based model takes state space and an action as

input and estimates the Q value as the output. Each neu-
ron has an activation function and the NN uses a learning
algorithm which is responsible for learning the weights
of input layer.

The hyperparameters shown in Tables 1 and 2 is the best
combination used by GBNLFA, tile-codings and DQN.
These algorithms use different FA methods e.g GBNLFA
uses a group of Gaussian distributions, tile-codings is itself
a FA method and DQN uses NN. However, the algorithms
are based on RL, hence the recommended RL settings, sug-
gested by Sutton and Barto [24], are used by all of them
e.g. discount rate, learning rate, exploration rate, RL algo-
rithm, RL policy, number of tiles. Some hyperparameters
are problem specific, namely inventory range, order size of
MM agent, and are adopted from benchmark. In DQN FA
method, the ReLu activation and Adam optimizer are well-
known and widely used methods of training a NN.

Time Complexity Analysis

In this section, we calculate the worst case time complexity
of GBNLFA and compare it with the linear and non-linear
FAs. The asymptotic complexity analysis provides a fair
comparison in terms of a numerical function T(n), where
n is the number of inputs. Some operations such as array
element access, initialization and assignment are amortized
time operations, i.e. they take constant time (O(1) or C).

Linear Function: Tile‑Codings

Tile-coding belongs to the linear FA method and is widely
used to solve CSDA RL problems. In this algorithm, the sum
of the number of state variables and the number of action
variables is mapped on a fixed number of tiles. The Carte-
sian product of n + na (number of state variables + number
of action variables) with nt (number of tiles) generates all
possible pairs of mapping between input variables and the
tiles.

Number of state variables: n
Number of action variables: na
Number of tiles: nt
T(n) = (n + na) ⋅ nt
T(n) = (n + na) ⋅ nt (assuming nt = n and n = na)
T(n) = 2n ⋅ n

T(n) = 2n2

T(n) ≈ O(n2)
Quadratic order growth.

	 SN Computer Science (2021) 2:223 223   Page 10 of 12

SN Computer Science

NN Based FA:DQN

DQN is a popular FA method algorithm which solves CSDA
RL problems, like tile-codings. The total number of input
variables is the sum of number of state and action variables.
Moreover, the number of hidden layers and the number of
neurons in each hidden layer also contribute to the qsmptotic
performance of the algorithm. The T(n) function, denotes the
growth of the algorithm with the size of input, and is equal
to the product of total number of input variables, number of
hidden layers and number of neurons in each hidden layer.

Number of state variables: n
Number of action variables: na
Total number of output neurons: 1
Number of hidden layers: nh
Number of neurons in each hidden layer: k
Type of neural network: fully connected
T(n) = (n + na) ⋅ nh ⋅ k ⋅ 1

T(n) = 2n ⋅ nh ⋅ k (assuming nh = k = n and n = na)

T(n) = 2n ⋅ n ⋅ n

T(n) = 2n3

T(n) ≈ O(n3)
Cubic order growth.

Gaussian Distribution: GBNLFA

GBNLFA is a Gaussian based FA method algorithm also
solves CSDA RL problem similar to the tile-codings and
DQN. We compute the T(n) function at each step of Algo-
rithm 1. In this algorithm, the state variables are mapped on
a group of Gaussian distributions (each Gaussian represents
a particular action). All the primitive mathematical opera-
tions (addition, subtraction, multiplication, Square root,
assignment) are assumed to take amortized time (denoted by
C) depending on the hardware infrastructure. For instance,
in step 4 T(n) is the sum of 5 primitive operations, refer Eq.
(3), and is equal to 5n. Each primitive operation in step 4
can grow linearly (O(n)) with the number of state variables
n. In this manner, T(n) function is computed at every step of
Algorithm 1, and 18 primitive operations with linear order
growth (O(n)) are computed in step 10.

Number of state variables: n
Number of action variables: na
Step 3: Assignment operations takes amortized time.
T(n) = C,C is constant time.

Step 4: T(n) = T(n) + 5 ⋅ n(= 1 subtraction +1 multiplica-
tive inverse +2 multiplications +1 square root)

Step 5: T(n) = 5 ⋅ n (for Q(s�, a�) from step 4) +5 ⋅ ns for
(Q(s, a))+6 ⋅ C (= 2 multiplications +2 additions +1 subtrac-
tion +1 C from step3)

T(n) = 10 ⋅ n + 6 ⋅ C

Step 7: T(n) = T(n) + 4 ⋅ C (= 1 addition +1subtraction
+1division +1assignment)

T(n) = 10 ⋅ n + 10 ⋅ C

Step 8: T(n) = T(n) + n subtractions
T(n) = 11 ⋅ n + 10 ⋅ C

Step 8: T(n) = T(n) + n subtract ions +n se l f
multiplications

T(n) = 13 ⋅ n + 10 ⋅ C

T(n) = T(n) + 6 ⋅ C (= 3 additions +1multiplication
+1division +1 assignment)

T(n) = 13 ⋅ n + 16 ⋅ C

Step 9: T(n) = T(n) + (n − 1) multiplications for determi-
nant of the matrix and +1 comparison against zero

T(n) = 14 ⋅ n + 16 ⋅ C

Step 10: T(n) = 14 ⋅ n + 16 ⋅ C + 2ṅ assignments to
update parameters of Gaussian

T(n) = 16 ⋅ n + 16 ⋅ C + 2na number of parameters of
Gaussian grows linearly with the number of actions

T(n) ≈ 18 ⋅ n (assuming na = n)

T(n) ≈ n

T(n) ≈ O(n)

Linear order growth.
GBNLFA: O(n) < Tile-codings: O(n2) < DQN: O(n3).

Conclusion

This paper introduced a novel parametric non-linear FA
method based on Gaussian distribution for the CSDA RL
domain, known as GBNLFA. The pdf of the Gaussian dis-
tribution serves as the action-value function (Q(s, a)) of
the RL agent. This novel method resolves the state infor-
mation loss problem in tile-codings due to state discre-
tization and provides an asymptotically faster (O(n)) FA
algorithm among the linear (O(n2)) and non-linear (O(n3))
parametric class of FAs in CSDA problems. Empirical
scores on three CSDA problems (Cart Pole, Puck World
and MM) show that GBNLFA outperforms the benchmark
FA methods in both linear and non-linear parametric class.

SN Computer Science (2021) 2:223 	 Page 11 of 12  223

SN Computer Science

MM is an advanced problem where the market-maker is
responsible for providing the market liquidity. The out-of-
sample backtesting results (see Table 2) show that GBN-
LFA based MM agent yields higher returns than the MM
benchmarks, namely RMM-Spooner and AS-model.

Appendix

Corollary 1  A sample S of size n with mean � . A new obser-
vation X is added, then the updated mean �′ is defined as
�� = � +

X−�

n+1

Proof  Let x1, x2,… , xn are the observations in a sample S
with mean � . Let X be the new observation.

	� ◻

Corollary 2  A sample S of size n with mean � and variance
�2 . A new observation X is added, then the updated variance
�′2 is defined as ��2 =

n

n+1
(�2 +

(X−�)2

n+1
)

Proof  Let x1, x2,… , xn are the observations in a sample S
with mean � and variance �2 . Let X be the new observation.

By definition,

Then,� =
x1 + x2 +⋯ + xn

n

� =
1

n

n∑
i=1

xi

n� =
n∑
i=1

xi …(a)

Then,

�� =
1

n + 1

n+1∑
i=1

xi

(n + 1)�� =
n+1∑
i=1

xi …(b)

Put (a) in (b),

(n + 1)�� = n� + X

Simplify,

�� =
n� + X

n + 1
…(c)

�� =
n

n + 1
� +

X

n + 1

�� =
n

n + 1
� +

X − � + �

n + 1

�� =
n

n + 1
� +

X − �

n + 1
+

�

n + 1

�� = � +
X − �

n + 1
…(d)

Funding  This study is a part of a PhD project funded by VCRS (Grant
number E4G3EN3G39F0A4).

Availability of data and materials  Data source CBOE.

Code availability  The project is on-going, hence code will be available
after completion.

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

�2(X) = E(X2) − [E(X)]2

Then, �2 =

�
1

n

n∑
i=1

x2
i

�
− �2

n∑
i=1

x2
i
= n(�2 + �2)… (e)

Then,

��2 =
1

n + 1

n+1∑
i=1

x2
i
− ��2 …(f)

Put (e) in (f),

��2 =
1

n + 1
(n(�2 + �2) + X2) − ��2 …(g)

Put (c) in (g),

��2 =
1

n + 1
(n(�2 + �2) + X2) −

�
n� + X

n + 1

�2

��2 =
n�2

n + 1
+

n�2

n + 1
+

X2

n + 1
−

=
X2

(n + 1)2
−

n2�2

(n + 1)2
−

2nX�

(n + 1)2

��2 =
n�2

n + 1
+

n(n + 1)�2

(n + 1)2
+

nX2

(n + 1)2
−

=
n2�2

(n + 1)2
−

2nX�

(n + 1)2

��2 =
n�2

n + 1
+

n

(n + 1)2
(�2 + X2 − 2X�)

��2 =
n

n + 1

�
�2 +

(X − �)2

n + 1

�
…(h)

http://markets.cboe.com/us/equities/overview/
http://creativecommons.org/licenses/by/4.0/

	 SN Computer Science (2021) 2:223 223   Page 12 of 12

SN Computer Science

References

	 1.	 Anschel O, Baram N, Shimkin N. Averaged-dqn: variance reduc-
tion and stabilization for deep reinforcement learning. In: Pro-
ceedings of the 34th international conference on machine learn-
ing, PMLR, vol. 70. 2017. p. 176–85.

	 2.	 Avellaneda M, Stoikov S. High-frequency trading in a limit order
book. Quant Finance. 2008;8(3):217–24.

	 3.	 Bertsekas DP, Tsitsiklis JN. Neuro-dynamic programming.
Nashua: Athena Scientific; 1996.

	 4.	 Davies S. Multidimensional triangulation and interpolation for
reinforcement learning. https://​scott​davies.​net/​nips96.​pdf. 1997.

	 5.	 Geist M, Pietquin O, Fricout G. Kalman temporal differences:
the deterministic case. In: 2009 IEEE symposium on adaptive
dynamic programming and reinforcement learning. 2009.

	 6.	 Ghiassian S, Yu H, Rafiee B, Sutton RS. Two geometric input
transformation methods for fast online reinforcement learning
with neural nets. 2018.

	 7.	 Haider A, Wang H, Scotney B, Hawe G. Effect of market spread
over reinforcement learning based market maker. In: Machine
learning, optimization, and data science, vol. 11943. Cham:
Springer; 2019. p. 143–53.

	 8.	 Han X, Liu H, Sun F XZ. Active object detection with multistep
action prediction using deep q-network. IEEE Trans Ind Inform.
2019;15(6:3723–31.

	 9.	 van Hasselt H, Guez A, Silver D. Deep reinforcement learning
with double q-learning. In: Thirtieth AAAI conference on artifi-
cial intelligence. 2016.

	10.	 Lagoudakis MG, Parr R. Least-squares policy iteration. J Mach
Learn Res. 2003;4:1107–49.

	11.	 Li W, Zhang H, Gao S, Xue C, Wang X, Lu S. Smartcc: a rein-
forcement learning approach for multipath tcp congestion con-
trol in heterogeneous networks. IEEE J Select Areas Commun.
2019;37(11):2621–33.

	12.	 Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wier-
stra D, Riedmiller M. Playing atari with deep reinforcement learn-
ing. https://​arxiv.​org/​abs/​1312.​5602 2013.

	13.	 Munos R, Moore A. Variable resolution discretization in optimal
control. Springer Mach Learn. 2002;49:291–323.

	14.	 Narvekar S, Stone P. Learning curriculum policies for reinforce-
ment learning. In: Proc. of the 18th international conference on
autonomous agents and multiagent systems (AAMAS 2019).
2019.

	15.	 Oroojlooyjadid A, Nazari MR, Snyder LV, Takac M. A deep q-net-
work for the beer game: using machine learning to solve inventory
optimization problems. 2017.

	16.	 Otterlo M, Wiering M. Adaptation, learning, and optimization,
vol. 12, chap Reinforcement Learning and Markov Decision Pro-
cesses. Berlin: Springer; 2012.

	17.	 Riedmiller M. Neural fitted q iteration—first experiences with
a data efficient neural reinforcement learning method. In:
ECML:Lecture notes in Computer Science, vol. 3720. Berlin:
Springer; 2005. p. 317–28.

	18.	 Riedmiller M, Braun H. A direct adaptive method for faster back-
propagation learning: the rprop algorithm. In: IEEE international
conference on neural networks, IEEE. 1993.

	19.	 Rummery GA, Niranjan M. Online q learning using connectionist
systems. http://​mi.​eng.​cam.​ac.​uk/​repor​ts/​svr-​ftp/​auto-​pdf/​rumme​
ry_​tr166.​pdf. 1994.

	20.	 Russo G, Cardellini V, Presti FL. Reinforcement learning based
policies for elastic stream processing on heterogeneous resources.
In: DEBS ’19: proceedings of the 13th ACM international confer-
ence on distributed and event-based systems, 2019. p. 31–42.

	21.	 Schaul T, Quan J, Antonoglou I, Silver D. Prioritized experience
replay. https://​arxiv.​org/​abs/​1511.​05952. 2016.

	22.	 Spooner T, Fearnley J, Savani R, Koukorinis A. Market making
via reinforcement learning. In: AAMAS2018 conference proceed-
ings, 2018. p 434–42.

	23.	 Sutton RS. Learning to predict by the methods of temporal differ-
ences. Springer Mach Learn. 1988;3:9–44.

	24.	 Sutton RS, Barto AG. Reinforcement learning. 2nd ed. Cam-
bridge: The MIT Press; 2018.

	25.	 Tesauro G. Applications of neural networks, Springer, Boston,
MA, chap TD-Gammon: a self-teaching backgammon program.
1995.

	26.	 Wang Y, Liu H, Zheng W, Xia Y, Li Y, Chen P, Guo K, Xie
H. Multi-objective workflow scheduling with deep-q-net-
work-based multi-agent reinforcement learning. IEEE Access.
2019;7:39974–82.

	27.	 Wang Z, Schaul T, Hessel M, Hasselt H, Lanctot M, Freitas N.
Dueling network architectures for deep reinforcement learning.
In: Proceedings of the 33rd international conference on machine
learning, PMLR. 2016.

	28.	 Watkins C. Learning from delayed rewards. PhD thesis, Computer
Science. 1989.

	29.	 Watkins CJ, Dayan P. Technical note: Q-learning. Springer Mach
Learn. 1992;8:279–92.

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://scottdavies.net/nips96.pdf
https://arxiv.org/abs/1312.5602
http://mi.eng.cam.ac.uk/reports/svr-ftp/auto-pdf/rummery_tr166.pdf
http://mi.eng.cam.ac.uk/reports/svr-ftp/auto-pdf/rummery_tr166.pdf
https://arxiv.org/abs/1511.05952

	Gaussian Based Non-linear Function Approximation for Reinforcement Learning
	Abstract
	Introduction
	Related Work
	Linear Parametric Methods
	Non-linear Parametric Methods

	Proposed Method
	GBNLFA

	Experiments
	Hardware and Software Libraries
	Cart Pole
	Results

	Puck World
	Results

	Market Making
	Data and Hyperparameter Settings
	Results and Statistical significance

	Description of Experiments
	Description of Algorithms

	Time Complexity Analysis
	Linear Function: Tile-Codings
	NN Based FA:DQN
	Gaussian Distribution: GBNLFA

	Conclusion
	References

