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Abstract
Reinforcement learning (RL) problems with continuous states and discrete actions (CSDA) can be found in classic examples 
such as Cart Pole and Puck World, as well as real world applications such as Market Making. Solutions to CSDA problems 
typically involve a function approximation (FA) of the mapping from states to actions and can be linear or nonlinear. Linear 
FAs such as tile-coding (Sutton and Barto in Reinforcement learning, 2nd ed, 2009) suffer from state information loss due to 
state discretization, whilst non-linear FAs such as DQN (Mnih et al. in Playing atari with deep reinforcement learning, https:// 
arxiv. org/ abs/ 1312. 5602, 2013) are practically infeasible in infinitely large state spaces due to their cubic time complexity 
( O(n3) ). In this paper, we propose a novel, general solution to CSDA problems, called Gaussian distribution based non-
linear function approximation (GBNLFA). Experimentation on three CSDA RL problems (Cart Pole, Puck World, Market 
Marking) demonstrates the superiority of GBNLFA over state-of-the-art FAs, namely tile-coding and DQN. In particular, 
GBNLFA resolves the state information loss problem with linear FAs and provides an asymptotically faster algorithm (O(n)) 
than linear FAs ( O(n2) ) and neural network based nonlinear FAs ( O(n3)).

Keywords Function approximation · Reinforcement learning · Gaussian distribution · Probability density function

Introduction

Function approximation (FA) in reinforcement learning (RL) 
solves the dimensionality curse problem in continuous state 
RL tasks. Tabular RL method maintains a table of state-
action pairs and the associated action-value or Q(s, a) value, 
where s and a denotes the state and the action, respectively. 
In continuous state space, there can be a huge number of 
state-action pairs. The tabular RL technique is computation-
ally greedy and expensive in continuous state spaces. Hence, 
using tabular RL method to store the learning experience, 
becomes practically infeasible in real-life applications. In 

continuous state space RL problems, FA is the most suitable 
way of approximating the mapping function (Q(s, a)) of state 
space over the action space. The Q(s, a) function estimates 
the quality of an action a in state s and the RL agent learns 
this function during the interaction with the environment.

There are two categories of FAs, namely parametric and 
non-parametric. Parametric FA involves a function of a fixed 
number of basis functions or features. Parametric FAs are further 
categorized into two groups: linear, e.g. tile-codings; non-linear, 
e.g. Deep Q Network (DQN). The FAs which do not assume the 
form of underlying function, are known as non-parametric FAs. 
The number of features in non-parametric FAs can be variable 
and can not be predicted before hand, these features are derived 
from the data during training phase. The Q(s, a) function is a 
linear combination of n number of features ( � ) which represents 
the relevant features of a state. This linear combination of state 
features, denoted by Eq. (1), is known as parametric linear FA.

Parametric class of FAs comprises of two main steps: (1) deter-
mine the form of RL model prior learning; (2) learn the RL 

(1)Q(s, a) =

n∑

i=1

�(s, a)i ∗ wi
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model parameters from interactive experience of agent and envi-
ronment. There are several advantages of parametric methods: (1) 
they are fast and learn parameters of the RL model quickly; (2) 
the flexibility to design the model as per the problem complexity; 
(3) require less experience and can perform well even in a case 
of imperfect model fit. Few disadvantages of parametric FAs 
are: (1) they are bounded to a fixed form of model; (2) they may 
derive a poor fit of the underlying model. Despite the discussed 
disadvantages, many real world applications have been solved 
recently using parameteric FAs. Russo et al. [20] and Spooner 
et al. [22] used tile-codings to determine the efficient elasticity 
policies for data stream processing systems and to design a RL 
based market making (MM) agent, respectively. Narvekar and 
Stone [14] used tile-codings to solve the curriculum Markov 
Decision Process for continuous state space. Ghiassian et al. [6] 
reduce learning interference in ReLu gates due to the geometric 
nature of tile-codings similar to ReLu gates. Li et al. [11] devel-
ops a multipath congestion control approach using tile-codings 
for state aggregation of high dimensional state space. Wang et al. 
[26] and Oroojlooyjadid et al. [15] both use DQN to direct the 
scheduling of multi-workflows in multi-agent RL and to design 
an optimized decision making algorithm for beer game, respec-
tively. Han et al. [8] propose a novel DQN algorithm with dueling 
architecture for visual object detection problem.

Linear parametric FAs discretize the continuous state 
space by aggregating the similar states together. These simi-
lar states are represented by n number of hand crafted fea-
tures ( � in Eq. (1)). Tile-codings, a well-known and widely 
used practical solution of linear parametric FA, developed 
by Sutton and Barto [24], belongs to the linear parametric 
FA class. Tile-codings partitions the continuous state space 
into a fixed size grid known as tiling. Each tiling contains 
a fixed number of blocks known as tiles. Similar states are 
grouped together in the same tile; this way a compact dis-
crete representation of the entire continuous state space is 
achieved. In non-linear parametric class, a NN is used as the 
FA method, where state variables are treated as neurons of 
the input layer. The NN backpropagates the error between 
the actual and the observed Q(s, a) function values to adjust 
the weights of input layer neurons.

We propose a novel FA method for continuous state and 
discrete action (CSDA) RL domain. This proposed method 
is referred as Gaussian based Non-linear Function Approxi-
mation (GBNLFA) throughout the paper. In GBNLFA, 
each discrete action is represented by a Gaussian distribu-
tion with two standard parameters ( � and 

∑
 ). The Gauss-

ian distribution fits over temporal-difference (TD) error 
= �(r + � max(Q(s�, a�)) − Q(s, a)) . Each distribution clus-
ters the Q(s, a) values based on the action selected during 
agent-environment interaction. The purpose of using a Gauss-
ian distribution as a model of learning is the ubiquitousness 
nature and wide applicability of Gaussians in real-life applica-
tions and phenomenon. Moreover, the Gaussian distribution 

requires only a few hundred samples to fit over the data, hence 
model generalization from experience to unseen data is fast.

Linear parametric FAs suffer from two problems: (1) they 
require domain expertise for manual features extraction; (2) they 
discard lot of crucial state information while state aggregation. 
Though, the non-linear parametric FAs e.g. fully connected 
DQN also resolves these two problems, but they suffer from 
cubic running time complexity ( O(n3) , where n is the number 
of state variables). The main contributions of this paper are: (1) 
provides a novel FA method based on Gaussian distribution for 
CSDA RL domain; (2) GBNLFA resolves the state informa-
tion loss problem; (3) GBNLFA grows linearly O(n) with the 
dimension of the state-space, and hence is faster than DQN and 
tile-codings, asymptotically. The empirical results show the sig-
nificance of GBNLFA method in terms of the scores from three 
RL problems (Cart Pole, Puck World and MM). Nonetheless, 
the proposed method uses multiple Gaussian distributions in 
comparison to the single NN as an approximator.Hence, a group 
of multiple Gaussians leads to the better generalization (evident 
via improved scores in empirical analysis) of RL learning expe-
rience over unseen states from sampled states.

Related Work

Linear Parametric Methods

Basis functions, also termed as features [3], are the incep-
tion of linearly parameterized function approximators; Eq. 
(1) denotes a linear function of basis functions ( �’s) associ-
ated with their weights. Lagoudakis and Parr [10] propose 
the linear combination of state variables directly with a sin-
gle constant basis function ( � = 1 ), termed as polynomial 
basis functions. Another instance of linear FAs involves 
radial basis functions, where � is a normalized Gaussian 
distribution over the number of states. Sutton [23] proposes 
TD learning based function approximation method known as 
TD-FA; then Rummery and Niranjan [19] combined Q learn-
ing [28] with TD learning to develop a connectionist Q learn-
ing known as TDQ-FA. Watkins and Dayan [29] developed 
a Q-learning based function approximator known as QL-FA 
and showed that Q learning converges to optimum action 
values. Geist et al. [5] developed a parametric FA method 
termed as Kalman temporal difference (KTD) for determin-
istic MDPs to derive the value function and a policy.

Discrete action function approximators uses state aggre-
gation to discretize the continuous states by partitioning 
the state space into disjoint sets. All the similar states are 
grouped together to form a large aggregate, and hence the 
total number of aggregates become finite. For each action, 
the function approximator allocates the same value to all 
of the similar states in an aggregate. As all subsets are dis-
joint, at any discrete point in time any one of them is taken 
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into consideration for action, and the others remain inac-
tive. A typical example of a discrete action approximator 
is tile-codings, developed by Sutton and Barto [24], where 
state space is partitioned into square-shaped tiles. Davies [4] 
designed an interpolation algorithm using triangulation of 
n-dimensional state space and Munos and Moore [13] use 
Kuhn triangulation to generate improved RL policies.

Non‑linear Parametric Methods

Linear parametric FA methods involve linear combination 
of features or basis functions, which requires domain exper-
tise in selecting potential basis functions. NNs resolve this 
problem by automatic feature extraction from the input data 
when state and action spaces are continuous in nature. NNs 
in RL has been a widely known research area, and the well 
known RL algorithm, which uses simple neural nets (a shal-
low network with one hidden layer), is TD backgammon 
[25]. Riedmiller [17] proposed Neural Fitted Q Iteration for 
estimating the V function offline through weight updating 
using the RPROP [18] algorithm. This research route of 
using NN function approximators in RL is formally known 
as deep RL, and the most recent ground-breaking applica-
tions of deep RL involve ATARI 2600 games.

Researchers of DeepMind developed a technique called Deep 
Q Networks (DQN) [12], which is an improvement on Neural 
Fitted Q Iteration. DQN combines deep convolutional neural net-
works (CNN) with a Q-learning algorithm to play ATARI 2600 
games through processing screen pixels data. With the advent of 
processing technology such as graphical processing units, DQN 
becomes a popular choice of solving problems using RL and that 
involve raw input data. Also, DQN is based on large deep CNNs 
that are responsible for powerful feature extraction and representa-
tion. Moreover, DQN uses experience replay to resolve the issues 
of stable performance due to correlation among states. These 

features make DQN a powerful solution to real-world problems, 
and hence is considered as a benchmark non-linear parametric 
function approximator for comparison. Some of the popular vari-
ants of DQN include double DQN [9], dueling DQN [27], prior-
itized DQN [21] and averaged-DQN [1].

Proposed Method

Sutton and Barto [24] describe RL as the method of mapping 
situations to actions by assessing the scalar reward signal. 
Markov Decision Processes (MDPs) are known as the best 
way to solve sequential decision making problems includ-
ing RL problems [16]. From the MDP perspective, an RL 
framework contains four key components:

• A set of states, �.
• A set of actions, �.
• Pa(s

�, s) = P(s�|s, a) , is the probability of transition from 
state s to s′ , when action a is taken.

• Ra(s
�, s) =

∑n

i=1
� i ⋅ Ri , where n is the total number of 

time steps, � is the discount factor, and a is the selected 
action.

GBNLFA

We propose to use a group of independent Gaussian distri-
butions (Fig. 1a) as FAs for the RL agent. Here, the actions 
left and right relate to a simple example described below.

These distributions are independent, since each Gaussian 
represents an action in a discrete action space. The probability 
density function (pdf) serves as the Q(s, a) of the RL agent. 
The Q(s, a) estimates the quality of an action a in state s based 
on the probability density of the corresponding Gaussian 
distribution. The dimensions of the Gaussian depend on the 

(a) (b)

Fig. 1  a Univariate Gaussian based GBNLFA. b A Needle attached to a fixed surface can move freely towards both sides (left or right). The 
angle from the positive x-axis is the state variable. The needle needs to be balanced at 90° by two actions (Left and Right)
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dimensionality of the state space. The parameters of the RL 
model are the parameters of a Gaussian distribution, namely 
mean ( � ) and covariance ( 

∑
 ). These parameters are estimated 

by the RL agent while interacting with the environment.
To make GBNLFA clearer, we consider a simple CSDA 

problem, where a needle is fixed to a surface using a pivot, 
as shown in Fig. 1b. The state space in this problem has one 
dimension, i.e. angle from the positive x-axis. The action space 
is discrete with two actions, namely left and right. The reward 
function here is 1∕(90 − �) , the value of (90 − �) has to be min-
imized by maximizing the angle � . The aim is to maximize the 
reward function by maximizing angle � . In Fig. 1a, two Gauss-
ian distributions with different � and � are shown, representing 
two discrete actions. For a particular angle value � , the two dis-
tributions denoting left and right actions have different values 
of probability density using Eq. (2). As the needle falls towards 
the right side, a force pushing the needle towards the left is 
required. Suppose that the Gaussian distribution corresponding 
to the left action has a higher Q(s, a) (using Eq. (2), as shown 
in Fig. 1a; the Gaussian corresponding to the left action has a 
larger area than the Gaussian corresponding to the right action 
in the range [�, �] . The updated parameters � and � represent 
the GBNLFA based RL model of this simple CSDA problem.

The radial basis functions uses Gaussian distribution over 
the number of states to solve the CSDA RL problem. In more 
practical and complex CSDA RL problems, the state space is 
multi-dimensional in nature. A multivariate Gaussian based 
GBNLFA addresses this concern by directly integrating the 
entire continuous state space with each action, contrary to 
the radial basis functions. Since, the number of states could 
be infinite, hence a Gaussian distribution over the number 
of states still suffers from state information loss. The Q(s, a) 
function in multivariate Gaussian is represented by Eq. (3), 
where � and

∑
 are the parameters to be estimated through 

sequential agent-environment interaction.

(2)Q(s, a) =
1

√
2��a

exp
�
−1

2�2
(s − �a)

2
�

The parameters of each Gaussian, representing a particular 
discrete action, are updated using TD RL algorithm, denoted 
by Eq. (4) [23].

The ultimate goal of the GBNLFA-based RL agent is to 
identify the optimal Q(s, a) denoted by Q∗ (Eq. (5)) through 
repetitive interaction with its intended environment using 
the TD learning method.

The RL agent chooses an action corresponding to the 
Gaussian distribution with maximum pdf value among 
all the independent Gaussian distributions. The estimated 
TDupdate = �(r + � max(Q(s�, a�)) − Q(s, a)) , from Eq. (4), 
is used to update the parameters of the corresponding the 
Gaussian distribution representing the selected action. In 
this manner, the selected Gaussian distribution receives 
sequential TD updates throughout the learning experience 
following �-greedy RL policy.

The pdf of a Gaussian distribution denotes the distance 
of an n-dimensional point s in space from the mean ( � ) 
of the distribution. The area between these two points 
denotes the probability density of point s. Using Eq. (5), 
we obtain the maximum Q(s, a) value among all independ-
ent Gaussians. The maximum pdf represents the maximum 
distance of point s from �a of a Gaussian distribution cor-
responding an action a. The maximum distance spans the 
maximum area under the curve (between s and � ), which 
represents the maximum probability of action a in state 
point s. The inputs to the Algorithm 1 are: (1) state point 
s; (2) action a with maximum pdf; (3) Gaussian associated 
with action a. 

(3)
Q(s, a) =

1

(2�)n∕2∣
∑

a ∣
1∕2

exp(−1∕2(s − �a)
T
∑−1

a
(s − �a)),

where s,� ∈ Rnand
∑

a ∈ Mnxn

(4)Q(s, a) = Q(s, a) + �(r + � max(Q(s�, a�)) − Q(s, a))

(5)Q∗(s, a) = argmax Q(s, a)

Algorithm 1 GBNLFA
1: Input: s ∈ S, a ∈ A, Ga is Gaussian of action a and n is the sample size.
2: Output: Q(s, a) and Ga

3: Ga ∼ N (µa, a)
4: Qvalue = Q(state, action) (Eq. (2) or Eq. (3))
5: Obtain TDupdate (Eq. (4))
6: Obtain µa and a (diagonal matrix) from Ga

7: µ = µa + (TDupdate−µa)
n+1 (Corollary 1)

8: = diag( n
n+1 ( a + (TDupdate−µa)2

(n+1) )) (Corollary 2) ( a remains diagonal)
9: if(| | > 0) then
10: update µa with µ and a with (if determinant is positive then diagonal matrix is

positive definite)
11: else
12: no update
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Table 1  Hyperparameters of cart pole and puck world

Serial no. Hyperparameter Value Range

1 No. of state variables for cart pole 4
2 No. of actions for cart pole 2
3 No. of state variables for puck world 6
4 No. of actions for puck world 5
5 RL algorithm Sarsa
6 RL policy �-greedy
7 Number of tiles 8
8 Initial Gaussian N(0, 1)

9 Discount rate 0.95 0–1
10 Exploration rate 0.5 0–1
11 Learning rate 0.001 0–0.1
12 Activation function ReLu
13 Optimizer function Adam

The algorithm updates the parameters of the Gaussian 
corresponding to the action a with TDupdate.

The Gaussian distribution based RL model, denoted by Ga 
in Algorithm 1, clusters the Q(s, a) in the form of distribu-
tion parameters. On observing a new state, an action a with 
maximum pdf value is identified and used in Algorithm 1 to 
further update the �a and 

∑
a of Ga . The matrix, denoted by 

∑
a , 

represents the variances of the state variables along the diago-
nal. The correlation between the state variables is not known, 
hence the covariance matrix contains individual variances. The 
determinant of 

∑
a is the product of the diagonal elements. 

Hence, the positive determinant indicates the positive definite-
ness of the matrix and negative determinant means the matrix 
is negative definite. Each Gaussian distribution gets updated 
independently (without affecting the other distributions) dur-
ing the sequential decision making process of the RL agent.

The proposed FA scheme can be scaled for high dimen-
sional state space RL problems easily as compared to DQN 
due to the linear order growth. However, the empirical 
results evidently confirm that the GBNLFA performs better 
than both benchmark FA methods in the CSDA RL problems 
of low dimensional state space, considered here. Hence, the 
shallow NNs containing only 3 layers (input, hidden and 
output) were employed in DQN replication, with adam opti-
mizer and mean-squared-error loss function.

Experiments

Hardware and Software Libraries

An empirical study is conducted on two classic RL prob-
lems, namely Cart Pole balancing and Puck World, and one 
advanced problem from the financial domain, known as 
market making (MM). In classical problems, openAI gym 
environment is used to simulate the environment.

In MM, Boost-c++ and Yaml-c++ are used for handling 
utilities including filesystem operations. An open source 
c++ library for linear algebra, known as Armadillo, is used 
for handling matrix operations. Pycharm is used for python, 
and Microsoft visual studio for c++ programming. The 
hardware infrastructure used is described below:

• processor: Intel64 Family 6 Model 142 Stepping 10 Gen-
uineIntel  1600 Mhz

• system type: x64-based PC
• os: Microsoft Windows 10 Pro
• system model: Dell Latitude 5590

Cart Pole

Cart pole balancing is a well known classic problem in 
the CSDA RL domain. A pole is fixed using a passive 

pivot joint with a moving cart on a fixed platform. The 
cart moves either left or right in order to maintain the 
balance of the pole. The left and right actions of the cart 
prevent the pole from falling off. The cart has a con-
tinuous state space containing four real-valued variables, 
namely position, velocity, angle and angular-velocity. 
The reward function returns a scalar value for every 
action taken within an episode. The goal of the agent 
is to get maximum reward value in a minimum number 
of episodes. An episode terminates in two cases: (1) if 
the angle of the pole is more than 12° on either side 
from the vertical axis; or (2) if the position of the cart 
is more than 2.5 cms on either side from the centre. The 
cart pole system is considered balanced whilst these two 
conditions are satisfied, otherwise the system becomes 
unbalanced. The hyperparameter configuration used in 
empirical analysis is shown in Table 1.

Results

The score in Fig. 2a denotes the cumulative time in mil-
liseconds for which the pole maintains a vertical balance 
until the termination step (pole falls off) starting from 
initial state. The GBNLFA method maintains a higher 
cumulative score than the DQN and linear FA method over 
100 consecutive episodes (Fig. 2a). Moreover, the GBN-
LFA based RL agent successfully converges to an opti-
mal behaviour (Fig. 2b) encoded in the reward function, 
similar to the benchmarks. The curves shown represent 
the cumulative score value (score summed up at the end 
of each episode), and therefore the uppermost line receives 
the highest cumulative score during the agent-environment 
interaction phase.
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Puck World

The puck world game contains a random moving target 
within a grid of fixed size. Puck agent (RL agent) fol-
lows the green target slowly, based on the state space vec-
tor containing six variables. This problem belongs to the 
CSDA RL domain, and hence is suitable for evaluating the 
GBNLFA method. The state space vector contains agentX, 
agentY, agentVelocityX, agentVelocityY, targetX, targetY, 
whereas the action space has 5 discrete actions, namely 
left, right, up, down, standStill. The RL based puck agent 
receives the reward based on its distance from the target. 
The lower the distance, the higher the reward. The goal of 
the puck agent is to minimize its distance from the ran-
domly moving target in a minimum number of episodes. 
The hyperparameter configuration used in empirical analy-
sis is shown in Table 1.

Results

The score in Fig. 3a denotes the distance, the lower the score 
the better the behaviour of the agent. The reward function is 
the inverse of the distance between puck agent and the target, 
and the learned behaviour of the GBNLFA based puck agent 
is shown in Fig. 3b. The convergence of GBNLFA is evident 
from the reward behaviour similar to the benchmark FAs. 
Figure 3a depicts the comparative performance between 
GBNLFA, DQN and the tile-codings.

Market Making

MM is a well known strategy of high frequency trading. In 
stock markets, market makers are responsible for providing 
and enhancing the market liquidity by ensuring smoothness 
in order arrival and execution [7].

(b)(a)

Fig. 2  a Cumulative vertical standing time (in milliseconds) of the pole (score) vs episodes. b GBNLFA convergence in cart pole

(a) (b)

Fig. 3  a Cumulative distance (in millimeters) of the puck agent from the target (score) vs episodes. b GBNLFA convergence in puck world
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MM preserves the trading interest of the participants by 
maintaining sufficient liquidity of the stock market. Market 
makers earn money from the difference between their quoted 
ask (sell) price and quoted bid (buy) price, known as quoted 
spread (QS). We study this problem from an RL perspec-
tive, and a recent work [22] uses a linear method of function 
approximation, i.e. tile-codings to design a RL based MM 
agent. We consider this work as a benchmark and refer to it 
as RMM-Spooner. Moreover, we also use a traditional MM 
model developed by Avellaneda and Stoikov [2] as another 
benchmark for this problem. We call this traditional MM 
model the AS-model. From an RL viewpoint, MM is taken 
as a CSDA problem. The market maker or RL based MM 
agent uses a limit order book (LOB) as the trading environ-
ment. The state space of a MM agent is a tuple of 7 real-
valued variables, namely volatility, relative strength index, 
book imbalance, inventory, ask level and bid level. The 
action space constitutes a fixed number of discrete actions, 
and each action specifies the ask and bid level in the LOB. 
The action space contains 8 actions, namely quote(1, 1), 
quote(2, 2), quote(3, 3), quote(1, 0), quote(0, 1), quote(2, 0), 
quote(0, 2) and clear inventory. The reward is a function of 
the investment return (profit/loss) of the MM agent and the 
inventory holding (Eq. (6)). The RL based MM agent rein-
forces to maximize the return ( � ) and minimize the product 
of � (inventory controling parameter) times the inventory 
position (inv) and price of an equity ( �).

Data and Hyperparameter Settings

We collect level 2 order book data from an open source 
data provide, namely namely Chicago Boards of Options 
Exchange (CBOE). CBOE provides level 2 Trade and Quote 
(TAQ) data between market opening and closing hours. The 
technique used in data gathering is Web Scraping using 
beautiful-soup (a python library). The Exchange Traded 
Funds (ETFs) are well-known and a popular choice of 
investment among traders these days. Therefore, we gathered 
TAQ data for 5 ETFs and 5 Options for empirical analysis 
of GBNLFA, tile-codings and DQN in MM domain. These 
10 equities are randomly selected from top 100 in the list on 
Yahoo finance. The data collected through scraping requires 
preprocessing such as discarding redundant rows, discarding 
rows containing nulls, discarding extra columns in rows. We 
write our own scripts (github link1) for data preprocessing. 
The preprocessed and cleaned data is splitted in training, 
validation and test sets with 80%, 20% of training data and 
20%. The RL agent draws a sample of size 3 (Markovian 

(6)Reward = � − (� ×max((inv × �), 0))

property states that the current state of RL agent depends on 
the immediate past and the immediate future state, therefore 
three states are drawn) from training, validation and test sets 
at every discrete time step in each episode.

Some hyperparameters, shown in Table 2, are same across 
all CSDA RL problems considered (Cart Pole, Puck World 
and MM) such as discount rate, exploration rate, learning 
rate, RL algorithm, RL policy, number of tiles, and the rec-
ommended values from Sutton and Barto [24] are used. The 
hyperparameters specific to RL based MM, namely number 
of state variables, number of actions, inventory range, order 
size, are adopted from the benchmark [22].

GBNLFA based MM agent is trained for 100 episodes. 
Whereas, the RMM-Spooner benchmark is trained for 2000 
episodes on all datasets. The out-of-sample backtesting, 
shown in Table 3, is conducted on 20% of the total amount 
of preprocessed data for 20 episodes both for GBNLFA and 
RMM-Spooner.

Results and Statistical significance

RL based MM agents with two variants of FAs, GBN-
LFA and RMM-Spooner, are compared on two parameters, 
namely the investment return of the MM agents and the QS 
as an indicator of market liquidity provided. The higher the 
investment returns and lower the quoted spread, the higher 
is the market liquidity provided by the MM agent. GBNLFA 
has shown consistent performance and outperforms RMM-
Spooner in terms of both parameters. From the analysis of 
Table 3, the proposed method yields a profit in 9 out of 10 
equities whereas RMM-Spooner obtains profit in 3 out of 
10 cases. Moreover, the average quoted spread provided by 
GBNLFA is lower in 9 out of 10 equites compared with 

Table 2  MM empirical settings

Serial no. Hyperparameter Value Range

1 No. of state variables 7
2 No. of actions 8
3 RL algorithm Sarsa
4 RL policy �-greedy
5 Training data (split %) 80
6 Validation data (split %) 20
6 Testing data (split %) 20
7 Backtesting episodes 20
8 No. of tillings in tile-codings 8
9 Initial Gaussian N(0, 1)

10 Inventory range [− 100, 100]
11 Order size 10
12 Discount rate 0.95 0–1
13 Exploration rate 0.5 0–1
14 Learning rate 0.001 0–0.1

1 https:// github. com/ Haide r93/ mm_ data/ blob/ main/ prepr ocess_ data. 
py.

https://github.com/Haider93/mm_data/blob/main/preprocess_data.py
https://github.com/Haider93/mm_data/blob/main/preprocess_data.py
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RMM-Spooner. Hence, lower quoted spread means higher 
market liquidity. GBNLFA outperforms the traditional AS-
model in terms of the investment returns in all equities. 
However, the traditional MM method is seen to provide 
lower spread than the other two methods. The convergence 
of GBNLFA, as shown in Fig. 4, proves that the proposed 
algorithm successfully converges to an optimal MM behav-
iour. These out-of-sample backtesting performances show 
that GBNLFA is a better function approximation method for 
designing an RL based MM agent.

We also conduct a t-test and ANOVA test to determine the 
significance of the differences between the results among the 
3 groups, namely GBNLFA, RMM-Spooner and AS-model. 
Null-hypothesis 1: There is a significant difference between 
the returns of GBNLFA and RMM-Spooner.

Null-hypothesis 2: The returns of GBNLFA and AS-
model are equivalent.

Significance level: 0.05 (default value)
The t-test between the 10 observations of GBNLFA 

and RMM-Spooner generates a p-value = 0.115 . The t-test 

between GBNLFA and AS-model gives a p-value = 0.026 . 
In case of ANOVA, the p-value between GBNLFA and 
RMM-Spooner is 0.110, whereas between GBNLFA and 
AS-model is 0.016. Conclusively, the Null-hypothesis 1 can-
not be rejected (the associated p-value is higher than 0.05) 
and Null-hypothesis 2 cannot be accepted (the associated 
p-value is lesser than 0.05).

Description of Experiments

The Cart Pole and Puck World are two well-known classical 
CSDA RL benchmarks. To compare GBNLFA with tile-cod-
ings and DQN, we use openAI-gym library in python to simu-
late Cart Pole2 and Puck World3 environments. These three 
algorithms provides three variants of a RL agent for both Cart 
Pole and Puck World, as shown in empirical results. OpenAI-
gym provides built-in libraries for Cart Pole and Puck World, 
the RL agent instantiates these environments to train itself for 
a fixed number of episodes. The agent observes a sequence 
state-action-reward-state’-action’ [24] in a discrete time step 
in each episode. For each state-action pair, the environment 
generates a reward signal which is a feedback for the agent. 
The agent uses this feedback signal to learn and fit the model 
provided by three algorithms (GBNLFA, tile-codings and 
DQN). In each episode, the cumulative scores (pole vertical 
standing time in ms for Cart Pole and distance between Puck 
agent and target in Puck World) and the cumulative reward 
values are collected. These scores and reward, as shown in 
Figs. 2a, b, 3a, b, are the assessment metrics or statistics for 
both classical problems. The average running times of GBN-
LFA, tile-codings and DQN for Cart Pole and Puck World are 
0.36s, 0.38s, 0.38s per episode, respectively.

In MM4 problem, the Trade and Quote data is gathered 
and preprocessed to simulate a level 2 order book. The order 

Table 3  Out-of-sample 
backtesting comparison between 
GBNLFA, tile-codings and 
traditional MM model

Criteria GBNLFA RMM-spooner AS-model

Return QS Return QS Return QS

SPY 134.1685 0.049 40.9792 0.1515 − 3.60791 0.10000
DIA 234.601 0.1035 119.4805 0.136 −4.47948 0.03818
XLF 36.5150 0.025 −0.4012 0.05 −4.59474 0.00909
GDX 27.7250 0.025 −5.8076 0.0471 −4.80450 0.00909
IEUR 37.2099 0.0155 −3.1850 0.06185 −4.73971 0.01818
VOD 20.4435 0.0578 9.7375 0.0568 −4.79472 0.00909
CVX 25.6002 0.067 −14.2416 0.1895 −4.69314 0.00909
UPS 49.5496 0.08 −1.775 0.1175 −4.55836 0.02636
TXN 2.5601 0.0675 −15.7651 0.147 −4.76562 0.02455
GSK −1.006 0.08303 −5.3405 0.1263 −4.45971 0.05455

Fig. 4  GBNLFA convergence in market making

2 https:// github. com/ Haide r93/ cart- pole.
3 https:// github. com/ Haide r93/ puck- world.
4 https:// github. com/ Haide r93/ market- making.

https://github.com/Haider93/cart-pole
https://github.com/Haider93/puck-world
https://github.com/Haider93/market-making
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book acts as the environment for the RL based MM agent. 
The MM agent is responsible for placing ask and bid quotes 
in order book, simultaneously. We use historical Quotes data 
for simulating the actual order book and executing the trades 
occured in past to generate the investment returns (PnL in 
USD) using hyperparameters shown in Table 2. In each epi-
sode, the MM agent simulates a level 2 order book from 
Quotes data and updates the order book at a frequency of 5 
seconds. Then, the agent places an ask and bid order on both 
sides and at same or different levels of the order book. The 
book is updated with the historical trades, the ask and bid 
orders of the MM agent also get executed during updation. If 
both ask and bid orders get executed, then the bid-ask spread 
of these orders are accumulated to reckon the final return 
value. The average return in USD and Quoted-Spread(QS), 
as shown in Table 3, are the assessment metrics or statistics 
in MM problem. The average running time of an episode for 
GBNLFA, RMM-Spooner and AS-model are 0.3s, 0.5s and 
0.4s, respectively.

Description of Algorithms

We compare three algorithms, namely GBNLFA, tile-cod-
ings and DQN both in both classical RL problems (Cart 
Pole and Puck World) and an advance MM problem from 
finance domain. In GBNLFA, a group of Gaussian distribu-
tions represents a model for the RL agent. Each Gaussian 
distribution is responsible for storing the learning experience 
i.e. state-action mapping as mentioned in “GBNLFA” sec-
tion. The temporal difference error (refer Eq. (4)) is used to 
fit the parameters of each Gaussian distribution in the group. 
The formulas used for updating the Gaussian parameters 
are depicted at step 7 and 8 in Algorithm 1 along with their 
mathematical proofs. The RL agent learns from the collec-
tion of sequences state-action-reward-state’-action’ known 
as learning experience. Each such sequence generates the 
temporal difference error which is further used to update 
the distribution parameters.

In tile-codings, the continuous state space is discre-
tized using a fixed number of tiles or groups. The states 
are aggregated based on their similarity with each other. 
Each tile represents a discrete state, which is a combi-
nation of multiple similar states. The similarity among 
states is measured using the distance similarity metric e.g. 
Euclidean distance. Then, these tiles are used to derive a 
state-action mapping or a RL policy of action selection. 
In DQN, a fully connected feed-forward NN represents 
the learning model or more specifically the RL policy. 
The NN based model takes state space and an action as 

input and estimates the Q value as the output. Each neu-
ron has an activation function and the NN uses a learning 
algorithm which is responsible for learning the weights 
of input layer.

The hyperparameters shown in Tables 1 and 2 is the best 
combination used by GBNLFA, tile-codings and DQN. 
These algorithms use different FA methods e.g GBNLFA 
uses a group of Gaussian distributions, tile-codings is itself 
a FA method and DQN uses NN. However, the algorithms 
are based on RL, hence the recommended RL settings, sug-
gested by Sutton and Barto [24], are used by all of them 
e.g. discount rate, learning rate, exploration rate, RL algo-
rithm, RL policy, number of tiles. Some hyperparameters 
are problem specific, namely inventory range, order size of 
MM agent, and are adopted from benchmark. In DQN FA 
method, the ReLu activation and Adam optimizer are well-
known and widely used methods of training a NN.

Time Complexity Analysis

In this section, we calculate the worst case time complexity 
of GBNLFA and compare it with the linear and non-linear 
FAs. The asymptotic complexity analysis provides a fair 
comparison in terms of a numerical function T(n), where 
n is the number of inputs. Some operations such as array 
element access, initialization and assignment are amortized 
time operations, i.e. they take constant time (O(1) or C).

Linear Function: Tile‑Codings

Tile-coding belongs to the linear FA method and is widely 
used to solve CSDA RL problems. In this algorithm, the sum 
of the number of state variables and the number of action 
variables is mapped on a fixed number of tiles. The Carte-
sian product of n + na (number of state variables + number 
of action variables) with nt (number of tiles) generates all 
possible pairs of mapping between input variables and the 
tiles.

Number of state variables: n
Number of action variables: na
Number of tiles: nt
T(n) = (n + na) ⋅ nt
T(n) = (n + na) ⋅ nt (assuming nt = n and n = na)
T(n) = 2n ⋅ n

T(n) = 2n2

T(n) ≈ O(n2)
Quadratic order growth.
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NN Based FA:DQN

DQN is a popular FA method algorithm which solves CSDA 
RL problems, like tile-codings. The total number of input 
variables is the sum of number of state and action variables. 
Moreover, the number of hidden layers and the number of 
neurons in each hidden layer also contribute to the qsmptotic 
performance of the algorithm. The T(n) function, denotes the 
growth of the algorithm with the size of input, and is equal 
to the product of total number of input variables, number of 
hidden layers and number of neurons in each hidden layer.

Number of state variables: n
Number of action variables: na
Total number of output neurons: 1
Number of hidden layers: nh
Number of neurons in each hidden layer: k
Type of neural network: fully connected
T(n) = (n + na) ⋅ nh ⋅ k ⋅ 1

T(n) = 2n ⋅ nh ⋅ k (assuming nh = k = n and n = na)

T(n) = 2n ⋅ n ⋅ n

T(n) = 2n3

T(n) ≈ O(n3)
Cubic order growth.

Gaussian Distribution: GBNLFA

GBNLFA is a Gaussian based FA method algorithm also 
solves CSDA RL problem similar to the tile-codings and 
DQN. We compute the T(n) function at each step of Algo-
rithm 1. In this algorithm, the state variables are mapped on 
a group of Gaussian distributions (each Gaussian represents 
a particular action). All the primitive mathematical opera-
tions (addition, subtraction, multiplication, Square root, 
assignment) are assumed to take amortized time (denoted by 
C) depending on the hardware infrastructure. For instance, 
in step 4 T(n) is the sum of 5 primitive operations, refer Eq. 
(3), and is equal to 5n. Each primitive operation in step 4 
can grow linearly (O(n)) with the number of state variables 
n. In this manner, T(n) function is computed at every step of 
Algorithm 1, and 18 primitive operations with linear order 
growth (O(n)) are computed in step 10.

Number of state variables: n
Number of action variables: na
Step 3: Assignment operations takes amortized time.
T(n) = C,C is constant time.

Step 4: T(n) = T(n) + 5 ⋅ n(= 1 subtraction +1 multiplica-
tive inverse +2 multiplications +1 square root)

Step 5: T(n) = 5 ⋅ n (for Q(s�, a�) from step 4) +5 ⋅ ns for 
(Q(s, a))+6 ⋅ C (= 2 multiplications +2 additions +1 subtrac-
tion +1 C from step3)

T(n) = 10 ⋅ n + 6 ⋅ C

Step 7: T(n) = T(n) + 4 ⋅ C (= 1 addition +1subtraction 
+1division +1assignment)

T(n) = 10 ⋅ n + 10 ⋅ C

Step 8: T(n) = T(n) + n subtractions
T(n) = 11 ⋅ n + 10 ⋅ C

Step 8:  T(n) = T(n) + n  subtract ions +n se l f 
multiplications

T(n) = 13 ⋅ n + 10 ⋅ C

T(n) = T(n) + 6 ⋅ C  (= 3 additions +1multiplication 
+1division +1 assignment)

T(n) = 13 ⋅ n + 16 ⋅ C

Step 9: T(n) = T(n) + (n − 1) multiplications for determi-
nant of the matrix and +1 comparison against zero

T(n) = 14 ⋅ n + 16 ⋅ C

Step 10: T(n) = 14 ⋅ n + 16 ⋅ C + 2ṅ assignments to 
update parameters of Gaussian

T(n) = 16 ⋅ n + 16 ⋅ C + 2na number of parameters of 
Gaussian grows linearly with the number of actions

T(n) ≈ 18 ⋅ n (assuming na = n)

T(n) ≈ n

T(n) ≈ O(n)

Linear order growth.
GBNLFA: O(n) < Tile-codings: O(n2) < DQN: O(n3).

Conclusion

This paper introduced a novel parametric non-linear FA 
method based on Gaussian distribution for the CSDA RL 
domain, known as GBNLFA. The pdf of the Gaussian dis-
tribution serves as the action-value function (Q(s, a)) of 
the RL agent. This novel method resolves the state infor-
mation loss problem in tile-codings due to state discre-
tization and provides an asymptotically faster (O(n)) FA 
algorithm among the linear (O(n2)) and non-linear (O(n3)) 
parametric class of FAs in CSDA problems. Empirical 
scores on three CSDA problems (Cart Pole, Puck World 
and MM) show that GBNLFA outperforms the benchmark 
FA methods in both linear and non-linear parametric class. 
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MM is an advanced problem where the market-maker is 
responsible for providing the market liquidity. The out-of-
sample backtesting results (see Table 2) show that GBN-
LFA based MM agent yields higher returns than the MM 
benchmarks, namely RMM-Spooner and AS-model.

Appendix

Corollary 1 A sample S of size n with mean � . A new obser-
vation X is added, then the updated mean �′ is defined as 
�� = � +

X−�

n+1

Proof Let x1, x2,… , xn are the observations in a sample S 
with mean � . Let X be the new observation.

  ◻

Corollary 2 A sample S of size n with mean � and variance 
�2 . A new observation X is added, then the updated variance 
�′2 is defined as ��2 =

n

n+1
(�2 +

(X−�)2

n+1
)

Proof Let x1, x2,… , xn are the observations in a sample S 
with mean � and variance �2 . Let X be the new observation.

By definition,

Then,� =
x1 + x2 +⋯ + xn

n

� =
1

n

n∑
i=1

xi

n� =
n∑
i=1

xi …(a)

Then,

�� =
1

n + 1

n+1∑
i=1

xi

(n + 1)�� =
n+1∑
i=1

xi …(b)

Put (a) in (b),

(n + 1)�� = n� + X

Simplify,

�� =
n� + X

n + 1
…(c)

�� =
n

n + 1
� +

X

n + 1

�� =
n

n + 1
� +

X − � + �

n + 1

�� =
n

n + 1
� +

X − �

n + 1
+

�

n + 1

�� = � +
X − �

n + 1
…(d)
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