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ABSTRACT 
Performance evaluation and prediction of academic achievements is an essential task for scientists, research organizations, 

research funding bodies, and government agencies alike. Recently, heterogeneous networks have been used to evaluate or 

predict performance of multi-entities including papers, researchers, and venues with some success. However, only a 

minimum of effort has been made to predict the future influence of papers, researchers and venues. In this paper, we propose 

a new framework WMR-Rank for this purpose. Based on the dynamic and heterogeneous network of multiple entities, we 

extract seven types of relations among them. The framework supports useful features including the refined granularity of 

relevant entities such as authors and venues, time awareness for published papers and their citations, differentiating the 

contribution of multiple coauthors to the same paper, amongst others. By leveraging all seven types of relations and fusing 

the rich information in a mutually reinforcing style, we are able to predict future influence of papers, authors and venues 

more precisely. Using the ACL dataset, our experimental results demonstrate that the proposed approach considerably 

outperforms state-of-the art competitors. 
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1. Introduction  
 

At the beginning of modern science, the main function of papers lies in "communicating and demonstrating". On the one 

hand, researchers communicate with academic peers through writing and publishing papers; on the other hand, papers have 

always been the most powerful means in the reward system of science. With the gradual institutionalization of scientific 

research activities and an increasing number of papers being published every year, the evaluation and prediction of the impact 

of papers and authors have become increasingly prominent. The results can be beneficial to government agencies, research 

funding bodies, research organizations, individual researchers, and other parties in many different ways. For instance, such 

results are useful for a government agency to set scientific development strategies and policies, or for a research funding body 

to evaluate research proposals and applicants. Such results may also be helpful for individual researchers and research 

organizations. Identifying high-quality new papers quickly in a related field is often a demanding and challenging task to 

researchers, especially to junior researchers or to those just moving into a new research area. Accurately predicting the 

potential prestige of a venue may facilitate research organizations and individual researchers to decide where to publish their 

papers (Pajić, 2015; Yu, Wang, Zhang, Zhang, & Liu, 2017). 

 

Traditionally, citation count is a simple but useful metric for evaluating scientific impact (Garfield, 1972; Katerattanakul, 

Han, & Hong, 2015; Nerur, Sikora, Mangalaraj, & Balijepally, 2005), upon which some more complex metrics such as JIF, 

h-index (Hirsch, 2005) and g-index (Egghe, 2006) have been defined. These citation count-based metrics play an important 

role in evaluating papers, authors and venues, though they ignore some useful information such as co-authorship and citing 

papers (Wang et al., 2016). To address these problems, some graph-based methods have been proposed for ranking papers 

(Walker, Xie, Yan, & Maslov, 2006; Yan, Ding, & Sugimoto, 2011; Yan & Ding, 2010; Zhou, Zeng, Fan, & Di, 2016), or 

ranking papers, authors and venues simultaneously (Jiang, Sun, Yang, Zhuge, & Yao, 2016; Liu, Huang, Wei, & Mao, 2014; 

Wang et al., 2016). The graph-based ranking methods are likely more effective because they consider not only citation counts 

but also more information from the networks such as co-authorship, prestige of the citing papers, and so on. 

 

Although a lot of effort has been made in evaluating and ranking the current influence of papers, researchers, and venues 

(Ding, 2011; Jiang et al., 2016; Liu et al., 2014; Meng & Kennedy, 2013; Zhou, Orshanshiy, Zha, & Giles, 2007), only three 

studies have been conducted to predict the future influence of papers, researchers, or venues (Kong, Zhou, Zhang, Wang, & 
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Xia, 2015; Sayyadi & Getoor, 2009; Wang et al., 2016). Performance prediction is also essential but more challenging than 

evaluation and ranking the current influence of an entity because of the uncertainty involved in the future. Certainly, these 

two tasks are related to each other. In a sense, evaluating the current performance of an entity can be seen as a special case of 

prediction with a very short period of time in the future. However, medium to long-term prediction needs more consideration. 

In this piece of work, we focus on a good solution that can predict the future influence of multi-entities including papers, 

researchers and venues at the same time by using a heterogeneous network of papers, researchers, and venues. 

 

First of all, many previous studies only consider the average performance of a researcher and ignore that the performance of 

any researcher varies over time (Bertsimas, Brynjolfsson, Reichman, & Silberholz, 2013). On the one hand, for young 

researchers who begin to publish papers, their influence is undoubtedly much more limited than that of established 

researchers. However, they may obtain more influence over time with continuous learning and accumulating publications 

(Lee, 2019). Some of them may become very prestigious researchers after a certain period. On the other hand, even 

influential researchers in a field will see their influence decline, if they publish few or no papers for a lengthy period. 

Similarly, the prestige of a venue also varies over time. Therefore, it is important to consider these dynamics within any 

model for academic influence, especially when it comes to making predictions. 

 

The second issue is how to compare papers published at different times. Initially, graph-based ranking methods such as 

PageRank and HITS do not consider the freshness of web pages. Their counterparts for academic paper evaluation have the 

same problem (Jiang et al., 2016; Li, Liu, & Yu, 2008; Wang et al., 2016), which is referred to as the ranking bias. Under 

these ranking systems, old papers take advantage of new ones. One explanation is that influence values are transferred from 

new papers to old ones in the citation network (Wang et al., 2016; Yu et al., 2017). To mitigate this problem, a partial 

solution is to assign different weights to papers published at different times. The weight of a paper decreases at a given rate as 

it ages (Kong et al., 2015; Li et al., 2008; Sayyadi & Getoor, 2009; Walker et al., 2006;  Wang et al., 2016; Yu et al., 2017). 

This type of method works quite well for most papers, but they fail for the most influential (Casal, 2004). For instance, the 

paper that proposed the PageRank algorithm (Brin & Page, 1998) is still being cited heavily 20 years after publication. 

Therefore, more advanced treatment is required for such papers. 

 

Thirdly, many classical measures are based on some simplified assumptions: all the citations and venues are equally 

important, while all the authors contribute equally to their coauthored paper, among others. These assumptions are 

questionable according to some researchers (Chakraborty & Narayanam, 2016; Du & Tang, 2013; Fujimagari & Fujita, 2014; 

Martin, Ball, Karrer, & Newman, 2013; Stallings et al., 2013; Wang, Tong, & Zeng, 2013; Zhu, Turney, Lemire, & Vellino, 

2015). For example, for a number of authors who co-write and publish a paper together, many studies allocate the full credit 

of the publication to each of its coauthors (Kim & Diesner, 2014; Lindsey, 1980; Perianes-Rodriguez & Waltman, 2016). 

That is, every coauthor of the paper is regarded as producing the whole paper individually (Kim & Diesner, 2014). If one 

paper with five coauthors is cited 10 times, then each of its coauthors obtains 10 citations. Hence, overall 50 citations, rather 

than 10 citations in total, are allocated to this paper (Waltman, 2016). Such a phenomenon, referred to as the inflationary 

effect, may be questionable according to some studies (Perianes-Rodriguez & Waltman, 2016; Waltman, 2016) and should be 

addressed. 

 

With a heterogeneous network including papers, researchers, and venues, we have rich information about all the entities 

involved. A PageRank-like algorithm is a good starting point because it is able to capture the interrelationships among the 

entities. All the above-mentioned issues need to be addressed in a systematic manner in order to achieve good performance. 

 

In this study, we propose a framework, WMR-Rank (Weighted Mutual Reinforcement Ranking), to predict the future 

influence of papers, researchers, and venues at the same time. The proposed framework is based on the heterogeneous 

network of papers, authors, and venues. Seven types of relations among these entities are extracted and employed to 

simultaneously predict all of their future influence through an iterative process with mutual reinforcement. Overall, our 

approach is novel in several aspects as follows: 

1. Every researcher or venue per year is treated as a separate entity. In this way, we are able to capture their 

dynamic nature more precisely. 

2. For both researchers and venues, both their current performance, and their past performance for a number of 

years is taken into account to predict the future performance of all related entities. 

3. For a balanced treatment of old and new papers, we consider both publication age and recent citations of all the 

papers involved at the same time. 
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Among these aspects, treating each entity per year is the most important one. It lays a solid foundation for many other 

measures. This is crucial for performance prediction, especially for medium to long-term prediction. One simple example is 

to compare two authors with similar average performance in recent years. However, if one of them is on the rise while the 

other is opposite in recent years, then it is predictable that the former may perform better than the later in the next couple of 

years. Otherwise, it is difficult to differentiate them if we only compare the average performance of them in the last couple of 

years. Another advantage of such a treatment is to make the framework more flexible. It enables us to do many different sorts 

of performance evaluation and prediction of multiple entities even with different metrics in the same framework. 

 

Experiments with the ACL (Association for Computational Linguistics Anthology Network) dataset (Radev, Muthukrishnan, 

Qazvinian, & Abu-Jbara, 2013) show that the measures introduced are very effective and the proposed method considerably 

outperforms other state-of-the-art methods. 

 

The remainder of this paper is organized as follows: Section 2 presents related work on performance evaluation or influence 

prediction of multi-entities including papers, researchers, and venues, mainly by using homogeneous or heterogeneous 

networks. Section 3 describes the framework in this study. Section 4 presents detailed experimental processes, settings, and 

results. Some analysis of the experimental results is also given. Section 5 concludes the paper. 

 

2. Related work 
 

How to evaluate scientific papers, authors and venues objectively is an important task, which has been investigated by many 

researchers for long time. Citation count is widely used for evaluating papers as well as researchers and venues (Jiang et al., 

2016; Wang et al., 2016), and a lot of metrics are related to it. For the evaluation of journals, impact factor (Garfield, 1972) is 

the most common metric, which is the yearly average number of citations to the papers published in a given journal.  Other 

metrics such as 5-year Impact Factor (IF) (Pajić, 2015), Eigenfactor Score (Bergstrom, 2007), Source Normalized Impact per 

Paper (SNIP) (Moed, 2010; Waltman, Eck, Leeuwen, & Visser, 2013), SCImago Journal Rank (SJR) (González-Pereira, 

Guerrero-Bote, & Moya-Anegón, 2010; González-Pereira, Guerrero-Bote, & Moya-Anegón, 2012), and sub-impact factor 

(SIF-) (Xu, Liu, & Rousseau, 2015) have also been proposed. Meanwhile, for the evaluation of researchers, a group of 

metrics such as the h-index (Hirsch, 2005), g-index (Egghe, 2006), R-index (Jin, Liang, Rousseau, & Leo, 2007), success-

index (Franceschin, Galetto, Maisano, & Mastrogiacomo, 2012), DS-index (Farooq, Khan, Iqbal, Munir, & Shahzad, 2017), 

and others have been proposed. Among these, the h-index is likely the most popular. 

 

The PageRank and HITS algorithms were initially proposed for ranking web pages in search engines. They have been 

adapted for evaluating academic performance by many studies (Dunaiski, Visser, & Geldenhuys, 2016; Liu et al., 2014; Qiao, 

Wang, & Liang, 2012; Walker et al., 2006; Yan & Ding, 2010; Zhang & Wu, 2018; Zhou et al., 2016). Because academic 

networks reflect the relations among papers, researchers, and venues, in a sense they are more complex than the web in which 

web pages are the only concern. Certain modification is necessary for algorithms such as PageRank and HITS to serve for 

academic performance evaluation. 

 

In recent years, many different types of methods have been applied to academic performance ranking and prediction. Four 

models including linear regression, k-nearest neighbors, support vector regression, and a tree model for classification and 

regression were used for paper citation prediction in (Yu, Yu, Li, & Wang, 2014). A large number of features are extracted 

from papers and related sources, and then stepwise regression was used to select a good regression model for impact 

prediction of papers with a sub-set of features. Cao, Chen, & Liu (2016) proposed a citation pattern matched approach. First a 

large database of paper citations was set up. For a testing paper, its citation pattern was matched to those in the database. 

Then the citation patterns in those matched papers are used for citation prediction of the testing paper. A neural network-

based method was used for paper citation prediction in (Abrishami & Aliakbary, 2019). 

 

In the following, we review a number of works which are very relevant to this research. All of them are PageRank-like 

algorithms based on academic networks, and they will be used as baselines in this study for performance comparison. 

 

Sayyadi and Getoor (2009) proposed FutureRank to predict the future influence of papers. Information about citation, 

authorship, and publication time is used in the algorithm. The axXiv (hep-th) data set, which contains approximately 28,000 

articles published on high energy physics from 1993 to 2003, was used for evaluation. In their experiment, the future 

PageRank scores after three coming years were used as the ground-truth. 
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Liu et al. (2014) proposed Tri-Rank, which may rank researcher, papers, and venues at the same time. In their method, 

information about citation, authorship, and venue is used. Tri-Rank assigns different weights to authors in different ordering 

positions, and it also addresses the self-citation problem. Some data taken from ACM digital library were used for evaluation.  

 

Kong et al. (2015) proposed TAPRank to rank researchers. Information on paper citation and authorship is used. More 

weights are given to new papers and new citations. The DBLP data set from ArnetMiner (Tang et al., 2008) with citation 

information captured from ACM Digital Library was used for evaluation. Future citation counts for five years are used as the 

ground-truth. 

 

Jiang et al. (2016) proposed MutualRank, which may rank papers, authors and venues at the same time. It was observed that 

PageRank was biased to old papers, while HITS was biased to new papers. Therefore, a more balanced solution was taken in 

MutualRank. The ACL data set was used for the evaluation of the proposed method.  

 

Wang et al. (2016) proposed MRCoRank to rank future popularity of four types of entities including papers, authors, venues, 

and terms through mutual reinforcement. The final ranking of multi-entities is generated through leveraging constructed text 

features and time-weighted citations. The DBLP data set from ArnetMiner (Tang et al., 2008) was used for experiments. 

Future citation counts for six years are used as the ground-truth. 

 

Especially, three works (Sayyadi & Getoor, 2009; Kong et al., 2015; Wang et al., 2016) predict the future influence of entities. 

However, we find that there is limitation for using them. In particular, FutureRank only predicts paper influence and 

TAPRank only predicts researcher influence. Although MRCoRank is able to make prediction for multiple entities, it is 

designed for predicting papers published in the same year, which is an obstacle for practical use. If we try to make predictions 

beyond the same year, as we set out to do in this paper, MRCoRank’s performance significantly deteriorates.  

 

3. The WMR-Rank framework 
 

In this section, we will detail all the components required for the framework and then present the multi-entity ranking 

algorithm. 

 

3.1 The structure and major components of the heterogeneous network  
 

The heterogeneous network of papers, authors and venues can be represented as G = (V, E), where 𝑉 denotes the set of nodes 

and E denotes the set of edges. There are three types of nodes: paper 𝑉𝑃, author 𝑉𝐴 and venue 𝑉𝑉. There are three types of 

edges: author to paper (authorship) EA-P, paper to venue (publication) EP-V, and paper to paper (citation) EP-P. Note in this 

network, only the paper to paper citation relation is directional, while other types of relations are not. 

 

One feature that we want to support is the comparison of researchers’ performance across different years. To enable this, we 

treat each author or venue in a specific year as a separate entity. Venues are treated in a similar vein. 

 

Another feature our framework supports is differentiated treatment accorded to authors with differing contributions. If a 

paper is a collaborative work, then we distinguish their contributions by the ordering position of the authors in the paper 

(further details later).  To enable this, we label every paper authorship edge, by “1
st
 author”, “2

nd
 author”, and so on. Fig. 1 

shows an example of such a network. 

 

In Fig. 1, authors, papers, and venues are represented by ovals, diamonds, and rectangles, respectively. There are two venues 

v(2000) and v(2001), four papers p1, p2, p3, and p4. and seven authors a1(2000), a2(2000), a3(2000), a4(2000), a5(2001), 

a6(2001), and a1(2001). v(2000) and v(2001) are the same conference in two different years 2000 and 2001, while a1(2000) 

and a1(2001) are the same author in two different years 2000 and 2001. All three types of edges EA-P (paper authorship), EP-V 

(paper-venue), and EP-P (paper citation) can be found in Fig 1. For the rest of this paper, we will omit an explicit year label to 

maintain conciseness, although a year should always be assumed to be implicitly associated with each of these entities. For 

example, letting a1 denote an author, within our framework, a specific year will always be associated with it, although not 

presented explicitly.  
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Fig. 1. An example of the heterogeneous network of authors, papers, and venues 

 

3.1.1 Seven types of relations. Now let us discuss the seven types of relations in which we are interested. One key issue is 

how to measure the credit that one node may obtain from its relation with the other node directly or indirectly. 

 

Paper citation (Type I) is one type of relation between two papers. If paper 𝑝𝑖  is cited by 𝑝𝑗(denoted as 𝑝𝑖 ← 𝑝𝑗) , then 𝑝𝑖  

obtains credit 

W𝑃𝑃(𝑝𝑖 , 𝑝𝑗) = {
1            𝑝𝑖 ← 𝑝𝑗

0      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1) 

Through paper citation, we can observe an indirect relation of author citation (Type II). If there are two papers 𝑝𝑖  and 𝑝𝑗, 

paper 𝑝𝑖  is cited by 𝑝𝑗, 𝑎𝑚 is the only author or one of the authors of 𝑝𝑖 , and 𝑎𝑛 is the only author or one of the authors of 𝑝𝑗, 

then 𝑎𝑚 is cited by 𝑎𝑛. Much as other researchers (Abbas, 2011; Assimakis, 2010; Du & Tang, 2013; Egghe, Rousseau, & 

Hooydonk, 2000; Hagen, 2008; Hodge, Greenberg, & Challice, 1981; Hooydonk, 1997; Stallings et al., 2013), we take the 

same view that different authors may contribute differently to their collaborative paper. Under our framework, the credit that 

author 𝑎𝑚 obtains from 𝑎𝑛 through paper citation 𝑝𝑖 ← 𝑝𝑗 is 

W𝐶𝐴_𝑟𝑎𝑤 (𝑎𝑚, 𝑎𝑛 , 𝑝
𝑖
, 𝑝

𝑗
) =

1

𝑜𝑟𝑑𝑒𝑟(𝑎𝑚 , 𝑝
𝑖
) × 𝑜𝑟𝑑𝑒𝑟(𝑎𝑛 , 𝑝

𝑗
)
 (2) 

where 𝑜𝑟𝑑𝑒𝑟(𝑎, 𝑝) is the position of author 𝑎 in paper 𝑝. It is necessary to normalize the above quantity to let the total credit 

that all the authors of 𝑝𝑖  obtain from all the authors of 𝑝𝑗 sums to 1. We have 

W𝐶𝐴 (𝑎𝑚, 𝑎𝑛 , 𝑝
𝑖
, 𝑝

𝑗
) =

W𝐶𝐴_𝑟𝑎𝑤 (𝑎𝑚 , 𝑎𝑛, 𝑝
𝑖
, 𝑝

𝑗
)

∑ W𝐶𝐴_𝑟𝑎𝑤 (𝑎𝑘 , 𝑎𝑙 , 𝑝
𝑖
, 𝑝

𝑗
)𝑝𝑖←𝑝𝑗

𝑎𝑘∈𝑃𝐴(𝑝𝑖)

𝑎𝑙∈𝑃𝐴(𝑝𝑗)

 

(3) 

where 𝑃𝐴(𝑝) is the set of all the authors of paper 𝑝. 

 

An author 𝑎𝑛 may cite another author 𝑎𝑚 multiple times. The total credit that 𝑎𝑚 obtains from  𝑎𝑛 is the summation of all the 

papers involved.  

W𝐶𝐴(𝑎𝑚, 𝑎𝑛) = ∑ W𝐶𝐴 (𝑎𝑚, 𝑎𝑛 , 𝑝
𝑖
, 𝑝

𝑗
)

𝑝𝑖∈𝐴𝑃(𝑎𝑚)

𝑝𝑗∈𝐴𝑃(𝑎𝑛)

𝑝𝑖←𝑝𝑗

 

(4) 

where 𝐴𝑃(𝑎) is the set of papers written by author 𝑎. 
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The co-authorship relation (Type III) exists in the network if two or more author nodes connect to the same paper node. Any 

author obtains some credit from all other authors if they write a paper together. The credit that 𝑎𝑖 from her co-author 𝑎𝑗 

through paper 𝑝 is defined as 

W𝐶𝑜𝐴_𝑟𝑎𝑤(𝑎𝑖 , 𝑎𝑗 , 𝑝) =
1

𝑜𝑟𝑑𝑒𝑟(𝑎𝑖 , 𝑝) × 𝑜𝑟𝑑𝑒𝑟(𝑎𝑗 , 𝑝)
 (5) 

After normalization, we have 

W𝐶𝑜𝐴(𝑎𝑖 , 𝑎𝑗 , 𝑝) =
W𝐶𝑜𝐴_𝑟𝑎𝑤(𝑎𝑖 , 𝑎𝑗 , 𝑝)

∑ W𝐶𝑂𝐴_𝑟𝑎𝑤(𝑎𝑘 , 𝑎𝑙 , 𝑝)
𝑎𝑘,𝑎𝑙∈𝑃𝐴(𝑝)

 (6) 

 

Two authors may co-write more than one paper. Hence, the credit that 𝑎𝑖 obtains from 𝑎𝑗 over all co-authored papers is 

W𝐶𝑜𝐴(𝑎𝑖 , 𝑎𝑗) = ∑ W𝐶𝑜𝐴(𝑎𝑖 , 𝑎𝑗 , 𝑝)

𝑝∈𝐴𝑃(𝑎𝑖)

𝑝∈𝐴𝑃(𝑎𝑗)

 
(7) 

where 𝐴𝑃(𝑎𝑖) denotes all the papers written by 𝑎𝑖. Author 𝑎𝑖 is able to obtain credit from another author 𝑎𝑗 through paper 

citation and co-writing papers. 

𝑊𝐴𝐴(𝑎𝑖 , 𝑎𝑗) = 𝑊𝐶𝐴(𝑎𝑖 , 𝑎𝑗) + 𝑊𝐶𝑜𝐴(𝑎𝑖 , 𝑎𝑗) (8) 

 

We may define venue citation (Type IV) in a similar way to author citation. We let  

𝑊𝑉𝑉(𝑣𝑖 , 𝑣𝑗) =
𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑁𝑢𝑚(𝑣𝑖 , 𝑣𝑗)

𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑁𝑢𝑚(𝑣𝑗)
 (9) 

where 𝑣𝑖, 𝑣𝑗 are two venues. 𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑁𝑢𝑚(𝑣𝑗) denotes the number of all the citations that venue 𝑣𝑗 obtains, while 

𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑁𝑢𝑚(𝑣𝑖 , 𝑣𝑗) denotes the number of citations that 𝑣𝑗 obtains from venue 𝑣𝑖. 

 

Paper co-authorship happens very often. In this study, we let all the papers be assigned the same amount of credit. However, 

for a group of co-authors, their contributions to the same paper are differentiated by their ordering positions (Abbas, 2011; 

Assimakis, 2010; Du & Tang, 2013; Egghe et al., 2000; Hagen, 2008; Hodge et al., 1981; Hooydonk, 1997; Stallings et al., 

2013). In this paper, we adopt the geometric counting approach (Egghe et al., 2000) in paper-author relation (Type V). 

Suppose author 𝑎𝑖 is in the R
th

 position among all T coauthors in paper 𝑝𝑗, then author 𝑎𝑖 and paper 𝑝𝑗 obtain credit from each 

other  

W𝐴𝑃(𝑎𝑖 , 𝑝𝑗) = W𝑃𝐴(𝑝𝑗 , 𝑎𝑖) =
2𝑇−𝑅

2𝑇 − 1
 (10) 

 

If paper 𝑝𝑖  is published in venue 𝑣𝑗 (Type VI, paper-venue relation), then there is an edge between paper 𝑝𝑖  and venue 𝑣𝑗, so 

that paper 𝑝𝑖  and venue 𝑣𝑗 get credit from each other. We let  

𝑊𝑉𝑃(𝑣𝑗 , 𝑝𝑖) = W𝑃𝑉(𝑝𝑖, 𝑣𝑗) = {

1

𝑝𝑎𝑝𝑒𝑟𝑁𝑢𝑚(𝑣𝑗)
        𝑝𝑖 ∈ 𝑉𝑃(𝑣𝑖)

0                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (11) 

where 𝑝𝑎𝑝𝑒𝑟𝑁𝑢𝑚(𝑣𝑗) is the number of papers published in venue 𝑣𝑗. 

 

If author 𝑎𝑖 publishes more than one paper in venue 𝑣𝑖 (Type VII, author-venue), then the credit 𝑎𝑖 obtains from 𝑣𝑖 is the sum 

of credit she obtains from all the papers published in 𝑣𝑖. Conversely, 𝑣𝑖 obtains an equal amount of credit from 𝑎𝑖. 

W𝐴𝑉(𝑎𝑖 , 𝑣𝑗) = W𝑉𝐴(𝑣𝑗 , 𝑎𝑖) =
1

𝑝𝑎𝑝𝑒𝑟𝑁𝑢𝑚(𝑣𝑗)
∑ 𝑊𝐴𝑃(𝑎𝑖 , 𝑝𝑘)

𝑝𝑘∈𝐴𝑃(𝑎𝑖)

𝑝𝑘∈𝑉𝑃(𝑣𝑗)

 
(12) 
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1/𝑝𝑎𝑝𝑒𝑟𝑁𝑢𝑚(𝑣𝑗) serves as the normalization coefficient. In this way, all the weights for any venue sum to one. For all 

above-mentioned relations, unless specified explicitly, the default is zero. 

 

3.1.2 Time-aware weights. In order to predict the future influence of related entities precisely, it is necessary to take the 

time information of publications and citations into consideration (Kong et al., 2015; Sayyadi & Getoor, 2009; Walker et al., 

2006; Wang et al., 2016), as recognised by some prior researchers. However, there is no consensus on how time affects 

influence, let alone a good representation for its effect. For example, Sayyadi and Getoor (2009) hypothesized that recently 

published papers might obtain more citations in the future. This view was echoed by Kong et al. (2015). However, Wang et al. 

(2016) had different opinions about this, claiming that not all new papers would obtain more citations than the old ones, and 

most papers obtained just a few citations. In this paper, we mainly consider the past performance of an entity for its 

prediction. In particular, we pay more attention to the more recent performance of entities. This is the third characteristic of 

our method. 

 

For paper 𝑝𝑖 , we assume that its publishing year is 𝑇𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑(𝑝𝑖), the evaluation year is 𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒, and 𝑙 latest citations to 𝑝𝑖  

are in years 𝑡1, 𝑡2, … , 𝑡𝑙. 𝑇𝑎𝑣𝑔𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛_𝑙(𝑝𝑖) = (𝑡1 + 𝑡2 + ⋯ + 𝑡𝑙)/𝑙. Here we set 𝑙 = 𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 − 𝑇𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑(𝑝𝑖). If 𝑝𝑖  does not 

have 𝑙 citations, then we set the year in which the paper was published, 𝑇𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑(𝑝𝑖) for those non-existing citations. Thus 

the time-aware weight of paper 𝑝𝑖  is set to be 

 

𝑇(𝑝𝑖) =
𝑒−𝜎1(𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 − 𝑇𝑎𝑣𝑔𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛_𝑙(𝑝𝑖))

𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 − 𝑇𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑(𝑝𝑖)
 (13) 

where σ1  is a positive decaying parameter. When the difference between 𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒  and 𝑇𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑(𝑝𝑖)  is larger, 𝑇(𝑝𝑖) 

becomes smaller; on the other hand, when the difference between 𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒   and 𝑇𝑎𝑣𝑔𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛(𝑝𝑖) is smaller, 𝑇(𝑝𝑖) is larger. In 

summary, 𝑇(𝑝𝑖) is biased to newer papers which are given heavier weights. However, if an old paper can still attract citations 

in recent years, then it will be given a relatively heavy weight. The rationales behind this are twofold. On the one hand, new 

papers are more likely to attract more citations than old papers in the future. On the other hand, some good old papers should 

not be punished overly if they are still cited by other papers recently. The above time weighting schema is a balanced policy 

for dealing with these two conflicting factors. In the following we treat authors and venues in the same vein.     

 

For author 𝑎𝑖 (an author in a specific year, to be more accurate), assume that she published a group of papers 𝑝1 , 𝑝2, … , 𝑝𝑚 in 

this specific year, or 𝑇𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑(𝑎𝑖) , and the m latest citations to these papers are in years 𝑡1, 𝑡2, … , 𝑡𝑚 . We define 

𝑇𝑎𝑣𝑔𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛_𝑚(𝑎𝑖) = (𝑡1 + 𝑡2 + ⋯ + 𝑡𝑚)/𝑚. If there are not enough citations, we set the earliest year, 𝑇𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑(𝑎𝑖), for 

those non-existing citations. The time-aware weight of author 𝑎𝑖 is set to be 

 

𝑇(𝑎𝑖) =
𝑒−𝜎2(𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 − 𝑇𝑎𝑣𝑔𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛_𝑚(𝑎𝑖))

𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 − 𝑇𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑(𝑎𝑖)
 

 
(14) 

Analogously, the time-aware weight of venue 𝑣𝑖 can be set as 

𝑇(𝑣𝑖) =
𝑒−𝜎3(𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒−𝑇𝑎𝑣𝑔𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛_𝑛(𝑣𝑖))

𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 − 𝑇𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑(𝑣𝑖)
 (15) 

where 𝑇𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑(𝑣𝑖) denotes the year in which venue 𝑣𝑖 was held, and 𝑇𝑎𝑣𝑔𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛_𝑛(𝑣𝑖) denotes the average time of the n 

latest citations to any of the papers in 𝑣𝑖, where n is the number of papers published in 𝑣𝑖. Again, if there are not enough 

citations, we take a similar treatment as to 𝑇(𝑝𝑖) and 𝑇(𝑎𝑖). With all these weights defined, we can present the multi-entity 

ranking algorithm, as we will do in the next section. 

 

3.2 The multi-entity ranking algorithm 
 

Based on the information provided by the heterogeneous network, the multi-entity ranking algorithm, WMR-Rank, scores 

every entity involved. After setting the initial values for all the entities, an iterative process is applied to them, and at each 

step every entity obtains an updated score. Note that all the entities involved affect each other. The algorithm stops when a 

termination condition is satisfied (e.g., a given number of iterations or a threshold for the updates). Algorithm 1 gives the 

details of the proposed method. 
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ALGORITHM 1: WMR-Rank 

Procedure WMRank (𝛼, 𝛽, 𝛾, 𝜎1, 𝜎2, 𝜎3, λ, ε, 𝜇) 

Input: the entity sets VP, VA, VV, edge sets EPP, EPA, EPV, ECA, ECOA, EAV, EVV, weight matrixes WPP, WPA, WPV, WAA, WAV, WVV, 

and parameters 𝛼, 𝛽, 𝛾, 𝜎1, 𝜎2, 𝜎3, λ, ε, 𝜇, ta, tv 

Output: the scores of all the papers, authors and venues 𝑃𝑆, 𝐴𝑆 and 𝑉𝑆 

// The loop in lines 1-3 initializes 𝑃𝑆, 𝐴𝑆, and 𝑉𝑆 scores for papers, authors, and venues, respectively 

1  For every 𝑝𝑖 ∈ 𝑉𝑃, 𝑎𝑗 ∈ 𝑉𝐴, 𝑣𝑘 ∈ 𝑉𝑉  

2  𝑃𝑆(𝑝𝑖)0 =
1

|𝑉𝑃|
, 𝐴𝑆(𝑎𝑗)0 =

1

|𝑉𝐴|
, 𝑉𝑆(𝑣𝑘)0 =

1

|𝑉𝑉|
  //|𝑉|: the number of entities in V.  

3  End For 

4  t=-1, ∆ =2 ε 

5  while  ∆ > ε   do 

6    t=t+1 

// Calculate the past performance of authors 

7    For every 𝑎𝑖 ∈ 𝑉𝐴,      𝑝𝑎𝑠(𝑎𝑖)𝑡+1 =
1

𝑡𝑎+1
[∑ 𝐴𝑆(𝑎𝑘)𝑡 + 𝐴𝑆(𝑎𝑖)𝑡

𝑎𝑘∈𝑝𝑛(𝑎𝑖,𝑡𝑎) ] End For 

// Calculate the past performance of venues 

 

8    For every 𝑣𝑖 ∈ 𝑉𝑉 ,     𝑝𝑣𝑠(𝑣𝑖)𝑡+1 =
1

𝑡𝑣+1
[∑ 𝑉𝑆(𝑣𝑘)𝑡 + 𝑉𝑆(𝑣𝑖)

𝑡
𝑣𝑘∈𝑝𝑛(𝑣𝑖,𝑡𝑣) ] End For 

/* The following loop calculates 𝑃𝑆 scores for papers by considering past performance of their authors and venues (line 10), 

    citation (line 11), and publication time (line 12) */  

9    For every 𝑝𝑖 ∈ 𝑉𝑃 

10     𝑡𝑒𝑚𝑝(𝑝𝑖)𝑡+1 = 𝛼 ∑ 𝑊𝑃𝐴(𝑝𝑖 , 𝑎𝑗) × 𝑝𝑎𝑠(𝑎𝑗)𝑡+1 + (1 − 𝛼) × 𝑊𝑃𝑉(𝑝𝑖 , 𝑣𝑘) × 𝑝𝑣𝑠(𝑣𝑘)𝑡+1
𝑎𝑗∈𝑃𝐴(𝑝𝑖)  

11     𝑡𝑒𝑚𝑝(𝑝𝑖)
𝑡+1 = ∑ 𝑊𝑃𝑃(𝑝𝑖 , 𝑝𝑗) × 𝑡𝑒𝑚𝑝(𝑝𝑗)𝑡+1 +𝑝𝑖←𝑝𝑗

𝜇 ×  𝑡𝑒𝑚𝑝(𝑝𝑖)𝑡+1 

12     𝑃𝑆(𝑝𝑖)𝑡+1 = 𝜆 × 𝑇(𝑝𝑖) × 𝑡𝑒𝑚𝑝(𝑝𝑖)𝑡+1 + (1 − 𝜆) ×
1

|𝑉𝑃|
 

13   End For 

/* The following loop calculates A𝑆 scores for authors by considering their paper and venue scores (line 15), citation 

    and cooperation with other authors (line 16), and the time factor (line 17) */  

14   For every 𝑎𝑖 ∈ 𝑉𝐴 

15    𝑡𝑒𝑚𝑝(𝑎𝑖)
𝑡+1 = 𝛽 ∑ 𝑊𝐴𝑃(𝑎𝑖 , 𝑝𝑗) × 𝑃𝑆(𝑝𝑗)𝑡 + (1 − 𝛽) ∑ 𝑊𝐴𝑉(𝑎𝑖 , 𝑣𝑘) × 𝑝𝑣𝑠(𝑣𝑘)𝑡+1

𝑣𝑘∈𝐴𝑉(𝑎𝑖)𝑝𝑗∈𝐴𝑃(𝑎𝑖)  

16    𝑡𝑒𝑚𝑝(𝑎𝑖)
𝑡+1 = ∑ 𝑊𝐴𝐴(𝑎𝑗 , 𝑎𝑖) × 𝑡𝑒𝑚𝑝(𝑎𝑗)𝑡+1

𝑎𝑗∈𝐴𝐴𝐴(𝑎𝑖) + 𝜇 × 𝑡𝑒𝑚𝑝(𝑎𝑖)𝑡+1 

17    𝐴𝑆(𝑎𝑖)
𝑡+1 = 𝜆 × 𝑇(𝑎𝑖) × 𝑡𝑒𝑚𝑝(𝑎𝑖)

𝑡+1 + (1 − 𝜆) ×
1

|𝑉𝐴|
 

18   End For 

/* The following loop calculates V𝑆 scores for venues by considering their paper and authors’ scores (line 20), and the time  

    factor (line 21) */  

19   For every 𝑣𝑖 ∈ 𝑉𝑉 

20      𝑡𝑒𝑚𝑝(𝑣𝑖)𝑡+1 = 𝛾 ∑ 𝑊𝑉𝑃(𝑣𝑖 , 𝑝𝑗) × 𝑃𝑆(𝑝𝑖)
𝑡

𝑝𝑗∈𝑉𝑃(𝑣𝑖) + (1 − 𝛾) ∑ 𝑊𝑉𝐴(𝑣𝑖 , 𝑎𝑘) × 𝑝𝑎𝑠(𝑎𝑘)𝑡+1
𝑎𝑘∈𝑉𝐴(𝑣𝑖)  

21      𝑉𝑆(𝑣𝑖)𝑡+1 = 𝜆 × 𝑇(𝑣𝑖) × ∑ 𝑊𝑉𝑉(𝑣𝑖 , 𝑣𝑗) × 𝑡𝑒𝑚𝑝(𝑣𝑗)𝑡+1
𝑣𝑖 ← 𝑣𝑗

+ (1 − 𝜆) ×
1

|𝑉𝑉|
 

22   End For 

23   Normalize 𝑃𝑆(𝑝𝑖)𝑡+1, 𝐴𝑆(𝑎𝑖)𝑡+1, and 𝑉𝑆(𝑣𝑖)𝑡+1 

24     ∆= ∑ |𝑃𝑆(𝑝𝑖)𝑡+1 − 𝑃𝑆(𝑝𝑖)𝑡| + ∑ |𝐴𝑆(𝑎𝑖)
𝑡+1 − 𝐴𝑆(𝑎𝑖)𝑡| +𝑎𝑖∈𝑉𝐴

∑ |𝑉𝑆(𝑣𝑖)
𝑡+1 − 𝑉𝑆(𝑣𝑖)

𝑡|𝑣𝑖∈𝑉𝑉𝑝𝑖∈𝑉𝑃
 

25  End do 

 

Lines 1-3 initialize all three types of entities involved. For all the entities in the same category, they are assigned the same 

score of 1/n, where n is the number of entities in that category.  Line 7 calculates the average performance in all ta+1 years for 

each of the authors. 𝑝𝑛(𝑎𝑖 , 𝑡𝑎) is a function that returns a set of 𝑡𝑎 entities of the same author 𝑎𝑖 in the previous 𝑡𝑎 years. 

Suppose that 𝑎𝑖 is in the year of y, we can express 𝑎𝑖  as 𝑎𝑖(y), so that 𝑝𝑛(𝑎𝑖 , 𝑡𝑎) = {𝑎𝑖(𝑦 − 1), 𝑎𝑖(𝑦 − 2), … , 𝑎𝑖(𝑦 − 𝑡𝑎)}. 

Line 8 calculates the average performance of tv+1 years for each of the venues. 𝑝𝑛(𝑣𝑘 , 𝑡𝑣) is a function that returns a set of 𝑡𝑣 

entities of the same venue 𝑣𝑘 in the previous 𝑡𝑣 years. 

 

The main part of the algorithm is included in a while loop. Inside the loop (lines 5-27), the scores for all the nodes involved 

are updated. All papers’ new scores are calculated in lines 10-12. Three factors are considered: authors (line 10), venues (line 
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10), and citations (line 11).  All authors’ new scores are calculated in lines 15-17. Four factors are considered: published 

papers (line 15), the venues in which the papers are published (line 15), author citations (line 16), and coauthors to the 

published papers (line 16). All venues’ new scores are calculated in line 21. Three factors are considered: published papers 

(line 20), authors (line 20), and venue citations (line 21). For all three types of nodes, the time factor is considered: line 12 for 

papers, line 17 for authors, and line 21 for venues. 

 

A boost is given to papers whose publication years are close to the evaluation year. It is especially necessary for those 

without any citations, since they will not able to obtain any score otherwise.  In line 11, a parameter 𝜇 is used to adjust this 

factor. Any paper published within the last five years, even not cited by any papers, will still be able to obtain some credit. 

Likewise, authors are treated in the same way (line 16).  

 

4. Experiment 
 

4.1 Dataset  
 

In this experiment, we use the ACL dataset
1
 (Radev et al., 2013), which is constructed from the papers published in natural 

language processing venues (including journals, conferences and workshops from 1965 to 2014). 

 

Before carrying out the experiments, we pre-process the dataset as follows. First, we remove those papers that neither cite any 

other papers, nor receive any citations, because it is difficult for us to evaluate their influence, since they are detached 

completely. Second, Manual disambiguation of author and venue entities is done to let the data set more usable. Third, all of 

the joint conferences are considered to have dual identity.  For example, COLING-ACL’2006 is a joint conference of 

COLING and ACL, therefore both COLING’2004 (which is held every 2 years) and ACL’2005 are equally treated as its 

previous conferences, and COLING-ACL’2006 is regarded as a previous conference by both COLING and ACL in later 

years. Third, apart from regular papers, many conferences publish short papers, student papers, demos, posters, tutorials, etc. 

On average, the regular papers are of a higher quality than non-regular papers. Therefore, we split the proceedings of such a 

conference into two, and let all regular papers remain in the main conference, while putting all non-regular papers into its 

companion (Jiang et al., 2016). Finally, for those papers with more than 5 authors, we only retain the first five authors and 

ignore the rest. In this dataset, 1175 papers (approximately 5.1%) have more than five authors. After pre-processing, the data 

set includes 19891 papers, 15379 authors and 372 venues without considering time, or 34917 authors (per year) and 638 

venues (per year). 

 

As an additional measure, author name disambiguation is carried out for a subset of the papers in the collection. They are 

papers published between 1985 and 2004 (which is referred to as the modelling partition, Section 4.2 gives more details about 

it). In this subset, there are 6767 papers and 5311 different author names.  For each of the names, we extract affiliation 

information for all the papers by the given name. We assume that if affiliation is the same for all the papers by a certain name, 

then the author is uniquely identified. Under all these names, 2891 has only one publication; the affiliation part is the same 

organization for other 1294. Therefore, no further action is needed for these 2891+1294 names and we need to check the 

remaining 1126 names: for each of them, two or more organizations appear in the affiliation part of different papers. Because 

for the same author, she is likely to continue her research on the same or similar research topics and/or cooperate with her 

former colleagues even she moves to a new place. Thus 785 names can be identified by considering these two factors. For the 

remaining 341 names, we use some extra resources. Both web sites www.researchgate.net and www.arminer.cn keep 

publication information for a large number of authors. We refer to these two sites to identify papers by the same author. In 

some cases, we also look at some personal web pages to find useful information. Finally, we find that 294 names are used by 

one author and 26 names are used by two authors. However, for the last 21 names, after all above-mentioned measures it is 

still unclear if these names are used by one or more authors. Among these 21 names, 20 are associated with two institutions 

and one is with three institutions. If we treat each of these names with a different affiliation as a separate author, then we have 

22 more authors. For all the results presented later in this paper, instead of using 5311 authors, 48 more authors are added for 

all the experiments. However, because the scale of the problem is small: the number of authors added is less than 1% of the 

total number of the authors (48/5311); and the number of papers from these additional authors is 51, also less than 1% of the 

total number of papers in the whole partition (51/6767). Therefore, its effect on prediction results is very small and can be 

ignored. 

 

                                                 
1 See http://clair.eecs.umich.edu/aan/index.php. 
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4.2 Setting and evaluation metrics  
 

In order to evaluate the future influence of all the papers, venues, and authors involved, we split the dataset into two 

partitions: the first for modelling and the second for evaluation. The modelling partition contains all the papers published 

between 1985 and 2004, and the evaluation partition contains all the papers published between 2005 and 2014. We extract the 

seven relations based on the modelling partition and run Algorithm 1 to set up the ranking model for all the papers, authors 

and venues based on the modelling partition, and then evaluate the prediction accuracy based on the evaluation partition. 

 

For parameter setting of WMR-Rank, we let 𝛼=0.70, 𝛽=0.60, 𝛾=0.10, 𝜆=0.85, 𝜎1=0.5, 𝜎2=1.0, 𝜎3=1.1. Four different values, 

0.8, 0.6, 0.4, and 0.2 are assigned to 𝜇, for papers published in 2003 and 2004, 2002, 2001, and 2000, respectively. More 

detailed discussion about these parameters is given in Sections 4.5 and 4.6.  

 

Currently, there is no universally accepted metric to assess the performance or influence of a paper or an author, though 

citation count is widely used (Kong et al., 2015; Sayyadi & Getoor, 2009; Wang et al., 2016; Zhang & Wu, 2018; Zhou et al., 

2016). In this article, we adopt this metric to evaluate the future influence of papers. One problem of using citation count 

directly for authors is the inflationary effect. The second problem is that it allocates equal scores to all the authors involved. 

In order to avoid such problems, we use WCC (Weighted Citation Count) instead of citation count to measure the influence 

of authors. For author 𝑎𝑖, her influence score is defined as  

𝑊𝐶𝐶(𝑎𝑖) = ∑ 𝑊𝐴𝑃(𝑎𝑖 , 𝑝𝑗) × 𝐶𝐶(𝑝𝑗)

𝑝𝑗∈𝐴𝑃(𝑎𝑖)

 (16) 

where 𝐶𝐶(𝑝𝑗) is the citation count of paper 𝑝𝑗. See Equation 10 in Section 3 for the definition of 𝑊𝐴𝑃(𝑎𝑖 , 𝑝𝑗). The final score 

that 𝑎𝑖 obtains, 𝑊𝐶𝐶(𝑎𝑖), is the sum of scores of all the papers that 𝑎𝑖 writes. 

 

For venues, we use MIF (Modified Impact Factor) to measure their influence (Yan & Lee, 2007). For a given venue v, its 

MIF(𝑣) is defined as 

𝑀𝐼𝐹(𝑣) =
𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑁𝑢𝑚(𝑣)

|𝑣|
 (17) 

where 𝐶𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑁𝑢𝑚(𝑣) is the total number of citations that all the papers published in venue v obtain, and |𝑣| is the total 

number of papers in venue v. Therefore, 𝑀𝐼𝐹(𝑣) is the average number of citations that every paper in 𝑣 obtains. 

 

For any given method to predict future influence, we apply it to the modelling partition to obtain scores for all the papers, 

venues, and authors involved, before observing their performance score in the evaluation partition. Thus, prediction accuracy 

can be calculated by comparing how consistent the two groups of rankings or scores are. Spearman’s rank correlation 

coefficient (𝑟𝑠) or Pearson correlation coefficient (ρ) are commonly used for this purpose (Sayyadi & Getoor, 2009; Zhou et 

al., 2016).  

 

Given two sets of scores 𝑋 = {𝑥i|𝑖 = 1,2, ⋯ , 𝑛} and 𝑌 = {𝑦𝑖|𝑖 = 1,2, ⋯ , 𝑛}, the Pearson correlation coefficient between X 

and Y is defined by 
 

𝜌 =
∑ (𝑥𝑖 − 𝑥�̅�) × (𝑦𝑖 − 𝑦�̅�)

𝑛
𝑖=1

√∑ (𝑥𝑖 − �̅�)2
𝑥𝑖∈𝑋 √∑ (𝑦𝑖 − �̅�)2

𝑦𝑖∈𝑌

 
(18) 

where 𝑥 and 𝑦 are the sample means of X and Y. 
 

For the above-mentioned sets of scores X and Y, we may also calculate their Spearman’s correlation coefficient, which is 

defined as the Pearson correlation coefficient of 𝑟𝑋  and 𝑟𝑌 , where 𝑟𝑋  and 𝑟𝑌  represent the ranked variables of X and Y, 

respectively. Although these two measures are related to each other, they are not the same. Spearman's correlation assesses 

monotonic relationships, while Pearson's correlation assesses linear relationships. 

 

4.3 Methods for comparison 
 

The ranking algorithms used for comparison are as follows: 
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1. FutureRank (FR). It is a method of predicting the future citations of papers by using the authorship network and 

the publication time of papers (Sayyadi & Getoor, 2009).  

2. Citation Count (CC). Citation count is widely used to assess the influence of papers, authors and venues because 

it is single-valued and easy to interpret (Yan & Ding, 2010; Zhu et al., 2015). In our experiment, we predict the 

future influence of papers, authors and venues based on their current citation count.  

3. MIF. This metric is used to evaluate the performance of venues (Yan & Lee, 2007). We may predict the future 

influence of venues based on their performance in the modelling partition using MIF, just as we use CC for 

authors and papers.  

4. MutualRank (MR). A state-of-the-art method ranking papers, authors and venues simultaneously by integrating 

mutual reinforcement relationships in heterogeneous networks (Jiang et al., 2016).   

5. MRCoRank (MRCR).  A state-of-the-art method to rank the future influence of papers, authors and venues 

simultaneously (Wang et al., 2016).  

6. PageRank (PR). A famous algorithm that is originally designed to rank web pages, which has then been widely 

applied in many other applications including academic assessment. For example, some studies (Ding, Yan, 

Frazho, & Caverlee, 2009; Zhou et al., 2016) rank papers and authors based on the PageRank algorithm. 

7. TAPRank (TAP). Based on the scores of papers obtained by time-weighted PageRank, TAPRank calculates the 

scores of authors by using the author-paper network (Kong et al., 2015). 

8. Tri-Rank (TR). Like MutualRank, Tri-Rank also ranks papers, authors and venues simultaneously in 

heterogeneous networks (Liu et al., 2014).  

9. WMR-Rank (WMR). The proposed method in this paper (see Algorithm 1). 

 

Note that the network presented in Section 3 only works for the proposed method WMR-Rank. For all the baseline methods 

involved, separate networks are set up for them with proper parameter definitions. For paper and author performance 

prediction and evaluation, we follow the exact procedures and settings in their original papers. However, some changes are 

required for venue performance prediction. WMR-Rank makes prediction of all the venues on a yearly basis, but those 

methods do not. To let them comparable with WMR-Rank, we treat each venue per year as a separate entity in their networks. 

See Appendix for details of all baseline methods involved except Citation Count and MIF.  

 

 

4.4 Prediction accuracy of the proposed method 
 

In this section, we present the evaluation results of the proposed algorithm, along with a group of state-of-the-art baseline 

methods.  

 

4.4.1 Paper Influence Prediction. We first study the paper prediction performance of the proposed algorithm. For those 

papers in the modelling partition, we calculate scores for all the papers involved by a given prediction method. Then we find 

their incremental citation counts by using the evaluation partition and generate a ranked list of those papers accordingly. 

These two rankings are compared to see how accurate the prediction is. The time span of the evaluation partition is 10 years: 

from 2005 to 2014. We consider the incremental citation counts for 1 (2005), 2 (2005 and 2006),…, to up to 10 years (2005-

2014). Fig. 2 and Fig. 3 show the prediction performance measured by the Spearman’s ranking coefficient and Pearson 

correlation coefficient, respectively.  

 

From Fig. 2 and Fig. 3, one can see that the proposed method WMR-Rank (WMR) constantly outperforms all other methods 

involved remarkably. FutureRank is in the second place when the Pearson correlation coefficient is used; and it is in the third 

place when Spearman’s rank correlation coefficient is used. MRCoRank is in the second place when measured by 

Spearman’s coefficient, but it becomes the worst when measured by the Pearson correlation coefficient. Three other methods 

MutualRank, Tri-Rank, and PageRank do not perform well. 

 

In Figure 2, it is quite surprising that all the curves are slightly increasing with future years. The major reason is that the 

distribution of citation counts is extremely skewed. In future year one, less than 1% of the papers are cited 10 times or more, 

less than 6% of the papers are cited between three and nine times, over 15% of the papers are cited once or twice, while over 

78% of the papers are not cited at all. Even after 10 years, over 52% of the papers are not cited, while three papers are cited 

over 700 times. Such a phenomenon can explain why the figure of Spearman’s rank coefficient shows some unusual tendency 

due to too many ties in the ranking, while the figure of the Pearson correlation coefficient looks more reasonable. This may 

also explain why all seven methods except MRCR are better when the Pearson correlation coefficient is used for evaluation. 
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Next, we check how many of the top-10 cited papers between 2005 and 2009 are predicted by all the methods involved. For 

each of these methods, we use one column to present its prediction results. The top-10 predicted papers are presented in Table 

1 with their ranking positions of citation counts between 2005 and 2009 inclusive. From Table 1 one can see that WMR-Rank 

is the best performer. It correctly predicts seven of top 10 papers. FutureRank, MutualRank, Tri-Rank, and PageRank 

successfully predict three of them; while MRCoRank fails to predict any top-10 papers. 

 

4.4.2 Author influence prediction. In this piece of work, we predict the future influence of all the authors on a yearly basis. 

This is different from all previous work. In order to enable WMR-Rank comparisons against the baseline methods, we sum 

up all the yearly scores to obtain the total score for each author, which is then used to predict future performance. Rather than 

using the raw citation count only, we consider weighted citation count to be likely a more reasonable metric for the 

evaluation of authors (see Equation 16 in Section 4.2 for its definition). Therefore, both citation count and weighted citation 

count are used as metrics for the prediction of author influence. Fig. 4 shows the prediction accuracy of all the methods 

involved.  

 

From Fig. 4 one can see that WMR-Rank is significantly better than all five baseline methods involved both when the 

Pearson correlation coefficient and when Spearman’s rank correlation coefficient are used.  Table 2, showing the predictions 

generated by all the methods for the 10 most influential authors, again sees WMR-Rank outperforming the other candidates. 

WMR-Rank successfully identifies half of the top 10 authors, CC identifies three, TR identifies two, both TAP and MR 

identify one, while MRCR identifies none of them. 

 

Fig. 2 Accuracy of seven paper performance prediction methods (measured by Spearman’s rank correlation coefficient and 

prediction for 1, 2,…, 10 years ahead) 

 

Fig. 3 Accuracy of seven paper performance prediction methods (measured by the Pearson correlation coefficient and 

prediction for 1, 2,…, 10 years ahead) 
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Table 1. Top 10 papers and their predictability by WMR-Rank and other baseline methods; for a given method, the number 

shows the ranking position of the paper by its citation count between 2005 and 2009 

Rank AAN ID WMR MRCR MR TR FR PR 

1 J93-2004 1 216 2 1 1 1 

2 P02-1040 7 214 49 61 55 57 

3 P03-1021 13 303 753 384 324 384 

4 J03-1002 8 215 211 162 104 163 

5 N03-1017 16 381 643 357 215 348 

6 J93-2003 3 211 4 3 3 4 

7 A00-2018 2 217 24 20 19 20 

8 J96-1002 6 224 8 5 5 7 

9 J02-3001 5 222 31 37 34 36 

10 P98-2127 44 221 63 44 43 42 

 

 

 

 (a) Pearson correlation coefficient on WCC        (b) Spearman’s rank coefficient on WCC                                         

        

(c) Pearson correlation coefficient on CC               (d) Spearman’s rank coefficient on CC                                         

Fig. 4. Accuracy of six author performance prediction methods for 1, 2,…, 10 years ahead 
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Table 2. Top-10 authors and their predictability by WMR and other baseline methods; for a given method, the number shows 

the ranking position of the author by his/her weighted citation count between 2005 and 2009 

Rank Author’s name 
Number of 

publications 
WMR MRCR TAP MR TR CC 

1 Franz Josef Och 23 2 112 60 44 19 22 

2 Michael Collins 15 1 381 107 20 11 10 

3 Hermann Ney 37 7 39 9 21 14 18 

4 Eugene Charniak 21 4 1031 27 30 16 27 

5 Dekang Lin 20 19 172 22 58 85 74 

6 Philipp Koehn 6 70 1301 671 514 356 454 

7 Mitchell P. Marcus 13 24 2301 146 11 8 6 

8 Daniel Gildea 13 3 85 154 99 118 53 

9 Peter F. Brown 11 17 2138 495 6 3 3 

10 Marti A. Hearst 13 32 1093 117 57 70 56 

        

(a) Pearson correlation coefficient                          (b) Spearman’s rank coefficient  

Fig. 5. Accuracy of five venue performance prediction methods for 1, 2,…, 10 years ahead 

Table 3. Top-10 venues by WMR-Rank and other baseline methods (MIF for five years) 

Rank Venue WMR MRCR MR TR MIF 

1 CL, 1993 2 84 8 1 1 

2 CL, 2003 15 36 111 141 73 

3 HLT@NAACL, 2003 3 34 76 107 63 

4 ACL, 2002 1 22 42 58 34 

5 CL, 2004 41 9 143 183 176 

6 HLT@NAACL, 2004 6 6 93 170 146 

7 ACL, 2003 7 18 55 109 85 

8 CL, 2002 4 51 86 93 41 

9 CL, 1996 10 90 48 38 4 

10 CL, 1998 9 76 57 49 10 
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Table 4. Comparison of seven feature-based variants with WMR-Rank for paper prediction (Pearson’s coefficient on CC) 

Future years WMR TW TP PW T W P NN 

1 0.815 0.783 0.772 0.508 0.765 0.493 0.330 0.207 

2 0.817 0.781 0.775 0.510 0.758 0.494 0.333 0.210 

3 0.801 0.760 0.766 0.486 0.741 0.470 0.315 0.198 

4 0.788 0.746 0.755 0.474 0.727 0.459 0.307 0.193 

5 0.772 0.728 0.745 0.457 0.712 0.442 0.295 0.185 

6 0.750 0.705 0.729 0.437 0.690 0.423 0.281 0.175 

7 0.735 0.689 0.716 0.427 0.674 0.413 0.275 0.172 

8 0.721 0.675 0.703 0.719 0.660 0.405 0.271 0.171 

9 0.701 0.655 0.686 0.405 0.641 0.392 0.262 0.165 

10 0.683 0.638 0.669 0.394 0.624 0.381 0.256 0.162 

Table 5. Comparison of seven feature-based variants with WMR-Rank for author evaluation (Pearson’s coefficient on MCC) 

Future years WMR TW TP PW T W P NN 

1 0.894 0.877 0.799 0.641 0.799 0.634 0.449 0.354 

2 0.898 0.881 0.800 0.642 0.800 0.635 0.446 0.351 

3 0.881 0.861 0.790 0.611 0.784 0.603 0.420 0.329 

4 0.867 0.847 0.779 0.594 0.771 0.587 0.408 0.319 

5 0.856 0.835 0.769 0.581 0.759 0.573 0.395 0.307 

6 0.838 0.816 0.757 0.563 0.745 0.555 0.383 0.297 

7 0.825 0.802 0.748 0.553 0.735 0.545 0.378 0.293 

8 0.814 0.790 0.738 0.544 0.725 0.537 0.374 0.290 

9 0.800 0.776 0.727 0.532 0.712 0.524 0.366 0.284 

10 0.789 0.765 0.718 0.525 0.703 0.517 0.362 0.281 

Table 6. Comparison of seven feature-based variants with WMR-Rank for venue evaluation (Pearson’s coefficient on MIF) 

Future years WMR TW TP PW T W P NN 

1 0.826 0.769 0.647 0.158 0.760 0.094 0.060 -0.054 

2 0.830 0.774 0.657 0.157 0.773 0.094 0.058 -0.052 

3 0.818 0.762 0.657 0.154 0.766 0.092 0.053 -0.052 

4 0.815 0.760 0.652 0.152 0.768 0.090 0.055 -0.051 

5 0.813 0.759 0.657 0.148 0.768 0.088 0.053 -0.050 

6 0.804 0.749 0.647 0.149 0.758 0.089 0.053 -0.048 

7 0.801 0.746 0.639 0.154 0.750 0.094 0.057 -0.043 

8 0.797 0.742 0.633 0.157 0.745 0.097 0.061 -0.038 

9 0.792 0.736 0.626 0.158 0.738 0.099 0.063 -0.036 

10 0.788 0.732 0.617 0.160 0.731 0.100 0.066 -0.032 
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4.4.3 Venue influence prediction. Venue influence is evaluated by using MIF (Modified Impact Factor, see Equation 17 in 

Section 4.2 for its definition). Fig. 5 shows the predicted influence of venues for one to ten years ahead. WMR-Rank 

performs much better than all the others, both in terms of the Pearson correlation coefficient and Spearman’s rank correlation 

coefficient. Table 3 shows the results of the predictions made by the methods for the 10 most influential venues. Eight of 

them are predicted successfully by WMR-Rank, and one to three venues are predicted successfully by four other methods. 
 

4.4.4 Evaluation of the impact of three components in WMR-Rank. In WMR-Rank, time-aware information, past 

performance of authors and venues and weighting are three major components. Two of them, time-aware information and 

past performance, are implemented by defining entities of authors and venues on a yearly basis. In order to investigate how 

these components contribute to the final success of the algorithm, we compare WMR-Rank with some of its variants in which 

one or more components are disabled. Seven variants of WMR-Rank are defined as follows. P denotes past performance, T 

denotes time-aware information, while W denotes the weighting schema for papers, authors, and venues. For example, 

WMR-T means that time-aware information is supported while the two others are not, WMR-PW means that both past time 

and weighing are supported while time-aware information is not. WMR-NN has all three components cancelled. 

 

1. WMR-PW. A variant of WMR-Rank that does not consider time-aware information. 

2. WMR-TP.  A variant of WMR-Rank that sets all weights equally. 

3. WMR-TW. A variant of WMR-Rank that does not consider the past performance of authors and venues.  

4. WMR-T. A variant of WMR-Rank that does not consider the past performance of authors and venues, and 

meanwhile sets all weights equally. 

5. WMR-W. A variant of WMR-Rank that does not consider the past performance of authors and venues, as well as 

the time-aware information. 

6. WMR-P. A variant of WMR-Rank that does not consider the time-aware information, and meanwhile sets all 

weights equally. 

7. WMR-NN. A variant of WMR-Rank. It sets all weights equally, and considers neither time-aware information 

nor the past performance of authors and venues. 

 

The results are shown in Tables 4, 5, and 6 for papers, authors, and venues, respectively. Pearson’s coefficients are used as 

the metric for comparison. From these tables, one can see that unsurprisingly, WMR-Rank performs better than all of its 

seven variants in prediction of papers, authors and venues. In all the cases, the three components are effective for 

performance prediction, either used separately or in combination. The more components are involved, the better prediction 

performance we are able to achieve. However, the capabilities of these three components to affect the final prediction are 

different. Among them, time-awareness has the largest impact, weighting is in the middle, while the past performance of 

authors and venues has the smallest impact. Besides, the impact of time-awareness is far larger than that of the two others. 

 

4.4.5 Alternative paper citation weights for WMR-Rank. Some studies claim that citations are not equally important 

(Chakraborty & Narayanam, 2016; Wan & Liu, 2014; Wang et al., 2013; Zhu et al., 2015). To further study the effect of 

different weighting schemes of paper citations W𝑃𝑃(𝑝𝑖 , 𝑝𝑗),, we test three more methods: WMR-TI, which considers time 

interval between publication and citation (Yan & Ding, 2010; Yu et al., 2017; Zhang & Wu, 2018); WMR-CC, which 

considers similarity between the citing paper and the cited paper (Amsler, 1972); and WMR-CA, which considers the age of 

the citing paper (Wang et al., 2016).  

 
To study the effect of different weighting schemes of paper citation W𝑃𝑃(𝑝𝑖 , 𝑝𝑗), we compare the one that WMR-Rank uses 

(see Equation 1) with five other options: WMR-TI (TI for Time Interval), WMR-CC (CC stands for Coupling and Citation), 

WMR-Cit (Cit stands for Citation), WMR-Cou (Cou stands for Coupling), and WMR-CA (CA stands for Citing paper’s 

Age). See below for more details about them. 

 

1. WMR-TI. A variant of WMR-Rank that considers the time interval between publication and citation. It is 

considered that a paper is likely to be influential if the paper is cited shortly after its publication. Therefore, for 

each citation, we use the time interval between the cited paper and the citing paper to decide the weight of the 

citation. Moreover, self-citations are not accorded as much value as citation by others. Let 𝑝𝑖  be a paper and 

𝑇𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑(𝑝𝑖) be the year in which 𝑝𝑖  is published, and 𝐹𝐴(𝑝𝑖) be the first author of 𝑝𝑖 , then the weight of the 

citation 𝑊𝑃𝑃(𝑝𝑖 , 𝑝𝑗) is defined as:  
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𝑊𝑃𝑃(𝑝𝑖 , 𝑝𝑗) = {
𝑒−𝜏(𝑇𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑(𝑝𝑖)−𝑇𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑(𝑝𝑗)),     𝑖𝑓  𝐹𝐴(𝑝𝑖) ≠ 𝐹𝐴(𝑝𝑗)

0.5 ∗ 𝑒−𝜏(𝑇𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑(𝑝𝑖)−𝑇𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑(𝑝𝑗)), 𝑖𝑓    𝐹𝐴(𝑝𝑖) = 𝐹𝐴(𝑝𝑗)
      (19) 

2. WMR-CC. A variant of WMR-Rank that considers bibliographic coupling and co-citation. It is considered that 

the two papers are more similar if they have more bibliographic couplings or co-citations. Greater weights are 

given to papers that are more similar. Let I(𝑝𝑖) be the set of in-link neighbors of 𝑝𝑖 , O(𝑝𝑖) be the set of out-link 

neighbors of 𝑝𝑖 , the weights of co-citation and coupling are balanced by a parameter (we set it to 0.5, as in  

(Amsler, 1972)), then the weight we assign to 𝑝𝑖  is  

𝑊𝑃𝑃(𝑝𝑖 , 𝑝𝑗) = 0.5 ×
|𝐼(𝑝𝑖) ∩ 𝐼(𝑝𝑖)|

|𝐼(𝑝𝑖) ∪ 𝐼(𝑝𝑖)|
+ 0.5 ×

|𝑂(𝑝𝑖) ∩ 𝑂(𝑝𝑖)|

|𝑂(𝑝𝑖) ∪ 𝑂(𝑝𝑖)|
 (20) 

3. WMR-Cit. A variant of WMR-Rank that only considers bibliographic co-citation. It is considered that the two 

papers are more similar if they have more bibliographic co-citation. Let I(𝑝𝑖) be the set of in-link neighbors of 𝑝𝑖 , 

the weight we assign to 𝑝𝑖  is 

𝑊𝑃𝑃(𝑝𝑖 , 𝑝𝑗) =
|𝐼(𝑝𝑖) ∩ 𝐼(𝑝𝑖)|

|𝐼(𝑝𝑖) ∪ 𝐼(𝑝𝑖)|
 (21) 

 

4. WMR-Cou. A variant of WMR-Rank that only considers bibliographic coupling. It is considered that the two 

papers are more similar if they have more bibliographic couplings. Let O(𝑝𝑖) be the set of out-link neighbors of 

𝑝𝑖 , the weight we assign to 𝑝𝑖  is 

𝑊𝑃𝑃(𝑝𝑖 , 𝑝𝑗) =
|𝑂(𝑝𝑖) ∩ 𝑂(𝑝𝑖)|

|𝑂(𝑝𝑖) ∪ 𝑂(𝑝𝑖)|
 (22) 

5. WMR-CA. It is a variant of WMR-Rank that considers the age of the citing paper. It is considered that papers 

obtain citation recently are more likely to attract new citations. Let 𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒  be the evaluation year, 

𝑇𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑(𝑝𝑖) be the year of citing paper 𝑝𝑖 , then the weight of citation is set as  

𝑊𝑃𝑃(𝑝𝑖 , 𝑝𝑗) = 𝑒−𝛿(𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒− 𝑇𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑(𝑝𝑖)) (23) 

      where δ is set to 2 (Wang et al., 2016). 

 

Experimental results are shown in Fig. 6. One can see that WMR-Rank outperforms the others. WMR-TI is close to WMR-

Rank in performance, but the other four are much worse. This demonstrates that using simple binary weights for paper 

citation is a very good option for WMR-Rank. 

 

4.4.6 Impact of author citation and co-authorship on WMR-Rank. In WMR-Rank, a researcher may obtain credit from 

another researcher through either paper citation or co-authorship. Their impact on paper or author ranking is merged. To have 

a clear view of the impact of co-authorship and author citation separately on WMR-Rank, we introduce two more variants of 

WMR-Rank. WMR-CoA is the one that considers co-authorship but not author citation, or 𝑊𝐴𝐴(𝑎𝑖 , 𝑎𝑗) = 𝑊𝐶𝑜𝐴(𝑎𝑖 , 𝑎𝑗) ; and 

WMR-AC is the one that considers author citation but not co-authorship, or 𝑊𝐴𝐴(𝑎𝑖 , 𝑎𝑗) = 𝑊𝐶𝐴(𝑎𝑖 , 𝑎𝑗). Fig. 7 shows the 

performance of them for paper and author performance prediction. From Fig. 7 (a) and (b), one can see that both WMR-CoA 

and WMR-AC are very close to WMR-Rank for paper performance prediction. However, their impacts on author 

performance prediction are different. From Fig. 7 (c) and (d), one can see that WMR-AC and WMR-Rank are close in 

performance, while WMR-CoA is not as good as WMR-AC. Therefore, we may conclude that considering either co-

authorship or author citation or both do not affect much on paper performance prediction, but author citation is a more 

important aspect than co-authorship for author performance prediction. 
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(a) Pearson correlation coefficient       (b) Spearman’s rank coefficient 

Fig. 6 Paper prediction performance of five variants of WMR-Rank with different weighting schemas of 𝑊𝑃𝑃 

 

 

 

 

 

(b) Pearson correlation coefficient (paper)       (b) Spearman’s rank coefficient (paper) 

 

(c) Pearson correlation coefficient (author)       (d) Spearman’s rank coefficient (author) 

Fig. 7 Comparison of WMR-Rank with its variants WMR-CoA and WMR-AC 
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4.5 Parameter setting and convergence rate of WMR-Rank 

There are nine parameters in WMR-Rank: 𝛼, 𝛽, 𝛾, 𝜎1, 𝜎2, 𝜎3, λ, ε and  𝜇, Among these parameters, the function of  λ is 

similar to the damping factor in PageRank, and a typical value of 0.85 is used. Another parameter 𝜇 is used to increase the 

scores of papers published in recent years. A step function is a good option for this purpose. In this study, we let 𝜇 =0.80 for 

papers published in year 2003 or 2004; 𝜇  =0.60, 0.40, and 0.20, for papers published in year 2002, 2001, and 2000, 

respectively; 𝜇 =0 for papers published before 2000. Note that the modelling partition contains all the papers published 

between 1985 and 2004.  

 

Now let us look at six remaining parameters. Based on their definitions and roles, 𝛼, 𝛽, and 𝛾 are in the range of 0 and 1, 

while 𝜎1, 𝜎2  and 𝜎3 should take positive numbers. To set up these parameters so as to obtain good performance, we initialize 

them to some reasonable values: let 𝛼=0.50, 𝛽=0.50, 𝛾=0.50, λ=0.85 as PageRank, ε = 1e − 6 as in (Jiang et al., 2016), 

𝜎1=1.0, 𝜎2=1.0, and 𝜎3=1.0. Then we let one of them vary to see its effect, as Fig. 8 shows the results when Pearson 

correlation coefficient is used for performance evaluation.    

 

From Fig. 8 (a), one can see that paper prediction performance is quite stable when 𝛼 is in the range of 0.10 and 0.90. The 

best performance is achieved when 𝛼=0.70. In a similar way, we get β=0.60, γ=0.10, 𝜎1=0.50, 𝜎2=1.00, and 𝜎3=1.10 by 

observing Fig. 8 (b), (c), and (d). The Spearman’s rank coefficient is also evaluated for the same purpose. We have 𝛼=0.30, 

β=0.50, γ=0.10, 𝜎1=0.30, 𝜎2=1.00, and 𝜎3=1.00. It is understandable that these two weighting schemes are not the same. Both 

of them are reasonably good weighting schemes for WMR-Rank, but none of them is highly optimized because the hyper-

parameter tuning we carried out for them is modest. 

Line 10 of Algorithm 1 calculates the score of a given paper, taking into account two factors:  the authors who write it and the 

venue in which the paper is published. 𝛼 and (1-𝛼) are used to adjust the relative weights of these two components. A larger  

𝛼 value does not necessarily mean that one factor is more important than the other one because these two components are not 

directly comparable — 𝛼 partially serves as a normalization measure. We may have the same conclusion for other parameters 

β, γ, 𝜎1, 𝜎2, and 𝜎3. 

 

To test the convergence rate of our algorithm WMR-Rank, we vary the threshold ε to control the number of iterations. For 

convenience, the difference between two consecutive iterations (see line 25 in Algorithm 1) is rewritten here 

∆= ∑ |𝑃𝑆(𝑝𝑖)𝑡+1 − 𝑃𝑆(𝑝𝑖)𝑡| + ∑ |𝐴𝑆(𝑎𝑖)𝑡+1 − 𝐴𝑆(𝑎𝑖)𝑡| +

𝑎𝑖∈𝑉𝐴

∑ |𝑉𝑆(𝑣𝑖)𝑡+1 − 𝑉𝑆(𝑣𝑖)𝑡|

𝑣𝑖∈𝑉𝑉𝑝𝑖∈𝑉𝑃

 (24) 

If Δ ≤ ε, then the algorithm stops. 

 

We compare the convergence rate of WMR-Rank with that of three other algorithms MutualRank, Tri-Rank, and 

MRCoRank, all of which rank papers, authors and venues simultaneously. 

 

Fig. 9 shows the convergence rates of these four algorithms. We may observe that Tri-Rank is the fastest to converge, WMR-

Rank is in the second place, while MutualRank and MRCoRank converge more slowly. WMR-Rank achieved convergence 

after 12 iterations, while Tri-Rank, MutualRank, and MRCoRank converged after 10, 43, and 52 iterations, respectively. 

 

4.6 Some statistics of the data set and their implications 

There are nine parameters in WMR-Rank: 𝛼, 𝛽, 𝛾, 𝜎1, 𝜎2, 𝜎3, λ, ε and  𝜇, Among these parameters, the function of  λ is 

similar to the damping factor in PageRank, and a typical value of 0.85 is used. Another parameter 𝜇 is used to increase the 

scores of papers published in recent years. A step function is a good option for this purpose. In this study, we let 𝜇 =0.80 for 

papers published in year 2003 or 2004; 𝜇  =0.60, 0.40, and 0.20, for papers published in year 2002, 2001, and 2000, 

respectively; 𝜇 =0 for papers published before 2000. Note that the modelling partition contains all the papers published 

between 1985 and 2004.  

 

After pro-processing, the ACL data set includes 19,891 papers, 15,379 authors, and 372 venues. All the papers are cited 

124,710 times and on average each is cited 6.27 times. The top 5% of authors (based on the number of publications) 

produced 12,548 papers in total, which is more than 60% of the 19,891 papers in the whole data set. That is to say, the top 

one-twentieth of researchers are involved in 60% of papers. If we consider the top 10% of researchers, they contribute to 

nearly three quarters of all publications. In all, the authors attracted 869,624 citations. Of these, the top 10% authors attracted 
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438,429 citations in total, which is almost half of all the citations. Not surprisingly, there is a considerable difference between 

the very top authors and the average author if we consider the number of publications. The difference is even greater if we 

consider the number of citations they attract. 

 

For all 6767 papers and 5310 authors involved in the modelling partition, we measure their future influence in the evaluation 

partition. On average, each paper is cited 5.54 times and each author gets 7.06 in WCC. Fig. 10 shows the non-increasing 

influence curves of papers/authors from most influential to least. We may observe that both curves are extremely skewed. 

 

Over 80% of the papers are cited 5 times or less, while less than 20% of papers are cited 6 times or more. Only 671 authors 

obtain a WCC of 7.06 or above, while the remaining 4639 authors do not reach the average. This suggests that only a small 

percentage of top papers or authors need to be considered when we try to make predictions for future influence. If we rank 

papers by the number of citations they obtain, then many of the less influential papers will be cited very few times, resulting 

in a lot of ties. Under such circumstances, Spearman’s rank correlation coefficient or Kendall’s τ rank coefficient may not be 

very good measures for us to compare the similarity of two rankings; while Pearson linear correlation coefficient is likely to 

be more reliable.   

 

On the other hand, the performance of each researcher or venue may very over time.  Fig. 11 shows the performance of five 

authors and four venues over time. From Fig. 11(a) and (b) we may observe that the performance of each author/venue may 

vary considerably from one year to next. Therefore, it is adequate to treat each author and venue per year as a separate entity. 

For a given author, her recent performance, rather than her average performance over long time, is a more accurate estimator 

of her future influence. Time-aware weights are another measure for us to focus on most recent citations.   

  

(a) Effect of α on papers (b) Effect of β on authors 

  

(c) Effect of γ on venues 
(d) Effect of σ1, σ2 and σ3 on papers, authors and venues, 

respectively 

Fig. 8 Effect of different parameter values on ranking performance 



21 

 

 

Fig. 9 Convergence Rate of four Algorithms 

  

(a) Future influence of papers (b) Future influence of authors 

Fig. 10 Future influence of all papers/authors in the modelling partition in the next 10 years 

  

(a) Variation of five authors’ performance over 35 years (b) Variation of four venues’ performance over 30 year 

Fig. 11 Performance variation of authors and venues over a number of years 
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5. Conclusions 
 

Predicting the future influence of papers, authors and venues is an essential task for scientists, research organizations, 

research funding bodies, and government agencies alike. In this paper, we have proposed a ranking algorithm, WMR-Rank, 

which is able to predict the future influence of papers, authors and venues at the same time. Several measures have been 

introduced to make the prediction more accurate. They include refined granularity of concerned entities such as papers and 

venues, time awareness for published papers and their citations, differentiating the contribution of multiple coauthors to the 

same paper, and others. Experiments have been conducted on a real world dataset ACL and results show that our approach is 

much more effective than state-of-the-art approaches. 

 

As our future work, we would consider paper citation in depth. Traditional citation-based analysis treats all citations equally, 

as we do in this paper. However, due to various reasons, some citations are deep, while some others are superficial. Recently, 

it has been found that misconduct such as coercive citations and padded citations also exists in many cases (Fong & Wilhite, 

2017). One possible approach to tackle these problems is to divide citations into different levels based on the relevancy 

between the cited paper and the citing paper. Then more sophisticated metrics may be defined for the evaluation of entities 

such as papers, authors, and venues. A closely related issue is how to decide the relevancy of any two papers effectively and 

efficiently. Manual categorization is too costly and information extraction and deep learning techniques may be helpful to 

automate this process. 
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Appendix 
 

Details about six baseline methods involved in our experiment are given in this appendix. Their implementation is the same 

as in their original papers. Minor changes to some of the concepts keep the presentation of this paper consistent. 

 

MRCoRank 

Seven sub-networks are defined. They are paper citation, author co-author, paper-author, paper-venue, author-venue, paper-

text feature, author-text networks. Their edge weights are defined as follows. 

Paper citation network: 

W𝑃𝑃(𝑝𝑖 , 𝑝𝑗) = {𝑒
−𝜌(𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 −𝑇𝑝𝑗

)
             𝑖𝑓 𝑝𝑎𝑝𝑒𝑟 𝑝𝑗  𝑐𝑖𝑡𝑒𝑠 𝑝𝑎𝑝𝑒𝑟 𝑝𝑖

0                                                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (A1) 

 

where 𝜌 = 2, 𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒  denotes the evaluation year, 𝑇𝑝𝑗
 denotes the publication year of paper 𝑝𝑗 . 

Author co-author network: 

W𝐴𝐴(𝑎𝑖 , 𝑎𝑗) = ∑ 𝑒−𝜌(𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 −𝑇𝑝𝑘
)

𝑝𝑘𝜖𝐴𝑃(𝑎𝑖)

𝑝𝑘𝜖𝐴𝑃(𝑎𝑗)

 
(A2) 

where 𝐴𝑃(𝑎𝑖) denotes all the papers written by 𝑎𝑖. 

Paper-author network: 

W𝑃𝐴(𝑝𝑗 , 𝑎𝑖) = W𝐴𝑃(𝑎𝑖 , 𝑝𝑗) = {
1           𝑖𝑓 𝑎𝑢𝑡ℎ𝑜𝑟 𝑎𝑖  𝑤𝑟𝑖𝑡𝑒𝑠 𝑝𝑎𝑝𝑒𝑟 𝑝𝑗

0                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (A3) 

Paper-venue network: 

W𝑃𝑉(𝑝𝑖 , 𝑣𝑗) = 𝑊𝑉𝑃(𝑣𝑗 , 𝑝𝑖) = 𝑒−𝜌(𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 −𝑇𝑝𝑖
)
 (A4) 

Author-venue network: 

W𝐴𝑉(𝑎𝑖 , 𝑣𝑗) = W𝑉𝐴(𝑣𝑗 , 𝑎𝑖) = ∑ 𝑒−𝜌(𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 −𝑇𝑝𝑘
)

𝑝𝑘∈𝐴𝑃(𝑎𝑖)

𝑝𝑘∈𝑉𝑃(𝑣𝑗)

 
(A5) 

where 𝑉𝑃(𝑣𝑖) denotes all papers published in 𝑣𝑖.  

Paper-text feature network: 

W𝑃𝐹(𝑝𝑗 , 𝑓𝑖) = W𝐹𝑃(𝑓𝑖 , 𝑝𝑗) = 𝑡𝑓_𝑖𝑑𝑓(𝑓𝑖 , 𝑝𝑗) (A6) 

where 𝑡𝑓_𝑖𝑑𝑓(𝑓𝑖 , 𝑝𝑗) is the tf-idf weight of the feature 𝑓𝑖. 

Author-text network: 

W𝐴𝐹(𝑎𝑖 , 𝑓𝑗) = W𝐹𝐴(𝑓𝑗, 𝑎𝑖) =
𝑓(𝑓𝑗, 𝑎𝑖)

max {𝑓(𝑓𝑘, 𝑎𝑖): 𝑓𝑘 ∈ 𝑓(𝑎𝑖)}
∙ 𝑙𝑜𝑔

|𝑉𝐴|

|𝑉𝐴
𝑓𝑗|

 (A7) 

where 𝑓(𝑓𝑗 , 𝑎𝑖)  is the frequency of feature 𝑓𝑗  used by author 𝑎𝑖 , max {𝑓(𝑓𝑘, 𝑎𝑖): 𝑓𝑘 ∈ 𝑓(𝑎𝑖)}  returns the highest feature 

frequency of author 𝑎𝑖, |𝑉𝐴| is the number of authors, and |𝑉𝐴
𝑓𝑗| is the number of authors using feature 𝑓𝑗. 

Note that MRCoRank regarding each year as a time window and the degree of innovativeness of feature 𝑥𝑖 in the time 

window <𝑡𝑗−1, 𝑡𝑗> is defined as: 

E𝑥𝑖

<𝑡𝑗−1,𝑡𝑗>
=

|𝑥
𝑖

<𝑡𝑗−1,𝑡𝑗>
− �̃�𝑖|

�̃�
∙ [∑(

𝑥
𝑖

<𝑡𝑗−1,𝑡𝑗>
− 𝑥

𝑖

<𝑡𝑗−𝑠−1,𝑡𝑗−𝑠>

�̃�𝑖

)
1

𝑠

𝑢

𝑠=1

] ∙ 𝑒−𝜌(𝑡𝑗−𝑡0) (A8) 

where 𝑥
𝑖

<𝑡𝑗−1,𝑡𝑗>
 is the feature frequency of text feature 𝑥𝑖 in the jth time window, �̃�𝑖 is the estimated mean frequency of text 

feature 𝑥𝑖, �̃� is the estimated mean frequency of all the text features, 𝑢 is the number of previous windows and set to 3, 𝜌 is 

the time-decaying parameter, 𝑡0 is the time when the text feature first appears in the paper collection. 
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Based on the weighted networks defined, MRCoRank ranks the future influence of multi-entities by using Algorithm A1 as 

follows: 

ALGORITHM A1: MRCoRank 

Procedure MRCoRank (𝛼𝑝𝑝, 𝛼𝑝𝑎, 𝛼𝑝𝑣 , 𝛼𝑎𝑎, 𝛼𝑣𝑎 , 𝛼𝑣 , 𝛼𝑓) 

Input: the entity sets VP, VA, VV, VF, edge sets EPP, EPA, EPV, ECOA, EAV, EPF, EAF, weight matrixes WPP, WPA, WPV, WAA, WAV, 

WPF, WAF and parameters 𝛼𝑝𝑝, 𝛼𝑝𝑎, 𝛼𝑝𝑣, 𝛼𝑎𝑎 , 𝛼𝑣𝑎, 𝛼𝑣 , 𝛼𝑓 , ε 

Output: the vectors of all the papers, authors, venues and features 𝑷𝑺, 𝑨𝑺, 𝑽𝑺 and 𝑭𝑺 

// Initialize 𝑷𝑺, 𝑨𝑺, 𝑽𝑺 and 𝑭𝑺 scores for papers, authors, venues and features, respectively 

1  𝑷𝑺0 =
𝐼𝑃

|𝑉𝑃|
, 𝑨𝑺0 =

𝐼𝐴

|𝑉𝐴|
, 𝑽𝑺0 =

𝐼𝑉

|𝑉𝑉|
, 𝑭𝑺0 =

𝐼𝐹

|𝑉𝐹|
  //|𝑉|: the number of entities in V, 𝐼𝑃 is the unit vector.  

2  ∆ =2 ε 

3  while  ∆ > ε   do 

// update the paper vector PS, author vector AS, venue vector VS and text feature vector FS   

4       𝑷𝑺𝑡+1 = 𝛼𝑝𝑝(W𝑃𝑃𝑷𝑺𝑡) + 𝛼𝑝𝑎(W𝑃𝐴𝑨𝑺𝑡) +  𝛼𝑝𝑣(1 − 𝛼𝑝𝑝 − 𝛼𝑝𝑎)(W
𝑃𝑉

𝑽𝑺𝑡) + (1 − 𝛼𝑝𝑣)(1 − 𝛼𝑝𝑝 − 𝛼𝑝𝑎)(W𝑃𝐹𝑭𝑺𝑡) 

5       𝑨𝑺𝑡+1 = 𝛼𝑎𝑎(W𝐴𝐴𝑨𝑺𝑡) + 𝛼𝑝𝑎(W𝐴𝑃𝑷𝑺𝑡) + 𝛼𝑎𝑣(1 − 𝛼𝑎𝑎 − 𝛼𝑝𝑎)(W
𝐴𝑉

𝑽𝑺𝑡) + (1 − 𝛼𝑎𝑣)(1 − 𝛼𝑎𝑎 − 𝛼𝑝𝑎)(W𝐴𝐹𝑭𝑺𝑡) 

6       𝑽𝑺𝑡+1 = 𝛼𝑣(W𝑉𝐴𝑨𝑺𝑡) + (1 − 𝛼𝑣)(W𝑉𝑃𝑷𝑺𝑡) 

7       𝑭𝑺𝑡+1 = [𝛼𝑓(W𝐹𝐴𝑨𝑺𝑡) + (1 − 𝛼𝑓)(W𝐹𝑃𝑷𝑺𝑡)]𝑬𝑡 

8     Normalize 𝑷𝑺𝑡+1, 𝑨𝑺𝑡+1, 𝑽𝑺𝑡+1 and 𝑭𝑺𝑡+1 

9     ∆= || 𝑷𝑺𝑡+1 −  𝑷𝑺𝑡||1 + || 𝑨𝑺𝑡+1 −  𝑨𝑺𝑡||1 + || 𝑽𝑺𝑡+1 −  𝑽𝑺𝑡||1 + || 𝑭𝑺𝑡+1 −  𝑭𝑺𝑡||1 

10 End while 

 

According to the original paper, the best ranking is achievable for all the entities when 𝛼𝑝𝑝 = 0.6, 𝛼𝑝𝑎 = 0.2, 𝛼𝑝𝑣 = 𝛼𝑎𝑣 =

0.4, 𝛼𝑎𝑎 = 𝛼𝑣 = 𝛼𝑓 = 0.5, ε = 1e − 6. 

 

 

MutualRank  

Six sub-networks are defined and used. Their edge weights are defined as follows: 

Paper citation network: 

P(𝑝𝑖 , 𝑝𝑗) = {
1           𝑖𝑓 𝑝𝑎𝑝𝑒𝑟 𝑝𝑗  𝑐𝑖𝑡𝑒𝑠 𝑝𝑎𝑝𝑒𝑟 𝑝𝑖

0                                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (A9) 

Author citation network: 

A(𝑎𝑖 , 𝑎𝑗) = ∑ P(𝑝𝑘 , 𝑝𝑙)
𝑝𝑘∈𝐴𝑃(𝑎𝑖)

𝑝𝑙∈𝐴𝑃(𝑎𝑗)

 
(A10) 

where 𝐴𝑃(𝑎𝑖) denotes all the papers written by 𝑎𝑖. 

Venue citation network: 

V(𝑣𝑖 , 𝑣𝑗) = ∑ P(𝑝𝑘 , 𝑝𝑙)
𝑝𝑘∈𝑉𝑃(𝑣𝑖)

𝑝𝑙∈𝑉𝑃(𝑣𝑗)

 
(A11) 

where 𝑉𝑃(𝑣𝑖) denotes all the papers published in venue 𝑣𝑖. 

Paper-author network: 

PA(𝑝𝑖 , 𝑎𝑗) = AP(𝑎𝑗 , 𝑝𝑖) = {
1           𝑖𝑓 𝑎𝑢𝑡ℎ𝑜𝑟 𝑎𝑗  𝑤𝑟𝑖𝑡𝑒𝑠 𝑝𝑎𝑝𝑒𝑟 𝑝𝑖

0                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (A12) 

Paper-venue network: 

PV(𝑝𝑖 , 𝑣𝑗) = VP(𝑣𝑗 , 𝑝𝑖) = {
1         𝑖𝑓 𝑝𝑎𝑝𝑒𝑟 𝑝𝑖  𝑖𝑠 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑 𝑖𝑛 𝑣𝑒𝑛𝑢𝑒 𝑣𝑗

0                                                           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (A13) 

Author-venue network: 

AV(𝑎𝑖 , 𝑣𝑗) = VA(𝑣𝑗 , 𝑎𝑖) = {
1           𝑖𝑓 𝑎𝑢𝑡ℎ𝑜𝑟 𝑎𝑖  𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑠 𝑝𝑎𝑝𝑒𝑟𝑠 𝑖𝑛 𝑣𝑒𝑛𝑢𝑒 𝑣𝑗

0                                                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (A14) 

 

Thus each network can be represented as a matrix. Rather than using the original matrix, its transition matrix is used. Let us 

take paper citation network as an example. Let 𝑃 be the adjacency matrix corresponding to paper citation network, P̃ is the 

transition matrix by normalizing each row of P, the transition matrix P̃ is rewritten as P̅ in PageRank-like formalization. 
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P̅ = λ (P̃ + 𝑑𝑟

𝑒𝑇

|𝑉𝑃|
) + (1 − λ)

𝑒𝑒𝑇

|𝑉𝑃|
 (A15) 

where |𝑉𝑃| is the number of papers, 𝑑𝑟  is an |𝑉𝑃|-dimensional vector indicating dangling nodes, 𝑒  is a |𝑉𝑃|-dimensional 

identity vector. 

 

After transforming all nine adjacency matrices P, PA, PV, A, AP, AV, V, VP and VA,  we obtain transition matrices P̅, PA̅̅̅̅ , PV̅̅̅̅ , 

A̅, AP̅̅̅̅ , AV̅̅ ̅̅ , V̅, VP̅̅̅̅  and VA̅̅ ̅̅ . 

 

Based on these networks, MutualRank ranks the influence of multi-entities by using Algorithm A2 as follows: 

ALGORITHM A2: MutualRank 

Procedure MutualRank (𝛼, 𝛽, 𝛾, 𝛿, 𝜆, 휀) 

Input: the entity sets VP, VA, VV, edge sets EPP, EPA, EPV, EAA, EAV, EVV, transition matrixes P̅, PA̅̅̅̅ , PV̅̅̅̅ , A̅, AP̅̅̅̅ , AV̅̅ ̅̅ , V̅, VP̅̅̅̅ , VA̅̅ ̅̅  and 

parameters 𝛼, 𝛽, 𝛾, 𝛿, 𝜆, 휀 

Output: the authority of papers paut, the soundness of papers psnd, the importance of authors rimp and the prestige of 

venues vprs 

// Initialize paut, psnd, rimp and vprs scores for papers, papers, authors and venues, respectively 

1  𝐩𝐚𝐮𝐭0 =
𝐼𝑃

|𝑉𝑃|
, 𝐩𝐬𝐧𝐝0 =

𝐼𝑃

|𝑉𝑃|
, 𝐫𝐢𝐦𝐩0 =

𝐼𝐴

|𝑉𝐴|
, 𝐯𝐩𝐫𝐬0 =

𝐼𝑉

|𝑉𝑉|
  //|𝑉|: the number of entities in V, 𝐼𝑃 is the unit vector.  

2  ∆ =2 ε 

3  while  ∆ > ε   do 

// update the vectors of paut, psnd, rimp and vprs   

4      𝐩𝐚𝐮𝐭𝑡+1 = 𝛼 𝐩𝐚𝐮𝐭𝑡 + 𝛽(1 − 𝛼)P̅𝑇 𝐩𝐬𝐧𝐝𝑡 +  𝛿(1 − 𝛼)(1 − 𝛽)AP̅̅̅̅ 𝑇 𝐫𝐢𝐦𝐩𝑡 + (1 − 𝛼)(1 − 𝛽)(1 − 𝛿)VP̅̅̅̅ 𝑇 𝐯𝐩𝐫𝐬𝑡 

5      𝐩𝐬𝐧𝐝𝑡+1 = 𝛼 𝐩𝐬𝐧𝐝𝑡 + 𝛽(1 − 𝛼)P𝑇̅̅ ̅𝑇
 𝐩𝐚𝐮𝐭𝑡 +  𝛿(1 − 𝛼)(1 − 𝛽)VP̅̅̅̅ 𝑇 𝐯𝐩𝐫𝐬𝑡 + (1 − 𝛼)(1 − 𝛽)(1 − 𝛿)AP̅̅̅̅ 𝑇 𝐫𝐢𝐦𝐩𝑡 

6      𝐫𝐢𝐦𝐩𝑡+1 = 𝛼A̅𝑇 𝐫𝐢𝐦𝐩𝑡 + 𝛽(1 − 𝛼)VA̅̅ ̅̅ 𝑇 𝐯𝐩𝐫𝐬𝑡 +  𝛿(1 − 𝛼)(1 − 𝛽)PA̅̅̅̅ 𝑇 𝐩𝐚𝐮𝐭𝑡 + (1 − 𝛼)(1 − 𝛽)(1 − 𝛿)PA̅̅̅̅ 𝑇 𝐩𝐬𝐧𝐝𝑡  

7      𝐯𝐩𝐫𝐬𝑡+1 = 𝛼V̅𝑇  𝐯𝐩𝐫𝐬𝑡 + 𝛽(1 − 𝛼)AV̅̅ ̅̅ 𝑇 𝐫𝐢𝐦𝐩𝑡 +  𝛿(1 − 𝛼)(1 − 𝛽)PV̅̅̅̅ 𝑇 𝐩𝐬𝐧𝐝𝑡 + (1 − 𝛼)(1 − 𝛽)(1 − 𝛿)PV̅̅̅̅ 𝑇 𝐩𝐚𝐮𝐭𝑡 

8     Normalize 𝐩𝐚𝐮𝐭𝑡+1, 𝐩𝐬𝐧𝐝𝑡+1, 𝐫𝐢𝐦𝐩𝑡+1 and 𝐯𝐩𝐫𝐬𝑡+1 

9     ∆= ||𝐩𝐚𝐮𝐭𝑡+1 − 𝐩𝐚𝐮𝐭𝑡||1 + ||𝐩𝐬𝐧𝐝𝑡+1 − 𝐩𝐬𝐧𝐝𝑡||1 + ||𝐫𝐢𝐦𝐩𝑡+1 − 𝐫𝐢𝐦𝐩𝑡||1 + ||𝐯𝐩𝐫𝐬𝑡+1 − 𝐯𝐩𝐫𝐬𝑡||1 

10 End while 

 

Parameters are set as: 𝛼 = 0.3, 𝛽 = 0.45, 𝛿 = 0.25, 𝜆 = 0.85, ε = 1e − 6.  
 

 

Tri-Rank  

Seven sub-networks are defined and their weights are as follows: 

Paper citation network: 

W𝑃𝑃(𝑝𝑖 , 𝑝𝑗) = {
1           𝐹𝐴(𝑝𝑖) ≠ 𝐹𝐴(𝑝𝑗)

0.8       𝐹𝐴(𝑝𝑖) = 𝐹𝐴(𝑝𝑗)
 (A16) 

where 𝐹𝐴(𝑝𝑖) is the first author of 𝑝𝑖 . 

Author citation network: 

W𝐶𝐴(𝑎𝑖 , 𝑎𝑗) = ∑ W𝑃𝑃(𝑝𝑘 , 𝑝𝑙)
𝑝𝑘∈𝐴𝑃(𝑎𝑖)

𝑝𝑙∈𝐴𝑃(𝑎𝑗)

 
(A17) 

where 𝐴𝑃(𝑎𝑖) denotes all the papers written by 𝑎𝑖. 

Author co-author network: 

W𝐶𝑂𝐴(𝑎𝑖 , 𝑎𝑗) = |𝐴𝑃(𝑎𝑖)⋂𝐴𝑃(𝑎𝑗)| (A18) 

Considering both author citation and co-authorship, the weight between author 𝑎𝑖 and 𝑎𝑗 is: 

W𝐴𝐴(𝑎𝑖 , 𝑎𝑗) = W𝐶𝐴(𝑎𝑖 , 𝑎𝑗) + W𝐶𝑂𝐴(𝑎𝑖 , 𝑎𝑗) (A19) 

Venue citation network: 

W𝑉𝑉(𝑣𝑖 , 𝑣𝑗) = ∑ W𝑃𝑃(𝑝𝑘 , 𝑝𝑙)
𝑝𝑘∈𝑉𝑃(𝑣𝑖)

𝑝𝑙∈𝑉𝑃(𝑣𝑗)

 
(A20) 
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where 𝑉𝑃(𝑣𝑖) denotes all the papers published in venue 𝑣𝑖. 

Paper-author network: 

W𝑃𝐴(𝑝𝑖 , 𝑎𝑗) = W𝐴𝑃(𝑎𝑗 , 𝑝𝑖) =
1

𝑜𝑟𝑑𝑒𝑟(𝑝𝑖 , 𝑎𝑗)
 (A21) 

where 𝑜𝑟𝑑𝑒𝑟(𝑝𝑖 , 𝑎𝑗) is the position of author 𝑎𝑗 in the author list of paper 𝑝𝑖 . 

Paper-venue network: 

W𝑃𝑉(𝑝𝑖 , 𝑣𝑗) = W𝑉𝑃(𝑣𝑗 , 𝑝𝑖) = {
1      if paper 𝑝𝑖  𝑖𝑠 𝑝𝑢𝑏𝑙𝑖𝑠ℎ𝑒𝑑 𝑖𝑛 𝑣𝑒𝑛𝑢𝑒 𝑣𝑗

0                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (A22) 

Author-venue network: 

W𝐴𝑉(𝑎𝑖 , 𝑣𝑗) = W𝑉𝐴(𝑣𝑗 , 𝑎𝑖) = ∑ W𝑃𝐴(𝑝𝑘 , 𝑎𝑖)

𝑝𝑘∈𝐴𝑃(𝑎𝑖)

𝑝𝑘∈𝑉𝑃(𝑣𝑗)

 
(A23) 

Based on the weighted network defined above, Tri-Rank ranks the influence of papers, authors and venue by using Algorithm 

A3 as follows: 

ALGORITHM A3: Tri-Rank 

Procedure Tri-Rank (𝛼, 𝛽, 𝛾, 휀) 

Input: the entity sets VP, VA, VV, edge sets EPP, EPA, EPV, EAA, EAV, EVV, weight matrixes WPP, WPA, WPV, WAA, WAV, WVV, and 

parameters 𝛼, 𝛽, 𝛾, ε 

Output: the scores of all the papers, authors and venues 𝑷𝑺, 𝑨𝑺 and 𝑽𝑺 

// Initialize 𝑷𝑺, 𝑨𝑺 and 𝑽𝑺 scores for papers, authors and venues, respectively 

1  𝑷𝑺0 = 𝐼𝑃 , 𝑨𝑺0 = 𝐼𝑃 , 𝑽𝑺0 = 𝐼𝑃   //𝐼𝑃 is the unit vector.  

2  𝑷𝑺1 = W𝑃𝑃𝑷𝑺0   // do one-iteration PageRank  

3  ∆ =2 ε 

4  while  ∆ > ε   do 

5  // update the vectors of 𝑷𝑺, 𝑨𝑺 and 𝑽𝑺   

6      𝑨𝑺𝑡+1 = 𝛽(W𝐴𝑃𝑷𝑺𝑡+1) + (1 − 𝛽)(W𝐴𝑉𝑽𝑺𝑡) 

7     Normalize  𝑨𝑺𝑡+1 

8      𝑨𝑺𝑡+2 = W𝐴𝐴𝑨𝑺𝑡+1 

9     𝑽𝑺𝑡+1 = 𝛾
W𝑉𝑃𝑷𝑺𝑡+1

|𝑉𝑃|
+ (1 − 𝛾)

W𝑉𝐴𝑨𝑺𝑡+2

|𝑉𝐴|
 

10    Normalize  𝑽𝑺𝑡+1 

11     𝑽𝑺𝑡+2 = W𝑉𝑉𝑽𝑺𝑡+1 

12     𝑷𝑺𝑡+2 = 𝛼(W𝑃𝑉𝑽𝑺𝑡+2) + (1 − 𝛼)(W𝑃𝐴𝑨𝑺𝑡+2) 

13    Normalize  𝑷𝑺𝑡+2 

14     𝑷𝑺𝑡+3 = W𝑃𝑃𝑷𝑺𝑡+2 

15     ∆=
||𝑷𝑺𝑡+3−𝑷𝑺𝑡+1||1

|𝑉𝑃|
+

||𝑨𝑺𝑡+2−𝑨𝑺𝑡||1

|𝑉𝐴|
+

||𝑽𝑺𝑡+2−𝑽𝑺𝑡||1

|𝑉𝑉|
 

16 End while 

 

We set 𝛼 = 0.8, 𝛽 = 0.7, 𝛿 = 0.9, ε = 1e − 8 as in the original paper. 

 

 

FutureRank  

Three sub-networks are defined as follows: 

Paper citation network: 

W𝑃𝑃(𝑝𝑖 , 𝑝𝑗) = {
1           𝑖𝑓 𝑝𝑎𝑝𝑒𝑟 𝑝𝑗  𝑐𝑖𝑡𝑒𝑠 𝑝𝑎𝑝𝑒𝑟 𝑝𝑖

0                                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (A24) 

Paper-author network: 

W𝑃𝐴(𝑝𝑖 , 𝑎𝑗) = W𝐴𝑃(𝑎𝑗 , 𝑝𝑖) = {
1           𝑖𝑓 𝑎𝑢𝑡ℎ𝑜𝑟 𝑎𝑗  𝑤𝑟𝑖𝑡𝑒𝑠 𝑝𝑎𝑝𝑒𝑟 𝑝𝑖

0                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (A25) 

Time-ware factor: 

𝑅𝑝𝑖
𝑇𝑖𝑚𝑒 = 𝑒−𝜌∗(𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒−𝑇𝑝𝑖

)
 (A26) 

where 𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 denotes the evaluation year, 𝑇𝑝𝑖
 is publication year of 𝑝𝑖 . 
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Based on the weighted network, FutureRank ranks the future influence of papers by using Algorithm A4 as follows: 

ALGORITHM A4: FutureRank 

Procedure FutureRank (𝛼, 𝛽, δ, 𝜌, 휀) 

Input: the entity sets VP, VA, edge sets EPP, EPA, weight matrixes WPP, WPA, and parameters 𝛼, 𝛽, δ, 𝜌, ε 

Output: the scores of all the papers, authors 𝑷𝑺 and 𝑨𝑺 

// Initialize 𝑷𝑺 and 𝑨𝑺 scores for papers and authors respectively 

1  𝑷𝑺0 =
𝐼𝑃

|𝑉𝑃|
, 𝑨𝑺0 =

𝐼𝐴

|𝑉𝐴|
  //|𝑉|: the number of entities in V, 𝐼𝑃 is the unit vector.  

2  ∆ =2 ε 

3  while  ∆ > ε   do 

// update the vectors of 𝑷𝑺 and 𝑨𝑺   

5      𝑷𝑺𝑡+1 = 𝛼 ∗ W𝑃𝑃𝑷𝑺𝑡 + 𝛽 ∗ W𝑃𝐴𝑨𝑺𝑡 + δ ∗ 𝑅𝑇𝑖𝑚𝑒 + (1 − 𝛼 − 𝛽 − 𝛿) ∗
𝐼𝑃

|𝑉𝑃|
 

6      𝑨𝑺𝑡+1 = W𝐴𝑃𝑷𝑺𝑡+1 

7     Normalize  𝑷𝑺𝑡+1,  𝑨𝑺𝑡+1 

8     ∆= ||𝑷𝑺𝑡+1 − 𝑷𝑺𝑡||1 + ||𝑨𝑺𝑡+1 − 𝑨𝑺𝑡||1 

9 End while 

 

𝛼 = 0.4, 𝛽 = 0.1, 𝛿 = 0.5, 𝜌 = 0.62, ε = 1e − 6. 

 

 

TAPRank  

Three subnetworks are defined as follows: 

Paper citation network: 

W𝑃𝑃(𝑝𝑖 , 𝑝𝑗) = {
𝑒

−𝜌∗(𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒−𝑇𝑝𝑗
)

𝐿(𝑝𝑗)
           𝑖𝑓 𝑝𝑎𝑝𝑒𝑟 𝑝𝑗  𝑐𝑖𝑡𝑒𝑠 𝑝𝑎𝑝𝑒𝑟 𝑝𝑖

0                                                                         otherwise

 (A27) 

where 𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 denotes the evaluation time, 𝑇𝑝𝑗
 is publication time of 𝑝𝑗, 𝐿(𝑝𝑗) is the sum of outgoing links of 𝑝𝑗. 

Paper-author network: 

W𝐴𝑃(𝑎𝑗 , 𝑝𝑖) = {

1

𝐶(𝑝𝑖)
           𝑖𝑓 𝑎𝑢𝑡ℎ𝑜𝑟 𝑎𝑗  writes paper 𝑝𝑖

0                                                      otherwise

 (A28) 

W𝑃𝐴(𝑝𝑖 , 𝑎𝑗) = {

1

𝐶(𝑎𝑗)
           𝑖𝑓 𝑎𝑢𝑡ℎ𝑜𝑟 𝑎𝑗  writes paper 𝑝𝑖

0                                                      otherwise

 (A29) 

where 𝐶(𝑝𝑖) is the total number of authors of 𝑝𝑖 , 𝐶(𝑎𝑗) is the total number of papers written by author 𝑎𝑗. 

Time-ware factor: 

𝑅𝑝𝑖
𝑇𝑖𝑚𝑒 =

𝑒−𝜌∗(𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒−𝑇𝑝𝑖
)

∑ 𝑒−𝜌∗(𝑇𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒−𝑇𝑝𝑘
)

𝑝𝑘∈𝑉𝑃

 (A30) 
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Based on the weighted network, TAPRank rank the future influence of papers by using Algorithm A5 as follows: 

ALGORITHM A5: TAPRank 

Procedure TAPRank (𝜆, 𝜌, 휀) 

Input: the entity sets VP, VA, edge sets EPP, EPA, weight matrixes WPP, WPA, and parameters 𝜆, 𝜌, ε 

Output: the scores of all the papers, authors 𝑷𝑺 and 𝑨𝑺 

// Initialize 𝑷𝑹 scores for all papers 

1  𝑷𝑹0 =
𝐼𝑃

|𝑉𝑃|
  //|𝑉|: the number of entities in V, 𝐼𝑃 is the unit vector.  

// compute the time-ware PageRank value of papers 

2  while  ∆ > ε   do 

3      𝑷𝑹𝑡+1 = 𝜆 ∗ W𝑃𝑃𝑷𝑹𝑡 + (1 − 𝜆) ∗ 𝑅𝑇𝑖𝑚𝑒  

4     ∆= ||𝑷𝑹𝑡+1 − 𝑷𝑹𝑡||1 

5  End while 

// Initialize 𝑷𝑺 and AS scores for papers and authors respectively 

6  𝑷𝑺0 = 𝑷𝑹, 𝑨𝑺0 =
𝐼𝐴

|𝑉𝐴|
 

7  while  ∆ > ε   do 

// update the vectors of 𝑷𝑺 and 𝑨𝑺   

8      𝑨𝑺𝑡+1 = 𝜆 ∗ W𝐴𝑃𝑷𝑺𝑡 + (1 − 𝜆) ∗
𝐼𝐴

|𝑉𝐴|
   

9      𝑷𝑺𝑡+1 = 𝜆 ∗ W𝑃𝐴𝑨𝑺𝑡+1 + (1 − 𝜆) ∗
𝐼𝑃

|𝑉𝑃|
 

10     Normalize  𝑷𝑺𝑡+1,  𝑨𝑺𝑡+1 

11     ∆= ||𝑷𝑺𝑡+1 − 𝑷𝑺𝑡||1 + ||𝑨𝑺𝑡+1 − 𝑨𝑺𝑡||1 

12  End while 

 

Parameter setting: 𝜌 = 0.3, 𝜆 = 0.85, ε = 1e − 6. 

 

 

 

PageRank  

PageRank uses paper citation network as follows: 

Paper citation network: 

W𝑃𝑃(𝑝𝑖 , 𝑝𝑗) = {

1

𝐿(𝑝𝑗)
                              if paper 𝑝𝑗  𝑐𝑖𝑡𝑒𝑠 𝑝𝑎𝑝𝑒𝑟 𝑝𝑖

0                                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (A31) 

where 𝐿(𝑝𝑗) is the sum of outgoing links of 𝑝𝑗, or the number of papers that are cited by 𝑝𝑗. 

PageRank ranks the influence of papers by using Algorithm A6 as follows: 

ALGORITHM A6: PageRank 

Procedure PageRank (𝜆, 휀) 

Input: the entity sets VP , edge sets EPP, weight matrixes WPP, and parameters 𝜆, ε 

Output: the scores of all the papers 𝑷𝑹 

// Initialize 𝑷𝑹 scores for papers 

1  𝑷𝑹0 =
𝐼𝑃

|𝑉𝑃|
  //|𝑉|: the number of entities in V, 𝐼𝑃 is the unit vector.  

// update the vectors of PR 

2  while  ∆ > ε   do 

3      𝑷𝑹𝑡+1 = 𝜆 ∗ W𝑃𝑃𝑷𝑹𝑡 + (1 − 𝜆) ∗
𝐼𝑃

|𝑉𝑃|
 

4     ∆= ||𝑷𝑹𝑡+1 − 𝑷𝑹𝑡||1 

5  End while 

 

𝜆 = 0.85, ε = 1e − 6. 

 

 


