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Abstract:We are interested in characterising the commutative rings for which a 1-tilting cotorsion pair (A, T)
provides for covers, that is when the class A is a covering class. We use Hrbek’s bijective correspondence
between the 1-tilting cotorsion pairs over a commutative ring R and the faithful finitely generated Gabriel
topologies on R. Moreover, we use results of Bazzoni–Positselski, in particular a generalisation of Matlis
equivalence and their characterisation of covering classes for 1-tilting cotorsion pairs arising from flat injec-
tive ring epimorphisms. Explicitly, if G is the Gabriel topology associated to the 1-tilting cotorsion pair (A, T),
and RG is the ring of quotients with respect to G, we show that ifA is covering, then G is a perfect localisation
(in Stenström’s sense [B. Stenström, Rings of Quotients, Springer, New York, 1975]) and the localisation RG

has projective dimension at most one as an R-module. Moreover, we show that A is covering if and only if
both the localisation RG and the quotient rings R/J are perfect rings for every J ∈ G. Rings satisfying the latter
two conditions are called G-almost perfect.
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1 Introduction

The classification problem for the category of modules over arbitrary rings is in general hopeless. Approxi-
mation theory was developed as a tool to approximate arbitrarymodules bymodules in certain classes where
the classification is more manageable. Left and right approximations were studied in the case of modules
over finite-dimensional algebras by Auslander, Reiten and Smalø and independently by Enochs and Xu for
modules over arbitrary rings using the terminology of preenvelopes and precovers. An important problem
in approximation theory is when minimal approximations, that is covers or envelopes, over certain classes
exist. In other words, for a class C of modules, the aim is to characterise the rings over which every module
has a minimal approximation in C and furthermore to characterise the class C itself.

In this paper, we study when, for a 1-tilting cotorsion pair (A, T) over a commutative ring R, the classA
provides for covers.

One of the first examples of the power of studying the module category using the existence of minimal
approximations was done for the class of projective modules by Bass [4]. Bass introduced and characterised
the class of perfect ringswhich are exactly the rings overwhich everymodule has a projective cover.Moreover,
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he showed that this is equivalent to the class of projective modules being closed under direct limits. It is
interesting to study this closure property for the general case of covering classes.

In fact, a famous theorem of Enochs says that if a class C in Mod-R is closed under direct limits, then
any module that has a C-precover has a C-cover [13]. The converse problem, that is if a covering class C is
necessarily closed under direct limits, is still an open problem which is known as Enochs Conjecture.

Some significant advancements have been made towards Enochs Conjecture in recent years. In 2017,
Angeleri Hügel–Šaroch–Trlifaj in [3] proved that Enochs Conjecture holds for a large class of cotorsion pairs.
Explicitly, they proved that, for a cotorsion pair (A,B) such that B is closed under direct limits, A is cover-
ing if and only if it is closed under direct limits. In particular, this holds for all tilting cotorsion pairs. The
result of Angeleri Hügel–Šaroch–Trlifaj is based on methods developed in Šaroch’s paper [25], which uses
sophisticated set-theoretical methods in homological algebra.

Moreover, in a very recent paper by Bazzoni–Positselski–Šťovíček in [10], it is proved using an algebraic
approach that, for a cotorsion pair (A,B) such thatB is closed under direct limits and amoduleM ∈ A ∩B, if
Add(M) is covering, then Add(M) is closed under direct limits. In particular, it follows that Enochs Conjecture
holds for tilting cotorsion pairs.

We are interested in giving ring-theoretic characterisations of the commutative rings forwhich the classA
of a 1-tilting cotorsion pair provides for covers, by purely algebraic methods. As mentioned in the previous
paragraphs, Enochs Conjecture is known to hold for these cotorsion pairs, although via our characterisation
of such rings, we find yet another proof of Enochs Conjecture.

In our investigation, we use extensively the bijective correspondence between 1-tilting cotorsion pairs
over commutative rings and faithful finitely generated Gabriel topologies, as demonstrated by Hrbek in [16].
More precisely, Hrbek associates to a 1-tilting class T the collection of ideals J ≤ R which “divide” T, that is
{J | JT = T for all T ∈ T}, and in the converse direction, he associates to a faithful finitely generated Gabriel
topologyG the1-tilting class, denotedDG, of theG-divisiblemodules, that is themodulesM such that JM = M
for every J ∈ G.

We are interested in a particular type of Gabriel topology. The ring of quotients of R with respect to G,
denoted RG, is G-divisible if and only if G arises from a perfect localisation, that is ψR : R → RG is a flat
ring epimorphism and G = {J ≤ R | ψR(J)RG = RG}. Following Stenström’s terminology [24], these Gabriel
topologies are called perfect Gabriel topologies.

In Section 4, we first prove that if the class A in a 1-tilting cotorsion pair (A,DG) over a commutative
ring is covering, then G arises from a perfect localisation and that the projective dimension of RG is at most
one as an R-module (see Lemma 4.3 and Proposition 4.4). Then, by work of Angeleri Hügel–Sánchez in [2],
RG ⊕ RG/R is a 1-tilting module with associated cotorsion pair (A,DG).

In this situation, we have a much larger range of theories to use, in particular the works of Bazzoni–
Positselski and Positselski.

Indeed, in [7], using the theory of contramodules and the tilting-cotilting correspondence from [22],
Bazzoni–Positselski give classification results for some 1-tilting cotorsion pairs satisfying Enochs Conjec-
ture – those which arise from injective homological ring epimorphisms u : R → U in the sense of [2].

In [6], we prove that if a 1-tilting class over a commutative ring R is enveloping, then the tilting module
arises from an injective flat ring epimorphism and give a ring-theoretic characterisation of the ring in terms
of perfectness of the quotient rings R/J for every ideal J in the associated Gabriel topology.

This paper concerns the covering side. We briefly summarise the results of this paper as well as some
consequences. Consider a 1-tilting cotorsion pair (A, T) over a commutative ring and the associated Gabriel
topology G. After proving that ifA is covering, then G is a perfect Gabriel topology and the projective dimen-
sion of RG is at most one, we show the following characterisation (Theorem 8.19):

A is covering ⇐⇒ {
RG is a perfect ring,
R/J is a perfect ring for each J ∈ G.

It is interesting to note that if RG is a perfect ring, then it follows that G is a perfect Gabriel topology (see
Lemma 8.1).
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The above characterisation uses [9, Theorem 1.2], where Bazzoni and Positselski state that, for a (not
necessarily injective) ring epimorphism u : R → U such that TorR1 (U, U) = 0 and K := U/u(R), there is aMatlis
equivalence between the full subcategory of u-divisible u-comodules and the full subcategory of u-torsion-
free u-contramodules via the adjunction pair ((− ⊗R K),HomR(K, −)). When u : R → U is a flat injective ring
epimorphism of commutative rings as in our case, this becomes an equivalence between the G-divisible G-
torsion modules and the G-torsion-free u-contramodules.

This paper is structured as follows. We begin with some general preliminaries where we introduce mini-
mal approximations and1-tilting classes in Section 2. Section 3makes up the background to ourmain results.
We introduce Gabriel topologies before relating them to somemore recent advancements with tilting classes,
as well as providing some of our own results. Next, in Section 4, we have an initial main result for a 1-tilting
cotorsion pair (A,DG) over a commutative ring R such that A is covering. We show that G is a perfect local-
isation and that RG ⊕ RG/R is a 1-tilting module for the 1-tilting cotorsion pair (A,DG). Next we introduce
topological rings and u-contramodules for a ring epimorphism u in Section 5,whichwill be used for ourmain
results. These results are collected from various papers of Positselski and Bazzoni–Positselski. In Section 6,
we again consider a 1-tilting cotorsion pair (A,DG) over a commutative ring R such that A is covering and
show that R is G-almost perfect. In Section 7, we introduceH-h-local rings with respect to a linear topology
H over a commutative ring, as a generalisation of results in [8]. In Section 8, we show the converse of the
combination of Sections 4 and 6. That is, if (A,DG) is a 1-tilting cotorsion pair over a commutative ring R
and R is G-almost perfect, we show thatA is covering.

2 Preliminaries

In this section, we recall some definitions and some notation.
All rings will be associative with a unit, Mod-R (R-Mod) the category of right (left) R-modules over the

ringR, andmod-R the full subcategory ofMod-Rwhich is composedof all themoduleswhichhave aprojective
resolution consisting of finitely generated projective modules.

For an element x of a right R-module M, let Ann(x) denote the annihilator ideal of x, that is

Ann(x) := {r ∈ R | rx = 0}.

For a right R-moduleM and a right ideal I of R, we letM[I] denote the submodule ofM of elements which
are annihilated by the ideal I. That is, M[I] := {x ∈ M | xI = 0}.

Let C be a class of right R-modules. The right Ext1R-orthogonal and right Ext
∞
R -orthogonal classes of C are

defined as follows:

C⊥1 = {M ∈ Mod-R | Ext1R(C,M) = 0 for all C ∈ C},
C⊥ = {M ∈ Mod-R | ExtiR(C,M) = 0 for all C ∈ C, for all i ≥ 1}.

The left Ext-orthogonal classes ⊥1C and ⊥C are defined symmetrically.
If the class C has only one element, say C = {X}, we write X⊥1 instead of {X}⊥1 , and similarly for the other

Ext-orthogonal classes.
We denote by Pn(R) (Fn(R), In(R)) the class of right R-modules of projective (flat, injective) dimension at

most n, or simplyPn (Fn, In) when the ring is clear from the context.We letPn(mod-R)denote the intersection
ofmod-R andPn(R). The projective dimension (weak or flat dimension, injective dimension) of a right R-mod-
ule M is denoted p.dimMR (w.dimMR, inj.dimMR).

Given a ring R, the right big finitistic dimension, F.dim R, is the supremum of the projective dimension of
right R-modules with finite projective dimension. The right little finitistic dimension, f.dim R, is the supremum
of the projective dimension of right R-modules in mod-R with finite projective dimension.

For an R-module C, we let Add(C) denote the class of R-modules which are direct summands of direct
sums of copies of C, and Gen(C) the class of R-modules which are homomorphic images of direct sums of
copies of C.
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Recall that A is a pure submodule of a right R-module B, or A ⊆∗ B, if for each finitely presented right
module F, the functor HomR(F, −) is exact when applied to the short exact sequence

0→ A → B → B/A → 0, (2.1)

or equivalently, when for every left R-moduleM, the functor (− ⊗R M) is exactwhen applied to sequence (2.1).
The embedding A → B is called a pure embedding, the epimorphism B  B/A a pure epimorphism and the
short exact sequence (2.1) a pure exact sequence.

Short exact sequences arising from the canonical presentation of a direct limit form an important class
of examples of pure exact sequences.

Example 2.1. Let (Mi , fji | i, j ∈ I) be a direct system of modules, and consider the direct limit lim→I Mi. The
canonical presentation

0→ Ker π →⨁
i∈I

Mi
π
→ lim→

I
Mi → 0

of lim→I Mi is an example of a pure exact sequence (see e.g. [15, Corollary 2.9]).

A module X is called Σ-pure-split if every pure embedding A ⊆∗ B with B ∈ Add(X) splits.

2.1 Homological formulas

The following facts will be useful. Let FR be a right R-module, and let RGS be an R-S-bimodule such that
TorR1 (F, G) = 0. Then, for every right S-module MS, there is the following injective map of abelian groups:

Ext1R(F,HomS(G,M)) → Ext1S(F ⊗R G,M).

Let f : R → S be a ring homomorphism. Suppose TorRi (M, S) = 0 forM ∈ Mod-R for all 1 ≤ i ≤ n and NS is
a right S-module (and also a right R-module via the restriction of scalars functor). Then the following holds
for all i such that 1 ≤ i ≤ n (see for example [21, Lemma 4.2]):

ExtiR(MR , NR) ≅ ExtiS(MR ⊗R S, NS).

Moreover, if M is as above and N is a left S-module, then the following holds:

TorRi (MR , RN) ≅ TorSi (MR ⊗R S, SN).

2.2 Covers, precovers and cotorsion pairs

For this section, C will be a class of right R-modules closed under isomorphisms and direct summands. We
recall the definitions of precovers and covers as well as some properties of covers and covering classes.

Manyof the results in this section are taken fromXu’s book [26],which generalisesworkbasedonEnochs’
paper [13], where he works mainly in the setting where C is the class of injective modules or flat modules. For
this reason, many results are attributed to Enochs–Xu rather than just Enochs.

Definition 2.2. A C-precover of M is a homomorphism ϕ : C → M, where C ∈ C with the property that, for
every homomorphism f : C → M, where C ∈ C, there exists f  : C → C such that ϕf  = f :

C

there exists f 
��

f

  

C
ϕ
// M.



S. Bazzoni and G. Le Gros, Covering classes and 1-tilting cotorsion pairs | 5

A C-cover ofM is a C-precover with the additional property that, for every homomorphism f : C → C such
that ϕf = ϕ, f is an isomorphism:

C

f ≅
��

ϕ

  

C
ϕ
// M.

A C-precover ϕ : C → M of M is called a special C-precover if ϕ is an epimorphism and Kerϕ ∈ C⊥.
If every R-module has a C-cover (C-precover, special C-precover), the class C is called covering (respec-

tively, precovering, special precovering). If a cover does exist for amoduleM, we can describe the relationship
between a C-cover and a C-precover of M.

Theorem 2.3 ([26, Theorem 1.2.7]). Suppose C is a class of modules and M admits a C-cover and ϕ : C → M
is a C-precover. Then C = C ⊕ K for submodules C, K of C such that the restriction ϕ↾C gives rise to a C-cover
of M and K ⊆ Kerϕ.

Corollary 2.4 ([26, Corollary 1.2.8]). Suppose M admits a C-cover. Then a C-precover ϕ : C → M is a C-cover
if and only if there is no non-zero direct summand K of C contained in Kerϕ.

The following two theorems will be useful when working with covers.

Theorem 2.5 ([26, Theorem 1.4.7, Theorem 1.4.1]). Suppose for each integer n ≥ 1, ϕn : Cn→Mn is a C-cover.
(i) If ⨁n ϕn : ⨁n Cn →⨁n Mn is a C-precover, then it is also a C-cover.
(ii) The direct sum⨁ μn : ⨁n Cn →⨁n Mn is a C-cover of⨁n Mn if and only if, for fn : Cn → Cn+1 a family

of homomorphisms such that Im fn ⊆ Kerϕn+1, for each x ∈ C1, there is an integer m such that

fm fm−1 . . . f1(x) = 0.

A pair of classes of modules (A,B) is a cotorsion pair provided that A = ⊥1B and B = A⊥1 . A cotorsion pair
is called complete if B is special preenveloping or equivalently A is special precovering. A famous result
due to Eklof–Trlifaj states that if S is a set, the cotorsion pair (⊥1 (S⊥1 ), S⊥1 ) generated by S is complete (see
[15, Theorem 6.11]).

A cotorsion pair (A,B) is called hereditary if ExtiR(A, B) = 0 for every A ∈ A, B ∈ B and i > 0 (see
[15, Lemma 5.24]). Thus if a cotorsion pair (A,B) is hereditary, then A = ⊥B and B = A⊥; thus there is
no need to differentiate between ⊥1 and ⊥.

A cotorsion pair (A,B) is of finite type if there is a set S of modules in mod-R such that S⊥ = B (recall
mod-R denotes the class of modules admitting a projective resolution consisting of finitely generated projec-
tive modules). In other words, (A,B) is of finite type if and only ifB = (A ∩mod-R)⊥.

2.3 Perfect rings and projective covers

Before giving a characterisation of perfect commutative rings, we must recall some definitions.
One can generalise the notion of a nilpotent ideal to a T-nilpotent ideal, where the T stands for “transfi-

nite”. An ideal I of R is said to be right T-nilpotent if, for every sequence of elements a1, a2, . . . , ai , . . . in I,
there exists an n > 0 such that anan−1 ⋅ ⋅ ⋅ a1 = 0. For left T-nilpotence, one must have a1a2 ⋅ ⋅ ⋅ an = 0.

The property of T-nilpotence of an ideal has interesting consequences. In particular, an ideal I is
right T-nilpotent if and only if, for every non-zero right R-module M, MI is superfluous in M, MI ≪ M
(see [1, Lemma 28.3]).

Let J(R) denote the Jacobson radical of R. First recall that a ring R is semilocal if R/J(R) is semisimple.
If R is commutative, then R is semilocal if and only if it has only finitely many maximal ideals. A ring R is
semiartinian if every non-zero factor of R contains a simple R-submodule.

The following proposition is a composite of well-known characterisations of commutative perfect rings
(see for example [4, 17]).
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Proposition 2.6. Suppose R is a commutative ring. The following statements are equivalent for R.
(i) R is perfect (that is, every R-module has a projective cover).
(ii) F.dim R = 0.
(iii) R is a finite product of local rings, each one with a T-nilpotent maximal ideal.
(iv) R is semilocal and semiartinian, i.e., R has only finitely manymaximal ideals and every non-zero factor of R

contains a simple R-module.
Additionally, if R is perfect, then every element of R is either a unit or a zero-divisor.

It was noticed by Bass in [4] that it is sufficient to look at the following nice class of modules to decide if the
ring is perfect.

If R is a ring and {a1, a2, . . . , an , . . . } is a sequence of elements of R, a Bass right R-module is a flat
module of the form

F = lim→(R
a1→ R

a2→ R
a3→ ⋅ ⋅ ⋅ ).

That is, F is the direct limit of the direct system obtained by considering the left multiplications by the
elements ai on R. A direct limit presentation of F is given by the short exact sequence

0→⨁
n∈ℕ

R σ
→⨁

n∈ℕ
R → F → 0.

By the above projective presentation, it is clear that all Bass R-modules have projective dimension at most
one. Thus the class of Bass R-modules is contained in F0(R) ∩ P1(R). The following result is well known, and
it is implicitly proved in Bass’ paper [4].

Lemma 2.7. Let R be a ring.
(i) If all flat right R-modules have projective covers, then all the flat right R-modules are projective, so the ring

is right perfect.
(ii) If all Bass right R-modules have projective covers, then the ring R is right perfect.

Recall that the socle of a module M, denoted soc(M), is the sum of its simple submodules. A module M
is semiartinian if every non-zero quotient of M has a non-zero socle. Semiartinian modules are also called
Loewymodules since they admit a Loewy series, that is a continuous filtration by semisimple (or even simple)
modules constructed by transfinite induction. Thus if R is a perfect commutative ring, then every module is
a Loewy module by Proposition 2.6 (iv).

It will be useful to observe that the notion of superfluous subobject and of projective covers can be
generalised from the category of R-modules to an arbitrary abelian category, as pointed out in [19, Section 3].

Let A be an abelian category with enough projective objects. A subobject B of an object A in A is called
superfluous if, for every subobjectH of A such that B + H = A, one hasH = A. Then an epimorphism h : P → C
with P a projective object inA is a projective cover of the object C if Ker h is superfluous in P.

2.4 1-tilting cotorsion pairs

We now introduce 1-tilting classes and modules, as well as some properties that we will use.
A right R-module T is 1-tilting if the following conditions hold (as defined in [12]).

(T1) p.dimR T ≤ 1.
(T2) ExtiR(T, T(κ)) = 0 for every cardinal κ and every i > 0.
(T3) There exists an exact sequence of the following form, where T0, T1 are modules in Add(T):

0→ R → T0 → T1 → 0.

Equivalently, a module T is 1-tilting if and only if T⊥1 = Gen(T) ([12, Proposition 1.3]). The cotorsion pair
generated by T, (⊥(T⊥), T⊥), is called a 1-tilting cotorsion pair, and the torsion class T⊥ is called the 1-tilting
class. Two 1-tilting modules T and T are equivalent if they define the same 1-tilting class, that is T⊥ = T⊥
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(equivalently, if Add(T) = Add(T)). If T is a 1-tilting module which generates a 1-tilting class T, then we say
that T is a 1-tilting module associated to T.

The class T ∩ ⊥T coincides with Add(T) (see [15, Lemma 13.10]). As the 1-tilting cotorsion pair is gener-
ated by a set, the tilting cotorsion pair is complete by [15, Theorem 6.11]. Also, it is hereditary as the right-
hand class T = Gen(T) = T⊥ is clearly closed under epimorphic images, so is a coresolving class. Moreover,
by [5], the 1-tilting cotorsion pair (⊥T, T) is of finite type.

The following proposition gives a necessary and sufficient condition for the left-hand side of a 1-tilting
cotorsion pair to be closed under direct limits.

Proposition 2.8 ([15, Proposition 13.55]). Let T be a tiltingmodule with (A, T) the associated tilting cotorsion
pair. ThenA is closed under direct limits if and only if T is Σ-pure-split.

3 Gabriel topologies

In this section, we recall the notions of torsion pairs and Gabriel topologies as well as proving some results
that will be useful to us later on. We will conclude by discussing some advancements that relate Gabriel
topologies to 1-tilting classes over commutative rings. The reference for this section, in particular for torsion
pairs and Gabriel topologies, is Stenström’s book [24, Chapters VI, IX and XI].

We will start by giving definitions in the case of a general ring with unit (not necessarily commutative).
Everything will be done with reference to right R-modules (and right Gabriel topologies), but everything can
be done analogously for left R-modules.

A torsion pair (E,F) in Mod-R is a pair of classes of modules in Mod-R which are mutually orthogonal
with respect to the Hom-functor and maximal with respect to this property. That is,

E = {M ∈ Mod-R | HomR(M, F) = 0 for every F ∈ F},
F = {M ∈ Mod-R | HomR(X,M) = 0 for every X ∈ E}.

The class E is called a torsion class and F a torsion-free class.
Torsion and torsion-free classes are characterised by closure properties: A class C of modules is a torsion

class if and only if it is closed under extensions, direct sums and epimorphic images, and C is a torsion-free
class if and only if it is closed under extensions, direct products and submodules [24, Propositions VI.2.1
and VI.2.2]. A torsion pair (E,F) is called hereditary if the torsion class E is also closed under submodules,
which is equivalent to F being closed under injective envelopes.

A ring R is a topological ring if it has a topology such that the ring operations are continuous. A topological
ring R is right linearly topological if it has a topology with a basis of neighbourhoods of zero consisting of
right ideals of R. A ring R with a right Gabriel topology is an example of a right linearly topological ring
(see [24, Section VI.4]).

A right Gabriel topologyG on a ring R is a filter of open right ideals in a right linear topology on R satisfying
an extra condition. This condition is such to guarantee that there is a bijective correspondence between right
Gabriel topologies G on R and hereditary torsion classes in Mod-R (see [24, Theorem VI.5.1]).

The bijection is given by the following assignments:

{right Gabriel topologieson R }
Φ

Ψ
{hereditary torsionclasses in Mod-R },

Φ : G → EG = {M | Ann(x) ∈ G for all x ∈ M},
{J ≤ R | R/J ∈ E}← E : Ψ.

The torsion pair corresponding to a Gabriel topology G will be denoted by (EG,FG). It is generated by the
cyclic modules R/J, where J ∈ G, so FG consists of the modules N such that HomR(R/J, N) = 0 for every J ∈ G.
The classes EG and FG are referred to as the G-torsion and G-torsion-free classes, respectively.

For a right R-module M, let tG denote the associated (left exact) radical; thus tG(M) is the maximal G-
torsion submodule of M, or sometimes t(M) when the Gabriel topology is clear from context.
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3.1 Modules of quotients

A right Gabriel topology allows us to generalise localisations of commutative rings with respect to a multi-
plicative subset to the non-commutative setting.

The module of quotients of the Gabriel topology G of a right R-module M is the module MG defined as
follows, where the morphisms in the direct system {HomR(J,M/tG(M))}J∈G are the restriction morphisms:

MG := lim→
J∈G

HomR(J,M/tG(M)).

Furthermore, there is the canonical homomorphism

ψM : M ≅ HomR(R,M)→ MG.

For each R-moduleM, the homomorphism ψM is part of the following exact sequence, where both the kernel
and cokernel of the map ψM are G-torsion R-modules:

0→ tG(M)→ M
ψM→ MG → MG/ψM(M)→ 0.

By substituting M = R, the assignment gives a ring homomorphism ψR : R → RG, and furthermore, for each
R-module M, the module MG is both an R-module and an RG-module. Also, for any R-homomorphism
f : M → N, ψ induces an RG-homomorphism fG : MG → NG.

Let q : Mod-R → Mod-RG denote the functor that maps each M to its module of quotients MG. Then
the ψ can be considered a natural transformation of endofunctors of Mod-R, that is the following diagram
commutes:

M
f
//

ψM
��

N

ψN
��

MG

fG
// NG.

A right R-module M is G-closed if the natural homomorphism

M ≅ HomR(R,M)→ HomR(J,M)

is an isomorphism for each J ∈ G. This amounts to saying that HomR(R/J,M) = 0 for every J ∈ G (i.e. M is
G-torsion-free) and Ext1R(R/J,M) = 0 for every J ∈ G (i.e.M is G-injective). Moreover, ifM is G-closed, thenM is
isomorphic to itsmodule of quotientsMG viaψM. Conversely, every R-module of the formMG isG-closed. The
G-closedmodules form a full subcategory of bothMod-R andMod-RG. Additionally, every R-linearmorphism
of G-closed modules is also RG-linear.

A left R-module N is called G-divisible if JN = N for every J ∈ G. Equivalently, N is G-divisible if and only
if R/J ⊗R N = 0 for each J ∈ G. We denote the class of G-divisible modules byDG. It is straightforward to see
thatDG is a torsion class in R-Mod.

A rightGabriel topology is faithful if HomR(R/J, R) = 0 for every J ∈ G, or equivalently ifR isG-torsion-free,
that is the natural map ψR : R → RG is injective.

A right Gabriel topology is finitely generated if it has a basis consisting of finitely generated right ideals.
Equivalently, G is finitely generated if the G-torsion radical preserves direct limits (that is there is a natu-
ral isomorphism tG(lim→i Mi) ≅ lim→i(tG(Mi))) if and only if the G-torsion-free modules are closed under direct
limits (that is, the associated torsion pair is of finite type). The first of these two equivalences was shown in
[24, Proposition XIII.1.2], while the second was noted by Hrbek in the discussion before [16, Lemma 2.4].

3.2 Perfect localisations

There is a special class of right Gabriel topologies which behave particularly well and are related to ring
epimorphisms. The standard examples of theseGabriel topologies over a commutative ring R are localisations
of R with respect to a multiplicative subset.
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We note that the adjective “perfect” for a Gabriel topology can be slightly confusing as it is not related in
any way to perfect rings. However, we will continue to use this nomenclature as it is already commonly used
in the literature.

We must begin with some definitions. A ring epimorphism is a ring homomorphism R u→ U such that u is
an epimorphism in the category of unital rings. This is equivalent to the natural map U ⊗R U → U induced
by the multiplication in U being an isomorphism as R-R-bimodules (see [24, Section XI.1]. We note that if R
is commutative and u : R → U a ring epimorphism, then also U is commutative by [23, Corollary 1.2].

Two ring epimorphisms R u→ U and R u→ U are equivalent if there is a ring isomorphism σ : U → U such
that σu = u.

A ring epimorphism is called (left) flat if umakes U into a flat left R-module. We will denote the cokernel
of u by K and sometimes by U/R or U/u(R).

A left flat ring epimorphism R u→ U is called a perfect right localisation of R. In this case, by [24, Theo-
rem XI.2.1], the family of right ideals G = {J ≤ R | JU = U} forms a right Gabriel topology. Moreover, there
is a ring isomorphism σ : U → RG such that σu : R → RG is the canonical isomorphism ψR : R → RG, or, in
other words, u and ψR are equivalent ring epimorphisms. Note also that a right ideal J of R is in G if and only
if R/J ⊗R U = 0.

We will make use of the characterisations of perfect right localisations from [24, Proposition XI.3.4]
of Stenström’s book. Gabriel topologies which arise from perfect localisations will be called perfect Gabriel
topologies.

3.3 Gabriel topologies and 1-tilting classes

As mentioned before, our work relies on a characterisation of 1-tilting cotorsion pairs over commutative
rings. Specifically, in [16], Hrbek showed that over commutative rings the faithful finitely generated Gabriel
topologies are in bijective correspondence with 1-tilting classes, and that the latter are exactly the classes of
G-divisible modules of the associated faithful finitely generated Gabriel topology G.

The following theorem is an indispensable starting point for this paper.

Theorem 3.1 ([16, Theorem 3.16]). Let R be a commutative ring. There are bijections between the following
collections:
(i) 1-tilting classes T inMod-R,
(ii) faithful finitely generated Gabriel topologies G on R,
(iii) faithful hereditary torsion pairs (E,F) of finite type inMod-R.
Moreover, the tilting class T is the class of G-divisible modules with respect to the associated Gabriel topology G
of T.

When we refer to the Gabriel topology associated to a 1-tilting class T, we will always mean the Gabriel topol-
ogy in the sense of the above theorem. We will denote byDG the 1-tilting class associated to G and by A the
left Ext-orthogonal class toDG, so (A,DG) will denote the 1-tilting cotorsion pair associated to G.

Moreover, in the case of aGabriel topology that arises fromaperfect localisation such that p.dim RG ≤ 1, it
is possible to describe the 1-tilting classmore explicitly as seen in the following proposition. This observation
is crucial as it is much more convenient to work with an explicit 1-tilting module, in this case RG ⊕ RG/R,
which is additionally very well behaved.

Proposition 3.2 ([16, Proposition 5.4]). Let R be a commutative ring, T a 1-tilting module, and G the Gabriel
topology associated to the1-tilting classDG = T⊥ in the sense of Theorem3.1. Then the following are equivalent.
(i) G is a perfect Gabriel topology and p.dim RG ≤ 1.
(ii) RG ⊕ RG/R is a 1-tilting module forDG.
(iii) Gen(RG) = DG.
If the above equivalent conditions hold, T or the 1-tilting classDG is said to arise from a perfect localisation.



10 | S. Bazzoni and G. Le Gros, Covering classes and 1-tilting cotorsion pairs

We note that there is yet more confusion with our terminology. That is the 1-tilting class arises from a perfect
localisation if and only if the Gabriel topology arises from a perfect localisation and p.dim RG ≤ 1. Therefore,
we often include the statement p.dim RG ≤ 1 for clarity.

3.4 More properties of Gabriel topologies

We refer to [6] for more properties of right Gabriel topologies. Many of them hold in the non-commutative
case. In particular, we will use the following results.

Lemma 3.3 ([6, Lemma 4.1, Lemma 4.2]). Suppose R is a commutative ring and G is a Gabriel topology. Then
the following statements hold.
(i) If an R-module D is both G-divisible and G-torsion-free, then D is an RG-module and D ≅ D ⊗R RG via the

natural map idD ⊗RψR : D ⊗R R → D ⊗R RG.
(ii) If M is an R-module with p.dimR M ≤ 1, then TorR1 (M, RG) = 0 and TorR1 (RG,M) = 0.

We will often refer to the following exact sequence, where ψR is the ring of quotients homomorphism dis-
cussed in Subsection 3.1:

0→ tG(R)→ R
ψR→ RG → RG/ψR(R)→ 0.

Wewill denote tG(M) simply by t(M) and when clear from the context, ψ instead of ψR. We add the following
result.

Lemma 3.4. Consider a right Gabriel topology G. Let M be a G-torsion module and N a G-closed module in
Mod-R. Then Ext1R(M, N) = 0.

Proof. Let G be a Gabriel topology of right ideals and E its associated hereditary torsion class in Mod-R
which is generated by the cyclic modules R/J, where J ∈ G. Therefore, for M a G-torsion module, there exists
a presentation of M as follows:

0→ H →⨁
Jα∈G

R/Jα → M → 0. (3.1)

The module H is G-torsion since E is a hereditary torsion class. Take a G-closed module N, and apply the
functor HomR(−, N) to (3.1):

0 = HomR(H, N)→ Ext1R(M, N)→ Ext1R(⨁ R/Jα , N) = 0. (3.2)

The first abelian group of sequence (3.2) vanishes since H is G-torsion, and the last abelian group vanishes
since Ext1R(R/Jα , N) = 0 for every Jα ∈ G. Therefore, Ext

1
R(M, N) = 0 as desired.

The following lemma is taken from [24, Exercise IX.1.4], although we state the result in a slightly more
convenient way for us and include (iii) and (iv). We let E(M) denote the injective envelope of M.

Lemma 3.5 ([24, Exercise IX.1.4]). Let G be a right Gabriel topology on R. Then the following are equivalent.
(i) The functor q : Mod-R → Mod-RG which maps each module M to the G-closed module MG is exact.
(ii) The module E(M)/M is G-closed for every G-closed module M.
(iii) For every G-closed module M and each J ∈ G, Ext2R(R/J,M) = 0.
(iv) For every G-closed module M and basis element J ∈ G, Ext2R(R/J,M) = 0.

Sketch of proof. We will prove (i)⇒ (ii)⇔ (iii)⇒ (i) and (iii)⇔ (iv). The equivalence of (ii) and (iii) follows
from the isomorphism Ext1R(R/J, E(M)/M) ≅ Ext

2
R(R/J,M).

For the implication (i)⇒ (ii), we begin by assuming that q is exact. Fix a J ∈ G and take a G-closed R-
module M. Then, since M is essential in its injective envelope E(M), E(M) must be G-torsion-free and so is
G-closed. Thus we have the following commuting diagram, where the exactness of the bottom row follows by
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our assumption that q is exact:

0 // M //

ψM≅
��

E(M) //

ψE(M)≅
��

E(M)/M //

ψE(M)/M
��

0

0 // MG
// E(M)G // (E(M)/M)G // 0.

It follows by the snake lemma that E(M)/M is isomorphic to its module of quotients, so is G-closed.
Nowwe show that (iii)⇒ (i). Assume that, for everyG-closedmoduleM and every J ∈ G, Ext2R(R/J,M) = 0;

therefore, it follows that the G-closed modules are closed under cokernels of monomorphisms. Now consider
q applied to the exact sequence 0→ L f→ M g→ N → 0. Recall that q is left exact, so it remains only to show
that the induced map gG is a surjection. We have the following commuting diagram, where the bottom row
is also in Mod-RG:

0 // L
f
//

ψL
��

M
g
//

ψM
��

N //

ψN
��

0

0 // LG
fG
// MG

gG
// NG.

By assumption, Coker fG is G-closed. By the property of cokernels, ψN factors through N → Coker fG → NG.
By [24, Proposition IX.1.11], for any R-module N and any G-closed module X, there is an isomorphism
ψ∗N : HomR(NG, X) ≅→ HomR(N, X), so N → Coker fG extends to NG → Coker fG. Since the homomorphism
NG → Coker fG → NG preservesψN(N), it is the identity onNG; thus Coker fG → NG is surjective, so also gG is.

That (iii) ⇒ (iv) is trivial. For the converse, for every ideal J ∈ G, there exists a basis element J0 ∈ G
such that J0 ⊆ J. Thus, for M G-closed, one applies HomR(−,M) to 0→ J/J0 → R/J0 → R/J → 0. As J/J0 is
G-torsion, the conclusion follows by applying Lemma 3.4.

The following lemma will be useful when working with a faithful Gabriel topology over a commutative ring
that arises from a perfect localisation.

Lemma 3.6 ([6, Lemma 4.5]). Let R be a commutative ring, u : R → U a flat injective ring epimorphism, and G

the associated Gabriel topology. Then the annihilators of the elements of U/R form a sub-basis for the Gabriel
topology G. That is, for every J ∈ G, there exist z1, z2, . . . , zn ∈ U such that

⋂
0≤i≤n

AnnR(zi + R) ⊆ J.

4 WhenA is covering G arises from a perfect localisation
and RG ⊕ RG/R is 1-tilting

In this section, we consider the following setting.

Setting 4.1. Let R be a commutative ring, and let (A,DG) be a 1-tilting cotorsion pair with associated Gabriel
topology G such thatA is a covering class.

First we show that the Gabriel topology G arises from a perfect localisation and that p.dim RG ≤ 1 so that
DG = Gen(RG); in other words, we show that the equivalent conditions of Proposition 3.2 hold.

We begin by describingA-covers of modules annihilated by some J ∈ G.

Lemma 4.2. Suppose R is commutative, and let (A,DG) be a 1-tilting cotorsion pair with associated Gabriel
topology G. Consider an R-moduleM such thatMJ = 0 for some finitely generated J ∈ G, and let the following be
anA-cover of M:

0 → B → A
ϕ
→ M → 0.

Then both A and B are G-torsion.
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Proof. We will use the T-nilpotency of direct sums of covers as in Theorem 2.5 (ii). Let J ∈ G be finitely gen-
erated with a generating set {x1, . . . , xt}, and suppose M has the property that MJ = 0, and let ϕ above be
an A-cover of M. For every n ∈ ℕ, let Bn, An, Mn be isomorphic copies of B, A, M, respectively, and ϕn the
homomorphism ϕ : An → Mn. Consider the following countable direct sum of covers of M which is a cover
of⨁n Mn by Theorem 2.5 (i):

0→⨁
n
Bn →⨁

n
An
⨁ϕn→⨁

n
Mn → 0.

Choose an element x ∈ J, and for each n, set fn : An → An+1 to be multiplication by x.
Then clearlyϕn+1(fn(An)) = 0 for every n > 0; hencewe can apply Theorem2.5 (ii). For every a ∈ A, there

exists an m such that
fm ∘ ⋅ ⋅ ⋅ ∘ f2 ∘ f1(a) = 0 ∈ Am+1.

Hence, for every a ∈ A, there is an integer m for which xma = 0.
Fix a ∈ A, and letmi be theminimal natural number for which (xi)mia = 0, and setm := sup{mi | 1 ≤ i ≤ t}.

Then, for a large enough integer k, we have that Jka = 0 (for example, set k = tm), and Jk ∈ G by [24, Lem-
ma VI.5.3]. Thus every element of A is annihilated by an ideal contained in G; therefore, A is G-torsion. Since
the associated torsion pair of the Gabriel topology is hereditary, also B is G-torsion.

Next we show that Gmust arise from a perfect localisation using Lemma 3.5.

Lemma 4.3. Suppose R is commutative, and let (A,DG) be a 1-tilting cotorsion pair with associated Gabriel
topology G. SupposeA is covering. Then G is a perfect Gabriel topology.

Proof. By [24, Proposition XI.3.4], RG arises from a perfect localisation if and only if both the functor q is
exact and G has a basis of finitely generated ideals. The associated Gabriel topology G of a 1-tilting class has
a basis of finitely generated ideals by Hrbek’s characterisation in Theorem 3.1, so it remains only to show
that q is exact.

We will show that Ext2R(R/J,M) = 0 for every G-closed R-module M and every finitely generated J ∈ G,
and then apply Lemma 3.5 to conclude that q is exact.

LetM be any G-closed R-module and J ∈ G finitely generated, and consider the followingA-cover of R/J:

0→ BJ → AJ → R/J → 0.

By Lemma 4.2, AJ and BJ are G-torsion. We apply the contravariant functor HomR(−,M) to the above cover
and find the exact sequence

0 = Ext1R(BJ ,M)→ Ext2R(R/J,M)→ Ext2R(AJ ,M) = 0.

The first module Ext1R(BJ ,M) vanishes by Lemma 3.4 since BJ is G-torsion andM is G-closed. The last module
Ext2R(AJ ,M) vanishes since p.dim AJ ≤ 1. Therefore, Ext2R(R/J,M) = 0 for everyM G-closed and every finitely
generated J ∈ G, as required.

The above lemma allows us to use the equivalent conditions of [24, Proposition XI.3.4]. In particular, we
have that ψR : R → RG is a flat injective ring epimorphism and that RG is G-divisible, so RG ∈ DG. It remains
to see that ifA is covering in (A,DG), then RG ⊕ RG/R is the associated1-tiltingmodule, that is the equivalent
conditions of Proposition 3.2. This amounts to showing that p.dim RG ≤ 1.

Proposition 4.4. Suppose R is commutative, and let (A,DG) be a 1-tilting cotorsion pair with associated
Gabriel topology G. SupposeA is covering; then p.dim RG ≤ 1. In particular, the module RG ⊕ RG/R is a 1-tilting
module associated to the cotorsion pair (A,DG), and moreover, Gen(RG) = DG.

Proof. We know that G is perfect, so that RG is G-divisible by Lemma 4.3. We prove that p.dim RG ≤ 1 by
showing that RG ∈ A. Let the following be anA-cover of RG:

0 → D → A
ϕ
→ RG → 0. (4.1)
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Note that A is G-divisible since both RG and D are G-divisible. We will first show that A must be G-torsion-
free, and therefore an RG-module. Fix a finitely generated J ∈ G with generators x1, . . . , xn. We will show
that A[J] = 0, that is the only element of A annihilated by J is 0. Since RG is G-divisible, one can write
1R = 1RG

= ∑ xiηi for some fixed ηi ∈ RG, 1 ≤ i ≤ n. Let x, s and sA be the following homomorphisms:

x : RG
//⨁1≤i≤n RG

ν � / (η1ν, . . . , ηnν),

s : ⨁1≤i≤n RG
// RG

(ν1, . . . , νn) � / ∑i xiνi ,

sA : ⨁1≤i≤n A // A

(a1, . . . , an) � / ∑i xiai .

By the definition of s and sA, the lower square of (4.2) commutes. Clearly ϕn is a precover of RnG as Dn ∈ DG

and An ∈ A (it is in fact a cover). Therefore, there exists amap f such that the upper square of (4.2) commutes:

A
ϕ
//

f
��

RG
//

x
��

0

An
⊕nϕ
//

sA
��

RG
n //

s
��

0

A
ϕ
// RG

// 0.

(4.2)

The map sx is the identity on RG, so we have that ϕsA f = ϕ, and by the A-cover property of ϕ, sA f is an
automorphism of A. Consider an element a ∈ A[J], and let f(a) = (f1(a), . . . , fn(a)) ∈ An. Then

sA(f(a)) =∑ xi fi(a) =∑ fi(xia) = 0 as xi ∈ J,

and by the injectivity of sA f , a = 0.
We have shown that A, D are both G-torsion-free and G-divisible, so by Lemma 3.3 (i), they are RG-mod-

ules. Then sequence (4.1) is a sequence in Mod-RG as R → RG is a ring epimorphism and Mod-RG → Mod-R
is fully faithful. Thus (4.1) splits, so RG ∈ A and p.dim RG ≤ 1, as required.

The last statement then follows by Proposition 3.2.

5 Topological rings and u-contramodules
Thematerial covered in this section is a combination of ideas from [7, 9, 18] and coversmostlymethods using
contramodules and topological rings.

An abelian group is a topological group if it has a topology such that the group operations are continuous.
A topological abelian group is said to be linearly topological if there is a basis of neighbourhoods of zero
consisting of subgroups.

For a linearly topological abelian group Awith basisB of subgroups of A, there is the following canonical
homomorphism of abelian groups:

λA : A → lim←
V∈B

A/V.

When λA is a monomorphism, or equivalently when ⋂V∈B V = 0, A is said to be separated. When λA is an
epimorphism, A is said to be complete.

For a ring R and M, N ∈ Mod-R, the abelian group HomR(M, N) can be considered a linearly topological
abelian group as follows. Take a finitely generated submodule F of M, and consider the subgroup formed
by the elements of HomR(M, N) which annihilate F. Such subgroups form a base of neighbourhoods of zero
in HomR(M, N). Note that this is the same as considering HomR(M, N) with the subspace topology of the
product topology on NM, where the topology on N is the discrete topology. We will consider HomR(M, N)
endowedwith this topology which wewill call the finite topology. The topological abelian group HomR(M, N)
is separated and complete with respect to this topology.
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Recall from Section 3 that a topological ring R is right linearly topological if it has a topology with a basis
of neighbourhoods of zero consisting of right ideals of R, and that a ring R with a right Gabriel topology is an
example of a right linearly topological ring.

Let H be a topology of a linearly topological commutative ring R with basis B. The H-topology on an
R-module M is the topology where the base of neighbourhoods of 0 are the submodules MJ for J ∈ B. For
every R-moduleM, {M/MJ | J ∈ B} is an inverse system. The completion ofM with respect to theH-topology
is the module

ΛB(M) := lim←
J∈B

M/MJ.

There is a canonical map λM : M → ΛB(M) which sends the element x ∈ M to (x +MJ)J∈B. Each element in
ΛB(M) is of the form (xJ +MJ)J∈B with the relation that, for J ⊆ J, xJ − xJ ∈ MJ. The module M is called
H-separated if the homomorphism λM is injective, which is equivalent to ⋂J∈BMJ = 0. The module M is
calledH-complete if the map λM is surjective.

Let R be a linearly topological commutative ring with a linear topologyH. An R-module M isH-discrete
if, for every x ∈ M, the annihilator ideal AnnR(x) = {r ∈ R | xr = 0} is open in the topology of R. In the case
that the topologyH on R is a Gabriel topology G on R, then amodule isH-discrete if and only if it is G-torsion.

We consider the case where the linear topology is a faithful perfect Gabriel topology (denoted G) over
a commutative ring R. Therefore, ψR : R → RG is a flat injective ring epimorphism of commutative rings,
which as usual wewill denote by u : R → U. For every pair of R-modulesM and N, the R-module HomR(M, N)
can be endowed both with the finite topology and the G-topology.

For K := U/R, we first show that HomR(K,M) is G-separated in the G-topology.

Lemma 5.1. Let R be a commutative ring and G a faithful perfect Gabriel topology on R. Then every open basis
element in the finite topology on HomR(K,M) contains HomR(K,M)J for some J ∈ G. Hence HomR(K,M) is
G-separated for every R-module M.

Proof. Fix a finitely generated submodule X of K, and let VX be the collection of homomorphisms which
annihilate X. Then, as X is a finitely generated submodule and K is G-torsion, there exists a J ∈ G such that
XJ = 0. Thus HomR(K,M)J ⊆ VX, as required.

The last statement follows since HomR(K,M) is always separated in the finite topology.

In particular, we will be interested in the linear topological ringR := EndR(K) with the finite topology. Later
on, in Proposition 5.11, we will show that the G-topology and the finite topology onR coincide.

5.1 u-contramodules

We will begin by considering a general commutative ring epimorphism u : R → U before moving onto flat
injective ring epimorphisms.

A module M is u-divisible if M is an epimorphic image of U(α) for some cardinal α. An R-module M has
a unique u-divisible submodule denoted hu(M), which is the image of the map

u∗ : HomR(U,M)→ HomR(R,M) ≅ M.

In nice situations, that is when U is flat and G is the Gabriel topology associated to u, the u-divisible modules
are G-divisible. Later in this section, we will discuss when these classes of modules coincide. The following
definition is borrowed from [7].

Definition 5.2. Let u : R → U be a ring epimorphism. A u-contramodule is an R-module M such that the
following holds:

HomR(U,M) = 0 = Ext1R(U,M).

We let u-contra denote the full subcategory of u-contramodules in Mod-R. By [14, Proposition 1.1], the cat-
egory of u-contramodules is closed under kernels of morphisms, extensions, infinite products and projective
limits in Mod-R.
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The following lemma is proved in [18] for the case of the localisation RS of R at a multiplicative subset S.
The proof can be extended easily to the case of a ring epimorphism of commutative rings and will be very
useful in the sequel.

Lemma 5.3 ([18, Lemma 1.10]). Let b : A → B and c : A → C be two R-module homomorphisms such that C
is a u-contramodule, Ker(b) is a u-divisible R-module and Coker(b) is a U-module. Then there exists a unique
homomorphism f : B → C such that c = fb.

Let now R u→ U be a flat injective ring epimorphism of commutative rings, where U = RG, K = RG/R and G is
the associated Gabriel topology {J ≤ R | JU = U}. We will often refer to the short exact sequence

0 → R u
→ U w
→ K → 0. (5.1)

In general, we will use N to denote a G-torsion-free module R-module, while M will denote an arbitrary
R-module.

For an R-moduleM, by applying the contravariant functor HomR(−,M) to the short exact sequence (5.1),
we have the short exact sequences

0→ HomR(K,M)→ HomR(U,M)→ hu(M)→ 0,
0→ hu(M)→ M → M/hu(M)→ 0, (5.2)
0→ M/hu(M)→ Ext1R(K,M)→ Ext1R(U,M)→ 0. (5.3)

For an R-module M, we let ∆u(M) denote the module Ext1R(K,M) and δM : M → ∆u(M) the natural con-
necting map from the exact sequences (5.2) and (5.3).

For each R-module M, let νM be the unit of the adjunction ((− ⊗R K),HomR(K, −)) evaluated at M:

νM : M → HomR(K,M ⊗R K), m → [m∗ : z + R → m ⊗R (z + R)], z ∈ U.

For every G-torsion-free R-module N, we have the exact sequence

0→ N → N ⊗R U → N ⊗R K → 0, (5.4)

and applying the covariant functor HomR(K, −) to (5.4), we obtain the long exact sequence

HomR(K, N ⊗R U) → HomR(K, N ⊗R K)
μN→ Ext1R(K, N) → Ext1R(K, N ⊗R U), (5.5)

where μN is the connecting homomorphism. In the next lemmas we show that for a G-torsion-free module N,
themodules HomR(K, N ⊗R K) and ∆u(N) are isomorphic via the natural connecting homomorphism μN , and
moreover δN = μNνN .

Lemma 5.4. Let u : R → U be a flat injective ring epimorphism of commutative rings with associated Gabriel
topology G, and let K := U/R. If N is a G-torsion-free R-module, then, using the above notation, the connecting
morphism μN : HomR(K, N ⊗R K)→ ∆u(N) is an isomorphism.

Proof. The first term in equation (5.5) vanishes as K is G-torsion and N ⊗R U is G-torsion-free. The last term
in equation (5.5) vanishes since by the flatness of the ring U, there is an isomorphism

Ext1R(K, N ⊗R U) ≅ Ext
1
U(K ⊗R U, N ⊗R U) = 0.

Thus HomR(K, N ⊗R K) is isomorphic to Ext1R(K, N) = ∆u(N) via μN .
Alternatively, one can use Lemma 3.4 as K is G-torsion and N ⊗R U is G-closed.

Before continuing with the goal of proving that δN = μNνN , we state a consequence of Lemma 5.4. We note
that, in the reference provided, the statement is more general, thus requires a more sophisticated proof,
whereas here we choose to provide a simpler proof.

Lemma 5.5 ([9, Lemma 2.5 (a), (b)]). Let u : R → U be a flat injective ring epimorphismwith associatedGabriel
topology G, and let K := U/R. Then the following hold.
(i) HomR(K,M) is a u-contramodule for every R-module M.
(ii) ∆u(N) is a u-contramodule for every G-torsion-free R-module N.
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Proof. (i) By the tensor-Hom adjunction, we have the isomorphism

HomR(U,HomR(K,M)) ≅ HomR(U ⊗R K,M) = 0.

To see that Ext1R(U,HomR(K,M)) = 0, we use the flatness of U. Using TorR1 (U, K) = 0, there is the following
inclusion (see the homological formulas in Section 2):

Ext1R(U,HomR(K,M)) → Ext1R(U ⊗R K,M) = 0.

(ii) This follows by Lemma 5.4 and (i) of this lemma.

Lemma 5.6. Let u : R → U be a flat injective ring epimorphism of commutative rings with associated Gabriel
topology G, and let K := U/R. For N a G-torsion-free module, the following diagram commutes:

N δN
//

νN
��

Ext1R(K, N)

HomR(K, N ⊗R K).
≅

μN
66

Proof. The morphism νN is the unit of the adjunction ((− ⊗R K),HomR(K, −)) evaluated at N. Let Φ be the
adjunction isomorphism

Φ : HomR(N,HomR(K, N ⊗R K))→ HomR(N ⊗R K, N ⊗R K).

As Φ(νN) = idN⊗RK, it is enough to show that Φ(μ−1N δN) = idN⊗RK, that is that (μ
−1
N δN)(x)(k) = x ⊗R k for

every x ∈ N and k ∈ K.
Fix x ∈ N and k ∈ K. Consider the map fx : R → N : 1R → x. Then δN(fx) is the map associated to the

pushout of N fx← R u→ U which is shown in the top two rows of short exact sequences of diagram (5.6). As μN
is an isomorphism, for each extension ζx of K by N, one can associate a map μ−1N (ζx) = gx : K → N ⊗R K such
that the bottom two rows of short exact sequences in (5.6) commute and form part of a pullback diagram:

ζx :

0 // R //

fx
��

U //

��

K // 0

0 // N // Zx //

��

K //

gx
��

0

0 // N // N ⊗R U // N ⊗R K // 0.

(5.6)

We claim that the map U → Zx → N ⊗R U is exactly the map hx : z → x ⊗R z, z ∈ U. The homomorphism
hx makes the larger left square commute, and it does so uniquely using the fact that N ⊗R U and N ⊗R K
have no isomorphic non-trivial submodules, since one is G-torsion and the other is G-torsion-free. Thus
gx : z + R → x ⊗R (z + R). It is now straightforward to see that (μ−1N δN)(x)(k) = (μ

−1
N )(ζx)(k) = gx(k) = x ⊗R k.

Corollary 5.7. Let u : R → U be a flat injective ring epimorphism of commutative rings, K := U/R, and let N
be a G-torsion-free module. Then the kernel of νN : N → HomR(K, N ⊗R K) is u-divisible and the cokernel is
a U-module.

Proof. This follows from Lemma 5.6 as μNνN = δN and μN is an isomorphism. So Ker νN ≅ Ker δN = hu(N) is
a u-divisible module and Coker νN = Coker δN = Ext1R(U, N) is a U-module, as required.

The following lemma will be useful in Section 8. It is taken from [18] where it is proved for the case of
a localisation of a ring at a multiplicative subset. We show how to adapt the proof to our situation.

Lemma 5.8 ([18, Lemma 1.11]). Let u : R → U be a flat injective ring epimorphism of commutative rings with
associated Gabriel topology G, K := U/R, and letM be any R-module. ThenM/JM ≅ R/J ⊗R ∆u(M) is an isomor-
phism for every J ∈ G.
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Proof. Consider the equations

0→ hu(M)→ M → M/hu(M)→ 0, (5.2)
0→ M/hu(M)→ Ext1R(K,M)→ Ext1R(U,M)→ 0. (5.3)

Applying (R/J ⊗R −) to (5.2), we have that M/JM ≅ R/J ⊗R M/hu(M) as hu(M) is G-divisible, and applying
(R/J ⊗R −) to (5.3), we find

R/J ⊗R M/hu(M) ≅ R/J ⊗R Ext1R(K,M)

as Ext1R(U,M) is a U-module and TorR1 (R/J, Ext
1
R(U,M)) ≅ Tor

U
1 (R/J ⊗R U, Ext

1
R(U,M)), since U is flat.

The following lemma will also be useful in Section 8.

Lemma 5.9. Let u : R → U be a flat injective ring epimorphism of commutative rings with associated Gabriel
topology G, K := U/R, and let N be a G-torsion-free R-module. Then TorR1 (R/J, N) ≅ Tor

R
1 (R/J, ∆u(N)) is an iso-

morphism for every J ∈ G.

Proof. Note first that TorRi (R/J, Z) = 0 = R/J ⊗R Z for any U-module Z and i > 0 since U is flat, and so
TorRi (R/J, Z) ≅ Tor

U
i (R/J ⊗R U, Z) = 0.

Consider the combination of the equations

0→ hu(N)→ N → N/hu(N)→ 0, (5.2)
0→ N/hu(N)→ Ext1R(K, N) = ∆u(N)→ Ext1R(U, N)→ 0. (5.3)

As N is G-torsion-free, also hu(N) is G-torsion-free and G-divisible, so is a U-module, by Lemma 3.3 (i). Thus,
applying (R/J ⊗R −) to the above sequences, we use the observation in the first lines of this proof and find the
isomorphisms

TorR1 (R/J, N) ≅ Tor
R
1 (R/J, N/hu(N)) ≅ Tor

R
1 (R/J, ∆u(N)).

We summarise in the following corollary the results obtained by Lemmas 5.4, 5.8 and 5.9.

Corollary 5.10. Let u : R → U be a flat injective ring epimorphismof commutative ringswith associatedGabriel
topology G, and K := U/R. Let N be a G-torsion-free R-module and J ∈ G. Then the following hold.
(i) HomR(K, N ⊗R K) ≅ ∆u(N).
(ii) R/J ⊗R ∆u(N) ≅ N/JN.
(iii) TorR1 (R/J, N) ≅ Tor

R
1 (R/J, ∆u(N)).

As an application, we consider the endomorphism ring R of K. Recall that, by [9, Lemma 4.1], R is a com-
mutative ring.

Proposition 5.11. Let u : R → U be a flat injective ring epimorphism with associated Gabriel topology G, and
let K := U/R. Then the finite topology and the G-topology onR = HomR(K, K) coincide.

Proof. Let X be a finite subset of K, and let VX be the annihilator of X in R, a basis element of the finite
topology onR. By Lemma 5.1, there is a J ∈ G such thatRJ ⊆ VX, so the G-topology is a finer topology than
the finite topology onR. Thus it remains to show that, for every J ∈ G,RJ contains VX for some finite subset X
of K.

Consider the canonical morphism νR : R → R sending an element r ∈ R to the multiplication by r on K.
Then I = ν−1R (VX) is the annihilator of X in R. We have that I ∈ G since K is G-torsion. Clearly, RI ⊆ VX, and
we define γ : R/I → R/VX to be the canonical monomorphism induced by νR.

Now it is straightforward to see that the following diagram commutes as the vertical and horizontal
arrows are induced by νR and π is the natural quotient map:

R/I
ν⊗RR/I

//

γ
��

R/RI

π
vv

R/VX .
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By (i) and (ii) of Corollary 5.10,R ≅ ∆u(R) and ν ⊗R R/I is an isomorphism. Since γ is a monomorphism, we
conclude that π is a monomorphism, and so VX = RI.

Fix a J ∈ G. By Lemma 3.6, there exists a finitely generated X ⊆ K such that the annihilator ideal of X in R
is contained in J. So VX ⊆ RJ.

If the flat injective ring epimorphism u : R → U is such that p.dimU ≤ 1, then the category u-contra is also
closed under cokernels and so is an abelian category. Moreover, if G is the associated Gabriel topology, then
p.dimU ≤ 1 if and only if the u-divisible modules and the G-divisible modules coincide by Proposition 3.2.

Proposition 5.12. Let u : R → U be a flat injective ring epimorphism such that p.dimU ≤ 1.
(i) ι : u-contra → Mod-R is an exact embedding, and the functor ∆u = Ext1R(K, −) defines a left adjoint to this

embedding.
(ii) ∆u(R) is a projective generator of u-contra. The coproduct of X copies of ∆u(R) in u-contra is ∆u(R(X)), and

the projective objects in u-contra are direct summands of the objects of the form ∆(R(X)) for some set X.

Proof. (i) is [9, Proposition 3.2 (b)]. (ii) follows by the properties of a left adjoint to an exact functor.

5.2 The equivalence of categories

In [9], the case of a (not necessarily injective nor flat nor commutative) ring epimorphism u : R → U such
that TorR1 (U, U) = 0 is considered. In [9, Theorem 1.3], it is shown that the adjunction ((− ⊗R K),HomR(K, −))
(where K = U/u(R)) defines an equivalence between the class of u-divisible right u-comodules and the class
of u-torsion-free right u-contramodules.

In our situation, that is when u is a flat injective epimorphism with associated Gabriel topology G, the
class of u-comodules coincides with the class of G-torsion modules and the class of u-torsion-free modules
coincides with the class of G-torsion-free modules. Thus, in our setting, [9, Theorem 1.3] becomes:

Theorem 5.13 ([9, Theorem 1.3]). Let u : R → U be a flat injective ring epimorphism of commutative rings.
Then the restrictions of theadjoint functors (− ⊗R K)andHomR(K, −)aremutually inverse equivalences between
the additive categories of u-divisible G-torsion modules and G-torsion-free u-contramodules:

{ G-torsion-free
u-contramodules}

(−⊗RK)

##

{ u-divisible and
G-torsion modules}.

HomR(K,−)

cc

6 WhenA is covering, R is G-almost perfect
In this section, we continue with the situation of Setting 4.1.

By Proposition 4.4, if (A,DG) is a 1-tilting cotorsion pair such that A is covering, then the associated
tilting module arises from a flat injective ring epimorphism u : R → U and U ⊕ K is a 1-tilting module for
(A,DG); thusDG = Gen(U).

In Proposition 6.2, we prove that RG is a perfect ring and in Proposition 6.4 that the rings R/J are perfect
for every J ∈ G. The main result of this section is Theorem 6.5.

We begin by introducing the following definition.

Definition 6.1. Let R be a commutative ring with a Gabriel topology G. Then R is G-almost perfect if RG is
a perfect ring and the quotient rings R/J are perfect for each J ∈ G.
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Proposition 6.2. Suppose R is commutative, and let (A,DG) be a 1-tilting cotorsion pair with associated
Gabriel topology G. SupposeA is covering. Then RG is a perfect ring.

Proof. We will show that every RG-module has a projective cover in Mod-RG. ConsiderM ∈ Mod-RG with the
following short exact sequence in Mod-RG:

0 → L → R(α)G
ϕ
→ M → 0. (6.1)

Then this sequence is also a short exact sequence of R-modules with R(α)G ∈ A by Proposition 4.4 and L ∈ DG;
thus it is an A-precover of M (as an R-module). By the assumption that A is covering, one can extract from
the exact sequence (6.1) anA-cover of M of the form

0 → L → P
ϕ
→ M → 0, (6.2)

where L and P are direct summands of L and R(α)G respectively as R-modules. An R-module direct summand
of an RG-module is a G-torsion-free G-divisible module; hence it is an RG-module by Lemma 3.3 (i). More-
over, by Lemma 4.3, ψR : R → RG is a ring epimorphism (even flat), so L and P are direct summands as
RG-modules and (6.2) is inMod-RG. So we have shown that (6.2) is aP0(RG)-precover ofM inMod-RG, which
is also anA-cover when considered in Mod-R. It remains to see that it is a P0(RG)-cover. Note that every RG-
homomorphism f such that ϕf = ϕ is also an R-homomorphism, and therefore ϕ is an automorphism as it
is anA-cover.

We will now show that R/J is perfect for each J ∈ G by showing that every Bass R/J-module has a P0(R/J)-
cover, that is using Lemma 2.7.

Take a1, a2, . . . , ai , . . . a sequence of elements of R, and let N be the Bass R/J-module with presentation
as in sequence (6.3), where (ei)i∈ℕ and (fi)i∈ℕ are bases of the domain and codomain of ̃σ respectively:

0 →⨁
ℕ
R/J

̃σ
→⨁
ℕ
R/J → N → 0, ei → fi − ai fi+1. (6.3)

As the elements a1, a2, . . . , ai , . . . are in R, we can also define a Bass R-module, which is a lift of N. That is,
we consider the Bass R-module

0 →⨁
ℕ
R σ
→⨁
ℕ
R → F → 0. (6.4)

It is clear that applying (R/J ⊗R −) to (6.4) will give us (6.3); thus R/J ⊗R F = N, where F is flat.
We will make use of results in Subsection 5.1 and the category equivalence in Theorem 5.13.

Lemma 6.3. SupposeA is covering and F is a Bass R-module. Then the u-contramodule HomR(K, F ⊗R K) has
a projective cover in the category of u-contramodules.

Proof. HomR(K, F ⊗R K) is a u-contramodule by Lemma 5.5 (i). Apply the functor (− ⊗R K) to (6.4) to get the
exact sequence

0→⨁
ℕ
K

σ⊗RK→⨁
ℕ
K → F ⊗R K → 0.

The above is anA-precover of F ⊗R K by Proposition 4.4. As by assumptionA is covering, one can extract an
A-cover of F ⊗R K from the above sequence in the form

0→ D1
(σ⊗RK)↾D1→ D0

π
→ F ⊗R K → 0,

where D0 and D1 are direct summands of⨁ℕ K. Now we apply HomR(K, −) to the above sequence, and we
claim that it is a projective cover in the category of u-contramodules:

0 → HomR(K, D1) → HomR(K, D0)
ρ
→ HomR(K, F ⊗R K) → 0.

Firstly, HomR(K, D1) andHomR(K, D0) are direct summands ofmodules of the formHomR(K, K(α)) ≅ ∆u(R(α))
by Lemma 5.4; thus they are projective objects in the category u-contra (see Proposition 5.12). We will
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show that ρ := HomR(K, π) is a projective cover in u-contra. Take f : HomR(K, D0)→ HomR(K, D0) such
that ρf = ρ. By Theorem 5.13, the adjoint functors ((− ⊗R K),HomR(K, −)) form equivalences between the
subcategories of G-torsion G-divisible modules EG ∩DG and G-torsion-free u-contramodules FG ∩ u-contra.
Thus, in particular, the functor HomR(K, −) restricted to the subcategories EG ∩DG → FG ∩ u-contra is full,
so there exists a g : D0 → D0 such that HomR(K, g) = f . Thus, as πg = π implies that g is an automorphism,
we conclude that also f is an automorphism, as required.

Proposition 6.4. Suppose (A,DG) is a 1-tilting cotorsion pair over a commutative ring, where A is covering. If
F is a Bass R-module, then R/J ⊗R F has a P0(R/J)-cover for every J ∈ G.

Proof. By the proof of Lemma 6.3,

0 → HomR(K, D1) → HomR(K, D0)
ρ
→ HomR(K, F ⊗R K) → 0 (6.5)

is a projective cover of HomR(K, F ⊗R K) in the category of u-contramodules. Note that a flat R-module is
G-torsion-free since G is faithful and the G-torsion-free class is closed under direct limits.

By Lemma 5.4, HomR(K, F ⊗R K) ≅ ∆u(F), and by Lemma 5.8, F/JF ≅ R/J ⊗R ∆u(F). Invoking Lemma 5.9,
we also get that TorR1 (R/J, F) ≅ Tor

R
1 (R/J, ∆u(F)) for every J ∈ G.

Thus, applying the functor (R/J ⊗R −) to sequence (6.5) and using Corollary 5.10, we obtain the exact
sequence

0→ R/J ⊗R HomR(K, D1)→ R/J ⊗R HomR(K, D0)
idR/J ⊗Rρ
→ F/JF → 0. (6.6)

We now show that (6.6) is a projective cover of F/JF in Mod-R/J.
Applying Lemma 5.4 to a free module R(α), we get HomR(K, K(α)) ≅ ∆u(R(α)) and, by Lemma 5.8,

R/J ⊗R HomR(K, K(α)) ≅ (R/J)(α).

Additionally, since themodules D0, D1 are direct summands of a direct sumof copies of K, Corollary 5.10
implies that R/J ⊗R HomR(K, Di) is an R/J-projective module for i = 0, 1.

From the projective cover in (6.5), we know that HomR(K, D1) is a superfluous subobject of HomR(K, D0)
in u-contra.

We note that R/J ⊗R HomR(K, D1) is a superfluous R/J-submodule of R/J ⊗R HomR(K, D0). In fact, an
R/J-module is a u-contramodule for any J ∈ G, and the image of a superfluous subobject under any mor-
phism in the category is a superfluous subobject. Thus R/J ⊗R HomR(K, D1) is a superfluous subobject of
R/J ⊗R HomR(K, D0) in u-contra. Finally, any submodule of an R/J-module is also a u-contramodule; hence
R/J ⊗R HomR(K, D1) is superfluous in R/J ⊗R HomR(K, D0) as an R/J-submodule.

Thus we conclude that (6.6) is a P0(R/J)-cover of F/JF.

Theorem 6.5. Suppose R is a commutative ring and (A,DG) a 1-tilting cotorsion pair. If A is covering, then
ψR : R → RG is a perfect localisation, p.dim RG ≤ 1, and R is G-almost perfect.

Proof. That ψR : R → RG is a perfect localisation and p.dim RG ≤ 1 are by Lemma 4.3 and Proposition 4.4.
That R is G-almost perfect is by Proposition 6.2 and Proposition 6.4.

7 H-h-local rings

This section concerns a class of rings which includes the commutative local rings and the h-local rings. We
will be looking atH-h-local ringswith respect to a linear topologyH on a commutative ring R. Themain result
of this section is that theH-h-local rings can be characterised by the properties of theH-discrete modules,
as will be shown in Proposition 7.4.

For a commutative ring R, we let Max R denote the set of all the maximal ideals of R. We will formulate in
our setting the results from [8, Section 4], which were proved in the case of a localisation of a ring at a mul-
tiplicative subset. All the proofs can be extended easily to the case of a linear topologyH on a commutative
ring R.
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Definition 7.1. A commutative ring R isH-h-local if, for every open ideal J ∈ H, J is contained only in finitely
many maximal ideals of R and every open prime ideal inH is contained in only one maximal ideal.

A commutative ring R isH-h-nil if every element J ∈ H is contained only in finitely many maximal ideals
of R and every prime ideal of R inH is maximal.

It is clear that everyH-h-nil ring isH-h-local. We first give a sufficient condition for a ring to beH-h-nil.

Lemma 7.2. LetH be a linear topology on a commutative R. If R/J is perfect for every J ∈ H, then R isH-h-nil.

Proof. By Proposition 2.6, R/J has only finitely many maximal ideals.
Take a prime p ∈ H. Then R/p is a perfect domain, so is a field (by the final statement of Proposition 2.6),

so it follows that pmust be maximal.

Recall that, for every right linear topologyH on a ring R, the class ofH-discretemodules consists of

{M | Ann(x) ∈ H for all x ∈ M}.

The following result holds for any linear topology on a commutative ring and is our generalisation of
[8, Lemma 4.2].

Lemma 7.3. LetH be a linear topology on a commutative ring R such that every prime inH is contained in only
onemaximal ideal. Then, formaximal idealsm ̸= n of R and for eachH-discretemoduleM,M ⊗R Rm ⊗R Rn = 0.

Proof. Let ϕ : R → Rm ⊗R Rn denote the localisation map. We will first show that the statement holds for R/J
for a fixed J ∈ H. Take q a prime ideal in Rm ⊗R Rn. Then there is a unique prime p of R such that p ⊆ m ∩ n
and q = p(Rm ⊗R Rn). By assumption, p ∉ H as it is a prime contained in twomaximal ideals. Therefore, J ⊈ p,
so JRp = Rp.

We will show that, for every prime ideal q of Rm ⊗R Rn, the localisation of R/J ⊗R Rm ⊗R Rn at q is zero.
Fix a prime q of Rm ⊗R Rn, and let p = ϕ−1(q). Then Rp ≅ (Rm ⊗R Rn)q as R-modules. Moreover, we know that
R/J ⊗R Rp = 0 by the argument in the first paragraph, as desired.

The statement of the lemma now follows easily as everyH-discrete module N is an epimorphic image of
modules of the form⨁α R/Jα with Jα ∈ H:

0 = (⨁
α
R/Jα) ⊗R Rm ⊗R Rn → N ⊗R Rm ⊗R Rn → 0.

The following two propositions are the main results of this section, which generalise [8, Proposition 4.3 and
Lemma 4.4]. For the latter, we do not include a proof as it follows analogously from the original proof using
Lemma 7.3, our version of [8, Lemma 4.2].

Proposition 7.4 ([8, Proposition 4.3]). SupposeH is a linear topology over a commutative ring R. The following
are equivalent.
(i) R isH-h-local.
(ii) N ≅⨁m∈Max R Nm for everyH-discrete module N.
(iii) N ≅⨁m∈H,m∈Max R Nm for everyH-discrete module N.
Moreover, the above conditions hold when R/J is a perfect ring for every J ∈ H.

Proof. (i) ⇒ (ii). We begin by showing that statement (ii) holds for the cyclic modules R/J with J ∈ H. By
assumption, J is contained in finitely manymaximal ideals, so in R/J → R/J ⊗R Rm, 1 + J is mapped to a non-
zero element of R/J ⊗R Rm for only finitely many maximal ideals. Thus there is the natural monomorphism

ΨR/J : R/J → ⨁
m∈Max R
(R/J)m ⊆ ∏

m∈Max R
(R/J)m, r + J → ∑

m∈Max R
(r + J)m.

We will show that ΨR/J is surjective by showing that, for every maximal ideal n of R, the localisations
(ΨR/J(R/J))n and (⨁m∈Max R(R/J)m)n coincide. To begin, if n ∉ H is maximal, then for each J ∈ G, (R/J)n = 0
as there exists an a ∈ J \ n, and it also follows that (⨁m∈Max R(R/J)m)n = 0. For a maximal ideal n ∈ H, by
Lemma 7.3, (R/J)m ⊗R Rn = 0 for m ̸= n. So clearly (⨁m∈Max R(R/J)m)n = (R/J)n = ΨR/J(R/J)n, where (R/J)n
is a submodule of⨁m∈Max R(R/J)m, so we are done.
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For aH-discrete module N, consider a short exact sequence of the following form, where Jα ∈ H and all
the modules are H-discrete as the class of H-discrete modules is closed under submodules and quotients
(that is, it is hereditary pretorsion):

0→ H →⨁
α
R/Jα → N → 0. (7.1)

Consider the following commutingdiagram formedby taking thedirect sumof all⨁m∈Max R(Rm ⊗R −)applied
to (7.1), and ψH , ψN the natural maps sending each element to its image in the localisations, which can be
seen to be well defined (that is, contained in the direct sum) considering the isomorphism for each R/J:

0 // H //

ψH
��

⨁α R/Jα //

≅
��

N //

ψN
��

0

0 //⨁m∈Max R Hm
//⨁α(⨁m∈Max R(R/Jα)m) //⨁m∈Max R Nm

// 0.

(7.2)

Thus ψN is surjective by the snake lemma applied to (7.2). Additionally, as also H is H-discrete, the same
argument says that ψH is surjective. Thus ψN must be an isomorphism again by the snake lemma applied
to (7.2).

(ii)⇒ (iii). If J ∈ H and n is a maximal ideal of R not contained inH, then clearly J ⊈ n; hence (R/J)n = 0.
Therefore, using that everyH-discrete module M is the image of a direct sum of cyclicH-discrete modules,
Mn = 0 for every maximal n ∉ H.

(iii)⇒ (i). By assumption, R/J ≅⨁m∈Max R∩H(R/J)m. The direct summust be finite as R/J is cyclic. More-
over, if (R/J)n = 0 for n maximal, then J ⊈ n. This shows that J is contained in only finitely many maximal
ideals. To see that every prime p ofHmust be contained only in onemaximal ideal, suppose p ⊆ m ∩ n, where
m ̸= n are maximal, and consider R/p ≅⨁m∈Max R∩H(R/p)m. For every p ⊆ m, (R/p)m ⊗R Rp ≅ Rp/pRp, and
Rp/pRp cannot contain two direct sum copies of itself since it is a field.

Proposition 7.5 ([8, Lemma 4.4]). Let R be aH-h-local ring. Let {M(m)}m∈Max R and {N(m)}m∈Max R be two col-
lections of modules such thatM(m), N(m) are Rm-modules for eachmaximal idealm of R. Suppose the modules
{M(m)} are H-discrete. Then any morphism⨁mM(m)→⨁m N(m) is a direct sum of Rm-module homomor-
phisms M(m)→ N(m).

8 When R is a G-almost perfect ring
In this section, we assume that (A,DG) is a 1-tilting cotorsion pair with associated Gabriel topology G and
that R is G-almost perfect (that is RG is a perfect ring and R/J is a perfect ring for every J ∈ G).

The purpose of this section is to show that, under these assumptions,A is covering, as a sort of converse
to Theorem 6.5.

To prove the next lemma, we recall the following construction. SupposeM is a finitely presented right R-
module with projective presentation P1 ρ→ P0 → M → 0, where P0, P1 are finitely generated projective mod-
ules. The transpose ofM, denoted Tr(M), is the cokernel of the map ρ∗ : P∗0 → P∗1, where (−)∗ := HomR(−, R).

IfG is a faithfulGabriel topology, then for every finitely generated ideal J ∈ G, (−)∗ applied to theprojective
presentation Rn → R → R/J → 0 is 0→ R → Rn → Tr(R/J)→ 0, which is a projective resolution of Tr(R/J).

Lemma 8.1. Let R be a commutative ring. Suppose (A,DG) is a 1-tilting cotorsion pair,G the associated Gabriel
topology and f.dim RG = 0. Then G arises from a perfect localisation, or equivalently RG is G-divisible.

In particular, if RG is a perfect ring, then the statement holds.

Proof. For each finitely generated J ∈ G, [16, Lemma 3.3] shows that RG ⊗R R/J ≅ Ext1R(Tr R/J, RG), and as
p.dimTr R/J ≤ 1, Lemma 3.3 (ii) yields TorRi (RG, Tr R/J) = 0 for i > 0. Thus, applying (RG ⊗R −) to a projective
resolution of Tr R/J, we get the following:

0→ RG → RnG → RG ⊗R Tr R/J → 0.
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By assumption, f.dim RG = 0, so RG ⊗R Tr R/J is RG-projective. Next consider the following isomorphism
which follows as TorRi (RG, Tr R/J) = 0 for i > 0:

Ext1R(Tr R/J, RG) ≅ Ext1RG
(RG ⊗R Tr R/J, RG) = 0.

The lastmodule vanishes as RG ⊗R Tr R/J is RG-projective, so R/J ⊗R RG ≅ Ext1R(Tr R/J, RG) = 0 for each J ∈ G;
hence RG is G-divisible.

If RG is a perfect ring, then by Proposition 2.6, F.dim RG = 0, so the statement applies.

Remark 8.2. It has been proved by Leonid Positselski in [20] that if G is a perfect Gabriel topology on a ring R
such that the rings R/J are perfect for every J ∈ G, it follows that p.dim RG ≤ 1. His proof is a generalisation
of [8, Theorem 6.13].

The above remark with Lemma 8.1 allows us to state the following.

Proposition 8.3. If (A,DG) is a 1-tilting cotorsion pair with associated Gabriel topology G such that R is G-
almost perfect, thenG is a perfect localisation,p.dim RG ≤ 1and RG ⊕ RG/R is a corresponding1-tiltingmodule.

Thus, with Proposition 8.3, we can consider the following setting.

Setting 8.4. Weassume that (A,DG) is a1-tilting cotorsionpair arising fromaflat injective ring epimorphism
u : R → U such that p.dimU ≤ 1 and Gen(U) = DG as in the equivalent statements of Proposition 3.2, so that
U ⊕ K (K := U/R) is the associated 1-tilting module.

Thus, if R is moreover G-almost perfect, to show that A is covering, it is sufficient to show that U ⊕ K is Σ-
pure-split, as then A is closed under direct limits using Proposition 2.8. To show that U ⊕ K is Σ-pure-split,
the problem naturally divides into two parts: showing that each of U and K are Σ-pure-split.

8.1 If K is Σ-pure split, then U ⊕ K is Σ-pure split

Consider a pure exact sequence
0→ X → T → Y → 0, (8.1)

where T ∈ Add(U ⊕ K).
Then X, Y ∈ DG as T ∈ DG and the tilting class is closed under pure submodules, so the sequence van-

ishes when one applies (R/J ⊗R −) for every ideal J ∈ G.

Lemma 8.5. Let R be as in Setting 8.4 such that U is a perfect ring. Applying the functor (− ⊗R U) to sequence
(8.1), we find a split exact sequence of projective U-modules

0→ X ⊗R U → T ⊗R U → Y ⊗R U → 0. (8.2)

Proof. Sequence (8.2) is an exact sequence in Mod-U, and it is also pure since (8.1) is pure. Moreover, as
T ∈ Add(U ⊕ K), T ⊗R U ∈ Add(U), and thus it is U-projective.

Thus Y ⊗R U is a flat U-module, and therefore it is U-projective as U is a perfect ring. So the sequence
splits in Mod-U and hence in Mod-R. Also note that this implies that X ⊗R U is flat in Mod-R.

From now on, t(M) will denote the torsion submodule of a module M with respect to the G-torsion class EG.

Lemma 8.6. Let R be as in Setting 8.4 such that U is a perfect ring, and let X, T, Y be as in (8.1). Then

0→ t(X)→ t(T)→ t(Y)→ 0

is a pure exact sequence.

Proof. We claim diagram (8.3) has exact rows and exact columns. This is because the bottom row is exact
as (8.1) is pure exact and, by the snake lemma and the fact that X ⊗R K = 0 as X is G-divisible, forces the top
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row to be exact:
0

��

0

��

0

��

0 // t(X) //

��

t(T) //

��

t(Y) //

��

0

0 // X //

��

T //

��

Y //

��

0

0 // X ⊗R U //

��

T ⊗R U //

��

Y ⊗R U //

��

0

0 0 0.

(8.3)

To show that the top row is pure exact, it is enough to show that, for every N ∈ Mod-R, the connecting mor-
phism δ : TorR1 (t(Y), N)→ t(X) ⊗R N is zero. By Lemma 8.5, X ⊗R U is a flat U-module, hence also flat as an
R-module; thus TorR1 (X ⊗R U, N) = 0. We want to show that δ = 0. Applying (− ⊗R N) to the diagram above,
we obtain

TorR1 (X ⊗R U, N) = 0

��

TorR1 (t(Y), N)

��

δ
// t(X) ⊗R N

ε
��

TorR1 (Y, N)
0

// X ⊗R N .

So εδ = 0, and as ε is a monomorphism, δ = 0, as required.

Lemma 8.7. Let R be as in Setting 8.4 such that U is a perfect ring. Suppose that K is Σ-pure split. Then U ⊕ K
is Σ-pure split, that is every pure embedding as in (8.1) splits.

Proof. Consider a pure exact sequence as in (8.1). We show that, under the conditions stated in the lemma,
the sequence splits. By assumption, the sequence 0→ t(X)→ t(T)→ t(Y)→ 0 splits since, by Lemma 8.6,
it is pure exact and t(T) ∈ AddK. So t(Y) ∈ AddK. Moreover, by Lemma 8.5, Y ⊗R U ∈ Add(U). Since K ∈ U⊥,
the sequence

0→ t(Y)→ Y → Y ⊗R U → 0

splits. Thus sequence (8.1) splits as X ∈ DG and Y ∈ Add(U ⊕ K).

Our next aim is to show that, in Setting 8.4, when R/J is perfect for each J ∈ G, K is Σ-pure split. To this end,
consider a pure exact sequence

0→ X → T → Y → 0 (8.4)

with T ∈ Add(K).

Facts 8.8. The terms in sequence (8.4) are G-torsion and G-divisible modules. Hence we can use the cate-
gory equivalence of Theorem 5.13 between the subcategories of G-torsion G-divisible modules and the G-
torsion-free u-contramodules via the adjoint functors ((− ⊗R K),HomR(K, −)). We will show that HomR(K, Y)
is a projective object in u-contra and moreover that the sequence splits in the category of G-torsion-free
u-contramodules. Thus also the original sequence (8.4) splits in the category ofG-torsionG-divisiblemodules.

Moreover, we will use that, for a G-torsion-free module N, (in particular, a free module R(β)), Lemma 5.4
gives an isomorphism μN : HomR(K, K ⊗R N) ≅ ∆u(N), and these are u-contramodules by Lemma 5.5. Also
we use regularly Lemma 5.8, that is M/JM ≅ R/J ⊗R ∆u(M) for any R-module M and every J ∈ G. Finally,
we also recall that, with the assumption p.dimU ≤ 1, u-contra is an abelian category, and the direct sum-
mands of modules of the form ∆u(R(β)) for some cardinal β are the projective objects in u-contra as stated in
Proposition 5.12.
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Before reducing to the local case, we want to make some remarks and state some results about the module
HomR(K, Y).

Remark 8.9. The aim of the next results will be to show that the G-torsion-free u-contramodule HomR(K, Y)
with Y from sequence (8.4) is a projective object in u-contra; however, most of the results can be generalised
to a G-torsion-free u-contramodule M such that M ⊗R K ∈ F1(R).

The module HomR(K, Y) satisfies the assumptions onM as Y ≅ HomR(K, Y) ⊗R K by Theorem 5.13 since
Y is G-divisible and G-torsion. Furthermore, HomR(K, Y) ⊗R K ∈ F1(R) as X, Y ∈ F1(R) since T ∈ F1(R) and
sequence (8.4) is pure-exact.

Lemma 8.10. Let R be a ring as in Setting 8.4 such that R/J is a perfect ring for each J ∈ G. Suppose M is
a G-torsion-free u-contramodule such that M ⊗R K ∈ F1(R) and L is a G-torsion module. Then TorR1 (L,M) = 0.

Proof. Fix M and L as in the assumptions, and consider the exact sequence

0→ M → M ⊗R U → M ⊗R K → 0.

Apply (L ⊗R −) to get the exact sequence

0 = TorR2 (L,M ⊗R K)→ TorR1 (L,M)→ TorR1 (L,M ⊗R U).

Thus, as U is flat, we have that TorR1 (L,M ⊗R U) ≅ Tor
U
1 (L ⊗R U,M ⊗R U) which is zero as L ⊗R U = 0 since L

is G-torsion.

8.2 When R is local and R/J is a perfect ring for each J ∈ G

In this subsection, we will assume that R is a local ring with maximal ideal m and that R/J is a perfect ring
for each J in a Gabriel topology G.

We will show that HomR(K, Y) (or a G-torsion-free u-contramodule M such that M ⊗R K ∈ F1(R), see
Remark 8.9) is a projective object in u-contra using the method of Positselski in [19, Lemma 8.2 and Theo-
rem 8.3], although in a much simpler setting.

Remark 8.11. For each J ∈ G, R/J is a local ring; thus it is a perfect ring if and only if its maximal idealm/J is
T-nilpotent. By [1, Lemma 28.3], this is equivalent to have that N(m/J) ̸= N for every non-zero R/J-module N.
Moreover, by Proposition 2.6 (iv), every R/J-module has a non-zero socle.

Lemma 8.12. Let R be a commutative local ring with a non-trivial Gabriel topology G. Then the ring R/J is
a perfect ring for each J ∈ G if and only if every non-zero R-module M is either inDG or Mm ̸= M.

Proof. Suppose that R/J is a perfect ring for each J ∈ G, and let M be a non-zero R-module not in DG. Then
there exists J ∈ G such that M/MJ ̸= 0. By Remark 8.11, we have the strict inclusion

(M/MJ)m = (Mm)/(MJ) ⊊ M/MJ.

So it follows that Mm ⊊ M, as required. Conversely, let N be a non-zero R/J-module. Then, as an R-module,
N certainly does not belong to DG. Thus N(m/J) = Nm ̸= N, and by Remark 8.11, we conclude that R/J is
a perfect ring.

Proposition 8.13. Let R be a commutative local ring with a faithful finitely generated perfect Gabriel topologyG
such that R/J is a perfect ring for each J ∈ G. Let M be a u-contramodule. Then there is a cardinal β and an
epimorphism f that makes the following diagram commute:

∆u(R(β))

f
��

p
// (R/m)(β)

≅
��

// 0

0 // Mm // M //// M/Mm // 0.
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Proof. Consider the exact sequence 0→ Mm→ M → M/Mm→ 0. AsM/Mm is an R/m-module, there exists
a cardinal β such that (R/m)(β) ≅ M/Mm. Let p : ∆u(R(β))→ (R/m)(β) be the composition of the natural pro-
jection map ∆u(R(β))→ ∆u(R(β))/∆u(R(β))mwith the isomorphism ∆u(R(β))/∆u(R(β))m ≅ (R/m)(β) guaranteed
by Lemma 5.8.

Consider the diagram

∆u(R(β))

f
��

p
// (R/m)(β)

≅
��

// 0

0 // Mm // M //
pM
// M/Mm // 0,

(8.5)

where f exists since all the modules in the above diagram are u-contramodules and ∆u(R(β)) is a projective
object in u-contra. To see that f is an epimorphism, note that, as ∆u(R(β))→ M/Mm is an epimorphism, it
follows that Im f +Mm = M. By

(M/Im f )m = (Mm + Im f)/Im f = M/Im f

and Lemma 8.12, it follows that M/Im f is G-divisible. However, f is a map of u-contramodules, so also
Coker f = M/Im f is a u-contramodule; thus M/Im f contains no non-zero G-divisible submodule. We con-
clude that M/Im f = 0, so f is an epimorphism, as required.

The following proposition uses results from Section 5.

Proposition 8.14. Let R be a commutative local ring with a faithful finitely generated perfect Gabriel topol-
ogy G such that R/J is a perfect ring for each J ∈ G. Then, for every G-torsion-free u-contramodule M such that
M ⊗R K ∈ F1(R), themorphism f as in (8.5) is an isomorphism. In particular,M is a projective object in u-contra.

Proof. Let β and f be as in Proposition 8.13. For every J ∈ G, R/J is a perfect local ring; hence R/J is
a semiartinian module. Consider a Loewy series {Jσ/J}σ<τ of R/J, that is Jσ+1/Jσ ≅ R/m for every σ < τ, and
R/J = ⋃σ<τ Jσ/J.

By Lemma 5.9 and Lemma 8.10, we have TorR1 (R/m, ∆u(R(β))) = 0 = Tor
R
1 (R/m,M). From the diagram in

(8.5) where f is an epimorphism, we see that, for every ordinal σ, we have the commuting diagram

0

��

0 // Jσ/J ⊗R ∆u(R(β)) //

idJσ/J ⊗R f
��

Jσ+1/J ⊗R ∆u(R(β)) //

idJσ+1/J ⊗R f
��

R/m ⊗R ∆u(R(β)) //

idR/m ⊗R f≅
��

0

0 // Jσ/J ⊗R M //

��

Jσ+1/J ⊗R M //

��

R/m ⊗R M //

��

0

0 0 0.

We will first show that idR/J ⊗R f is an isomorphism by transfinite induction on σ. It is clear in the base case
of σ = 1. If idJσ/J ⊗R f is an isomorphism, then by the five-lemma, as the two outer vertical morphisms of the
above diagram are isomorphisms, also idJσ+1/J ⊗R f is an isomorphism.

Let ρ < τ be a limit ordinal. By induction, idJσ/J ⊗R f is an isomorphism for every σ < ρ. Hence, since the
tensor product commutes with direct limits, we get the isomorphism idJρ/J ⊗R f . Now

(⋃
σ<τ

Jσ/J) ⊗R ∆u(R(β)) = ⋃
σ<τ
(Jσ/J ⊗R ∆u(R(β))) ≅ ⋃

σ<τ
(Jσ/J ⊗R M) = (⋃

σ<τ
Jσ/J) ⊗R M.

As R/J = ⋃α Jα/J, we have shown that

idR/J ⊗R f : R/J ⊗R ∆u(R(β)) ≅ M/JM.
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Now note that the above isomorphism implies that the kernel of f : ∆u(R(β))→ M is contained in ∆u(R(β))J
for every J ∈ G; thus Ker f ⊆ ⋂J∈G ∆u(R(β))J. However, as R(β) is G-torsion-free, we have, by Lemma 5.4,
∆u(R(β)) ≅ HomR(K, K(β)), which is already G-separated by Lemma 5.1, so ⋂J∈G ∆u(R(β))J vanishes. We
conclude that f is an isomorphism.

Proposition 8.15. Let R be a commutative local ring with a faithful finitely generated perfect Gabriel topologyG
such that R/J is a perfect ring for each J ∈ G. Consider the pure exact sequence with T ∈ Add(K):

0→ X → T → Y → 0 (8.4)

Then the sequence splits. In other words, K is Σ-pure-split.

Proof. By Proposition 8.14 and Remark 8.9, we have thatM = HomR(K, Y) is a projective object in u-contra;
therefore, the following sequence of u-contramodules (which is HomR(K, −) applied to (8.4)) splits:

0→ HomR(K, X)→ HomR(K, T)→ HomR(K, Y)→ 0.

Applying (− ⊗R K), we recover the original short exact sequence up to isomorphism, which also splits.

8.3 Final results

We have shown that, for R a commutative local ring, if R/J is perfect for every J ∈ G, a pure submodule of
a module T ∈ Add(K) splits. We will now extend this to the global case in this final subsection.

We recall that, since R/J is perfect for each J ∈ G, by Lemma 7.2, the ring R is G-h-nil; hence the equiv-
alent statements of Proposition 7.4 hold. That is, we use in particular that, for every G-torsion module M,
M ≅⨁m∈Max R Mm, wherem runs over all the maximal ideals of R.

Proposition 8.16. Let R be a commutative ring with a faithful finitely generated perfect Gabriel topology G

with perfect localisation u : R → U such that R/J is a perfect ring for each J ∈ G. Then K is Σ-pure-split, where
K = U/u(R).

Proof. Take 0→ X → T ρ→ Y → 0 a pure exact sequence. By Proposition 7.4,

T =⨁
m

(T)m and Y =⨁
m

(Y)m.

Additionally, by Proposition 7.5, the morphism ρ is a direct sum of surjective maps (T)m → (Y)m, each of
which is also a pure epimorphism. By Proposition 8.15, each (Y)m is in Add(K)m, thus also Y ∈ Add(K). Thus
ρ is a split epimorphism as X ∈ DG.

Theorem 8.17. Let R be a commutative ring and (A,DG) a 1-tilting cotorsion pair with associated Gabriel
topology G such that R is G-almost perfect. Then RG ⊕ RG/R is an associated 1-tilting module and RG ⊕ RG/R
is Σ-pure-split, soA is closed under direct limits.

Proof. By Lemma 8.1, RG is G-divisible, so G is a perfect Gabriel topology. Next, if the R/J are perfect rings for
J ∈ G and G is a perfect Gabriel topology, it follows that p.dim RG ≤ 1 by Remark 8.2.

That RG ⊕ RG/R is Σ-pure-split is a combination of Lemma 8.7 and Proposition 8.16. Finally, by Proposi-
tion 2.8, we conclude thatA is closed under direct limits.

The following definition has been introduced in [19] (see also [7]).

Definition 8.18. A linearly topological ring is pro-perfect if it is separated, complete, and with a basis of
neighbourhoods of zero formed by two-sided ideals, such that all of its discrete quotient rings are perfect.

Finally, combining the above theorem with the results in Section 8 and Section 6, we obtain the main result
of this paper.
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Theorem 8.19. Suppose (A,DG) is a1-tilting cotorsionpair over a commutative ringR,G the associatedGabriel
topology andR the topological ring EndR(K). The following are equivalent.
(i) A is closed under direct limits.
(ii) A is covering.
(iii) R is G-almost perfect.
(iv) RG is a perfect ring, andR is pro-perfect.
Moreover, if these equivalent conditions hold, R → RG is a perfect localisation and p.dim RG ≤ 1.

Proof. (i)⇒ (ii) is [26, Theorem 2.2.8] and [15, Theorem 6.11].
(ii)⇒ (iii) is Theorem 6.5.
(iii)⇒ (i) is Theorem 8.17.
(iii)⇔ (iv) In both statements, RG is perfect, so by Lemma8.1,G is a perfect localisation. Hence, by Propo-

sition 5.11, R is closed and separated with respect to the G-topology. Also, by Lemma 5.4 and Lemma 5.8,
R/RJ ≅ R/J, so the discrete quotient rings ofR are perfect if and only if the R/J are perfect for each J ∈ G.

The final statements follow by Proposition 4.4 and Lemma 4.3, or Proposition 8.3.

The following is an application of Theorem 8.19 (along with [6, Theorem 8.7]) which allows us to charac-
terise all the 1-tilting cotorsion pairs over a commutative semihereditary ring (for example, for the category
of abelian groups) such thatA is covering.

Example 8.20. Let R be a commutative semihereditary ring and (A, T) a1-tilting cotorsion pair inMod-Rwith
associated Gabriel topology G. Then, by [16, Theorem 5.2], G is a perfect Gabriel topology. Moreover, R/J is
a coherent ring for every finitely generated J ∈ G, so R/J is perfect if and only if R/J is artinian [11, Theo-
rem 3.3 and 3.4]. As R/J is artinian, there are finitely many (finitely generated) maximal ideals and the
Jacobson radical of R/J is a nilpotent ideal. Therefore, in this case, G has a subbasis of ideals of the form
{mk | m ∈ Max R ∩ G, k ∈ ℕ}, andmoreover, all the maximal ideals of R contained in G are finitely generated.

Moreover, if R is a commutative semihereditary ring, the classical ring of quotients Q(R) is Von Neu-
mann regular. By [24, Example 2, Section XI.4], the classical ring of quotients coincides with the maximal
flat epimorphic ring of quotients Qtot(R) (see [24, Section XI.4]). Thus, for a 1-tilting cotorsion pair (A, T)
as in the previous paragraph, R → RG is a perfect localisation (and a monomorphism), so by [24, Theo-
rem XI.4.1], R → Q(R) factors uniquely through a ring monomorphism RG → Q(R). It follows that if RG is
perfect, then RG coincides with its classical ring of quotients; additionally, RG is flat over R, so we conclude
that RG = Q(RG) = Q(R). Thus if A provides for covers, the 1-tilting cotorsion pair is (A, Q(R)/R⊥), R/rR is
artinian for every regular element r ∈ R, and moreover, Q(R) is a semisimple ring since it is Von Neumann
regular and perfect.

In particular, in the case of R = ℤ, [6, Theorem 8.7] implies that every 1-tilting class T is enveloping as
ℤ is semihereditary and, for any proper ideal aℤ ofℤ,ℤ/aℤ is artinian.

On the other hand, the only 1-tilting cotorsion pair in Mod-ℤ that provides for covers is (A,ℚ/ℤ⊥), that
is the 1-tilting cotorsion pair associated to the 1-tilting module ℚ ⊕ℚ/ℤ which coincides with the trivial
cotorsion pair (Mod-ℤ, Inj).
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