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Abstract

This work introduces CEST, a Cognitive Event based Semiautomatic Technique for
behavior segmentation. The technique was inspired by an everyday cognitive pro-
cess. Humans make sense of what happens to them by breaking the continuous
stream of activity into smaller units, through a process known as segmentation. A
cognitive theory, the Event Segmentation Theory, provides a computational and neu-
rophysiological account of this process, describing how the detection of changes in
the current situation drive boundary perception. CEST was designed to provide af-
fective researchers with a tool to semi-automatically segment behavior. Researchers
investigating behavior, as a matter of fact, often need to parse their research data
into simpler units, either manually or automatically. To perform segmentation, the
technique combines manual annotations and the output of change-point detection
algorithms, techniques from time-series research that afford the detection of abrupt
changes in time-series. CEST is inherently multidisciplinary: it is, to the best of our
knowledge, the first attempt to adopt a cognitive science perspective on the issue of
(semi) automatic behavior segmentation. CEST is a general-purpose technique, as
it aims at providing a tool for segmenting behavior across research areas. In this
manuscript, we detail the theories behind the design of CEST and the results of two
experimental studies aimed at assessing the feasibility of the approach on both single
and group scenarios. Most importantly, we present the results of the evaluation of
CEST on a data-set of dance performances. We explore seven different techniques
for change-point detection that could be leveraged to achieve semi-automatic seg-
mentation through CEST and illustrate how two different bayesian algorithms led to
the highest scores. Upon selecting the best algorithms, we measured the effect of
the temporal grain of the analysis on the performance. Overall, our results support
the idea of a semiautomatic segmentation technique for behavior segmentation. The
output of the analysis mirrors cognitive science research on segmentation and event
structure perception. The work also tackles new challenges that may arise from our
approach.
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I Introduction

1 General outline of the work

This thesis describes the outcome of my PhD course in Computer Science and Systems Engi-
neering at University of Genoa. The work, carried out with Professor Gualtiero Volpe, is aimed
at proposing a novel semi-automatic technique for behavior segmentation. The technique has
two core characteristics: it was designed with a highly-interdisciplinary approach and it is a gen-
eral purpose technique, that researchers can adapt to their specific research questions. To reach
such ambitious goals, we tried our best to combine a cognitive science approach to segmenta-
tion and most up-to-date techniques for automatic change detection from computer science. This
manuscript illustrates all the steps of the process that led us to our final semi-automated tech-
nique. This section details the motivations of the work and gives a glossary that might help the
reader avoid confusion. Section II illustrates the topic of segmentation, from how it was theoret-
ically described in cognitive science to how the problem is dealt with in affective computing and
computer science. Section III illustrates the feasibility studies we ran when initially designing
our technique. The study are described more thoroughly in [19] and [20]. Sections IV and V
are the core of the work. The former describes the general functioning of the technique, while
the latter reports the results of a set of experiments that where conducted for the design of the
technique, in terms of parameters, modules, etc. and for testing its performance against ground
truth data. Section VI ends the manuscript.

2 Motivation and goals

This work is motivated by the idea that interdisciplinary research can be the key to address com-
plex research issues. A very common issue in affective computing research, the partitioning of
data into smaller units has been theoretically addressed by cognitive science as well, as breaking
the reality into smaller units is also something human beings do to give meaning to what they
perceive [105] and it is something they do from a very young age [8]. As a consequence, this
thesis aims at bridging this gap, giving a cognitive science solution to a computer science prob-
lem.
The goal of the work is therefore the creation of a semi-automatic technique for movement seg-
mentation. The technique has its theoretical foundation in how the process of perceiving the
structure of the ongoing situation happens in the human mind, as described by the Event Segmen-
tation Theory [108]. The technique we propose is general-purpose, meaning it can be adapted
to different research requirements. We think adopting a multi-disciplinary approach may have
helped us reach this goal. However, we live up to the reader to decide whether we succeeded or
not.
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3 What’s in a name?

Segments, clips, units, time-windows, fragments: many terms can be found referring to the re-
sults of breaking a long sequence into smaller, simpler units. Section II will attempt at clarifying
all the different views, approaches and terminologies to the topic. Here, we report the terms
that will be used throughout this manuscript, with the goal of helping the reader go through the
sections more smoothly. Table 1 also includes definitions and references from relevant research.

Word Meaning References
segmentation the process of breaking the material into smaller

portions
[104]

unitizing the segmentation of data prior annotation or la-
beling

[19]

cognitive segmentation the human perception of beginnings and end-
ings of events

[108]

event a portion of time perceived by an observer as
having a beginning and an end; psychological
events have durations on a human scale, span-
ning from a few seconds to tens of minutes

[108],
[104]

change categories the different kinds of changes that correlate with
the probability of perceiving a boundary in a sit-
uation

[108]

boundaries the beginnings and ends of segments [108]
change-point detection
CPD

the automatic recognition of abrupt changes in
a time-series

[6]

Table 1: Terms and definitions used in this manuscript
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II State of the art: from event segmentation to unitizing

This section illustrates the issue of parsing a continuous stream of activity from different points
of view. Each paragraph deals with the topic from a different theoretical perspective and shows
the theories and methodologies that have been proposed. The discussion begins with cognitive
segmentation, detailing how cognitive science has described this process as it unfolds in the hu-
man mind. It continues by describing how this issue is dealt with in affective computing, when
the segmentation is a tool, when not a necessary step, to observe human behavior and interac-
tion. Then, it moves on to change point detection, sketching the most common approaches to
the automatic detection of segment boundaries in time-series. Finally, it provides a framework
for evaluating segmentation algorithms from movement segmentation research, and concludes
by illustrating the main areas of novelty of the technique we propose.

Figure 1:
Three different perspectives on segmentation.

Figure 1 depicts the connections among the three different perspectives. Cognitive segmentation
refers to the cognitive process of perceiving the continuous flux of experience as composed of
discrete events. As for the unitizing that is performed in affective computing research, the target
of cognitive segmentation is usually human behavior, whether in the form of mere motion or
social interaction. Similarly to change-point detection, segmentation is performed by leveraging
changes in the situation as cues for detecting boundaries in the stream of activity. Whereas af-
fective computing unitizing and change-point detection come from research purposes, cognitive
segmentation is a general everyday process, that process through which humans make sense of
what happens to them [105].
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1 Segmentation in cognitive science: the Event Segmentation Theory

Figure 2:
Two groups of black spots also known as dalmatian dogs

Figure 3 shows two groups of black spots. However, the authors are confident in assuming that
the reader immediately saw two dogs in it. This may have happened because the reader has a
dog at home or knows such a dog, or because, as a kid, he or she watched 101 Dalmatians many
times. In other words, the reader holds, in her mind, the concept of dog. In fact, object perception
works through concepts: concepts from past experience or knowledge, stored in long-term mem-
ory, drive the understanding of the world. Humans, in the words of [94], possess the seemingly
effortless ability to perceive meaningful object. As a consequence, the world is not perceived as
made up of a continuous stream of colors, but rather as made up of discrete entities. The same
holds in time: the world is not experienced as an endless stream of activity but it is perceived as
a series of discrete events. Similarly to concepts, or objects, cognitive representation of events
guide our perception of time. Such representations are called event models. For instance, putting
hot water into a cup, placing a tea-bag in it, and waiting for a few minutes are grouped into a
“making tea” event model. Event models are not fixed: they can be discarded or updated when
no longer suitable to describe the current state of affairs. The updating of event models depends
on changes in the situation. In the “tea” example, one might predict sugar being added to the
tea. This “fortune telling” function of event models lasts until it is no longer possible to predict
the future unfolding of events by relying on the same representation. A jumping-jack performed
after the tea has been drunk might be difficult to integrate into the “making tea” event. This might
indicate the need of reshaping the model, or else it might imply that the “making tea” event has
ended and a new “doing gymnastics” event has begun.
Although intuitively the world presents itself to human beings as a seamless stream of ongoing
perception, the phenomenological experience is that of discrete events. Research on the tempo-
rality of conscious experience has extensively dealt with this topic, debating over the continuous
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or discrete nature of consciousness [33] [96]. Humans are directly aware of the succession of
brief temporal intervals, i.e. events over time[29]. The Ecological Theory of Event Perception
[89] has posited that events are in fact the sources from which perceptual knowledge arises.
Building from this, the Theory of Event coding [43] has claimed that events, defined as cognitive
representations of bundles of features underpin both perception and action planning. Event struc-
ture perception [105] is an automatic component of human perceptual processing. This seems to
be a very early-emerging skill: research showed that even 10 months old infants can perceive ac-
tion boundaries. When presented with video-taped actions cut before the ending of the sequence,
children paid more attention, as if expecting to the ending of the sequence they had predicted
[42]. Studies, e.g. [76], have demonstrated that the perceptual organization of ongoing behavior
can be measured: by asking participants to watch a video-clip depicting daily life activities and
to press a key whenever they feel “a meaningful portion of action ends and another one begins”.
When naive participants are asked to place boundaries in a scene, such boundaries are reliable
across viewers and over time.
The Event Segmentation Theory (EST) [108] has described the innate ability of human beings
to parse an ongoing interaction into meaningful units and provides a computational and neuro-
physiological account of event structure perception. Zacks [105] defines an event as “a segment
of time at a given location, that is conceived by an observer to have a beginning and an end”.
The core of the theory lies in three main ideas:

• event segmentation is an automatic, ongoing component of human perception

• segmentation that occurs during perception scaffolds later memory recall and learning

• event boundaries are localized by identifying meaningful changes in physical and social
features.

Event segmentation relies on event models observers form of the ongoing situation. Event models
are based on perception and previous experience. Such models frame new incoming information
and guide prediction of future developments. In a sense, event models are the result of statistical
structure learning [9]. What is more, the perception of event boundaries is closely tied to predic-
tion: a boundary is perceived whenever unpredictable changes in salient features occur, putting
the currently active event model at stake.

Boundary perception is also highly correlated with movement perception: brain regions that
have been found more active during boundary perception are those that are known to be involved
in movement perception [92]. Movement perception is surely a part of the story of boundary
perception, but the process does not end there. If movement perception is tightly linked with
fine-grained segmentation, when segmentation gets more coarse-grained actors’ goals and cause-
effect relations play a very important role as well [108]. Event segmentation is indeed achieved
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Figure 3:
A sketch of the EST, adapted from [59]. (I) Sensory and perceptual processes leverage event

models to form predictions. When predictions fail and an unexpected change occurs, the error
monitoring process detects an error. This detection triggers an ”error signal” that can lead the
current model to be readjusted or replaced. In the latter case, a boundary is perceived between

the current event and the following, now correctly described by the new model.

through a combination of bottom-up and top-down processes. The perception of bottom-up fea-
tures, such as kinematics, is integrated with and interpreted through top-down information from
event models.
Boundary perception leverage information from several different situational dimensions. A set
of studies in [104] shed light on how situational cues affect event segmentation. Observers
seemed to analyze the situation by attending to several different dimensions at once, and by
tracking changes in such dimensions. In these studies, behavioral data demonstrated the associa-
tion between changes and boundary perception. Boundaries were identified as a consequence of
changes in 7 dimensions: (1) time, (2) space, (3) objects, (4) characters, (5) character interac-
tion, (6) causes, (7) goals. Moreover, effect is incremental: the more situational features change,
the larger the probability that a viewer would identify an event boundary.
Recently, some revisions to the EST have been proposed. One major novelty regards boundaries:
according to [58], boundaries are not detected, they are predicted. Another addition to the theory
regards the importance of conceptual features, such as cause-effects relationships and goals, in
placing boundaries: segmentation is, as mentioned before, achieved by leveraging knowledge on
the statistical structure of events [57]. Mostly, current research says, statistical regularities are
learned, as the mind develops, in the shape of goal structures [62], [63].
To sum up, a continuous stream of activity is perceived as discrete events, through the perception
of boundaries between events; such anticipated perception is driven by changes in the situa-
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tion, that serve as indicators of a mismatch between the statistical cognitive representation of the
event that is available from previous learning and the current situation at hand. This everyday
and spontaneous perceptual process is also a research step in many research areas. Instances of
such applications will be presented in the following section.

2 The issue of unitizing: state of the art

This section section will focus on the segmentation of behavior streams in the specific area of ap-
plication of affective research, as it exemplifies the complexity of applying this spontaneous and
effortless cognitive process to practical research problems. The book by Picard [81] forged the
field of affective computing (here, AC), giving rise to a broad, interdisciplinary area of research
on emotion, interaction and, more generally, human behavior. It could be argued that this new
approach to the observation, recording and analysis of behavior came with the need for methods
to segment such behavior. When conducting behavior research, the decision on the segmentation
approach might be needed from the very beginning, when a data-set is created and it needs to
be organized and stored, as in [109]. Moreover, the creation of data-sets and corpora is strictly
linked with the manual or automatic annotation of the behaviors or the affective states the corpora
focus on. In this phase, behaviors can be annotated continuously or they can be segmented prior
annotation. What is more, the aforementioned annotations are often performed by providing
the annotators with coding schemas, that guide the observation and coding of behavior. When
adopting a specific coding scheme, again a decision needs to be made on the temporal granularity
of the ratings. Regarding this, Meinecke and colleagues [74] suggest answering the following
question: are behavioral codes assigned to a behavioral event or are codes assigned to a specific
time interval? To sum up, segmentation might be needed after data-collection, before annotation
or during the selection of a coding scheme.
Despite being a common ”sword of Damocles” for researchers, no work, to the best of our knowl-
edge, has attempted at unifying the different approaches to the issue. To shed more clarity and
gather knowledge on the variety of approaches to segmentation that can be found in AC, we
went through all the papers ever published in the highest-ranking journal in the field, according
to scimagojr.com, IEEE Transaction on Affective Computing 1 and by reading related articles.
From the aforementioned sources, we selected and analyzed papers meeting the following crite-
ria:

• the study regards the analysis of behavior recorded through video camera or motion-
capture technologies;

• the study or data-collection described in the paper contains annotation or labeling;

1https://ieeexplore.ieee.org
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• the rationale behind segmentation, or the decision to opt for continuous annotation, is
explicitly reported in the paper.

Papers where the unitizing, and hence the analysis, was only performed on audio features were
excluded from our studies, as speech-based segmentation goes beyond the scope of our work.
Similarly, we weren’t interested in analyzing language-based segmentation, or segmentation of
narratives. The reader might explore these topics in [90], [78] or [30]. It is worth mentioning,
however, how interesting parallelisms can be found between event-based unitizing and floor con-
trol shift detection. In this area of research, interactions are temporally analyzed against two
different levels: at a finer level, considering sentence units, and at a coarser level, focusing on
floor control change (i.e. change of the speaker). In both cases, the duration of the units is vari-
able, depending on the interaction itself [26].
For, us the quest for clarity on the issue began by searching how different research name the
issue of parsing their material. In fact, the process of breaking the material into smaller units
has not received a common definition yet, often resulting in theoretical ambiguity. The meaning
of the term ”segmentation” varies across different fields. In marketing, it refers to the process
of dividing a heterogeneous market into relatively more homogeneous segments2. In computer
vision, it indicates the process of partitioning a digital image into multiple segments (sets of pix-
els, also known as image objects)3. Out of the total number of papers that were analyzed for this
survey, most referred to the process of making the material shorter by using the term segmenta-
tion, whereas a smaller portion referred to unitizing as slicing, or clipping. When the unitizing
is performed as a prior step towards labeling, often the term time-window is used to define the
output of such process. As mentioned in section I, we use segmentation as a general term to refer
to the process of breaking the reality into smaller units and unitizing to indicate segmentation for
research purposes.
Committing to a specific unitizing or segmentation approach can be necessary in different re-
search steps. It can be needed upon the organization of a data-set, for example, to parse long
recordings into meaningful events, usually by manually segmenting specific behaviors of inter-
est, or it can be necessary to make video shorter, for instance by selecting a fixed time-window
and by automatically cutting the videos accordingly. Segmentation can be needed after the cre-
ation of a data-set, for instance, to utilize the recordings for a specific research purpose, such as
the analysis of specific turn-taking configurations, a pattern of dance moves, and so on. More-
over, when a coding scheme is leveraged for the annotation or labeling step, a decision on the
temporal grain has to be made, to choose between interval coding [97], standing for identifying
a fixed-length interval of time for raters to note the occurrence of any of target behavior, continu-
ous coding meaning the non-stop annotation of the behavior or interaction or event-based coding,
when specific portions of the scenario of interest are isolated, based on the specific research ques-
tion at hand. Interestingly, in some cases annotation can coincide with segmentation. In [87],
the authors asked their participants to annotate disrespectful behavior in videos, by highlighting

2https://en.wikipedia.org/wiki/Marketsegmentation
3https://en.wikipedia.org/wiki/Imagesegmentation
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the portions of time where the behavior could be observed. In other words, the participants an-
notated the interactions by segmenting them. However, usually researchers commit to one of the
possible approaches, each coming with its own shortcomings and virtues.
When a fixed-length time-window is selected for unitizing or coding, researchers may opt for a
time span suggested by psychology research on the time spans of behavioral observation. Am-
bady illustrated how thin-slices of behavior can be enough to gather meaningful observations
[5], [3]. Humans are able to make accurate enough inferences on others’ personality traits [11],
sexual orientation [4], racial bias [84] intelligence [11] and academic achievement [2] after ob-
serving them for less than 1 minute. These perceptual studies had a great impact on affective
computing, paving the way towards the annotation, labeling or automatic detection of target be-
haviors from small portions of time. Gatica Perez and colleagues used this approach to detect
high interest level in meetings [38]. Hung and colleagues for the first time adopted thin slices for
automated estimation of cohesion [44].
The selection of the window-size usually depends on the specific research question at hand. In
their work on emotion recognition, [82] trim their data into less than 500ms and 500ms to 4s
clips, as, in their view, the two different durations are needed in order to distinguish between
macro and micro emotion clips. To investigate the possibility of annotating through an iterative
approach, [35] adopted 20s long segments.
Whitehill and colleagues adopt 10s long segments for their study on engagement detection in
students [102]. From our research on papers published in affective computing journals and
conferences, we noticed that when a fixed-length window is selected, the rationale behind the
selection is seldom reported in the paper. In [102], however, the authors motivate their choice by
illustrating how, in the context of engagement observation, shorter clips do not provide enough
context and inter-rater reliability is affected, whereas with longer clips tend to be harder to eval-
uate because they may mix different levels of engagement. In this, we believe, lies one of the
main shortcomings of fixed-window segmentation: selecting the most appropriate duration is not
trivial as it can easily affect the results, as we demonstrated in [19] and [20]. It must be noted,
however, how fixed-window unitizing comes with many advantages: it can be easily automa-
tized, it is less prone to researchers’ subjectivity and it requires no training.
The work of [65] illustrated the shortcomings of fixed-length windows, in their case 1 second
long, for fusing different modalities for event-based affect recognition. The authors demonstrate
how a fixed-window approach can be challenging when multiple modalities need to be taken into
account, as the features that are needed for affect recognition can have different time-spans. As a
consequence, they advocate for an event-based approach. Similarly, AC research has shown how
affective phenomena, either natural [98] or artificial [77], have an inherent temporal sequencing
that should not be neglected, as it may be the case with a fixed-window segmentation. Such an
approach, in fact, might lead to boundaries of the units being placed within actions, thus resulting
in losing important information. For example, it might split an interaction before its ending (e.g.,
think of 2 people interrupted as they speak or of a smile following a seemingly harsh statement:
it might overturn the meaning of it, but would the statement and the smile end up into different
segments, such overturning will be lost).
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In event-based or variable-windows approaches, the window changes according to the specific
needs of the study. Often, this kind of segmentation coincides with manual segmentation, for
instance when it is aimed at isolating specific behaviors of interest. [28], in their study on fake
smiles, performed a temporal segmentation on their data, based on the identification of peak-
frames, i.e. frames portraying most strongly expressed smiles, and the subsequent creation of
fixed-length segments containing such frames. [22] manually parsed their human-robot interac-
tions into question-answer segments, to isolate the phenomenon of interest in their study. It must
be noted, however, that variable-length, data-driven segmentation does not necessarily coincide
with manual segmentation. Hemamou and colleagues [41] proposed an automatic methodology
for identifying slices of attention in job interviews. Their approach is automatic, yet it adopts
variable-length time-windows.
Our technique hopes to provide a solution that is both easier and less time-consuming than fully-
manual annotation, while also avoiding abrupt cuts that can put the integrity of annotations or
labeling at risk.
Outside the field of affective computing, time-series research has also provided many algorithms
that segment by leveraging change points in a data-stream, in a way that gives changes the same
importance they hold in cognitive segmentation. This field is known with the name of change
point detection.

3 From unitizing to change point detection

The theory that describes cognitive segmentation, the Event Segmentation Theory [107], high-
lights the role of changes in driving the perception of boundaries. As the EST shows, boundaries
are perceived by human observers when changes occur. As a consequence, it could be argued that
segmentation is, at its core, boundary detection, or at list strongly connected to it. Change-point
detection (here, CPD) or analysis consists of identifying the inference of a change in distribution
for a set of time-ordered observations [72]. CPD means, according to [14], partitioning an input
time series into a number of segments. In general, the goal of change-point detection is to detect
whether and when abrupt distributional changes take place in a time series [25]. It is a multidisci-
plinary area of research and it is crucial across many fields such as climate science, finance, signal
analysis, and so on. Many works have applied CPD to behavior detection or monitoring [23].
As pointed out in [6], comparing the performance of different CPD algorithms is difficult, as the
algorithms are usually tested against data-sets that are very different. Also, CPD algorithms are
seldom evaluated on real-world data [14]. Although the field started by dealing with univariate
time-series, with techniques focusing on mean, variance and autocorrelation [15], current CPD
research concentrates also on multivariate data. When dealing with multivariate data, the issue
of identifying change points requires taking into account the changes in the different variables as
well as the changes in the relationships among them. For instance, in emotion research bodily,
cognitive and environmental changes are observed, as well as changes in the correlation among
such factors [15]. Change-point detection is closely linked to change-point estimation. Differ-

11



ently from CPD, however, change point estimation aims to model and interpret known changes
in time series rather than detecting a change that has occurred. Non-parametric multivariate
CPD algorithms have been proposed, detecting changes in correlations and in means. However,
comparing such algorithms is often hard, as they are based on different statistical approaches.
Cabrieto and colleagues, therefore conclude how the decision on the algorithm heavily depends
on the data setting at hand, and how adopting different methods can help address all the different
changes involved.
Change-point detection algorithms can be divided into “online” and “offline” or “retrospective”.
Offline algorithms consider the entire data set at once, and then detect changes a-posteriori. Gen-
erally all change points from a given time sequence are identified in batch mode. On the other
hand, online, or real-time, algorithms run concurrently with the process they are monitoring,
processing each data point as it becomes available, aiming to detect a change-point as soon as
possible, ideally before the next change occurs [6]. Some argue that the results of offline CPD
algorithms are more robust [66]. A thorough survey of available CPD algorithms goes beyond
the scope of the current paper. The reader could understand more about the topic by reading
the survey by [51] and [6]. This paper will focus on a set of offline algorithms, that are, in our
opinion, viable options to achieve the automatic cognitive-inspired segmentation this work aims
at. In section V we present different CPD algorithms that can be exploited for behavior segmen-
tation.
It is worth mentioning that other possible automatic segmentation approaches are available from
research, for instance from computer vision literature. Such approaches, however, differ from
our perspectives and objectives and, therefore, go beyond the scope of our work. To have a more
thorough understanding of the topic, the reader might search into the computer vision literature.
More specifically, [100] offer a thorough survey on action recognition and segmentation method-
ologies, that can help understanding how computer vision has approached the issue of boundary
identification.

4 Movement primitives segmentation

The issue of identifying starting and ending points of segments is not exclusively related to affec-
tive computing and wasn’t only tackled through change-point detection. In movement analysis, it
often coincides with the need to parse movements into simpler action sequences, for instance by
relying on movement libraries [73], [10]. The term movement primitives segmentation indicates
the segmentation of movement data into smaller components and the identification of segment
points, i.e. starting and ending of each segment [64]. Generally, this kind of segmentation is
aimed at facilitating movement recognition, modeling and learning. In [64], Lin and colleagues
provide a framework for comparing different segmentation algorithms. Although their segmenta-
tion approach was proposed in the field of movement segmentation, we believe their framework
to be useful for segmentation algorithms in general, as it highlights several crucial aspects of
segmentation algorithms. Five different components can be leveraged to characterize any seg-

12



mentation algorithm:

• segment definition: this aspect indicates how segment boundaries are characterized in the
algorithm. Boundaries can depend on inner movement characteristics, usually domain-
specific (e.g. a punch), can be defined through changes in metrics from the data-stream
(e.g. changes in variance) or can be determined a-priori, for instance through templates.

• data collection: algorithms can work on data from various sources. For movement anal-
ysis, motion capture technologies and cameras are the most common and fruitful ap-
proaches, but other sensors and data sources can be applied, such as Inertial Measurment
Units (IMUs). This algorithm characteristic also regards the possibilities for collecting the
ground-truth, that can be obtained by having human observers label the data or by having
them directly segment the data stream to identify starting and ending points of segments.

• application-specific requirements: segmentation algorithms may be distinguished for
their ability to perform on data different from the training set. Often, however, they can be
very domain-specific.

• design: design criteria shape the algorithm. After the decision on the previously men-
tioned aspects has been made, the design process continues with the preprocessing that is
performed on the data, such as the application of low-pass filters to remove high-frequency
noise or the transformation of the feature space, with or without dimensionality reduction.
Also, a decision has to be made on the windowing (i.e., fixed vs. variable-length win-
dows).
Algorithms can be clustered into a) online segmentation approaches, b) semionline seg-
mentation approaches, c) online supervised segmentation approaches, d) online unsuper-
vised segmentation approaches.

• verification: a verification technique is selected to evaluate the performance of the algo-
rithm against a specific ground-truth.

Although, as mentioned before, this classification was proposed specifically in the field of move-
ment segmentation, it highlights common approaches and challenges that can help understand
the problem of segmenting through algorithms in general. In fact, a common issue seems to be
the possibility to achieve effective segmentation despite the specific research domain. We hope
our contribution can pave the way towards general-purpose segmentation algorithms.

5 Main contributions to the field

Our work was heavily inspired by the Event Segmentation Theory [108] and by its most recent
revisions [63]. Nonetheless, our contribution aims at moving from the theory, leveraging it to
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create a tangible tool for researchers. Although we aim at proposing a general-purpose tech-
nique, we envision its major area of application in the field of affective computing. In affective
computing, in fact, often a segmentation step is needed prior to annotation or labeling. More-
over, research in affective computing tackles complex phenomena, such as emotional behavior
and social interaction, whose investigation requires assessing both low-level features, like kine-
matics and high-level features such as cause-effects relations and goals. In this, our work adopts
a novel approach, as segmentation is often performed manually or automatically by adopting
a fixed window. Our technique, instead, performs a semi-automatic segmentation that follows
how cognitive segmentation is achieved. Our proposal shares with change-point detection from
time-series analysis the centrality of changes, although it stands out as segmentation is achieved
through the theory-compliant combination of the outputs of parallel change point detection from
different time-series. Our technique matches the importance of low-level kinematics with move-
ment primitives segmentation, although, in our case, low-level, mid-level and high-level features
are combined.
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III Preliminary studies

Before testing our automatic technique, we explored the feasibility of a EST segmentation ap-
proach through a set of experimental studies. The approach was tested against single user sce-
narios in [20] and social interactions in [19]. In both studies, unitizing was manually performed
according to the following steps:

• Step 1 – Annotating changes: annotating each change in the scene that can be related to
one of the 7 categories. The first step would be parsing the material and keeping track of
each change category that can be distinguished.

• Step 2 – Placing boundaries: detecting boundaries based on the changes in the scene.
According to [104], changes in different categories correlate with boundary perception,
with a spike in the probability of a boundary being detected after three changes. For this
reason, we cut the scene after changes in three different categories are found. What is
more, Levine and colleagues [61] illustrate how goals elicit boundary perception more
than other lower-level changes. As a consequence, in our technique, changes belonging to
the “goal” category value twice.

The next paragraphs describe such studies more thoroughly.

1 Testing the approach in a single user context

In [20], we assessed our technique on videos depicting single users. To this aim, we compared
our approach with one of the most commonly used approaches in automatic video analysis, i.e.
segmenting the video in fixed-length windows. Comparison was performed with respect to the
effect of the unitizing approach on annotation of video material. The study demonstrated that
cognitive-based segmentation better reflects the variance of the raters’ scores and it represents,
in the single-user context as well as in social interaction, a viable option for unitizing for behavior
analysis. In the study, we opted for a domain, i.e. public speaking performances, that could afford
comparison with the results obtained in [19] and described in subsection 2. Hence, we decided to
examine communication in terms of the language functions conveyed during the performances in
order to have the material annotated in terms of social and non-social aspects, as in our cohesion
studies described further.
According to [45], each language unit (e.g. a sentence or a word) can be classified according
to its contribution to the communication between the sender and the receiver of the conveyed
message. More precisely, six different functions of language can be distinguished:

• referential: describing a situation, object or mental state
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• poetic: focusing on the message per se, like in poetry

• emotive: adding information on the addresser’s mental state

• conative: directly engaging the addressee, as in imperatives

• phatic: affording, initiating and maintaining interaction, for instance in greetings

• metalingual: reflecting and communicating about the language itself.

Thoroughly describing such classification of the functions of language goes beyond the scope of
this manuscript. However, it is worth noting how some of these functions can be clustered into a
task and social oriented dimension. In fact, the referential and poetic functions serve the purpose
of properly conveying the intended message, whereas the phatic and conative functions address
the interactive and social aspects of communication.
After identifying our testing field, we defined how the EST-based approach could be operational-
ized to unitize our material. Table 8 illustrates how we operationalized each change category.
Figure 4 further depicts our approach.

Changes in EST Changes in our EST-inspired tech-
nique

Example in public speaking

C1.Time Timing and rhythm of the interaction The speaker starts gesticulating fast
C2.Space Motion direction The speaker starts pointing at some-

thing
C3.Objects Interaction with objects The speaker dismisses a tool she was

using
C4.Characters Character location The speaker leaves the stage
C5.Character interaction Interaction patterns The speaker directly addresses the au-

dience
C6.Causes Causes and appraisal Something happens as a consequence

of a new state of affairs
C7.Goals Goals fulfilled, dismissed, or replaced The speaker terminates to illustrate a

concept and moves to another

Table 2: The left column reports the changes categories as described in [104]. The column in the
middle shows how these changes were operationalized in our EST-based technique. The right
column provides an example of occurrence of each change.

In this experiment, we compared our approach with the common-practice thin-slices approach
with respect to: a) the average agreement on the raters’ scores; b) the extent to which these scores
reflect the intrinsic variability of the data-set. To this aim, a pool of 35 external observers4 rated
coding units obtained by applying the two different unitizing techniques to a set of 10 videos of

4our participants were all volunteers, recruited online
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(a) (b) (c)

(d) (e) (f)

Figure 4: Example of EST unitizing. The only changes from frame (a) to (b) and from frame
(b) to (c) are in the velocity of the speaker’s (hand) movements. The changes all fall into the
same category, i.e., timing (C1), therefore the frames all belong to the same event. Instead, from
frame (c) to frame (d) three different categories of changes are observed: again, in the timing of
movements, but also in the interaction with the object (C3), as the speaker is now incorporating
it in her talk, and in the goal of the speaker (C7), as she moves from introducing her talk to
the core of her theme. According to our technique, frame (c) and (d) thus belong to different
events. Differently, only one type of change (movement) is observed between frame (d) and (e)
and between (e) and (f), all belonging to the same event.

public speaking performances. The stimuli used in this study are audio-video recordings from
the FameLab public speaking competition held in Genoa, Italy. This data-set was selected as it
contains diverse performances and is rich in subtle non-verbal cues. The videos portray Fame-
Lab finalists attempting to illustrate a scientific concept of their choice as clearly as possible in
three minutes, while also engaging the audience. While doing this, they could use objects (e.g. a
puppet) to enrich their presentation. Videos were 3 minutes long.
A trained psychologist watched each performance and unitized it according to the principles
of the Event Segmentation Theory. Fig. 5 displays how changes were used to perform unitiz-
ing. Following the theory, a new coding unit is created whenever 3 changes are detected. Goal
changes were scored double, due to the importance of goals in boundary perception posited by
[62]. To compare the EST unitizing with a fixed-window automatic approach, we decided to au-
tomatically parse the videos into 20 seconds long segments (here, ”AUT” segments), following
[44].
To compare the effects of different unitizing techniques on the annotations, we devised a ques-
tionnaire assessing the language functions fulfilled by the speakers’ performances, in terms of
clarity and straightforwardness of the explanations and in terms of their ability to entertain and
engage the audience. The former were assessed through task items, the latter through social
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items (see table 3). The reason behind this is to map our results with our work on cohesion,
which includes a task and a social component [18]. In this study, we adopted 5-points Likert
items, from 1 (Not at all) to 5 (Yes, definitely) [31]. The questionnaire was in Italian. Ratings
were collected via a web application in an anonymous form. First, raters were welcome, and
given the instructions for their task. Then, they were asked to complete information about age
and gender and informed on data protection policies. Finally, they started to watch the coding
units, randomly administered, to be rated according to the items in Table 3. Each participant was
presented with 20 units, with the whole test lasting approximately 15 minutes. However, raters
could leave the experiment when they wished. The total number of gathered ratings was 495.

Item-task Item-social
Illustrates the topic clearly Makes jokes
Illustrates the topic thor-
oughly

Engages the audience

Helps the audience under-
stand the topic

Amuses the audience

Describes the topic exten-
sively

Interacts with the audience

Has the audience focus on
the topic

Fosters audience participa-
tion

Table 3: Items in the questionnaire for the task and social oriented aspects of communication
(English translation from Italian).

Unitizing ICC and 95%-CI
Task Social

AUT 0.98 (95% CI [0.97, 0.99]) 0.96 (95% CI [0.94, 0.98])
EST 0.96 (95% CI [0.94, 0.98]) 0.97 (95% CI [0.95, 0.98])

Table 4: ICC values and Confidence Intervals

To test the feasibility of our approach, we investigated the effect of the adopted technique in
terms of agreement of raters on the scores given to the questionnaire and in terms of variance of
such scores. Our analysis follows what illustrated in [19], where a similar technique was tested
against social cohesion.
Inter-raters reliability was assessed5 by means of a one-way average-measures (ICC) to evaluate
whether raters agreed in their ratings across unitizing techniques. Table 7 shows the obtained
values of ICC and the respective 95%-confidence intervals. All the resulting ICCs were in the
excellent range [56], indicating that raters had a high degree of agreement and that both the task
and the social dimensions were similarly rated across raters independently of the unitizing tech-
nique. Both unitizing techniques can be therefore considered viable to achieve suitable ratings.
For further analysis, the average of the raters’ scores is assigned to each coding unit.

5The significance threshold for all the tests in this study was set at .05
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To assess the extent to which raters’ evaluations reflected the variability, in terms of perfor-
mance, of the data-set we analyzed the variance of the scores for each unitizing technique. A
Brown-Forsythe test was run to compare variances among the techniques for both the task and
social aspects of communication and for the global scores. For the Task dimension, a marginally
significant difference was found among the AUT and EST units (p = .057). For the Social di-
mension, no meaningful difference was observed (p = .11). When considering the scores to all
questionnaire items, a statistically significant difference was found (p = .04). In all cases, vari-
ance was higher for EST units.
Our findings show how both techniques can lead to consistent scores among different raters. This
comes as no surprise, as automatic, fixed-window techniques are common-practice approaches
[38]. When investigating difference in variances of scores across techniques, a statistically mean-
ingful difference was observed when considering all questionnaire items (i.e. the global score),
whereas no significant difference was found for the task and social dimensions separately. It
should be noted that, motivated by the goal to compare these results on solo performances with
those on social interactions described in [19], the task and social categorization of items was
arbitrary. All items were designed to investigate, in fact, different language functions that could
be observed in the performances. For global scores, meaningful differences were observed for
units coming from the two techniques, suggesting an effect of the technique on the assessment of
communicative behavior. The videos we unitized to test our technique depicted 10 different con-
testants: some did not make it to the second round of the contest, some did and one of them won.
As a consequence, different levels of ability and communicative effectiveness were represented
in the videos, eventually leading to variance in the scores assigned to videos depicting different
contestants. In this sense, the (significantly) higher variance of the EST units illustrates how a
cognitive-inspired technique for unitizing affords a more thorough annotation of public speaking
performances, in terms of effectively conveying information about a topic (in this work, the task
dimension) and of entertaining the audience (here, social). The results show how an approach
for unitizing based on the characteristics of the event to be unitized leads to more thorough eval-
uations and annotations, therefore overcoming the limitations of a fixed-window approach. In
conclusion, the results hereby illustrated pave the way towards an automatic, cognitive-inspired
unitizing technique.

2 Testing the approach in a social interaction context

In, [19] we explored the viability of our approach by comparing it with different unitizing tech-
niques, namely: interval coding and continuous coding. With the aim of testing the approach in
the domain of social interaction, we selected cohesion as a testbed. The reason behind our choice
is that cohesion is a multidimensional construct having five recognized dimensions (task, social,
belongingness, group pride, and morale) [86], involving both emotions [69] and goals [61]. As a
consequence, cohesion was addressed by studies adopting different unitizing techniques and con-
cerning both psychological and computational aspects, thus affording theoretical comparisons.
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Whilst psychologists and sociologists investigated all five dimensions, at the present computer
scientists started to address computational methods for automatic analysis of the task and social
dimensions (e.g., see [44, 75]). In addition to investigating the effect of unitizing on annotation
and exploring the viability of our approach, our work further contributed to this research direc-
tion.
In affective computing, emergent states such as cohesion are often investigated by relying on
coding schemes. In fact, to capture dynamic group phenomena, research often relies on be-
havioral coding schemes (see [12] for an overview). These are systems for observing behavior,
measuring their occurrence (e.g., number of smiles) or intensity (e.g., warmth) [7]. Prior coding,
often the material is unitized, and the unitizing approach may vary depending on the goal of the
study, on technical constraints, or on the specific research question at hand [60]. In this study, we
investigated whether the coding of social interaction through coding schemes can be influenced
by the unitizing approach and whether and EST-based unitizing can lead to more reliable coding
and annotation.
The table 8 illustrates how each change category was operationalized in the specific domain of
cohesion annotation. The figure 5 provides further clarification.

Table 5: The left column reports the changes categories as described in [104]. The column in the
middle shows how these changes were operationalized. The right column provides an example
of occurrence of each change.

Changes in EST Changes in our EST-inspired tech-
nique

Example in group interaction

C1. Time Timing and rhythm of the interaction Group members start gesticulating
fast

C2. Space Motion direction Group members all move their heads
towards the speaker

C3. Objects Interaction with objects Participants dismiss a tool they were
using

C4. Characters Character location One group member leaves
C5. Character inter-
action

Interaction patterns Group members start mocking each-
other

C6. Causes Causes and appraisal Something happens as a consequence
of a new state of affairs

C7. Goals Goals fulfilled, dismissed, or re-
placed

Group members stop paying atten-
tion to the speaker

Our technique derives boundaries from changes in 7 situational dimensions, inspired by the EST
but fine-tuned for unitizing group interaction. The most remarkable difference regards the “time”
category. In our technique, time is conceptualized as the timing, or rhythm, of the interaction,
instead of changes in temporal reference of the scene.
To test our approach in the domain of cohesion, we conducted an online perceptual experiment
to compare three unitizing techniques with respect to how they affect:
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(a) (b) (c)

(d) (e) (f)

Figure 5:
Example of EST unitizing. In each panel, a bounding box identifies the changes in the scene. In

the upper row, only the speaker changes from frame (a) to (b) and from frame (b) to (c). The
changes all fall into the same category, i.e., character interaction (red), therefore the frames all
belong to the same event. In the lower row, three different categories of changes are observed:
from frame (d) to frame (e) the speaker changes (red), the motion direction changes (blue), and

the goals of the players change as one of them joking distracts other players from the game.
Hence a boundary is placed between frame (d) and (e). Again, only one type of change

(movement) is observed between frame (e) and (f), belonging to the same event.

• The average agreement on the raters’ scores;

• The extent to which these scores reflect the intrinsic variability of the data-set;

• The loss of information with respect to the scores an expert rater gave to the whole (non-
unitized) interactions. That is, a rater scoring a coding unit does it on the basis of informa-
tion which is limited with respect to a rater who scores the whole interaction [39].

The EST unitizing was expected to provide segments that are perceived as more natural and un-
derstandable by annotators and coders. Moreover, we hypothesized an effect of the unitizing
technique on the quality of the annotation.
Therefore, a pool of external observers rated task and social dimensions of cohesion on coding
units obtained by applying the three different unitizing techniques. The stimuli used in this study
are audio-video recordings from the Panoptic data-set [47]. Panoptic is a multimodal publicly
available data-set with the following features: natural interactions having rich and subtle non-
verbal cues, small groups of up to 8 people, and a large number of camera views (up to 521).
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The data-set includes recordings of people playing several social games in small groups. In this
study, we focused on the Ultimatum game. This game is often used in experimental economics
and psychology to study conflict and cooperation. Rules are very simple: one or more players,
the proposers, are given a sum of money to be split with another player(s), the responders. Pro-
posers and responders have a limited amount of time to discuss on how to split the money starting
from a proposal done by the proposers. At the end of the established time, if the players agreed
on the split, they gain the money, otherwise they loose it. The Panoptic data-set includes 5 Ulti-
matum’s sessions involving each one from 3 to 8 players. A visual inspection of the sessions was
performed by an expert psychologist. This resulted in the selection of 12 interactions displaying
a variety of behaviors related to the social and task dimensions of cohesion and spanning a broad
range of cohesion intensity. Selected interactions involved 3 to 7 players. Interactions were 46
to 57 seconds long (M=53s, SD=3.3s). We discarded interactions involving 8 players because
due to the large amount of persons simultaneously acting in the scene, occlusions often occurred
making the job of the raters difficult.
To address continuous coding we selected the unitizing technique specified in the ACT4Teams
coding scheme (ACT). A new unit is created whenever the speaker changes, whenever a speaker
utters several statements expressing a thought, whenever the main argument changes, or when-
ever the speaker talks for longer than 20 seconds. Videos were manually parsed to generate
coding units according to this technique. Concerning EST, a trained psychologist watched each
interaction and unitized it according to the principles of CEST. Concerning interval coding, we
adopted three different sizes for the fixed-window: 8s (AUT8), 15s (AUT15), and 21s (AUT21),
respectively. These values were chosen by taking into account previous work on analysis of
social interaction in small groups (15s as in [38]), and the average duration of the coding units
obtained by applying ACT (8s) and EST (21s). The conceptual model of cohesion by [13], orig-
inally applied to sport contexts, is at the basis of most questionnaires used in group cohesion
research (e.g., [36, 44, 24, 27, 99]). These questionnaires enable the assessment of cohesion
over its dimensions both in first and in third person (i.e., as self-perception and from the point
of view of an external rater). We pooled together items from [44, 99, 13] to create a question-
naire containing 10 items organized in two subscales, concerning the task and social dimensions
of cohesion. The Likert items of the adopted questionnaires consisted of 7 [44, 99] and 9 [13]
points, respectively. In this study, we adopted 5-points Likert items – from 1 (Not at all) to 5
(Yes, definitely) – as previous studies argued how a 5-points scale can make reading all answers
easier for the responders [31]. Table 6 reports the scale used and provides the source for each
item. Item from [13] was reported in third person and it was inverted.

Ninety-nine persons (37 males, 60 females, 2 preferred not to specify their gender) voluntarily
participated in the study. They were mainly recruited via email advertisements at several uni-
versities and research centers. Ratings were collected via a web application in an anonymous
form. First, raters were welcome, and given the instructions for their task. Then, they were asked
to enter information about age and gender. No information about the Internet connection (e.g.,
IP address) was tracked nor collected. Participants were informed on data protection policies.
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Table 6: The questionnaire on cohesion used in this study.

Task dimension Social dimension
Do you feel that group members share the same pur-
pose, goal, intentions? [44]

Were group members open and frank in expressing
ideas/feelings? [99]

Do group members give each other a lot of feedback?
[44]

How engaged in the discussion do group members
seem? [44]

Do group members seem to have sufficient time to
make their contribution? [44]

Do group members appear to be in tune/in sync with
each other? [44]

Do group members have conflicting aspirations for
the team’s performance? [13]

Do group members listen attentively to each other?
[44]

Do group members respect individual differences and
contributions? [99]

Does the group seem to share responsibility for the
task? [44]

Finally, they started to watch the coding units to be rated according to the items in Table 6. Cod-
ing units were randomly administered. Next to the video showing the coding unit, a screenshot
displayed the group of people to focus on. Raters could leave the experiment when they wished.
The total number of gathered ratings was 1771, we discarded 23 ratings due to wrong answers to
the honey pot questions appearing in the questionnaire each 10 coding units we asked to annotate.
Such questions were used to detected whether the rater was still paying attention to the task. The
average number of ratings for each rater was 15. Some raters contacted the experimenter to pro-
vide their feedback about the experience and reported having had difficulties to fully understand
the following two items of the questionnaire: Do group members respect individual differences
and contributions?, and Does the group seem to share responsibility for the task?. For this rea-
son, these items were removed before running the analysis. Inter-raters reliability was assessed6

by means of a one-way average-measures (ICC) to evaluate whether raters agreed in their ratings
of cohesion across unitizing techniques (AUT8, AUT15, AUT21, ACT, EST). Table 7 shows the
obtained values of ICC and the respective 95%-confidence intervals. All the resulting ICCs were
in the excellent range [56], indicating that raters had a high degree of agreement and that both
the task and the social dimensions of cohesion were similarly rated across raters independently
by the unitizing technique.

Table 7: ICC values and Confidence Intervals for the task and the social dimension of cohesion

Unitizing ICC and 95%-CI
Task Social

AUT8 0.96 (95% CI [0.94, 0.97]) 0.94 (95% CI [0.92, 0.96])
AUT15 0.95 (95% CI [0.93, 0.97]) 0.97 (95% CI [0.95, 0.98])
AUT21 0.98 (95% CI [0.97, 0.99]) 0.96 (95% CI [0.94, 0.98])
ACT 0.96 (95% CI [0.95, 0.97]) 0.97 (95% CI [0.95, 0.98])
EST 0.96 (95% CI [0.94, 0.98]) 0.97 (95% CI [0.95, 0.98])

The three unitizing techniques (including the three instances of interval coding) can be therefore
6The significance threshold for all the tests in this study was set at .05
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considered a viable option to achieve suitable ratings for use in hypothesis tests on social and
task dimensions of cohesion. For further analysis, the average of the raters’ scores is assigned to
each coding unit.
To assess the extent to which cohesion scores reflect the variability of the data-set, we analyzed
the variance of the scores for each unitizing technique. For both dimensions of cohesion, we
first checked for differences between the three instances of interval coding techniques (AUT8,
AUT15, and AUT21). Then we compared the interval coding technique which better reflects
variability with ACT and EST.
Task: A Brown-Forsythe test detected a significant effect of unitizing technique (F(2,85.06)=5.43,
p=.006). Post hoc comparisons detected a significant difference for AUT21 (SD=2.49) and
AUT08 (SD=1.99), p=.015, and for AUT21 and AUT15 (SD=1.51), p=.005. No significant
difference was found between AUT8 and AUT15 (p=.52). A Bonferroni correction was applied
to account for multiple comparisons.
Social: A Brown-Forsythe test was conducted. A significant effect of unitizing technique was
found (F(2,113.67)=27.20, p<.001). Post hoc comparisons (Bonferroni correction applied) de-
tected a significant difference for AUT21 (SD=1.61) and AUT08 (SD=1.5), p<.001, and for
AUT21 and AUT15 (SD=1.86), p<.001, and for AUT8 and AUT15 (p<.001).
Results show that AUT21 reflects variability better than AUT08 and AUT15, having the highest
SD for the task dimension and being comparable with AUT15 for the social one. We therefore
retained AUT21 for subsequent analysis.
Task: A Brown-Forsythe test was run to compare variances of ACT, AUT21, and EST. A signifi-
cant effect of unitizing technique was found (F(2,70.38)=12.48, p<.001). Post-hoc comparisons
(Bonferroni correction applied) detected a significant difference for ACT (SD=1.28) and AUT21
(SD=2.49), p<.001, and for ACT and EST (SD=1.72), p=.003. No significant difference was
found between AUT21 and EST (p=.07).
Social: A Brown-Forsythe test was run and a significant effect was found (F(2,104.91)=22.81,
p<.001). Post-hoc comparisons (Bonferroni correction applied) detected a significant differ-
ence for ACT (SD=2.15) and AUT21 (SD=1.61), p<.001, and for AUT21 and EST (SD=1.89),
p<.001. No significant difference was found between ACT and EST (p=.055).
Results show that EST and AUT21 reflect variability in the same way and better than ACT for
the task dimension. Concerning the social one, there is no significant difference between EST
and ACT, and both outperform AUT21. EST thus overall better reflects variability in both di-
mensions of cohesion.
To assess the effect of the unitizing technique on loss of information, we compared the scores
obtained with each technique with the scores provided by an expert rater who watched the whole
non-unitized interaction. For each interaction, Mean Square Error (MSE) was computed be-
tween these scores. We carried out this analysis on ACT, EST and the better-performing AUT
technique (AUT21). Due to a deviation from a normal distribution of MSE for AUT21 (Shapiro-
Wilk test, W=.80, p=.02), a Kruskal-Wallis test was conducted to examine the differences on
MSE according to the unitizing technique. No significant difference (χ2=2.85, p=.24, df=2)
was found. MSE did not deviate from a normal distribution (Shapiro-Wilk test). A Bartlett test
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of homogeneity of variances indicated that the assumption of homoscedasticity had been vio-
lated (p=.004). A Welch’s ANOVA was therefore conducted. A significant effect of unitizing
technique was found (F(2.0,14.5)=4.76, p=.03). Post hoc comparisons using the Games-Howell
test indicated that MSE for ACT (M=25.41, SD=19.37) was significantly different than AUT21
(M=6.92, SD=5.45), p=.037. EST (M=13.80, SD=13.12) did not significantly differ from ACT
and AUT21. Results show that for the social dimension of cohesion, ACT deviates most from
the scores given to the non-unitized interaction.
What is more, we decided to investigate in more depth the performances of the unitizing tech-
niques by proceeding coding unit by coding unit. Concretely, we ranked the coding units in order
of increasing the standard deviation of the raters’ scores. For each unitizing technique, we then
computed curve C representing the number of coding units falling below the n-th percentile of
standard deviation for n ranging from 5 to 100, step=5. Finally, we compared such a distribution
with the ideal distribution where all the coding units generated by a unitizing technique occupy
the first positions in the ranking. For performing the comparison, we computed the ratio between
the area under curve C and the area under the curve representing the ideal distribution. We ob-
tained the following ratios: for the task dimension, 0.57 for EST and ACT, 0.74 for AUT21; for
the social dimension, 0.60 for EST and AUT21, 0.65 for ACT. Concerning agreement, analysis
shows that all the unitizing techniques represent a viable option.
Regarding cohesion scores, EST outranked the other techniques in reflecting variability of cohe-
sion in the units for both dimensions. Whereas the task dimension is better assessed when longer
units are observed (EST and AUT21 outperformed ACT), our results do not support the same
idea for the social dimension, as shorter units (ACT) provided greater variability than longer
ones. We think this can be ascribed to raters needing more time to figure out task dynamics than
the social one from the players’ behaviors. Indeed, raters did not know the rules of the Ulti-
matum game. For this reason, short coding units could appear not enough “readable” for raters
in terms of assessing whether players share goals, intentions, and make contribution. Moreover,
following [85], observing an instance of task-related behavior (e.g., turn-taking), requires at least
two individual contributions lasting averagely 2s each, whereas emotion recognition can occur
in a shorter time (300 ms can be enough) [34]. This confirms that whilst short units were not
suitable for the task dimension (especially ACT), they could instead be leveraged for the social
one. As a consequence, when trying to evaluate both dimensions of cohesion, a flexible (in terms
of time-window) technique is expected to lead to better evaluations. In this study, EST’s better
performance in reflecting variability could be ascribed to the higher variability in units dura-
tion (M=21, SD=10), in line with the idea illustrated in [104] of event perception as a flexible
process, that can be fine or coarse grained according to the scope and goals of the perceiver.
Concerning the ranking of the coding units, the first 10% of entries (i.e., the first 12 entries)
reflects the results discussed above. For the task dimension, 6 units belong to the AUT21 cat-
egory, 5 belong to EST, and 1 to ACT. For the social dimension, 6 units belong to the AUT21
category, 3 belong to EST, and 3 to ACT. Interestingly, EST units are also diverse in the changes
categories they contain with respect to the dimensions of cohesion. The same EST unit had the
higher ranking (i.e., lower standard deviation) for both dimensions. This unit contained changes
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both in character goals and in their interaction. What is more, the next EST entries are not the
same entries for the task (4 entries) and social (2 entries) dimensions. With all 4 task entries
containing goal changes but only one also containing character interaction change, and both so-
cial entries containing changes in character interaction but not in character goals. This diversity
in changes distribution aligns with the definition of task and social cohesion provided by [18],
with the former indicating group goals and objectives and the latter indicating group members
concerns towards relationships within the group. Our results suggest that basing unitizing on the
course of the interaction over time (i.e., on changes in the interaction), rather than on time only
(AUT techniques) or on behaviors (ACT) can help tackle both the task and social dimensions of
group cohesion. An automated EST-based unitizing should focus on such changes primarily.

To conclude, the results of the preliminary studies presented in [19] and [20] highlight a) the
effect of the unitizing technique on raters’ agreement and scores and b) how the theoretical ap-
proach CEST is based on is a feasible possibility to perform unitizing of behavior.
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IV Algorithm for semi-automatic multilevel segmentation

Our algorithm is inspired by the EST [108] and, more specifically, by the role of changes in
driving boundary perception. The technique is thoroughly outlined in [19] and [21]. This section
focuses on its functioning and provides a work-flow describing how to use it for segmentation.
Figure 6 outlines the functioning of the algorithm.

Figure 6:
The functioning of our technique

1 A general purpose multilevel algorithm

The algorithm is, by design, general-purpose. It was created with the aim to provide a tool for
researchers and practitioners dealing with the need to segment their movement data. Although the
testing described in this manuscript, both in section III and V was carried out on video-recorded
and motion capture data, its scope of application is broader, due to its theoretical and technical
foundations. Theoretically speaking, the technique is general-purpose as it was inspired by a
theory that describes how cognitive segmentation is performed, spontaneously and effortlessly
in every-day situations, despite the specific current situation. This process, i.e. the perception of
the structure of time [105] is so pervasive in cognitive functioning that even 10 months old infants
have been found perceiving boundaries in the current situation [8]. Technically speaking, it is
general-purpose as one of the major steps towards segmentation is the identification of change
points through change-point detection algorithms. As shown in [6], change-point detection (here,
CPD) algorithms proposed in time-series analysis research, are general-purpose in their nature,
as change-point detection is a cross-disciplinary field, with applications ranging from medical
condition monitoring, climate change, and so on.
Following the EST illustrated in II, the segmentation performed through the technique is based
on the perception of changes in the current situation. Seven different change categories can be
observed, described by the EST. Each change category corresponds to a specific characteristic
of ongoing situation, for instance changes can be detected in the location of characters, in the
interaction of one or more characters with objects, in the timing of movements. Furthermore, a
distinction can be made between low-level and conceptual changes. In this the technique maps
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the approach described in [17], that conceptually divides movement features into low-level, mid-
level, and high level features. In this sense, the technique is multilevel. Table 8 maps each change
category with its level.

Changes in EST Level
C1. Time Low-level
C2. Space Low-level
C3. Objects Low-level
C4. Characters Mid-level
C5. Character interaction Mid-level
C6. Causes High-level
C7. Goals High-level

Table 8: The left column reports the changes categories as described in [104]. The right column
shows how these changes were clustered into low-level, mid-level and high-level conceptual
changes

Changes from C1 to C3 are low-level feature changes, C4 and C5 are mid-level features changes,
and C6 and C7 are high-level, conceptual, features changes.
Changes are the starting point towards segmentation: the combination of changes is, in fact, the
major novelty of the technique in segmentation research. Inspired by the EST [104], segment
boundaries depend on changes and on the fact that boundary perception depends not only from
perceiving changes but from perceiving changes from the same category at the same time. More
specifically, according to the theory, the chance of a boundary being perceived spikes after de-
tecting changes from three different categories. This combination, however, is not merely a sum
of such co-existing changes. As conceptual features have, according to research [63], a higher
power than low-level features in driving boundary perception, the sum of co-existing changes is
weighted, with conceptual changes scoring double.

2 Workflow

In this subsection, we will provide an outline of the functioning of our technique, also sketched
in figure 7. The technique follows four major steps:

• Feature analysis or annotation:
Features are either automatically analyzed or manually annotated. Before this step, each
feature of interest needs to be associated with the change category (see II) it pertains to.

• Change detection:
In this step, changes are identified in movement. Changes for each of the 7 EST categories
are analyzed separately. For change categories that can be automatically analyzed, change
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point detection algorithms are applied to detect meaningful changes in the data stream. For
higher-level changes, i.e. causes and goals, this step is strictly linked with the previous one
as changes are manually annotated.

• Boundary combination:
Once boundaries have been identified for each change category, they need to be com-
bined in order to perform segmentation. Weights can be adjusted according to the specific
research question at hand; however, weighing conceptual features higher than low-level
features maps current research on time structure perception [62], [63].

• Segmentation:
When change-points from different categories have been combined and therefore bound-
aries have been defined, they can be exploited to actually trim the data.

Figure 7: Workflow to achieve segmentation through our technique. Features from each change
category are extracted either automatically or manually. After, boundaries are detected through
CPD algorithms or via manual annotation. Boundaries are then combined and segmentation is
performed when boundaries from different change categories align.

2.1 Feature analysis or annotation

To place boundaries in a data stream, the first step is to select a set of features that a) suitably
describe the data and b) are compliant with the change categories posited by the EST. Thus,
changes in the data stream are modeled through changes in the features belonging to the dif-
ferent categories.. Among these, some may need to be manually annotated, whereas some may
be possibly extracted automatically from a given data-set. For conceptual features, manual an-
notation may be the best option for two main reasons. The first is that automatic detection of
such high-level features, for instance of goals, is still under debate in many research areas, due to
the complexity of the topic [52]. Fully automatic approaches are, to the best of our knowledge,
not available yet in a form that could be seamlessly integrated with our technique. The second
motivation comes from the fact that, notwithstanding the general purpose of the technique, the
main area of application we foresee for the output of the work is affective computing. As de-
scribed in II, in affective computing segmentation is often performed prior annotation or upon
the creation of a data-set. In such situations, we see our technique as a tool to lessen the burden
of researchers by lifting them a full manual segmentation while also keeping the control of the
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parsing of their data-set when it comes to conceptual, high-level features that usually are the core
topic of a specific study or data collection. Think, for example, of a study on group cohesion
[18]. Group cohesion is a multi-faceted emergent state, that may require a multi-level approach
to be efficiently investigated. A researcher working on such a topic might be interested in pars-
ing her data through the combination of low-level, mid-level, and high-level features. However,
whereas low-level and mid-level features can be automatically analyzed to extract change points
despite the specific field of application, when it comes to high-level features a manual annotation
ensures the high-level components of the research topic at hand are thoroughly analyzed in the
specific context of application. In the cohesion researcher case, both synchronization [44] and
goal alignment [49] can be leveraged to investigate cohesion in a group. While the former can
be fruitfully addressed automatically, the latter, however, may require manual annotation.
Upon deciding the features to extract automatically and those to annotate manually, each feature
needs to be mapped with one of the 7 different EST change categories. It must be noted that mul-
tiple features can be mapped to the same category, for example both turn taking and F-formations
[50] can be considered C5 changes, and that one or more change categories can be neglected for
a specific case study, for instance if no object is detected in a scene C3 will not be considered for
segmentation. Table 9 gives a general description of how EST change categories can be used to
cluster different changes in a given scenario.

Changes in EST Changes in our EST-inspired technique
C1. Time Timing and rhythm of the interaction
C2. Space Motion direction
C3. Objects Interaction with objects
C4. Characters Character location
C5. Character interaction Interaction patterns
C6. Causes Causes and appraisal
C7. Goals Goals fulfilled, dismissed, or replaced

Table 9: The left column reports the changes categories as described in [104]. The right column
shows how these changes were operationalized in our EST-based technique

2.2 Change detection

The identification of changes in the data is initially performed independently for each feature
and change category. After each feature is mapped with its EST change category (see Table 9), a
decision needs to be made on how to identify changes in the scene. As far as conceptual changes
are concerned, change detection of conceptual features coincides with the manual annotation of
such features. For instance, in the case of goal annotation, the researcher will set a range of
possible goals that the character(s) will hold in the scene to be segmented and manually annotate
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Goal Desired state of affairs
understand task all the players know what they have to do to and the rules

of the game
get cue the players find all the cues that are required or useful to

solve the enigma or complete the task
solve task the players have completed the task, have given the re-

quired response or solved the enigma

Table 10: Goal operationalization in the GAME-ON Dataset

them and how they unfold in the scene. In this case, annotating goals coincides with annotating
changes in goals. In our belief, goal annotation can be performed by relying on the notion of goals
as defined by [95]. Goals in their view are mental states representing preferred progressions of
a particular multi-agent system that the agent has chosen to put effort into bringing about. Such
vision was adopted to frame group goals as its general enough to work across different fields
as it refers to a generic definition of agent system. For instance, [67] leverage this approach to
design agent models for the domain of drama. Take, for instance, the annotation of C7 changes,
i.e. goals, in a data-set such as the GAME-ON data-set [70]. The data-set contains motion
capture and video recordings of groups of players participating in an Escape game. The game is
composed of 5 different tasks that teams have to complete to win the game. For instance, at the
beginning of the game participants have to find a box and the keys to open it. The annotation of
goals, and hence goal changes can be carried out by formalizing the states of affairs desired by the
players. In this, three main goals can be identified in the situation, as illustrated by table 10. The
desired state of affairs is therefore for all participants to find the cues and the goal is to get them.
For automatically extracted features, change detection is performed by relying on change-point
detection algorithms. These algorithms are general-purpose methods, from time-series analysis
research, that afford the identification of abrupt changes in a time-series [6]. In our technique,
the features from each change category are treated as independent time series, in order to identify
change points for each specific category. Chapter V offers a detailed analysis on five different
CPD algorithms that can be leveraged to automatically detect changes in a time-series, along
with hyperparameter optimization results for each algorithm.

2.3 Boundary combination

According to the perceptual studies carried out by [104], chances of boundaries being perceived
spike when changes are observed in three different categories at the same time. As a conse-
quence, our technique places boundaries when, following the two aforementioned steps, changes
are detected, simultaneously, across three different categories. It must be noted that boundary
perception does not coincide with the perception of changes in three categories, but rather it be-
comes significantly more likely. As a consequence, the study presented in section V offers data
on the optimal change threshold that can be applied to a specific data-set for placing boundaries.
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However, both preliminary studies illustrated in section III have adopted a 3 changes threshold.
In addition to this, conceptual changes weigh differently, i.e., they are scored doubled meaning
if a goal change is detected only one other change needs to be identified at the same time. This
follows current literature on segmentation describing the major role of goals in driving boundary
perception, as described in II.
To achieve boundary combination, i.e. to transform separate change points into boundaries, the
technique finds, for each time-point, detected or annotated change points. When a change point
is detected, the time-point is assigned a score equal to 1 for low-level and mid-level changes or
2 for high-level changes. This is performed on the output of change-point detection or of change
annotation for each category. As a result, each time-point is assigned a score ranging from 0 to
9, depending on the number of different changes that can be detected simultaneously. It must be
noted that a tolerance threshold is applied to change points, so that change points from different
categories are considered simultaneous when falling within a given range. In section V results
on the best threshold are reported. Algorithms 1 and 2 further illustrate the functioning of CEST:
changes from the different change categories are combined and a boundary is placed when the
number of changes at the same time point in the data-stream is higher than the selected threshold
for combination. The output is an array of boundaries for the data-stream.
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Algorithm 1 sum changes
1: for sample in data-stream do
2: for every change category do
3: for t in time-series do
4: if score(t) == 1 then
5: if change category is conceptual then
6: score(sample) = score(sample) +2
7: end if
8: if change category is not conceptual then
9: score(sample) = score(sample) +1

10: end if
11: end if
12: end for
13: end for
14: return score(sample)
15: end for

Algorithm 2 place boundaries
1: for sample in data-stream do
2: if score(sample) > threshold then
3: score(sample) is boundary
4: end if
5: end for
6: return boundaries array
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2.4 Segmentation

Segmentation is the ultimate goal of the technique. Changes have been combined into overall
boundaries that can be leveraged to segment the data. For Mocap data, EyesWeb [16] features a
segmentation module. For video, many software options are available, such as ffmpeg7. Cogni-
tive segmentation, as described by the EST [108] can have different grains. When segmentation
is applied to research, theories can be found that suggest the time-frames to be adopted [2], such
as the well-known thin-slices approach. However, in line with the multi-purpose nature of our
technique, the parameters described in this section as well as in section V can be tuned to adjust
window-sizes for one of all the change categories analyzed for a given study.

3 CEST wrap-up

In section II, a framework for segmentation algorithms proposed by [64] was illustrated. Despite
being proposed in the field of movement primitives segmentation, the framework can help un-
derstand CEST more clearly. Table 11 shows such description. Figure 8 illustrates segmentation
through CEST: a set of features describing a movement sequence is analyzed along the different
change dimensions postulated by EST [108]. According to the specific data-set, some change
categories may be neglected, in this case objects and characters. In the figure, black lines de-
pict changes and red lines depict segment boundaries. In this case, two boundaries are detected:
the first comes from the alignment of two low-level and one mid-level changes, namely time,
space and location changes; the second boundary is placed as one low-level, i.e. space and one
high-level, i.e. causes changes are detected at the same time.

Algorithm component Definition in CEST
segment definition segments are events as described by the Event Segmentation Theory

[108]
data collection CEST was tested on dance data-sets recorded through motion-

capture technologies, however, the segmentation approach is
general-purpose

application specific require-
ments

being inspired by how cognitive segmentation, a general mecha-
nism, works, CEST is general-purpose

design preprocessing is recommended and was performed in the evaluation
studies (see: section V); the window-size is data-driven, as it de-
pends on the amount and significance of changes in the data

verification in the evaluation studies (see: section V), F-scores metrics were
used to test the performance of CEST

Table 11: Definition of CEST according to the framework by [64]

7https://ffmpeg.org
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Figure 8:
Segmentation through CEST
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V Evaluation of the technique in the context of solo dance per-
formances

This chapter aims at illustrating the experimental evaluation of our technique. Notwithstanding
the general purpose of our technique, the initial validation was carried out in the specific con-
text of solo dance performances. This context was chosen as it affords a multilayered analysis
of movement features. Dance routines, in fact, tend to be multi-faceted in terms of range of
movement and of the affective qualities of the gestures [17]. The decision not to run the tech-
nique evaluation on the same single-user data-set analyzed in the preliminary studies, described
in chapter III, was motivated by the fact that the solo-stage performances data-set only consisted
of video recordings, with speakers often only portrayed in their upper-body. Moreover, no mo-
tion capture was available for those performances, thus restraining analysis possibilities for those
movements.
Besides evaluating the output of our approach, in our experiment we also investigate the optimal
change point detection algorithm for our purpose. The change-point detection step is crucial in
our approach, as change detection is the automatic counterpart of change perception in cogni-
tive, everyday-life segmentation. Detecting changes is in fact the starting point towards placing
boundaries and, hence, segmentation.
The evaluation phase was designed as follows: after selecting the data-set(s), we identified a
set of features that could both be automatically extracted and linked to the EST change cate-
gories driving segmentation [108]. Then, one conceptual change category (i.e. causes, indicating
changes in the appraisal causes of the current state of affairs, as seen by an external observer),
was annotated manually in order to provide change points. Moreover, the automatically extracted
features were manually annotated to create ground truth for evaluating the change-points detected
through a set of algorithms. Following this, a set of change-point algorithms were selected from
time-series analysis research, in order to select the best fit for the purpose of combining multi-
ple change categories in an overall boundary. For each algorithm, change-point detection was
performed on both scores and z-scores for each feature selected, thus preventing the results from
being influenced by coming from different samples, i.e. two different dancers each performing
different sets of routines. Moreover, the output was tested considering different time scales (i.e.,
different possible segmentation windows for each change point detection algorithm) separately
and combined, to explore the role of the granularity of the segmentation on the results. After
this, the work focused on boundary combination, with the aim of designing ways to combine
detected, or annotated, change-points into overall boundaries, thus mixing the effect of changes
across different categories, as according to the EST, happens in cognitive segmentation. At this
point, change-points transformed into boundaries were compared with a fully-manual boundary
annotation performed by a trained psychology following the EST principles. For each algorithm,
precision, recall and F1-scores were measured and compared through Friedman’s test [80].
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1 Data-sets

As mentioned before, we opted for dance data-sets for the evaluation. More specifically, we
selected a data-set of dance movements performed by dancer Cora Gasparotti in a series of
studies carried out under the EU-H2020-FET EnTimeMent project 8 and a data-set portraying
dancer Marianne Gubri performing contemporary dance routines during a set of studies from
the EU-H2020-Wholodance project 9. Unfortunately, both data-sets aren’t currently publicly
available. Both data-sets are composed of synchronized video and motion capture recordings
of the dancers moving according to different contexts, i.e., expressing different affective states
such as anger, impulsivity, and so on. Videos were recorded by means of two professional video-
cameras (frontal and lateral view, 1280× 720, 50fps) and motion capture data were recorded by
means of a 16-cameras Qualysis optical motion capture system (fs = 100Hz)10. A total of 20
video and motion captures recordings were analyzed for the evaluation, with a duration ranging
from 28 to 169 seconds.

Figure 9:
Dancer Cora Gasparotti (left) and dancer Marianne Gubri (right) on stage at CasaPaganini -

InfoMus

2 Feature selection

As illustrated in III, segmenting through our technique requires selecting the features to be an-
alyzed and/or annotated. For this case study, we selected a set of features according to the
principles described in IV. The following features were analyzed in their changing patterns:

8https://entimement.dibris.unige.it/
9http://www.wholodance.eu/

10https://www.qualisys.com/
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1. Global Quantity of Movement: this is the kinetic energy of the movement of the whole
body, and it is calculated by taking and analyzing the trajectories of 17 markers on the
dancer’s body.

2. Chest Quantity of Movement: by only calculating the kinetic energy of the movement of
one single marker located on a specific joint, i.e. the chest, this feature gives information
on the dancer’s shifts in the space.

3. Density of Chest Trajectory: this is an indicator of whether movement is localized in a
small region in the space rather than spanning the whole space, i.e., higher density indicates
that the actor has moved in a smaller region.

4. Directness of Head Movements: this feature gives information on whether head movement
in the space follows straight rather than curvilinear trajectories, i.e., higher directness in-
dicates that the actor has moved along straighter lines.

5. Causes: this conceptual feature describes the 3rd person appraisal of the dancer’s move-
ments, i.e., the causal attribution an external observer has given to her actions.

Table 12 illustrates how each feature maps with one of the EST change categories. These fea-

Change in EST Movement feature
C1. Time General Quantity of Movement, Chest Quantity of Movement
C2. Space Directness of Head Movements
C4. Location Density of Chest Trajectory
C6. Causes Appraisal of the movements

Table 12: Mapping between change categories postulated by the EST and movement features

tures were selected as we believe they can provide an effective description of our data-set across
different dimensions. Moreover, this feature space allows a representation of the data-set through
low-level (C1, C2), mid-level (C4) and high-level (C6) features. As the reader might have no-
ticed, our instantiating of the technique does not take into account 3 EST change categories,
namely: objects (C3), character interaction (C5), and goals (C7). For C3 and C5, this is due
to the fact that the dancer did not interact with objects nor other characters in the videos. For
C7, our choice comes from the idea of only analyzing one conceptual, high-level feature, since
such analysis needs to be done manually by an external observer, thus adding arbitrariness to the
annotation. As a consequence, causes of movements, rather than the dancer’s goals are anno-
tated, as the structure of the videos (i.e., the content of her dance performances) afforded a clear
enough understanding of the causes between her movements, such as changes in the context to
be represented. Feature analysis for C1, C2, and C4 was carried out through the EyesWeb XMI
platform [16], whereas C6 was manually annotated using Elan [103], as illustrated in 3. For
automatic feature extraction, 17 out of a total of 61 markers placed on the dancers’ bodies were
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tracked and analyzed, namely: chest, head, hips, arms, forearms, feet, hands, shins, thighs and
shoulders.
Following this, the work proceeded with a manual annotation for the conceptual features and
with change point detection for the others.

3 Change annotation

In order to create the ground-truth, videos were manually annotated to detect changes pertaining
to those EST categories that could be identified in the scene. This phase had two goals: creating
the ground truth to evaluate the performance of the algorithms taken into consideration for our
technique and providing boundaries for the conceptual feature C6, i.e. appraisal causes, whose
automatic annotation goes beyond the scope of this work.
The videos were annotated by a psychologist11 that was extensively trained on the EST principles.
The annotation was carried out through the ELAN annotation software, allowing multi-layered
annotation. ELAN annotation files can also be loaded and manipulated through ANVIL. Figure
10 presents a screenshot from ELAN.

Figure 10: The annotation task.

The videos were annotated as follows:
11The psychologist had also previous dance experience. However, her take on the dance movements, as well as

notes from the dancers were not taken into account, as our annotation task aimed at collecting an external observer’s
point of view on the dancers’ movements.
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• selecting change categories: the EST categories that could be identified in the scene were
selected to be annotated. For instance, since the character(s) in the scene were never seen
interacting with objects, the object interaction category was neglected.

• annotating changes: each change category selected was annotated separately leveraging
the ELAN segmentation mode. This feature allows placing a change point each time a key
is pressed, thus allowing quick and seamless annotation. This phase is detailed later in the
text.

• placing boundaries: boundaries were placed according to the annotation, where annotat-
ing a change from a given category equals placing a boundary in the scene for that category.
The output of the ELAN annotation is a text file containing the timing of the annotations in
milliseconds formats. In this phase, such timings needed to be transformed into frames to
allow comparisons with the CPD algorithms that analyze data at a frame-by-frame level.

• fusing boundaries: in this phase, boundaries from the different categories are combined
according to the procedure described, for automatic boundaries, in section 5.

As mentioned before, after being selected according to the specific scenarios to be segmented,
change categories were annotated one by one, in order to allow comparison with the output of
the CPD algorithms for each different dimension. For the single-user scenario, that in this case
consisted of a set of dance recordings portraying one performer on stage, the following change
categories were analyzed:

• time: a time change is observed when the timing of the action changes, for instance, the
agent starts moving slower or faster or the pace visibly changes.

• space: the direction of the movement changes, for instance, the head of the performer
points at a different direction.

• location: the position of the performer in the scene shifts, moving from one side of the
other.

• causes: the appraisal that can be used to explain the current state of affairs, in this case
being the change in the dance performance.

The output of the annotation procedure is illustrated by table 13.
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Change category Number of boundaries
detected

C1.Time 85
C2.Space 120
C4.Character location 88
C6.Causes 83

Table 13: The table reports the number of boundaries that were manually detected and annotated.
The manual annotation was performed on a total of 20 videos.

4 Change-point detection

4.1 Pre-processing

Before running change-point detection on the data, a pre-processing phase was necessary, due
to the specific characteristics of the material at hand. In our case, whereas the movement fea-
tures were analyzed from the motion capture recordings of the dancers, sampled at 100Hz, the
manual annotation, for the cause-related conceptual features and for creating the ground-truth,
was performed from a synchronized video, sampled at 50Hz, of the same recording. Therefore,
as a preliminary step, motion capture data were down-sampled in order to make the annotation
comparable with the output of feature extraction. Moreover, outliers were removed, in order not
to have them compromise the analysis. For this task, a Hampel filter, available in the Matlab
software, was applied [79] and data were low-pass filtered to remove possible noise. Following
the indications in [91], an IIR low-pass filter having a 15Hz cutoff frequency and the transfer
function reported in [91] was applied.

4.2 Candidate algorithms

As described in chapter IV, once features are extracted or annotated, change point detection
needs to be performed on the data to identify meaningful changes and to place boundaries.
This section will illustrate a study on a set of algorithms from time-series analysis research that
was carried out to identify the better option for the change-point detection step that is, indeed, the
core of segmentation. Many CPD algorithms are available in the literature to analyze changing
patterns in time series (see 3). For our technique, several different options were explored. The
rationale behind our selection is that the candidate algorithms need to be widely acknowledged
in CPD research and need to have a theoretical approach to change detection that can be mapped
with those of the EST. Table 14 gives a snapshot of the algorithms that were taken into consider-
ation.
More specifically, we tested:
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Name References Core characteristics mapping with EST
RuLsif [66] non-parametric divergence estimation of point

density
importance of changes

E-Divisive [71] change point detection as clustering boundaries as the most informative part
of a sequence

BOCP [1] change point as probability estimation role of prediction
PELT [53] prioritizing minimizing cost function segmentation as a real-time cognitive

process

Table 14: The table demonstrates the candidate algorithms for our segmentation task.

• RuLsif [66] is a change-point method based on density estimation. The authors apply a
density-ratio estimation method called the unconstrained least-squares importance fitting
(uLSIF) developed by [48] to CPD. RuLsif is in fact an extension of uLSIF, which uses
relative rather than absolute density ratios, thus obtaining better estimates with less com-
putational costs. The core of the technique lies in estimating the (non-parametric) diver-
gence between the probability density of time-series samples from subsequent segments.
To achieve such divergence estimation, the technique uses relative Pearson divergence.
The rationale behind considering this technique for our purposes is the importance that
divergence of subsequent segments have in boundary detection, which is in line with the
idea that cognitive segmentation is, as a matter of fact, change detection [108]. In testing
the performance of RuLsif for our purposes, we explored different possible parameters
configurations. Table 15 summarizes the parameters we tested for this algorithm.

Parameter function range test
alphas parameter used for the computation

of the Pearson divergence
0 - 1 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

window size temporal scale 10 - 250 frames 10, 25, 50, 100, 150, 250
threshold the threshold to be applied for de-

tecting a change. This corresponds
to quantiles of the divergence score

0 - 1 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

Table 15: The table illustrates the parameters that were tested for the RuLsif [66] algorithm.
Default values were used for folds and sample size of the segmentation window

• E-Divisive [46] detects change points by comparing and measuring the characteristic func-
tions of the distributions of subsequent segments of a time-series. In brief, it finds multiple
change-points by iteratively applying the procedure for a single change point. Then, the
statistical significance of each estimated change point is measured through a permutation
test. The core concept is that characteristic functions uniquely describe a probability dis-
tribution and therefore changes in such functions equal changes in the distribution. To
summarize, E-divisive segments through a series of steps: a) segmenting the time series
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into two segments for which the characteristic functions maximally differ; b) determining
the significance of the change point by running a permutation test; c) dividing the sequence
into separate units according to the detected change points and searching for further change
points in each of them. In this, E-divisive maps with the idea that the most informative por-
tion of a scene lies between boundaries rather than within boundaries [104].

Parameter function range Test
minimum
inter-onset
interval

minimum interval between two dif-
ferent boundaries

10 - 250 10, 25, 50, 100, 150, 200

statistical sig-
nificance

statistical significance of the differ-
ence between samples from differ-
ent segments

0 - 1 0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05

Table 16: The table illustrates the parameters that were tested for the E-divisive algorithm [71]
algorithm.

• BOCP [1] is a Bayesian change-point detection algorithm for online inference. It is based
on the assumption that a sequence of observations can be divided into non-overlapping
units, thus placing change-points into the sequence. The core of the algorithm lies in the
estimation of the posterior probability of the current run length for a unit at a given time.
What is more, we tested two different instances of OCP, namely the best Bayesian and
standard Bayesian. This algorithm was selected for this study as, in [14], it was reported
as having the best performance when compared with other common approaches more im-
portantly, as it takes into account the role of prediction in boundary perception postulated
by the EST [106].

Parameter function range Test
minimum
inter-onset
interval

minimum interval between two dif-
ferent boundaries

10 - 250 10, 25, 50, 100, 150, 200

statistical sig-
nificance

statistical significance of the differ-
ence between samples from differ-
ent segments

0 - 1 0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05

Table 17: The table illustrates the parameters that were tested for the OCP algorithm [1].

• PELT [53], or pruned exact linear time, applies optimization techniques to find change
point by minimizing a cost function. The algorithm deals with the problem of the increase
in the number of change points over time by adding a term to the cost function so that the
optimal number and location of change points is retrieved. PELT has a computational cost
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that is linear in the number of observations. Along with being widely used in change point
detection research [40], this algorithm was selected as it works almost in real-time, as in
fact does cognitive segmentation, a spontaneous process of the human mind [105].

Parameter function range Test
minimum
inter-onset
interval

minimum interval between two dif-
ferent boundaries

10 - 250 10, 25, 50, 100, 150, 200

statistical sig-
nificance

statistical significance of the differ-
ence between samples from differ-
ent segments

0 - 1 0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05

Table 18: The table illustrates the parameters that were tested for the PELT [53] algorithm.

To sum up, we explored five different techniques, for 4 different features, combined into 3 EST
change categories, over two different kinds of data and for all we explored two different temporal
configurations. According to research on event structure perception [76], [105], cognitive seg-
mentation varies in the temporal span, ranging from fine-grained to coarse-grained segmentation.
To map this variability, we decided to investigate the optimal segmentation window for our time
structure analysis. With this goal, for each of the 4 different features, we tested each technique
over different temporal scales, ranging from 10 to 250 frames.
For each algorithm, we obtained a perscale segmentation and a multiscale segmentation. While
the former provides a specific temporal scale, by finding the optimal temporal scale for each fea-
ture, the latter gives us information on the saliency of a boundary across different temporal scales.
The multiscale analysis, in fact, combines the results of all the different perscale segmentations.
For instance, a boundary can be placed at a given time-point when the segmentation window
is shorter but can ”disappear” as the window is enlarged, or vice-versa. As a consequence, the
detection of a boundary, over different time-scales, at the same point can be considered as an
indicator of the saliency of that particular instant, whose change matters across different ob-
servation time-spans. Multi-scale segmentation, can be argued, provides pivotal change points
in a given time-series more accurately than per-scale segmentation. In addition to the CPD al-
gorithms, a fixed-window approach was adopted, here referred to as AUT, as often automatic
segmentation coincides with selecting a time-window (see section II). AUT sets a change point
every fixed number of samples according to the selected temporal scale (i.e., every 10, 25, 50
samples, and so on). Segmentation was performed on each change category to be compared with
automatically extracted changes and with combined changes, i.e. boundaries.
The following section details boundary combination.
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5 From change points to boundaries

After change-point detection is performed on each different component, i.e. change category,
change-points need to be turned into boundaries, combining changes from different categories.
According to the EST [108], boundary perception not only centers around perceiving changes
from different change categories, but it also requires such different changes to be co-existent at
the same time. A one-minute clip where the only changes lie in the velocity of hand movements
might be perceived, by an external observer, as having no boundary as well as one where changes
in, for instance, the velocity of hand movements and the location of the character are placed
very far in time one from another [104]. As a consequence, our technique performs an ad-
hoc combination of the outputs of change-point detection, which is grounded on most recent
research on cognitive segmentation, stating how conceptual changes (i.e., causes and goals) are
more powerful in driving segmentation that low-level changes [63]. Therefore, we propose a
combination that weights detected, or annotated, changes in each category, assigning a score of
1 to low-level changes and of 2 to conceptual changes.

EST change EST weight weight in our experiment
C1.Time 1 1
C2.Space 1 1
C3.Objects 1 not considered in our experiment
C4.Characters location 1 1
C5.Character interaction 1 not considered in our experiment
C6.Causes 2 2
C7.Goals 2 not considered in our experiment

Table 19: The table reports the proposed weights to be assigned to boundaries from each change
category according to the theory and weights assigned in our experimental study

Before combining change-points, detected changes in the same time-series that were closer than
10 frames were fused, with the boundary being placed between the two frames. For instance,
a change-point detected at frame 380 and another one at frame 390 will result in a boundary
being placed at frame 385. This post-processing is necessary, to clean the output of CPD from
boundaries that are too close, in time, to be both meaningful when compared to boundaries
perceived by a human observer [54].
After this, boundaries from different categories were fused. To do so, each frame containing a
change point was assigned a score, according to the scoring system described in table 19. For
each time-point, therefore, an overall boundary was obtained by combining the scores from the
different categories. With this procedure, 5 different possible segmentations were generated from
the score of each time point. Scores ranged from 1 when only one low or mid level change was
detected to 6, when changes were detected simultaneously in all change categories. According
to [104], boundaries are more likely to be placed in a scene when changes are detected across
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three different categories, and according to [63], conceptual changes drive boundary perception.
However, in this study, all possible boundary combinations were explored, in terms of their
ability to replicate manually annotated ground-truth data, as measured by F1-statistics.

6 Results

To evaluate our approach to semi-automatic segmentation, we ran a set of experiments. Statistic
analysis on our data had different aims:

• testing the performances of CPD algorithms on our data-set, by measuring F1-scores for
each CPD technique on each feature, for scores and z-score;

• measuring the performance of CEST, in terms of F1-scores, by testing it against the ground-
truth obtained through manual annotation

• comparing the performance of CEST with that of automatic fixed-window (here, AUT)
segmentation

• identifying the best CPD technique for CEST

• comparing F1-scores for perscale and multiscale segmentation

• comparing F1-scores for segmentation based on low-level and mid-level features only with
segmentation including conceptual features

• identifying the best parameters for the technique

In our experiment, automatically detected change points and boundaries were compared with
the manual ground-truth obtained through the procedure described in section 3. The testing on
CPD algorithms was aimed at exploring whether our results confirm previous research on CPD
[14]. The comparison between perscale and multiscale segmentation had the goal to assess the
role of the temporal scale in segmentation, as research, both in cognitive science [104] and af-
fective computing has stressed the importance of this dimension for behavior analysis. In terms
of performance, the data hereby presented are the first attempt at evaluating CEST, although the
theoretical approach was proven effective in [19] and [20]. Moreover, we also compared the
performance of CEST with that of automatic, fixed-window segmentation, here referred to as
”AUT” as it is a very common research approach to the unitizing problem (see section 2).
Although all the CPD techniques were selected according to their performance in previous stud-
ies and to their compliance with EST (see: table 14), the testing was also aimed at providing
results on the best algorithm for segmenting through CEST and on the best parameters. All anal-
ysis were performed on the two data-sets jointly. Moreover, we combined the data-sets into a test
data-set and validation data-set. We explored 100 different test-validation possible combinations,
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obtained by combining all recordings whose GT annotation contained a percentage between 70
and 80 of total changes from all the recordings in the data-set.
All the analysis in this section were carried out using JASP statistics software [68]. All analysis
were run on scores and z-scores. Here, we report those performed on scores. Results for z-scores
are reported in the appendix, as long as tables detailing all the analysis. Here, we summarize the
main results.

6.1 Results on changes

Before evaluating the performance of CEST, we tested the performance of each CPD algorithm
on our data-sets. Automatically detected changes were compared against ground truth data ob-
tained through manual annotation by a trained psychologist. Outputs of CPD were compared
by measuring, for each change category, precision, recall and F1 scores of each algorithm. The

Algorithms Change categories Temporal grain Measures Scores

• AUT

• RuLIF

• EDivisive

• OCP

• OCP best

• PELT

• PELTP

• C1. time

• C2. space

• C4. location

• per-scale

• multi-scale

• precision

• recall

• F1-scores

• scores

• z-scores

Table 20: The table sums up the testing performed on time, space and location changes.

results are further detailed in the Appendix.
F1-scores were measured, for each component and for each temporal scale by comparing auto-
matically detected changes with changes manually annotated by a a trained psychologist. Tables
21, 22 and 23 show metrics for each change category on validation sets. Results for test sets and
for z-scores are reported in the Appendix.

6.2 Results on boundaries

The boundaries obtained through the weighed combination of automatically detected and an-
notated changes were compared with ground-truth data obtained via manual annotation from a
trained psychologist. Table 24 reports the tests performed on boundaries. For all validation and
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AUT RuLIF CPD OCP OCPB PELT PELTP
Temporal scale perscale Min. value 0.238 0.223 0.260 0.230 0.241 0.259 0.248

Max. value 0.294 0.299 0.326 0.354 0.359 0.327 0.308
Mean 0.270 0.260 0.294 0.309 0.310 0.292 0.278
standard deviation 0.011 0.014 0.014 0.023 0.022 0.015 0.015

multiscale

Min. value 0.285 0.318 0.322 0.285 0.316 0.324 0.324
Max. value 0.402 0.415 0.419 0.369 0.407 0.425 0.417
Mean 0.338 0.363 0.364 0.324 0.360 0.369 0.363
standard deviation 0.025 0.021 0.021 0.017 0.018 0.021 0.019

Table 21: Metrics for F1-scores for time change category

AUT RuLIF CPD OCP OCPB PELT PELTP

Temporal scale

perscale

Min. value 0.206 0.268 0.232 0.174 0.148 0.241 0.228
Max. value 0.290 0.354 0.322 0.258 0.242 0.341 0.314
Mean 0.249 0.314 0.279 0.207 0.198 0.293 0.272
standard deviation 0.019 0.019 0.020 0.014 0.018 0.021 0.020

multiscale

Min. value 0.285 0.318 0.322 0.285 0.316 0.324 0.324
Max. value 0.402 0.415 0.419 0.369 0.407 0.425 0.417
Mean 0.338 0.363 0.364 0.324 0.360 0.369 0.363
standard deviation 0.025 0.021 0.021 0.017 0.018 0.021 0.019

Table 22: Metrics for F1-scores for space change category

AUT RuLIF CPD OCP OCPB PELT PELTP

Temporal scale

perscale

Min. value 0.206 0.268 0.232 0.174 0.148 0.241 0.228
Max. value 0.290 0.354 0.322 0.258 0.242 0.341 0.314
Mean 0.249 0.314 0.279 0.207 0.198 0.293 0.272
standard deviation 0.019 0.019 0.020 0.014 0.018 0.021 0.020

multiscale

Min. value 0.178 0.233 0.208 0.174 0.166 0.212 0.169
Max. value 0.275 0.301 0.294 0.258 0.240 0.312 0.265
Mean 0.230 0.268 0.250 0.207 0.201 0.269 0.209
standard deviation 0.018 0.015 0.018 0.014 0.015 0.021 0.018

Table 23: Metrics for F1-scores for location change category

test sets, F1 scores from all techniques were compared by relying on Friedman’s statistics, fol-
lowing [88] and [32]. Analysis were run on results on perscale and multiscale segmentation for
segmentations, i.e. boundary combinations, obtained on low-level automatically extracted fea-
tures only and for segmentations obtained on conceptual level and low and mid-level changes.
For each temporal grain - boundary combination, we explored, for each set, the effect of the
algorithm on the F1-scores, to evaluate whether using a specific algorithm would lead to a better
performance of the technique for segmentation.

Validation sets:
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Algorithms Boundary combinations Temporal scale Measures Scores

• AUT

• RuLIF

• EDivisive

• OCP

• OCP best

• PELT

• PELTP

• with cause changes

• without cause changes

• perscale

• multiscale

• precision

• recall

• F1-scores

• scores

• z-scores

Table 24: The table sums up the testing performed on boundaries obtained by combining low-
level and mid-level features only (without cause changes) and by combining all features.

When analysis were performed on without-causes perscale segmentation, a significant main ef-
fect of the algorithm on F1-scores was found for tests run on scores χ2(6) = 396.112, p. < 0.001
and z-scores χ2(6) = 398.879, p. < 0.001. Despite F1-scores for without-causes segmentation
being lower than with-causes segmentation, the statistics on with-causes segmentation led to
similar results, for both scores χ2(6) = 541.208, p. < 0.001 and z-scores χ2(6) = 537.691, p. <
0.001.
Moving to multi-scale segmentation, a significant main effect of the algorithm on F1-scores was
found for tests on without-causes segmentation run on scores χ2(6) = 444.731, p. < 0.001 and
z-scores χ2(6) = 411.349, p. < 0.001, and for tests on with-causes segmentation run on scores
χ2(6) = 522.524, p. < 0.001 and z-scores χ2(6) = 408.675, p. < 0.001. For all possible tempo-
ral scale vs segmentation configurations, Conover’s post hoc comprarison revealed that F1-scores
for AUT were lower than for the other algorithms. This was true for scores and z-scores.

Test sets:
Analysis performed on without-causes perscale segmentation have highlighted a statistically
meaningful effect of the algorithm on F1-scores, for tests on scores χ2(6) = 142.853, p. < 0.001
and z-scores χ2(6) = 135.297, p. < 0.001 as well as for tests performed on with-causes perscale
segmentation scores χ2(6) = 807.615, p. < 0.001 and z-scores χ2(6) = 689.075, p. < 0.001.
Regarding multi-scale segmentation, the effect of the algorithm was confirmed for without-
causes segmentation on scores χ2(6) = 129.005, p. < 0.001 and z-scores χ2(6) = 110.153, p. <
0.001 as well as for with-causes segmentation for scores χ2(6) = 421.576, p. < 0.001 and
z-scores χ2(6) = 398.998, p. < 0.001. For all possible temporal scale vs segmentation configu-
rations, Conover’s post-hoc comparison highlighted that F1-scores for AUT were lower than for
the other algorithms. This was true for scores and z-scores.
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The full results from Conover’s post-hoc testing are reported in the Appendix. In all analy-
ses, AUT F1-scores were significantly lower than scores obtained by segmenting through the
CPD algorithms.

F1-scores for all algorithms are reported in the appendix, for the sake of brevity, tables in this
section only depict the highest-scoring techniques in validation and test sets along with the F1-
scores obtained by AUT segmentation.
Overall, OCPB and OCP gave the best performance. Tables 25, 26 and 65 summarize the results
of the best performing techniques.

temporal scale
perscale multiscale

conceptual yes OCPB(OCPB) OCP(OCPB)
features no OCP(OCP) OCP(OCP)

Table 25: Best performing technique for each configuration, assessed on scores, in the validation
sets (test sets in brackets).

algorithm temporal scale segmentation F1-scores
OCPB perscale with conceptual features 0.775
OCP without conceptual features 0.187
OCP multiscale with conceptual features 0.779
OCP without conceptual features 0.187

AUT
perscale with conceptual features 0.374

without conceptual features 0.108

multiscale with conceptual features 0.290
without conceptual features 0.101

Table 26: Best F1-scores and AUT F1-scores for the validation set

algorithm temporal scale segmentation F1-scores
OCPB perscale with conceptual features 0.801
OCP without conceptual features 0.190
OCPB multiscale with conceptual features 0.789
OCP without conceptual features 0.188

AUT
perscale with conceptual features 0.387

without conceptual features 0.121

multiscale with conceptual features 0.271
without conceptual features 0.116

Table 27: Best F1-scores and AUT F1-scores for the test set

Once the best performing techniques were identified, tests were run to assess whether the tem-
poral grain of the segmentation led to significantly different scores. As table 28 demonstrates,
t-statistics (α = .01) found no statistically meaningful difference between perscale and multi-
scale segmentation. Results were similar for all other CPD techniques.
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segmentation perscale multiscale t df p

with conceptual features
OCP OCP -1.472 99 0.072
OCPB OCPB -1.761 99 0.041
AUT AUT 8.185 99 1.000

without conceptual features
OCP OCP 0.808 99 0.789
OCPB OCPB 12.004 99 1.000
AUT AUT 13.392 99 1.000

Table 28: Comparing perscale and multiscale segmentation

In addition to this, scores were compared in order to assess whether segmentations including
conceptual features led to meaningfully higher scores than segmentations based on low-level and
mid-level features only. The results, illustrated in table 29 and table 30, indicate that segmenta-
tions including conceptual features lead to higher F1-scores.

Without conceptual features With conceptual features t df p
OCP perscale OCP perscale -120.543 99 < .001
OCP multiscale OCP multiscale -123.276 99 < .001
OCPB perscale OCPB perscale -182.081 99 < .001
OCPB multiscale OCPB multiscale -214.630 99 < .001

Table 29: Comparing segmentations without and without conceptual features, validation sets

Without conceptual features With conceptual features t df p
OCP perscale OCP perscale -74.051 99 < .001
OCP multiscale OCP multiscale -72.426 99 < .001
OCPB perscale OCPB perscale -78.570 99 < .001
OCPB multiscale OCPB multiscale -114.245 98 < .001

Table 30: Comparing segmentations without and without conceptual features, test sets

Tables 31 and 32 show the results of GRID search on scores for the best performing techniques.
Results on z-scores are reported in the Appendix. Although CEST is, by design, general pur-
pose, we believe further research is needed to identify the best parameters to leverage CEST for
segmentation across different research scenarios, such as group or dyadic interactions. We hope
future developments will shed more light on this topic. As far as boundary combination is con-
cerned, for both OCP and OCPB, the mean optimal threshold for all sets was 3 for segmentations
without conceptual features and 2 for segmentations with conceptual features. In this case, we
hypothesize this threshold will hold across different research aims, as it maps the spike in the
probability to detect boundaries after changes in three different categories posited by the EST
[104], along with the importance of goals in driving boundary perception [62].
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component temporal scale threshold sig. λ α β κ window size

time perscale 0,4 200 0,01 100 1 250
multiscale 0,1 0,4 200 0,01 100 1

space perscale 0,1 100 1 0,01 0,01 250
multiscale 0,1 0,1 100 1 0,01 0,01

location perscale 0,1 50 100 0,01 1 250
multiscale 0,1 0,1 50 100 0,01 1

Table 31: Best parameters for OCP, grid search on scores

component temporal scale threshold sig. λ α β κ window size

time perscale 0,1 100 0,01 100 100 50
multiscale 0,8 0,1 200 0,01 100 100

space perscale 0,1 50 1 0,01 0,01 25
multiscale 0,2 0,1 200 0,01 0,01 1

location perscale 0,1 100 100 0,01 1 10
multiscale 0,1 0,1 50 100 0,01 1

Table 32: Best parameters for OCPB, grid search on scores

6.3 Results wrap-up

Table 33 summarizes the output of our experiments. Bold letters indicate best options for algo-
rithms, temporal scale and boundary combination, according to our studies on dance improvisa-
tion data-sets.

Algorithm Temporal scale Boundary combination
AUT

with conceptual features perscaleEDivisive
RuLif
OCP
OCPB

without conceptual features multiscalePELT
PELT-P

Table 33: Main results

52



7 Discussion

To avoid the effect of individual differences in dancers’ movements on the evaluation of CEST,
the performance of the technique was tested on both data-sets jointly. Firstly, each change point
detection technique was tested separately, in terms of precision, recall and F1-scores, against the
ground-truth collected through manual annotation. In both validation and test sets, F1-scores
were lower than 0.5 for all algorithms. This was true for scores and z-scores. Boundary com-
bination is the core of CEST. Changes to be combined were automatically detected through 7
different change point detection techniques from time-series analysis research. Differently from
changes, on boundaries all techniques led to mean F1-scores higher than 0.5, for validation sets
and test sets, with highest F1-score reaching 0.8. However, F1-scores were only high for bound-
ary combinations including low-level, mid-level and high-level features, whereas F1-scores for
low and mid level features only were lower, with highest mean score being 0.190. One possible
interpretation could be that including one manually annotated change led to a rise in F1-scores
when comparing boundaries with ground truth data, also manually annotated. Nonetheless, this
should have resulted in F1-scores rising as well. Instead, F1-scores for AUT when segmentations
on boundaries including conceptual features don’t have a statistically meaningful difference from
F1-scores on those based on low and mid level features only. This supports the idea of CEST as
a multilevel technique, grounding the segmentation on the interplay between different features,
illustrated in section IV. This is a novel approach in segmentation research, where segmentations
usually leverages one dimension specifically [64]. The scores are promising. The overall good
performance obtained by multilevel segmentation suggests the possibility to adopt this approach
to different research topics, as it can take features from different levels of analysis into account.
Regardless of the change-point detection algorithm adopted, CEST achieves better performance
than the fixed-window AUT approach. This finding is line with cognitive science research chal-
lenging the idea of conscious perception as a succession of discrete temporal frames [101] while
also confirming the results obtained in the feasibility studies in single [20] and group [19] sce-
narios. Furthermore, this is in line with research on unitizing, demonstrating the risks behind
adopting a fixed-length window to analyze behavior.
The analysis also had the goal to identify the best performing algorithm for CEST. Overall, across
validation and test sets, OCP and OCPB [1] obtained the highest F1-scores. It must be noted that
both are two versions of the same approach, namely BOCP. The core of this algorithm is predic-
tion: the length of each unit is inferred. This mirrors and further supports most recent research
on cognitive segmentation, stressing the idea of segmentation as prediction [83]. Segmenting is
comparing one’s own predictions with the current situation, always being one step ahead. OCP
and OCPB adopt a Bayesian approach, the same probabilistic approach to uncertainty that, ac-
cording to a very extensive line of psychological research, the brain adopts to manage uncertainty
and, ultimately, for prediction [37], [55]. What is more, BOCP is an online technique. Although
testing an online version of CEST goes beyond the scope of this work, these results suggest this
possibility.
Mean F1 scores from OCP and OCPB obtained through perscale segmentation where then com-
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pared with those obtained through multiscale segmentation. No statistically meaningful mean
differences in F1-scores were found. The experiments also highlighted that, for the selected
algorithms, the optimal threshold combinations were 3 boundaries for segmentations without
conceptual features and 2 boundaries when conceptual features are taken into account. This re-
sults is in line with the the number of boundaries that, according to the EST, leads to a spike
in the probability of event segmentation [104]. F1 mean scores for test and validation sets sug-
gested that CEST performance was better when boundary combination took conceptual features
into account, despite the change point detection algorithm. The analysis on the best performing
algorithms confirmed this results. A statistically significant difference was detected between low
and mid-level segmentation and conceptual segmentation. This further supports the approach of
CEST and matches literature on cognitive segmentation positing the importance of conceptual
features [63]. Parents know how very young children take pride in dropping objects; dropping an
object that is then picked up only to be dropped again lets children repeat the fulfilling experience
of achieving a goal. This happens as, from a very early stage, goals are the building blocks of
our perception of the continuous stream activity [8]. Conceptual features have a primary role in
boundary perception: our results further support this claim.
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VI Conclusions

This manuscript has described the attempt to solve a multidisciplinary problem through multi-
disciplinary research. The output of the work is CEST, a Cognitive Event based Semi-automatic
Technique for behavior segmentation. CEST aims at proposing a general purpose technique for
all researchers needing to segment their behavioral data prior analysis. However, it was designed
after exploring the issue in the specific context of affective computing, as it is a good example of
a research field where complex, multi-level and multidisciplinary phenomena are tackled. CEST
aims at lifting affective computing researchers from the task of manually annotating their data
by offering a tool to perform the annotation of low and mid level features automatically. Our
preliminary studies have demonstrated how a fully automatic segmentation, for instance through
fixed-length windows, affects the quality of the annotations and, ultimately, the research results.
CEST is a technique that, partially, lifts from manual unitizing while keeping the results safe
from the effects of automatic segmentation. What is more, our results further support the Event
Segmentation Theory, as they show the feasibility of implementing its principles into compu-
tational models. This possibility paves the way towards the design of EST-applications for the
diagnosis of memory-loss, as event structure perception deficits have been found robust indica-
tors of age-related memory impairments [93] [110].

The design of the technique started from a cognitive theory on how segmentation works in the
human mind, namely the Event Segmentation Theory [108]. To perform segmentation, CEST
leverages research from the field of time-series analysis: automatic segmentation is performed
by relying on change-point detection algorithms. The combination of such changes is achieved
by following the EST. The approach of CEST was proved feasible in a set of preliminary studies
[19] [20].This manuscript has focused on validating CEST against a data-set of dance move-
ments. Several change point algorithms to be used for this purpose were explored; although all
have shown a good performance when compared with ground-truth data, the best performing
were two algorithms adopting an online Bayesian approach to change point detection, namely
OCP and OCPB. Interestingly, the approach matches cognitive research on the perception of the
temporal structure of events. The brain, according to such theories, is a Bayesian predictive ma-
chine [33]. The work also provides the best parameters for the technique. From the analysis,
when each of the different change components processed for boundary detection are segmented
according to their optimal segmentation window (what we referred to as perscale segmentation),
different components require different time scales to be optimally segmented. This further sup-
ports the idea of using CEST, a technique which is multilevel, in the sense that it combines
different features and different levels of analysis to achieve segmentation. Also, these results
offer future research directions as they demonstrate how the selection of the temporal granularity
of analysis cannot be solved as a ”one size fits all” problem.

Rather than proposing the ultimate segmentation technique, the research on CEST has high-
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lighted some of the gears that such technique would require. CEST is, at least currently, not
fully automatic. Robust methods to automatically analyze conceptual features from movement
may help CEST offer this option to researchers hoping for a fully automatic cognitive-based
technique. CEST proved itself successful on our solo dancers data-sets. To further explore semi-
automatic cognitive segmentation, future research is needed to test CEST on a broader range of
behavior data-set, for instance on social interaction data. Pivotal research question arise from
this possibility, such as how single-users features analyzed for change point detection can be
combined to achieve an overall event segmentation of a social interaction where many characters
are simultaneously involved. To reach this goal, we advocate for a multidisciplinary approach.
We hope this manuscript has suggested how an harmonious interplay of different research per-
spectives can be the key to solve such complicated issues and that the future challenges that have
emerged from this work will not prove us wrong.
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VII Appendix

AUT RuLIF CPD OCP OCPB PELT PELTP

Temporal scale

perscale

Min. value 0.238 0.232 0.259 0.265 0.265 0.258 0.246
Max. value 0.294 0.303 0.323 0.365 0.360 0.324 0.307
Mean 0.270 0.258 0.296 0.316 0.308 0.292 0.275
standard deviation 0.011 0.013 0.013 0.019 0.020 0.015 0.014

multiscale

Min. value 0.285 0.314 0.326 0.293 0.308 0.318 0.324
Max. value 0.402 0.416 0.423 0.380 0.414 0.422 0.415
Mean 0.338 0.365 0.370 0.333 0.361 0.369 0.362
standard deviation 0.025 0.020 0.020 0.020 0.021 0.021 0.020

Table 34: Metrics for F1-scores for time change category, z-scores

AUT RuLIF CPD OCP OCPB PELT PELTP

Temporal scale

perscale

Min. value 0.206 0.224 0.212 0.219 0.249 0.260 0.236
Max. value 0.290 0.317 0.308 0.332 0.332 0.361 0.315
Mean 0.249 0.278 0.263 0.272 0.288 0.313 0.272
standard deviation 0.019 0.019 0.020 0.020 0.020 0.020 0.019

multiscale

Min. value 0.285 0.314 0.326 0.293 0.308 0.318 0.324
Max. value 0.402 0.416 0.423 0.380 0.414 0.422 0.415
Mean 0.338 0.365 0.370 0.333 0.361 0.369 0.362
standard deviation 0.025 0.020 0.020 0.020 0.021 0.021 0.020

Table 35: Metrics for F1-scores for space change category, z-scores

AUT RuLIF CPD OCP OCPB PELT PELTP

Temporal scale

perscale

Min. value 0.206 0.224 0.212 0.219 0.249 0.260 0.236
Max. value 0.290 0.317 0.308 0.332 0.332 0.361 0.315
Mean 0.249 0.278 0.263 0.272 0.288 0.313 0.272
standard deviation 0.019 0.019 0.020 0.020 0.020 0.020 0.019

multiscale

Min. value 0.178 0.190 0.209 0.219 0.228 0.249 0.182
Max. value 0.275 0.283 0.295 0.332 0.319 0.342 0.265
Mean 0.230 0.243 0.250 0.272 0.272 0.296 0.218
standard deviation 0.018 0.018 0.019 0.020 0.019 0.020 0.019

Table 36: Metrics for F1-scores for location change category, z-scores
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Algorithm scale segmentation with conceptual features Mean SD N
AUT multiscale no 0.101 0.011 100

yes 0.290 0.017 100
perscale no 0.108 0.012 100

yes 0.374 0.109 100
CPD multiscale no 0.140 0.022 100

yes 0.675 0.028 100
perscale no 0.154 0.019 100

yes 0.578 0.031 100
OCP multiscale no 0.187 0.022 100

yes 0.698 0.034 100
perscale no 0.187 0.023 100

yes 0.697 0.035 100
OCPB multiscale no 0.154 0.022 100

yes 0.779 0.023 100
perscale no 0.180 0.023 100

yes 0.775 0.020 100
PELT multiscale no 0.177 0.025 100

yes 0.619 0.038 100
perscale no 0.148 0.021 100

yes 0.553 0.055 100
PELTP multiscale no 0.158 0.023 100

yes 0.657 0.029 100
perscale no 0.145 0.021 100

yes 0.529 0.038 100
RuLIF multiscale no 0.132 0.018 100

yes 0.665 0.037 100
perscale no 0.147 0.028 100

yes 0.660 0.026 100

Table 37: Descriptive statistics, validation set



Algorithm scale segmentation with conceptual features Mean SD N
AUT multiscale no 0.101 0.011 100

yes 0.290 0.017 100
perscale no 0.108 0.012 100

yes 0.374 0.109 100
CPD multiscale no 0.159 0.023 100

yes 0.680 0.020 100
perscale no 0.147 0.018 100

yes 0.588 0.021 100
OCP multiscale no 0.140 0.021 100

yes 0.686 0.034 100
perscale no 0.140 0.022 100

yes 0.685 0.034 100
OCPB multiscale no 0.175 0.024 100

yes 0.678 0.030 100
perscale no 0.177 0.019 100

yes 0.689 0.033 100
PELT multiscale no 0.162 0.022 100

yes 0.600 0.039 100
perscale no 0.152 0.017 100

yes 0.542 0.036 100
PELTP multiscale no 0.144 0.021 100

yes 0.585 0.038 100
perscale no 0.135 0.019 100

yes 0.520 0.033 100
RuLIF multiscale no 0.122 0.017 100

yes 0.623 0.035 100
perscale no 0.129 0.023 100

yes 0.649 0.027 100

Table 38: Descriptive statistics, validation set, z-scores



Algorithm scale segmentation with conceptual features Mean SD N
AUT multiscale no 0.116 0.034 95

yes 0.271 0.070 100
perscale no 0.121 0.032 98

yes 0.387 0.161 100
CPD multiscale no 0.135 0.045 95

yes 0.703 0.058 100
perscale no 0.137 0.054 98

yes 0.580 0.057 100
OCP multiscale no 0.188 0.054 95

yes 0.718 0.054 100
perscale no 0.190 0.052 98

yes 0.716 0.053 100
OCPB multiscale no 0.130 0.044 95

yes 0.789 0.037 100
perscale no 0.170 0.066 98

yes 0.801 0.042 100
PELT multiscale no 0.150 0.054 95

yes 0.640 0.057 100
perscale no 0.135 0.052 98

yes 0.584 0.067 100
PELTP multiscale no 0.130 0.058 95

yes 0.677 0.061 100
perscale no 0.134 0.056 98

yes 0.552 0.080 100
RuLIF multiscale no 0.126 0.044 95

yes 0.685 0.068 100
perscale no 0.115 0.048 98

yes 0.677 0.061 100

Table 39: Descriptive statistics, test set



Algorithm scale segmentation with conceptual features Mean SD N
AUT no multiscale 0.118 0.035 94

perscale 0.121 0.032 99
yes multiscale 0.271 0.070 100

perscale 0.387 0.161 100
CPD no multiscale 0.159 0.063 94

perscale 0.136 0.046 99
yes multiscale 0.699 0.052 100

perscale 0.579 0.058 100
OCP no multiscale 0.118 0.041 94

perscale 0.119 0.039 99
yes multiscale 0.707 0.056 100

perscale 0.707 0.056 100
OCPB no multiscale 0.138 0.054 94

perscale 0.135 0.049 99
yes multiscale 0.620 0.060 100

perscale 0.569 0.058 100
PELT no multiscale 0.133 0.054 94

perscale 0.118 0.053 99
yes multiscale 0.619 0.074 100

perscale 0.546 0.078 100
PELTP no multiscale 0.131 0.059 94

perscale 0.134 0.056 99
yes multiscale 0.677 0.061 100

perscale 0.552 0.080 100
RuLIF no multiscale 0.104 0.040 94

perscale 0.103 0.045 99
yes multiscale 0.632 0.044 100

perscale 0.668 0.070 100

Table 40: Descriptive statistics, test set, z-scores



T-Stat df Wi Wj p pbonf pholm

AUT RuLIF 5.738 594 103.000 278.500 < .001 < .001 < .001
CPD 7.014 594 103.000 317.500 < .001 < .001 < .001
OCP 17.477 594 103.000 637.500 < .001 < .001 < .001

OCPB 10.038 594 103.000 410.000 < .001 < .001 < .001
PELT 15.973 594 103.000 591.500 < .001 < .001 < .001

PELTP 11.738 594 103.000 462.000 < .001 < .001 < .001
RuLIF CPD 1.275 594 278.500 317.500 0.203 1.000 0.269

OCP 11.738 594 278.500 637.500 < .001 < .001 < .001
OCPB 4.300 594 278.500 410.000 < .001 < .001 < .001
PELT 10.234 594 278.500 591.500 < .001 < .001 < .001

PELTP 6.000 594 278.500 462.000 < .001 < .001 < .001
CPD OCP 10.463 594 317.500 637.500 < .001 < .001 < .001

OCPB 3.025 594 317.500 410.000 0.003 0.055 0.010
PELT 8.959 594 317.500 591.500 < .001 < .001 < .001

PELTP 4.725 594 317.500 462.000 < .001 < .001 < .001
OCP OCPB 7.439 594 637.500 410.000 < .001 < .001 < .001

PELT 1.504 594 637.500 591.500 0.133 1.000 0.269
PELTP 5.738 594 637.500 462.000 < .001 < .001 < .001

OCPB PELT 5.935 594 410.000 591.500 < .001 < .001 < .001
PELTP 1.700 594 410.000 462.000 0.090 1.000 0.269

PELT PELTP 4.234 594 591.500 462.000 < .001 < .001 < .001

Table 41: Conover’s Post Hoc Comparisons for multiscale segmentations on validation sets with-
out conceptual features, scores



T-Stat df Wi Wj p pbonf pholm

AUT RuLIF 4.251 594 114.000 244.000 < .001 < .001 < .001
CPD 13.245 594 114.000 519.000 < .001 < .001 < .001
OCP 8.437 594 114.000 372.000 < .001 < .001 < .001

OCPB 17.055 594 114.000 635.500 < .001 < .001 < .001
PELT 9.173 594 114.000 394.500 < .001 < .001 < .001

PELTP 13.310 594 114.000 521.000 < .001 < .001 < .001
RuLIF CPD 8.993 594 244.000 519.000 < .001 < .001 < .001

OCP 4.186 594 244.000 372.000 < .001 < .001 < .001
OCPB 12.803 594 244.000 635.500 < .001 < .001 < .001
PELT 4.922 594 244.000 394.500 < .001 < .001 < .001

PELTP 9.059 594 244.000 521.000 < .001 < .001 < .001
CPD OCP 4.807 594 519.000 372.000 < .001 < .001 < .001

OCPB 3.810 594 519.000 635.500 < .001 0.003 < .001
PELT 4.072 594 519.000 394.500 < .001 0.001 < .001

PELTP 0.065 594 519.000 521.000 0.948 1.000 0.948
OCP OCPB 8.617 594 372.000 635.500 < .001 < .001 < .001

PELT 0.736 594 372.000 394.500 0.462 1.000 0.924
PELTP 4.873 594 372.000 521.000 < .001 < .001 < .001

OCPB PELT 7.881 594 635.500 394.500 < .001 < .001 < .001
PELTP 3.745 594 635.500 521.000 < .001 0.004 < .001

PELT PELTP 4.137 594 394.500 521.000 < .001 < .001 < .001

Table 42: Conover’s Post Hoc Comparisons for multiscale segmentations on validation sets with-
out conceptual features, z-scores



T-Stat df Wi Wj p pbonf pholm

AUT RuLIF 8.203 594 103.500 354.500 < .001 < .001 < .001
CPD 10.245 594 103.500 417.000 < .001 < .001 < .001
OCP 17.484 594 103.500 638.500 < .001 < .001 < .001

OCPB 15.572 594 103.500 580.000 < .001 < .001 < .001
PELT 8.660 594 103.500 368.500 < .001 < .001 < .001

PELTP 7.663 594 103.500 338.000 < .001 < .001 < .001
RuLIF CPD 2.042 594 354.500 417.000 0.042 0.872 0.249

OCP 9.281 594 354.500 638.500 < .001 < .001 < .001
OCPB 7.369 594 354.500 580.000 < .001 < .001 < .001
PELT 0.458 594 354.500 368.500 0.647 1.000 1.000

PELTP 0.539 594 354.500 338.000 0.590 1.000 1.000
CPD OCP 7.239 594 417.000 638.500 < .001 < .001 < .001

OCPB 5.327 594 417.000 580.000 < .001 < .001 < .001
PELT 1.585 594 417.000 368.500 0.114 1.000 0.454

PELTP 2.582 594 417.000 338.000 0.010 0.211 0.070
OCP OCPB 1.912 594 638.500 580.000 0.056 1.000 0.282

PELT 8.824 594 638.500 368.500 < .001 < .001 < .001
PELTP 9.820 594 638.500 338.000 < .001 < .001 < .001

OCPB PELT 6.912 594 580.000 368.500 < .001 < .001 < .001
PELTP 7.908 594 580.000 338.000 < .001 < .001 < .001

PELT PELTP 0.997 594 368.500 338.000 0.319 1.000 0.958

Table 43: Conover’s Post Hoc Comparisons for perscale segmentations on validation sets without
conceptual features, scores



T-Stat df Wi Wj p pbonf pholm

AUT RuLIF 5.546 594 117.500 287.000 < .001 < .001 < .001
CPD 11.747 594 117.500 476.500 < .001 < .001 < .001
OCP 8.966 594 117.500 391.500 < .001 < .001 < .001

OCPB 17.915 594 117.500 665.000 < .001 < .001 < .001
PELT 13.056 594 117.500 516.500 < .001 < .001 < .001

PELTP 7.477 594 117.500 346.000 < .001 < .001 < .001
RuLIF CPD 6.201 594 287.000 476.500 < .001 < .001 < .001

OCP 3.419 594 287.000 391.500 < .001 0.014 0.003
OCPB 12.368 594 287.000 665.000 < .001 < .001 < .001
PELT 7.509 594 287.000 516.500 < .001 < .001 < .001

PELTP 1.931 594 287.000 346.000 0.054 1.000 0.162
CPD OCP 2.781 594 476.500 391.500 0.006 0.117 0.022

OCPB 6.168 594 476.500 665.000 < .001 < .001 < .001
PELT 1.309 594 476.500 516.500 0.191 1.000 0.274

PELTP 4.270 594 476.500 346.000 < .001 < .001 < .001
OCP OCPB 8.949 594 391.500 665.000 < .001 < .001 < .001

PELT 4.090 594 391.500 516.500 < .001 0.001 < .001
PELTP 1.489 594 391.500 346.000 0.137 1.000 0.274

OCPB PELT 4.859 594 665.000 516.500 < .001 < .001 < .001
PELTP 10.438 594 665.000 346.000 < .001 < .001 < .001

PELT PELTP 5.579 594 516.500 346.000 < .001 < .001 < .001

Table 44: Conover’s Post Hoc Comparisons for perscale segmentations on validation sets without
conceptual features, z-scores



T-Stat df Wi Wj p pbonf pholm

AUT RuLIF 12.427 594 113.500 494.000 < .001 < .001 < .001
CPD 8.018 594 113.500 359.000 < .001 < .001 < .001
OCP 15.611 594 113.500 591.500 < .001 < .001 < .001

OCPB 19.089 594 113.500 698.000 < .001 < .001 < .001
PELT 6.042 594 113.500 298.500 < .001 < .001 < .001

PELTP 4.311 594 113.500 245.500 < .001 < .001 < .001
RuLIF CPD 4.409 594 494.000 359.000 < .001 < .001 < .001

OCP 3.184 594 494.000 591.500 0.002 0.032 0.005
OCPB 6.662 594 494.000 698.000 < .001 < .001 < .001
PELT 6.385 594 494.000 298.500 < .001 < .001 < .001

PELTP 8.116 594 494.000 245.500 < .001 < .001 < .001
CPD OCP 7.593 594 359.000 591.500 < .001 < .001 < .001

OCPB 11.071 594 359.000 698.000 < .001 < .001 < .001
PELT 1.976 594 359.000 298.500 0.049 1.000 0.097

PELTP 3.707 594 359.000 245.500 < .001 0.005 0.001
OCP OCPB 3.478 594 591.500 698.000 < .001 0.011 0.002

PELT 9.569 594 591.500 298.500 < .001 < .001 < .001
PELTP 11.300 594 591.500 245.500 < .001 < .001 < .001

OCPB PELT 13.047 594 698.000 298.500 < .001 < .001 < .001
PELTP 14.778 594 698.000 245.500 < .001 < .001 < .001

PELT PELTP 1.731 594 298.500 245.500 0.084 1.000 0.097

Table 45: Conover’s Post Hoc Comparisons for perscale segmentations on validation sets with
conceptual features, scores



T-Stat df Wi Wj p pbonf pholm

AUT RuLIF 13.453 594 116.000 528.000 < .001 < .001 < .001
CPD 8.963 594 116.000 390.500 < .001 < .001 < .001
OCP 16.457 594 116.000 620.000 < .001 < .001 < .001

OCPB 17.241 594 116.000 644.000 < .001 < .001 < .001
PELT 5.159 594 116.000 274.000 < .001 < .001 < .001

PELTP 3.641 594 116.000 227.500 < .001 0.006 0.001
RuLIF CPD 4.490 594 528.000 390.500 < .001 < .001 < .001

OCP 3.004 594 528.000 620.000 0.003 0.058 0.008
OCPB 3.788 594 528.000 644.000 < .001 0.004 < .001
PELT 8.294 594 528.000 274.000 < .001 < .001 < .001

PELTP 9.812 594 528.000 227.500 < .001 < .001 < .001
CPD OCP 7.494 594 390.500 620.000 < .001 < .001 < .001

OCPB 8.278 594 390.500 644.000 < .001 < .001 < .001
PELT 3.804 594 390.500 274.000 < .001 0.003 < .001

PELTP 5.322 594 390.500 227.500 < .001 < .001 < .001
OCP OCPB 0.784 594 620.000 644.000 0.434 1.000 0.434

PELT 11.298 594 620.000 274.000 < .001 < .001 < .001
PELTP 12.816 594 620.000 227.500 < .001 < .001 < .001

OCPB PELT 12.082 594 644.000 274.000 < .001 < .001 < .001
PELTP 13.600 594 644.000 227.500 < .001 < .001 < .001

PELT PELTP 1.518 594 274.000 227.500 0.129 1.000 0.259

Table 46: Conover’s Post Hoc Comparisons for perscale segmentations on validation sets with
conceptual features, z-scores



T-Stat df Wi Wj p pbonf pholm

AUT RuLIF 11.052 594 100.000 438.500 < .001 < .001 < .001
CPD 12.407 594 100.000 480.000 < .001 < .001 < .001
OCP 14.562 594 100.000 546.000 < .001 < .001 < .001

OCPB 19.558 594 100.000 699.000 < .001 < .001 < .001
PELT 5.942 594 100.000 282.000 < .001 < .001 < .001

PELTP 5.044 594 100.000 254.500 < .001 < .001 < .001
RuLIF CPD 1.355 594 438.500 480.000 0.176 1.000 0.352

OCP 3.510 594 438.500 546.000 < .001 0.010 0.002
OCPB 8.505 594 438.500 699.000 < .001 < .001 < .001
PELT 5.110 594 438.500 282.000 < .001 < .001 < .001

PELTP 6.008 594 438.500 254.500 < .001 < .001 < .001
CPD OCP 2.155 594 480.000 546.000 0.032 0.663 0.095

OCPB 7.150 594 480.000 699.000 < .001 < .001 < .001
PELT 6.465 594 480.000 282.000 < .001 < .001 < .001

PELTP 7.363 594 480.000 254.500 < .001 < .001 < .001
OCP OCPB 4.996 594 546.000 699.000 < .001 < .001 < .001

PELT 8.620 594 546.000 282.000 < .001 < .001 < .001
PELTP 9.518 594 546.000 254.500 < .001 < .001 < .001

OCPB PELT 13.615 594 699.000 282.000 < .001 < .001 < .001
PELTP 14.513 594 699.000 254.500 < .001 < .001 < .001

PELT PELTP 0.898 594 282.000 254.500 0.370 1.000 0.370

Table 47: Conover’s Post Hoc Comparisons for multiscale segmentation on validation sets with
conceptual features, scores



T-Stat df Wi Wj p pbonf pholm

AUT RuLIF 6.501 594 100.000 299.000 < .001 < .001 < .001
CPD 15.125 594 100.000 563.000 < .001 < .001 < .001
OCP 15.811 594 100.000 584.000 < .001 < .001 < .001

OCPB 14.096 594 100.000 531.500 < .001 < .001 < .001
PELT 6.289 594 100.000 292.500 < .001 < .001 < .001

PELTP 10.780 594 100.000 430.000 < .001 < .001 < .001
RuLIF CPD 8.624 594 299.000 563.000 < .001 < .001 < .001

OCP 9.310 594 299.000 584.000 < .001 < .001 < .001
OCPB 7.595 594 299.000 531.500 < .001 < .001 < .001
PELT 0.212 594 299.000 292.500 0.832 1.000 0.986

PELTP 4.279 594 299.000 430.000 < .001 < .001 < .001
CPD OCP 0.686 594 563.000 584.000 0.493 1.000 0.986

OCPB 1.029 594 563.000 531.500 0.304 1.000 0.912
PELT 8.837 594 563.000 292.500 < .001 < .001 < .001

PELTP 4.345 594 563.000 430.000 < .001 < .001 < .001
OCP OCPB 1.715 594 584.000 531.500 0.087 1.000 0.347

PELT 9.523 594 584.000 292.500 < .001 < .001 < .001
PELTP 5.031 594 584.000 430.000 < .001 < .001 < .001

OCPB PELT 7.808 594 531.500 292.500 < .001 < .001 < .001
PELTP 3.316 594 531.500 430.000 < .001 0.020 0.005

PELT PELTP 4.492 594 292.500 430.000 < .001 < .001 < .001

Table 48: Conover’s Post Hoc Comparisons for multiscale segmentation on validation sets with
conceptual features, z-scores



T-Stat df Wi Wj p pbonf pholm

AUT RuLIF 0.198 582 286.000 292.000 0.843 1.000 1.000
CPD 3.150 582 286.000 381.500 0.002 0.036 0.019
OCP 9.666 582 286.000 579.000 < .001 < .001 < .001

OCPB 6.218 582 286.000 474.500 < .001 < .001 < .001
PELT 3.249 582 286.000 384.500 0.001 0.026 0.015

PELTP 1.996 582 286.000 346.500 0.046 0.975 0.278
RuLIF CPD 2.953 582 292.000 381.500 0.003 0.069 0.025

OCP 9.468 582 292.000 579.000 < .001 < .001 < .001
OCPB 6.021 582 292.000 474.500 < .001 < .001 < .001
PELT 3.051 582 292.000 384.500 0.002 0.050 0.023

PELTP 1.798 582 292.000 346.500 0.073 1.000 0.364
CPD OCP 6.515 582 381.500 579.000 < .001 < .001 < .001

OCPB 3.068 582 381.500 474.500 0.002 0.047 0.023
PELT 0.099 582 381.500 384.500 0.921 1.000 1.000

PELTP 1.155 582 381.500 346.500 0.249 1.000 0.842
OCP OCPB 3.447 582 579.000 474.500 < .001 0.013 0.008

PELT 6.416 582 579.000 384.500 < .001 < .001 < .001
PELTP 7.670 582 579.000 346.500 < .001 < .001 < .001

OCPB PELT 2.969 582 474.500 384.500 0.003 0.065 0.025
PELTP 4.223 582 474.500 346.500 < .001 < .001 < .001

PELT PELTP 1.254 582 384.500 346.500 0.210 1.000 0.842

Table 49: Conover’s Post Hoc Comparisons for perscale segmentation on test sets without con-
ceptual features, scores



T-Stat df Wi Wj p pbonf pholm

AUT RuLIF 3.238 588 350.000 251.500 0.001 0.027 0.010
CPD 4.110 588 350.000 475.000 < .001 < .001 < .001
OCP 0.164 588 350.000 355.000 0.869 1.000 1.000

OCPB 6.707 588 350.000 554.000 < .001 < .001 < .001
PELT 3.271 588 350.000 449.500 0.001 0.024 0.010

PELTP 0.427 588 350.000 337.000 0.669 1.000 1.000
RuLIF CPD 7.348 588 251.500 475.000 < .001 < .001 < .001

OCP 3.403 588 251.500 355.000 < .001 0.015 0.007
OCPB 9.945 588 251.500 554.000 < .001 < .001 < .001
PELT 6.510 588 251.500 449.500 < .001 < .001 < .001

PELTP 2.811 588 251.500 337.000 0.005 0.107 0.031
CPD OCP 3.945 588 475.000 355.000 < .001 0.002 0.001

OCPB 2.597 588 475.000 554.000 0.010 0.202 0.048
PELT 0.838 588 475.000 449.500 0.402 1.000 1.000

PELTP 4.537 588 475.000 337.000 < .001 < .001 < .001
OCP OCPB 6.542 588 355.000 554.000 < .001 < .001 < .001

PELT 3.107 588 355.000 449.500 0.002 0.042 0.014
PELTP 0.592 588 355.000 337.000 0.554 1.000 1.000

OCPB PELT 3.436 588 554.000 449.500 < .001 0.013 0.007
PELTP 7.134 588 554.000 337.000 < .001 < .001 < .001

PELT PELTP 3.699 588 449.500 337.000 < .001 0.005 0.003

Table 50: Conover’s Post Hoc Comparisons for perscale segmentation on test sets without con-
ceptual features, scores



T-Stat df Wi Wj p pbonf pholm

AUT RuLIF 14.502 1194 272.000 899.000 < .001 < .001 < .001
CPD 11.749 1194 272.000 780.000 < .001 < .001 < .001
OCP 18.341 1194 272.000 1065.000 < .001 < .001 < .001

OCPB 25.280 1194 272.000 1365.000 < .001 < .001 < .001
PELT 7.135 1194 272.000 580.500 < .001 < .001 < .001

PELTP 8.477 1194 272.000 638.500 < .001 < .001 < .001
RuLIF CPD 2.752 1194 899.000 780.000 0.006 0.126 0.012

OCP 3.839 1194 899.000 1065.000 < .001 0.003 < .001
OCPB 10.778 1194 899.000 1365.000 < .001 < .001 < .001
PELT 7.367 1194 899.000 580.500 < .001 < .001 < .001

PELTP 6.025 1194 899.000 638.500 < .001 < .001 < .001
CPD OCP 6.592 1194 780.000 1065.000 < .001 < .001 < .001

OCPB 13.530 1194 780.000 1365.000 < .001 < .001 < .001
PELT 4.614 1194 780.000 580.500 < .001 < .001 < .001

PELTP 3.273 1194 780.000 638.500 0.001 0.023 0.003
OCP OCPB 6.939 1194 1065.000 1365.000 < .001 < .001 < .001

PELT 11.206 1194 1065.000 580.500 < .001 < .001 < .001
PELTP 9.864 1194 1065.000 638.500 < .001 < .001 < .001

OCPB PELT 18.145 1194 1365.000 580.500 < .001 < .001 < .001
PELTP 16.803 1194 1365.000 638.500 < .001 < .001 < .001

PELT PELTP 1.341 1194 580.500 638.500 0.180 1.000 0.180

Table 51: Conover’s Post Hoc Comparisons for perscale segmentation on test sets with concep-
tual features, scores



T-Stat df Wi Wj p pbonf pholm

AUT RuLIF 14.113 1194 282.000 892.000 < .001 < .001 < .001
CPD 14.333 1194 282.000 901.500 < .001 < .001 < .001
OCP 20.915 1194 282.000 1186.000 < .001 < .001 < .001

OCPB 20.036 1194 282.000 1148.000 < .001 < .001 < .001
PELT 7.704 1194 282.000 615.000 < .001 < .001 < .001

PELTP 6.790 1194 282.000 575.500 < .001 < .001 < .001
RuLIF CPD 0.220 1194 892.000 901.500 0.826 1.000 1.000

OCP 6.802 1194 892.000 1186.000 < .001 < .001 < .001
OCPB 5.923 1194 892.000 1148.000 < .001 < .001 < .001
PELT 6.409 1194 892.000 615.000 < .001 < .001 < .001

PELTP 7.323 1194 892.000 575.500 < .001 < .001 < .001
CPD OCP 6.582 1194 901.500 1186.000 < .001 < .001 < .001

OCPB 5.703 1194 901.500 1148.000 < .001 < .001 < .001
PELT 6.629 1194 901.500 615.000 < .001 < .001 < .001

PELTP 7.542 1194 901.500 575.500 < .001 < .001 < .001
OCP OCPB 0.879 1194 1186.000 1148.000 0.379 1.000 1.000

PELT 13.211 1194 1186.000 615.000 < .001 < .001 < .001
PELTP 14.125 1194 1186.000 575.500 < .001 < .001 < .001

OCPB PELT 12.332 1194 1148.000 615.000 < .001 < .001 < .001
PELTP 13.245 1194 1148.000 575.500 < .001 < .001 < .001

PELT PELTP 0.914 1194 615.000 575.500 0.361 1.000 1.000

Table 52: Conover’s Post Hoc Comparisons for perscale segmentation on test sets with concep-
tual features, z-scores



T-Stat df Wi Wj p pbonf pholm

AUT RuLIF 2.631 564 252.000 330.500 0.009 0.184 0.079
CPD 3.988 564 252.000 371.000 < .001 0.002 0.001
OCP 10.405 564 252.000 562.500 < .001 < .001 < .001

OCPB 3.753 564 252.000 364.000 < .001 0.004 0.003
PELT 6.199 564 252.000 437.000 < .001 < .001 < .001

PELTP 3.049 564 252.000 343.000 0.002 0.050 0.024
RuLIF CPD 1.357 564 330.500 371.000 0.175 1.000 1.000

OCP 7.774 564 330.500 562.500 < .001 < .001 < .001
OCPB 1.123 564 330.500 364.000 0.262 1.000 1.000
PELT 3.569 564 330.500 437.000 < .001 0.008 0.005

PELTP 0.419 564 330.500 343.000 0.675 1.000 1.000
CPD OCP 6.417 564 371.000 562.500 < .001 < .001 < .001

OCPB 0.235 564 371.000 364.000 0.815 1.000 1.000
PELT 2.212 564 371.000 437.000 0.027 0.575 0.192

PELTP 0.938 564 371.000 343.000 0.349 1.000 1.000
OCP OCPB 6.652 564 562.500 364.000 < .001 < .001 < .001

PELT 4.205 564 562.500 437.000 < .001 < .001 < .001
PELTP 7.355 564 562.500 343.000 < .001 < .001 < .001

OCPB PELT 2.446 564 364.000 437.000 0.015 0.310 0.118
PELTP 0.704 564 364.000 343.000 0.482 1.000 1.000

PELT PELTP 3.150 564 437.000 343.000 0.002 0.036 0.019

Table 53: Conover’s Post Hoc Comparisons for multiscale segmentation on test sets without
conceptual features, scores



T-Stat df Wi Wj p pbonf pholm

AUT RuLIF 1.046 558 291.000 260.000 0.296 1.000 0.953
CPD 7.051 558 291.000 500.000 < .001 < .001 < .001
OCP 0.978 558 291.000 320.000 0.328 1.000 0.953

OCPB 5.870 558 291.000 465.000 < .001 < .001 < .001
PELT 3.711 558 291.000 401.000 < .001 0.005 0.003

PELTP 3.508 558 291.000 395.000 < .001 0.010 0.005
RuLIF CPD 8.096 558 260.000 500.000 < .001 < .001 < .001

OCP 2.024 558 260.000 320.000 0.043 0.912 0.217
OCPB 6.916 558 260.000 465.000 < .001 < .001 < .001
PELT 4.757 558 260.000 401.000 < .001 < .001 < .001

PELTP 4.554 558 260.000 395.000 < .001 < .001 < .001
CPD OCP 6.072 558 500.000 320.000 < .001 < .001 < .001

OCPB 1.181 558 500.000 465.000 0.238 1.000 0.953
PELT 3.340 558 500.000 401.000 < .001 0.019 0.009

PELTP 3.542 558 500.000 395.000 < .001 0.009 0.005
OCP OCPB 4.892 558 320.000 465.000 < .001 < .001 < .001

PELT 2.733 558 320.000 401.000 0.006 0.136 0.058
PELTP 2.530 558 320.000 395.000 0.012 0.245 0.093

OCPB PELT 2.159 558 465.000 401.000 0.031 0.657 0.188
PELTP 2.361 558 465.000 395.000 0.019 0.389 0.130

PELT PELTP 0.202 558 401.000 395.000 0.840 1.000 0.953

Table 54: Conover’s Post Hoc Comparisons for multiscale segmentation on test sets without
conceptual features, z-scores



T-Stat df Wi Wj p pbonf pholm

AUT RuLIF 9.587 594 100.000 393.500 < .001 < .001 < .001
CPD 12.331 594 100.000 477.500 < .001 < .001 < .001
OCP 12.772 594 100.000 491.000 < .001 < .001 < .001

OCPB 18.782 594 100.000 675.000 < .001 < .001 < .001
PELT 5.618 594 100.000 272.000 < .001 < .001 < .001

PELTP 9.506 594 100.000 391.000 < .001 < .001 < .001
RuLIF CPD 2.744 594 393.500 477.500 0.006 0.131 0.020

OCP 3.185 594 393.500 491.000 0.002 0.032 0.008
OCPB 9.195 594 393.500 675.000 < .001 < .001 < .001
PELT 3.969 594 393.500 272.000 < .001 0.002 < .001

PELTP 0.082 594 393.500 391.000 0.935 1.000 1.000
CPD OCP 0.441 594 477.500 491.000 0.659 1.000 1.000

OCPB 6.451 594 477.500 675.000 < .001 < .001 < .001
PELT 6.713 594 477.500 272.000 < .001 < .001 < .001

PELTP 2.826 594 477.500 391.000 0.005 0.102 0.020
OCP OCPB 6.010 594 491.000 675.000 < .001 < .001 < .001

PELT 7.154 594 491.000 272.000 < .001 < .001 < .001
PELTP 3.266 594 491.000 391.000 0.001 0.024 0.007

OCPB PELT 13.164 594 675.000 272.000 < .001 < .001 < .001
PELTP 9.277 594 675.000 391.000 < .001 < .001 < .001

PELT PELTP 3.887 594 272.000 391.000 < .001 0.002 < .001

Table 55: Conover’s Post Hoc Comparisons for multiscale segmentation on test sets with con-
ceptual features, scores



T-Stat df Wi Wj p pbonf pholm

AUT RuLIF 8.497 594 100.000 360.000 < .001 < .001 < .001
CPD 15.556 594 100.000 576.000 < .001 < .001 < .001
OCP 15.490 594 100.000 574.000 < .001 < .001 < .001

OCPB 14.526 594 100.000 544.500 < .001 < .001 < .001
PELT 7.091 594 100.000 317.000 < .001 < .001 < .001

PELTP 7.467 594 100.000 328.500 < .001 < .001 < .001
RuLIF CPD 7.059 594 360.000 576.000 < .001 < .001 < .001

OCP 6.993 594 360.000 574.000 < .001 < .001 < .001
OCPB 6.029 594 360.000 544.500 < .001 < .001 < .001
PELT 1.405 594 360.000 317.000 0.160 1.000 0.963

PELTP 1.029 594 360.000 328.500 0.304 1.000 1.000
CPD OCP 0.065 594 576.000 574.000 0.948 1.000 1.000

OCPB 1.029 594 576.000 544.500 0.304 1.000 1.000
PELT 8.464 594 576.000 317.000 < .001 < .001 < .001

PELTP 8.088 594 576.000 328.500 < .001 < .001 < .001
OCP OCPB 0.964 594 574.000 544.500 0.335 1.000 1.000

PELT 8.399 594 574.000 317.000 < .001 < .001 < .001
PELTP 8.023 594 574.000 328.500 < .001 < .001 < .001

OCPB PELT 7.435 594 544.500 317.000 < .001 < .001 < .001
PELTP 7.059 594 544.500 328.500 < .001 < .001 < .001

PELT PELTP 0.376 594 317.000 328.500 0.707 1.000 1.000

Table 56: Conover’s Post Hoc Comparisons for multiscale segmentation on test sets with con-
ceptual features, z-scores

without conceptual features with conceptual features t df p
OCP zscores perscale OCP zscores perscale -112.793 99 < .001
OCP zscores multiscale OCP zscores multiscale -113.760 99 < .001
OCPB zscores perscale OCPB zscores perscale -130.099 99 < .001
OCPB zscores multiscale OCPB zscores multiscale -116.159 99 < .001

Table 57: Comparing segmentations without vs with conceptual features on validation sets, z-
scores

without conceptual features with conceptual features t df p
OCP zscores perscale OCP zscores perscale -81.850 99 < .001
OCP zscores multiscale OCP zscores multiscale -81.718 99 < .001
OCPB zscores perscale OCPB zscores perscale -86.088 99 < .001
OCPB zscores multiscale OCPB zscores multiscale -81.711 99 < .001

Table 58: Comparing segmentations without vs with conceptual features on test sets, z-scores



segmentation perscale multiscale t df p

with conceptual features
OCP OCP -3.141 99 0.002
OCPB OCPB 0.790 99 0.432
AUT AUT 8.185 99 < .001

without conceptual features
OCP OCP 2.823 99 0.006
OCPB OCPB 0.790 99 0.432
AUT AUT .185 99 < .001

Table 59: Comparing perscale and multiscale segmentations, validation sets, z-scores

segmentation perscale multiscale t df p

with conceptual features
OCP OCP -1.932 99 0.056
OCPB OCPB 3.143 99 0.002
AUT AUT 8.185 99 < .001

without conceptual features
OCP OCP 2.361 99 0.020
OCPB OCPB 5.901 98 < .001
7.851 99 < .001

Table 60: Comparing perscale and multiscale segmentations, test sets, scores

Table 61: Paired Samples T-Test

segmentation perscale multiscale t df p

with conceptual features
OCP OCP -1.932 99 0.056
OCPB OCPB 3.143 99 0.002
AUT AUT 8.185 99 < .001

without conceptual features
OCP OCP 2.361 99 0.020
OCPB OCPB 5.901 98 < .001
7.851 99 < .001

Table 62: Comparing perscale and multiscale segmentations, test sets, z-scores

temporal scale
perscale multiscale

conceptual yes OCPB(OCPB) OCP(OCPB)
features no OCP(OCP) OCP(OCP)

Table 63: Best performing technique for each configuration, assessed on z-scores, in the valida-
tion sets (test sets in brackets).



algorithm temporal scale segmentation F1-scores

BEST (bold)
perscale with conceptual features 0.689 OCPB

without conceptual features 0.177 OCPB

multiscale with conceptual features 0.686 OCP
without conceptual features 0.175 OCPB

AUT
perscale with conceptual features 0.374

without conceptual features 0.108

multiscale with conceptual features 0.290
without conceptual features 0.101

Table 64: Best F1-scores and AUT F1-scores for the validation set z-scores

algorithm temporal scale segmentation F1-scores

BEST (bold)
perscale with conceptual features 0.707 OCP

without conceptual features 0.135 OCP

multiscale with conceptual features 0.707 OCP
without conceptual features 0.138 OCP

AUT
perscale with conceptual features 0.387

without conceptual features 0.121

multiscale with conceptual features 0.271
without conceptual features 0.118

Table 65: Best F1-scores and AUT F1-scores for the test set z scores


