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Abstract 
 

Nanomaterials offer many unique opportunities for the development of effective 

and rapid point-of-care (POC) devices to be exploited in many fields, including 

early diagnosis, health monitoring, and pollutant detection. In particular, gold 

nanoparticles (AuNPs) exhibit tuneable catalytic and plasmonic properties, which 

are key enabling tools to design and develop innovative detection schemes in 

several sensing applications. The aim of this PhD project was the development of 

AuNPs-based colorimetric POCs to detect heavy metal ion contaminations and 

specific biomarkers in non-invasive biological fluids. First, we developed a novel 

strategy that exploits the combination of the plasmonic and catalytic properties of 

AuNPs to achieve an ultrafast (1 min) and sensitive colorimetric sensor for highly 

toxic methyl mercury. Taking advantage of the AuNP nanocatalyst to promote the 

rapid reduction of methyl mercury with nucleation on the particle surface and 

consequent aggregation-induced plasmonic shift, we were able to detect by 

naked-eye mercury contaminations as low as 20 ppb, which is relevant for food 

contaminations or biological fluid assessment. Moreover, an innovative and 

versatile platform, based on multibranched AuNPs, was developed for the 

detection of salivary biomarkers. Coupling etching and growing reactions in a 

reshaping process onto the nanostars surface, we created a customizable platform 

with boosted colour change readout for fast detection of salivary glucose at low 

concentrations. The nanosensor performance was validated on samples from 

patients with diabetes, proving its potential as a novel non-invasive tool for 

frequent monitoring of glycaemia. As side project we also investigated the 

platinum nanoparticles enzymatic activity in a colorimetric sensor for mercury 

contamination monitoring in water sources.   
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1 Introduction 
 

1.1 In vitro diagnostics  

 

Over last years, laboratory testing has been subjected to a continuous paradigm 

evolution to meet the increasing demand for high-qualitative healthcare and 

patient self-advocacy. The diagnostic concept is evolving rapidly, drawing the 

attention of both research and industry. We are witnessing the rapid development 

of next-generation in vitro diagnostic (IVD) devices, as result of an increasing 

competition between companies dragged by the rapid expansion of the global 

market (see Figure 1.1). The Food and Drug Administration (FDA) defined IVD 

products as “[...] those reagents, instruments, and systems intended for use in 

diagnosis of disease or other conditions, including a determination of the state of 

health, in order to cure, mitigate, treat, or prevent disease or its sequelae”1. 

Government agencies like FDA, or commissions, such as the European Commission 

(EC), drafted legislation to regulate the market, and, more importantly, to define 

and identify these new tools as a quality and safety standard for in vitro diagnostic 

medical devices2.  

 

Figure 1.1 Pipeline products (left) and global IVD industry-key players (right) (ref. 3). 
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In vitro diagnostics provides useful solutions for analytical grade, qualitative and 

quantitative assessment of analytes in biological fluids or other complex samples.  

The detection of physio- and pathological biomarkers, like small molecules, 

steroids, and oligonucleotides, as well as food and environmental contaminants is 

the main purpose of IVD applications.  

Traditional IVD techniques, generally, require several operational steps, such as 

sample collection, delivery and treatment, target extraction and purification, 

which lead up the detection step. All these laborious and time-consuming 

procedures often necessitate specialized laboratories, costly reagents and 

instrumentations, and skilled personnel.  Moreover, in certain circumstances, a 

self-sampling is required, thus compelling unprepared users to invasive and 

painful sampling procedures. Due to these drawbacks, traditional diagnostics is 

becoming sub-optional. 

 

1.2 From IVDs to Point-Of-Care diagnostics 

 

The ageing population and the increasing incidence of chronic diseases necessitate 

high-quality healthcare, rapid and easy-to-use original solutions. Moreover, as 

recent events connected to pandemia have highlighted, the access to treatment 

and services has proved to be more and more complicated. Most of the people 

have experienced a challenged healthcare system with overcrowded hospital and 

long waiting time. Thus, early clinical diagnostics is becoming an active part of 

medical evaluations and disease management3 from risk assessment to disease 

monitoring (see Figure 1.2). In this framework, point-of-care (POC) testing plays a 

key role to deliver care to patients, outside the hospital.  
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Figure 1.2 The application of in vitro diagnostics in the delivery of healthcare (ref. 4). 

 

Accurate and fast results can considerably reduce the preanalytical treatment 

errors, enabling rapid triage, allowing clinicians to gain more control on medical 

decisions with a remarkable improvement of patients’ quality of life4, and also 

preventing critical patient disability and death5,6. Indeed, POC testing provide lab-

quality outcomes within minutes, accelerating clinical decisions. It has been 

calculated that POC diagnosis could lead to a reduction of 44% in hospitalization 

length and a consequent decrease of related risk of both adverse complications 

and healthcare associated infections7,8. In addition, it has been estimated a total 

laboratory cost savings of 8-20% for those organizations that implement POC 

testing9. Waiting time can be reduced by 46 minutes, saving €148 per patient10,11. 

All these benefits are promoting the POC testing deployment. Indeed, in 2019, the 

global market size of POCT was evaluated for $28.5 billion and it was expected to 

reach USD 46.7 billion by 2024 (CAGR of 10.4%)12,13. Beyond bedside benefits, 

POCT shows several advantages when compared with traditional IVDs.  

The World Health Organization (WHO) issued some guidelines for developing 

efficient POCT known as ASSURED that is the acronym for affordable, sensitive, 

specific, user-friendly, rapid/robust, equipment-free or minimal, and delivered to 

the greatest need14. POC devices can be defined as larger bench-top devices or 

small hand-held. 
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Figure 1.3 Comparison between centralized laboratory and POCT characteristics. 

 

POC diagnostics does not require complex instrumentation or equipped rooms; it 

allows fast and in situ detection of biological/chemical contaminants or health 

state assessment anytime and anywhere, drastically facilitating the access to 

healthcare. Thus, POC testing offers an efficient tool for routine analysis and 

preliminary checks, accelerating the early diagnosis with a related notable 

improving of the quality of life (see Figure 1.3).  Today, in a scenario of global 

pandemics, the value of a fast, effective POC testing for large-scale screening on 

the fight of virus spreading is undeniable. Alternative diagnostic methods are 

urgently required to alleviate the laboratory workload during SARS-CoV-2 

outbreak15,16.  

POC-device portability is a distinctive feature, and it is closely related with the 

sensing strategy and relative device design adopted. Colorimetric visual detection-

based strategies are the most exploited, since the test outcome consists  in a 

colour change in terms of hue or saturation and does not need for any 

instrumentation to be recognised in both threshold and quantitative assessment.   

Nanomaterials offer a clear edge on the design of a new generation of effective 

POC devices, thanks to a variety of features exploitable to set up miniaturized, 

automated, colorimetric nanobiosensor. Nanotechnology is recently sustained by 

and combined with microfluids that provide different solutions for sample 

handling or reagent mixing, using microchannels and material science to 

manipulate from micro- to picolitres of solutions in a reduced space. Lateral flow 

devices (see Figure 1.4) represent a great example in which microfluidic principles 
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combined with immune/chemical assays technology and nanoplasmonic results in 

on-site platform capable of accurate results17,18.  

By virtue of its versatile nature, lateral flow assays (LFAs) are widely employed in 

a number of sectors from food and environmental testing to pharma and animal 

and plant health. Moreover, LFAs are recently implemented in multiplexing to 

detect simultaneously the presence of multiple food contaminants or to carry out 

the diagnosis of several significant biomarkers, useful in case of small sample 

volume availability18,19.  

 

 

Figure 1.4 Typical lateral flow device for POC testing. 

 

Simultaneously, the mHealth (abbreviation for mobile health) is rapidly gaining 

ground as a sub-segment of eHealth20 (see Figure 1.5). Information and 

communication technologies (ICT) are revolutionizing the healthcare system 

transforming common electronic devices, such as smartphones, into medical 

devices to acquire, store and analyse data. The main mHealth advantages include: 

remote data collection and monitoring for improved diagnosis and patients follow 

up, disease and epidemic outbreak tracking, effective data driven approach to 

personalized medicine21–23. Several companies recently market products using 

smartphones as included component or provided by the final user. 
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Figure 1.5 Example of mHealth smartphone based on colorimetric detection. 

 

1.3 Nanobiosensors 

 

A biosensor is a full-fledged analytical measurement system specifically designed 

for the assessment of biochemicals as oligonucleotides, proteins or other 

biomarkers. Such analytes are recognized by a bioreceptor, which is a biological 

system (such as antibody, cell parts, enzymes, oligonucleotide) that selectively 

interacts with the target, thus resulting in a biological signalling. Afterwards, the 

transducer element converts the bioanalyte-receptor interaction into a 

measurable electrochemical, optical, pyroelectric, or piezoelectric signal. Such 

signal is then processed and/or amplified by an amplifier/detector24,25 (see Figure 

1.6). An example of this system is the Bio-FET, a biosensor based on MOSFET 

(metal-oxide-semiconductor field-effect transistor, or MOS transistor) that is 

widely applied to assess various biochemicals and environmental parameters26.   
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Figure 1.6 Nanobiensor operation principle (left), and an example of application of viral protein 
detection (ref. 27). 

 
A biosensor must meet some important requirements that include sensitivity, 

selectivity, reproducibility and stability.  The biosensor selectivity is the capacity 

to recognize specific targets in a complex sample matrix rich in interfering 

components. The sensitivity refers to the ability of the biosensor to produce a 

signal for small variations of analyte concentration. The reproducibility is the 

property to generate the same response to replicated experimental setup, and it 

is closely related to the stability that quantifies how much the environment 

perturbations, such as variations of temperature and/or pH, can affect the result. 

About the outcome, the indicators that define the analytical performance of a 

biosensor are the Limit-Of-Detection (LOD), Limit-Of-Quantification (LOQ) and the 

Limit-Of-blank (LOB). The LOB describes the highest noise (apparent analyte 

concentration) expected to be found in the replicated blank samples. The LOD 

indicates the minimum threshold value of analyte concentration detectable, and 

the LOQ “is the highest apparent analyte concentration expected to be found 

when replicates of a blank sample containing no analyte are tested.”28. These are 

the main features and performance indicators to define an impactful and effective 

biosensor.   
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1.4 Nanotechnology for biosensing applications 

 

The early diagnosis and the health condition monitoring, as well as the 

environmental pollutants detection are attracting growing attention from both 

industry and research. Although there is still a need for suitable tools to be applied 

in such fields, a new generation of biosensors have been designed for POC 

testing29, due to the gained knowledge and expertise in the field of 

nanotechnologies and to the possibility to synthesize smart nanomaterials with 

unique properties. Indeed, nanomaterial-based sensors have been shown to be a 

suitable choice for instrument-free and on-site diagnostic applications30,31.  

European Commission defines a nanomaterial as “a natural, incidental or 

manufactured material containing particles, in an unbound state or as an 

aggregate or as an agglomerate and where, for 50 % or more of the particles in 

the number size distribution, one or more external dimensions is in the size range 

1 nm - 100 nm”32 (see Figure 1.7). At the nanometric size, the particles show 

peculiar physical and chemical behaviours owed to the predominant quantum 

confinement phenomena and surface effects33,34. 

 

 

Figure 1.7 Length scale of the biological components and the nanomaterials (comparison). 

 

The quantum confinement effect refers to the energy levels and relative electronic 

distribution in the nanomaterial. At this size, the material relative band gap 

decreases while energy levels become discrete, unlike the bulk dimensions of the 
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same material35. The electron mobility is reduced at certain discontinuous energy 

states, phenomenon known as “quantum confinement”36. Therefore, the band 

gap shrinks or widens, following the nanoparticles size, with a relative increase or 

decrease of energy levels density (see Figure 1.8). Such renewed electronic 

configuration, typical of the nano-size, lends new properties to the particles as the 

way of interaction with light radiation, resulting in size and shape-dependent 

absorption and luminescence phenomena37,38. 

 

 

Figure 1.8 On the left graph of size to volume ratio correlation, on the right energy band gap in the 
nanocrystal semiconductor.  

 

Another important parameter influencing the nanomaterial surface properties is 

the high surface-to-volume ratio, which increases with the lowering of size39 (see 

Figure 1.8). Considering a generic sphere of radius r, its surface scale with the 

square of r while its volume with the cube of r, therefore, the ratio increases the 

particles size reduction. Paired the mass (in terms of  the number of atoms), the 

exposed surface grows extraordinarily. Even the surface reactivity is conditionated 

by the size. Given that the surface atoms are characterized by lower coordination 

number, resulting less stable than the more coordinated interior ones, the 

nanosized materials show a high surface energy40.  The latest developments in 

biosensor design have benefited from the size-dependent nanostructures 

properties to improve both the biorecognition interaction and the transducing 

reaction. On one hand, the high surface-to-volume ratio allows high reactivity to 

functionalization of the nanomaterial surface with bioreceptors, thus increasing 
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the specific target recognition reactions41,42. On the other, the catalytic properties 

of nanomaterials and their interaction with light can enhance the transducing 

process, enabling sensitive and colorimetric readout. Several nanomaterials have 

been exploited in hybrid nanosensors like carbon nanotubes, magnetic 

nanoparticles, silicon nanowires and nanostructured metallic particles (such as 

silver, gold, platinum, palladium and iron oxide). In particular, metallic 

nanoparticles exhibited high potentiality in several detection mechanisms43. These 

nanomaterials can be easily obtained following different chemical methodologies 

that enable an accurate control of size- and shape-dependent optical, electrical 

and catalytic properties44–46.  

 

1.5 Gold Nanoparticles POC Applications 

 

Among the metal nanomaterials, AuNPs present a series of peculiar features, 

which will be discussed in detail in the following paragraph, that make them 

particularly suitable for the development of colorimetric methods for POC 

applications in several fields, from environmental control to healthcare.  

1.5.1 Environmental pollutant assessment 

 

Most of the heavy metal ions are known to be highly toxic and in some cases 

carcinogens, and are considered as environmental health hazards to the extent of 

being ranked in the hazardous substances top ten47,48. In particular, mercury and 

organic mercury pollution is a global health threat given its well-documented toxic 

effect on living organisms and its widespread presence in the environment. The 

main sources of mercury contamination are coal power plants and metal mining 

that release more than one thousand metric tons per year49. Following this 

anthropogenic high emission, mercury is highly present in seawater and in soil, 

accumulate in aquatic species and enter the human food chain50. In the 

environment, mercury further reacts forming methylmercury through three 
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different ways, i.e. abiotic methylation, methylation by microorganism and photo 

methylation51(see Figure 1.9). Once ingested in the human gastrointestinal 

system, mercury and methylmercury (CH3Hg+) get adsorbed and have a half-life of 

70 days. 

 

Figure 1.9 Mercury is methylated in anoxic environments by microorganisms (illustration in the 
inset). The toxic methylmercury accumulates in aquatic species (bioaccumulation), and its 
concentrations increase with each trophic level (biomagnification) (ref. 51). 

CH3Hg+ is known to be much more toxic than inorganic one (Hg2+), as, due to its 

reactivity with the sulfhydryl group, it forms a glutathione conjugate that reaches 

different cell biochemical mechanism, causing DNA toxicity as a consequence of 

increased global and gene-specific methylation. Moreover, it can pass the blood-

brain barrier thanks to its lipophilicity and, there, CH3Hg+ strongly inhibits 

astrocytic glutamate uptake. CH3Hg+ causes mitochondrial dysfunction and 

activation of cell death pathways, overactivating (NMDA) receptors, and, thus, 

increasing the Ca2+ influx into postsynaptic neurons. In addition, CH3Hg+ 

determines elevated ROS species generation (which increases the oxidative stress) 

and lipid peroxidation and, hence, the impairment of the activity of 

neurotransmitter and neuromodulator receptors52–55(see Figure 1.10).  The 

systemic poisoning leads to hypertension, pulmonary toxicity and 

nephrotoxicity56.  
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Figure 1.10 On the left the CH3Hg+ induced oxidative stress and Ca2+ and glutamate dishonesties, 
on the right CH3Hg+ effects on the GSH antioxidant system (ref. 55). 

 

In the human body, the major source of both organic and inorganic mercury is the 

consumption of contaminated food, in particular shellfish and large-size fish, like 

tuna and swordfish57–61. Considering the high risks involved with mercury 

contaminated food consumption, American and European authorities have set out 

rigid limits for methyl mercury concentration in food and water62. FAO and WHO 

organizations have established that the maximum levels of CH3Hg+ allowed in fish 

could not exceed 1.0 μg/g for predatory fish and 0.5 μg/g for other fishery 

products, calculated on the basis of wet weight63,64. To date, the detection and 

quantification of mercury species (Hg2+, CH3Hg+) are performed by a plethora of 

complex and costly laboratory-based methods65-69. Therefore, there is a strong 

need for portable and easy-to-use devices for the simple and rapid home testing 

of these threating pollutants. Harvesting the potential recently opened by the 

application of nanoparticles to analytic issues, several colorimetric nanosensors 

have been recently proposed for naked-eye detection of mercury70,71. However, 

the sensitivity and reliability are still a major challenge for routine monitoring 

application. Moreover, only few reports deal with the detection of organic 

mercury72,73, which is the most abundant and dangerous species in fish flesh. 
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1.5.2 Early diagnostic and health conditions 

monitoring 

 

The National Institutes of Health (NIH) defines a biomarker as an “objectively 

measured and evaluated indicator of normal biologic processes, pathogenic 

processes, or pharmacologic responses to therapeutic intervention”74. Biomarkers 

are biological molecules able to supply information concerning the physiologic 

state of a living organism. Variations of biomarker concentration, structure, and 

function can identify a progression or regression of a specific disorder or 

demonstrate how the body responds to it.  Evaluation and profiling of a biomarker 

is a useful tool to the health conditions monitoring, risk assessment and early 

diagnostic75.  

 

1.6 Saliva as diagnostic fluid 

 

Nowadays, different biological fluids like blood (gold standard), serum, urine, 

cerebrospinal fluid, sperm etc. are used as diagnostic tools, but they need 

particular precautions and skilled personnel to be collected with few 

complications76,77. Besides, traditional biological fluids (e.g. blood) require invasive 

sampling techniques like painful finger pricking that entail evident discomfort and 

health risks, such as infections and viral transmission. Hence, there is an increasing 

attention towards non-invasive sampling. In this context, the use of saliva as 

diagnostic fluid is becoming a clinical reality75,78,79. 

Saliva is a colourless, pseudo acidic, muco-serous exocrine secreted fluid. Whole 

saliva is a mixture from parotid (20–25% of secretion), submandibular (70–75% of 

secretion), sublingual, tubarial and minor glands. Main constituents include water 

(98%), mucopolysaccharides and glycoproteins, electrolytes, white blood cells, 

epithelial cells (DNA vehicle), proteins and enzymes like amylase lipase and 

antimicrobial enzyme. The daily production of saliva ranges from 0.5 to 1.5 litres, 
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its normal flow rate is about 0.3 mL/min and it increases up to 7 mL/min when 

stimulated. The resting pH varies from 6.2 to 7.4, and this value changes with a 

meal (it increases within 5 minutes after the intake of food, and returns to basal 

levels approximately 15 minutes after food consumption)75,80,81. 

 

Figure 1.11 On the left, salivary glands location; in magnified, view of the duct and the acinar 
structures. On the right, representative biomarkers of salivary fluids. 

 

Saliva contains a variety of molecules representative of the entire spectrum of 

normal or pathological conditions (see Figure 1.11). In human saliva are secreted 

endogenous substances at relative tissue concentrations, as well as molecules 

used for recreational purposes or therapy and markers of hormonal, 

immunological status, neurological and metabolic conditions.   

Salivaomics is a term introduced in 2008 consequentially to the rapid development 

of knowledge on -omics salivary constituents82–84. To date, there are five major 

salivary diagnostic elements such as proteome, microbiome, transcriptome, 

micro-RNA, and metabolome to classify the salivary constituents as biomarkers. 

Most common and abundant salivary substances with clinical relevance (validated 

biomarkers) include microparticles, viruses, bacteria, various proteins, immune 

system complement as IgA, IgG, IgM, polynucleotides, lipids like cholesterol and 

triglycerides, steroid hormones, electrolytes and small signalling molecules75,85.     

Human saliva shows another tempting quality: it can be quickly and easily 

collected without training86,87.  

A relevant limitation to the use of saliva in diagnostics concerns the analyte 

concentration, as they are generally present in lower percentage than in serum. 

Such issue inevitably calls for a new generation of sensitive diagnostic methods to 

be designed. Despite the variety of nanoparticle-based colorimetric detection 
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mechanisms reported in the literature, no one of these can be effectively used to 

detect salivary biomarkers.  

 

1.6.1 Salivary glucose as biomarker  

 

Type 1 diabetes is a chronic autoimmune condition caused by the pancreas 

reduced (or absent) insulin production with unknown causes and without no way 

to prevent. Type 2 diabetes is a chronic progressive pathology with gradually loss 

of the ability to secrete sufficient insulin. Diabetes is frequently caused by lifestyle 

factors (obesity lacking physical activity), even if genetics also plays an important 

role, in fact in Asian populations type II diabetes  is described as an “epidemic”88,89. 

Diabetes is constantly increasing impact on the population. From 2000 to 2016 

there was a 6.8% increase of premature deaths (3.96 million in the age group 20-

79 year) for diabetes; in 2014, more than the 8.5% of 18 aged adults was diagnosed 

with diabetes. Although the blood can be considered as the gold standard fluid for 

the disease diagnosis and monitoring, the associated risk of exposure to infections, 

the difficulties of sampling from children and/or chronically ill patients, can heavily 

affect compliance, strongly discouraging this kind of tests90–93.   

Self-monitoring glucose is a basic, routine procedure for diabetic patients. 

Education programs promote this practice emphasising the correct disposal of 

needles to avoid contaminations other than transmission of blood borne viruses94. 

However, despite the carefulness, hepatitis outbreaks have been reported in 

settings where multiple patients with diabetes undergo self or assisted monitoring 

of blood glucose. United States investigated 18 types of hepatitis B virus (HBV) 

infection outbreaks (1990-2008) associated with the improper use of blood 

glucose monitoring equipment95. 

Since glucose level is challenging to monitor and patients spend considerable 

periods in hyperglycaemic conditions (outside target range), an intensive insulin 

administration is often correlated with death, while more frequent glycaemic 

assessments reduce mortality and morbidity in critical ill persons, improving 



19 
 

observed beneficial outcome96,97. Regular glycaemia self-monitoring helps people 

to handle diabetes understanding the impact of food intake, sport activity, stress, 

illness etc. on their glucose levels. Frequent self-monitoring allows people to 

maintain an appropriate quality of life, and to adjust medications improving long-

term health outcomes. This results into a reduced risk of diabetes-related 

complications (heart attack, stroke and irreversible damage to eyes, kidneys and 

nerves)96,98,99. There are several devices currently available to monitor glucose 

levels reported in Table 1.1 and classified into three main categories.  

 

 

Table 1.1 Risks and difficulties with available invasive glucose monitoring devices for people with 
diabetes (ref. 100). 

 

Self-monitoring blood glucose (SMBG) devices are the most affordable but also 

painful and costly. Continuous glucose monitoring (CGM) and flash glucose 

motinoring (FGM) devices offer a convenient option, even if the complexity of 

these technologies can be a restriction as the skin penetration entails a risk of pain, 

reactions, allergies and infections100–102. In this context, the use of saliva as 

biological source is attracting great interest from POC testing community to 

develop novel methods for glucose levels self-monitoring. Several studies report a 

good correlation between the blood glucose levels and the salivary ones. Despite 

the quantity of data, the literature is contradictory since several parameters affect 
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the salivary glucose values, most of which related to the collecting protocol and 

the subject group enrolment criteria used for the studies. However, P. Balanet 

al.103 found that salivary glucose levels are significantly higher in uncontrolled 

diabetic subjects (13.35 ± 6.61 mg/dl) and controlled diabetic subjects (4.95 ± 

2.479 mg/dl) than in nondiabetic subjects (1.18 ± 0.675 mg/dl), in accordance with 

previous studies104,105. Likewise, other works reported a remarkable correlation 

with variable ratios from 1:40 to 1:100 depending on the considered population 

(healthy or diabetic, age, body mass index etc.)106–108 (see Figure 1.12 and 1.13). 

 

  

Figure 1.12 On the left, representative salivary-blood glucose level correlation (ref. 109). On the 
right, comparison of salivary and serum components in diabetes type II (above) and comparison 
between diabetic (group I) and non-diabetic (group II) persons (below).  

 

 

Figure 1. 13 Contrast of glucose concentrations in different physiological fluids between healthy 
and diabetic people108. 

 

Researchers have been attempting for several years to design functional 

commercial non-invasive glucose measurement devices. There are several 
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challenges associated with non-invasive monitoring and many factors that 

participate to inaccurate result readings. Sensitivity, selectivity and interferences 

represent the main obstacles even due to the limitations in hardware and software 

state of the art. Nevertheless, thanks to the new technologies and the continuous 

improvements, the appearance of novel and effective non-invasive glucose sensor 

is only a matter of time109. 

 

Figure 1.14 (A) Technologies under development for minimally invasive and non-invasive glucose 
detection; (B) block diagram of the device for glucose measurement with finger-pricking method; 
(C) principle of optical polarimetry in the eye for glucose monitoring 110. 

 

1.7 Gold nanoparticles for nanobiosensor 

 

1.7.1 Introduction to gold nanoparticles  

 
The significant developments in microfabrication techniques have inspired the 

design of a new generation of metal-nanoparticle based sensors, which exploit the 

interesting physicochemical properties of such nanosized materials. Among them, 

gold nanoparticles (AuNPs) have revealed attractive tools to fabricate rapid and 

colorimetric detection platforms, due to their unique catalytic and optoelectronic 

(C) 

(B) (A) 
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properties, and their easy preparation. High quality AuNPs can be rapidly 

synthesized by several standardized physical (laser ablation microwave and 

ultraviolet irradiation), chemical, and biological methods110. The most widely used 

is the wet chemical reaction111,112 that produces stable AuNPs in aqueous medium. 

AuNP stability is a crucial factor for their applicability, and it is generally provided 

by a shell of charged capping agents, like trisodium citrate or 

cetyltrimethylammonium bromide (CTAB). Such array lends an electrical double 

layer (EDL), so that AuNPs undergo an electrostatic repulsion that prevents their 

aggregation and confers colloidal stability, according to the principles of 

Derjaguin–Landau–Verwey–Overbeek (DLVO) theory113–116 (see Figure 1.15). 

Typically, particle stability is quantified by measuring the zeta potential values that 

correspond to the electrical potential at the external interface of the EDL. 

Nanoparticle solutions that present zeta potential lower than – 25/30 mV o higher 

than 25/30 mV have great colloidal stability, enough to remain stable 

(monodispersed particles) in solution for desired applications117. Nanoparticle 

environmental changes, such as the displacement of weakly bound capping 

agents, strongly affect both the Stern layer and the outer diffuse layer that show 

high plasticity118.  

 

 

 

Figure 1.15 (A) Formed electrical double layer (EDL) which consists of the inner Stern layer and the 

outer diffuse layer; (B) corresponding decrease in the counter- and co-ion concentrations with 

respect to the distance from the particle surface; (C) plotting of the EDL, van der Waals and total 

interaction potentials of two nanoparticles 116. 
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The salt-induced aggregation is a well-known process in which the increased ionic 

strength of the solution makes the AuNPs thermodynamically unstable 

culminating in the diffusion-limited cluster aggregation or the reaction-limited 

cluster aggregation. To increase the nanoparticle stability and to assign bio-

recognizing features at the same time, AuNP capping agents can be chemically 

substituted with several functional groups like protein, polymers and 

oligonucleotides. The peculiar physical and optical properties have rendered 

AuNPs suitable candidates to develop nanobiosensor that promise to be more 

sensitive, specific, and rapid compared to the conventional biochemical 

assays119,120.  

 

1.7.2 Gold nanoparticles properties  

 

While bulk gold has a familiar yellow color in reflected light, thin Au films look blue 

in transmission and this blue color gradually changes through several tones of 

purple and red as the particle size is reduced to the nanometer range. This 

interesting optical behavior is due to a phenomenon known as Localized Surface 

Plasmon Resonance (LSPR)118,119.  

 

Figure 1.16 Schematic illustration of the resonant oscillation of conduction electrons in metal 

nanoparticles, which is responsible for the Localized Surface Plasmon Resonance (LSPR) 

phenomenon. 

When electromagnetic radiation hits the particles, the conduction electrons 

respond with a collective oscillation (surface plasmon) at a certain frequency 
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(plasmon frequency), determined by parameters such as material, shape, size and 

dielectric constant of the environment37 (see Figure 1.16).  

 

Figure 1.17 (A) Gold nanoparticle size dependant surface plasmon resonance; (B) colour shifting of 

various monodispersed colloidal gold nanoparticles 124-126. 

  

When the frequency of the incident radiation matches the frequency of the 

particle electron cloud, there is a resonant interaction resulting into a great light 

scattering and an optical absorbance, with absorption peaks corresponding to the 

plasmon frequency123. For AuNPs such plasmon frequency interests the visible 

range of the electromagnetic spectrum, resulting in intensely coloured 

suspensions (see Figure 1.17) visible by visual inspection121,122. 

Moreover, AuNPs are endowed with an extinction coefficient that is three to five 

orders of magnitude higher than the brightest molecular dye, inducing a visible 

colour even at pM concentrations. Importantly, such optical features can be tuned 

by controlling the structure of AuNPs in terms of shape, size, inter-particle distance 

and environmental shell.  

For instance, according to Gan theory124,125, by changing the AuNP shape from 

spheres to rods, the plasmon band splits into two bands, one of which in NIR 

region (corresponding to electron oscillations along the long axis, referred to 

longitudinal band), and the other one in the visible region at a wavelength similar 

to that of gold nanospheres. To date, there are several methods reported to 

prepare various crystalline geometries such as wet chemical growing, e-beam 

coating or chemical etching. Among the available structures (nanorods, 

nanotriangles,  nanocubes, bipyramid, and nanoshells)126,127, multibranched (MB, 

star shaped) AuNPs appear attractive for their remarkable electromagnetic field, 

(B) 
(A) 
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stronger than the one of spherical nanoparticles (as confirmed by surface-

enhanced Raman scattering and surface-enhanced fluorescence measurements), 

other than for the ability to synthetically fine-tune the shape128.  

The sharp and long edges of such nanocrystals result in an effective 

electromagnetic hot spot with related red-shift of the resonance peak due to the 

size effect. As the tip diameter increases, the inter-particle distance and the 

relative electric field increase too, while the attraction becomes weaker122,129. 

Consequently, the electric dipole oscillation period increases, and the resonance 

peak moves to lower frequencies (Figure 1.18A)129. The same red-shift of the LSPR 

is observed when increasing the number of tips (Figure 1.18B). In this case, a range 

of frequencies in the visible and near-IR can be covered by tuning MB-AuNP size 

and shape.130  

 

Figure 1. 18 (A) Resonance spectrum of multibranched gold nanoparticles with different tip 

length129; (B) absorption cross sections for Au nanostars with different number of tips from along 

with that for the equivalent Au nanosphere 134. 

 

Concerning the synthesis, there are several published methods to produce 

branched gold nanoparticles that require surfactants such as polymers, 

biomolecules or ions (cetyltrimethylammonium bromide, CTAB; 

polyvinylpyrrolidone, PVP, silver nitrate, AgNO3 etc.) acting as shape-directing 

agents in seed-mediated approaches131,132.  These molecules can strongly adsorb 

onto the nanocrystal surface, poisoning the reactivity. An interesting synthetic 

method combines NH2OH and HEPES (2-[4-(2-hydroxyethyl)piperazin-1-yl]ethane 

(B) (A) 
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sulfonic acid) to obtain a complete set of MB-AuNPs, tuning the nanostructuration 

during the anisotropic seeded growth (Figure 1.19)128. 

 

 

Figure 1.19 (A) and (B) UV-Vis spectra of the 40 and 60 nm Au MBNPs, grown in the presence of 

different concentrations of HEPES. The increasing SPR redshift is also observable by a 

representative photograph of Au MBNPs (C) and (D)132. 

 

AuNP  property portfolio also includes remarkable catalytic activity in several 

reducing and oxidating reactions133–135. Common catalysed reactions include the 

thermal cis-trans isomerization, CO oxidation, cyclotrimerization, selective 

hydrogenations of nitro compounds, aldehydes, ketones etc. (Figure 1.20 A)136. 

Furthermore, recently, it has been reported that AuNPs can display enzymatic 

properties, being capable to mimic enzymatic activities such as reductase, glucose 

oxidase, peroxidase, catalase, superoxide dismutase and oxidase136,137. Several 

studies explored the dependence of AuNP catalytic properties according to their 

size and shape, and, in particular, they reported that a size reduction correspond 

to higher catalytic activity since the exposed surface is proportional to the activity 

(Figure 1.20 B) 136,138. 
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1.7.3 Gold nanoparticle synthesis 

 

AuNPs can be easily prepared by wet chemical synthesis that involves the 

reduction of gold ions by the use of chemical reductants139. Turkevich first 

reported the method to produce AuNP colloidal suspension by a single-step 

reduction process of (AuCl4−) using sodium citrate as the reducing agent 

(whenever required, it is also possible resort to more than one reductant) 140. 

(B) 

(A) 

(C) 

Figure 1.20 (A) Summary of the different AuNPs catalytic activities with representative examples; 
(B) comparison of the catalytic efficiency for the peroxidase-like activity of different-shaped and 
different-sized AuNPs. Horseradish peroxidase (HRP), their biological counterpart, is also included 
in the graph; (C) peroxidase-like activity of AuNP dependence on different surface modifications, 
measured as its catalytic efficiency 140. 
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Other common reductants include ascorbic acid, tannic acid, molecular hydrogen, 

hydrazine etc. In any case, the colloidal stabilization phase, by means of capping 

agents, is fundamental for a successful synthesis141,142. There are a number of 

advantages in using the chemical reduction protocol to synthesize AuNPs. Wet 

chemical processes are simple, produce metal nanocrystal closely similar in size 

and stable; the protocol is simple to scale-up and reproducible115,143.  

 

Figure 1.21 Schematic representation of the generalized mechanism of nanoparticle growth due 

to coalescence 148. 

 

Briefly, a source of Au3+ (such as tetrachloroauric acid, HAuCl4), is boiled and 

reduced to metallic gold (Au0) adding trisodium citrate. These activated atoms 

start the nucleation step, leading to a 15 nm well-dispersed AuNPs that are 

stabilized by trisodium citrate (Figure 1.21). This protocol has been optimized 

adjusting HAuCl4/citrate ratio, temperature and pH value in order to improve 

AuNP monodispersion in size and shape. 35 nm spherical AuNPs are, then, 

synthetized using the 15 nm seeds and following the seeded growth approach, 

which exploits the property of the reducing agent hydroxylamine to quantitatively 

and selectively reduce Au3+ to elemental metal on the Au seeds surface143,144.    

 

 

1.7.4 Gold-nanoparticle based colorimetric 

strategies  

 

Among the available tools, the colorimetric nanobiosensors are the favourite 

methods for the design of POC devices for diagnosis and health condition 

assessment, environmental control, pollution monitoring and food analysis. 
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AuNPs exhibit certain properties as the strong LSPR in the visible region (and high 

extinction coefficients) and the enzymatic-like activity, which can be exploited to 

develop rapid, low-cost, and sensitive colorimetric sensors that allow clear and 

easy-to-interpret results. Therefore, the most studied gold-nanoparticle based 

colorimetric methods145 include aggregation-, growth-, etching- and nanozyme-

based mechanisms as summarized in Figure 1.22. 

 

 

Figure 1.22 Summary of different types of gold-nanoparticle based colorimetric sensors (ref. 150). 

 

Among the AuNP based methods, one of the most popular and diffused 

colorimetric sensing strategy is the controlled nanoparticle aggregation. This 

approach relies on a decrease in distance between nearby particles that results in 

a plasmon coupling effect and related colour shift. Such approach has become 

dominant in the field of colorimetric sensors since it requires a simple design and 

exhibits a high sensitivity146. 

As reported in Figure 1.23, the labelled methods relies on the use of AuNP-probes, 

meaning AuNPs functionalized with ligands such as DNA, antibodies or peptide. 

These chemically modified AuNPs have higher inter-particle repulsions and result 

to be more stable in high ionic strength environments than bare AuNPs, which 

undergo the salt-induced aggregation. AuNPs controlled aggregation strategies 
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can be achieved by crosslinking, non-crosslinking, or destabilization 

aggregation147,148. In the first approach, the crosslinker plays a crucial role, as it 

induces the aggregation through several mechanism. For instance, if the 

crosslinker is a small molecule that can be activated or suppressed, the AuNP 

aggregation ca be easily controlled by regulating the linker state.  

 

Figure 1.23 Typical strategies of colorimetric detection mechanism based on gold nanoparticles 
plasmonic shifting (ref. 151). 

 

Another mechanism exploits the complementarity of oligonucleotides. An 

example was reported to detect Hg2+, using the thymine-Hg2+-thymine 

coordination chemistry and ssDNA-AuNP probes149. Hg2+ forms stable T-Hg2+-T 

base pairs and increases the Tm value, thus inducing the complementary 

hybridization of ssDNA onto the AuNPs (see Figure 1.24 A). Similarly, using the 

crosslinking approach, Retout et al.150 developed a rapid method for the detection 

of MDM2 oncoprotein (p53- and p14-binding protein with regulating functions). 

The AuNPs were functionalized with p53 and p14 proteins. In the presence of 

MDM2, the formation of a ternary complex (p53-MDM2-p14) caused the AuNP 

aggregation and relative colour change of the solution from red to blue. (Figure 

1.24 B). 
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Figure 1.24 (A) Colorimetric detection of mercuric ion (Hg2+) using DNA–Au NPs (ref. 154); (B) 

detection of MDM2 using two peptide aptamer- functionalized AuNPs. The aggregation of the 

AuNPs was driven by the formation of a ternary complex of Mdm2, p53, and p14 (ref. 155). 

 

The non-crosslinking approach deals with a spontaneous aggregation of AuNPs 

due to a destabilizing event. For instance, dsDNA-AuNP complexes are less stable 

in an aqueous medium than ssDNA-AuNP system, because the fully matched 

duplex reduces the repulsive interactions. Such strategy was successfully applied 

in the colorimetric detection of various targets, and some modifications in the 

mechanism were introduced to improve the dsDNA–AuNP method sensitivity.151.  

In the destabilization-induced aggregation strategies, AuNPs aggregate by cleaving 

partially or totally the ligand that provides their electro/steric stabilization. 

Pathogenic bacterial DNA can be detected by RNAse H-controlled aggregation of 

RNA-functionalized AuNPs. RNA ligand was cleaved by RNAse H with simultaneous 

DNA–RNA hybridization (see Figure 1.25) 152. Another example of this approach 

uses aptamers that are oligonucleotides designed to have an affinity for a 

particular analyte, such as proteins, ions and small molecules153. These short 

sequences of nucleotides are adsorbed onto the AuNP surface that is stabilized. In 

the presence of the analyte, the aptamers leave the AuNP surface, determining a 

AuNP aggregation, whose rate is proportional to the target concentration.  

 

 

(A) (B) 
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Figure 1.25 The RNAse H enzymatic cleavage in combination with DNA-RNA hybridization provides 
a highly specific and ultra-sensitive assay for the detection of DNA (ref. 157). 

 
Despite these strategies have revealed effective and easy to be designed, they 

show mainly two problems: the generation of false positive/negative, due to an 

unspecific aggregation induced by several factors like solvent, pH, temperature, 

ions, or molecules; the complex modification of the linker molecules onto the 

nanoparticles.  

Recently, a new class of nanosensors were developed, based on the enzymatic or 

chemical growth of small AuNPs on catalytic seeds. On the base of the principle 

for which hydrogen peroxide can be used as the reductant for AuNP growth, a 

colorimetric sensor for metal ion detection was developed154.  For instance, Zhou 

and Ma reported an assay for the detection of mercury ions155. In particular, in the 

absence of Hg2+ ions, gold nanoclusters (AuNCs) catalysed H2O2 chemical 

dissociation and the Au crystal growth kinetics was slow. Otherwise, in the 

presence of Hg2+ ions, AuNC catalytic activity was inhibited toward H2O2 and the 

Au3+ reduction occurred at a fast rate, and non-aggregated AuNPs were grown.  

In parallel to the growth methods, a new group of colorimetric methods is 

emerging156.  Several AuNPs, from gold nanospheres to gold nanorods (AuNRs) 

and nanotriangles, are exploited in etching-based sensors. The etching process 

consists of a shape reduction and a size modification of the nanoparticles with 

corresponded LSPR shift. The use of etchants agents as H2O2 and halogen ions can 

preferentially etch the AuNR terminals, leading to a lower aspect ratio or spherical 

AuNPs157. AuNR etching by H2O2, as reported, shows several drawbacks in the 

reaction conditions, because the high concentration of H2O2 and the harsh 

conditions in terms of temperature and pH, may limit the suitability of this system 

for sensing purposes.  
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The introduction of catalytic agents such as metal ions and enzymes could 

overcome this issue with fast reaction kinetics. Therefore, fast and sensitive 

methods were reported in the literature, based on Fenton-like o horseradish 

peroxidase (HRP) catalysed etching158 (see Figure 1.26 A). In the same way, the 

halide ions were used to increase the oxidative etching of AuNRs, promoting the 

solubility of gold monoxide. For example, the colorimetric detection of molybdate 

was optimized using the iodine-mediated etching method159 (see Figure 1.26 B). 

H2O2 could oxidize I− to I2 that can corrode CTAB, the stabilizer for AuNRs in acid 

condition. Such reaction could be accelerated adding molybdate that promote the 

reaction between H2O2 and I−157,160.  

 

 

Figure 1.26 (A) The aspect ratios of AuNRs gradually decrease with the increase of TMB2+, and the 

solution displays a colourful transition163; (B) colorimetric detection of molybdate based on 

catalytic etching of AuNRs164. 

 

In addition to the plasmonic properties, AuNPs are known to be effective as 

nanozymes, metal nanoparticles able to catalyse several reactions in strong, non-

physiological conditions. Charged AuNPs can greatly promote the oxidation of the 

substrate 3,3,5,5-tetramethylbenzidine (TMB) in the presence of H2O2 to generate 

a characteristic blue coloured solution. Thus, TMB chromogenic oxidation reaction 

can be used to enhance the output of several recognition mechanism145. For 

example, Jiang et al. demonstrated that chitosan-functionalized AuNPs showed 

higher peroxidase-like activity than the one exhibited by natural enzymes161. In 

another work, Kwi Nam Han et al. proved that Hg2+ could boost the catalytic 

property of AuNPs, so the mercury ions could be detected exploiting AuNPs@Hg, 

(A) (B) 



34 
 

increasing the activity on TMB oxidation reaction162 (see Figure 1.27 A). Wu et al. 

synthesized 2,6-diaminopurine (DAP)-capped AuNPs that responded to the 

presence of Fe2+ with an increased peroxidase-like activity163 (see Figure 1.27 B). 

A sensitive Fe2+ sensor was optimized for the assessment of both haemoglobin HB 

and red blood cells RBCs in urine samples. 

 

Figure 1.27 (A) Schematic illustration of the colorimetric PAD sensing mechanism for Hg2+ ions based 

on the mercury-promoted nanozyme activity of AuNPs (ref. 167); (B) the molecular structure of 

purine derivatives and the peroxidase like activity process of the AuNPs 168. 

 

Shah et al. studied how the adenosine triphosphate (ATP) could promote the 

peroxidase-like activity of citrate-capped AuNPs and developed a nanosensor to 

detect ATP molecules164. These approaches extremely reduce the costs, 

simplifying the procedures and shortening the execution time. Moreover, these 

assays are suitable for smartphone-based devices, smart platform to detect, 

transduce and analyse data in short time. Nevertheless, there are still critical 

issues that need to be solved for effective applications in real sample testing for 

POC device set-up.  
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2 Gold nanoparticles noncatalytic/ 

nanoplasmonic based sensor for organic 

mercury detection 

 
2.1 Introduction to colorimetric mercury 

species detection methods 

 

Nowadays, the detection and quantification of mercury species (Hg2+, MeHg+) are 

done by using Inductively Coupled Plasma spectrometry (ICP-MS)1–3, Atomic 

Fluorescence Spectrometry, Cold Vapor Atomic Absorption spectroscopy (CVAAS), 

Cold Vapor Atomic Fluorescence spectroscopy (CVAFS)4,5, High Performance 

Liquid Chromatography (HPLC) and Gas Chromatography (GC). However, these 

techniques, even if highly sensitive, are expensive, as they require complex and 

costly instrumentation, laborious protocols and qualified personnel. Therefore, 

there is a strong need of portable and easy-to-use devices for the simple and rapid 

home testing of these threating pollutants. Harvesting the potential recently 

opened by the application of nanoparticles to analytic issues, several colorimetric 

nanosensors have been recently proposed for naked-eye detection of mercury6,7. 

However, the sensitivity and reliability are still a major challenge for routine 

monitoring application. Moreover, only few reports deal with the detection of 

organic mercury8, which is the most abundant and dangerous species in fish flesh. 

In the field of nanosensors for diagnostic and environmental control, AuNPs have 

been exploited to develop different detection strategies 9. In particular, there are 

several reports regarding mercury species detection via optical read out 

approaches 10–12. Many of them are based on the AuNPs color shift (related to the 

nanoparticles surface plasmon resonance), caused by the analyte-induced 

aggregation. Other studies are focused on the catalytic properties of nanoparticles 

that are affected by the presence of mercury and can be then further 

quantitatively transduced in a signal employing chromogenic or fluorescent 
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substrates13,14. To improve as possible the efficiency and the selectivity of analyte 

recognition step, those nanomaterials are usually functionalized with ssDNA, 

surfactants, thiols and other ligands15. While for inorganic mercury some 

colorimetric detection strategies have been recently reported due to the possible 

exploitation of Hg2+ reactivity and direct interaction with noble metal NPs, such as 

gold and platinum16, detection of methylmercury was hampered to date in POC 

schemes because of its challenging reduction to its metallic form via simple and 

biocompatible reagents and methods. This prevented the implementation of 

portable colorimetric methods, since organic forms cannot directly interact with 

nanoparticles or chromogenic substrates. In a recent study15, a colorimetric 

strategy for organic Hg has been achieved using a combination of AuNPs, copper 

ions, diethyldithiocarbamate (DDTC), and EDTA in a multi-step reaction, exploiting 

the Hg/Cu displacement in DDTC complex, with its consequent surface interaction 

and destabilization of the AuNPs. Moreover, in a different work17, a strong 

reducing agent 4-(2-Hydroxyethyl)piperazine-1-(2-hydroxypropanesulfonic acid) 

monohydrate (HEPPSO) has been employed in an interesting and sensitive 

strategy to convert organic mercury to Hg0, which inhibits the dual chromogenic 

functionality of HEPPSO. This latter approach, however, showed some limitations 

as a POC sensor, in terms of long operational procedure and use of strong 

reagents. Other approaches, which rely on the use of thymine-rich aptamers 

coupled to AgNPs, , need for controlled temperature cycles, or instrumental 

fluorescence detection12,18, together with long reaction times. Similarly, thymine-

functionalized AuNPs have been exploited in a Hg-induced cross-linking 

configuration, although reaching low sensitivity8. The characteristics of the main 

methods have been summarized in Table 2.1. Here, we demonstrate how citrate-

capped gold Au NPs can be effectively used to detect both inorganic and organic 

mercury species exploiting simultaneously their catalytic and plasmonic 

properties. This method consists in an aggregation reaction induced by the 

formation of Hg0 amalgam on particles surface as a consequence of mercury 

species reduction catalyzed by the AuNPs. Without adding any functional groups 

on the surface of the nanomaterial, we can reach remarkable limit of detection 
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(LOD) equal to 2 µM, while color change associated with the aggregation process 

is complete in less than 2 minutes. 

 

 

2.2 Materials and methods 

 

All chemicals and reagents employed were of high technical grade, stored 

following vendor recommendations and directly used with no further purification. 

Hydroxylamine sulfate (H3NO•0.5H2SO4, 88944) and Hydrogen Tetrachloroaurate 

(HAuCl4*XH2O, Au 49% min, 42803) were purchased from Alfa Aesar. Sodium 

citrate tribasic hydrate (HOC(COONa)(CH2COONa)2, Reagent Plus®, ≥99%, 25114 

was purchased from Sigma-Aldrich.  

 

Authors Organic 
mercury 

Visual 
detection 

POC 
method 

One-step 
reaction 

Chi-Wei Liu et al.19 ✕ ✓ ✕ ✕ 

Huang Chih-Ching 20 ✕ ✕ ✕ ✓ 

Chen Guan-Hua  21  ✕ ✓ ✓ ✕ 

Chansuvarn Woravith 7  ✕ ✓ ✓ ✕ 

Chen Yinji 10  ✕ ✓ ✓ ✕ 

Danlian Huang 22 ✕ ✓ ✕ ✓ 

Li Xiaokun 23 ✓ ✓ ✕ ✕ 

Ling Chen 24 ✓ ✓ ✕ ✕ 

Zhiqiang Chen11 ✓ ✓ ✕ ✕ 

Margaret L. Aulsebrook 8 ✓ ✓ ✕ ✕ 

This work ✓ ✓ ✓ ✓ 

 

Table 2.1 Analysis of the characteristics of the main methods for organic mercury detection, 

together with selected methods detecting inorganic mercury. 
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2.2.1 Synthesis of AuNPs 

 

Colloidal 15 nm citrate-capped AuNPs were synthesized by the classical Turkevich–

Frens method25 using sodium citrate as the reducing agent. All glassware was 

washed with aqua regia (HCl and HNO3, in a 3:1 volumetric ratio). 75 mL of 0.25 

mM acqueous solution of HAuCl4 was added in a two-neck round-bottom flask, 

connected to a bulb condenser and. After reaching boiling point (using silicon oil 

as heating fluid, setting the temperature at 110°C), 1.4 mL of 1% aqueous solution 

of trisodium citrate were added. The solution was kept gently boiling for 25 min.  

In a second step, 35 nm citrate capped AuNPs were synthetized according to a 

previously published method26. Briefly, the procedure relies on a seed-mediated 

growth using the 15 nm AuNPs (seeds) and NH2OH, which efficiently reduces Au3+ 

in presence of Au surface. To determine the volume of seeds required, a 

preliminary calibrating synthesis is performed for the desired final particle size. 1 

mL of 15 nm Au seeds solution were diluted in a round-bottom flask, under 

vigorous stirring and at room temperature, into 60 mL of MilliQ water, followed 

by the adding of 200 µL of 100 mM hydroxylamine sulfate solution. Then, 5 mL of 

HAuCl4 2 mM were added at 90 ml/h by syringe pump. After the addition of 

HAuCl4, 1.3 mL of 100 mM trisodium citrate were added, to stabilize gold 

nanoparticles. Unreacted reagents were removed by centrifugation in 50 mL 

polycarbonate tube at 3800 rcf, for 25 minutes. Concentrated AuNPs batch was 

collected and stored at 4°C, until the use. 

 

2.2.2 UV-vis characterization   

 

In a 1.5 mL tube, 10 µL of a solution containing various concentrations (2.5-20 nM) 

of 35 nm AuNPs were added to 990 µL of an aqueous sample spiked with CH3Hg+. 

The mixture was then shacked and incubated with 3% v/v formic acid (50-1000 

mM). Typically, the reaction started in 30 seconds and the color change was 

complete in a minute. UV-vis spectra (400-800 nm) were acquired by a NanoDrop® 
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(Thermo Fisher) with a small volume cuvette or by Spark® multimode microplate 

reader (Tecan) with flat transparent 96 multiwell plate. 

2.2.3 TEM imaging 

 

The TEM images of AuNPs deposited on carbon coated grids were acquired by a 

JEOL JEM 1400 microscope.  

 

2.2.4 X-ray Photoelectron Spectroscopy (XPS) 

analyses 

The XPS analyses were carried out with a Kratos Axis Ultra spectrometer, using a 

monochromatic Al Kα source, operated at 20 mA and 15 kV. The sample for XPS 

characterization was prepared by drop casting a few microliters of a 100-fold 

concentrated solution of a spiked sample containing MeHg+ (100M), AuNPs 

(20nM), and formic acid (150 mM) on a freshly cleaved highly oriented pyrolytic 

graphite (HOPG) substrate (NT-MDT, ZYB). Wide scan analyses were carried out 

with an analysis area of 300 x 700 microns and a pass energy of 160 eV. High 

resolution analyses were carried out with the same analysis area at a pass energy 

of 10 eV. Spectra were analysed using Casa XPS software (version 2.3.17). 

 

2.2.5 NMR characterization 
 

All the NMR experiments were performed at 298 K on a Bruker Ultrashield Plus FT-

NMR 600 MHz ADVANCE III equipped with a CryoprobeTM QCI 1H/19F–13C/15N–

D and with a SampleJetTM autosampler with temperature control. For each 

sample, a 1D 1H NMR spectrum was recorded; the water suppression was 

obtained using a standard pulse sequence (NOESY presat; Bruker) with 64 k data 

points, a spectral width of 20 ppm, an acquisition time of 2.7 s, a relaxation delay 

of 4s and a mixing time of 100 s.  
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2.3 Results 

 
2.3.1 Sensing strategy 

 

The oxidation or reduction of heavy metal inorganic and organic compounds has 

been seldomly used for the development of nanosensors since the kinetics of 

these reactions can be extremely slow without the addition of a strong reducing 

or oxidizing agent that adversely interferes with the determination of the 

substance. This has been overcome in the paper published by my mentor’s 

laboratory by using the catalytic surface properties of AuNPs, able to effectively 

harness the weak reducing ability of formic acid to obtain the reduction of 

methylmercury to elemental mercury on the nanomaterial interface.  The reaction 

between formic acid and methylmercury is catalysed at the surface of the gold 

nanomaterial and leads to the reduction of methylmercury and to the formation 

of a layer of metallic mercury on the surface of Au NPs. This results in a 

modification of the AuNPs colloidal dispersion and, as a consequence, in a change 

of the AuNPs plasmonic properties. Indeed, the mixture loses the red colour of a 

stable colloidal AuNPs solution and becomes blue/violet as AuNPs get closer to 

each other and aggregate with the consequent modification of their plasmonic 

properties detected by naked eye (Figure 2.1). This mechanism based on the 

catalytic and plasmonic properties of AuNPs permits to drastically improve the 

sensitivity of the nanosensor, reaching the level required by the law.  

 



50 
 

 

Figure 2.1 Detection mechanism triggered by the Red-Ox reaction at the surface of AuNPs between 

formic acid and methylmercury. As soon as reduced elemental mercury (Hg0) nucleates on AuNPs 

surface, fast particle aggregation is observed, with clear red-to-violet color change of the solution. 

 

2.3.2 AuNPs characterization 

 

The first step was the AuNPs synthesis: as previously described (paragraph 2.2.1), 

citrate-capped 15 nm AuNPs have been produced and then used as seeds in a 

further growing reaction to obtain 35 nm AuNPs. Both 15 and 35 nm nanoparticles 

have been characterized in size and shape. The results are shown below (see 

Figure 2.2 and Figure 2.3).  The method allowed to obtain well monodispersed, 

spherical AuNPs.  The UV-vis spectra reports a maximum of absorbance at  = 520 

nm peculiar of 15 nm spherical nanoparticles, according to AuNPs plasmonic 

theory (see Figure 2.2 (A)) and the DLS analysis report a narrow peak (Z-Ave = 15.2 

nm) without side population of aggregates (see Figure 2.2 (B)). In the Figure 2.2 

(C) the size distribution calculated on statistical significative population of particles 

on TEM images (see Figure 2.2 (B)). 
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Figure 2.2 15 nm AuNPs characterization (A) UV-vis absorption spectrum in water, (B) DLS 

measurement (C) TEM size distribution analysis showing a monodisperse population with an 

average size of 15 nm, (D) representative TEM micrograph. 

 

The same characterization in terms of size distribution and stability has been 

performed for 35 nm citrate capped AuNPs. The Figure 2.3 (A) shows the UV-vis 

absorption spectra with  max = 525 nm according to plasmonic theory. The DLs 

analysis confirm the particles size with one peak at Z-Ave = 36 nm (see Figure 2.3 

(B)). In Figure 2.3 (C) has been reported the distribution of the diameters 

measured on statistical significative sample of particles after TME images 

acquiring ( see Figure 2.3 (D)). 

(A) (B) 

(C) 

(D) 
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Figure 2.3 35 nm AuNPs characterization (A) UV-vis absorption spectrum in water, (B) DLS 

measurement (C) TEM size distribution analysis showing a monodisperse population with an 

average size of 35 nm, (D) representative TEM micrograph. 

 

2.3.3 NMR characterization 

 

The proposed sensing scheme and its underlying reactions were characterized by 

nuclear magnetic resonance (NMR), transmission electron microscopy (TEM), X-

ray photoelectron spectroscopy (XPS), and absorption spectroscopy (UV-vis). First, 

to confirm the role of the AuNP as catalyst for the MeHg+ reduction, 1H NMR 

spectra have been acquired during the reaction. A sharp signal around 0.9 ppm 

represents the aqueous solution containing methylmercury (Figure 2.4 a)27,28. As 

expected, the addition of formic acid did not elicit any detectable change in the 

spectrum, as such weak reductants are not able to reduce methylmercury (Figure 

2.4 b)27,29,30. Even after several days of incubation, we did not observe any 

appreciable signal reduction. As a control, we also verified that AuNPs alone did 

(A) (B) 

(C) (D) 
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not cause any significant effect (see Figure 2.4 c). Noteworthy, in presence of both 

AuNPs and formic acid, a significant decrease in the signal of methylmercury was 

visible already after few minutes, indicative of the strong activity of the 

nanocatalyst (see Figure 2.4 d). In the same spectrum, the 1H NMR signal of the 

methane produced during the reaction is also visible, while no methane signals 

can be observed in the spectra acquired without AuNPs or formic acid (red 

asterisks).  

 

 

Figure 2.4 Expansion regions between 1 and 0 ppm of the 1D 1H spectra recorded for (a) 

methylmercury (MeHg+) in water; (b) in presence of formic acid; (c) in presence of AuNPs; (d) in 

presence of both AuNPs and formic acid. 1 and 2 indicate the NMR signals of some impurities 

present in all the samples. Red asterisks indicate the absence of methane signals 

 

Therefore, the gold nanocatalyst is crucial for the reaction to happen, allowing fast 

organic mercury conversion to its metallic form. To further investigate the AuNPs 

catalytic activity, increasing concentrations of NPs have been tested (see Figure 

2.5). Going from a concentration of AuNPs of 78 pM to one of 468 pM, the NMR 

analysis show a complete CH3Hg+ conversion. 
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Figure 2.5 Expansion regions between 1 and 0 ppm of the 1D 1H spectra recorded for 50 M CH3Hg+ 

in MilliQ 50% D2O, 200 M citric acid and 50 mM formic acid (bottom line) and after the addition 

of increasing concentrations of AuNPs (78-468 pM). The 1H NMR signal of MeHg+ clearly decreases, 

as a function of increasing Au-NP concentration. At the highest particle concentration, the reaction 

is complete (*). 

 

2.3.4 XPS characterization 

 

To verify the presence of metallic mercury on the surface of AuNPs, XPS 

measurements were performed on the particles after incubation with 

methylmercury. Figure 2.6 shows the XPS data collected over the binding energy 

typical for Au 4f and Hg 4f peaks. Each Au 4f (Hg 4f) level is represented by a 

doublet, due to spin‐orbit coupling, showing an intensity ratio of 4:3 between the 

7/2 and 5/2 components and a doublet splitting of 3.67 eV (4.05 eV)31. The 

oxidation state of both Au and Hg could be estimated by evaluating the position 

of their 4f7/2 components. Au 4f7/2 and Hg 4f7/2 were found at a binding energy 

of (83.9±0.2)eV and (99.6±0.2)eV, respectively, indicating that both Au and Hg are 

present in their metallic state in the sample31. By calculating the Hg and Au peak 

areas and after normalization to the corresponding relative sensitivity factors 

(parameters that can be related to the cross section of the X‐ray induced 

photoemission process), the Au:Hg atomic ratio was calculated to be 90.4:9.6. ± 

0.5. These data indicate the presence of metallic mercury on the AuNP surface, in 

agreement with the sensing scheme described in Figure 2.1. 
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Figure 2.6 High resolution XPS spectrum showing the Au 4f and Hg 4f peaks. The position of the 

XPS peaks indicates that both Au and Hg are present in the sample in their metallic state. 

  

 

2.3.5 TEM characterization 

 

TEM images were then acquired on the AuNPs before and after the detection 

reaction with methylmercury. Unlike the pristine status of AuNPs in the initial state 

characterized by separated particles on the grid (see Figure 2.7 A,B), the formation 

of mercury amalgam is clearly evident after methylmercury incubation, with the 

presence of large particle aggregates fused together (see Figure 2.7 C,D). This 

envisages possible color change of the AuNP solution, due to aggregation-induced 

plasmon shift. TEM images clearly show the aggregation process: while before the 

assay the AuNPs are well monodispersed, after the catalyzed organic mercury 

reduction, the nanoparticles appear densely aggregated as a result of mercury 

amalgam formation.  
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Figure 2.7 Representative TEM images of AuNPs before (A,B) and after (C,D) the incubation with a 

spiked sample containing methylmercury. 

 

2.3.6 UV-vis characterization   

  

The spectral response of our colorimetric test was characterized by UV-vis 

spectroscopy (see Figure 2.8). A fast and constant decrease of the plasmon band 

around 520 nm, ascribed to monodispersed AuNPs, and a related increase of a 

broad absorbance of aggregate population (650-780 nm) were clearly observed, 

in line with TEM data. Interestingly, the process was complete in less than 2 

minutes, reaching a remarkable 750nm/620nm absorbance ratio already after 1 

minute.  

100 nm 

100 nm 

100 nm 

50 nm 

(A) (B) 

(C) (D) 
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Figure 2.8 Time-dependent absorption spectra of AuNPs (200 pM) upon incubation with 

methylmercury (0.2 ppm) in presence of formic acid. A very fast aggregation process can be 

observed in 1 minute, with a clear colour change of the solution, in the inset graph the aggregation 

rate as Abs750/Abs520. 

 

Noteworthy, the colorimetric test can be also assessed by simple visual inspection. 

As reported in Figure 2.9 A, the red-to-violet color change elicited by the presence 

of methylmercury could be clearly observed after only 1 minute of incubation, 

even in the case of low levels of contamination. After systematic optimization, the 

Limit-Of-Detection (LOD) of our assay by naked-eye was found to be around 0.1 

ppm. This is important in view of real applications to food contaminations (e.g. on 

fish samples), where the exposure limit is 0.5-1.0 ppm mercury (depending on the 

food species). Moreover, since real samples from water to food extracts might 

contain various metallic cations that can interfere with the detection of CH3Hg+ 

giving false positive signals, the selectivity of proposed method was assessed 

against different ions, tested at high concentration (i.e. 1 ppm, that is 10-fold our 

LOD). As shown in Figure 2.9 A, only mercury contamination elicited a significant 

increase of 750nm/620nm absorbance ratio, which corresponds to a clear color 

change, while the other analyzed cations did not produce any significant spectral 

change. The test selectivity is due to the specific affinity of reduced mercury with 

AuNPs, resulting in Au-Hg amalgam system, unlike other cations. 
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Figure 2.9 (A) Selectivity of presented method versus other toxic metallic cations, in terms of 
absorbance ratio measured at the end point of aggregation kinetic (after 180 sec). The results are 
expressed as mean ± SD of triplicate experiments. (B) efficiency and selectivity of the nanosensor 
in presence of high concentrations of interfering cations (Fe3+), using PVP-AuNPs. Absorption 
spectra of 35 pM AuNPs before (red line) and after (dashed red line) incubation with 100-fold 
excess of Fe3+ (12,5 ppm), and subsequent incubation (blue line) with methylmercury (125 ppb).  
Representative photograph of the naked-eye colorimetric response (inset). 

 

2.3.7 Real samples testing  

 

As a consequence of samples complexity (e.g. high concentration of solutes and 

ionic strength) AuNPs requires further stabilization to avoid unspecific 

aggregation. Several polymers are tested as stabilizing agent. Specifically, a 

picomolar solution of AuNPs has been incubated overnight under stirring with 

different concentrations of Polyvinylpyrrolidone (PVP), Polyacrylic acid (PAA) and 

Polyethylene glycol (PEG). After being washed, the particles stability is evaluated 

monitoring the plasmon shifting over the time in presence of different 

concentrations of sodium chloride (NaCl) (see Figure 2.10). PVP-stabilized AuNPs 

showed remarkable performance in real biological samples, like urine, where this 

sensor can detect low concentration of methylmercury, spiked in the sample. The 

nanosensor performance properly maintained its efficiency and selectivity even in 

case of complex real sample like human urine (see Figure 2.11 B).  

(A) (B) 
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Figure 2.10 (A-D) Absorption spectra of PAA-coated AuNPs, (E-H) Absorption spectra of PEG-

coated AuNPs, (I-N) Absorption spectra of PVP-coated AuNPs. PVP 10K results to be the best 

stabilizing agent on mercury sensing conditions. 

 

 

Figure 2.11 (A) Absorption spectra of the colorimetric nanosensor using PVP-coated AuNPs. The 
spectral analysis was performed with 30 pM AuNPs before (red line) and after (blue line) 1-minute 
incubation with methylmercury (25 ppb) and formic acid. (B) PVP-AuNPs based nanosensor in 
human urine collected and spiked with methylmercury and left to equilibrate. 

 

  

 

A B 
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2.4 Conclusions  

 

Here, we exploit the interesting property of AuNPs to efficiently catalyze the fast 

transformation of methylmercury in the Hg0 form, even in presence of a weak and 

biocompatible reducer, such as formic acid. The potential of nanocatalysts to 

promote reduction of organic mercury in absence of strong reducers has been 

previously reported in photocatalysis with titania NPs, and in case of 

electrocatalysis with AuNP-functionalized electrode. In our strategy, such process 

allows quasi-simultaneous metallic mercury nucleation on the AuNP surface and 

amalgam formation, with prompt particle destabilization and aggregation. Thus, 

the coupled catalytic/plasmonic functionality of AuNPs allows for ultrafast and 

specific naked-eye detection of organic mercury at relevant concentrations, due 

to metal-induced shift of the plasmonic band. These results open interesting 

perspectives for the development of low-cost, rapid, and portable sensors, 

enabling frequent screening of organic mercury contaminations, which represents 

an important option for routine food assessment, as well as for health and 

environmental protection. Interestingly, the overall reaction that leads to the fast 

and sensitive detection of organic mercury can be performed at ambient 

conditions, with stable and “green” reagents, thus opening promising perspectives 

toward frequent mercury screening by point-of-care devices. In particular, the 

possibility to use biocompatible and weak reducing agents, such as formic acid, is 

enabled by the action of the surface of gold nanocatalyst, as clearly proven by the 

NMR analysis. Indeed, in such sensing scheme, the use of stronger reductants (e.g. 

sodium borohydride) is hampered by immediate AuNP destabilization and loss of 

assay sensitivity and specificity. This makes the interplay of the 

nanocatalyst/nanoplasmonic activities and reactants strength unique. Considering 

that this detection protocol can be easily monitored by naked-eye, and that it has 

high selectivity and short reaction time, the method has been patented (n° 

102018000008034 date: 10/08/2018). The presented results are published as 

Nanocatalyst/Nanoplasmon‐Enabled Detection of Organic Mercury: A One‐

Minute Visual Test Donati P. et al.32 
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3 Nanoplasmonic gold nanoparticles-based 

sensor for salivary glucose assessment  

 
3.1 Gold nanoparticles for glucose detection  
 

Gold nanoparticles have been largely used in colorimetric sensing of variety of 

analytes, from DNA sequences to metal ions1–4. One of the most popular strategies 

is based on the controlled aggregation, in which a decreased distance between 

nearby particles results in a plasmon coupling effect and related band shift and 

consequent colour change5,6. Even if this approach exhibits great sensibility, it 

presents auto-aggregation problems due to the bio-chemical samples 

composition, that may lead to false results since high concentration of proteins, 

salts and others solutes, strongly affect the AuNPs stability. Moreover, the 

required engineering of nanoparticles with recognition probes can be expensive 

and time-consuming. Recently, a group of “non-aggregation” methods is drawing 

the attention of the scientific community. These strategies based on the 

nanoparticle etching and growth result in a plasmon band shifting as a 

consequence of the particles re-modelling, achieving a sensible detection of 

biomarkers, virus, ions7. Nevertheless, also the growth approach presents some 

limitations when used in complex media such as biological fluids, in which the 

solutes like proteins, small molecules or salts can inhibit the reaction on the 

particle surface8,9. An effective “non-aggregation” approach is based on the 

etching of metal nanoparticles. This strategy has been used to detect metal ions, 

anions, glucose and amino acids. We can mention several mechanisms, depending 

on the agent that triggers the particles’ erosion: direct etching by targets, 

intermediate-mediated etching, alloy-promoted etching, enzyme-mediated 

etching. In the case of enzyme mediated etching, there are several published 

methods in which the hydrogen peroxide produced by the enzyme induces the 

oxidation of gold nanorods (AuNRs), resulting in a strong plasmon shifting7,10,11. 

However, the erosion step needs to be catalysed, and to obtain a clear colour 
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change, the AuNRs must be largely etched. These methods require strong 

conditions, long reaction times and lead to an obvious loss of optical density as a 

consequence of nanoparticles final reduced dimensions.  A colorimetric assay for 

blood glucose determination using this mechanism was explored on gold nanorods 

and the colour change was obtained following the particle corrosion and 

shortening in presence of glucose12. In a similar work, the glucose oxidase (GOx) 

enzyme reacts specifically with glucose in complex media producing H2O2 that, via 

Fenton or Fenton-like reactions, transforms in the free radical form able to rapidly 

oxidize (and partially dissolve) the AuNPs13,14.  

Likewise, a gold nano-bipyramid has been used as probe to dose glucose, 

exploiting the interaction of hydrogen peroxide and halogen that results in 

particles shortening11. Yet, also this work shows the same limitations previously 

reported. Despite of the number of available methods, there is still a lack of 

suitable tools for a fast and sensitive visual detection of biomarker, like glucose, in 

real biological samples.  

 

3.2 Materials and methods 

 
3.2.1 Chemicals and materials 

 

All chemicals and reagents employed were of high technical grade, stored 

following vendor recommendations and directly used with no further purification. 

Hydroxylamine sulfate (H3NO•0.5H2SO4, 88944) and Hydrogen Tetrachloroaurate 

(HAuCl4*XH2O, Au 49% min, 42803) were purchased from Alfa Aesar. Sodium 

citrate tribasic hydrate (HOC(COONa)(CH2COONa)2, ReagentPlus®, ≥99%, 25114), 

HEPES (BioUltra, for molecular biology, ≥99.5%, 54457), Potassium bromide 

(KBr,EMSURE® ACS,Reag. 1.04905), Potassium chloride (KCl, EMSURE®,1.04936), 

Potassium iodide (KI, for analysis EMSURE® ISO,Reag, 1.05043 ), D-(+)-Glucose 

(C6H12O6 ACS reagen, G5767) and Glucose Oxidase from Aspergillus (Type X-S, 

lyophilized powder, G7141) were purchased from Sigma-Aldrich. Nylon membrane 
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filters (Whatman® pore size 0.45 μm, 13 mm Ǿ, thickness150-187 µm, 

WHA7404001), Nitrocellulose membrane filters (Whatman®  pore size 0.45 μm, 

13 mm Ǿ, WHA7184001), PDVF Membrane filters (Millipore Durapore®, pore size 

0.45 µm, hydrophilic, 13 mm Ǿ, HVLP01300) were purchased from Sigma-Aldrich. 

Syringe filter holder (re-usable polycarbonate, for 13 mm Ǿ filters, 0.5 cm2 

filtration area, 16514) were purchased from Sartorius. A high sensitivity glucose 

assay kit (Merck - MAK181-1KT) was employed as reference standard technique. 

If not specified differently, all solutions and buffers were prepared using ultrapure 

deionized water (MilliQ). The saliva samples were spontaneously donated from 

healthy subjects and their use in this study was approved by Ethical Committee. 

Saliva samples from diabetic patients were provided by the San Matteo hospital 

of Pavia. 

 

3.2.2 Synthesis of AuMBNPs  

 

60 nm multibranched gold nanoparticles (AuMBNPs) were prepared by slightly 

modified Maiorano–Pompa method19, optimized for our purposes. The procedure 

relied on a seed-mediated growth. Briefly, 6.5 mL of the prepared 15 nm gold 

seeds (1.8 nM), 0.28 mL of hydrogen tetrachloroaurate (100 mM) and 0.8 mL of 

hydroxylamine sulphate (100 mM) were consecutively added to 250 mL of HEPES 

solution (50 mM, pH = 7.0), under vigorous stirring. After 15-20 minutes at room 

temperature, the reaction mixture becomes blue. Residual reagents excess was 

removed by centrifugation (400 RCF, 25 min). AuMBNPs were characterized by 

DLS, UV-vis spectrophotometry and TEM.  

 

3.2.3 UV-visible spectroscopy 

 

UV-vis spectra (400-800 nm) of the nanoparticle suspension were acquired by a 

Thermo Fisher NanoDrop® (wavelength Accuracy ± 1 nm, absorbance accuracy 3 

% at 0.74 Abs@350nm) with a small volume cuvette or by Tecan Spark® multimode 
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microplate reader (wavelength accuracy < 0.3 nm, absorbance accuracy < 

0.5%@260) nm with flat transparent 96 multiwell plate.   

 

3.2.4 Reflectance spectroscopy 

 

Reflectance spectra were recorded on dried substrates using Ocean Optics 

spectrophotometer equipped with a reflection probe and an OCEAN-HDX-XR 

detector. For the white balance, a reflectance standard was employed (Diffuse 

Reflectance Std, Spectralon). 

 

3.2.5 Optimization of pH conditions  

 

Different acetate buffers (14 mM) were prepared varying the ratio between acetic 

acid and sodium acetate to obtain three solutions with pH 4.5, 5.0 and 5.5, 

respectively. 20 µL of AuMBNPs (0.5 nM, ALSPR = 0.8, ɛ = 16.87 × 109 M-1cm-1), 

20 µL of KBr (50 mM) and 20 µL of H2O2 (2.5 mM) were added to 140 µL of the 

different acetate buffer solutions (pH = 4.5, 5.0 and 5.5). Controls were performed 

in absence of H2O2 (replaced by 20 µL of H2O). The experiment was performed in 

a 96-multiwell plate and absorption spectra were recorded at room temperature 

by Tecan plate reader to monitor the reaction over the time. 

 

3.2.6 Halogen screening 

 

Three halogen ion solutions were used at their “best” operational concentration 

(previously experimentally identified), since, due to their very different reactivity, 

employing them at the very same concentration would have not allowed for a fair 

comparison among their potential role in the sensing platform. KCl (500 mM), KBr 

(50 mM) and KI (50 µM) were the selected stock solutions used in this study. 20 µL 
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of AuMBNPs (0.5 nM, ALSPR = 8.0, ɛ = 16.87 × 109 M-1cm-1), 20 µL of acetate 

buffer (100 mM, pH = 5) and 20 µL of halogen stock solution were added to 140 

µL of H2O2 (2.86 mM). H2O2 final concentration was 2 mM in the total volume.  

 

3.2.7 Efficiency of hydrogen peroxide detection 

 

Several sample solutions with different H2O2 concentrations were prepared (0, 

0.71, 2.14, 3.57 and 4.29 mM). 20 µL of AuMBNPs (0.5 nM, ALSPR = 0.8, ɛ = 16,87 

×109 M-1cm-1), 20 µL of KBr (50 mM) and 20 µL of acetate buffer (100 mM, pH = 

5) were added to 140 µL of the prepared H2O2 solutions (presenting, in the total 

volume, a final concentration of 0, 0.5, 1.5, 2.5 and 3 mM). The experiment was 

performed in a 96-multiwell plate and absorption spectra were recorded at room 

temperature by Tecan plate reader to monitor the reaction over time.  

 

3.2.8 Optimization of the reshaping process in   

water 

 

20 µL of AuMBNPs (0.5 nM, ALSPR = 0.8, ɛ = 16,87 ×109 M-1cm-1), 20 µL of KBr (50 

mM) and 20 µL of acetate buffer (100 mM, pH = 5) were added to 140 µL of 

H2O2solution presenting, in the total volume, a final concentration of 3 mM.  

 

3.2.9 Saliva sampling  

 

The saliva samples were spontaneously donated from healthy subjects, and their 

use in this study was approved by Ethical Committee. Donors were asked to avoid 

eating, drinking and oral hygiene procedures for at least one hour before saliva 

collection. Furthermore, donors were asked to provide unstimulated saliva (no 

speaking or swallowing for one minute prior to collection). Samples were collected 

by the donor into a 15 mL sterile and protein lo-bind falcon tube. The tube was 

stored at 4 °C and processed within one hour from donation.  The sensing platform 
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was conceived for self-monitoring of untreated whole saliva, however in this work 

we employed saliva samples from different donors and therefore, for safety 

reasons, samples were manipulated under the chemical hood and filtered (0.2 µm 

methyl cellulose syringe filter) from bacteria. Saliva samples from diabetic patients 

were provided by the San Matteo hospital of Pavia. 

 

3.2.10 Salivary glucose assay in suspension 

 

Hyperglycemia conditions were simulated by supplementing the collected saliva 

samples (see the saliva sampling section) with a glucose solution in order to reach 

pathological concentrations (2 mM, 36 mg/dL). Non-supplemented saliva 

representing physiological normal condition was used as a control. 20 μL of 

AuMBNPs (0.5 nM), 20 μL of GOx (0.021 mg/mL, 3 U/mL) in acetate buffer (50 mM, 

pH = 5), and 80 μL of KBr solution (5 M) were added to 80 μL of glucose 

supplemented saliva under stirring at 37 °C.  

 

 

3.2.11 TEM analysis on AuMBNPs morphological 

changes  

 

The glucose assay was performed as described in the previous section. The mixture 

was stirred at 37 °C for 10 min and, after colour change from blue to red, the 

reaction was stopped diluting and washing (centrifugation and resuspension 

process) the nanoparticles with cold (4 °C) HEPES buffer (10 mM, pH = 8.0). The 

control experiment was performed using non-supplemented saliva. The obtained 

nanoparticles were analysed by TEM.  
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3.2.12 Glucose dipstick, substrate preparation 

 

0.4 mL of a freshly prepared AuMBNPs suspension (25 pM, ALSPR = 0.4) in HEPES 

buffer (25 mM, pH = 7.0) were passed through a 0.4 µm porous nylon membrane 

using a syringe filter holder. The system was maintained in a vertically position 

promoting the uniform injection of the liquid and therefore uniform 

immobilization of the AuMBNPs on the membrane. Subsequently, 2 mL of air were 

injected to remove any residual water from the system. The prepared substrate 

was dried under vacuum for 10 minutes and then 15 µL of GOx solution (1 mg/mL, 

145 U/mL) in acetate buffer (100 mM, pH = 5) were deposited by direct drop 

casting on the membrane.  

The coated nylon support was dried again under vacuum and, finally, stored in low 

humidity conditions.  

 

3.2.13 Glucose assay protocol 

 

The glucose tests were performed adding on the prepared substrate 50 µL glucose 

supplemented saliva (90 – 180 μM, 1.5 – 3 mg/dL) and 50 µL of KBr solution (5 M) 

in acetate buffer (10 mM, pH = 5). The tests were carried out incubating the 

supports at 37 °C for 15 minutes. The test can be also carried out at room 

temperature leading to the same outcome but requiring a slightly longer time 

window. 

 

3.2.14 Assay’s reliability and validation 

 

The glucose concentration of twenty saliva samples (eight from healthy subjects 

and twelve from diabetic subjects) was measured using a high sensitivity glucose 

assay kit (Merck - MAK181-1KT) chosen as a standard reference technique.  Six 

saliva samples from healthy subjects presenting a physiological glucose 

concentration < 2 mg/dL were selected to numerically estimate the colorimetric 
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changes of our device at a targeted threshold (4 mg/dL ± 0.5).  The glucose-

dependent assay’s color change was estimated after 15 min using Red, Green and 

Blue (RGB) coordinates acquired using ColorGrab (smartphone app). Glucose 

spikes were employed to normalize the saliva samples to 2.5, 4, and 6 mg/dL to 

evaluate the ∆RGB variability and the ∆RGB value range.  

 

 

3.2.15 Assay reproducibility and Limit-Of-Detection  

 

The experiments were performed using saliva samples from healthy donors, and 

the basal glucose concentration was measured using a high sensitivity glucose 

assay kit (Merck - MAK181-1KT) as a reference technique. The device 

reproducibility was tested using five independently produced assays, prepared 

with the same protocol. The reagents ratios were tuned to obtain an evident color 

change for salivary glucose concentrations ≥ 4 (± 0.5) mg/dL as the selected 

threshold. The reproducibility tests were performed using different glucose 

concentrations and identifying the color change numerically by extracting the RGB 

coordinates using Color Grab (smartphone free app).  

 

3.3 Results  

 

3.3.1 Sensing strategy 
 

Here we present an original customizable nano-biosensor that allows the fast and 

sensitive visual detection of salivary glucose. This nanosensor pushes forward the 

state of the art of “non-aggregation” strategies, solving issues like the reaction 

time and conditions or the reliability in biological systems, which has limited so far 

POCT applications. The platform involves both etching and growing processes 

resulting in a reshaping effect that leads to a fast plasmon shifting and avoids any 

optical density (OD) loss (see Figure 3.4).  The molecular mechanism underlying 
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the sensing strategy can be divided in two steps, one involving the oxidant species 

production and a second in which such species trigger a series of reactions, leading 

to AUMBNPs morphological changes. The enzyme produces hydrogen peroxide 

(H2O2) from the  quantitative oxidation of the biomarker, H2O2 react with the 

halogen ions (𝑋−), present in stoichiometric excess, producing  𝐵𝑟−,  𝐵𝑟2−,  𝐵𝑟3− 

and 𝐻𝐵𝑟𝑂 (the latter eventually converting to 𝐵𝑟2) that reduces the peroxide 

activation energy15. The second step consists of the etching of the nanoparticles. 

For this there are three possibilities16–18. In the first one, the halogen induces the 

H2O2 decomposition producing radicals (.OH) capable to oxidize gold. The second 

proposed strategy consists of  𝑋− acting as ligand, stabilizing the dissolved Au 

atoms and promoting the erosion. In the third and most probable mechanism, 

H2O2 forms 𝑋2 and 𝑋3
− that oxidize gold atoms (Figure 3.1).  

 

 

Figure 3.1 Scheme of detection mechanism to spot hyperglycemia from saliva sample. 
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3.3.2 AuMBNPs synthesis  

 

15 nm citrate capped AuNPs have been obtained as previously described (see 

chapter2.) and used as seeds, 40 nm HEPES-capped AuMBNPs were synthetized 

as described in the paragraph 3.2, NPs size and shape have been characterized by 

UV-visible spectra, TEM and DLS analyses (see Figure 3.2). 

Furthermore, the AuMBNPs has been optimized in order to obtain several shapes 

in terms of tips number and length. To tune the nanostructure branching, both 

HEPES and hydroxylamine concentrations have been modulated. Obtained 

particles have been characterized in terms of plasmonic shift by UV-visible 

spectroscopy (Figure 3.3(C)) with a peculiar peak of the AuMBNPs. In Figure 3.3(B) 

has been reported the DLS analysis, performed to characterize particles dimension 

and aggregation state, the peak position at Z-Ave= 66 nm confirm the dimension 

and the absence of secondary populations. In Figure 3.3(A) has been graphed the 

distribution of the particles diameters measured on acquired TEM images (see 

Figure 3.3(D). 

Several AuMBNPs shapes have been synthetized and tested in terms of relative 

plasmon blue shifting (best sensitivity has been achieved for a 615< max< 650nm). 

The Figure 3.3(A) reports the spectra of three synthesis in presence of increasing 

concentration of HEPES, tuning the binding agent concentration the plasmon peak 

can be modulated changing the dimension of the AuMBNPs tips. In the same way 

dosing the hydroxylamine, the particles shape can me modulated (see Figure 

3.3(B)). 
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Figure 3.2 AuMBNPs characterization, (A) frequency distribution, (B) DLS analysis and diameters, 

(C) UV-Vis spectrum and (D) TEM image of AuMBNPs. 

 

 

Figure 3.3 UV-Vis spectra of the 40 nm AuMBNPs grown in the presence of different concentrations 

of HEPES (A) and different concentrations of hydroxylamine (B). The LSPR redshift is finely 

tuneable. 

 

 

(A) (B) 

(C) (D) 

(A) (B) 
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3.3.3 Sensing strategy optimization 

 

The nanoplasmonic sensor is based on the reshaping process of the AuMBNPs. 

Differently from a classical etching process in which the corrosion causes 

nanosensor shape and size modification with related optical density (OD) loss (see 

Figure 3.4), in this case we exploit reshaping process. The oxidized Au3+ is reduced 

again in an Ostwald ripening-like process. Combining etching and growing the 

reshaping process leads to a final spherical morphology.  

 

 

 

Figure 3.4 LSPR shifting resulting from the reshaping process in water; there is not any absorbance 

reduction since the particles dimension does not decrease over the process. 

 

As a first step, the nanosensors capability has been characterized in terms of 

sensibility as color change in aqueous environment to determine best operational 

conditions. Since the etching is favored in acidic media, the pH has been optimized 

in the same experiment, while the activity of three different halogen ions has been 

evaluated (𝐶𝑙−, 𝐵𝑟−, 𝐼−). After having optimized the reaction parameters, we 

have tested the platform sensitivity in a range of hydrogen peroxide 

concentrations in water as solvent. The optimal pH resulted to be pH=5, while the 

best selectivity was found using 𝐵𝑟− that promotes a clear LSPR blue shift in 

presence of hydrogen peroxide, while the control showed a relatively small color 

change ( see Figure 3.5). 
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Figure 3.5 (A) LSPR λmax evolution over time related to AuMBNPs reaction with H2O2 and KBr at pH 

= 4.5 (green), pH = 5 (red) and pH 5.5 (blue), (B) LSPR λmax evolution over time related to AuMBNP 

reaction with H2O2 (3 mM) in presence of optimized concentrations of different halogens Cl- 

(green), Br-(red), I- (blue), (C) LSPR λmax evolution for different concentrations of H2O2 in water (3-

0 mM), (D) LSPR Δλmax evolution over time related to the reshaping in saliva and in water (the two 

model platforms performance at H2O2 final concentration of 2 mM). 

  

AuMBNPs plasmon shifting has been characterized in a dedicated experiment to 

evaluate the role of hydrogen peroxide in a long-term interaction that can lead to 

non-specific etched products. AuMBNPs have been incubate with hydrogen 

peroxide (0-30mM) and the UV-visible spectra have been recorded for two hours. 

Reshaping process takes place only in presence of suitable conditions while, higher 

concentration of hydrogen peroxide can erode nanoparticles causing size 

reduction and optical density loss (see Figure 3.6 A). Evolution of absorbances over 

the time, shows that tuning relative concentrations of halogen, peroxide and 

AuMBNPs, reshaping process can be achieved (see Figure 3.6 B).  

(A) (B) 

(C) (D) 
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Figure 3.6 (A) Effect of hydrogen peroxide on AuMBNPs absorption intensity in water: absorption 

spectra related to AuMBNPs before (control) and after reaction with increasing concentrations of 

H2O2 (in presence of KBr). While H2O2 at 1-3 mM induced minimal absorption intensity variation, 

at higher concentrations (10-20-30 mM) significant loss of LSPR intensity was observed, suggesting 

that etching process occurred. (B) Evolution of optical density over the process suggests that 

etching/growing reactions interests AuMBNPs surface 

 

3.3.4 Reshaping process characterization  

 

To characterize and confirm the reshaping process, AuMBNPs dimensions have 

been measured. After having selected the shape indicators as tips number and 

length, together with the core diameter, several nanoparticles have been 

measured on acquired TEM images. The changes in morphology related to LSPR 

shifting are clearly visible in terms of number of tips and tips length. The 

morphological parameters measured to characterize the changes in shape are 

measured as reported in Figure 3.7C: d1 corresponding to the external diameter 

measured from tip to tip; d2, the core diameter, equal to the NP solid except the 

tips; d3 the tips length measured from the base to the end. While the (control) ctrl 

did not exhibit significant morphological changes, the saliva sample with 

pathological concentration of glucose led to nanostructures rearrangement from 

multibranched to spherical shape. (see Figure 3.7). The morphological analysis 

results are presented in Figure 3.8. The histograms show the comparison of 

dimensions with respect of the number of tips (N = 320), their length (N = 1700) 

and the core diameter (N = 1400). All samples are normally distributed, and Mann-

(A) (B) 
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Whitney test confirmed statistical significance (p-value < 0.001) of mean sizes 

distribution difference.  

 

 

 

Figure 3.7 TEM images of AuMBNPs after glucose assay in saliva (A)-(C) representative images of 

the AuMBNPs after testing non-supplemented saliva sample; (D)-(F) representative images of 

AuMBNPs after testing glucose-supplemented saliva.  

 

 

 

Figure 3.8 Statistical TEM analysis measuring tips (numbers and lengths) and “core” dimensional 

variation between control and sample nanostructures. Statistical significance was determined by 

Mann-Whitney test (***p < 0.001). 

(A) (B) (C) 

(D) (E) (F) 
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3.3.5 Saliva testing (in solution) 

 

Adapting this platform to real working conditions in saliva, employing glucose spikes, GOx 

enzyme, and a large excess of Br– (see scheme in Figure 3.1) resulted in a strikingly better 

performance than that in water. The system was so stable that we could employ much 

larger Br– concentration, without affecting the control. Proteins and metabolites present 

in saliva can rapidly coat the AuMBNPs forming the so-called biomolecular corona, which 

can act as an organic shield protecting and stabilizing the surface atoms. Stability of the 

AuMBNPs has been tested versus raw saliva with and without GOx enzyme. While most 

of colorimetric detection methods using nanoparticles can’t be exploited in real samples 

because of the complexity of  matrixes like saliva,  this nanosensor shows good stability 

maintaining particles surface properties (see Figure 3.9).  

 

Figure 3.9 (A) Characteristic LSPR red-shift related to the protein adsorption on plasmonic 

nanoparticles. (B) and (C) show no GOx effect on the LSPR. (D) Stability test of AuMBNPs in saliva: 

the absorption spectra show good colloidal stability over 60 min also in presence of the enzyme. 

The saliva employed was previously diluted 1:4 in acetate buffer as for assay condition. 

(A) (B) 

(C) (D) 
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Salivary proteins (i.e., mucin) promote higher colloidal stability limiting the surface 

availability by steric hindrance, while salivary thiols (i.e., cysteine, glutathione and 

others) can act as surface ligands. These factors together firmly preserve the 

AuMBNPs shape even in presence of a large excess of Br– that otherwise would 

lead to uncontrolled fast etching and immediate colour change even in absence of 

glucose. Indeed, the saliva medium allowed for a significant extension of the 

dynamic range of the assay along with a faster response, meaning that resolution 

and sensitivity were also strongly improved (see Figure 3.4 D). Analysing the  

physiological control (no added glucose), no significant spectral changes were 

observed, indicating a better resolution of the nanosensor in saliva compared to 

non-biological media (see Figures 3.4 D). This is a key point since it excludes the 

possibility of false positives, due to spontaneous color changes of the AuMBNPs in 

the test timeframe (10–20 min); furthermore, it guarantees a faster naked-eye 

recognizable color distinction, due exclusively to the glucose present in saliva. The 

presence of non-physiological glucose concentrations in saliva (≥2 mM), 

reproducing hyperglicemia conditions, indeed promote a spectral fast change with 

a large blue shift of the LSPR wavelength max, and no significant OD loss (Figure 

3.10 A). 

 

(A) 
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Figure 3.10 Reshaping process in saliva: AuMBNPs absorption spectra evolution over time during 

the assay using (A) glucose supplemented saliva (hyperglycemic condition) (B) physiological saliva 

(ctrl). For more details, see the experimental procedure section. 

 

 

3.3.6 Micro-Pad (-Pad) device fabrication  

 

In order to realize a portable home-testing device prototype, the sensing platform 

was transferred onto a solid substrate. Several casting methods have been tested 

to obtain a well monodispersed layer of AuMBNPs. Classical incubation-like and 

drop casting techniques resulted to be inadequate, leading to surface defects, for 

which reason, a filtering-based deposition method was chosen. To evaluate the 

particles retention capability, residual AuMBNPs (in washing water) have been 

dosed by UV-visible spectra of aqueous solution after deposition (see Figure 3.11 

B). Using a syringe filter holder, 600mL of AuMBNPs colloidal solution at O.D.= 0.9 

was homogenously deposited on 0.22 mm mesh size nylon membrane and then 

covered with a layer of glucose oxidase enzyme to produce the micro-Pad (-Pad) 

(see Figure 3.11 A). 

Among the different materials tested (including cellulose acetate, nitrocellulose, 

PVDF), a porous nylon membrane was selected, presenting well structured 

(ordered) surface and a good balance between wettability and hydrophobicity. 

 

(B) 
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Figure 3.11 (A) Schematics of the AuMBNPs deposition on the membrane substrate. (B) UV-vis 

absorption spectra of a AuMBNPs (20 pM) aqueous solution before (black curve) and after filtration 

through different membranes (nitrocellulose, PVDF and nylon). All the AuMBNPs were retained in 

the nylon membrane, leading to colourless filtrate (no light absorption, blue curve). 

 

 

3.3.7 -Pad device characterization 

 

From the reflectance spectra, glucose supplemented saliva appeared to be ca. 50 

nm blue-shifted compared to the control (consistent with the data observed in 

suspension), with the curve minima corresponding to the particles LSPR. This is 

also a confirmation of the reshaping process occurring on the substrate, with 

spherical GNPs on the test membrane after exposure to hyperglycemic saliva (see 

Figure 3.12). The use of a solid substrate led to a significant improvement of the 

reagents stability. While colloidal dispersions of AuMBNPs in water lose their 

morphological and plasmonic properties overtime, the on-substrate assay showed 

excellent stability up to 6 months, meaning that also the enzyme functionality was 

maintained. An additional advantage is that, even after glucose testing, the “test 

strip” could be stored, keeping the outcome unaltered for ≥6 months. 

(A) (B) 
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Figure 3.12 (A) Reflectance spectra of the membrane substrates, related to control and sample 

(picture in inset), showing a clear blue-shift (from λ = 600–550 nm). (B) SEM image of control (scale 

bar 2m, inset scale bar 100nm), (C) SEM image of sample (scale bar 2m, inset scale bar 100nm). 

 

The -Pads surface was characterized by using reflectance spectroscopy and 

scanning electron microscopy (SEM).  From SEM imaging, we could observe the 

nanostructure morphology directly on the membrane. Comparing images of nylon 

and cellulose as solid substrate for -Pad fabrication is clearly visible how a more 

organized microstructure allows a monodisperse organization of deposed 

AuMBNPs. Nylon membrane can efficiently host and stabilize gold nanoparticles 

in a well monodisperse layer (see Figure 3.13 A, C, E) without compromising the 

reactivity. On the contrary, cellulose paper requires for higher concentration of 

AuMBNPs to obtain suitable colour intensity for naked eye applications since most 

of nanoparticles are trapped and covered on disordered fiber matrix (see Figure 

3.13 B, D, F).   

 

 

 

(A) 

(C

) 

(B

) 
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Figure 3.13 (A), (C) SEM images of Nylon membrane, (B), (D) SEM image of Cellulose membrane. 

(E) SEM image of Nylon membrane in back scattering mode with monodisperse AuMBNPs, (F) SEM 

image of Cellulose membrane in back scattering mode with raft AuMBNPs. 

  

 

 

(A) (B) 

(C) (D) 

(E) (F) 
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3.3.8 Real saliva samples testing  

 

From an active collaboration with a group of Prof.ssa Mariangela Rondanelli, MD, 

PhD “Ospedale Policlinico San Matteo” of Pavia, we obtained a sets of saliva 

samples of diabetic subjects collected in normal and hyperglycemic conditions. 

Using a high-sensitivity glucose assay kit (Merck - MAK181-1KT) chosen as a 

standard reference technique, we initially defined the correlation between blood 

and salivary glucose. Since the literature is contradictory about glucose salivary 

levels and its correlation with blood levels, we tested two different collecting 

protocols in healthy and diabetic donors to characterize both the effect of salivary 

flow stimulation, and the lag time between blood and salivary glucose peaks over 

the day (also using traditional blood electrochemical glucometer). Considering the 

poor correlation and the high intra-subject variability that we observed, we had to 

improve the collecting protocol, preferring the fluid normally secreted 

(unstimulated) by all set of oral glands. In a comparative experiment, stimulated 

saliva samples show a lower correlation and higher variability (see Figure 3.14) 

compared with unstimulated samples collected at the same time (pairing blood 

glycemic conditions), 

 

Figure 3.14 (A) Salivary glucose level of stimulated samples (blue dots) and unstimulated ones 

(green dots).In the inset are illustrated mean values and standard deviation of each populations. 

(B) correlation of saliva and blood glucose values of different diabetic patients. 

 

(A) (B) 
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Saliva samples were tested with the proposed micropad-like colorimetric assay 

prototype. A small amount (20 μL) of glucose supplemented saliva (with several 

glucose concentrations) was sufficient to trigger a rapid colour change from blue 

to red within 5–15 min, depending on the glucose concentration. Saliva samples 

from 4 different donors have been spiked using glucose standard solution adding 

1 mg/dL (Spl1), 2 mg/dL (Spl2) and 5 mg/dL (Spl3) using as control samples without 

GOx (Ctrl 1), with denaturized GOx (Ctrl 2) and without spikes (Ctrl 3). As reported 

in Figure 3.15, the µ-Pad allows the quantitative colorimetric glucose detection. 

By finely tuning the reshaping conditions is possible to achieve a threshold for ON-

OFF colour change suitable in fast screening applications. 

 

 

Figure 3.15 Preliminary validation of the glucose assay prototype on different saliva samples: 

picture of the glucose assay immediately after saliva sample addition on the membrane (left) and 

after 15 min (right). The saliva samples collected from different donors were tested with no 

additional glucose (Ctrl3) and supplemented with glucose (Spl1 = 1.5 mg/dL, Spl2 = 3 mg/dL, Spl3 

= 5 mg/dL) to reproduce hyperglycemic conditions. Additional controls in which the assay was 

performed on non-supplemented saliva but in absence of GOx (Ctrl1) or in presence of inactivated 

GOx (Ctrl2) were also included in the study. 

 

 

3.3.9 Colour change characterization 

 

The assay prototype was finally optimized for analysis on real samples, considering 

that physiological glucose concentration in saliva is commonly <2 mg/dL (<130 
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mg/dL in human serum) while it is ≥4 mg/dL for hyperglycemic condition (≥160–

200 mg/dL in human serum). It is important to stress that the correlation between 

hematic and salivary glucose is not based on a constant ratio over the whole range 

of concentrations. For this reason, aiming at an ON/OFF response as an alarm bell 

for healthcare, we set our threshold about ≥4 ± 0.5 mg/dL. For salivary glucose 

concentrations above this range values, the assay must produce an evident color 

change. To numerically estimate the colorimetric changes of our device and 

perform statistical data analysis, RGB and Ciano, Magenta, Yellow and Black 

(CMYK) coordinates of the substrate were acquired using a smartphone app. (see 

Figure 3.16) 

 

Figure 3.16 (A) (C) RGB and CMY coordinates evolutions in a “negative” sample for a glucose 
concentration < 4 ± 0.5 mg/dL, (B) and (D) RGB and CMY coordinates evolutions in a “positive” 
sample for a glucose concentration > 4 ± 0.5 mg/dL 

  

 

 

(A) (B) 

(C) (D) 
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3.3.10 Limit-Of-Detection  

 

The ∆RGB (see formula below) obtained at different glucose concentrations was 

employed for statistical data analysis: 

∆𝑅𝐺𝐵 = √(𝑅𝑡1 − 𝑅𝑡0)
2 + (𝐺𝑡1 − 𝐺𝑡0)

2 + (𝐵𝑡1 − 𝐵𝑡0)
2 

 

Glucose spikes were employed to normalize the saliva samples to 2.5, 4, and 6 

mg/dL to evaluate the ∆RGB variability and the ∆RGB value range, allowing to 

identify our threshold. An evident colour change, expected for salivary glucose 

concentrations ≥ 4 (± 0.5) mg/dL after 15 min of test, was estimated to correspond 

approximately to ∆RGB ≥ 30 (± 10) while little or no color change is expected for 

physiological concentrations (∆RGB < 15 ± 5). Altogether, the twenty saliva 

samples were analysed for their basal content using our ON/OFF colorimetric 

assay and the commercial kit to perform a small clinical trial (see Figure 3.17). The 

acquired ∆RGB obtained at different glucose concentrations in after 15 minutes of 

test were also employed to calculate the LOD.  

 

 

Figure 3.17 (A) Analytical plot for LOD calculation, statistical significance was determined using a 

one-way ANOVA and Tukey’s multiple comparison test (****P < 0.0001). (B) ∆RGB data relative to 

the color change of the assay obtained from clinical samples 

 

(A) (B) 
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The LOD was calculated based on the ratio between three times the standard 

deviation for the control and the angular coefficient obtained from the analytical 

curve (Figure 3.18(B)) (see formula below).      

 

𝑋𝐿𝑂𝐷 =  3,3 ∗ 𝑆𝐷𝑏𝑙𝑎𝑛𝑘/𝑏 

 

XLOD: limit of detection; SDblank: standard deviation of the naturally occurring 

pseudo-blank; b: slope of the calibration. The assay performances were very good 

and reproducible using different independently produced devices to analyse the 

same saliva sample from a donor, reaching a LOD of 0.4 mg/dL, in line with the 

best performing glucose colorimetric sensors reported20,21. However, some 

variability on the LOD values was expected when analysing saliva samples from 

multiple different donors (presenting some difference in the composition), 

resulting in a more representative average value of 1.4 mg/dL. Such LOD value is 

still appropriate for our ON/OFF detection, allowing to cope with the intrinsic 

biological variability or real clinical samples. 

 

 

Figure 3.18 Assay performance analysis: (A) Delta RGB for different spiked sample, in a ON-OFF 

setup samples containing glucose < 4 mg/dL report negligible colour change while 4 and 6 mg/dL 

show remarkable proportional delta RGB (B) Analytical plot for LOD calculation. 

 

 

 

(A) (B) 
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3.4 Conclusions  

 

In conclusion, the nanoscale architecture of AuMBNPs and their sensitive 

plasmonic features were exploited for the development of a novel colorimetric 

assay for hyperglycemia, demonstrated to be effective in real saliva samples. 

Interestingly, the sensing platform, when operating in salivary medium, showed 

improved solidity and better dynamic range than in water, suggesting a proactive 

role of the biomolecular corona both in stabilizing the nanosensor and in 

promoting the reshaping process (instead of etching). The technological transfer 

from solution to the solid substrate finally led to the realization of a dipstick-like 

prototype for non-invasive self-monitoring of glycemia. The assay was finally 

validated as a rapid test (15 min) on various clinical samples showing good 

reliability and, with further technological development, great potential for future 

home-testing applications. Overall, it is important to stress that the designed 

sensing platform could be easily adapted for the monitoring of several other 

pathologies, directly involving different oxidase enzymes. 

Considering the high selectivity and sensitivity as well as the remarkable 

colorimetric readout, the nanosensor has been already patented as 

“Procedimento e kit per rilevare un analita in un campione”.P. Pompa and P. 

Donati 102020000007162 (2020). Moreover, in light of the results from real 

salivary samples glucose assessment, and the notable potentiality in a POCT device 

application this work has been published in a peer reviewed journal22. 
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4 Appendix: Platinum nanoparticles-based 

colorimetric sensor for mercury detection 

 
4.1 Platinum nanoparticles 

 

In recent years, platinum nanoparticles (PtNPs) have attracted impressive 

attention in many fields, such as chemical industry and renewable energies, for 

their selectivity and efficiency in catalysis1,2. PtNPs are effective heterogeneous 

catalysts, widely used in the hydrogenation, isomerization, and dehydrogenation 

reactions. Moreover, they are applied in the preparation of several high-value 

chemicals of food industry, such as vitamins and fats, as well as fine biofuel for the 

energy sector34–7.  

Another field of research involving the use of this nanomaterial concerns 

nanomedicine8. Thanks to their good cytocompatibility9,10 and the stability in 

biological environment11,12, PtNPs have been proposed, in combinations with 

other materials, as drug carriers in anticancer, radiothermal, and photothermal 

therapies9,10,13,14. Moreover, they represent good candidates for the second 

generation of high sensitivity nanobiosensors, due to their ability to act as artificial 

enzymes (nanozymes). Indeed, exploiting PtNPs in the signal amplification step, 

the colorimetric/fluorimetric response can be significantly enhanced15.  

 

4.1.1 Nanozymes  
 

The term “nanozyme” has been used for the first time by Manea et al. to define 

functionalized gold NPs with prominent ribonuclease-like activity16. Today, this 

definition is adopted for all the NPs exhibiting enzymatic-like activity17,18. Such 

artificial and often inorganic enzymes result to be highly stable, robust, and cost-

effective compared to the corresponding biological native form19. Moreover, they 
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offer a large surface-to-volume ratio and easy customizable surface for a variety 

of ligand conjugations.  

 

An important class of enzymes highly investigated in nanomedicine for biosensing 

and medical applications include20,21:   

• Peroxidase (HRP), an antioxidant enzyme that catalyses the oxidation of a 

substrate through the decomposition of peroxides, such as hydrogen peroxide 

(𝐻2𝑂2). 

2𝐴𝐻 + 𝐻2𝑂2   
𝑷𝒆𝒓𝒐𝒙𝒊𝒅𝒂𝒔𝒆
→        2𝐴 + 𝐻2𝑂    

• Oxidase, that promotes the oxidation of an antioxidant substrate with molecular 

oxygen (O2), following two possible and different routes of reaction.  

 

𝐴𝐻 + 𝑂2
𝑶𝒙𝒊𝒅𝒂𝒔𝒆
→     𝐴 + 𝐻2𝑂            2 𝐴𝐻 + 𝑂2 +𝐻2𝑂  

𝑶𝒙𝒊𝒅𝒂𝒔𝒆
→     2𝐴 + 2𝐻2𝑂2   

• Superoxide dismutase (SOD) and catalase (CAT), that display an antioxidant 

activity, neutralizing excess of reactive oxygen species (ROS), such as 

superoxide (𝑂2
. ), hydroxyl radical (𝐻𝑂.), and (𝐻2𝑂2).  

 

𝑂2
. + 𝑂2

. + 2𝐻+
𝑺𝑶𝑫
→  𝑂2 + 𝐻2𝑂2              2𝐻2𝑂2

𝑪𝑨𝑻
→  𝑂2 + 𝐻2𝑂 

 

Among other metal nanoparticles, PtNPs have gained huge attention in 

nanomedicine as enzymes substitutes, due to their efficiency as CAT, HRP, and 

SOD22–26. PtNPs are gradually substituting HRP and CAT in several colorimetric or 

fluorometric assays. Up to now, PtNPs-based colorimetric sensors have been 

developed for the detection of tumour markers27, metal ions, drugs28, viruses15, 

antibodies29, and small molecules3031.  

PtNPs enzymatic activity is affected by NPs size, shape, and coating. Most notably, 

it has been demonstrated that nanozyme activity scales inversely with the particle 

size. Smaller nanoparticles expose larger surface, showing higher catalytic activity 

compared to the larger ones (with the same total mass)20. It has been reported 

that PtNPs of 5 nm have higher peroxidase performance (apparent Km with H2O2 

= 47.2 mM) compared to 20 nm PtNPs26 (apparent Km with H2O2= 123.6 mM) (see 
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Figure 4.1). Moreover, recently published studies reported that the NP shape 

affects the catalytic activity32–34, drawing the scientific attention to the 

development of more controllable synthetic protocols32.  

 

 

Figure 4.1 HRP-like activity of PtNPs. (A) Time-dependent UV-visible absorption spectra at 652 nm 

of 5 nm PtNPs (red), 20 nm PtNPs (green), and HRP enzyme (blue) (ref.26) (B) Partial oxidation of 

2-propanol over PtNPs of similar size (S1-S4) but different shape. (C) Average number of broken 

bonds at the NP surface (ref 32). 

 

4.1.2 PtNPs as peroxidase-mimics 

 

In biological environment, peroxidase catalyzes the reduction of hydrogen 

peroxide, oxidizing the antioxidant molecule glutathione. 

In diagnostics, this enzyme is used in combination with chromogenic or 

fluorometric substrates (e.g., 3,3′,5,5′-tetramethylbenzidine-TMB, 2,2'-azino-

bis(3-ethylbenzothiazoline-6-sulphonic acid)-ABTS or luminol) and hydrogen 

peroxide in several assays. However, its use in POC diagnostics is restricted by 

intrinsic limitations, namely intolerance to harsh conditions and ease of 

denaturation together with the large-scale production problems and the high 

costs21. Therefore, PtNPs have been proposed to effectively replace peroxidase in 

these applications. Indeed, it has been demonstrated that PtNPs are able to 

catalyse the hydrogen peroxide dissociation in 2 radicals (𝐻𝑂.) that trigger a chain 

mechanism resulting in a two-step electron transfer for the TMB oxidation35–37 

(see Figure 4.2 A ).   

(A) (B) 

(C) 
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Figure 4.2 (A) PtNPs-catalyzed TMB oxidation mechanism in the presence of H2O2. (B) UV-vis 

spectra of TMB species: consumed diamine (280 nm, black line), charge transfer complex (370 nm 

and 652 nm, blue line), and diimine (450 nm, yellow line) (ref.38). 

 

The first step leads to the 3, 3′,5 ,5′-Tetramethylbenzidine TMB radical that 

disproportionates in a blue-coloured complex, whilst the second electron transfer 

step is induced by the addition of sulfuric acid, resulting in a yellow diimine 

molecule. The reaction can be monitored by UV-vis spectrophotometric analysis: 

over the reaction progress, the TMB molecule UV peak (λ = 280 nm) decreases, 

and two new peaks appear in the visible range (λ1 = 370 nm, and λ2 = 652 nm) 

relatively to the charge transfer complex. These two peaks grow to a maximum 

during the reaction and then decay, being replaced by a peak at λ = 450 nm, 

indicating the formation of the diiminic product38,39 (see Figure 4.2 B). The PtNPs 

peroxidase-like behaviour has been extensively investigated by a kinetic study, 

confirming that PtNPs exhibit Michaelis-Menten kinetics, showing higher affinity 

to TMB compared to the natural enzyme26. 

 

4.1.3 PtNPs synthesis 

 

Chemical Reduction (WCR) represents the most commonly used PtNP synthetic 

method4041. It involves the use of a reducing agent, such as sodium borohydride 

(NaBH4), sodium citrate and ascorbic acid, to produce metallic platinum, starting 

from the Pt salt, namely hexachloroplatinic acid (H2PtCl6). The reduction rate, the 

reducing agent/ Pt salt ratio, the temperature of the reaction, and the stabilizing 
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molecules can be easily modified for the tuning of the PtNP shape and size. PtNPs 

with a diameter of 20-100 nm can be obtained by a multistep seed-mediated 

growth process42. In the first step, the nucleation phase takes place, and clusters 

of Pt (0) atoms are obtained. In a later step, the NPs growth from seeds occurs, 

leading to bigger structures.  

To meet the increasing demand for high biocompatible and surfactants-free 

PtNPs, researchers have moved their attention on “green” synthesis protocols. 

These methods are mainly based on the use of “green” reagents, such as ascorbic 

acid and trisodium citrate, and “green” solvents, such as water instead of ethylene 

glycol.43 In our laboratory, the green PtNPs synthesis was optimized to produce 

well monodispersed, flower-shaped platinum nanoparticles26. The jagged surface 

of PtNPs offers a drastically increased surface, if compared to spherical shaped 

NPs.  

 

4.1.4 PtNPs-based methods for mercury ions 

detection  

 

Aa previously discussed in Chapter 2, most of heavy metal ions are known to be 

carcinogens and highly toxic. Notably, mercury species effects on living organisms 

have been well characterized44–46. However, considering that traditional tests are 

expensive and require costly instrumentations (e.g. graphite furnace atomic 

absorption spectroscopy-GF-AAS, inductively coupled plasma-mass spectrometry-

ICP-MS, and liquid chromatograph-mass spectrometry-LC-MS)47–49, the mercury 

assessment in drinking water and food is sporadic. Therefore, the development of 

an effective mercury detection method for point-of-care applications is still a 

challenge.  

The purpose of this project was the development of a novel naked eye, rapid, and 

easy-to-use PtNPs-based mercury sensor.  

The method consists of two stages. First, mercury ions are quantitatively reduced 

using a weak reducing agent, like ascorbic acid (AA), leading to elemental mercury 
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that nucleates on the nanoparticle surface (nucleation step). Subsequently, 

residual free PtNP surface is evaluated by monitoring the TMB oxidation in the 

presence H2O2, according to the reaction reported in the Figure 4.3. 

 

 

Figure 4.3 Pt-NPs based method for the mercury detection. 

 

 

4.2 Materials and methods  

 
4.2.1 Synthesis of spherical 5 nm PtNPs 

 

Citrate-capped PtNPs with a diameter of 5 nm (Pt5) were synthesized by direct 

nucleation. 160 μL of 0.5 M H2PtCl6 were dissolved in 79.65 mL of double distilled 

water together with 192 μL of 0.5 M sodium citrate. 5.4 mL of a solution 0.06 M 

of NaBH4 were added by slow dropwise, under vigorous stirring. To remove the 

excess of reducing agent, the temperature was then raised to 75 °C. After 30 

minutes, the solution was cooled to room temperature and washed with 2 mM 

sodium citrate solution using 10K Centrifugal Filters, and stored under 4 °C. 

 

4.2.2 Synthesis of flower-like 20 nm PtNPs  

 

Citrate-capped PtNPs with a diameter of 20 nm were synthesized by a seed-growth 

method26, starting from 3 nm seeds prepared by the procedure reported by Bigall 

et al42. 3mL of this solution were added to 150 mL of double distilled water, under 

stirring, together with 216 μL of 0.5 M H2PtCl6. Subsequently, 1.5 mL of a solution 
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containing 1.25% (m/v) sodium citrate and 1% (m/v) L-ascorbic acid were added 

and the temperature was gradually raised (~ 5 °C/min) to the boiling point. The 

reaction was conducted at reflux (~ 100 °C) for 1 h. After being cooled at room 

temperature, the solution was washed with 2 mM citrate solution using 50K 

centrifuge filters to remove any contaminant. 

 

4.2.3 TEM imaging 

 

The TEM analysis was performed using a JEOL JEM 1400 microscope. Samples 

were prepared drop casting 3 μL of each solution on oxygen plasma cleaned grid 

(CF150-Cu-50 - Carbon Film 150 Mesh, Cu, 50/bx) and vacuum drying. 

 

4.2.4 UV-visible spectroscopy 

 

UV-vis spectra (400-800 nm) of the nanoparticle suspension were acquired by a 

Thermo Fisher NanoDrop® (wavelength Accuracy ± 1 nm, absorbance accuracy 3 

% at 0.74 Abs@350nm) with a small volume cuvette. PtNPs were incubated with 

positive samples obtained by adding a spike of a standard mercury solution in tap 

water. After the nucleation step, the detection mix was added and the TMB 

oxidation reaction was monitored by spectrophotometric kinetic reading. Briefly, 

5.0 μL of 200 mM citric acid/sodium citrate buffer solution (pH 5.0) were added to 

80 μL of mercury spiked water followed by 1 μL of Pt20 (125 pM in 2 mM trisodium 

citrate) or 5 μL of Pt5 (5 nM in 2 mM trisodium citrate) and 1 μL of 5 mM ascorbic 

acid solution. After 5 minutes of incubation, 20 μL of 500 mM TMB and 20 μL of 

1M H2O2 were added and the solution color change was registered. 
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4.2.5 X-ray Photoelectron Spectroscopy (XPS)  
The XPS analyses were carried out with a Kratos Axis Ultra spectrometer. The 

sample for XPS characterization was prepared by drop casting a few microliters of 

a 200-fold concentrated solution of PtNPs (after incubation) on a freshly cleaved 

highly oriented pyrolytic graphite (HOPG) substrate (NT-MDT, ZYB). Spectra were 

analyzed using CasaXPS software (version 2.3.17). 

 

4.3 Results  

 
4.3.1 PtNPs characterization  

 

Two sets of PtNPs have been tested to compare the behaviour of 20 nm flower-

like PtNPs and 5 nm spherical PtNPs. After the synthesis bot 5 and 20 nm PtNPs 

have been characterized in terms of size acquiring TEM images (see Figure 4.4 and 

Figure 4.5).  

 

Figure 4.4 (A) Representative TEM micrograph and (B) size distribution analysis of spherical 5 nm 

PtNPs. 

 

20 nm 

(A) (B) 
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Figure 4.5 (A) Representative TEM micrograph and (B) size distribution analysis of flower-like 20 
nm PtNPs. 

 

  

The performance of the nanosensor is closely related to the ability to control the 

surface passivation with metallic mercury. Considering the first step of the sensing 

strategy as a heterogeneous nucleation, modulating the PtNPs shape and 

diameter, whole mercury shell can be obtained even in case of low Hg2+ 

concentrations. Our results show that 5 nm PtNPs allows a high yield amalgam 

formation which translates in higher sensitivity of the method. Figure 4.6 shows 

the comparison between 5nm PtNPs and 20 nm PtNPs in terms of residual 

peroxidase-like activity after incubation with water sample containing Hg2+ 100 

nM. 5 nm PtNPs report higher surface passivation, paired the analyte concentration 

the small slide surface favour the nucleation of the mercury ions, resulting in a 

lower Limit-Of-Detection.  

 

Figure 4.6 comparison of residual catalytic activity between spherical 5nm PtNPs and flower-like 

20 nm PtNPs after incubation with Hg2+ 100 nM. The solid surface of spherical PtNPs allows 

quantitative nucleation of mercury ions. 

(A) (B) 
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4.3.2 Reducing agent optimization 

 

Since the residual catalytic NP surface is inversely proportional to the Hg2+ content 

within the sample, a quantitative assessment can be achieved by modulating the 

reduction of mercury to the elemental form and the amalgam reaction. The 

method selectivity relies on the Hg2+ high Red-Ox potential (E°= 0.85) that makes 

it capable to react even in the presence of weak reducing agents. AA has been 

chosen to help the mercury reaction (E°= 0.39), whilst it cannot reduce the other 

cations naturally occurring in fresh water (K+, Na+, Ca2+, Fe2+, Cr3+ etc.), due to their 

lower redox potentials. However, AA concentration has been finely tuned, as it 

competes with TMB in the reaction with OH•, causing the delay of the TMB 

catalysed chromogenic reaction. We tested different concentrations of AA to 

obtain a suitable delay for ON/OFF colorimetric output of the sensor (see Figure 

4.7). 
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Figure 4.7 Tuning of the delay caused by increasing amounts of 5 mM AA solution. 

 

Alternative reducing agents, namely oxalic acid and formic acid, have been tested 

with the aim to obtain a complete mercury reduction in short time. Figure 4.8 

shows promising preliminary data in the presence of oxalic acid. A 100 nM 

concentration of Hg2+ can be detected without any delay typical of the AA 

interference on the TMB oxidation.  
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Figure 4.8 Reduction using Oxalic acid as reducing agent: in 20 min, a significant PtNPs surface 

passivation occurs in the presence of a 100 nM Hg2+ spiked sample. Moreover, any delay of the 

TMB oxidation was observed. 

 

 

4.3.3 Incubation step optimization 

 

To improve the sensitivity of the method, also the incubation time was 

characterized with the aim to determine the minimum time required for effective 

nucleation. Four mercury spiked water samples (25nM-100nM) were incubated 

with PtNPs and AA, and the residual peroxidase-like activity of the nanomaterial 

was evaluated at different time-points (see Figure 4.9).  

Higher incubation times resulted in higher sensitivity of the sensor. Figure 7C 

shows that a sample containing 50 nM Hg2+ could be detected after 30 minutes of 

incubation, whilst 12 hours of incubations are needed for detecting a sample 

containing 25 nM Hg2+ (see Figure 4.9 D). The Limit-Of-Detection (LOD) for a fast 

incubation method (5 min) results to be 80 nM. 
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Figure 4.9 Peroxidase-like activity of PtNPs incubated with different concentrations of Hg2+ (100-

75-50-25 nM). The TMB oxidation reaction was recorded after several incubation times: 5 min (A), 

15 min (B), and 30 min (C). Increasing the incubation time (>60 min), 25 nM Hg2+ can be detected 

with remarkable NP surface passivation (D). 

 

4.3.4 Incubation step optimization 

 

To characterize the amalgam formation during the nucleation step of the method, 

TEM images of 5 nm PtNPs were acquired before and after the reaction with Hg2+ 

and AA (Figure 4.10 A, B). NPs polydispersity increase points out the nucleation of 

metallic mercury on the particles surface. XPS analysis was performed on PtNPs 

after the incubation with water samples spiked up to 50 nM Hg2+ (PD 10,11) and 

100 nM Hg2+ (PD12,13), confirming the efficiency of the reducing agent on the 

mercury amalgam formation Figure 4.10 C). Optimizing the nucleation reaction as 

well as the TMB oxidation, a LOD of 80 nM was obtained for the detection of Hg2+ 

in real tap water. In 5 minutes, the amalgam formation on PtNPs allows a perfect 

ON/OFF read out of the results in which the negative sample has a vivid blue colour 

while the positive sample remains colourless (see Figure 4.10 D). 
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Figure 4.10 (A) TEM images of 5 nm PtNPs before (A) and after (B) 5 minutes of incubation with 

water sample containing 100 nM Hg2+. (C) XPs results in terms of Hg (at%) and Pt (at%) for samples 

containing 50 nM Hg2+ (PD10,11) and 100 nM Hg2+ (PD12,13), respectively (D). Time-dependent 

absorbance signals at 652 nm of TMB after incubation with H2O2 and PtNPs for a negative (Ctrl) 

and positive (Hg2+ 80 nM) sample with remarkable colorimetric ON/OFF result. 

 

In order to stabilize PtNPs in complex media, as sea water or food extracts, various 

strategies have been tested. To avoid the PtNPs precipitation during the assay, we 

adsorbed the nanomaterial on different particles as support. Commercial 

products, like AEROSIL® 150 (hydrophilic fumed silica) and 60 nm diameter Silica 

nanoparticles, are able to efficiently stabilize small nanoparticles in solution, 

proved dosing the catalytic activity, (see Figure 4.11 A, B). To validate this 

approach, the PtNPs catalytic activity was characterized before the NPs absorption 

on silica nanoparticles, as well as before and after the lyophilization procedure 

(see Figure 4.11 C). However, we observed a reduction in the method sensitivity 

in the presence of the nanosized support, due to the difficult of mercury ions to 

reach the particles.  
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Figure 4.11 TEM images showing the results of PtNPs stabilization on different supports. (A) 

Lyophilized PtNPs supported on AREOSIL 150 after resuspension in water. (B) Silica NPs as support 

for 20 nm PtNPs. (C) Peroxidase-like activity comparison between citrate capped-PtNPs and PtNPs 

stabilized on Silica NPs as support, before (blue) and after (red) the lyophilization, and once 

resuspended (green). 

An interesting approach to increase PtNPs stability involves the use of polymers, 

such as Polyvinylpyrrolidone (PVP) and Poly (acrylic acid). According to these data, 

we observed that PVP coated-PtNPs can be stored as lyophilized powder and 

directly resuspended during the assay (see Figure 4.12).  

 

Figure 4.12 Comparison between citrate- and PVP-capped PtNPs: the polymer does not affect the 

nanoparticle surface reactivity allowing the same sensitivity of “naked” nanoparticles in the 

presence of a 100 nM Hg2+ spiked sample. 
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4.4 Conclusions 

 

In this work, we explored the use of PtNPs as nanozymes in surface passivation-

based colorimetric method for mercury ions detection in water samples. We 

reported easy and fast assay that in less than 10 minutes give out a remarkable 

colour change that allows the naked eye ON/OFF colorimetric assessment of 

mercury contaminations. This nanosensor shows some relevant optimizations 

compared to the other approaches previously published, as the use of stabilized 

PtNPs that enables the assessment of mercury contaminations in real samples. 

Moreover, tuning the incubation time and using different reducing agents, such as 

oxalic acid, the analytical utility of this method can be implemented. Considering 

the method features, this nanosensor can be easily transferred to solid based 

micro-Pads or lateral flow based devices for effective home testing solutions.  
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5 Conclusions 

 
Point-Of-Care testing is strongly improving quality-of-life, providing new 

diagnostic solutions for both healthcare systems and environmental control. In 

this framework, this project has been centred on the development of three 

nanoparticles-based sensors for the easy and rapid assessment of analytes of 

biomedical and environmental interest, taking advantage of enzymatic and 

plasmonic nanoparticles properties.  

The first aim of this work has been the development of a self-catalysed plasmonic 

platform for the methyl mercury detection in organic samples, such as human 

urine and food extracts. Mercury, as well as other heavy metal ions, is ranked in 

the top ten list of hazardous substances, due to its toxic effects on both human 

and environmental health. To date, the mercury assessment is sporadic, as the 

tests are laborious and expensive. The proposed nanosensor combine catalytic 

and plasmonic properties of gold nanoparticles to achieve fast organic mercury 

detection with high sensitivity. To the best of our knowledge, this technique 

represents the first easy-to-use platform for the detection of organic mercury in 

biological fluids and food extracts, as a marker of mercury intoxication and 

contaminations.  

Furthermore, plasmonic properties applications are not limited to classical 

aggregation-based colorimetric methods. Gold nanoparticles size and shape can 

be finely manipulated in a new class of sensors that respond to external stimuli, as 

the analytes, leading to a colorimetric outcome. 

Therefore, as second aim of this work, the surface reshaping process of gold 

multibranched nanoparticles has been exploited to develop a customizable 

method for glucose measurement in saliva. Combining the target enzymatic 

conversion and the gold nanoparticles reshaping in a boosted color change 

outcome, a new and effective nanobiosensor for the salivary glucose assessment, 

with micromolar sensitivity, has been developed. This nanoparticle-based 



111 
 

technology has been successfully transferred into an integrated -Pad and applied 

for the fast ad non-invasive salivary glucose assessment in real diabetic patient 

samples. The obtained results show that this innovative platform represents a 

valid alternative to the invasive, and eventually painful, blood tests. 

In the last part of this work, I have reported an enzymatic method based on 

platinum nanoparticles for the measurement of the mercury content in water 

samples. The sensor relies on the reduce mercury amalgam formation on the 

particles surface and its subsequent colorimetric quantification, providing a simple 

and rapid (10 minutes) method for instrument-free water mercury assessment.  

In conclusion, during my thesis work, I have explored the peculiar properties of 

gold and platinum nanoparticles to develop a set of nanobiosensors, in order to 

overcome the drawbacks of traditional diagnostic techniques. Providing solutions 

for real applications, these Point-Of-Care devices will be soon a market reality, as 

new approaches to portable diagnostics.   
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