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Sommario 

L'argomento principale della tesi è l'applicazione delle tecniche di quantificazione 

dell'incertezza (UQ) alla simulazione numerica (CFD) di turbine radiali twin entry 

impiegate nella turbosovralimentazione automobilistica. 

Lo studio approfondito di questo tipo di turbomacchine è affrontato nel capitolo 3, 

finalizzato alla comprensione dei principali parametri che caratterizzano e influenzano le 

prestazioni fluidodinamiche delle turbine twin scroll. Il capitolo 4 tratta di una piattaforma 

per l'analisi UQ sviluppata internamente tramite il set di strumenti open source ‘Dakota’. 

La piattaforma è stata testata dapprima su un caso di interesse industriale, ovvero un ugello 

de Laval supersonico (capitolo 5); l'analisi ha evidenziato l'utilizzo pratico delle tecniche di 

quantificazione dell'incertezza nella previsione delle prestazioni di un ugello affetto da 

condizioni di fuori progetto con complessità fluidodinamica dovuta alla forte non linearità. 

L'esperienza maturata con l'approccio UQ ha agevolato l'identificazione di metodi idonei 

per applicare la propagazione dell’incertezza alla simulazione CFD di turbine radiali twin 

scroll (capitolo 6). In tal caso sono state studiate e messe in pratica diverse tecniche di 

quantificazione dell'incertezza al fine di acquisire un'esperienza approfondita sull’attuale 

stato dell'arte. Il confronto dei risultati ottenuti dai diversi approcci e la discussione dei pro 

e dei contro relativi a ciascuna tecnica hanno portato a conclusioni interessanti, che 

vengono proposte come linee guida per future applicazioni di quantificazione 

dell’incertezza alla simulazione CFD delle turbine radiali. 

L'integrazione di modelli e metodologie UQ, oggi utilizzati solo da alcuni centri di ricerca 

accademica, con solutori CFD commerciali consolidati ha permesso di raggiungere 

l'obiettivo finale della tesi di dottorato: dimostrare all'industria l'elevato potenziale delle 

tecniche UQ nel migliorare, attraverso distribuzioni di probabilità, la previsione delle 

prestazioni relative ad un componente soggetto a diverse fonti di incertezza.  

Lo scopo dell’attività di ricerca consiste pertanto nel fornire ai progettisti dati prestazionali 

associati a margini di incertezza che consentano di correlare meglio simulazione e 

applicazione reale. 

 

Per accordi di riservatezza, i parametri geometrici relativi alla turbina twin entry in oggetto 

sono forniti adimensionali, i dati sensibili sugli assi dei grafici sono stati omessi e nelle 

figure si è reso necessario eliminare le legende dei contours ed ogni eventuale riferimento 

dimensionale. 
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Abstract 

The main topic of the thesis is the application of uncertainty quantification (UQ) 

techniques to the numerical simulation (CFD) of twin entry radial turbines used in 

automotive turbocharging.  

The detailed study of this type of turbomachinery is addressed in chapter 3, aimed at 

understanding the main parameters which characterize and influence the fluid dynamic 

performance of twin scroll turbines. Chapter 4 deals with the development of an in-house 

platform for UQ analysis through ‘Dakota’ open source toolset. The platform was first 

tested on a test case of industrial interest, i.e. a supersonic de Laval nozzle (chapter 5); the 

analysis highlighted the practical use of uncertainty quantification techniques in predicting 

the performance of a nozzle affected by off-design conditions with fluid dynamic 

complexity due to strong non-linearity. 

The experience gained with the UQ approach facilitated the identification of suitable 

methods for applying the uncertainty propagation to the CFD simulation of twin entry 

radial turbines (chapter 6). In this case different uncertainty quantification techniques have 

been investigated and put into practice in order to acquire in-depth experience on the 

current state of the art. The comparison of the results coming from the different approaches 

and the discussion of the pros and cons related to each technique led to interesting 

conclusions, which are proposed as guidelines for future uncertainty quantification 

applications to the CFD simulation of radial turbines. 

The integration of UQ models and methodologies, today used only by some academic 

research centers, with well established commercial CFD solvers allowed to achieve the 

final goal of the doctoral thesis: to demonstrate to industry the high potential of UQ 

techniques in improving, through probability distributions, the prediction of the 

performance relating to a component subject to different sources of uncertainty. 

The purpose of the research activity is therefore to provide designers with performance 

data associated with margins of uncertainty that allow to better correlate simulation and 

real application. 

 

Due to confidentiality agreements, geometrical parameters concerning the studied twin 

entry radial turbine are provided dimensionless, confidential data on axes of graphs are 

omitted and legends of the contours as well as any dimensional reference have been 

shadowed. 
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Inflow radial turbines are gaining an increasing importance in several engineering 

applications because of the possibility to implement very compact solutions with high 

specific power. Today this kind of turbomachinery is extensively used for distributed 

power generation with micro-gas turbines and as a driving machine in turbochargers for 

automotive applications. 

Turbocharging is a well established technique for increasing internal combustion engines 

specific power and consequent downsizing of the power unit: on the one hand it allows to 

reduce engine cylinders overall volume in order to decrease specific fuel consumption and 

greenhouse gas emissions, on the other hand it permits to keep high performance and 

specific power, key factors in the racing sector. In this scenario the performance evaluation 

and flow characterization of the turbine represent a basic prerequisite for a correct 

matching with the internal combustion engine. 

This chapter summarizes some literature information necessary to characterize radial 

turbines operation, focusing then on the ‘twin entry’ turbines, which will be the main 

research subject of the thesis. 

 

1.1. Pulse turbocharging 

IFR turbines are widely used for turbocharging in automotive field: the air entering the 

intake manifold is compressed by a centrifugal impeller driven by a radial turbine placed 

on the same axis (Fig. 1.1); this practice aims to optimize the quantity of charge introduced 

into the cylinder per engine cycle, leading to an improvement in the ICE performance. 

Among possible turbocharging schemes, pulse turbocharging is a convenient solution for 

the possibility to take advantage of the pressure fluctuations generated by the periodic 

opening of the engine discharge valves through exhaust manifolds characterized by small 

diameters and lengths (low damping volume). Following the impulse turbocharging 

scheme [1], the phenomena of propagation and reflection of pressure waves are exploited: 

1) in the spontaneous discharge phase (‘blowdown’), immediately after the discharge 

valve opening. The goal is to keep the 𝑝𝑑 (discharge pressure) greater than the 𝑝𝑎𝑡𝑚 

(atmospheric pressure); 

2) during the crossing phase, when intake and exhaust valves are open simultaneously, 

the target is instead 𝑝𝑑 < 𝑝𝑎𝑡𝑚 . 

Following the two points just exposed, it is possible to take advantage of the compression 

wave generated by the opening of the discharge valve in the first phase (1) and then to 

exploit its reflection at the open end of the exhaust manifold in a wave of the opposite type 

(i.e. expansion): in fact in the second phase (2) if the expansion wave reaches the discharge 

valve before its closing the 𝑝𝑑 is reduced, decreasing the work required by the piston 

during the forced unloading of the cylinder.  

This technique requires a careful tuning of the turbo-ICE matching because introduces 

issues related to the possible negative interaction of pressure waves coming from different 

cylinders and to periods of zero exhaust gas mass flow, which can jeopardize the positive 

effect of pulsating flow. Considering that the mass flow passing through the turbine in 

pulsating condition is lower than in the stationary case, in order to make the gas supply to 

the turbine as homogeneous as possible (thus optimizing the performance of the turbine), it 

is important to group the cylinders gas exhaust into different manifolds.  
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Fig. 1.1 – Meridian section of an impulse turbocharger. The numbers in figure respectively 

identify: 1. centrifugal compressor casing; 2. centrifugal impeller; 3. air inlet; 4. 

compressed air outlet; 5. lubricating oil inlet; 6. centripetal turbine casing; 7. turbine 

impeller; 8. exhaust gas outlet; 9. case for bearing housing; 10. exhaust gas inlet into the 

turbine; 11. connecting shaft; 12. lubricating oil outlet [2] 

 

The main problem in pulse turbocharging is the choice of which cylinders have to be 

connected together. With reference to the distribution diagram of a four stroke engine, the 

opening advance angle of the discharge valve is typically 𝜗𝑜𝑑 = 40 ° ÷ 70 °, while the 

closing delay angle of the discharge valve 𝜗𝑐𝑑= 40 ° ÷ 60 °; therefore the discharge phase 

has an angular extension of approximately Δ𝜗𝑑 = 260 ° ÷ 310 °. 

In order to obtain a correct washing of each cylinder which discharges into the same 

manifold, it is necessary that the blowdown pressure wave (spontaneous discharge) of the 

next cylinder according to the firing sequence reaches the cylinder discharge valve in 

washing phase only after its closure, otherwise a high pressure at the discharge of the 

cylinder could be registered, preventing the correct charge replacement. 

The actual angular phase shift between two cylinders which discharge the exhaust gases in 

the same manifold may be less than the values of Δ𝜗𝑑 indicated above, mainly because 

there is a delay between the beginning of the discharge valve opening and the pressure 

increase in the manifold and also because a certain interval of time is required for the 

perturbation to propagate from the cylinder in discharge phase to the one in washing phase. 

The non-interference condition will be respected if the ignition intervals between cylinders 

which discharge into the same manifold are greater than or equal to 240 °. 

In order to provide a practical example, the case of a six-cylinder engine can be 

considered: the typical configuration is to divide the exhaust manifolds into two groups of 

three, each of which feeds only one of the two inlets of the turbine volute. If the engine 

operating cycle covers 720° of crank angle and there are 6 cylinders, the ignition interval 
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between a cylinder and the next one is Δ𝜗𝑓𝑖𝑟𝑖𝑛𝑔 =  (720°)/6 =  120°. Therefore in this 

case to avoid interference between the respective washing phases it would be sufficient to 

connect the cylinders which have an angular phase shift of 240° according to the firing 

sequence. The superimposition of three equally spaced pressure pulses during an engine 

cycle generally provides the best condition, minimizing the periods of zero mass flow and 

ensuring higher average turbine efficiency over an engine cycle. 

 

Pulse turbocharging often leads to the adoption of peculiar turbine volute geometries in 

order to preserve the pressure pulsations of the exhaust gas inside the ICE manifolds. A 

fundamental distinction between the two main types of double inlet turbines is made on the 

basis of the type of flow subdivision: 

➢ ‘double entry’ turbines have a volute that splits the exhaust gas flow from the ICE 

manifolds so that each volute inlet feeds a different angular sector of the rotor in 

circumferential direction: e.g. 0-180° for ‘outer entry’ and 180-360° for ‘inner 

entry’, as in Fig. 1.2a. These sectors can be easily identified considering the volute 

tongues; 

➢ ‘twin entry’ or ‘twin scroll’ turbines are characterized by a volute which presents a 

single septum divider (called ‘divider wall’ in Fig. 1.2b) that runs on the entire 

perimeter of the casing so that each volute inlet feeds the entire annular section at 

impeller inlet, but only within a certain percentage of the channel height: for 

example hub scroll from the hub (0%) up to midspan (50%) while shroud scroll 

from 50% of the span up to the shroud (100%). 

 

 

Fig. 1.2 – Different designs of double inlet radial turbines [3,4] 

 

Both types of double inlet volute described above serve the purpose of preserving the 

energy of the exhaust gases and make easier the charge replacement in the engine 

cylinders. However, ‘twin entry’ turbines are more popular among designers and 

manufacturers for simpler and less expensive design than ‘double entry’ ones.  

The next paragraph is dedicated to the description of a generic radial turbine stage from a 

theoretical point of view. 
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1.2. Radial turbines: basic concepts on each component  

This section summarizes the operating principles of a radial turbine, analyzing separately 

each component: volute, rotor and diffuser.  

 

1.2.1. Volute 

Fig. 1.3 – Possible design choices for a radial turbine volute 

 

The flow enters the volute with a direction that is roughly tangential to the rotor (see Fig. 

1.4). Crossing the volute, the exhaust gases experience a pressure gradient in radial 

direction that directs the flow towards the impeller, while a high circumferential velocity 

component is preserved to distribute it peripherally. In case of vaneless distributor, the 

flow is also subject to pressure pulsations linked to the periodic passage of the rotor blades. 

The portion of flow that sweeps the entire channel around the rotor in circumferential 

direction must return and mix with the mainstream flow at the volute tongue. 

 

Fig. 1.4 – Cross section of the twin entry radial inflow turbine [5] 

 

The simplest volute flow models simulate only the through flow and the radial velocity 

components without taking into account the secondary flows or the mixing of the flow re-

Radial turbine volutesRadial turbine volutes

inlets 
number
inlets 

number

single entrysingle entry

twin entrytwin entry

statorstator
vanelessvaneless

vanedvaned

fixedfixed

variablevariable
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entering the mainstream under the tongue.  

In an “ideal” volute (no losses) the angular momentum must be preserved, hence the flow 

will be a free vortex centered on the turbine axis: 

 𝑟𝑐𝜃 =  𝑐𝑜𝑠𝑡. (1.1) 

The volute inlet conditions are often set by external limits, such as the project of the ICE 

exhaust manifolds; to understand its influence on the design of the scrolls, it is necessary to 

apply equation (1.1) between control sections 1 and 2 (volute inlet and outlet in Fig. 1.4): 

 𝑐2 sin 𝛼2 𝑟2 = 𝑐1 sin 𝛼1 𝑟1 (1.2) 

Assuming that the volute is adiabatic, there’s no work exchange in the stator hence 𝑑ℎ0 =
0. Given that 𝑇01 = 𝑇02, the ratio 𝑟1 𝑟2⁄  can be expressed as below: 

 𝑟1

𝑟2
=

sin 𝛼2

sin 𝛼1

𝑐2

√𝑘𝑅𝑇2

√𝑘𝑅𝑇1

𝑐1

√𝑇2

√𝑇1

√𝑇01

√𝑇02

 (1.3) 

So remembering from gas dynamics theory that  𝑇0 𝑇⁄ = 𝑓(𝑀, 𝑘): 

 
𝑟1

𝑟2
=

𝑀2 sin 𝛼2

𝑀1 sin 𝛼1
{

1 + [
𝑘 − 1

2 ] 𝑀1
2

1 + [
𝑘 − 1

2 ] 𝑀2
2

}

1 2⁄

 (1.4) 

The last equation allows to derive the ratio between the inlet and outlet volute radii for 

each specific inlet Mach number and flow angle. 

Rather compact scrolls (therefore small 𝑟1 𝑟2⁄  ratios) require higher inlet Mach numbers as 

shown in Fig. 1.5; this inevitably leads to additional frictional losses in the volute due to 

the increasing flow speed levels. 

Fig. 1.5 – Inlet Mach number effect on volute area and radius ratio [6] 

The volute area ratio can be derived through the application of the continuity equation. The 

non-dimensional mass flow rates at volute inlet and outlet are respectively given by: 
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 𝜃1 = {sin 𝛼1 𝑀1[1 + 0.5(𝑘 − 1)𝑀1
2]

−(𝑘+1) 2(𝑘−1)⁄
} (1.5) 

 

 𝜃2 = {cos 𝛼2 𝑀2[1 + 0.5(𝑘 − 1)𝑀2
2]

−(𝑘+1) 2(𝑘−1)⁄
} (1.6) 

The volute inlet to exit area ratio may then be written as: 

 𝐴1

𝐴2
=

𝜃2

𝜃1
 
𝑝02

𝑝01
 (1.7) 

In the ideal case of isentropic flow 𝑝02 = 𝑝01 and the volute area ratio can be determined 

from equation (1.7) directly. In a real case instead, a stator efficiency (including entry duct, 

volute and nozzle blades if present) must be specified and used to calculate the total 

pressure ratio. In practice, a reduction of the volute efficiency from 100% (ideal case) to 

90% (a reasonable real case) has a negligible effect on the results. 

For what concerns volute outlet conditions, if the mass flow rate and therefore the flow 

velocity are uniform around the exit periphery of the scroll, the flow angle at volute outlet 

is given by: 

 tan 𝛼2 = 𝑐𝜃2 𝑐𝑚2⁄  (1.8) 

To obtain 𝑐𝜃2, the free vortex equation between stations 1 (volute inlet) and 2 (volute 

outlet/rotor inlet) is applied: 

 𝑐𝜃2 = (𝑐𝜃1𝑟1) 𝑟2⁄ = (𝑐1𝑟1) 𝑟2⁄  (1.9) 

where it is assumed that at volute inlet the absolute speed is only tangential (𝑐𝜃1 = 𝑐1). 

Then the continuity equation is applied to calculate the meridian velocity: 

 𝑐𝑚2 = �̇� (𝜌2⁄ 𝐴2) = [(𝜌1𝐴1) (𝜌2⁄ 𝐴2)]𝑐1 (1.10) 

In fact, at section 1 the mass flow rate is determined by the tangential component, while at 

section 2 by the meridian component (vector sum between the axial and radial velocity 

components). Once substituted the equations (1.9) and (1.10) in (1.8), the absolute flow 

angle at volute outlet can be obtained: 

 
𝛼2 = tan−1 (

𝜌2

𝜌1

𝐴2

𝐴1

𝑟1

𝑟2
) 

(1.11) 

Considering a twin scroll turbine, which has two different inlets, given that the geometric 

quantities 𝐴2 and 𝑟2 are fixed by the component immediately downstream of the volute 

(which may be the nozzle or directly the rotor), the absolute flow angle at each branch 

outlet is determined uniquely by the choice of the corresponding volute inlet area and 

radius (the ratio 𝜌2 𝜌1⁄  has a small effect). 

The flow angle of the fluid approaching the wheel has a strong influence on the mass flow 

swallowing capacity of the turbine and this aspect is often used by vaneless volute 

manufacturers to adjust the turbine for a specific application: for a given rotor a range of 

different volute casings (identified by an 𝐴 ⁄ 𝑟 value) is produced. 
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Considering the complexity of the flow evolution in this component, there is little 

agreement between the designers regarding the "optimal" geometry to be adopted for the 

volute and the selected configuration can play a significant role in the overall performance 

of the turbine.  

Some researchers [7] measured up to 1.5% variation in the turbine total to total efficiency 

due to changes made to the volute cross section profile and this is probably due to the fact 

that different volutes distribute the flow to the rotor in a different and non-uniform way, 

playing a key role on the potential work that can be extracted from the impeller. 

As measured experimentally by Chappie [8], any static pressure circumferential non-

uniformity at volute exit propagates right through the wheel and can also be found at the 

impeller exit plane; at rotor inlet these non-uniformities can promote detrimental rotor 

blade vibrations. 

Scrimshaw and Williams [9] performed flow measurements around the outlet of a vaneless 

volute: three geometrically similar turbine were studied, with the same ratio between 

tongue clearance and rotor tip diameter (𝐷2), but different absolute values of clearance. In 

the examined cases evident changes in flow angle, static pressure and total pressure loss 

(especially in the region near the tongue) occurred. The static pressure increase and total 

pressure drop which characterize the tongue region (see Fig. 1.6 below) can be interpreted 

as an injector-type suction of the recirculating flow under the tongue by the main flow 

entering the volute, with a slowing and mixing effect.  The magnitude of this “injector” 

effect varies with the movement of blades under the volute tongue, which can give rise to 

strong pressure waves at the blade passing frequency. The latter can play a remarkable role 

in the possible fatigue failure of the blades. 

 

Fig. 1.6 – Static pressure contours on a front view volute cross section (on the left) and 

total pressure contours on an enlarged view of the tongue region (on the right) 

 

1.2.2. Rotor 

In a centripetal turbine energy is transferred from the fluid to the rotor passing from a 

greater radius to a smaller one. Following the principle that considers as positive the 

incoming heat and the work leaving the machine, for the generation of a positive work it is 
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necessary that the product between the peripheral and circumferential speed at wheel inlet 

is greater than the corresponding one at impeller outlet. 

This is usually achieved by providing the flow, through the volute, with a strong tangential 

speed component at rotor inlet and reducing the ‘absolute’ (or ‘stationary frame’) swirl 

angle at the outlet. Euler's equation for turbines is written as in equation (1.12): 

 𝐿2,3 =  𝑢2𝑐𝜃2 − 𝑢3𝑐𝜃3 (1.12) 

 

Typically the blade inlet (control section 2) construction angle is zero with respect to the 

radial direction and this design choice is dictated by two factors: the material resistance 

and the exhaust gas high temperatures at impeller inlet. The rotor blades are subject to high 

levels of stress, caused by the centrifugal force field together with a pulsating and unsteady 

flow of high temperature gases. Despite possible performance gains, the use of swept 

blades is generally avoided because of the additional stresses which result from bending. 

From station 2 the rotor blades extend radially inward and turn the flow into the axial 

direction. The final part of the blades, called the ‘exducer’, is curved to remove most of the 

absolute tangential velocity component at wheel outlet. 

The exhaust gas discharged from the impeller may have a considerable velocity (c3) and an 

axial diffuser is normally placed before turbine tailpipe exit in order to recover the kinetic 

specific energy (1/2 c3
2) which would otherwise be wasted. 

Fig. 1.7 – Velocity diagrams for a 90 [deg] inward flow radial turbine at design point [10] 

 

In Fig. 1.7 the velocity triangles are drawn to suggest that the inlet relative velocity (𝑤2) is 

totally radial, i.e. zero incidence flow, and the absolute velocity at rotor exit (𝑐3) is purely 

axial. This configuration of the velocity triangles, popular with designers for many years, is 

called the “nominal design condition” [10] . 

 

The flow reaching rotor inlet has an absolute velocity equal to c2 and an absolute flow 

angle 𝛼2 determined by the geometry of the volute and, if present, by the nozzle blades. 

Once the flow enters the impeller, the work extraction process is quickly accomplished 

with fast reduction of the absolute circumferential velocity component and peripheral 

speed, while the flow radius decreases. These strong speed variations correspond to a high 

blade loading and hence to a large pressure gradient across the passage, which tends to 
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move the flow from the pressure side to the suction side, contrary to the rotation direction 

of the impeller. 

If the rotor has an angular speed equal to +ω and the viscosity of the incoming flow is 

neglected, the motion field between two blades is irrotational (the vorticity is zero far from 

the boundary layer); to preserve this state, a vortex is generated at rotor channel inlet which 

rotates at -ω in the relative reference, as visible in Fig. 1.8 (red arrows). 

Fig. 1.8 – Rotor inlet: relative flow velocity variation in circumferential direction [6] 

 

In order to better understand the phenomenon described above, a fluid particle can be 

considered in the rotor channel as it migrates in radial direction towards the rotation axis: 

for a 90° rotation of the impeller in the direction indicated by ω there’s a particle counter 

rotation of -90° in the relative reference: this means that in the absolute reference the 

particle actually does not rotate on itself.  

The effect is ideally the same described in literature for the flow that leaves the rotor of a 

centrifugal compressor (the so-called ‘slip effect’). In the case of the centrifugal impeller 

the slip effect causes an over-deflection (𝑤𝜃  grows) of the streamlines leaving the wheel: 

if the peripheral speed is the same, a reduction of the absolute circumferential velocity 

component and consequently of the exchanged work is expected. 

For the discussed case of the centripetal turbine, the slip effect at rotor inlet produces a 

relative flow speed (𝑤2) deflected in opposite direction to the rotation: with the same 

peripheral speed (𝑢2), the slip effect causes a lower 𝑐𝜃2 and therefore it reduces the work 

potentially extractable from the flow (see equation (1.12)), resulting in performance 

deterioration. 

As a consequence of combining an irrotational flow at rotor inlet with a counter-rotating 

vortex, the relative speed on the pressure side of the blade decreases while the one on the 

suction side grows (Fig. 1.9). The torque transmitted to the rotor by the fluid manifests 

itself as a pressure difference inside each inter-blade channel. Therefore there must be a 

pressure gradient in circumferential direction in the space between two consequent blades. 

Considering the flow as stationary (𝑑𝜔 𝑑𝑡⁄ = 0), the second law of dynamics (Newton) is 

applied in circumferential direction for a fluid element in the space (r, ϑ, z): 

 𝑑𝑝𝑑𝑟 = 2𝜔𝑤(𝜌𝑟𝑑𝜗𝑑𝑟)  (1.13) 
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where 2𝜔𝑤 is the Coriolis acceleration while 𝜌𝑟𝑑𝜗𝑑𝑟 is the mass of the fluid element per 

unit of depth (z). 

If the flow is assumed incompressible (𝜌 = 𝑐𝑜𝑠𝑡.) and the viscosity is neglected, the 

relative total pressure is constant (𝑑(𝑝0𝑟𝑒𝑙 𝜌⁄ ) = −𝑑𝐿𝑎 = 0) according to the energy 

equation in mechanical form written for the relative reference. The relative total pressure 

𝑝0𝑟𝑒𝑙 = 𝑝 + 1 2⁄ 𝜌𝑤2 − 1 2⁄ 𝜌𝑢2 is defined with respect to 𝜗 as follows: 

 1

𝜌

𝜕𝑝

𝜕𝜗
= −𝑤

𝜕𝑤

𝜕𝜗
 (1.14) 

From the combination of suitably simplified equations (1.13) and (1.14) it is possible to 

obtain the relative speed gradient in circumferential direction: 

 𝜕𝑤

𝜕𝜗
= −2𝜔𝑟 (1.15) 

Therefore the relative velocity is not uniform across the inter-blade channel, decreasing in 

rotation direction (𝜕𝜗 > 0): 

 𝑤𝑃.𝑆. = �̅� − 1 2⁄ (Δ𝑤) = �̅� − 𝜔𝑟Δ𝜗  (1.16) 

 𝑤𝑆.𝑆. = �̅� + 1 2⁄ (Δ𝑤) = �̅� + 𝜔𝑟Δ𝜗 (1.17) 

where �̅� is the average relative flow velocity and Δ𝜗 = 2𝜋 𝑧𝑏⁄  represents the angular 

opening between two consequent impeller blades (𝑧𝑏 is the number of rotor blades). 

 

Fig. 1.9 - Relative speed contours on a rotor cross section – impeller back view 
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Fig. 1.10 – (a) Flow streamlines at rotor inlet. (b) Flow velocity diagram averaged along 

the pitch [10] 

 

In Fig. 1.10 the relative velocity vector enters the rotor with an angle 𝛽2 ≠ 0  and if the 

blade metal angle (𝛽𝑐2) is zero, the flow has a positive incidence on the rotor equal to 𝛽2; 

depending on the number of impeller blades this angle can vary between -20° and -40° 

(minus sign because opposite to the rotation direction). 

 

Whitfield and Baines [6] have defined an ‘incidence factor’ λ, with a meaning similar to 

the ‘slip factor’ used in centrifugal compressors, namely: 

 λ =  
𝑐𝜃2 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒

𝑐𝜃2 𝑖𝑑𝑒𝑎𝑙
=

𝑐𝜃2 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒

𝑢2
 (1.18) 

where "ideal" stands for cases with no slip effect, i.e. with 𝑤𝜃2 = 0 (as shown in Fig. 1.7). 

In order to determine the relative flow angle at rotor inlet the most practical and rapid use 

correlation for non-viscous 2D flow is the Stanitz [11] correlation: 

 
λ = 1 −  

0,63𝜋

𝑧𝑏
≈ 1 −

2

𝑧𝑏
 (1.19) 

From equation (1.19) it is therefore clear that the optimal incidence (𝛽2) on the rotor 

depends on the number of blades: 

 
𝛽2 = tan−1 [

𝑤𝜃2

𝑤𝑚2
] = tan−1 [

𝑐𝜃2 − 𝑢2

𝑤𝑚2
] = tan−1 [

− (2 𝑧𝑏)⁄ 𝑢2

𝑐𝑚2
] (1.20) 

The minus sign at numerator inside the square brackets is due to the convention: the flow 

angles measured in opposite direction to the peripheral speed are negative. From last 

equation stems that to determine 𝛽2 it is necessary to know at least the flow coefficient 

𝜑2 = 𝑐𝑚2 𝑢2⁄  and the number of blades 𝑧𝑏. 

In addition, equation (1.20) highlights that the slip effect is lower if the blades number 

raises (λ → 1). However, especially for small rotors, the blades number cannot be 

increased too much: otherwise the flow blockage effect would be excessive at the impeller 

outlet and the wheel inertia would grow, amplifying the well-known ‘turbolag’ problem 
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(common issue in turbocharging setups). Finally, a large number of blades produces a 

greater wetted surface, hence a negative increase in friction losses. 

In the context of a radial turbine ideal design, the absolute speed is required to be mainly 

axial and small in absolute value at rotor outlet. This is due to the fact that the associated 

kinetic energy would be lost if the flow is not effectively diffused (in some installations 

this may not be possible).  

Supposing that the meridian component of the flow speed at the exit (𝑐𝑚3) is constant 

along the radius and there is no swirl (𝑐𝜃3 = 0), since the peripheral speed at blade trailing 

edge varies proportionally with the radius (while the leading edge is located entirely at the 

same radius 𝑟2), the blade metal angle at rotor exit can be calculated along the span from: 

 𝑟3 𝛽𝑐3⁄ = 𝑐𝑜𝑠𝑡 (1.21) 

Fig. 1.11 – Hub (‘h’ subscript) and shroud (‘s’ subscript) speed triangles at rotor exit [6] 

 

From Fig. 1.11 it can be noted that both the degree of deflection and the relative speed are 

greater near the blade tip than close to the root. With regard to the relative flow angle at 

impeller exit (𝛽3 = 𝑡𝑎𝑛( 𝑤𝜃3 𝑤𝑚3⁄ ), values between -55° and -75° are usual. 

If the application of the turbine is such that the flow velocity at rotor exit can be effectively 

diffused, a smaller relative flow angle is advisable, in order to have a higher meridian 

component of the speed (𝑤𝑚3 = 𝑐𝑚3) and reduce kinetic energy losses. Otherwise, if an 

effective diffusion is not possible, it is better to minimize exit losses by reducing the 

meridian component, which implies a greater relative flow deflection. 

 

1.2.3. Diffuser 

The main task of the diffuser downstream of the wheel is to recover the residual kinetic 

energy at impeller exit, which would otherwise be lost. This component allows the turbine 

rotor to take advantage of a final pressure recovery up to the tailpipe discharge pressure 

(generally close to atmospheric value). In this way, compared to the case without diffuser, 

the pressure at rotor exit can be further decreased, ensuring a greater rotor enthalpy drop 

and therefore a higher extraction of specific work. The advantages deriving from the use of 

a diffuser can be quite significant, particularly where the rotor outlet diameter must be 

made smaller than what is fluid-dynamically advisable, for example in order to reduce the 
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rotating inertia or the stress at the blade root due to the centrifugal force (𝐹𝑐𝑒𝑛𝑡𝑟𝑖𝑓𝑢𝑔𝑎𝑙 =

𝑚𝑟𝜔2), which grows linearly with the distance from the rotation axis.  

The diffuser has generally a conical or annular geometry (see Fig. 1.12) and can have 

straight or shaped walls, depending on the installation and efficiency requirements. The 

performance of a diffuser is essentially a function of: 

• geometric parameters: 𝐴𝑅 = 𝐴4 𝐴3⁄  (area ratio), 𝛿 (half-opening angle), 𝑙 𝐷3⁄  for 

conical diffusers (length to inlet diameter ratio), 𝑙 ̅ 𝑏3⁄  for annular diffusers (where 

𝑙 ̅ = (𝑙𝑜 + 𝑙𝑖)/2); 

• inlet fluid properties: speed profile, rotor outlet swirl angle (𝛼3), blockage factor 

due to the boundary layer, Mach and Reynolds numbers, turbulence intensity. 

Fig. 1.12 – Diffuser types for a radial turbine: I) conical ; II) annular [6] 

 

The diffuser performance parameters are essentially two: 

• static pressure recovery 𝐶𝑝 = (𝑝4 − 𝑝3) (1 2⁄ 𝜌𝑐3
2⁄ ); 

• total pressure drop  π𝑑 = 𝑝04 𝑝03⁄ . 

Sovran and Klomp [12] design diagrams (see Fig. 1.13) link diffuser performance with its 

geometric parameters: constant 𝐶𝑝 lines are plotted over the borderlines 𝐶𝑝
∗ e 𝐶𝑝

∗∗ which 

in turn identify, for a given length ratio (𝑙 𝐷3⁄ ) or area ratio (𝐴𝑅) respectively, the 

maximum static pressure recovery coefficient without diffuser stall. 

Fig. 1.13 – Contour plots of the static pressure recovery in a conical diffuser [12] 
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The flow in an annular diffuser can be divided into two areas: the main stream and the 

boundary layer near the walls. In the conical diffusers instead there is a third zone, i.e. the 

low momentum core located at the diffuser meanline, just downstream the rotor fixing nut. 

Fig. 1.14 – Main flow regions in a conical diffuser 

 

The diffuser performance is roughly determined by the efficiency in controlling the growth 

of the boundary layer on the walls and for this reason some velocity, swirl or turbulence 

profiles can bring a benefit if they carry momentum inside the boundary layer.  

In real turbines operation, flow non-uniformities or distortions of the speed profile on the 

inlet and outlet section of the diffuser can remarkably reduce the pressure recovery ideally 

achievable. Assuming the fluid as incompressible and using the continuity and energy 

equations between sections ‘3’ and ‘4’ (diffuser inlet and outlet respectively), through a 

sequence of steps omitted here for brevity, it is possible to derive the ‘ideal’ pressure 

recovery coefficient (𝐶𝑝 𝑖𝑑) in case of non-uniform flow: 

 𝐶𝑝 𝑖𝑑 = 𝜒3 − 𝜒4

1

AR2
 (1.22) 

 𝜒 =
1

A
∫ (

𝑐

𝑐̅
)

3

𝑑𝐴 (1.23) 

where 𝜒 is the “kinetic energy flux coefficient” [10] of the velocity profile, calculated 

through equation (1.23) with the flow average velocity on the control section (𝑐̅ ). 
If the flow is uniform 𝜒 = 1, otherwise 𝜒 > 1; generally 𝜒3 = 1 is a good approximation 

because the boundary layer is very small at diffuser inlet, while at the outlet the higher 𝜒4 

is, the lower the pressure recovery ideally obtainable by the diffuser will be. 

 

1.3. Twin scroll radial turbines 

Previous paragraph summarizes some general information on radial turbines; the 

discussion turns now to the specific case of twin entry turbines. The volute divided in two 
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different scrolls or ‘branches’ is an interesting solution to preserve exhaust gas energy and 

ease engine cylinders charge replacement. Despite the engine manufacturers growing 

interest towards twin scroll IFR turbines, there are few research centers that support and 

study the development of this kind of turbomachinery. Flow investigations on twin entry 

volutes need a careful analysis of fluid dynamic phenomena occurring within such type of 

component. In fact, during the operation of an ICE, turbine feeding is discontinuous and 

consequently the flow distribution inside the two scrolls of the volute varies frequently.  

 

1.3.1. Admission conditions classification 

As a consequence of the division of the volute in two limbs, a twin scroll turbine has 

several combinations of admission conditions (see Tab. 1.1 below). In order to identify 

these ‘states’, it is useful to introduce the admission ratio λ [4], defined as: 

 𝜆 =  
�̇�ℎ𝑢𝑏

�̇�ℎ𝑢𝑏 + �̇�𝑠ℎ𝑟𝑜𝑢𝑑
 (1.24) 

where each of the two branches is denoted on the basis that it is located on the hub or 

shroud side of the rotor with respect to the divider wall (see Fig. 1.15). 

 

Tab. 1.1 – Combinations of admission conditions for a twin scroll turbine [4] 

Case λ Hub scroll Shroud scroll 

a λ<0.0 Back flow Full flow 

b λ=0.0 Zero flow Full flow 

c 0.0< λ<0.5 Lower flow Higher flow 

d λ=0.5 Equal flow Equal flow 

e 0.5< λ<1.0 Higher flow Lower flow 

f λ=1.0 Full flow Zero flow 

g λ>1.0 Full flow Back flow 

 

 

Fig. 1.15 – Flow admission conditions of a twin scroll turbine [4,13] – ref. Tab. 1.1 
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It is possible to collect the above mentioned operating conditions under three main cases: 

➢ ‘full’ or ‘equal’ refers to the case in which both volute branches are fed and crossed 

approximately by the same mass flow rate (exception for small differences due to 

the asymmetry of the two sectors); 

➢ ‘unequal’ describes the most usual operating conditions of the turbine coupled to 

the internal combustion engine, when the individual pressure pulsations that pass 

through the two volute branches arrive at the turbine out of phase. This is an 

unavoidable phenomenon in pulse turbocharging, dictated by the cylinders firing 

sequence and their grouping in engine manifolds as described in paragraph 1.1; 

➢ ‘partial’ instead identifies the extreme case of unequal admission in which there’s 

zero mass flow in one of the two branches. 

 

1.3.2. Twin scroll turbines main performance parameters 

The following list collects the fluid dynamic parameters commonly used for the description 

of the performance of a twin scroll turbine: 

▪ mass flow parameter (MFP) is a pseudo-dimensionless parameter which is used to 

calculate the swallowing capacity of the turbine: 

 

 
𝑀𝐹𝑃𝑡𝑤𝑖𝑛 𝑒𝑛𝑡𝑟𝑦 = �̇�𝑡𝑜𝑡

√𝑀𝐹𝑅𝑠ℎ𝑇01 𝑠ℎ + 𝑀𝐹𝑅ℎ𝑢𝑏𝑇01 ℎ𝑢𝑏

𝑝01 𝑠ℎ + 𝑝01 ℎ𝑢𝑏

2

 (1.25) 

where �̇�𝑡𝑜𝑡 = �̇�𝑠ℎ + �̇�ℎ𝑢𝑏 and 𝑀𝐹𝑅𝑖 = �̇�𝑖 �̇�𝑡𝑜𝑡⁄  is the ratio between the mass flow 

passing through the ‘i-th’ scroll and the overall mass flow processed by the turbine. 

From the energy equation, the stagnation temperature is calculated considering the 

contribution of each limb on the overall flow capacity. It is noteworthy to consider that 

if the inlet total temperatures of the two branches are the same (𝑇01 𝑠ℎ = 𝑇01 ℎ𝑢𝑏) and 

the mass flow rate that feeds the two entries is similar (�̇�𝑠ℎ ≈ �̇�ℎ𝑢𝑏), the equation 

(1.25) can be simplified to the standard mass flow parameter definition: 

 

 
𝑀𝐹𝑃 = �̇�√𝑇01 𝑝01⁄  (1.26) 

▪ pressure ratio flow (PRF - or total to static expansion ratio) represents the ratio between 

the volute inlet total pressure and the turbine tailpipe outlet static pressure. For a twin 

entry turbine, the PRF corresponds to an area average value of the pressure ratios 

related to the two scrolls (if the turbine outlet static pressure is the same for the two 

branches, the inlet total pressure is different). Denoting the volute inlet section with ‘1’ 

and the tailpipe outlet section with ‘4’: 

 

 
𝑃𝑅𝐹𝑡𝑤𝑖𝑛 𝑒𝑛𝑡𝑟𝑦 =

𝐴1 𝑠ℎ

𝐴𝑡𝑜𝑡

𝑝01 𝑠ℎ

𝑝4
+  

𝐴1 ℎ𝑢𝑏

𝐴𝑡𝑜𝑡

𝑝01 ℎ𝑢𝑏

𝑝4
 (1.27) 

If, as often occurs, the inlet section of each of the two manifolds that feed the volute 

branches is equal (𝐴1 𝑠ℎ = 𝐴1 ℎ𝑢𝑏) the definition (1.27) is simplified into: 

 

 
𝑃𝑅𝐹𝑡𝑤𝑖𝑛 𝑒𝑛𝑡𝑟𝑦 = (𝑝01 𝑠ℎ + 𝑝01 ℎ𝑢𝑏)/(2𝑝4 ) (1.28) 
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▪ ‘both’ volute inlet total pressure, a parameter used for volute losses assessment and 

efficiency evaluation: 

 

 𝑝01 𝑏𝑜𝑡ℎ = [
𝑀𝐹𝑅ℎ𝑢𝑏𝑇01 ℎ𝑢𝑏

𝑇01 𝑏𝑜𝑡ℎ

(𝑝01 ℎ𝑢𝑏)
1−𝑘

𝑘 +
𝑀𝐹𝑅𝑠ℎ𝑇01 𝑠ℎ

𝑇01 𝑏𝑜𝑡ℎ

(𝑝01 𝑠ℎ)
1−𝑘

𝑘 ]

𝑘
1−𝑘

 (1.29) 

where 𝑇01 𝑏𝑜𝑡ℎ is an average of the two inlet total temperatures. If the difference 

between 𝑇01 𝑠ℎ and 𝑇01 ℎ𝑢𝑏 is neglected, the following formulation may be derived: 

 

 𝑝01 𝑏𝑜𝑡ℎ = [𝑀𝐹𝑅ℎ𝑢𝑏(𝑝01 ℎ𝑢𝑏)
1−𝑘

𝑘 + 𝑀𝐹𝑅𝑠ℎ(𝑝01 𝑠ℎ𝑟𝑜𝑢𝑑)
1−𝑘

𝑘 ]

𝑘
1−𝑘

 (1.30) 

▪ reduced speed, i.e. the ratio between the turbo rotational speed and the square root of 

the exhaust gas total temperature at volute inlet: 

 

 
𝑁𝑟𝑖𝑑 = 𝑁/√𝑇01 (1.31) 

▪ total to static efficiency, i.e. the ratio between the actual total enthalpy drop (ℎ01 − ℎ04) 

and the total to static enthalpy variation in case of isentropic transformation: 

 

 
𝜂𝑡𝑠 =

ℎ01 − ℎ04

ℎ01 − ℎ4𝑠𝑠
=  

1 −
𝑇04

𝑇01

[1 − (
𝑝4

𝑝01 𝑏𝑜𝑡ℎ
)

(𝑘−1) 𝑘⁄

]

 

 

(1.32) 

Fig. 1.16 – Mollier diagram for an IFR turbine with diffuser (at the design point) [10] 
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▪ total to total efficiency, defined as 𝜂𝑡𝑠 but replacing the ‘total to static’ expansion ratio 

(휀𝑡𝑠 = 𝑝01 𝑏𝑜𝑡ℎ 𝑝4⁄ ) with the ‘total to total’ one (휀𝑡𝑡 = 𝑝01 𝑏𝑜𝑡ℎ 𝑝04⁄ ): 

 

 
𝜂𝑡𝑡 =  

1 −
𝑇04

𝑇01

[1 − (
𝑝04

𝑝01 𝑏𝑜𝑡ℎ
)

(𝑘−1) 𝑘⁄

]

 

 

(1.33) 

 

1.3.3. Twin scroll turbines performance in unbalanced admission conditions 

Twin entry turbochargers usually exhibit an imbalance of flow conditions between the two 

entries which is caused by the engine cylinders firing sequence. In 1.3.1 three main 

admission cases have been identified: equal, unequal and partial; however, it must be 

considered that the partial admission condition is difficult to take place under normal 

engine operating conditions. Even in the extreme case when the flow in one scroll drops to 

zero and backflow might occur in the other, the remaining flow is distributed by the volute 

around the entire periphery of the rotor. Nevertheless the importance of partial admission 

conditions becomes clear when it is necessary to evaluate fluid dynamic losses and 

translate these into the real pulsating operation of the turbocharger coupled with the ICE. 

Baines et al. [14] measured the performance of a vaneless twin entry radial turbine under 

full and partial admission conditions. The results of these investigations showed that if one 

of the volute inlets is completely closed, large recirculations from one branch of the volute 

to the other are detectable, with consequent penalties in terms of efficiency. These 

evidences indicate that a remarkable portion of entry loss in case of unbalanced admission 

is represented by incidence losses in the twin-scroll flow housing. 

Other researchers [5] studied in detail the direction of the flow at volute branches exit in 

partial admission: by plotting velocity vectors on a volute cross cut, it was noted that, in 

addition to back flow in the unpowered branch, the mixing of the streams coming from the 

two limbs occurs downstream of the divider septum in a decentralized position towards the 

no flow entry side of the volute. 

 

Turbocharged power unit manufacturers often devote significant investments in the 

development of turbine behaviour predictive models to optimize the coupling with the 

engine. In this context the study of partial admission conditions reveals to be particularly 

useful in software set up where twin entry turbines modelling can be improved by a 

calibration procedure which includes the partial admission case besides the full. 

The results of the experimental tests on twin entry turbines discussed by Romagnoli in his 

PhD thesis [15] suggest that the MFP definition  previously provided in equation (1.25) 

seems to work in equal and unequal admission conditions, but not in partial admission. As 

visible in Fig. 1.17, the problem lies in considering the partial admission mass flow rate as 

half the full admission one, assimilating the twin entry turbine to an half-size single entry 

(light blue dots), without accounting for the existing interactions between the two 

branches. Although in partial admission there’s no exhaust gas mass flow at one inlet of 

the volute, stagnant air at near atmospheric pressure is still present within the no flow 

branch. Consequently Romagnoli et al. [16] assumed that in partial admission both the 

mass flow rate and inlet total pressure of the open limb are equal to half the corresponding 

quantities in equal admission and atmospheric pressure is present in the stagnant scroll, 

leading to a new MFP formulation (see the black line in Fig. 1.17).  
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Labels “inner open” and “outer open” in  Fig. 1.17 refer to the condition in which the outer 

or inner limb is blanked-off respectively (“inner” or “outer” relates instead to the position 

of the volute branch within the test-rig). 

Fig. 1.17 – Improved mass flow prediction in partial admission [15] 
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 (1.34) 

 

The interest is now shifted towards unequal admission conditions, which, as mentioned, 

characterize the normal functioning of the turbine coupled to the ICE. Unlike what was 

observed for partial admission, the unequal admission condition generally presents flow 

capacity similar to that in full admission: this suggests that in unequal admission the flows 

leaving the two branches of the volute are in favourable conditions to expand in the turbine 

stage, similarly to what happens in equal admission.  

Fig. 1.18 – Total pressure on various twin scroll volute cross sections (left); enlarged view 

of the mixing region with marked recirculation in the no flow limb (right) 
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When one of the volute inlets is completely closed (partial admission), the incoming flow 

from the other side expands into a low pressure region (almost atmospheric), causing a 

detrimental axial distribution of the absolute velocity and flow angle at rotor inlet. The 

flow tends to migrate from one branch to the other, causing a remarkable recirculation (see 

Fig. 1.18) or even backflow, which leads to a flow coefficient drop.  

In unequal admission even if a small amount of the overall mass flow rate passes through 

one volute branch (“lower flow” condition – see cases ‘c’ and ‘e’ in Tab. 1.1), this turns 

out to be sufficient to prevent any flow recirculation. The results similarity between equal 

and unequal admission suggests that a common pattern can be found between the overall 

mass flow and that one passing through the individual branches. 

 

In the steady experimental tests led by Romagnoli [15] the unequal admission conditions 

were obtained by keeping the pressure ratio constant in one branch (therefore called 

"constant pressure limb") and leaving the other free to vary ("free flow limb") with the 

purpose of matching the required operating condition.  

 Comparing the mass flow curves under unequal admission with those of the so-called 

“free flow limb”, it can be noted that the shape of the trends is almost the same, but the 

mass flow in the free flow limb covers a wider range of pressure ratios (see Fig. 1.19).  

Fig. 1.19 - Overall and free flow limb mass flow parameter in unequal admission. The 

outer limb pressure ratio is kept constant [15] 

 

Observing previous equation (1.27) it is clear that if the pressure ratio in one branch (e.g. 

the outer or shroud branch) is kept constant, the ‘overall’ PR shifts towards higher or lower 

values than those of the ‘free flow’ PR depending on whether the pressure ratio in the free 

flow limb is lower or higher than that one in the constant pressure limb (see Fig. 1.19); this 

forces the MFP in unequal admission conditions to vary in a narrow pressure ratios range, 

while maintaining trend and values very similar to those measured in full admission. 
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Is there a correlation between the mass flow in unequal admission and that in the free flow 

limb (computed by equation (1.26))? In order to check this, Romagnoli et al. [16] 

calculated the ratios between the corresponding Mass Flow Parameter and Pressure Ratio, 

leading to the definition of two dimensionless parameters called respectively Mass Flow 

Parameter Ratio (𝑀𝐹𝑃𝑅) and Unequal Expansion Ratio (𝐸𝑅𝑈). 
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(1.35) 

where ‘const’ subscript in equations (1.35) and (1.36) stands for “constant pressure limb”. 

 𝐸𝑅𝑈 =  
𝑃𝑅𝑢𝑛

𝑃𝑅𝑓𝑟𝑒𝑒 𝑓𝑙𝑜𝑤
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 (1.36) 

 

Fig. 1.20 - Mass flow parameter ratio as a function of the unequal expansion ratio [15]  

 

Romagnoli [15] plotted the experimental data according to these new parameters (𝑀𝐹𝑃𝑅 

and 𝐸𝑅𝑈), discovering that for each scroll (outer/inner) all the measured points can be 

regressed through a unique curve (black line in Fig. 1.20), which is speed and pressure 

ratio independent. This relevant result suggested to the scientific community that a single 

power trend correlation exists between the mass flow parameter in unequal admission 

(𝑀𝐹𝑃𝑢𝑛𝑒𝑞𝑢𝑎𝑙) and that calculated in the free flow scroll (𝑀𝐹𝑃𝑓𝑟𝑒𝑒 𝑓𝑙𝑜𝑤), as in the following 

equation (1.37). 
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 𝑀𝐹𝑃𝑅 =
𝑀𝐹𝑃𝑢𝑛𝑒𝑞𝑢𝑎𝑙

𝑀𝐹𝑃𝑓𝑟𝑒𝑒 𝑓𝑙𝑜𝑤
= 𝐴(𝐸𝑅𝑈)𝐵 (1.37) 

The similarity previously observed between the unequal and full admission mass flow 

trends supported the assumption that the 𝑀𝐹𝑃𝑅 in equation (1.37) was comparable with the 

ratio between the full admission mass flow and that passing through the free flow limb: 
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(1.38) 

where 𝑇0,𝑓𝑢𝑙𝑙 = 𝑇0,𝑓𝑟𝑒𝑒 𝑓𝑙𝑜𝑤 and the term (𝑝0,𝑓𝑟𝑒𝑒 𝑓𝑙𝑜𝑤 𝑝0,𝑓𝑢𝑙𝑙⁄ ) corresponds to the inverse 

of the unequal pressure ratio. 

By substituting the equation (1.37) in (1.38), Romagnoli et al. [16] finally derived the 

relationship which correlates the volute branch mass flow in unequal admission with the 

corresponding one in full admission. The mass flow through each scroll is therefore 

uniquely identified for a given value of the total pressure in the scroll itself: 
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(1.39) 

 

 

This paragraph led to the classification of the different admission conditions which 

characterize twin scroll turbines functioning and to the identification of the main figures of 

merit capable of quantifying their performance.  

Section 1.3.3, on the other hand, showed the reader some interesting literature results on 

the behaviour of twin entry turbines in unbalanced admission conditions, which can be 

correlated to full admission maps by introducing ad hoc parameters. Twin entry turbine 

modelling remains an open field of research. 
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Chapter 2  
 

 

 

Uncertainty quantification in CFD: 

a new engineering test bench 
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Over the past three decades, computer simulation tools have achieved widespread use in 

the design and analysis of engineering devices. This shortened the overall product design 

cycle (physical experiments may be impossible during early design stages) and also 

provided better understanding of the operating behaviour of the systems under 

investigation. As a consequence, numerical simulation led to a reduction of physical 

prototyping and to lower costs for manufacturing production chains. 

Despite this success, it remains difficult to provide objective confidence levels in 

quantitative information derived from numerical predictions. The complexity arises from 

the amount of uncertainties related to the inputs of any computation attempting to represent 

a physical system. As a result, especially in the area of reliability and safety, physical 

testing remains the dominant certification mechanism of new devices.  

 

One of the key aspects in Computational Fluid Dynamics is the level of confidence of 

numerical results, boundary conditions, physical properties or model parameters, as they 

contains numerical errors and uncertainties. Thus, the understanding and quantification of 

these errors is a critical aspect in order to provide the uncertainty level of the CFD results. 

In the next future rigorous quantification of the errors and uncertainties introduced in 

numerical simulations will be required to establish objectively their predictive capabilities. 

The U.S. Department of Energy provided a general definition for the Uncertainty 

Quantification (UQ): 

“UQ  studies all sources of error and uncertainty, including the following: systematic and 

stochastic measurement error; ignorance; limitations of theoretical models; limitations of 

numerical representations of those models; limitations of the accuracy and reliability of 

computations, approximations, and algorithms; and human error. A more precise 

definition is UQ is the end-to-end study of the reliability of scientific inferences” [17]. 

 

Procedures to establish the quality of numerical simulations have been organized within 

the framework of ‘Verification and Validation’ (V&V) activities. It is possible to 

distinguish: 

• ‘Verification’ is a mathematical process that aims at answering the question: “are we 

solving the equations correctly?”. Thus the objective is to quantify the errors 

associated to the algorithms used to obtain the solution of the governing equations; 

• ‘Validation’ on the other hand points at answering the question: “are we solving the 

correct equations?”. Then in this second case the goal is to identify the appropriateness 

of the selected mathematical/physical formulation to represent the device to be 

analyzed.  

Validation always involves comparisons of the numerical predictions to reality, whereas 

verification only involves numerical analysis and tests. There’s a growing recognition of 

the fact that validation cannot be carried out without explicitly accounting for the 

uncertainties present in both the measurements and the computations. Experimentalists are 

typically required to report uncertainty bars to clearly identify the repeatability and the 

errors associated to the measurements. Validation must be carried out by acknowledging 

the nature of the experimental uncertainties and providing a similar indication for the 

computational error bars. 
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As a general conclusion of this introduction, uncertainty quantification has two main goals: 

1) the construction of a framework to estimate the error bars associated with given 

predictions; 

2) the evaluation of the likelihood of a certain outcome [18]; this obviously leads to better 

understanding of risks and improves the decision making process. 

 

2.1. Uncertainty characterization 

Fig. 2.1 – Errors and uncertainties definitions [19] 

The American Institute of Aeronautics and Astronautics (AIAA) guidelines [20] clearly 

distinguished: 

◆ ‘Uncertainty’ is a potential deficiency in any phase or activity of the modelling 

process that is due to the lack of knowledge; 

◆ ‘Error’ is a recognizable deficiency in any phase or activity of the modelling 

process that is not due to the lack of knowledge. 

This definition is not completely satisfactory as it does not precisely discriminate between 

mathematics and physics.  
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It is more useful to define errors as associated to the translation of a mathematical 

formulation into a numerical algorithm (and a computational code). Usually errors are 

further classified in two categories:  

• ‘acknowledged’ errors, that are known to be present but their effect on the results is 

deemed negligible. Examples are round-off errors and limited convergence of 

certain iterative algorithms; 

• ‘unacknowledged’ errors (which could be considered “uncertainties” according 

AIAA definition) on the other hand are not recognizable but might be present; 

implementation mistakes (bugs) or usage errors can only be characterized by 

verification tests and procedures. 

Using the present definition of errors, the uncertainties are naturally associated with the 

choice of the physical models and the specification of the input parameters required for 

performing the analysis. As an example, numerical simulations require the exact 

specification of boundary conditions and typically only limited information are available 

from corresponding experiments and observations; variability or incompleteness in this 

information introduce uncertainties in the numerical simulations. 

 

In order to meet the pragmatic point of view of the industrial user and make easier the 

management of each uncertainty class by the software developer, the ‘source’ of 

uncertainty lead to a distinction in three main categories of uncertainty: 

1) operational, related to operating conditions issues; 

2) geometrical, associated to the system geometry, like geometrical tolerance due to 

the system manufacturing process; 

3) numerical, connected to modelling issues and numerical errors. 

A more precise characterization is based on the distinction between two uncertainty types: 

➢ ‘aleatory’ (from the Latin “alea”, meaning a die) refers to uncertainty about an 

inherently variable phenomenon. Uncertainties can be defined aleatory if linked to the 

intrinsic physical variability of the system or its environment (material properties, 

manufacturing tolerances, boundary conditions etc.). These stochastic uncertainties are 

not strictly due to lack of knowledge and cannot be removed completely; naturally this 

kind of uncertainty is often defined in probabilistic framework.  

The previous instance of specifying the boundary conditions in a CFD simulation is a 

classic example of an aleatory uncertainty. The information required for the numerical 

simulations should be inferred from observation of the system of interest or specific 

experiments. Given the limited degree of repeatability of experimental measurements 

and the errors associated to measurement techniques, these quantities are known with a 

certain degree of uncertainty, typically specified as an interval, 𝑥 ± 𝑢%. Probabilistic 

approaches treat these quantities, that overall characterize the aleatory uncertainty, as 

random variables assuming values within specified intervals. In mathematical terms 

this corresponds to the definition of random variables with a specified probability 

distribution function (PDF). In the context of probabilistic approaches, the goal of 

uncertainty characterization is therefore to define PDFs of each input quantity used in 

the computational tool. Once the PDFs are defined, the uncertainties can be propagated 

through the mathematical model and the overall output uncertainty may be determined. 

The challenge of justifying the choice of a specific analytic distribution (Gaussian, 

uniform, beta, etc.) basing it solely on experimental data is tricky because of the 

limited amount of data typically available [21]. Different choices regarding the 

definition of input distributions can lead to ambiguous or conflicting estimates. 
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➢ ‘epistemic’ (from the Greek “ἐπιστήμη”, meaning knowledge) refers to uncertainty 

arising from lack of knowledge (as indicated in the AIAA Guide [20]). Uncertainties 

may be denoted as ‘epistemic’ if they are reducible and associated with assumptions 

introduced in the derivation of the mathematical model used or deriving from 

simplifications related to the correlation or dependence between physical processes.  

It is possible to reduce the epistemic uncertainty by using, for example, a combination 

of calibration, inference from experimental observations and improvement of the 

physical models. Epistemic uncertainty is not well characterized by probabilistic 

approaches because it might be difficult to deduce any statistical information due to the 

nominal lack of knowledge. The important consequence is that epistemic uncertainties 

have a fixed, but poorly known, value in the analysis; for instance the turbulent 

viscosity in a CFD simulation is known to be subject to the many assumptions 

associated with the turbulence model selection. Numerical errors induced, for example, 

by an incorrect discretization of the computational grid or by an unsuitable turbulence 

model are not intrinsic errors of the system under examination, but are linked to its 

incorrect modelling.  

 

In conclusion, the epistemic uncertainties of a mathematical model represents the level of 

uncertainty in reproducing the real system, while the aleatory uncertainties are a strict 

property of the system being analyzed. This distinction is not always clear since lack of 

knowledge is relative and depends on current theory and experimental capabilities. One of 

the targets of uncertainty quantification is to reformulate epistemic uncertainties as 

aleatory uncertainties where the probabilistic analysis is applicable. 

 

2.2. Sensitivity vs. Uncertainty analysis 

Sensitivity analysis (SA) investigates the connection between inputs and outputs of a 

computational model; more specifically, it allows to identify how the variability in an 

output quantity of interest is connected to a model input and which input sources dominate 

the response of the system. On the other hand, Uncertainty quantification (UQ) aims at 

identifying the overall output uncertainty in a given system.  

The main difference is therefore that SA does not require input data uncertainty 

characterization from a real device; it can be conducted purely based on the mathematical 

form of the model. As a consequence, large sensitivities of the output (identified through 

SA) do not necessarily translate in significant uncertainties because the input uncertainty 

might be very small in a device of interest. 

Sensitivity analysis can be intended as understanding how a generic output function f (x1, 

..., xn) depends on variations not only in xi individually, but also on combined or correlated 

effects among xi. There are two main classes of SA: 

➢ ‘local’ sensitivity studies the sensitivity of f to changes in its inputs at or near a 

particular base point, as exemplified by the computation of derivatives; 

➢ ‘global’ sensitivity deals with the "average" sensitivity of f to changes in its inputs 

in the domain of definition of the output function. 

SA is often based on the concept of the gradient of the output of interest with respect to 

input variables. The overall sensitivity is then evaluated using a Taylor series expansion, 

that, to first order, would be equal to a linear relationship between inputs and outputs.  

The uncertainty quantification (UQ) is somewhat related to the sensitivity analysis since 

the common goal is to obtain an understanding on how input parameters variations can 

affect the response functions of any engineering design problem. 
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However for the UQ some (or all) components of the input parameters vector are 

considered 'uncertain' as specified by a particular probability distribution (e.g. normal, 

exponential, etc.). By assigning specific probability density functions (PDF) to the inputs, 

it is possible to deduce the distribution structure for the outputs (i.e. the response statistics). 

This distinguishes the sensitivity analysis, which is more qualitative in nature, from the UQ 

which is instead a more strictly quantitative analysis. 

Uncertainty quantification is therefore the process that involves: 

(1) the characterization of input uncertainties; 

(2) the propagation of these uncertainties through a computational model; 

(3) the determination of the response functions statistics. 

 

2.3. Fundamental theoretical prerequisites to perform UQ 

Computer simulations of an engineering device are performed following a series of steps: 

1. initially the system of interest and related performance measures are defined. Then the 

geometrical characterization of the device, its operating conditions and the physical 

processes involved are identified and their relative importance must be quantified. The 

definition of the system response of interest is a fundamental aspect of this phase;  

2. next step is the formulation of a mathematical representation of the system. It is 

necessary to define the governing equations and the phenomenological models required 

to capture the relevant physical processes; in addition, the precise geometrical 

definition of the device is presented.  This step introduces simplification with respect to 

the real system: for example, small geometrical components are eliminated, or artificial 

boundaries are introduced to reduce the scope of the analysis; 

3. after that, a discretized representation of the system has to be formulated: numerical 

methods are developed to convert the continuous form of the governing equations into 

an algorithm which produces the solution. This phase typically requires, for example, 

the generation of the computational grid, which acts as a sort of ‘filter’ of the physical 

domain, providing the basis for the approximation of the calculated variables (and the 

discretization of the governing equations); 

4. finally the numerical analysis can be carried out.  

The introduction of uncertainty in numerical simulations does not affect the structure of the 

above process, but involves considerable complexity in each phase. 

 

A possible scheme to perform UQ analyses on CFD simulations is proposed in Fig. 2.2 

(this approach was used for the UQ applications presented in chapters 5 and 6) and the 

different workflow stages will be treated in more detail in the following sections. 

 

 

Fig. 2.2 – Workflow for the Surrogate-Based UQ approach 
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2.3.1. Design of experiments: Latin hypercube sampling 

The main target of the first phase (I. in Fig. 2.2) is to collect the maximum amount of 

information about the analyzed system inside the region of interest (space of variation of 

the input variables). In particular it is required to use the minimum amount of resources to: 

• understand how much the input variables affect the system under investigation; 

• reshape the design space for further sampling (if needed); 

• provide the information necessary for the generation of a response surface. 

 

Classical ‘Design of Experiments’ (DoE) methods and the more modern ‘Design and 

Analysis of Computer Experiments’ (DACE) methods are both techniques which aim to 

extract as much trend data from a parametric space as possible, using a limited number of 

samples. Classical DoE techniques derived from technical disciplines that assumed some 

randomness and non-repeatability in field experiments (e.g., agricultural yield, 

experimental chemistry). DoE approaches such as central composite design, Box-Behnken 

design, and full and fractional factorial design generally place sampling points at the ends 

of the parametric space, as these designs offer more reliable trend extraction in the event of 

non-repeatability. DACE methods are different from DoE methods because the non-

repeatability component may be omitted as computer simulations are involved. In these 

cases, space filling designs like orthogonal array sampling and ‘Latin Hypercube 

Sampling’ (LHS) are more frequently used in order to accurately infer trend information. 

 

In Latin hypercube designs the parameters space (with dimensions equal to the problem 

variables) is subdivided into an orthogonal grid with ‘N’ elements of the same length per 

parameter. Within the multidimensional grid, N sub-volumes are identified so that only one 

sub-volume is chosen along each row and column of the grid.  

In Fig. 2.3, the selected sub-volumes are blackened giving, in two dimensions, the typical 

crosswords-like graphical representation of Latin hypercube designs. Inside each sub-

volume a sample is randomly chosen. 

Fig. 2.3 – Example of Latin hypercube designs [22] 
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From the standpoint of UQ analysis, LHS can be used for any input variable of the 

problem, provided that spurious correlations among the variables are avoided. It is 

therefore fundamental to select the sub-volumes in order to spread the samples all over the 

region of interest. For example, a set of samples along the design space diagonal would 

satisfy the requirements of a Latin hypercube design, although it would show a strong 

correlation between the dimensions and would leave most of the design space unexplored.  

Considering to apply the LHS technique to the case of k parameters and N samples, two 

matrices 𝑄𝑁×𝑘 and 𝑅𝑁×𝑘 are built [22] to compute a set of Latin hypercube samples. 

Assuming that each parameter has range [0, 1], the sampling matrix 𝑆𝑁×𝑘 containing the 

samples in its rows is given by: 

 
𝑆 =

1

𝑁
(𝑄 − 𝑅) (2.1) 

where: 

- 𝑄𝑁×𝑘 is  a matrix whose columns are random permutations of the integers from 1 to N; 

- 𝑅𝑁×𝑘 is a matrix with random values uniformly distributed in [0,1]. 
 

The LHS method is widely used because: 

• it ensures a better coverage of the design space and a faster convergence than the 

basic Monte Carlo method; 

• generally behaves better to generate a metamodel in case of irregular response 

functions (like the one shown in Fig. 2.4). 

 

Fig. 2.4 – Example of LHS design: nozzle outlet flow speed (purple grid) is a non-smooth 

and irregular function (local minima and maxima) of the two input parameters (nozzle 

inlet total pressure and temperature) 

 

2.3.2. Response Surface Methodology: metamodel generation  

Response surface modelling, or response surface methodology (RSM), is closely related to 

DoE because the main concept is to use the results of a DoE run to create an approximation 

of the system response functions in the design space. The approximation is called 

‘response surface’ or ‘metamodel’ and can be built for any objective function: if 𝑦 is an 
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unknown function of the input parameters (𝑥), then the response surface 𝑦 differs from 𝑦 

by an error 휀(𝑥): 

 
𝑦 = 𝑓(𝑥) = 𝑓(𝑥) + 휀(𝑥) ⇒ 𝑦 = 𝑓(𝑥) (2.2) 

Therefore the outcome of a DoE made of N experiments consists in N (𝑥𝑖 , 𝑦𝑖 ) pairs in 

which a point 𝑥𝑖 within the design space is associated with the result of the experiment 𝑦𝑖.  

The response surface is called: 

- ‘interpolating’ if for each DoE sample point 𝑦𝑖 = 𝑓(𝑥𝑖); 

- ‘approximating’ if 휀(𝑥𝑖) ≠ 0. 

To help visualize the shape of a response surface, contour plots are often used. In contour 

plots constant-value lines are drawn for the response in the design space (as in Fig. 2.4 for 

the nozzle outlet flow velocity). 

 

The goal of generating a surrogate is to produce an inexpensive approximate model that is 

intended to capture the salient features of an expensive high-fidelity model (i.e. the actual 

“physical” model, with which the DoE was generated). 

In the UQ perspective, RSM (II. step in Fig. 2.2) can be very functional: although a 

response surface is an approximation of the ‘real’ system (CFD model in numerical 

simulations), it can be used to perform uncertainty quantification analyses through 

sampling based techniques, which require a large number of response function evaluations 

to obtain converging statistics (PDF) of the outputs. 

The response surface is an analytical function, so an uncertainty quantification analysis 

based on that model is very fast and computationally low-cost because it requires no 

additional experiments or simulations to be performed. 

Despite the fact that metamodel implementation can be very advantageous, it is important 

to remark that the design space exploration (made with the DoE) and the response variable 

behaviour can remarkably affect the results of any analysis performed on the surrogate 

model. If the design space exploration is poor and the response functions are particularly 

irregular, the result of the Surrogate-Based Uncertainty Quantification (SBUQ) may be far 

from the truth because of the bad estimation of the model coefficients or the choice of an 

unsuitable model. 

 

The surface fitting process consists of three stages:  

1) selection of a set of design points; 

2) evaluation of the “true” response values (e.g. from a user-supplied simulation code) 

at these design points; 

3) use of response data (from the DoE) to solve for the unknown coefficients (e.g. 

polynomial coefficients, neural network weights, kriging correlation factors) in the 

surface fit model. 

The first two steps (1 and 2) refer to the DoE already presented in subparagraph 2.3.1, 

while the third step is the subject of this subsection. 

A surrogate of the ‘data fit’ type is a non-physics-based approximation that typically 

involves the interpolation or regression of a data set generated from the original model. 

Data fit surrogates can be further characterized by the number of data points used in the fit: 

• ‘local’ approximation (e.g. first or second-order Taylor series) uses data from a 

single point; 
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• ‘multi-point’ approximation (e.g. two-point exponential approximations or two-

point adaptive non-linearity approximations) employs a small number of data 

points often drawn from previous iterations of a peculiar algorithm; 

• ‘global’ approximation (e.g. polynomial response surfaces, kriging/Gaussian 

process, neural networks, radial basis functions, splines) uses a set of data points 

spread over the domain of interest, frequently generated using a design of computer 

experiments (this is the type of data fit surrogate used in the following chapters for 

UQ analyses). 

 

RSM was firstly introduced in 1951 by Box and Wilson [23], who suggested the use of a 

first-degree polynomial model to approximate a response variable. Since then, many RSM 

techniques were developed: one of the most common is the ‘Gaussian Process’. 

Gaussian Processes (GP) [24, 25] are ‘Bayesian’ methods for RSM. Bayesian probability is 

an interpretation of the concept of probability, in which probability is interpreted as 

reasonable expectation representing a state of knowledge or as quantification of a personal 

belief instead of frequency or propensity of some phenomenon.  

In a generic parametric approach the unknown function y = f (�̅�) is approximated in terms 

of a function 𝑦 = 𝑓(�̅�, �̅�), parameterized by the parameters �̅�: 

 
𝑓(�̅�, �̅�) = ∑ 𝜆𝑖𝜑𝑖(�̅�)

𝐻

𝑖=1

 (2.3) 

the functions 𝜑𝑖(�̅�), i = 1, . . . , H are called ‘basis functions’ and may be nonlinear while 

𝑓(�̅�, �̅�) is linear in �̅�. Many RSM methods differ in the set of basis functions used and in 

the way the weights are computed. 

If the results of a DoE run (�̅�𝑖, 𝑦𝑖) (where i = 1, . . . , N and �̅�𝑖 is a k-dimensional vector) 

are considered, the matrix of input variables 𝑋𝑘×𝑁 is the k × N matrix whose columns are 

the 𝑥𝑖, �̅� is the vector of the 𝑦𝑖 (response function) values, 𝑦 is the vector of the response 

surface at the DoE points and finally 𝛷𝑁×𝐻 is the N × H matrix, whose generic element is: 

 
𝛷𝑖,𝑗 = 𝜑𝑗(�̅�𝑖) (2.4) 

So it follows that: 

 
�̂�𝑖 = ∑ 𝛷𝑖,𝑗

𝐻

𝑗=1

𝜆𝑗 (2.5) 

In conclusion, it stems from the above that the response surface value 𝑓(�̅�, �̅�) can be found 

in a generic point �̅� by computing the weights �̅�.  

 

The surrogate models developed for the analyses discussed in chapters 5 and 6 implement 

the Gaussian Process method through an uncertainty quantification platform set up using 

‘Dakota’, an open source toolset provided with a large number of optimization and 

uncertainty quantification utilities. 

The Gaussian Process involves techniques elaborated in geostatistics and spatial statistics 

communities [26, 27] to produce smooth surface fit models of response functions starting 
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from a data set; the correlation function defines the number of times the fitted surface is 

differentiable. The analytical form of the GP model [28] is: 

 𝑓(�̅�) ≈ �̅�(�̅�)𝑇𝛽 ̅ + �̅�(�̅�)𝑇�̿�−1 (𝑓̅ − �̿�𝛽 ̅) (2.6) 

where: 

- �̅� is the current point in n-dimensional parameter space; 

- �̅� (�̅�) is the vector of trend basis functions evaluated at x ̅; 

- �̅� is a vector containing the generalized least squares estimates of the trend basis 

function coefficients; 

- �̅�(�̅�) is the correlation vector of terms between �̅� and the data points; 

- �̿� is the correlation matrix for all of the data points; 

- 𝑓 ̅is the vector of response values;  

- �̿� is the matrix containing the trend basis functions evaluated at all data points. 

 

The terms in the correlation vector and matrix are calculated using a Gaussian correlation 

function and are dependent on an n-dimensional vector of correlation parameters �̅� =
{𝜃1, … 𝜃𝑛}𝑇determined using a ‘Maximum Likelihood Estimation’ (MLE) procedure. 

The GP has a hyper-parametric error model, hence it can be used to model surfaces with 

slope discontinuities along with multiple local minima and maxima; this makes the 

Gaussian Process a very flexible tool for modelling response functions deriving from the 

simulation of complex fluid dynamic problems. 

 

Fig. 2.5 – Example of application of the Gaussian Process to the case of a nozzle subject to 

off-design conditions due to uncertainty on fluid properties (𝐶𝑝 and 𝑀𝑊) 

 

2.3.3. Basic concepts of probability theory 

Within a probabilistic framework, the uncertainty propagation consists in the generation of 

the PDFs of the outcomes, given the distribution of all the input parameters. Assuming that 

�̅� = (𝑥1, ...𝑥𝐷) is the vector containing the input quantities to the computational model,  

𝑦 = 𝑔(�̅�) is the output of interest, where 𝑔 is possibly the result of a complex fluid 
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dynamic simulation. In probabilistic uncertainty quantification approaches, the stochastic 

input quantities �̅� are represented as independent continuous random variables 𝑥𝑖(𝜔𝑖), 

mapping the sample space 𝛺𝑖 to real numbers 𝑥𝑖:  𝛺𝑖→ ℝ.  

In practical terms, this assumption increases the dimensionality of the problem: the original 

deterministic outcome 𝑦 =  𝑓(𝑥1, … , 𝑥𝑖 , . . . 𝑥𝐷) becomes a stochastic quantity                     

𝑦 =  𝑓(𝑥1, … , 𝑥𝑖, . . . 𝑥𝐷: 𝜔1, … , 𝜔𝑖, . . . 𝜔𝐷). The target is to compute 𝑓𝑦, i.e. the PDF of y, in 

order to evaluate the likelihood of a certain outcome or, in general, the statistics of y. The 

expected value 𝐸[𝑦] and the variance 𝑉𝑎𝑟[𝑦] are defined as [29]: 

 

 
𝐸[𝑦] = ∫ 𝑧

+∞

−∞

𝑓𝑦(𝑧)𝑑𝑧 (2.7) 

 

 
𝑉𝑎𝑟[𝑦] = ∫ (𝑧 − 𝐸[𝑦])2𝑓𝑦(𝑧)𝑑𝑧

+∞

−∞

= 𝐸[𝑦2] − (𝐸[𝑦])2 (2.8) 

 

Note that 𝑦 is a stochastic variable, while the expected value and the variance are 

deterministic quantities. 

 

Now consider a continuous function 𝑋(𝜔) ∈ {0,1}, defined on the probability space 

(𝛺, 𝐵, 𝑃), where 𝛺 is the outcome space, 𝐵 the events and 𝑃 is the probability measure.  

𝑋(𝜔) is a continuous random variable that maps each result 𝜔 from the random 

measurement in an element x of ℝ, and for each event 𝐴𝑖 ∈ 𝐵 ⊆ 𝛺 in an interval 𝐵𝑖 ⊆ ℝ, as 

shown in Fig. 2.6 below: 

 

Fig. 2.6 – Mapping of each result ω in an element x ∈ ℝ  and association of each event 𝐴𝑖 

in an interval 𝐵𝑖 which composes the field 𝐵* on X(𝛺) ⊆ ℝ [19] 

 

The impossible event ø ∈ 𝛺 is associated with the empty set of the real numbers, and the 

certain event 𝛺 is associated with the interval X(𝛺) ⊆ ℝ. Therefore the random variable 

𝑋(𝜔) assumes a value x ∈ ℝ with a defined probability which is induced in X(𝛺) ⊆ ℝ by 

the probability 𝑃(𝜔) that ω ∈ 𝛺 occurs. 
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A random variable 𝑋(𝜔) defined in the probability space (𝛺, 𝐵, 𝑃) has a distribution 

function determined by: 

 

 𝐹𝑥(𝑥) = 𝑃(𝑋(𝜔) ≤ 𝑥) (2.9) 

 

In equation (2.9) the left hand side is called ‘Cumulative Distribution Function’ (CDF) of 

𝑋(𝜔), defining the probability distribution in a random experiment. In particular the CDF 

measures the probability that the random variable 𝑋(𝜔) assumes values lower or equal to 

the value x; as a consequence of this definition, this function is always not negative and 

monotonically increasing between 0 and 1. 

The ‘Probability Density Function’ (PDF) of 𝑋(𝜔) is instead an integrable function 𝑓𝑥(𝑥) 

whose integral on a defined set 𝐵 ⊆ X(𝛺) measures the probability that 𝑋(𝜔) assumes 

values x ∈ 𝐵: 

 

 
∫ 𝑓𝑥(𝑥)𝑑𝑥

𝐵

= 𝑃(𝑋 ∈ 𝐵) (2.10) 

 

Consequently, by combining equations (2.9) and (2.10) it is possible to deduce that the 

PDF is the first derivative of the CDF: 

 

 
𝑓𝑥(𝑥) =

𝑑𝐹𝑥(𝑥)

𝑑𝑥
→ 𝐹𝑥(𝑥) = ∫ 𝑓𝑥(𝑥)𝑑𝑥

𝐵

 (2.11) 

 

For a better understanding of the above definitions, a graphical example of PDF and CDF 

for a generic Gaussian distribution is given in the following Fig. 2.7: 

Fig. 2.7 – Gaussian density (left) and cumulative (right) distribution functions [19] 

 

A real random variable 𝑋(𝜔) has a normal or Gaussian distribution 𝑁 (𝜇, 𝜎2) if the 

probability density function is in the following analytical form: 

 

 
𝑓𝑥(𝑥) =

1

√2𝜋𝜎
𝑒𝑥𝑝 [−

1

2
(

𝑥 − 𝜇

𝜎
)

2

] (2.12) 
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𝜎 = √∑
1

𝑁 − 1
(𝑥𝑖 − 𝜇)2

𝑁

𝑖=1

 (2.13) 

where: 

- 𝜇 ∈ ℝ is the average value of the PDF (or 1st order moment); 

- 𝜎2 ∈ ℝ is called variance (or 2nd order moment); 

- 𝜎 is the standard deviation (equal to variance square root); 

- N is the number of samples on which the statistical moments are evaluated.  

 

According to equation (2.11) the Gaussian CDF is then the integral of 𝑓𝑥 in (2.12): 

 

 
𝐹𝑥(𝑥) =

1

2
(1 + erf (

𝑥 − 𝜇

𝜎√2
)) (2.14) 

 

where the term 𝑒𝑟𝑓(𝑧) =
1

√2𝜋
∫ 𝑒−

1

2
(𝑡)2

𝑑𝑡
𝑧

0
 is called ‘error function’. 

 

Analyzing equation (2.12), in case of a Gaussian function 𝑓𝑥(𝑥) = 𝑒𝑥𝑝[−(𝑥)2], the PDF is 

‘shifted’ of the mean value (𝑥 − 𝜇) and then ‘stretched’ through the standard deviation σ, 

which defines the dispersion of the variable around the mean value (see Fig. 2.8). In 

addition, by the definition of the cumulative distribution function in equation (2.9), the 

CDF value always falls between 0 and 1, depending on the integration region; the integral 

of the PDF between −∞ and +∞ must be equal to 1, therefore the Gaussian function is 

normalized with a multiplying factor 
1

√2𝜋𝜎
. 

For example, in a normal distribution the 68.27% of the area under the 𝑓𝑥(𝑥) function falls 

within the interval ±𝜎, the 95.45% is included in ± 2𝜎 and the 99.73% is inside ± 3𝜎 range. 

 

Fig. 2.8 – Gaussian PDF and CDF shape variation for different standard deviations [19] 

 

2.3.4. Sampling-based techniques  

Once recalled some basic probability theory concepts, it is now time to focus on sampling-

based uncertainty quantification techniques; these ones are the simplest approaches to 
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propagate uncertainty in numerical simulations: they involve repeated simulations (also 

called ‘realizations’) with an appropriate selection of the input values. All results are then 

collected to generate a statistical characterization of the outcome. 

The ‘Monte-Carlo’ method (MCM) is the oldest sampling approach. It involves random 

sampling from the space of the random variables xi , according to the given PDFs. The 

method has the advantage that it is simple, universally applicable and does not require any 

modification to the available computational tools. It is important to note that while the 

method converges to the exact stochastic solution since the number of samples goes to 

infinity, the convergence of the average error estimate is slow. Therefore thousands or 

millions of data samples may be required to obtain accurate estimates. 

Several method have been developed to accelerate the Monte Carlo approach. One of the 

most successful MCM variants is the Latin hypercube sampling approach [30], already 

discussed in section 2.3.1. 

LHS is a stratified sampling technique in which the variation range of each input uncertain 

variable is divided into 𝑁𝑠 “equal probability" segments, where 𝑁𝑠 is the required number 

of samples. The segments relative lengths are individuated by the specified probability 

distribution function ‘shape’ (e.g. uniform implies equal width segments, normal presents 

tiny segments near the mean and larger segments toward the tails); the algorithm selects a 

random sample from each of these ‘equal probability’ segments for every uncertain 

variables. Then the selected 𝑁𝑠 values for each of the individual input parameters are  

combined in a shuffling operation to create a set of 𝑁𝑠 parameter vectors (whose size is the 

parameters number) with a specified correlation structure. A characteristic feature of the 

resulting sample set is that each row and column in the hypercube of partitions has exactly 

one sample.  

Since the total number of samples is exactly equal to the number of partitions used for 

every uncertain variable, an arbitrary number of desired samples is easily settled 

(compared to less flexible approaches in which the total number of samples is a product or 

exponential function of the number of intervals for each variable, as happens in many 

classical design of experiments methods). 

 

In Fig. 2.9 𝑁𝑠 random samples are drawn, one from each of the intervals in which the input 

uncertain variables (𝑥1 and 𝑥2) are divided. In LHS the convergence is faster than MCM 

because the occurrence of low probability samples is reduced. Moreover the LHS samples 

provide optimal coverage of the parameter space [31], preventing the typical Monte Carlo 

clusters and holes which in the end lead to a slower convergence of the sampling-based 

technique. 

Fig. 2.9 -  Example of Latin hypercube sampling applied to 𝑁𝑠 = 5 and 2 random variables 

(𝑥1 presents a Gaussian PDF while 𝑥2 has a uniform probability density distribution) [19] 
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2.3.5. Surrogate-Based Uncertainty Quantification 

Many uncertainty quantification methods are computationally costly. For example, the 

sampling-based uncertainty quantification often requires many function evaluations to 

obtain accurate estimates of the statistical moments or percentage values of a response 

function probability distribution.  

 

One approach to overcome the computational cost of sampling is to evaluate the “true” 

function on a fixed set of samples, then use these sample evaluations (DoE) to create a 

surrogate model or metamodel (RSM) of the underlying “true” function and finally 

perform random sampling (using thousands or millions of samples) on the approximation 

to obtain estimates of the mean, variance, and percentiles of the response functions. 

However, it is fundamental to pay attention when using surrogate-based methods for UQ; 

in general there is not a unique, straightforward approach to incorporate the surrogate 

fitting error into the uncertainty estimates of the output produced by sampling the 

metamodel.  

Giunta et al. [32, 33] discussed some of the related issues: the first literature reference [32] 

shows that statistics of a response based on a surrogate model are less accurate, and 

sometimes biased, for metamodels constructed on very small sample sizes. However, in 

many cases the surrogate-based UQ performs well and sometimes generates more accurate 

estimates of the output statistical quantities.  

The second bibliographic reference [33] provides more details on the interaction between 

sample type and response surface type: e.g., are some response surfaces more accurate if 

built on a particular sample type? Usually there is not a strong dependence of the surrogate 

performance with respect to sample type, but some sample types perform better when 

considering some metrics and not others; much of this work is empirical and application 

dependent.  

The general rule of thumb is that performing surrogate-based uncertainty quantification it 

is highly recommended to try a variety of surrogates and examining diagnostic goodness-

of-fit metrics. To provide a practical example, Dakota UQ tools return some indices that 

allow the user to determine if the matrix containing the trend basis functions (see section 

2.3.2 before) is ill-conditioned, voiding the “warranty” of the surrogate model. 

 

In Fig. 2.10 a practical example of the Surrogate-Based Uncertainty Quantification 

workflow is shown: 

➢ the first phase (A) deals with the definition of the input variables PDF: in this case 

Gaussian distributions were assigned to the tip clearance values at rotor leading 

edge and trailing edge; 

➢ in the second phase (B) the input probability distributions are given to the sampling 

based UQ method which is applied to the response surface (coloured with a contour 

plot). The metamodel was generated through the RSM (Gaussian Process) starting 

from a 64-sample design of experiments (blue points); clustered red points in Fig. 

2.10B represent the result of the LHS performed for the uncertainty quantification. 

In this application the samples number for UQ analysis is two order of magnitude 

greater than the corresponding number used for DoE generation; 

➢ the input uncertainties propagate through the metamodel leading to the PDFs of the 

response function, which are extracted in the third phase (C). 
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Fig. 2.10 - Example of Surrogate-Based UQ applied to a twin scroll turbine (tip clearance 

values made non-dimensional for confidentiality reasons) 
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2.4. Mesh-based uncertainty analysis: Grid Convergence Index method 

A fundamental prerequisite of any numerical simulation is the mesh dependence analysis. 

The influence of the mesh resolution on CFD simulation results must be considered: in 

fact, grid spacing effects can be responsible for the poor prediction of complex flow 

structures (i.e. shock waves intensity and position, secondary flows, etc.) and consequently 

of integral parameters such as stagnation losses. 

It is necessary to remark from the beginning that the “perfect mesh” cannot be generated: 

once the main target of the numerical activity has been identified, the grid control 

parameters are defined to capture the essential flow phenomena. Moreover the quality of 

the mesh must be consistent with the chosen numerical approach with a focus on analysis 

type (steady/unsteady) and turbulence modelling: e.g. the boundary layer development is 

strongly affected by the computational tool order of accuracy, by the selected turbulence 

model and also by the grid resolution close to the wall. 

Error estimates and uncertainty estimates are related but not equivalent: 

• an error estimate is intended to provide an improvement to the result of a 

computation. For example, if the outcome of an heat transfer coefficient calculation 

using a particular grid is 𝑓 and the error estimate is 휀, then an improved value 

(closer to the true value ‘𝑓𝑡’) is 𝑓 − 휀 ; 

• an (expanded) uncertainty estimate 𝑈𝑥% is intended to provide a statement that the 

interval 𝑓 ± 𝑈𝑥% defines a range within which the true (mathematical) value of 𝑓𝑡 

probably falls, with probability of 𝑥%. Quantifying this probability is the goal of 

uncertainty estimation.  

The most common uncertainty target for both experiments and computations is ~95% 

probability that the true value 𝑓𝑡 is within the interval 𝑓 ± 𝑈95%, where 𝑈95% is the 

estimate of the (expanded) uncertainty at the 95% confidence level.  

According to the characteristics of the Gaussian distribution (section 2.3.3), the 95% target 

confidence level is compatible with the ±2𝜎 range for a normal PDF; however, it is 

important to clarify immediately that the concept and the semi-empirical methods 

presented below do not depend on the assumption of Gaussian distribution or any other 

distribution.  

Uncertainty estimates (𝑈95%) can be calculated following a five-step procedure for the 

application of the ‘Grid Convergence Index’ (GCI) method [34]. The GCI determines the 

grid influence on the evaluation of a specific parameter; it represents the numerical 

uncertainty connected to the spatial filter and can be compared to the experimental 

uncertainty. The leading concept is to estimate the error included in the selection of a 

specific computational mesh with respect to a reference solution obtained through an 

asymptotic approach. The main steps are summarized below: 

1) define a rule for the calculation of a representative cell dimension denoted ‘ℎ’.  

For example for three-dimensional, structured, geometrically similar grids (not 

necessarily Cartesian): 

 ℎ = [(∆𝑥𝑚𝑎𝑥)(∆𝑦𝑚𝑎𝑥)(∆𝑧𝑚𝑎𝑥)]1/3 (2.15) 

Instead for unstructured grids it is possible to define: 

 

ℎ = [(∑ ∆𝑉𝑖

𝑁

𝑖=1

) /𝑁]

1/3

 (2.16) 
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where 𝑁 is the total number of cells used for the computations and ∆𝑉𝑖 stands for 

the volume of the ‘𝑖 − 𝑡ℎ’ cell. From equations (2.15) and (2.16) ℎ is usually 

defined as the cubic root of the mean value of the elements volume; 

2) select three significantly different grid resolutions: for example coarse, medium and 

fine resolution (denoted respectively by the suffixes 3 , 2 and 1) and run 

simulations to determine the values of key variables to the target of the simulation 

study (e.g. a variable 𝜑). One of the constrains of this procedure is that the grid 

refinement factor 𝑟 =  ℎ𝑐𝑜𝑎𝑟𝑠𝑒/ℎ𝑓𝑖𝑛𝑒 (ratio between the ℎ values of two 

consecutive meshes) is greater than 1.3 (a number based on experience and not on 

some formal derivation). It is highly recommended to refine the mesh as 

isotropically as possible, i.e. not to use different grid refinement factors in different 

directions (e.g. 𝑟𝑥 = 1.3  and 𝑟𝑦 = 1.6); otherwise misleading observed order of 

accuracy (p – see definition below) values are obtained; 

3) compute the apparent (or observed) order of the method from reference [35]:  

 

𝑝 =
1

ln 𝑟21
|ln |

휀32

휀21
| + 𝑞(𝑝)| (2.17) 

 

𝑞(𝑝) = ln (
𝑟21

𝑝 − 𝑠

𝑟32
𝑝 − 𝑠

) (2.18) 

where 휀32 = 𝜑3 − 𝜑2 , 휀21 = 𝜑2 − 𝜑1 , 𝑟21 = ℎ2/ℎ1 , 𝑟32 = ℎ3/ℎ2 (with ℎ1 <
ℎ2 < ℎ3) and 𝑠 = 𝑠𝑖𝑔𝑛(휀32 휀21⁄ ). The observed order of accuracy can be 

calculated imposing 𝑞(𝑝) = 0 for 𝑟 =  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡; in case of 𝑟 ≠  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

instead, equations (2.17) and (2.18) can be solved using fixed point iteration with 

the initial guess of 𝑞 = 0.  

Three different mesh resolutions should be satisfactory for the calculation of the 

observed order p if some of the values of the predicted variable 𝜑 on the three grids 

are in the asymptotic region for the simulation series.  Important factors are the 

resolution of the initial mesh and where is the expected value of 𝜑 as a function of 

the resolution of the mesh; 

4) compute the extrapolated values through the apparent order of accuracy: 

 𝜑21,𝑒𝑥𝑡 = (𝑟21
𝑝 𝜑1 − 𝜑2)/(𝑟21

𝑝 − 1) (2.19) 

5) calculate and report the approximate relative error in dimensionless form (2.20), the 

estimated extrapolated relative error (2.21) and finally the ‘fine’ (associated to the 

finest grid resolution) Grid Convergence Index (2.22): 

 𝑒21,𝑎𝑝𝑝 = |
𝜑1 − 𝜑2

𝜑1
| (2.20) 

 𝑒21,𝑒𝑥𝑡 = |
𝜑21,𝑒𝑥𝑡 − 𝜑1

𝜑21,𝑒𝑥𝑡
| (2.21) 

 𝐺𝐶𝐼21,𝑓𝑖𝑛𝑒 =
𝐹𝑠  ∙ 𝑒21,𝑎𝑝𝑝

𝑟21
𝑝 − 1

 (2.22) 

where 𝐹𝑠 indicates the Factor of Safety. 
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Roache [35] recommended a value for 𝐹𝑠 = 1.25, but only when the GCI calculation is 

performed using at least three grid resolutions and the observed 𝑝. Roache suggested this 

value based on empirical studies, concluding that a value of 𝐹𝑠 = 1.25 results in a GCI 

with a 95% confidence interval. Further experience in hundreds of CFD cases (more than 

500 proven cases) by dozens of research groups has supported this empiricism [35, 36, 37, 

38]: a value of 𝐹𝑠 = 1.25 is therefore recommended with three-grid studies involving a 

“structured” refinement of the grid. It is important to highlight that a base mesh can belong 

to the ‘unstructured’ type, but the sequence of meshes (coarse, medium, fine) generated for 

the GCI may derive from a ‘structured’ refinement of the grid. 

Whenever the computed observed order of the method 𝑝 (equation 2.17) falls below 1.0, it 

is still possible to assign an uncertainty band assuming 𝑝 = 1.0. In this way, two 

calculations can be provided, one with the observed 𝑝 (<1) and one with 𝑝 = 1.0, as a 

measure of the sensitivity of the error band to the apparent order of accuracy 𝑝. 

The form of the GCI is theoretical, but the use of absolute values for estimated errors and 

the factor 𝐹𝑠 are based on the examination of several hundred CFD case studies. The 

empirical tests resulted in the determination of conservatism in 95% of the cases, 

corresponding to 𝐺𝐶𝐼 =  𝑈𝑛𝑢𝑚 with a confidence level of 95%. 

 

An example of application [39] of the presented GCI calculation procedure is summarized 

in Tab. 2.1. The case study concerns steady, turbulent flow over a backward facing step 

simulated on non-uniform structured grids with the total number of cells defined by three 

grid resolutions (𝑁1 , 𝑁2 and 𝑁3). The variable selected for the evaluation of uncertainties 

is the dimensionless reattachment length (𝐿) at a specific location of the fluid domain.  

 

Tab. 2.1 – Example of GCI calculation procedure for a backward facing step [39] 

𝑁1 18000 

𝑁2 8000 

𝑁3 4500 

𝑟21 1.5 

𝑟32 1.33 

𝜑1 6.06 

𝜑2 5.97 

𝜑3 5.86 

𝑝 1.53 

𝜑21,𝑒𝑥𝑡 6.17 

𝑒21,𝑎𝑝𝑝 1.50% 

𝑒21,𝑒𝑥𝑡 1.71% 

𝐺𝐶𝐼21,𝑓𝑖𝑛𝑒 1.46% 

 

The above calculations lead to the conclusion that the value of the reattachment length 

would be more correctly reported as  𝐿 = 𝜑1  ±  (𝐺𝐶𝐼21,𝑓𝑖𝑛𝑒  ∙ 𝜑1), i.e.  𝐿 = 6.06 ± 0.09. 



44 

 

The presented methodology can be applied to structured and unstructured grid types. In the 

latter case, a systematic or “structured” refinement of the mesh brings the algorithm to the 

best results. Another example of application of the GCI calculation procedure is reported in 

Appendix A, which deals with the determination of the numerical uncertainty derived from 

the mesh of some characteristic performance parameters of the twin entry volute 

investigated in this doctoral thesis. 

It should be emphasized that the grid convergence index does not provide any information 

on the accuracy of the code itself: the code must be verified for the same class of problems 

and validated against experimental data.  

In conclusion, the analysis presented in this section highlights that a reliable treatment of 

mesh-dependent uncertainties in CFD campaigns must be included in the optimization 

tools commonly used by the Industry. Consequently, high-fidelity computational fluid 

dynamics simulations should include the evaluation of the grid spacing impact on global 

parameters of the system under examination, followed by model assessment and 

uncertainty quantification. 

 

2.5. Operational and geometrical uncertainty analysis in CFD 

The previous paragraph deals with numerical uncertainty; recalling the uncertainties 

classification made in paragraph 2.1, two uncertainty sources remain to be discussed: 

operational and geometric. 

The UQ analysis within a simulation environment that embeds CFD is becoming an 

effective approach for industrial use thanks to the concurrent development of both soft-

computing methods and computer performance. The use of CFD coupled to optimization 

algorithms for the automatic design optimization of industrial components is nowadays a 

mature technology [40, 41]. 

One of the main issues addressed in any engineering design problem is to predict the 

performance of the component or system as accurately and realistically as possible. The 

off-design behaviour of a system is not only related to the deterministic variation of the 

input parameters, but also to the aleatory uncertain which can characterize the input data 

and the geometrical tolerances. Hence, in order to improve the accuracy and the reliability 

of the numerical predictions, it is necessary to understand how the uncertainties can affect 

the results of the problem under investigation. This is one of the main targets of uncertainty 

quantification analyses, with direct positive fall-out on engineering problems. 

 

A well known problem by CFD users is the exact knowledge of boundary conditions to 

perform numerical simulations. As an example, chapter 5 deals with the influence of the 

discharge pressure on the operating conditions, flow structure and performance of a 

supersonic de Laval nozzle. Another application concerns instead the effects of the gas 

chemical composition on the expansion nozzle performance. 

Considering instead the turbomachinery field, the various components are subject to non-

uniform conditions, the distribution of which must be carefully studied: chapter 3 deals 

with the effect of flow non-uniformities at rotor inlet on the performance of twin scroll 

radial turbines. 

Another fundamental aspect to be considered in every simulation is represented by the 

differences between the real geometrical model (the actual manufactured machine) and the 

simulated one (the CAD model).  

The computational domain used in CFD to simulate a gas turbine and the real control 

volume are not identical. This is due to two main reasons: 
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1. the actual machine is different from the designer’s technical projects due to 

manufacturing (epistemic) and assembling (aleatory) uncertainties; 

2. usually the computational domain does not simulate all geometric characteristics, 

such as fillets.  

It is noteworthy to mention the problem arising from tip clearances in rotor rows. Through 

the rotational periodicity boundary condition, it is possible to perform CFD on a single 

turbine rotor channel and this means that a single tip clearance dimension must be 

specified; however, it has been experimentally proved that each blade has a different value 

of tip gap, which moreover depends on the rotational speed [42]. Consequently, the 

definition of an average value for the tip clearance represents a mixed epistemic-aleatory 

uncertainty due, respectively, to the known statistical distribution of the values and the 

limits of the experimental measure.  

On this theme, chapter 6 deals with the analysis of the effects of tip clearance uncertainties 

on the performance of a twin scroll radial turbine. 

 

2.6. An emerging UQ technique: Polynomial Chaos Expansion 

The second UQ approach investigated in this doctoral thesis is the Polynomial Chaos 

Expansion (PCE), which is based on a multidimensional orthogonal polynomial 

approximation formed in terms of standardized random variables. 

Wiener introduced first the term ‘Polynomial Chaos’ (PC) expansion in 1938 in his work 

on the decomposition of Gaussian stochastic processes [43]; then Ghanem and Spanos [44] 

combined the use of PC with finite element method for modelling the uncertainty for 

various solid mechanics problems. 

Stochastic Expansion methods aim to estimate the functional relationship between 

response functions and their random inputs using the notions of projection, orthogonality 

and weak convergence [44, 45]; thus they provide a more thorough uncertainty 

representation to be used in simulations involving multiple codes.  

Polynomial chaos expansions (PCE) use multivariate orthogonal polynomials that are 

customized to represent peculiar input probability density functions. Several methods can 

lead to the evaluation of the expansion coefficients: e.g. a spectral projection approach 

(based on sampling, tensor-product quadrature, etc.) or a regression approach (least 

squares). Starting from the base, a polynomial of degree 𝑁 ∈ ℕ can be written as: 

 
𝑄𝑛(𝑥) = 𝑎𝑁𝑥𝑁 + 𝑎𝑁−1𝑥𝑁−1 + ⋯ 𝑎1𝑥 + 𝑎0 (2.23) 

It is possible to indicate a system of polynomials {𝑄𝑁(𝑥), N ∈ ℕ} as ‘orthogonal’ with 

respect to the function 𝑤(𝑥) if it fulfills the ‘orthogonality conditions’ : 

 

∫ 𝑄𝑁(𝑥)𝑄𝑀(𝑥)𝑤(𝑥)dx = ℎ𝑁
2 𝛿𝑁𝑀       𝑁, 𝑀 ∈ ℕ

𝐷

 (2.24) 

where D is the support of 𝑄𝑁, 𝑤(𝑥) is a specified weight function, ℎ𝑁 are non-zero 

constants and 𝛿𝑁𝑀 is the Kronecker delta function, where 𝛿𝑁𝑀 = 0 if 𝑁 ≠ 𝑀 and 𝛿𝑁𝑀 = 1 

if 𝑁 = 𝑀.  

Tab. 2.2 collects the set of classical orthogonal polynomials which supply an optimal basis 

for different types of continuous probability distribution. This set belongs to the family of 



46 

 

hypergeometric orthogonal polynomials known as the “Askey scheme” [46], for which the 

Hermite polynomials originally used by Wiener [43] are a subset. 

The orthogonality of these basis selections with respect to ‘weighting functions’ (that 

correspond to the PDFs of the continuous distributions when placed in a standard form) is 

the characteristic that makes them “optimal” [47]. As the reader can see in Tab. 2.2, the 

density and weighting functions are different by a constant factor due to the condition that 

the integral of the PDF on the support range is one. 

Tab. 2.2. – Linkage between the type of generalized Polynomial Chaos and its underlying 

random variables [47] 

 

It is important to note that if all random inputs can be described using independent normal, 

uniform, exponential, beta, and gamma distributions, it is possible to apply the Askey 

polynomials directly. Otherwise, if correlations or other distribution types are present, 

additional techniques are required (‘Numerically generated orthogonal polynomials’ [47]). 

The set of polynomials from Tab. 2.2  are used as an orthogonal basis to approximate the 

functional form between the stochastic response output and each of its random inputs.  

The chaos expansion for a response R takes the form: 

𝑅 = 𝑎0𝐵0 + ∑ 𝑎𝑖1
𝐵1(𝜉𝑖1

)

∞

𝑖1=1

+ ∑  ∑ 𝑎𝑖1𝑖2
𝐵2(𝜉𝑖1

, 𝜉𝑖2
)

𝑖1

𝑖2=1

∞

𝑖1=1

+ ∑ ∑ ∑ 𝑎𝑖1𝑖2 𝑖3
𝐵3(𝜉𝑖1

, 𝜉𝑖2
, 𝜉𝑖3

)

𝑖2

𝑖3=1

𝑖1

𝑖2=1

+ ⋯ 

∞

𝑖1=1

 

(2.25) 

where each further set of nested summations corresponds to an additional order of 

polynomials in the expansion formulation and the random vector dimension is unlimited. 

Replacing the order-based indexing with a term-based indexing: 

𝑅 = ∑ 𝛼𝑗𝜓𝑗(𝜉)

∞

𝑗=0

 (2.26) 

There is a one-to-one correspondence between 𝑎𝑖1𝑖2…𝑖𝑛
 and 𝛼𝑗 and between 

𝐵𝑛(𝜉𝑖1
, 𝜉𝑖2

. . . 𝜉𝑖𝑛
)  and 𝜓𝑗(𝜉), which are multivariate polynomials that involve products of 

the one-dimensional polynomials. 

The next step consists in truncating the infinite expansion to a finite number of random 

variables (the input uncertain variables) and to a definite expansion order: 

𝑅 ≅ ∑ 𝛼𝑗𝜓𝑗(𝜉)

𝑃

𝑗=0

 (2.27) 
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According to the ‘tensor-product’ expansion approach [47] polynomial order bounds are 

applied on a per-dimension basis (no total order limit is applied) and all combinations of 

the one-dimensional polynomials are included. Furthermore, the tensor-product expansion 

supports anisotropy in polynomial order for each dimension (variable), so the polynomial 

order limits for each dimension can be specified independently.  

PCE estimates its coefficients 𝛼𝑗 using a ‘spectral projection’ approach, which projects the 

response on each basis function using inner products and uses the polynomial 

orthogonality properties to extract every expansion coefficient: 

𝛼𝑗 =
〈𝑅, 𝜓𝑗  〉

〈𝜓𝑗
2〉

=  
1

〈𝜓𝑗
2〉

 ∫ 𝑅
Ω

 𝜓𝑗  𝜚(𝜉)𝑑𝜉 (2.28) 

where each inner product involves a multidimensional integral over the support range (Ω) 

of the weighting function. 

In particular, Ω = Ω1 ⊗ · · · ⊗ Ωn , with possibly unlimited intervals Ωj ⊂ R and the form 

of the tensor product of the joint probability density (weight) function 𝜚(𝜉) = ∏ 𝜚𝑖
𝑛
𝑖=1 (𝜉𝑖). 

The denominator in equation (2.28) is the norm squared of the multivariate orthogonal 

polynomial, while the numerator is computed numerically using quadrature approach; this 

technique employs a tensor product of one-dimensional quadrature rules. 

In the multivariate case (n > 1) for each 𝑓 ∈ 𝐶0(𝛺) and the multi-index 𝑖 = 𝑖1 , 𝑖2 , …  𝑖𝑛 ∈
ℕn

+ , the full tensor product quadrature formula corresponds to: 

𝑄𝑖
𝑛 𝑓(𝜉) = (𝒰𝑖1 ⊗⋅⋅⋅ ⊗ 𝒰𝑖𝑛)(𝑓)(𝜉) =

= ∑ ⋯

𝑚𝑖1

𝑗1=1

∑ 𝑓(𝜉𝑗1

𝑖1  , ⋯ , 𝜉𝑗𝑛

𝑖𝑛)

𝑚𝑖𝑛

𝑗𝑛=1

 (𝜔𝑗1

𝑖1 ⨂ ⋯ ⨂ 𝜔𝑗𝑛

𝑖𝑛) 

 

(2.29) 

where the above product requires ∏ 𝑚𝑖𝑗
𝑛
𝑗=1  function evaluations.  

When the number of input random variables is limited, full tensor product quadrature is a 

very efficient numerical tool. On the other hand, approximations based on tensor product 

grids suffer from the “curse of dimensionality” as the number of collocation points in a 

tensor grid quickly grows exponentially with the number of input random variables [47].  

In chapter 6 the analysis of the effects of tip clearance uncertainties on the performance of 

a twin scroll radial turbine is performed using the PCE method. In this case Gaussian 

quadratures are selected using an isotropic approach. This means that the UQ algorithm 

uses the same quadrature order 𝑚𝑖𝑗 = 𝑚 for the input variables (clearance values at rotor 

leading edge and trailing edge, i.e. two dimensions), resulting in a total of 𝑚𝑛 function 

evaluations to compute the PCE coefficients 𝛼𝑗. 

A distinguishing (and positive) feature of the PCE methodology is that the final solution is 

expressed as a functional mapping and not merely as a set of statistics, as in the case of 

many nondeterministic approaches (e.g. sampling-based UQ). However, polynomial 

approaches suffer from the aforementioned curse of dimensionality; so following a general 

rule of thumb their application is limited to cases where the number of uncertain variables 

is less than five (such as the one presented in the following chapter 6) since the number of 

CFD simulations required increases exponentially with the number of input variables [48]. 

PCE method provides analytic statistical moments of the response functions; nevertheless, 

cumulative distribution function probabilities are evaluated numerically by sampling 

(LHS) on the expansion.  
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Chapter 3  
 

 

 

Insight into twin scroll turbines 

fluid dynamics 
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The final goal of this PhD thesis is to integrate uncertainty quantification techniques with 

the CFD simulation of twin entry radial turbines for turbocharging applications. The 

essential prerequisites for pursuing this objective are: 

(1) the detailed study of this kind of turbomachinery, aimed at understanding the 

parameters which affect their performance and formulating performance prediction 

methods; 

(2) the acquisition of skills in DoE generation, application of the RSM and 

implementation of uncertainty quantification techniques. This skill set was 

previously tested on a case study (the supersonic nozzle which is the main topic of 

chapter 5) in order to set up the workflow that afterwards has been applied to the 

IFR twin scroll turbines. 

Chapter 3 deals with the first (1) step, which in turn is articulated into several research 

themes: 

I) experimental validation of the CFD models [49];  

II) quantitative and qualitative evaluation of twin scroll volute losses, definition of 

flow non-uniformity parameters at impeller inlet and hub to shroud analysis with 

the formulation of brand new non-uniformity indices [49, 50]; 

III) study of the influence of the ‘backside cavity’ (the fluid cavity located behind the 

impeller upstream of the seals) on turbine performance [49]; 

IV) development of a numerical method to represent the degree of reaction. The 

analysis of the CFD results obtained from three different turbines subject to various 

operating conditions (different rotational speeds and admission conditions) 

highlights the reliability limits of some performance prediction methods frequently 

proposed in literature. For the sake of brevity, this research topic is not addressed in 

this chapter, but the reader can find all the details of the work done on this issue in 

the paper [51] cited in the bibliography. 

 

3.1. Experimental validation of the twin scroll turbine CFD model 

This paragraph concerns a complete (volute and full rotor) CFD model of a twin scroll 

radial turbine which has been developed to understand the capabilities of current industrial 

CFD approaches applied to these complex cases. Steady simulations were performed with 

Ansys CFX® commercial CFD solver in a broad range of working conditions at both full 

and partial admission (see section 1.3.1), with and without backside cavity. The total to 

static efficiency and the mass flow parameter (MFP) of the turbine were then calculated 

and compared with the experimental database to validate the numerical model.  

 

3.1.1. Reference geometry 

The “test case” turbine is an IFR twin entry turbine for automotive turbocharging 

applications; it is classified as a small size radial turbine, capable of generating about ten 

kilowatts. Geometrical data are confidential therefore all quantities have been reported in 

the following tables in non-dimensional or reduced form.  

Since the turbine in question is twin scroll, the ICE exhaust manifolds are coupled to two 

volute inlet sections, denoted according to their relative position with respect to the rotor: 
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hub and shroud side respectively (see Fig. 3.1 below). The volute geometrical parameters 

are listed in Tab. 3.1 and are interpreted as follows: 

• radial extension of the vaneless nozzle was made dimensionless with the radius 

(𝑟1𝑠ℎ) measured from the center of gravity of inlet duct section which feeds the 

shroud branch; 

• volute area ratio (AR) was obtained by comparing the volute outlet section (A2) 

with the total inlet area (𝐴1𝑡𝑜𝑡), computed from the sum of shroud and hub side 

inlet areas (𝐴1𝑠ℎ and 𝐴1ℎ𝑢𝑏 respectively); 

• dimensional values refer to the A/r of the volute branches. For the two inlet sections 

this parameter was calculated using the corresponding radius (𝑟1ℎ𝑢𝑏 < 𝑟1𝑠ℎ). 
 

Tab. 3.1 – Twin scroll volute geometrical parameters 

Geometric parameter Value 

Vaneless nozzle radial extension [-] 0.0252 

Volute area ratio (AR = A2 / A1tot) [-] 0.910 

A1hub/r1hub [mm] 9.33 

A1sh/r1sh [mm] 16.2 

 

Fig. 3.1 - Position of inlet and outlet sections of the twin entry volute. The exhaust gas 

bypass ducts are circled in red 

 

The turbine impeller (see following Fig. 3.2b) has 𝑧𝑏 = 9 blades. The rotor leading edge is 

cut-off and aligned with the radial direction (𝛽𝑏2 = 0°), while at the trailing edge the blade 

is swept from hub to shroud, with a metal angle 𝛽𝑏3 proportional to the radius in order to 

follow the increase in relative circumferential velocity component (attributable to the 

peripheral speed variation). All rotor geometrical data reported in Tab. 3.2 have been made 

non-dimensional with impeller inlet radius 𝑟2, which is not intentionally provided to the 

reader. The impeller reference dimensions are identified in Fig. 3.2a that shows the 

meridian section of a generic twin entry radial turbine.  

A peculiar feature of the radial machine is the backside cavity, which consists of the 

volume between the back disk (rotating surface behind the impeller block) and the 

stationary housing; for better understanding the volume is coloured green in Fig. 3.2b).  
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Tab. 3.2 - Dimensionless geometric data of the studied centripetal impeller 

Geometric parameter Dimensionless value 

Inlet blade height (b2) 0.299 

Outlet blade height (b3) 0.572 

Outlet blade radius (r3) 0.843 

Rotor axial size (l) 0.829 

Inlet blade thickness 

(uniform along blade height) 
0.0361 

Outlet blade thickness (hub) 0.0675 

Outlet blade thickness (shroud) 0.0359 

 

Fig. 3.2 -  a) Sketch of the meridian section of a generic twin scroll turbine. b) Rotor view 

with a yellow cut of the volute and rotor passage, while the backside cavity is in green 

 

3.1.2. Numerical setup 

The unstructured grid of the twin scroll volute (Fig. 3.3A) is composed of about 8 million 

elements (3 million nodes) with a ‘tetra size ratio’ set to 1.25. Special attention was paid to 

the accurate resolution of the boundary layer on the walls by mean of 10 prism layers with 

exponential clustering (height ratio of about 1.4) to the wall. In order to avoid the use of 

‘wall functions’, the height of the first layer has been calculated to get y+ close to one. 

Concerning the volute mesh quality, the aspect ratio (AR) resulted above 0.5 for the 99.5% 

of the elements, with the 60% of the cells having an AR>0.95 (where AR=0 indicates that 

the element has zero area or volume, while AR=1 corresponds to a perfectly regular cell). 

An ‘H-O-H’ (H-topology and O-grid around the blade) structured grid was generated for 

the rotor with a target value of approximately 500 thousand nodes for the single channel, 

which is displayed in Fig. 3.3B. Regarding the mesh quality control: 

➢ the ‘minimum face angle’ was set at 15 [deg], considering as acceptable a percentage 

of “bad” elements not exceeding 0.1% of the overall mesh; 

➢ the number of constant-size elements and the total number along the blade height were 

selected to get an expansion rate of about 1.25 (good values between 1.2 and 1.4); 

➢ the ‘maximum element volume ratio’ was set to 20, while a ‘maximum edge length 

ratio’ of 1000 was considered, using the solver ‘double precision’ option to ensure 

greater numerical accuracy given the significant cells size variation inside the passage. 
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Fig. 3.3 -  A) Detail of the unstructured grid on the two volute branches; the volute outlet 

section is highlighted in green. B) Structured mesh of the single rotor channel 

Fig. 3.4 - CFD model: i)-ii) inlet sections, iii) twin entry volute, iv) rotor, v) discharge pipe 

 

The CFD model is divided into three domains (Fig. 3.4): volute, rotor and discharge pipe. 

Tab. 3.3 summarizes the type of boundary conditions assigned to each computational 

domain of the numerical model; these are valid for the full admission condition. In partial 

admission one of the inlets is closed and this condition was simulated by introducing a wall 

boundary for the non-fed inlet (zero mass flow). Experimental data were used as boundary 

conditions for inlet total conditions, outlet static pressure and rotational speed. 

Tab. 3.3 - Boundary conditions set for the different domains of the CFD model 

Volute 

• total pressure and total temperature, different for each inlet  

• flow direction orthogonal to volute inlet sections 

• 5% inlet turbulence intensity 

Rotor 
• rotational speed 

• stationary shroud wall (‘counter-rotating’ at the same rotor speed) 

Discharge pipe • static pressure on outlet section 

 

Steady state calculations were performed with stage (mixing-plane) interfaces between 

static and rotating domains. This simulation setup is necessary to validate the CFD model 
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with experimental data obtained at gas stand test bench (therefore without actually 

coupling the turbine with the ICE). The validation measurements provided by the industrial 

partner were taken in the test rig keeping the turbocharger insulated to minimize heat 

losses through the walls; therefore adiabatic option was selected for the 'wall' type 

boundary conditions, neglecting heat transfer from the fluid domains towards the outside. 

The compressible flow model consists in Reynolds Averaged Navier-Stokes (RANS) 

equations; the Shear Stress Transport (SST) model for turbulence closure was adopted due 

to its higher accuracy and calibration in the code (Ansys CFX®) for turbomachinery 

applications. In fact, the SST takes into account the transport of turbulent shear stresses, 

providing very accurate predictions on the trigger and degree of flow separation under 

adverse pressure gradients. The equations have been solved with the ‘high resolution’ 

scheme that has second order accuracy. Finally, the fluid is modeled as a perfect gas with a 

specific heat 𝐶𝑝=1.15 [kJ/(kg*K)] and a dynamic viscosity that varies with temperature 

according to Sutherland’s law: 

 

 

 

 

 

𝜇 = 𝜇𝑟𝑒𝑓 (
𝑇

𝑇𝑟𝑒𝑓
)

3
2 𝑇𝑟𝑒𝑓 + 𝑆𝑢

𝑇 + 𝑆𝑢
 (3.1) 

 

3.1.3. Boundary conditions: selected operating points 

Twin scroll turbines can operate under different admission conditions, as already discussed 

in section 1.3.1. The experimental validation of the turbine CFD model was carried out 

considering the same admission conditions tested by the turbo supplier: 

➢ partial admission → one of the two branches is not directly powered by the ICE. 

The cases studied with mass flow passing through the shroud branch only were 

denoted ‘partial shroud’, while in the opposite cases ‘partial hub’; 

➢ full admission → both volute branches are fed by roughly the same exhaust gas 

mass flow (differences mainly due to the geometric asymmetry of the two sectors). 

Even if the partial admission condition is difficult to achieve under normal engine 

operating conditions, the partial admission tests are fundamental to evaluate turbine fluid 

dynamic losses and to translate them into the real pulsating operation of the turbocharger 

coupled with the ICE. 

Tab. 3.4 - Set of cases tested at full and partial admission 

Full Partial shroud Partial hub 

N 

[rpm/(K^0.5)] 
PRF 

N 

[rpm/(K^0.5)] 
PRF 

N 

[rpm/(K^0.5)] 
PRF 

N1 

1.31 

N1 

1.56 

N1 

1.51 

1.37 1.69 1.62 

1.42 1.77 1.69 

N2 

1.79 

N2 

2.35 

N2 

2.18 

1.99 2.72 2.51 

2.15 2.99 2.76 

N3 

2.54 

N3 

3.34 

N3 

3.15 

2.83 3.72 3.49 

3.15 4.35 3.93 
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Tab. 3.4 presents the set of pressure ratios selected for the different rotational speeds and 

admission conditions: nine operating points (three for each rotational speed) were 

individuated over three different iso-speed lines (N1= ‘low’, N2= ‘medium’, N3= ‘high’ 

speed) to properly cover the turbine working range.  

In order to validate the computational model, the main turbine performance parameters 

(i.e. MFP and 𝜂𝑡𝑠) were computed from the CFD results and then compared with the 

corresponding experimental data. The outcomes of this research activity have been 

collected in the paper "Numerical simulation of the performance of a twin scroll radial 

turbine at different operating conditions" [49] published in the International Journal of 

Rotating Machinery. 

 

3.1.4. Full admission validation 

Fig. 3.5 - MFP (referred to the maximum value of the data set) vs. PRF in full admission 

 

CFD full admission results are compared in Fig. 3.5 and 3.6 with experimental data. 

Regarding the MFP trends comparison, it can be noted that there is a good match between 

experimental and numerical data (the series of points are very close), with the CFD results 

which tend to slightly underestimate the mass flow rate measured at test bench.  

Tab. 3.5 - Percentage difference (CFD vs. EXP) for MFP values in full admission 

N [rpm/(K^0.5)] PRF ∆𝐌𝐅𝐏% 

N1 

1.31 3.53 

1.37 3.34 

1.42 3.18 

N2 

1.79 2.98 

1.99 2.60 

2.15 2.35 

N3 

2.54 3.33 

2.83 2.85 

3.15 2.98 
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From a qualitative point of view, the shape of the measured trends (in green in Fig. 3.5) is 

well reproduced by the numerical results; moreover, the good match between ‘CFD’ and 

‘EXP’ data is quantitatively confirmed by the relative percentage differences (see equation 

(3.2)) reported in Tab. 3.5, which are below 3.5% in all cases examined. 

 ∆𝑀𝐹𝑃% =
|𝑀𝐹𝑃𝐶𝐹𝐷 − 𝑀𝐹𝑃𝐸𝑋𝑃|

𝑀𝐹𝑃𝐸𝑋𝑃
100 (3.2) 

 

For what concerns the total-to-static efficiency trends, in Fig. 3.6 it is possible to notice 

that CFD results tend to overestimate measured efficiency values; furthermore, there’s a 

‘shape’ discrepancy: numerical results show a tendency that is monotonically decreasing 

with the PRF on each iso-speed, whereas the experimental data have a peak at medium and 

high speeds (series ‘N2’ and ‘N3’ respectively). In quantitative terms, the relative 

percentage difference in efficiency, averaged over all the simulated points, is less than 4%. 

Fig. 3.6 – Total to static (CFD) and Thermo-Mechanical (EXP) efficiency vs. PRF in full 

admission (for confidentiality reasons the efficiency values are not reported) 

 

In order to correctly understand the efficiency results comparison, it must be remarked that 

CFD values follow the classic total to static isentropic efficiency definition (see equation 

(1.32)), while experimental efficiency refers to the so called ‘turbine effective efficiency’, 

whose definition is reported below: 

 
𝜂𝑇𝑀 = 𝜂𝑡𝑠  ∙ 𝜂𝑚 =

𝑃𝑐

�̇�𝑡𝑜𝑡 𝐶𝑝 𝑇01 [1 − (
𝑝4

𝑝01 𝑏𝑜𝑡ℎ
)

(𝑘−1) 𝑘⁄

]

 
(3.3) 

As discussed in the Master’s degree thesis [52], turbo manufacturers usually provide to 

customers the thermo-mechanical performance (𝜂𝑇𝑀) due to the difficulty to accurately 

estimate friction and thermal losses, which are nonlinear and highly dependent from the 

operating point. Their behaviour can explain the trend mismatch shown in Fig. 3.6 among 

CFD and experimental data. 
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The careful reader may wonder why no error bars were associated with the measured data  

in Fig. 3.5 and 3.6. Unfortunately the industrial partner did not provide experimental data 

with measurement uncertainties as they are confidential data, therefore it was not possible 

to add this information to the experimental data series. However, the error bars on the MFP 

and the thermo-mechanical efficiency (𝜂𝑇𝑀) of the turbine can be obtained from the 

estimate of the expanded uncertainty calculated by the combination of the uncertainties 

deriving from each term that appears in the formulation of the performance parameters. 

Some researchers [53, 54] indicate that the measurement uncertainty on the mass flow rate 

via hot wire is approximately ±1-2% of the calibration range, pressure signals can be 

detected using strain gauge sensors characterized by an accuracy of 0.14% of the full scale 

and finally temperature can be measured by means of type K thermocouples placed at the 

turbine inlet, with uncertainty of ±1.5 [K] including the effects of the cables and the 

acquisition system. 

For sake of completeness, it is useful to point out that in the case of a turbocharger IFR 

turbine the evaluation of the isentropic efficiency resulting from measurement of 

thermodynamic quantities at inlet and outlet sections can produce significant errors. In fact, 

due to the flow distribution at the exit of a radial flow turbine [55], a correct evaluation of 

the  turbine outlet temperature is difficult and this can give high inaccuracies. 

Considering the above, the isentropic efficiency of a turbocharger radial turbine is 

generally assessed by the turbine power (𝑃𝑡). The use of a dynamometer on the turbine 

provides a direct measurement, but presents several problems: too narrow range of allowed 

rotational speeds, difficulty in coupling to different turbines and very sensitive 

instrumentation required due to the very low torque levels to be measured. 

The most frequent option for turbine power assessment is to keep the turbocharger 

compressor coupled, evaluating the turbine power 𝑃𝑡 in equation (3.4) starting from the 

measurement of the power absorbed by the compressor (𝑃𝑐) and the estimation of the 

power dispersion caused by friction in the turbocharger bearings (𝑃𝑏) and by windage 

losses (𝑃𝑤). In this case the turbine power can be expressed as follows: 

  𝑃𝑡 = 𝑃𝑐 − 𝑃𝑏 − 𝑃𝑤 (3.4) 

where: 

• the compressor power (𝑃𝑐) can be detected by direct method through pressure and 

temperature measurements at inlet and outlet sections, provided that the piping 

system is properly insulated [56] 

• the mechanical friction losses in bearings (𝑃𝑏) are generally evaluated by their 

geometry and turbocharger working conditions [57]; 

• the windage power losses (𝑃𝑤) are calculated by theoretical and empirical 

correlations based mainly on friction losses of rotating disks [58]. 

Taking into account the above, the thermo-mechanical efficiency of the turbine was 

computed  according to equation (3.3) from the measurement of the power absorbed by the 

compressor and of some thermodynamic quantities at turbine inlet. 

As a final comment, it is noteworthy to remark the consistency of the simulated data in 

comparison with the experimental ones: as visible in Fig. 3.5 and 3.6 it seems that the 

‘predicted’ turbine gives the same power of the ‘measured’ one with less mass flow and 

more efficiency (this is indeed a common trend).  

Overall, the results presented in this section lead to the conclusion that the CFD model is 

able to correctly simulate the behaviour of the turbine studied in full admission. 
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3.1.5. Partial admission validation 

In case of partial admission the CFD values of the mass flow parameter slightly 

overestimate the corresponding experimental values (the opposite was noted in Fig. 3.5 for 

full admission), as shown in Fig. 3.7. The shape of the measured trends is well reproduced 

by numerical data and quantitatively the percentage differences (always below 4.5% - see 

Tab. 3.6) attest to the reliability of the CFD model developed. 

 

Fig. 3.7 - MFP (referred to data set maximum value) vs. PRF in partial admission cases 

 

Considering the total-to-static turbine efficiency, in partial admission the numerical model 

shows the same behaviour already examined in equal admission: CFD data overestimate 

experimental measurements (see Fig. 3.8). The same explanation given above for the full 

admission points can be repeated here. 
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Tab. 3.6 - Percentage difference (CFD vs. EXP) for MFP values in partial admission 

𝑵 

[rpm/(K^0.5)] 

Partial Shroud Partial Hub 

𝑷𝑹𝑭 ∆𝑴𝑭𝑷% 𝑷𝑹𝑭 ∆𝑴𝑭𝑷% 

N1 

1.56 1.55 1.51 1.62 

1.69 1.87 1.62 1.85 

1.77 2.35 1.69 2.76 

N2 

2.35 2.71 2.18 2.44 

2.72 2.53 2.51 3.58 

2.99 3.12 2.76 4.56 

N3 

3.34 3.05 3.15 2.90 

3.72 3.02 3.49 3.23 

4.35 2.84 3.93 3.12 
 

Fig. 3.8 – Total to static (CFD) and Thermo-Mechanical (EXP) efficiency vs. PRF in 

partial admission cases (for confidentiality reasons the efficiency values are not shown) 
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3.2. Twin scroll volute fluid dynamic characterization 

Once the CFD model has been validated, it’s time to analyze the fluid dynamic behaviour 

of the component that most characterizes twin entry radial turbines, that is the volute. 

The main target of this section is the twin scroll volute characterization, i.e. the analysis of 

the total pressure drops through the twin scroll volute and the study of how the exhaust 

gases are distributed from this component to the impeller over a broad range of operating 

points. In particular, the attention was focused on rotor feeding conditions in order to 

understand how much the volute affects turbine overall performance, influencing entropy 

production of the downstream components. 

For completeness, the research work presented in this paragraph refers to a paper [50] 

presented at the TurboExpo congress held in Oslo in 2018; the CFD model is derived from 

the one validated in paragraph 3.1. A single rotor channel was simulated with the rotational 

periodicity boundary condition applied on passage side walls and the discharge pipe was 

replaced by a simple axial extrusion of the rotor domain outlet. This simplified and 

computationally lighter version of the numerical model is denoted in the following as 

“Scroll + single channel model” (which is shown in Fig. 3.9). The numerical setup 

(including mesh, type of boundary conditions applied to the domains, fluid properties, 

turbulence model, etc.) is the same previously presented in 3.1.2. 

 

Fig. 3.9 – Scroll + single channel model: the two volute inlets and the model outlet are 

green, while the impeller blade is orange inside the yellow rotor passage 

 

A fundamental step consists in the definition of significant control sections of the volute in 

order to extract as much information as possible from CFD data post-processing, which 

makes possible to take detections that on experimental side would require very 

sophisticated (and sometimes unfeasible) measurement setups. 

Tab. 3.7 summarizes the operating points selected, over the entire working range, from the 

experimental data set of performance maps. The calculations made on the twin scroll 

turbine relate to three sets of ‘reduced iso-speeds’: 𝑁𝑟𝑖𝑑 = 2688 − 4030 − 5040 (low, 

medium and high rotational speed respectively). 
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Tab. 3.7 - Reduced or non-dimensional BCs values for the Scroll + single channel model 

 

The division of this paragraph into subsections follows the volute characterization, that is 

split into three ‘phases': 

1. quantitative and qualitative assessment of volute losses; 

2. definition of non-uniformity flow parameters; 

3. hub to shroud analysis and introduction of brand new non-uniformity indices. 

 

3.2.1. Quantitative and qualitative assessment of volute losses 

The total pressure values at the inlets and outlet of the volute were calculated through post-

processing as mass flow weighted average on the corresponding control sections. Then the 

dimensionless total pressure drop across the volute was defined as follows: 

 
𝛥𝑝𝑡

𝑝𝑡1
=

𝑝𝑡1𝑏𝑜𝑡ℎ − 𝑝𝑡2

𝑝𝑡1𝑏𝑜𝑡ℎ
 (3.5) 

this parameter relates the total pressure drop due to friction losses (energy equation in 

‘mechanical’ form 𝑑𝑝0 𝜌⁄ = −𝑑𝐿𝑎 - no work exchange in a static component) to the ‘both’ 

volute inlet total pressure, i.e. calculated through equation (1.29). 

It was intentionally chosen not to use the ‘traditional’ loss coefficient used for turbines 

(𝛥𝑝𝑡 𝑝𝑑2⁄ ) because for each admission condition analyzed (e.g. ‘equal’) the volute inlet 

total pressure vary significantly with the reduced speed, leading to some issues in the 

comparison among operating points at different rotational speeds. In fact, the dynamic 

pressure at volute exit (𝑝𝑑2) is remarkably higher for the points at maximum 𝑁𝑟𝑖𝑑 and close 

to choking (‘5040’ series in Fig. 3.10) compared to those at minimum revs and close to 

zero mass flow (‘2688’ series), resulting in a lower value of the corresponding loss 

coefficient if expressed in the 'traditional' formulation. This would give higher loss 

coefficient values for the low reduced speed points (usually with higher efficiency) despite 

the lower total pressure losses in absolute value (𝛥𝑝𝑡). 

Considering the above, an alternative definition (equation (3.5)) of the loss coefficient has 

been introduced, which relates the volute total pressure losses to the amount of ‘energy’ 

(total pressure) available at turbine stator inlet. This choice is even more valid if different 

admission conditions are considered (as in this case): at similar rotational speeds and mass 

flow rates, very different total pressure values are required at volute inlets, also in relation 

to the asymmetry of the studied twin scroll volute. For example, in order to maintain the 
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same rotor speed and overall mass flow, partial shroud admission conditions require higher 

inlet total pressure than partial hub ones. 

Fig. 3.10 – Overall (‘both’) dimensionless total pressure drop of the volute 

 

The first comparison is made between the extreme cases of equal and partial admission 

(see Fig. 3.10). Mass flow values are expressed in non-dimensional form as �̇�𝑎𝑑𝑖𝑚 =
(�̇� − �̇�𝑀𝐼𝑁) (�̇�𝑀𝐴𝑋 − �̇�𝑀𝐼𝑁)⁄ , where �̇�𝑀𝐼𝑁 and �̇�𝑀𝐴𝑋 are respectively the minimum and 

maximum mass flow rates calculated for each admission condition; therefore the points at 

�̇�𝑎𝑑𝑖𝑚 = 1 correspond to three (equal, partial hub, partial shroud) different  �̇�𝑀𝐴𝑋 values. 

As expected, the total pressure drop across the volute increases with the rotational speed 

and also with the mass flow rate along each iso-speed line. Furthermore, it can be noted 

that in partial admission cases the relative increase in the loss coefficient between low 

(𝑁𝑟𝑖𝑑 =2688) and medium (𝑁𝑟𝑖𝑑 =4030) speed is more pronounced than in full admission.  

Fig. 3.11 – Comparison of total pressure contours (fixed scale) on the same volute cross 

section: equal admission on the left, partial hub admission on the right 
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As shown in the comparison proposed in Fig. 3.11, partial admission is characterized by 

higher fluid dynamic losses due to marked recirculation in the unpowered branch; 

coherently the values of dimensionless total pressure drop in partial admission are 

remarkably higher than the corresponding at full admission (Fig. 3.10). 

 

In an attempt to correlate the geometry of each scroll with its associated losses, it is also 

interesting to calculate the total pressure losses across each limb taken individually. To this 

target, two surfaces of revolution (identified in Fig. 3.12) were introduced upstream of the 

vaneless nozzle (constant height channel between volute and rotor), in order to uniquely 

identify each volute branch outlet. The loss coefficient for each volute limb was then 

computed as in equation (3.5) by the ratio between the total pressure drop across the single 

scroll and its inlet total pressure (i.e. 𝛥𝑝𝑡 ℎ𝑢𝑏 𝑝𝑡1 ℎ𝑢𝑏⁄  if the hub side branch is considered). 

Fig. 3.12 – Revolution surfaces that identify each scroll outlet (1=shroud - 2=hub side) 

Fig. 3.13 – Dimensionless total pressure drop of the hub side branch only 
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The analysis highlights that in partial admission the non-dimensional losses in the powered 

volute branch are about double with respect to the corresponding ones in equal admission. 

Furthermore, comparing Fig. 3.13 and Fig. 3.14 the influence of the individual scroll shape 

on losses is evident: shroud side produces more entropy than the hub side branch and this 

is mainly due to the volute cross section asymmetry in the meridian plane. 

Fig. 3.14 – Dimensionless total pressure drop of the shroud side branch only 

In confirmation of the above, Fig. 3.15 shows the behaviour of the flow on a volute cross 

section enlarged in the region between the scrolls divider septum and the rotor leading 

edge: in partial shroud admission the ‘back flow’ condition (described at Chapter 1 in Fig. 

1.15) is much more evident if compared to partial hub admission. The greater losses of the 

shroud side branch taken individually find a clear explanation observing the twin scroll 

volute in meridian view (as in Fig. 3.15): the marked inclination of the shroud limb 

towards axial direction promotes the recirculation in the no flow branch. 

 

Fig. 3.15 – Total pressure contours and velocity vectors projected on a volute cross 

section: comparison between opposite cases of partial admission 
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3.2.2. Non-uniformity flow parameters 

Twin scroll volutes characterization proceeds in the second phase with the identification of 

parameters that can give an insight into the exhaust gas distribution at volute outlet: a 

greater flow unevenness at wheel inlet leads to performance penalties for the rotor and 

therefore for the whole machine. The term ‘performance’ is intended hereafter not only as 

a synonym of efficiency, but also of turbine flow capacity. 

The first non-uniformity flow parameter was identified in the ratio between area-weighted 

average and mass-weighted average of the swirl flow angle (𝛼) at volute outlet. 

 𝑐𝑚 = √𝑐𝑥
2 + 𝑐𝑟

2 (3.6) 

 𝛼 = 𝑎𝑟𝑐𝑡𝑎𝑛(𝑐𝜗 𝑐𝑚⁄ ) (3.7) 

 𝛼𝑅𝑎𝑡𝑖𝑜 = 𝛼𝑎𝑟𝑒𝑎 𝛼𝑚𝑎𝑠𝑠⁄  (3.8) 

 

Fig. 3.16 – (A) Absolute flow angle ratio. (B) Mass flow parameter 
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Fig. 3.16A shows that the partial admission conditions lead to greater flow non-uniformity 

than equal admission; moreover a small difference in 𝛼𝑅𝑎𝑡𝑖𝑜 means a rather different flow 

capacity, as confirmed by the MFP dataset comparison (Fig. 3.16B).  

A better understanding of the discussed trends stems from Fig. 3.17, which shows the 

comparison of the radial velocity contours at the mixing plane (stator-rotor interface): the 

more mass flow locally varies, the more mass-weighted average 𝛼 value diverges from the 

area-weighted average one. Since in an IFR turbine the mass flow rate at rotor inlet is 

given by the radial velocity component, a contour of this variable is meaningful of the 

𝛼𝑅𝑎𝑡𝑖𝑜 behaviour. 

Fig. 3.17 - Radial velocity contours at rotor inlet: equal admission on the left and partial 

shroud admission on the right 

 

The second non-uniformity flow parameter introduced is the axial to radial velocity ratio: 

 𝑉𝑅𝑥−𝑟 =
𝑐𝑥

𝑐𝑟
 (3.9) 

this parameter quantifies how much the actual exhaust gas direction is different from the 

ideal case of purely radial flow at rotor inlet. The velocity ratio is therefore a good 

indicator of the turbine expected performance, despite the fact that velocity values have 

been averaged on rotor inlet section and this does not guarantee a complete local analysis. 

In Fig. 3.18 the axial to radial velocity ratio values are compared according to:  

A) the type of admission condition, on three different reduced speeds; 

B) the way in which the overall mass flow is split into the two scrolls (20% Sh - 80% Hub, 

40% Sh - 60% Hub, 60% Sh - 40% Hub, 80% Sh - 20% Hub). 

Observing trends in Fig. 3.18A it is clear that equal admission cases show a very small 

absolute value of axial velocity compared to the radial component, in contrast with the 

partial shroud admission conditions, where the two components are almost equivalent 

(velocity ratio near one). Partial hub admission points, on the other hand, are characterized 

by intermediate absolute values of 𝑉𝑅𝑥−𝑟 with respect to the other admission conditions, 

but of opposite sign: this is due to the positive sign of the axial speed component at rotor 

inlet, while radial component is always negative because it is directed towards rotor axis. 

It is also interesting to comment on the unequal admission results, that are compared with 

those of equal admission in Fig. 3.18B: 

• high shroud scroll mass flow ratios (𝑀𝐹𝑅𝑠ℎ = �̇�𝑠ℎ �̇�𝑡𝑜𝑡⁄ ) result in an increase of 

the axial velocity absolute value, hence of the 𝑉𝑅𝑥−𝑟 ;  
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• in case of slightly unbalanced admission towards the hub side branch, the axial 

velocity decreases in absolute value leading to very positive results: the ‘40Sh 

60Hub’ (i.e. 𝑀𝐹𝑅𝑠ℎ = 40% and 𝑀𝐹𝑅ℎ𝑢𝑏 = 60%) series shows 𝑉𝑅𝑥−𝑟 values 

lower than those of the equal admission series; 

• high hub scroll mass flow ratios (𝑀𝐹𝑅ℎ𝑢𝑏 = �̇�ℎ𝑢𝑏 �̇�𝑡𝑜𝑡⁄ ) result in  axial velocity 

sign change, thus causing negative values of 𝑉𝑅𝑥−𝑟 (see the ‘20Sh 80Hub’ series).  

Fig. 3.18 – Axial to radial velocity ratio at rotor inlet in various admission conditions 

 

The comparison between partial shroud admission operating point at �̇�𝑎𝑑𝑖𝑚 = 1 (Fig. 

3.18A) and the corresponding ‘80Sh 20Hub’ unequal admission point (Fig. 3.18B) 

deserves a final comment: if the hub side volute branch is fed with at least 20% of the 

overall turbine mass flow it is possible to significantly align the flow discharged from the 

volute to the radial direction, bringing the twin scroll radial turbine closer to ideal 

theoretical operation. 
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3.2.3. Hub to shroud analysis and definition of brand new non-uniformity indices 

In order to generalize the analysis and make it applicable and comparable with other 

studies, in this section an appropriate non-dimensional index is introduced in an attempt to 

correlate the turbine performance to the studied flow non-uniformity at rotor inlet. To this 

purpose, the hub-to-shroud span at wheel inlet was divided into 21 sampling points to 

systematically compare the results from the CFD database. Fig. 3.19 shows the flow angle 

trends along the span (0% = hub - 100% = shroud) at rotor inlet:  

a) in partial shroud admission (Fig. 3.19a)  the 𝛼 values are uniform up to 60% of the 

span; beyond this value a drastic reduction of the swirl flow angle can be noted. 

This is caused by an heavy flow velocity unevenness towards the shroud, which is 

the most crucial region for high work exchange;  

b) in partial hub admission (Fig. 3.19b) flow angle variations along inlet blade height 

are limited  and the spanwise mean value is comparable with that measured near the 

shroud. 

Fig. 3.19 –  Flow angle spanwise trends for partial admission: a) shroud, b) hub side 
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The physical explanation for the different hub to shroud distribution of the swirl angle can 

be found in its formula (equation (3.7)): 𝛼 is in fact inversely proportional to meridian 

velocity. In particular, the radial component (𝑐𝑟) in partial shroud admission drastically 

increases near the shroud (see the right half of Fig. 3.17), thus reducing the value of the 

flow angle. This is due to the convexity of the shroud surface which generates a strong 

flow acceleration in this zone. In the partial hub case instead, this effect is felt much less 

since most of the flow rate is discharged towards the impeller from the rotor hub side and 

therefore the spanwise distribution of alpha is more uniform. 

 

According to the experience gained on the database, a set of five percentage values of span 

(10-25-50-75-90%) were considered a proper discretization for flow non-uniformity index 

assessment. Furthermore, it should be remembered that a greater flow distortion close to 

the rotor shroud is more critical than a non-uniformity toward the hub, due to the different 

peripheral speed values that affect the work exchange within the streamtubes. 

The index is therefore defined as a weighted average, based on the position along the span 

(weights increasing towards the shroud), of 𝛼𝑛 deviations from mean value (�̅�), as below:  

𝛼𝑖𝑛𝑑𝑒𝑥 =
1

(𝑛. 𝑣.  ∙ �̅�)
[ 0.1|𝛼10 − �̅�| + 0.25|𝛼25 − �̅�| + 0.5|𝛼50 − �̅�| + 

+ 0.75|𝛼75 − �̅�| + 0.9|𝛼90 − �̅�|] 

(3.10) 

where n.v.=5, �̅� is the mean value of the swirl flow angle at rotor inlet and 𝛼𝑛  corresponds 

to the flow angle computed at the n-th percentage of the span (0% = hub - 100% = shroud). 

 

The strong radial orientation of the hub side scroll determines an almost constant flow 

angle along the span in partial hub admission (as already shown in Fig. 3.19b), 

consequently 𝛼𝐼𝑛𝑑𝑒𝑥 values are significantly lower than the corresponding in partial 

shroud admission. A good connection between 𝛼𝐼𝑛𝑑𝑒𝑥 and turbine performance is 

confirmed by Fig. 3.20 and Fig. 3.21: in fact partial shroud admission working points 

present higher 𝛼𝐼𝑛𝑑𝑒𝑥 values that match to lower total to static efficiency.  

Fig. 3.20 –  Flow angle index trends in partial admission cases 
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Fig. 3.21 –  Total to static efficiency trends in partial admission cases 

 

The careful reader may note that the distortion suffered by the flow in partial shroud 

admission has less influence on efficiency at 𝑁𝑟𝑖𝑑 = 2688: in this case, in fact, the 

peripheral speed is lower and the absolute circumferential velocity at rotor inlet is 

proportionally less affected by the drastic decrease in the flow angle at the shroud (Fig. 

3.19a). Therefore at the minimum reduced speed the total to static efficiency remains 

slightly higher in partial shroud admission because this condition feeds the rotor 

privileging the shroud area, where the streamtubes exchange more work to the wheel. 

It is worth noting that full admission operating points are intentionally excluded from the 

comparison because the 'equal' turbine flow capacity is very different from partial 

admission cases (see Fig. 3.16B). Therefore, even if the 𝛼𝐼𝑛𝑑𝑒𝑥 is expected to be very 

close to zero in equal admission functioning, it is not reasonable to achieve higher 

efficiency than in partial admission conditions, since the mass flow rate through the turbine 

is rather different. 

 

3.3. Backside cavity influence on turbine performance 

This paragraph deals with the influence of the backside cavity on twin scroll turbine fluid 

dynamic behaviour: the cavity was introduced into the 3D CFD complete model (volute 

and full rotor – see Fig. 3.4) in order to understand its effect on performance parameters. 

The outcomes of this research work have been published in the International Journal of 

Rotating Machinery [49]. 

The numerical setup and the set of operating points are the same as previously described in 

sections 3.1.2 and 3.1.3 respectively; since pressure boundary conditions are kept equal to 

those of the already presented ‘no cavity’ cases, overall mass flow is not remarkably 

affected by the cavity; therefore the performance parameter chosen to compare the cases 

with or without backside cavity is the total-to-static efficiency. 

For a correct interpretation of the results presented in this paragraph it is important to 

specify that the CFD model including the fluid cavity upstream of the seal does not 

simulate a leakage flow through the seal itself, but only the windage losses inside the 

cavity. This choice is crucial to isolate the fluid dynamic effect of the backside cavity on 
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turbine performance, without taking into account the performance drop caused by a certain 

flow rate bypassed through the seal. 

In partial shroud admission the presence of the backside cavity seems to have a positive 

influence on turbine efficiency. A qualitative assessment of the flow field shown in Fig. 

3.22 leads to the conclusion that the cavity mitigates the back flow condition typical of 

partial shroud admission for this twin scroll volute, resulting in slightly higher total to 

static efficiency values (see following Fig. 3.24B). 

Fig. 3.22 –  Velocity vectors projected on a volute cross section for partial shroud 

admission: A) with and B) without backside-cavity 

 

The numerical evidences highlight that the presence of the cavity alters the flow structure 

at the rotor inlet: following the same approach already proposed in 3.2.3 for the 𝛼𝐼𝑛𝑑𝑒𝑥, 

an additional performance index based on hub to shroud total pressure distributions has 

been introduced. The goal is to correlate the flow structure at the rotor inlet with the 

turbine performance in presence of backside cavity; since the total pressure is linked to the 

amount of energy potentially extractable from the streamtubes, a large spanwise variation 

of this quantity at rotor inlet affects turbine efficiency. 

The index is therefore defined as an average of the absolute values of ‘local’ deviations of 

total pressure from spanwise mean value (𝑝�̅�), as below:  

𝑝𝑡 𝑖𝑛𝑑𝑒𝑥 = (
1

𝑛. 𝑣.  ∙  𝑝�̅�
) [|𝑝𝑡 5 − 𝑝�̅�| + |𝑝𝑡 20 − 𝑝�̅�| + |𝑝𝑡 40 − 𝑝�̅�| + 

+|𝑝𝑡 60 − 𝑝�̅�| + |𝑝𝑡 80 − 𝑝�̅�| + |𝑝𝑡 95 − 𝑝�̅�|] 

(3.11) 

where 𝑝𝑡 𝑛 is the total pressure post-processed at the corresponding n-th percentage value 

of the span (0% = hub - 100% = shroud) and 𝑛. 𝑣. is the number of span locations 

considered for the 𝑝𝑡 𝑖𝑛𝑑𝑒𝑥 calculation (n.v. = 6 in equation (3.11)).  

The careful reader may note that in this case the total pressure local deviations from hub to 

shroud mean value are not weighted with the relative position along inlet blade height. In 

fact, backside cavity effects on flow field are concentrated on the hub side, hence a 

formulation similar to equation (3.10) would result in a significant minimization of the 

influence of total pressure non-uniformity in that specific zone. 



71 

 

It is important to stress that this brand new index does not replace 𝛼𝑖𝑛𝑑𝑒𝑥, which remains 

valid for the evaluation of volute performance, but improves the description of flow non-

uniformities at rotor inlet in presence of backside cavity. 

 

Fig. 3.23 –  Partial shroud admission: spanwise total pressure trends (a) with and          

(b) without cavity (the different colors refer to various rotational speeds) 

 

The hub to shroud total pressure distributions at rotor inlet are plotted in Fig. 3.23 for both 

cases with and without cavity. It can be noted that total pressure values are reported in non-

dimensional form as the ratio (𝑝𝑡/𝑝𝑡_𝑚) between local and average spanwise value for all 

tested rotational speeds. The dimensionless total pressure trends evidence that in partial 

shroud admission when the backside cavity is not included in the CFD model (Fig. 3.23b) 

the total pressure values near hub endwall (close to zero span position) are generally lower 

than those measured with cavity (Fig. 3.23a) and this difference is more evident at high 

rotational speeds. This seems to suggest that the presence of the cavity in case of partial 

shroud admission leads to an improvement in the performance of the turbine, with less 

unevenness in the spanwise total pressure profile at rotor inlet. 

Starting from the hub to shroud total pressure data, the non-uniformity index was 

calculated and the resulting trends as a function of the PRF are reported in Fig. 3.24a. The 
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𝑝𝑡𝑖𝑛𝑑𝑒𝑥 shows a good correlation with the turbine total-to-static efficiency (Fig. 3.24b): 

higher total pressure index values match to lower efficiency and vice versa. The trends also 

confirm that in partial shroud admission the turbine has higher efficiency when the cavity 

is included in the CFD model. 

Fig. 3.24 – Cavity effect in partial shroud admission: A) total pressure index vs. PRF;       

B) total to static efficiency vs. PRF 

 

Once the case of partial shroud admission has been discussed, the opposite operating 

condition is considered. As shown in the following Fig. 3.26, in partial hub admission the 

local values of total pressure referred to the respective spanwise averaged value (𝑝𝑡_𝑚) are 

higher near the hub region in absence of cavity, unlike what was previously noted. 
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Fig. 3.25 –  Velocity vectors projected on a volute cross section for partial hub admission: 

A) with and B) without backside cavity 

 

Fig. 3.26 –  Partial hub admission: spanwise total pressure trends (a) with and (b) without 

cavity (the different colors refer to various rotational speeds) 
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The total pressure hub to shroud distributions in Fig. 3.26 show that in partial hub 

admission the backside cavity tends to slightly increase the unevenness in the spanwise 

total pressure profile at rotor inlet; thus in presence of cavity lower values of the total to 

static efficiency are expected. The goodness of the correlation existing between 𝑝𝑡𝑖𝑛𝑑𝑒𝑥 and 

total to static efficiency is confirmed once again in Fig. 3.27: higher values of the index 

(with cavity in this case) match to lower efficiency and vice versa. 

Fig. 3.27 – Cavity effect in partial hub admission: A) total pressure index vs. PRF;                  

B) total to static efficiency vs. PRF 
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The cases with or without backside cavity are now considered separately, analyzing the 

turbine performance difference in partial ‘shroud’ and ‘hub’ admission by mean of the total 

pressure index. In both cases it can be noted that the flow non-uniformity index is well 

correlated with the total to static efficiency: 

1. in absence of cavity (Fig. 3.28) partial shroud admission points present higher 

𝑝𝑡𝑖𝑛𝑑𝑒𝑥 values hence lower efficiency than partial hub admission cases; 

2. in presence of cavity (Fig. 3.29) turbine performance are affected up to the point 

that the ‘no cavity’ efficiency trends are reversed (compare Fig. 3.28b and 3.29b): 

the cavity gifted radial turbine shows better performance in partial shroud 

admission rather than in partial hub admission. This is confirmed by the respective 

values of the total pressure index. 

Fig. 3.28 –  Performance comparison between partial shroud and partial hub admission 

without backside cavity: a) total pressure index; b) total to static efficiency 

 

Fig. 3.29 –  Performance comparison between partial shroud and partial hub admission 

with backside cavity: a) total pressure index; b) total to static efficiency 

 

These results highlight the importance of the cavity in this specific volute configuration. 

The proposed performance index, which is based on the spanwise distribution of total 

pressure at rotor inlet, has demonstrated its effectiveness in predicting the performance of 
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the turbine under examination, correlating directly to the total to static efficiency of the 

machine. 

 

As a final comment of this chapter, the peculiar twin scroll volute configuration, thanks to 

its strong geometrical asymmetry, facilitated the detailed investigation of flow structures in 

partial admission and the introduction of flow distortion parameters that would be effective 

for the design optimization of twin entry volutes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



77 

 

Chapter 4  
 

 

 

A software platform for the 

application of UQ techniques to 

CFD simulations 
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After a deep study of twin scroll turbines fluid dynamic behaviour, this chapter deals with 

the development of an in-house software platform to apply uncertainty quantification 

techniques to CFD simulations. The aim is to integrate UQ models and methodologies 

(which combine mathematics, statistics and engineering) used by some academic research 

centers with well established commercial CFD solvers. 

The open source toolkit ‘Dakota’ was identified as the appropriate code for the part 

regarding the generation of the DoE, the application of the Response Surface Methodology 

and the use of Uncertainty Quantification techniques. 

For what concerns the fluid dynamic solver, Dakota has been interfaced with: 

1) Ansys Fluent® (the application of the resulting platform is the topic of chapter 5); 

2) Ansys CFX® (the results of this layout are discussed in chapter 6). 

The use of two different CFD codes stems from the intention to show the application of 

UQ techniques to different cases of industrial interest, each of which must be treated with a 

specific solver. On the one hand Fluent has many customization options that make it 

suitable for the supersonic nozzle because a specific solver setting is required; on the other 

hand, CFX is the proper code for turbine simulation thanks to its dedicated “Turbo-mode”. 

 

4.1.  Dakota overview: a toolkit for uncertainty quantification 

The acronym ‘DAKOTA’ stands for “Design and Analysis toolKit for Optimization and 

Terascale Applications”; it is a general-purpose software toolset for performing design of 

experiments, sensitivity analysis, optimization and uncertainty quantification on HPC (high 

performance computers). Dakota downloads are provided for Windows® and Linux®; 

alternatively, Dakota can be built from the source code to customize it with additional 

packages. When compiling from source, Windows users should typically use a ‘.zip’ 

Dakota source archive, while Unix-based OS users should typically use a Dakota ‘.tar.gz’ 

source archive to avoid issues with source generation utilities and line ending conversion. 

Dakota is developed and supported by U.S. Sandia National Labs, it is well documented 

[28, 47, 59] and comes with many tutorials. The software releases are freely available 

worldwide via GNU General Public License. Dakota capabilities include: 

• parameter studies, to explore the effect of parametric changes within simulation 

models in order to evaluate the characteristics of the simulation itself (e.g. 

smoothness), that in turn influence the choice of specific algorithms in further 

analyses (e.g. UQ); 

• Design of Experiments (DoE) and Design and Analysis of Computer Experiments 

(DACE), to probe the parameter space of an engineering design problem, but with 

the main target of a good coverage of the input parameter space (e.g. LHS); 

• Sensitivity Analysis (SA); 

• Uncertainty Quantification (UQ), to calculate probabilistic information on the 

response functions based on simulations performed according to user-specified 

probability distributions of the input parameters; 

• optimization via gradient-based methods, derivative-free local and global methods, 

to minimize costs or maximize system performance, as predicted by the simulation 

model, subject to constraints on input variables or secondary simulation responses; 
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• Surrogate based optimization (SBO) and Surrogate based uncertainty quantification 

(SBUQ), to use approximate representative models of an expensive high-fidelity 

model as computationally cheap stand-ins for optimization or UQ purposes; 

• Matlab®, Scilab and Python™ interfaces. 

 

The reader may ask, why use Dakota and not Matlab, Scilab, Octave, Python? The main 

reasons can be summarized in the following list: 

➢ generic interface to black box solvers; 

➢ scalable parallel computations from desktop to clusters; 

➢ extensively validated; 

➢ fully scriptable; 

➢ simulation failure capturing; 

➢ restart capabilities; 

➢ parallel asynchronous or concurrent evaluations. 

 

Fig. 4.1 summarizes the typical loop for uncertainty quantification applied to 

computational fluid dynamics: first of all the design variables are passed to the black box 

solver (Fluent or CFX in the cases studied) which numerically solves the Navier-Stokes 

equations reaching convergence on the quantities of interest of the UQ problem. The QoI 

are then collected by Dakota, which evaluates the statistics of the response functions of the 

engineering problem and generates new input variables according to the algorithm and the 

design space defined by the user inside Dakota input file. 

Fig. 4.1 – Uncertainty quantification loop 
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4.2.  Dakota input file 

Dakota can be run from a UNIX® or Windows® command prompt; it uses a single input 

file, with the extension ‘.in’. In this input file the user can formulate the problem, that is: 

variables, method to use and responses. Additionally, it is possible to define the interface 

to the black box solver (which also depends on the operating system) and the environment. 
If the user misspells something or uses a keyword that does not exist in the input file, 

Dakota will list the available options; furthermore, if the user forgets a mandatory entry in 

the input file, Dakota will complain and will ask for that value. Optional entries will use 

the default values; in general, it is possible to refer to the documentation for more 

information about the compulsory and optional entries of each method. 

The diagram in Fig. 4.2 shows the essential elements that make up the structure of the 

Dakota input file (for the sake of brevity the script details are omitted). 

Fig. 4.2 – ‘Key’ subsets of Dakota input file 

 

The ‘environment’ and ‘method’ keywords identify the sections in which the algorithm is 

defined: environment concerns general settings (graphical and tabular output), while 

method indicates the method used, such as the Latin hypercube sampling (LHS), and 

relative specific settings. 

A ‘model’ provides a logical unit for determining how a set of variables is mapped into a 

set of responses.  The model allows the user to specify a single interface or to manage 

more sophisticated mappings involving surrogates or nested iterations. 

The ‘variables’ section defines the parameters (design variables) that are provided as input 

to the simulation; the user must indicate the lower and upper bounds of each variable, thus 

identifying the design space. In a UQ problem it is also necessary to establish the 
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probability distribution function associated with each input variable: e.g. in case of a 

Gaussian, this is uniquely defined by mean value and standard deviation. 

Another fundamental aspect to define inside the variables field are the ‘descriptors’, i.e. 

the identifiers of each variable of the problem, which must appear in the ‘.template’ file 

(that can be a file related to geometry, mesh, or CFD model). The values of the variables 

are passed in input to the .template file by Dakota at each iteration of the loop (Fig. 4.1), 

according to the predetermined method.  

The ‘interface’ field is necessary to map from variables to responses; the ‘system’ call 

interface has been a workhorse for many years and it is well tested, but the ‘fork’ interface 

supports additional capabilities and it is recommended when managing asynchronous 

simulation code executions. In the ‘interface’ block of the input file the user defines [60]: 

❖ the level of parallelism through the keywords ‘asynchronous’ and 

‘evaluation_concurrency’. The latter defines the number of concurrent simulations 

performed on the HPC (concurrent simulations are an efficient way to exploit 

computational resources); 

❖ the ‘analysis driver’ (details at paragraph 4.3), i.e. a shell script which is essential 

for interfacing Dakota with the black box solver or external programs in general. In 

this entry the user executes the simulation script which provides to call the 

programs, manipulate files and do the post-processing. This script contains the 

instructions of how to copy the input generated by Dakota (‘params.in’) to the 

input format needed by the simulator program. In addition, through this script the 

user redirects the simulation output file (‘results.out’) to Dakota for reading; 

❖ the ‘work_directory’, i.e. a directory created by Dakota at each evaluation, with 

optional tagging (‘directory_tag’) and saving (‘directory_save’). Everything will be 

done in the working directory and all evaluations are relative to the current working 

directory. If the directory_tag keyword is used, Dakota will add a period and the 

function evaluation number to the working directory names (‘workdir.N’). Tagging 

is most useful when multiple function evaluations are running simultaneously; 

❖ ‘copy_files’, i.e. an entry which defines the directory where all files needed to run 

the simulation are located. The location of this directory is in reference to the case 

directory ( 'templatedir/*' ). 

The final section of Dakota input file deals with the ‘responses’, i.e. model output(s) to be 

studied or the response metrics. In a UQ problem these are the QoI for which the 

evaluation of probability distribution functions is required; even in this case it is essential 

to assign an acronym (descriptor) to each output, so that it can be uniquely identified by 

Dakota within the loop. 
 

4.3.  Analysis driver: connecting Dakota to external codes  

This paragraph is dedicated to an in-depth analysis of the typical structure of the analysis 

driver. The ‘simulator_script’ file provides pre- and post-processing functionality in order 

to transfer the input parameters from Dakota to a selected external code and to extract the 

response values of interest from the simulator’s output file for return to Dakota. 

In this section some references are taken from the simulator script (developed for 

Windows® environment) which is part of the UQ platform used to evaluate the effect of 

uncertainty on the tip clearance of the rotor of a twin scroll turbine (see more in chapter 6).  

A fundamental prerequisite for operation in Windows is the setting of some programming 

languages including Python and Perl; furthermore, the definition of specific 'environment 

variables' of the operating system is required. 
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The main elements of any simulation interface (‘system call’, ‘fork’,‘direct’) are (Fig. 4.3):  

o an input filter (‘I Filter’) to insert the Dakota parameters into the input files 

required by the simulator program; 

o one or more analysis drivers (‘Analysis Code/Driver’); 

o an output filter (‘O Filter’) to resume the raw data from the simulation results and 

compute the target response data set. 

 

Fig. 4.3 – The ‘black box’ interface between Dakota and a user-supplied simulation code 

with the components of the simulation interface 

 

Two cases can be distinguished: 

▪ single analysis code → detached input and output filter facilities are seldom used and it 

is often convenient to merge these pre- and post-processing functions in a single script; 

▪ multiple analysis drivers → input and output filter facilities provide a convenient 

means to handle non-repeated portions of the pre- and post-processing for multiple 

analyses. This means that pre- and post-processing tasks that must be performed for 

each run can be executed within the individual analysis drivers, while shared pre- and 

post-processing tasks that are performed only once for the analysis set can be carried 

out within the input and output filters. 

The first part of the analysis driver file is usually dedicated to pre-processing. Dakota is 

packaged with two ‘template’ processing tools that are intended for use in the pre-

processing phase of analysis drivers: 

a) the first, ‘pyprepro’, features simple parameter substitution, setting of fixed 

variable names and provides full access within templates to the entire Python 

programming language [28]. As such, templates may contain loops, conditionals, 

lists, dictionaries, and other characteristics of the Python language; 

b) the second, ‘dprepro’, uses the same template engine as pyprepro and additionally 

understands Dakota’s parameter file formats. In particular, when using dprepro in 

an analysis driver, Dakota variables become available for use within templates; this 

is the case of the UQ platforms illustrated in the next paragraphs 4.4 and 4.5. 
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Some further details on the operating logic of an analysis driver are provided to the reader 

considering, as reference case, the analysis driver set up for the UQ analysis on the rotor 

tip clearance effect for a twin entry turbine (discussed at chapter 6). In this case the pre-

processing section of the simulator script can be summarized in the following steps: 

1) at first Python is called to run dprepro that passes the values of the input parameters 

(params.in file from Dakota) to the .template file, inside which the descriptors of the 

input variables are located. The descriptors are clearly recognizable within the file 

because they are included in braces, as in Fig. 4.4. 

Fig. 4.4 – Extract from the ‘.template’ file: input variables identified by curly brackets 

 

The result of this first step is the generation of the ‘.tst' file that contains the setting for 

the generation of the rotor structured mesh in Ansys TurboGrid®. At each loop of the 

analysis the geometry at the rotor tip is modified starting from the ‘.curve’ files (which 

define by points the hub, the shroud and the blade via stacking sections). For all cases it 

is correct to use the same mesh setup (target passage mesh size, number of elements in 

the 'O' around the blade, etc.) since the modified geometric parameters involve slight 

variations in the geometry (contained within millimeters in the specific case); 

2) the second step is the generation of the rotor mesh, a process launched in batch through 

the ‘MESH_ROTOR_VARIABLE_TC.tse’ file (see Fig. 4.5) which recalls the .tst 

returned at the first step and produces the rotor mesh file (‘.gtm’). The structured rotor 

grid with the new clearance values is then imported into Ansys CFX-Pre® for the 

generation of the CFD model; 

3) the final step of the pre-processing phase is up to the ‘.pre’ file, which in turn needs: 

▪ .gtm for the rotor mesh to be imported in CFX-Pre; 

▪ ‘.cfx’, an intermediate save format for not yet complete CFD models, which already 

contains the twin scroll volute and exhaust pipe meshes (that are not subject to 

geometrical variations); 

▪ ‘.ccl’ file which imports the CFD model settings, i.e. boundary conditions of the 

simulated point, operating fluid properties, turbulence model, number of iterations, 

timestep, etc. 

The output of the pre-processing section is the ‘.def’ file, i.e. the CFX-Pre file format to be 

imported into the numerical solver (Ansys CFX-Solver Manager®). 

 

The second part of the analysis driver file concerns the launch of the simulation and the 

solution post-processing to extract the values of the response functions of interest. The 

CFD solver loads the case (‘TWIN_SCROLL_ROTOR_SINGLE_CH.def') and runs the 

simulation in parallel on the calculator cores. A detail that can speed up convergence is the 

initialization of the calculation with a result file (‘.res’) obtained from a simulation 

conducted a priori with an example rotor mesh. Once the calculation is completed, the next 

step is post-processing, performed in batch through a macro. 
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Fig. 4.5 – Template folder structure for the UQ analysis on the rotor tip clearance effect 

 

The ‘MACRO_RESULTS_TWIN_SCROLL_TC_VARIABLE.cse’ file imports the results file 

generated at each iteration of the analysis loop and contains a Perl language script 

(compatible with Ansys CFD-Post® Command Editor) to extract the selected output data 

of the problem from the results of the numerical solution and then to print these 

information in a text file named 'risultati.txt'. However, this output file is not what is 

passed to read in Dakota for two reasons: 

• at each calculation performed it is possible to save much more post-processing 

information than the limited set of response functions defined in Dakota; 

• the result file to be passed to Dakota for UQ analysis must contain the values of the 

selected response functions in a predefined order, established at the assignment of 

the descriptors for the responses in the final part of the Dakota input file. 

For the reasons listed above it is therefore necessary to insert Perl language instructions in 

the final part of the analysis driver in order to:  

➢ recognize each of the response functions within 'risultati.txt' by the name assigned 

to each output (e.g. "Corrected Mass Flow"); 

➢ obtain the corresponding value from the 'risultati.txt' file; 

➢ print the values in predetermined order in the ‘results.tmp’ file, i.e. a temporary file 

whose values are then passed to Dakota results file (‘results.out’), closing the 

analysis loop. 

 

The extrapolated response function values (‘results.out’) are inserted next to the values of 

the input parameters (‘params.in’) on each row of the DoE output results table 

(‘table_out.dat’); it is therefore possible to plot 3D surfaces from DoE results through a 

program suitable for the elaboration of numerical data (e.g. Octave) in order to assess the 

sensitivity of the quantities of interest to the input parameters. 



85 

 

4.4.  UQ platform for Ansys Fluent® : supersonic nozzle case  

The input/output files and shell scripts needed to use Dakota have been detailed in the previous sections. This paragraph now focuses on 

the structure of the UQ platform developed for the uncertainty quantification analysis conducted on a supersonic de Laval nozzle, whose 

results are the main subject of chapter 5. In this case a Surrogate-Based UQ technique was applied, involving two steps: 

1) the generation of a DoE with a sufficiently large number of samples and such as to guarantee optimal coverage of the design space; 

2) the application of the response surface methodology and the use of the sampling-based UQ technique on the generated surrogates. 

In the first step (Fig. 4.6) the input parameters (params.in) generated by Dakota input file according to the selected algorithm (e.g. Latin 

hypercube sampling) are passed to dprepro, which performs the pre-processing phase once called by the analysis driver.  

The 'workdir.N' folder is generated from the template folder (‘templatedir’), where ‘N’ stands for the N-th loop iteration (i.e. the N-th 

sampling point of the design space). Each working directory contains a ‘.cas’ file (Fluent format for the CFD model) in which the nozzle 

mesh has already been loaded; the CFD model is edited via ‘Fluent_auto.jou’, i.e. a journal file generated at each loop by copying the input 

parameters values inside the ‘Fluent_auto.template’ (that is located in the template folder). 

Fig. 4.6 – Dakota coupled to Ansys FLUENT® - 1st step: DoE generation loop 
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Once the solver input file is written with the updated boundary conditions, the ‘simulator_script’ launches the calculation and the quantities 

of interest are printed in monitoring files (‘Monitors.out’) at each iteration of the numerical solution of the Navier-Stokes equations. The 

analysis driver then executes a sequence of post-processing instructions that lead to the generation of a results file formatted according to 

what has been specified in Dakota input file. The loop ends when the output file ('Results.out') is passed to Dakota, which in turn inserts the 

quantities of interest next to the input parameters on each line of the DoE tabular data file ('Table_out.dat'). 

In the second step (Fig. 4.7) the analysis driver is basically a dummy file necessary for Dakota to work and the template folder is empty. In 

fact this time the analysis driver does not have to perform any analysis, since the previously generated DoE dataset is used to build the 

metamodel. Nevertheless, new input parameters and results are visible in Fig. 4.7 because the uncertainty quantification is performed 

through LHS. The input parameters (params.in), taken within the design space and according to user-defined probability distributions, are 

used to sample the generated surrogates, while the ‘Results.out’ file is the process outcome. The output file is finally used by Dakota to: 

➢ build the tabular file containing inputs and outputs for all the sampling points of the response surfaces (‘table_UQ_surr.dat’); 

➢ calculate the probability distributions of the response functions and evaluate their statistical quantities, the ultimate goal of the platform. 

 

Fig. 4.7 – 2nd step: RSM and sampling-based UQ 
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The careful reader may note that inside the flowcharts presented in this paragraph no 

reference is made to the validation of the surrogates. This choice is intentional to simplify 

the understanding of the workflows; obviously, once the surrogate models have been 

generated and the PDFs of the outputs have been computed, different methodologies are 

applied to test the reliability of the metamodels and consequently validate the results 

obtained from the UQ analysis (see the applications in chapters 5 and 6). More specifically, 

Dakota allows to calculate diagnostic metrics of surrogate models on the basis of the 

estimated prediction error (e.g. by cross-validation or with respect to a challenge data set). 

A final noteworthy comment concerns the number of sampling points (CFD simulations) 

necessary to obtain a reliable surrogate. Said that this number is certainly connected to the 

characteristics of the system to analyze and to the number of input variables of the 

problem, a practical method to test the goodness of the metamodel consists in: 

(1) generate a surrogate with a certain number of sampling points;  

(2) perform “checking” CFD simulations in points not used for the metamodel generation; 

(3) compare the CFD results with those obtained by sampling the surrogate. 

If the prediction error is lower than the level of accuracy with which the response functions 

have to be estimated, the number of sampling points can be considered sufficient. 
 

4.5.  UQ platform for Ansys CFX® : twin scroll turbine case  

This paragraph deals with the UQ platform set up for the application of different 

uncertainty quantification methodologies to the rotor tip clearance effect in a twin scroll 

radial turbine (subject of chapter 6). Alongside the well-tested UQ procedure based on 

sampling of response surfaces, it was decided to try a method of increasing interest in the 

UQ research area, namely the polynomial chaos expansion (PCE – theory details at section 

2.6). Therefore in the following the SB-UQ platform is illustrated first and then the PCE. 

 

4.5.1. Surrogate-Based UQ platform for Ansys CFX® 

The same steps illustrated at section 4.4 for the supersonic nozzle are repeated here for the 

radial turbine; however a higher level of sophistication is added to the previous platform 

because the input parameters are no longer boundary conditions of the CFD model, but 

geometric variables. This entails a greater complexity of the ‘template’ directory structure 

(see Fig. 4.5), which must also contain the files necessary to create the mesh to be 

imported into the fluid dynamic model. The template directory shown in Fig. 4.8 is the 

same displayed with more details in Fig. 4.5. During the pre-processing phase the ‘.tst’ file 

(containing rotor mesh setup details) is generated starting from the ‘.template’ located 

inside the template folder; inside ‘.tst’ file the input variables are updated for each DoE 

sample according to the values generated by Dakota input file and then passed to 

‘params.in’. Once the rotor channel structured mesh is generated (‘.gtm’ file), CFX-Pre is 

called by the analysis driver which executes the CFD model setting instructions contained 

in ‘TURBINA_MODEL_SETUP.pre’. The CFX-Solver Manager® input file (‘.def’ format) 

is then written and the CFD simulation is performed starting from an initialization results 

file. The post-processing phase uses CFD-Post® to load a user-defined macro (‘.cse’) 

which extracts the main information from the solver output file (‘.res’). Finally a Perl 

language script formats the 'results.out' file to be read in Dakota, which in turn writes the 

DoE tabular data file.  

For what concerns the 2nd step of the Surrogate Based-UQ procedure, the same algorithm 

and structure shown in Fig. 4.7 for the supersonic nozzle are valid for the turbine case.  
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The main changes are located inside the Dakota input file, which contains different input variables, probability distributions, response 

levels, response functions, etc. 

Fig. 4.8 – Dakota coupled to Ansys CFX® - 1st step: DoE generation loop 
 

4.5.2. PCE UQ platform for Ansys CFX® 

In this case the structure of the template folder and analysis driver coincides exactly with that already illustrated (Fig. 4.5) for the UQ 

method based on sampling of metamodels. The main differences are instead in the algorithm used: the uncertainty this time is quantified 

through a single logic block, i.e. with a single Dakota input file. As mentioned in section 2.6, PCE method estimates its coefficients using a 

spectral projection technique; numerical approximations are performed using a quadrature approach and this requires the specification of 

the ‘quadrature_order’ of the method. In this application case the Gaussian quadratures are selected using an isotropic approach. Therefore 

the UQ algorithm uses the same quadrature order (denoted by ‘m’) for the input variables (clearance values at rotor leading edge and 

trailing edge, i.e. two dimensions), resulting in a total of 𝑚2 function evaluations to compute the PCE coefficients.  
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Inside the method section of Dakota input file it is necessary to specify the number of response levels for all quantities of interest of the UQ 

problem; furthermore, if the user wants that Dakota computes response functions probability distributions with a pre-established 

discretization, the response levels for each response function must be specified bin by bin.  

In conclusion of this chapter, Fig. 4.9 shows the structure of the platform prepared for the application of the UQ technique based on PCE 

method: a single logic block contains all instructions necessary to pass from input variables PDFs to the statistics of the output responses. 

Fig. 4.9 – Dakota coupled to Ansys CFX® - UQ platform for Polynomial Chaos Expansion 
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Uncertainty quantification 

approach on numerical simulation 

for supersonic jets performance 
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The performance prediction of a component or system under investigation is the main issue 

of any engineering design problem, due to the variability of operating conditions or the 

uncertainty on input data (boundary conditions or geometric tolerance).  

In this chapter the propagation of uncertainty on boundary conditions through a numerical 

model of supersonic nozzle is investigated. The evaluation of the statistics of the problem 

response functions is performed following 'Surrogate-Based Uncertainty Quantification' 

(see more in paragraph 2.3.5); this approach involves two steps: 

1) the generation of a surrogate starting from a DoE in order to approximate the 

nozzle “physical” model (expensive to simulate); 

2) the application of the UQ technique based on LHS to the metamodel. 

 

Probability density functions are introduced for the inlet boundary conditions in order to 

quantify their effects on the output nozzle performance. The physical problem considered 

is very relevant for the experimental tests on the UQ approach because of its high non-

linearity: a small perturbation of the input data can drive the solution to a completely 

different output condition. 

The CFD simulations and the uncertainty quantification were performed by coupling the 

open source toolkit ‘Dakota’ with the commercial CFD software ‘Ansys Fluent®’, as 

described in detail in paragraph 4.4. The novelties of the proposed methodology can be 

summarized as follows: 

➢ development of an in-house procedure to connect an open source tool set which 

supports UQ techniques, such as Dakota, with a widely used commercial code such 

as Ansys Fluent. As well known, the application of UQ methods to CFD has been 

recently introduced in the field of fluid dynamic simulations only in the research 

field, while industrial design procedures and codes currently do not include 

uncertainty quantification techniques applied to CFD simulations; 

➢ although the sampling-based UQ approach is not a brand new technique, the 

application of this method to an industrially interesting case, such as that of 

supersonic overexpanded jets, is shown. The reader can verify that there are few 

available results in literature on this issue. 

 

The adopted procedure demonstrates the applicability of advanced simulation techniques 

(such as UQ analysis) to industrial technical problems. Furthermore, the analysis highlights 

the practical use of uncertainty quantification techniques in predicting the performance of a 

nozzle design affected by off-design conditions with fluid dynamic complexity due to 

strong non-linearity.  

In the context of the doctoral thesis, the supersonic nozzle also represented a test case to 

refine the workflow necessary for the application of uncertainty quantification 

methodologies. The experience gained on the convergent-divergent duct facilitated the 

identification of the most suitable UQ techniques to be applied to the CFD simulation of 

twin entry radial turbines. 

The UQ applications shown in this chapter have been published in the journal Algorithms 

with the paper “Uncertainty Quantification Approach on Numerical Simulation for 

Supersonic Jets Performance” [61]. 



92 

 

5.1.  Introduction and literature review 

In recent years an important part of the research in numerical simulations, in many 

engineering sectors, has been dedicated to the performance prediction of systems and 

components in off-design conditions. The behaviour of a system or component that 

experiences conditions different from those for which it was designed is on the one hand 

due to the deterministic variation of input parameters and on the other hand to the aleatory 

uncertainty which affects both input data and geometric tolerances.  

In this scenario it is fundamental to know how uncertainties can influence the results of the 

problem under investigation with the purpose to improve the accuracy and the reliability of 

the numerical simulations. 

 

Computational Fluid Dynamics (CFD) is one of the disciplines in which UQ is 

increasingly applied within a simulation environment. The parallel evolution of both soft-

computing methods and computer performance made UQ analysis a potential improvement 

of conventional industrial design procedures, which often include CFD simulations. The 

development of the Response Surface Methodology (RSM) has significantly enhanced the 

effectiveness of design optimization based on simulation [62, 63] as an industrial standard 

or for data mining and diagnostic applications [64, 65]. The same RSM approach can be 

used to develop very efficient frameworks for UQ analysis [66].  

A contribution to this field is given in this chapter with reference to one of the most 

interesting examples of compressible flow thanks to its high non-linearity: the adiabatic 

flow in a variable section duct. It is a relevant case for its physical and mathematical 

background, and it has also a wide range of engineering applications. The best known 

application is for spacecraft propulsion in aircraft engines or in supersonic wind tunnel 

[67]. Convergent–divergent nozzles are also applied in gas burners [68, 69] and in 

supersonic water separators for natural gas purification [70, 71].  

The preliminary design of a supersonic nozzle (de Laval nozzle) is based on the basic gas 

dynamic equations to obtain a reference, ideal, operative condition of fully expanded jet 

[67]. However, the theory is based on some assumptions, such as isentropic flow 

conditions, that may affect the actual nozzle performance. In addition, the real operating 

conditions (pressure, temperature, gas mixture composition, etc.) can cause a significant 

change in the flow structure and in the generation of shock waves, with direct fall-out on 

nozzle performance. 

 

The main goal of this chapter is to answer to the following questions: a small variation of 

some input parameters can remarkably affect the performance of a designed convergent–

divergent nozzle? Can UQ methods help to quantify the above effect and give more insight 

into the nozzle behaviour? 

The uncertainties propagation through the CFD model of the nozzle was performed using 

the automated procedure developed by the author within Dakota open source platform (see 

section 4.4). The selected UQ approach is a ‘surrogate-based’ approach: a response surface 

was generated from a DoE and then the Latin hypercube sampling (LHS) was applied to 

the metamodel to perform the UQ analysis. The choice of a surrogate model is highly 

effective in reducing calculation times when a sampling-based UQ method is adopted: in 

fact, a large number of response function evaluations is required to generate converging 

statistics. 

The LHS method was used for both DoE generation and UQ analysis. In this case the Latin 

hypercube sampling was preferred to the basic Monte Carlo method because LHS is a 
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sampling method that converges more quickly and also ensures better coverage of the 

design space. 

The surrogate model was generated through the Gaussian Process approach (theoretical 

details in section 2.3.2) which uses a Gaussian correlation function with parameters that 

are selected by Maximum Likelihood Estimation; by definition [28] this correlation 

function results in a response surface that is 𝐶∞-continuous. 

 

In a first application an optimized nozzle geometry with supersonic airflow is considered. 

The commercial software Ansys Fluent® was used to run a series of CFD simulations to 

identify the influence of the discharge environment pressure on nozzle operating condition, 

flow structure and performance. A perturbation range of the discharge static pressure was 

chosen with respect to the critical gas dynamic condition, where the normal shock wave is 

positioned at the nozzle exit section (denoted as ‘r2’ state in classical literature). The 

choice of this particular condition is related to the performance drop that occurs if the 

shock wave moves into the divergent part of the nozzle. After a preliminary sensitivity 

analysis, a full UQ approach was applied to quantify the effects of the input variable 

(ambient static pressure) distribution on nozzle performance. 

A second application considers the flow of natural gas in a convergent–divergent nozzle to 

understand the effects of uncertainty on gas chemical composition on nozzle expansion 

performance. The gas composition variation may occur on a daily or seasonal basis, 

according to the geographical area and pipeline used [72]; this is a serious problem for 

several industrial applications, where large quantities of natural gas are treated and energy 

consumption is an issue [73, 74]. The same investigation approach of the first case study 

was applied, confirming the effectiveness of the UQ analysis. 

 

5.2.  CFD model settings 

The fluid domain consists of a 2D axisymmetric de Laval nozzle with an expansion 

volume (“environment” in Fig. 5.1) at the exit, which represents the discharge environment 

at constant pressure. The CFD model is consequently setup as ‘axisymmetric’, i.e. the 

RANS equations were solved using an ‘axis’ boundary condition (indicated in Fig. 5.1), as 

common practice in literature [75]. 

 

A structured grid was generated for the spatial discretization: as shown in Fig. 5.2, a grid 

refinement was performed near the nozzle wall in order to ensure a y+ value close to one. 

The Reynolds Averaged Navier-Stokes Equations (RANS) in the steady form were solved 

numerically with the addition equation for the turbulence closure. The two equations k-ω 

SST turbulence model was selected according to previous experience in the application 

case. This turbulence model in fact allows a good accuracy both in proximity and far from 

the walls, correctly predicting the trigger and the degree of flow separation under adverse 

pressure gradients.  

A second order upwind scheme was chosen for the spatial discretization because when the 

flow is not aligned with the structured mesh (e.g. oblique shock waves), the first-order 

convective discretization is not appropriate.  

Total inlet conditions (pressure and temperature) were applied at nozzle inlet, while the 

discharge pressure (𝑝𝑠) was assigned to each side (‘1’, ‘2’ and ‘3’ in Fig. 5.1) of the 

expansion volume which models the nozzle discharge environment. 
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Fig. 5.1 - Supersonic nozzle CFD model: fluid domain 

 

Fig. 5.2 - Nozzle mesh (an enlargement of the grid near wall in the miniature) 

 

The set of BCs assigned to the fluid domain is summarized in Tab. 5.1 below:  

 

Tab. 5.1 - Boundary conditions for the supersonic nozzle CFD model 

Fluid domain region BCs type 

Nozzle inlet  total pressure and total temperature 

Environment side walls discharge static pressure and temperature 

Nozzle walls no slip condition; adiabatic 

 

In the first part of the research work, the operating fluid is air modeled as an ideal 

compressible gas with constant 𝐶𝑝 . Sutherland’s law with three coefficients (equation 

(5.1)) is adopted to simulate the variation of the dynamic viscosity with temperature. 
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𝜇𝑎𝑖𝑟 = 𝜇𝑟𝑒𝑓 𝑎𝑖𝑟 (
𝑇𝑎𝑖𝑟

𝑇𝑟𝑒𝑓 𝑎𝑖𝑟
)

3
2

(
𝑇𝑟𝑒𝑓 𝑎𝑖𝑟 − 𝑆𝑢𝑎𝑖𝑟

𝑇𝑎𝑖𝑟 − 𝑆𝑢𝑎𝑖𝑟
) (5.1) 

In the second part of the chapter the working fluid is instead natural gas; even in this case 

the fluid is treated as an ideal and compressible gas. The dynamic viscosity is calculated 

through Sutherland’s law with suitable coefficients for methane. 

 

5.3.  Background work: some concepts of supersonic nozzle theory 

The supersonic convergent-divergent duct was selected as first test case of UQ applications 

because on the one hand it is a computationally cheap two-dimensional case (and this is 

very important if a sampling-based UQ technique is applied) and on the other hand it is a 

highly difficult case to converge due to the complexity of its fluid dynamic structure. For 

this last reason, in fact, an accurate tuning of the numerical model was required a priori, 

even using a well tested commercial CFD code like Fluent®. 

The background work also consists in the 1D design of a convergent-divergent nozzle in a 

specific theoretical reference condition, usually indicated as ‘r3’ and relative to the case of 

perfectly expanded nozzle or ‘supersonic isentropic solution’ (see Fig. 5.3 - no shock 

waves in the divergent duct or in the outside jet). 

 

Tab. 5.2 – Nozzle boundary conditions at design point 

Design BCs 

𝑇𝑡1 [K] 600.0 

𝑝𝑡1 [𝑃𝑎] 300000 

𝑝𝑠 [𝑃𝑎] 50000 

�̇� [𝑘𝑔/𝑠] 0.200 

 

The selected boundary conditions (see Tab. 5.2 – where the mass flow rate is the target) 

represent a realistic operating condition which allows the realization of the aforementioned 

‘r3’ since the 𝑝𝑠/𝑝𝑡1 ratio is lower than 0.528 (‘critical’ pressure ratio for air fluid).  

 

Fig. 5.3 -  Gas dynamic theory of de Laval nozzle 
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Another fundamental aspect to certify the validity of the results discussed in the following 

paragraphs is the validation of the CFD model, which consists in checking that the ‘r3’ 

state is actually verified at the design point. The results of these ‘background’ calculations 

are shown below: 

 Fig. 5.4 – Mach number map on nozzle meridian plane at design point (𝑝𝑠=50000 [Pa]). 

Case with viscous nozzle walls 

 

Fig. 5.5 - Mach number map on nozzle meridian plane at design point (𝑝𝑠=50000 [Pa]). 

Case with inviscid nozzle walls 
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It should be remembered that the isentropic solution ‘r3’ can be verified only in the 

adiabatic case without losses. However, this analytically achievable condition is very 

difficult to be reproduced numerically due to the discretization error.  

In order to test if the solution tends to the ‘r3’ ideal case by adapting the CFD model to the 

‘zero losses’ condition, an inviscid run was executed (Fig. 5.5). The same pressure ratio 

(𝑝𝑡1/ 𝑝𝑠) of the viscous case was applied, verifying that the mass flow at nozzle outlet 

converges on the same target �̇� = 0.2 [𝑘𝑔/𝑠]. Comparing Fig. 5.4 and Fig. 5.5 it is clear 

that in the inviscid run the first shock wave is further forward inside the jet, approaching 

the ideal case. Hence, even conditioning nozzle walls as adiabatic (zero heat flux) and free 

slip (no viscous losses), the presence of weak shock waves in the jet is considered 

acceptable if a viscous model is used for the numerical setup (as in the case discussed). 

The CFD model is then tested in another gas dynamic theoretical reference condition 

(involved in the next UQ analysis), denoted as ‘r2’ (RII in Fig. 5.6) and corresponding to 

the case with shock wave located at the exit of the divergent duct. 

Fig. 5.6 – Nozzle exit pressure (𝑝𝑢) versus discharge environment pressure (𝑝𝑠) 

 

The ‘r2’ condition was selected because, as shown in Fig. 5.6, it represents a discontinuity 

for the nozzle exit static pressure (𝑝𝑢); in fact from this point on, the reduction of the 

discharge environment pressure (𝑝𝑠 - which was coherently chosen as the input uncertain 

variable in the first part of the UQ application) results in a nonlinear nozzle exit pressure 

(𝑝𝑢) drop. For this theoretical reason, a discontinuity in nozzle performance can be 

expected around the ‘r2’ state, that therefore becomes an interesting operating condition 

around which to perform the UQ analysis. The CFD model validation is completed once it 

has been verified that the calculated nozzle flow structure uniquely corresponds to the 

theoretical one: this is clearly checked in the next Fig. 5.7c (corresponding to 𝑝𝑠 

=100[kPa]), that displays a shock wave at nozzle exit, as required by gas dynamic theory. 

 

5.4.  UQ analysis on nozzle discharge pressure 

In this first part of the UQ application, an optimized nozzle geometry with supersonic 

airflow is considered. CFD simulations were performed in order to investigate the 

influence of the discharge pressure (𝑝𝑠) on the nozzle flow structure and performance. The 

discharge environment pressure was varied in a predefined range around the gas dynamic 

condition ‘r2’, characterized by a normal shock wave located at divergent duct exit. 

This paragraph can be divided into two subsets: first the sensitivity analysis and then the 

UQ approach application. The final goal is the quantitative assessment of the influence on 

nozzle performance of uncertainty on boundary conditions. 
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5.4.1. Sensitivity analysis on discharge pressure 

The value of the discharge pressure (𝑝𝑠 ) has a remarkable impact on the nozzle flow 

structure, especially in determining the position and strength of the shock wave: this is 

evident by referring to the ‘r2’ state, where the shock wave is located at nozzle exit section 

[67]. As proof of the reliability of the CFD model, comparable results were obtained in 

similar conditions in the experimental case by Zapryagaev et al. [76].  

Fig. 5.7 shows Mach number contours for five different 𝑝𝑠 values (80-120 [kPa]) around 

the ‘r2’ condition. The flow structure and the shock wave location change significantly 

even with a small difference of 10 [kPa] (about 10% of the pressure interval mean value). 

 

 

Fig. 5.7 - Mach number contours for five 𝑝𝑠 values: (a) 80kPa, (b) 90kPa, (c) 100kPa,       

(d) 110kPa, (e) 120kPa. The black line identifies nozzle exit section 

 
The performance variation of the nozzle within the above range is further confirmed by the 

charts in Fig. 5.8 (𝑝𝑠 as variable parameter on curves): it is evident that the position of the 

shock wave close to nozzle exit is affected by the small change in the discharge pressure. 

 

 

Fig. 5.8 - (a) Mach number and (b) PR versus the dimensionless axial coordinate 
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𝑃𝑅 = 𝑝𝑠/𝑝𝑡 𝑖𝑛 (5.2) 

Another important parameter which corroborates the performance variation is the ∆𝑝𝑡 

(equation (5.3)), i.e. the nozzle total pressure drop, that quantifies the mechanical losses 

due to viscous and compressible flow effects. The total pressure drop can also be referred 

to the dynamic pressure at nozzle outlet in the form of loss coefficient (denoted by 𝜉). 

∆𝑝𝑡 = 𝑝𝑡 𝑖𝑛 − 𝑝𝑡 𝑜𝑢𝑡 (5.3) 

 

Tab. 5.3 – Nozzle total pressure drop values with respect to the operating condition 

CASE Discharge Pressure (𝒑𝒔) [kPa] ∆𝒑𝒕 [Pa] 𝝃 

a 80 19270 8.8% 

b 90 20145 9.6% 

c 100 31926 19.6% 

d 110 32675 21.9% 

e 120 34972 22.5% 

 

Tab. 5.3 links each case shown before in Fig. 5.7 with the nozzle corresponding crossing 

losses: the total pressure drop tends to increase with discharge static pressure in a nonlinear 

way (see the difference between cases ‘a’ and ‘b’ compared to that between ‘b’ and ‘c’); 

this is related to the location of the shock wave (inside/outside the convergent–divergent 

duct). The nozzle off-design behaviour makes the UQ analysis useful for studying the 

component response to a non-deterministic input variable. 

 

5.4.2. Surrogate model cross validation and uncertainty quantification results 

This section concerns the uncertainty quantification analysis carried out considering the 

discharge pressure as the input uncertain variable, while the Mach number at nozzle exit 

(𝑀exit) and the total pressure drop (∆𝑝𝑡) are the Quantities of Interest (QoI), i.e. the output 

performance parameters of the problem. 

The fully automated procedure implemented inside Dakota environment (section 4.4) was 

applied. A DoE in the pressure range 80-120 [kPa] was performed for the two QoI using 

LHS method; in order to correctly approximate the ‘physical’ (numerical) model, 

𝑁𝐷𝑜𝐸=121 samples were chosen within the design space. The discharge pressure values 

provided by Dakota were used as the input variable in Fluent CFD software, which 

returned the corresponding response functions values (see Fig. 5.9). Equations (5.4) to 

(5.6) show the problem ‘normalized’ variable and responses (denoted by superscript ‘*’): 

𝑝𝑠
∗ =

𝑝𝑠 − 𝑝𝑠 𝑚𝑖𝑛

𝑝𝑠 𝑚𝑎𝑥 − 𝑝𝑠 𝑚𝑖𝑛
 (5.4) 

𝑀𝑒𝑥𝑖𝑡
∗ =

𝑀𝑒𝑥𝑖𝑡 − 𝑀𝑒𝑥𝑖𝑡 𝑚𝑖𝑛

𝑀𝑒𝑥𝑖𝑡 𝑚𝑎𝑥 − 𝑀𝑒𝑥𝑖𝑡 𝑚𝑖𝑛
 (5.5) 

∆𝑝𝑡
∗ =

∆𝑝𝑡 − ∆𝑝𝑡 𝑚𝑖𝑛

∆𝑝𝑡  𝑚𝑎𝑥 − ∆𝑝𝑡 𝑚𝑖𝑛
 (5.6) 
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Fig. 5.9 – Normalized response functions with respect to the input variable: (a) Mach 

number at nozzle exit; (b) nozzle total pressure drop 

 

Kriging or ‘Gaussian Process’ method was applied and the response surfaces for the above 

functions were generated from the training points provided by the DoE. The UQ analysis 

was then performed through LHS method, sampling the surrogates with 𝑁𝑈𝑄=10^3 points. 

In order to ensure the reliability of metamodels and consequent UQ results, a ‘cross-

validation’ analysis was conducted. 

 

In Dakota the type of cross-validation which can be carried out is the ‘k-fold cross-

validation’: at first, the DoE dataset is divided into k partitions and k metamodels are 

generated, each by excluding the k-th partition of training data. Every surrogate is then 

tested at the points that were excluded in its generation and finally the user-specified 

diagnostic metrics are computed with respect to the data kept out [28]. 

In the case under examination, a particular type of k-fold cross-validation was performed, 

i.e. the ‘Leave-one-out cross-validation’ or ‘Prediction Error Sum of Squares’ (PRESS). In 

this special instance, the number of partitions is equal to the number of sampling points.  

The results obtained from this analysis, collected in Tab. 5.4, include the root mean 

squared, the mean absolute value and the maximum absolute value of the prediction error 

(calculated between the ‘observed’ value and the surrogate model prediction for the 

training points). 

 

Tab. 5.4 – Diagnostic metrics of the response surfaces cross validation 

Metrics 𝑴𝐞𝐱𝐢𝐭  ∆𝒑𝒕 [Pa] 

Root mean squared (RMS) 4.15x10-3 175.2 

Mean absolute value 2.84x10-3 97.9 

Maximum absolute value 1.70x10-2 739.7 

 
In addition, three operating points were randomly selected in the UQ database of 

𝑁𝑈𝑄=10^3 samples and then simulated with the CFD solver. The corresponding fluid 

dynamic results for the QoI were assigned in input to Dakota as a ‘challenge set of data’. 

The metrics calculated with respect to this dataset are reported in Tab. 5.5.  

The outcomes of the previous validation analyses were supplemented by the calculation of 

the relative percentage errors (Tab. 5.6) between the response function values extracted 

from CFD simulations and those coming from sampling of the surrogate models; the 

results once again certify the reliability of the metamodels. 
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Tab. 5.5 - Diagnostic metrics of the response surfaces tested on a challenge set of data 

Metrics 𝑴𝐞𝐱𝐢𝐭  ∆𝒑𝒕 [Pa] 

Root mean squared (RMS) 5.06x10-4 189.7 

R squared 0.998411 0.97978 

Mean absolute value 4.57x10-4 119.2 

Maximum absolute value 7.00x10-4 327.9 

 

Tab. 5.6 - Relative percentage error between CFD simulation results and corresponding 

surrogate model values on three randomly selected samples 

𝒑𝒔 [Pa] 𝑴𝐞𝐱𝐢𝐭 percentage error  ∆𝒑𝒕 percentage error 

80870 0.043% −0.053% 

100451 0.015% 0.964% 

117848 0.042% −0.056% 

 
Once the validity of the surrogates is confirmed, the results of the UQ analysis are 

considered. In a first application, a uniform distribution of the variable 𝑝𝑠 was chosen as 

the input probability density function: in this case any pressure value within the established 

range has the same chance to occur. The results of the uncertainty propagation through the 

surrogate models are the discretized PDFs of the outputs (𝑀exit and ∆𝑝𝑡), displayed in Fig. 

5.10. It is immediately clear that the PDFs of the QoI are very far from the uniform 

distribution assigned to the input variable (𝑝𝑠). The physical explanation of these non-

uniform PDFs is that the state ‘r2’ corresponds to the case 𝑝𝑠=100 [kPa], i.e. the mean of 

the probability distribution of the input uncertain variable.  

As demonstrated by the PDFs of the exit Mach number and total pressure drop, around ‘r2’ 

two kinds of solutions are highly probable (Fig. 5.10):  

I. high 𝑀exit and low ∆𝑝𝑡 → overexpanded jet with shock waves outside the nozzle; 

II. low 𝑀exit and high ∆𝑝𝑡 → shock waves inside the divergent duct. 

This means that even with a uniform probability density of the input variable, the most 

frequent flow structures can be limited to two main ranges of 𝑀exit and ∆𝑝𝑡. 

Fig. 5.10 – Uniform input PDF. Discretized PDFs of the two outputs: (a) 𝑀exit ; (b) ∆𝑝𝑡 
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In order to test the reliability of the UQ analysis results, a second case with an increased 

number of samples (𝑁𝑈𝑄
′ =10^4, i.e. one order of magnitude greater than the first attempt) 

was considered. The comparison between the bar diagrams obtained with different number 

of samples is reported in Fig. 5.11 for the two QoI: differences between the discretized 

distributions are detectable, but they are so small that the results of the UQ analysis with 

𝑁𝑈𝑄=10^3 samples can be considered satisfactory. 

Fig. 5.11 - Uniform input PDF. Comparison between the discretized PDFs obtained with 

10^3 and 10^4 samples for the two outputs of the UQ problem: (a) 𝑀exit ; (b) ∆𝑝𝑡 

 

After this first application of the UQ approach, another case was simulated: this time a 

normal distribution is assigned to the input uncertain variable (𝑝𝑠) with a mean value ‘m’ 

(100 [kPa]) centered on the variation range previously considered and a standard deviation 

‘σ’ chosen to simulate a small perturbation of the discharge pressure: e.g. σ ≈ 1% of the 

mean value. The resulting probability density function is shown below: 

Fig. 5.12 - Gaussian PDF of the input uncertain variable (discharge pressure) 
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Using again the LHS method for the uncertainty quantification (𝑁𝑈𝑄=10^3 samples as 

before), the discretized probability distributions of the response functions (Fig. 5.13) were 

obtained. It is evident, especially for nozzle crossing losses, that even in this case the 

output PDFs are different from the input one (normal distribution); Tab. 5.7 collects the 

values of the statistical moments computed for the output probability density functions.  

The red curve on each bar diagram in Fig. 5.13 represents the ‘reference’ Gaussian 
continuous trend, i.e. associated with the mean and standard deviation values of each 

output discretized PDF returned by Dakota. When compared to the normal PDF (in red 

line), the 𝑀exit probability density function is more flat (negative value of Kurtosis) and 

slightly asymmetric. The distribution of ∆𝑝𝑡 is instead shifted to the right (negative 

Skewness) and more pointed (positive Kurtosis) than the corresponding Gaussian PDF. 

 

Tab. 5.7 - Statistical features of the output discretized PDFs 

Statistical Moments 𝑴𝐞𝐱𝐢𝐭 ∆𝒑𝒕 

Mean 1.2 3.1x104[Pa] 

Standard Deviation 0.1 3.2x103 [Pa] 

Skewness 0.013 −0.98 

Kurtosis −0.8 0.05 

 

Fig. 5.13 – Gaussian input PDF. Discretized PDFs of the two outputs: (a) 𝑀exit (b) ∆𝑝𝑡 . 

The corresponding Gaussian distributions (same mean and 𝜎) in red line 

 

The results analysis suggests that in this case the QoI are spread over a wider range of 

values. Therefore, a small variation in the input discharge pressure from the reference ‘r2’ 

discharge pressure (that is approximately 100 [kPa]) can significantly change the operating 

condition, and consequently, the performance of the nozzle. 

The comparison between the bar diagrams of the output PDFs with 𝑁𝑈𝑄=10^3 and 

𝑁𝑈𝑄
′ =10^4 samples is shown in Fig. 5.14. Even with a different type of PDF for the input 

uncertain variable, it can be noted that the increase in the number of samples used for the 

LHS method does not considerably affect the discretized PDF of the output nor the 

corresponding Gaussian distribution, which remains almost unchanged (black and magenta 

lines in Fig. 5.14 are superimposed). 
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Fig. 5.14 – Gaussian input PDF. Comparison between the PDFs obtained with 10^3 and 

10^4 samples for the two outputs:(a) 𝑀exit ; (b) ∆𝑝𝑡 (lines for the Gaussian reference) 

 

In conclusion, the comparison of the discretized PDFs obtained for the same response 

function (𝑀exit or ∆𝑝𝑡), but with different input variable probability distributions (uniform 

vs. Gaussian) is presented. 

Fig. 5.15 – Comparison between the PDFs obtained with the two different types of input 

probability distribution. A) Nozzle exit Mach number; B) total pressure drop  
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As the reader can see, in Fig. 5.15A the probability distribution of the exit Mach number is 

remarkably affected by the input PDF, with a more concentrated probability density in the 

case of Gaussian input (red bars) and much more distributed for uniform input. However, it 

should be noted that the peak of probability is in both cases located around 𝑀exit =1.2. 

For what concerns the nozzle total pressure drop (Fig. 5.15B), the two high probability 

regions, already commented in the case of uniform input, disappear for Gaussian input. In 

the latter case, in fact, only one region with greater probability can be identified (above 30 

[kPa] of total pressure drop). Moreover, in this area the amplitude of the probability peaks 

is very similar between the two cases (Gaussian or uniform input).  

Analyzing the results of this last comparison as a whole, it can be concluded that the type 

of input PDF assigned to the UQ problem significantly affects the output probability 

distributions of this nonlinear behaviour system. 

 

5.5.  UQ analysis on gas properties 

The effects of the fluid chemical composition on nozzle performance are investigated in 

this second part of the UQ application. As already discussed in the introduction paragraph, 

the gas composition variation simulates a real and serious scenario for several industrial 

applications. To confirm the effectiveness of the proposed UQ approach, the same steps of 

the first case study (where 𝑝𝑠 was the uncertain variable) are repeated here. 

 

5.5.1. Sensitivity analysis on gas composition 

The purpose of this paragraph is to quantify the effect of uncertainty in natural gas 

composition on nozzle performance. The natural gas case is of particular interest in the 

industrial field: the actual chemical composition of the natural gas sent to a site is not 

constant and both the pipeline used and the geographic region of extraction play a crucial 

role in its uncertainty. Tab. 5.8 summarizes some reference data of the most interesting gas 

mixtures for the Italian market [72]: four different 'real' natural gas compositions were 

selected and their properties calculated. The input uncertain variables were identified in the 

specific heat at constant pressure (𝐶𝑝) and the molecular weight (𝑀𝑊) of the mixture. The 

choice of these properties is related to the option of the ‘fluid specification’ in the CFD 

code (still using the ideal gas law), that allows an easier automation of the simulation 

process through scripting. Another property of interest for the application case, deriving 

from the aforementioned fluid properties (𝐶𝑝 and  𝑀𝑊) and from the operating 

temperature, is the speed of sound (𝑎 = √𝑘𝑅𝑇) whose value is reported in Tab. 5.8 below. 

 

Tab. 5.8 - Natural gas compositions and properties according to the extraction region [72] 

Composition [%Vol] Italian Libyan North Europe Russian 

Methane 99.61% 87.41% 91.58% 98.08% 

Ethane 0.06% 9.81% 4.82% 0.98% 

Carbon Dioxide 0.02% 1.88% 1.23% 0.10% 

Others 0.31% 0.90% 2.37% 0.84% 

Properties Italian Libyan North Europe Russian 

𝐶𝑝 [J/(kg K)] 2214 2031 2057 2154 

𝑀𝑊 [kg/kmol] 16.1 19.5 18.2 16.2 

𝑎 [m/s] 636.9 592.9 606.4 626.9 
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Four CFD simulations were performed, varying the fluid composition but keeping the 

other boundary conditions (inlet total pressure and temperature, discharge pressure) 

constant; thus the nozzle pressure ratio was set close to the gas dynamic condition ‘r2’ 

(shock wave at nozzle exit). 

Fig. 5.16 - Mach number contours for different natural gas mixtures: (a) Italian,                 

(b) Libyan, (c) NorthEurope and (d) Russian 

 

Comparing the results in Fig. 5.16 with those relating to the sensitivity analysis on 

discharge pressure (Fig. 5.7), it is evident that fluid properties (𝐶𝑝 and 𝑀𝑊) have a lower 

influence on the flow structure and Mach number values inside the nozzle. This is also 

confirmed by the charts in Fig. 5.17, where Mach number and Pressure Ratio trends along 

nozzle axis are displayed (gas extraction region as the variable parameter on curves). The 

graphs are enlarged at nozzle exit section, where a slight change in the shock wave position 

can be noted, due to the different properties of the tested gas mixtures. 

 

Fig. 5.17 - a) Mach number and (b) PR versus the dimensionless axial coordinate 

 

On the other hand, due to gas composition change, a significant variation of the nozzle 

crossing losses is detected within the examined dataset (more than 10 [kPa] in Tab. 5.9). 
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Tab. 5.9 - Nozzle crossing losses variation with gas mixture composition 

Natural gas extraction region ∆𝒑𝒕 [Pa] 𝝃 

Italian 31100 18.4% 

Libyan 21407 11.3% 

North Europe 23933 12.9% 

Russian 33579 20.8% 

 

5.5.2. Surrogate model cross validation and uncertainty quantification results 

The UQ analysis on gas properties was performed with the same approach used for the first 

application (section 5.4.2). The variation range of the input parameters (design space) was 

identified from the preliminary sensitivity analysis: the specific heat at constant pressure 

varies inside the interval 𝐶𝑝=2031-2214 [J/(kgK)], whereas the molecular weight in the 

range 𝑀𝑊=16.1-19.5 [kg/kmol]. The QoI selected for UQ analysis are again nozzle exit 

Mach number (𝑀exit) and total pressure drop (∆𝑝𝑡 – equation (5.3)). 

The DoE was generated with 𝑁𝐷𝑜𝐸=121 samples according to LHS algorithm. The 

resulting scattered distributions of the response functions are shown in Fig. 5.18, where the 

input uncertain variables are normalized (𝑀𝑊∗ and 𝐶𝑝
∗) as in equations (5.7) and (5.8). 

 

Fig. 5.18 – Normalized response functions with respect to input variables. (a) Mach 

number at nozzle exit; (b) nozzle total pressure drop 

 

𝑀𝑊∗ =
𝑀𝑊 − 𝑀𝑊𝑚𝑖𝑛

𝑀𝑊𝑚𝑎𝑥 − 𝑀𝑊𝑚𝑖𝑛
 (5.7) 

𝐶𝑝
∗ =

𝐶𝑝 − 𝐶𝑝𝑚𝑖𝑛

𝐶𝑝𝑚𝑎𝑥
− 𝐶𝑝𝑚𝑖𝑛

 (5.8) 

 

The surrogate models were generated using Kriging method on the DoE dataset: the 

resulting response surfaces are shown in Fig. 5.19. Even in this application the PRESS 

results confirm the reliability of metamodels and consequent UQ outcomes (see Tab. 5.10).  

CFD results on three randomly selected points from the 𝑁𝑈𝑄=10^3 samples were given in 

input to Dakota as a ‘challenge set of data’ for the generated metamodels: the diagnostic 

metrics are collected in Tab. 5.11, while the relative percentage errors are in Tab. 5.12. 



108 

 

Fig. 5.19 - Response surfaces generated through Gaussian Process for: (a) 𝑀exit ; (b) ∆𝑝𝑡 

 

Tab. 5.10 – Diagnostic metrics of the metamodels cross validation 

Metrics 𝑴𝐞𝐱𝐢𝐭  ∆𝒑𝒕 [Pa] 

Root mean squared (RMS) 2.87x10-3 384.8 

Mean absolute value 1.65x10-3 251.2 

Maximum absolute value 1.42x10-2 1416.6 

 
Tab. 5.11 - Diagnostic metrics of the response surfaces tested on a challenge set of data 

Metrics  𝑴𝐞𝐱𝐢𝐭  ∆𝒑𝒕 [Pa] 

Root mean squared (RMS) 1.17x10-3 283.7 

R squared 0.916084 0.806983 

Mean absolute value 9.99x10-4 192.6 

Maximum absolute value 1.81x10-3 483.2 
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Tab. 5.12 - Relative percentage error between CFD simulation results and corresponding 

surrogate model values on three randomly selected samples 

𝑪𝒑 [J/(kg K)] 𝑴𝑾 [kg/kmol] 𝑴𝐞𝐱𝐢𝐭 percentage error ∆𝒑𝒕 percentage error 

2099 17.53 −0.13% 1.80% 

2113 17.95 0.06% −0.39% 

2159 18.01 0.02% −0.02% 

 
Once again the reliability of the response surfaces is confirmed by low values of the 

relative percentage errors.  

After the surrogates validation process, the UQ results are then considered. The sampling-

based UQ analysis was implemented according to the LHS method (𝑁𝑈𝑄=10^3 samples) in 

order to evaluate nozzle response to input statistical distributions. A Gaussian PDF was 

assigned to both input uncertain variables (𝐶𝑝 and 𝑀𝑊). The statistical features of the 

input PDFs are collected in Tab. 5.13, while Fig. 5.20 displays the respective trends.  

 

Tab. 5.13 – Main statistical characteristics of the input PDFs 

Statistical Moments 𝑪𝒑 [J/(kg K)] 𝑴𝑾 [kg/kmol] 

Mean 2122 17.8 

Standard deviation 21.2 0.178 

 

Fig. 5.20 - Gaussian probability density functions of the input variables 

 

The mean values of the input PDFs are indicated with ‘m1’ and ‘m2’ (red dotted lines in 

Fig. 5.20), while the standard deviations ‘σ1’ and ‘σ2’ are about 1% of the corresponding 

mean values to simulate the effects of a small probability dispersion of the variables 

involved. The uncertainties propagation through the metamodels leads to the discretized 

PDFs of the QoI (see Fig. 5.21); the statistical moments of the output probability density 

functions are summarized in Tab. 5.14. 

In Fig. 5.21 the ‘shape’ of the response functions PDFs is very far from the corresponding 

reference Gaussian distributions (red line): both of them are more pointed (positive 

Kurtosis) and slightly shifted from the mean. The variation range of 𝑀exit , with the 

selected inputs, is very narrow, confirming what was previously observed in the sensitivity 

analysis (section 5.5.1): the nozzle exit Mach number is only slightly influenced by the gas 

chemical composition. 
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Fig. 5.21 - Discretized PDFs of the two output functions: (a) 𝑀𝑒𝑥𝑖𝑡 ; (b) ∆𝑝𝑡 .                        

The corresponding Gaussian distributions (same mean and 𝜎) in red line 

 

Tab. 5.14 - Statistical features of the output discretized PDFs 

Statistical moments 𝑴𝐞𝐱𝐢𝐭 ∆𝒑𝒕 

Mean 1.39 2.36x104 [Pa] 

Standard deviation 0.015 1.42x103[Pa] 

Skewness −1.00 0.819 

Kurtosis 1.73 0.497 

 
It can be noted that even with a small uncertainty in 𝐶𝑝 and 𝑀𝑊 the range of ‘possible’ 

total pressure drop (∆𝑝𝑡) values is quite wide and consequently the probability of falling 

into a non-optimal operating condition is high. 

The skewed probability distributions of the outputs shown in Fig. 5.21 are a direct result of 

the response surfaces displayed in Fig. 5.19, which exhibit an inflection in both directions 

of variation of the input parameters. A high sensitivity of the 𝑀exit to the mixture 

molecular weight can be noted, especially at low 𝐶𝑝 values inside the design space. 

However, the exit Mach number response surface tends to flatten as the 𝑀𝑊 increases 

from its PDF average value, with 𝑀exit approximately constant at high values as the 𝐶𝑝 

varies. This means that, starting from Gaussians for the input variables, the uncertainties 

propagation leads to a non-Gaussian probability distribution and in particular to a 'left 

skewed' (Sk <0) PDF, leaning towards high exit Mach number values. The same reasoning 

applies to the ∆𝑝𝑡 , which is closely correlated to the 𝑀exit (high exit Mach numbers match 

to low total pressure drops because the shock waves remain outside the nozzle). Even in 

this case the response surface flattens as the molecular weight increases from the input 

PDF average value, with ∆𝑝𝑡 approximately constant at low values as the 𝐶𝑝 varies. 

Consequently, a 'right skewed' (Sk> 0) PDF is obtained with  probability density more 

concentrated towards low ∆𝑝𝑡. In conclusion, the uncertainty on the performance of the 

designed nozzle could be reduced by shifting the 𝑀𝑊 variation range upwards, i.e. 

towards more “humid” and heavier natural gas mixtures (lower percentage in methane). 

According to the gas dynamic theory, a higher molecular weight translates into a smaller 

gas constant, so the speed of sound would be lower and with the same nozzle and boundary 

conditions it would be easier to reach high Mach numbers at nozzle exit, as confirmed by 

the results presented here. 
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Finally, to test the accuracy of the UQ analysis results, a second run with a greater number 

of samples (𝑁𝑈𝑄
′ =10^4) was performed. 

The comparison between the output PDFs bar diagrams with 𝑁𝑈𝑄=10^3 and 𝑁𝑈𝑄
′ =10^4 

samples is reported in Fig. 5.22: very small differences confirm that 𝑁𝑈𝑄=10^3 samples are 

sufficient to accurately determine the probability density functions of the system responses. 

Fig. 5.22 - Comparison between the PDFs obtained with 10^3 and 10^4 samples for the 

two outputs:(a) 𝑀exit ; (b) ∆𝑝𝑡 (black and magenta lines for the Gaussian reference) 

 

5.6.  Conclusions 

The quantitative analysis of the influence on supersonic nozzle performance of the 

uncertainty on selected input variables leads to the conclusions summarized below. 

The perturbation of the discharge environment pressure (𝑝𝑠 ) within a range centered on the 

gas dynamic state ‘r2’ results in a remarkable alteration of the flow structure inside the 

nozzle, even with a pressure variation of a few thousand pascals, i.e. few percentage points 

(3% if uncertainty is considered as ‘3σ’) with respect to the discharge pressure of the ‘r2’ 

state. This is confirmed by the UQ analysis: with a uniform uncertainty of the input 

variable (𝑝𝑠), the performance parameters (exit Mach number and total pressure drop) can 

assume a broad range of possible values. If a Gaussian uncertainty is considered, it can be 

observed that, even with a small pressure change, a significant variation in the output 

parameters is detectable: the resulting statistical distributions are very far from the input 

one, due to the strong non-linearity of the physical problem under investigation. 

The study of the effects of uncertainty on natural gas composition (𝐶𝑝, 𝑀𝑊) showed that 

fluid properties have a slight influence on the flow structure of the convergent-divergent 

duct, but can remarkably affect nozzle crossing losses. The UQ analysis with Gaussian 

probability distributions of the input variables highlighted a limited effect on the Mach 

number at nozzle exit and a non-negligible influence on the total pressure drop, which 

showed a rather large probability dispersion. The statistical distributions of the output 

responses differ from the normal probability distribution functions of the input variables 

due to the uncertainties propagation through the nonlinear model. 

The proposed workflow for UQ analysis, implemented with the Dakota platform, has 

demonstrated its effectiveness in a quantitative evaluation of the effect of changes in input 

parameters on the response functions of the engineering design problem; it can be applied 

to other cases with the same structure.  
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The experience gained with the supersonic nozzle test case has facilitated the identification 

of some uncertainty quantification techniques for the final application of this doctoral 

thesis, namely the study of the effect of geometric uncertainties on the performance of twin 

scroll radial turbines for turbocharging. This chapter focuses on geometrical sources of 

uncertainty in the field of CFD applied to twin scroll radial turbines; in particular, the 

effect of uncertainties in rotor tip clearance values at blade leading edge and trailing edge 

on turbine selected performance parameters was investigated. 

The analysis shows the use of the Surrogate-Based Uncertainty Quantification platform 

that has been configured by the author inside Dakota environment (for more details see 

section 4.5.1). The second UQ approach selected for this application is the Polynomial 

Chaos Expansion (PCE) method, particularly suitable for the case under examination since 

its effectiveness is high especially if the number of uncertain variables is limited. 

The comparison of the results coming from the different approaches and the discussion of 

the positive and negative aspects related to each technique lead to interesting findings, 

which are proposed as guidelines for future UQ applications on the topic of CFD applied to 

radial turbines. The research work presented in this chapter has been published in the 

journal Fluids with the paper entitled “Uncertainty Quantification Methodologies Applied 

to the Rotor Tip Clearance Effect in a Twin Scroll Radial Turbine” [77]. 

 

6.1.  Introduction and literature background 

Uncertainty quantification is the science of characterizing and reducing uncertainties in 

both computational and real world applications, a tool for determining how likely certain 

outcomes are if aspects of the system are not completely known; while the models and 

methodologies (which combine mathematics, statistics and engineering) are used 

throughout academia, the practice has not yet been integrated into professional engineering 

workflows. The uncertainty propagation through the CFD model supports engineers to 

determine whether system outputs will meet the requirements, what the extreme 

probabilities really are and which inputs have the most significant effect on output PDFs. 

A fundamental aspect to be considered in every simulation consists in the differences 

between the real geometrical model (the actual manufactured machine) and the simulated 

one (the CFD model): the computational domain used in CFD to simulate a turbine and the 

real control volume are not identical. In the industrial world geometrical uncertainties are 

the so-called "allowed manufacturing deviations from the desired geometry". Such 

deviations are inevitable as a ‘perfect’ production would have very high costs. In this 

scenario, UQ can be used to determine the maximum manufacturing deviation from the 

expected geometry that causes an acceptable gap from the target performance. 

One of the most delicate geometric aspects concerning radial turbines is undoubtedly the 

tip clearance, i.e. the gap between the rotor tip and the shroud surface (stationary housing). 

Usually, in order to limit tip leakage flows, thus optimizing turbine performance, 

clearances are kept very close; in this context small geometrical variations, e.g. induced by 

severe operating conditions, may be responsible of appreciable performance variations.  

It is noteworthy to mention that many authors [78, 79] have already investigated the 

variability of gaps, fillets and small geometric details due to turbomachinery operating 

conditions. The epistemic uncertainties of a numerical model represent the level of 



114 

 

uncertainty in reproducing a physical system or phenomenon, while the aleatory 

uncertainties are an intrinsic property of the system being analyzed. Following this 

definition, turbulence modelling is an epistemic uncertainty whose effect has been 

extensively investigated at the rotor tip by Krishnababu et al. [80]. 

This chapter deals with the aleatory operational uncertainties to which the tip clearances (at 

blade leading and trailing edge) of a twin entry turbine impeller are subject: centrifugal, 

thermal, assembly and wear effects can significantly affect tip gap values. The turbine 

under investigation is used for automotive turbocharging and the numerical model for the 

simulation of this turbine, validated with experimental data [49], has been already 

presented in paragraph 3.1. The uncertainties propagation through the CFD model of the 

turbine was performed using an automated procedure (section 4.5) developed with Dakota, 

an open source toolset provided with a large number of optimization and uncertainty 

quantification utilities. 

Response surface methods have been widely used for design optimization approaches [62, 

63], but the same techniques can also be very useful in the field of UQ methods based on 

sampling, in order to bypass the high computational cost generally required to generate 

converging statistics of the outputs. The first application of UQ methodologies follows a 

‘Surrogate-Based’ approach already tested on the case study addressed in chapter 5. This 

method consists, at first, in the evaluation of the objective functions on a fixed set of 

samples (DoE), then the results are used to generate a surrogate model (RSM) of the 

underlying “true” functions. In the final step random sampling (using thousands of 

samples) is performed on the metamodel to obtain estimates of the response function 

statistics (mean, variance, etc.). 

The second UQ approach investigated is the Polynomial Chaos Expansion (PCE), which is 

based on a multidimensional orthogonal polynomial approximation where the final 

solution is expressed as a functional mapping in terms of standardized random variables. 

This polynomial approach is particularly valid for the problem under examination since 

there are only two input variables; in fact the major limitation of the PCE is that the 

number of CFD simulations needed increases exponentially with the number of inputs. 

At first, based on experience gained on twin entry radial turbines [49, 50, 51, 52], some 

key performance parameters were chosen as response functions for the UQ analysis. 

According to available experimental/CFD data on radial turbines for turbocharging 

applications, the input probability density functions assigned to the rotor tip clearances 

were selected considering physically suitable values for both the average values and the 

standard deviations. The propagation through the CFD model of the input uncertainties on 

rotor tip clearances led to the PDFs of the outputs; then the statistical distributions 

provided by the two UQ methods (Surrogate-Based and PCE) were compared. 

The ultimate goal is to identify the pros and cons of each UQ technique applied to the 

numerical simulation of twin entry radial turbines and then to propose some guidelines for 

the future integration of UQ approaches into industrial design workflows. 

 

6.2.  Turbine CFD model 

In this application the commercial CFD platform Ansys CFX® was coupled to the open 

source Dakota for its UQ capabilities. The turbine selected for the UQ analysis is a twin 

scroll inflow radial turbine for turbocharging applications. Geometrical and performance 

data are confidential, therefore all quantities are reported in non-dimensional or reduced 

form in the following; for further geometric details on volute and rotor, the reader can refer 

to ‘Reference geometry’ in section 3.1.1. The same details provided in subparagraph 3.1.2 
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on the generation of the computational grids and their quality metrics apply here. 

The twin scroll volute (Fig. 6.1) was discretized with an unstructured mesh (prism layers 

added to ensure correct boundary layer resolution), as shown in Fig. 6.1, while a structured 

grid was generated for the rotor. The leading edge (‘L.E.’) and trailing edge (‘T.E.’) of the 

blade are indicated in Fig. 6.2. 

Fig. 6.1 – Unstructured surface grid on the two volute branches. Volute outlet in magenta 

Fig. 6.2 - Rotor channel structured surface mesh with volume mesh cut plane (in yellow) 

 
The CFD model is divided into three domains (Fig. 6.3) and the set of assigned boundary 

conditions is summarized in Tab. 6.1. 

 

Tab. 6.1 – Turbine CFD model BCs. Numbers define ‘in-out’ control sections 

Domain Boundary conditions 

Volute (1-2) 
- inlet total pressure and temperature 

- flow direction orthogonal to volute inlets 

Rotor channel (2-3) 

- rotational speed 

- rotational periodicity on passage side walls 

- counter-rotating shroud wall 

Discharge pipe (3-4) - static pressure on tailpipe outlet section 
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Fig. 6.3 - CFD model of the twin scroll turbine 

 
The careful reader may object on the CFD model configuration that the volute delivers to 

the wheel a not perfectly uniform flow in tangential direction. On the one hand the 

adoption of a single rotor channel with periodicity conditions is a simplification necessary 

to lighten the weight of the simulations (especially in the perspective of building a reliable 

surrogate), on the other hand the performance could differ considering the full 360-deg 

rotor. Therefore, it should be noted that some of the results shown in the next paragraphs 

may be influenced by the simplifications assumed in the calculations. 

Simulations were performed with steady-state flow condition and in full admission (for 

more details on twin entry admission conditions see section 1.3.1). In order to isolate the 

effects of rotor tip clearance uncertainties on turbine performance parameters, a fixed 

operating condition was calculated; more specifically, a working point at maximum 

rotational speed and near choking was selected from the experimental maps provided by 

the industrial partner. This choice is motivated by the fact that the highest stress conditions 

for the turbine are promoted by: 

➢ high internal combustion engine exhaust gas temperature → thermal stress; 

➢ high peripheral speed values → centrifugal stress; 

➢ high flow momentum variation and flow leakage in the backside cavity → 

maximum thrust on bearings. 

These factors can significantly affect the ‘nominal’ rotor tip clearance values, which have 

been assumed as the mean values of the corresponding probability density functions. 

 

6.3.  Input uncertainties and response functions 

The input variables of the uncertainty quantification problem are two: the rotor tip 

clearance values at blade leading and trailing edge respectively.  

 

Tab. 6.2 - Uncertainty range and statistical features of the input parameters 

Metrics 𝑻𝑪𝑳𝑬 [%𝒉𝒃𝒊𝒏] 𝑻𝑪𝑻𝑬 [%𝒉𝒃𝒐𝒖𝒕] 

Min 1.00% 1.00% 

Max 9.00% 6.00% 

Mean (𝜇) 5.00% 3.50% 

Standard deviation (𝜎) 0.50% 0.35% 
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The average values and variation ranges of the input variables derive from physically-

based assumptions on the geometric data of the turbine provided by the industrial partner. 

The assigned clearances were therefore validated in relation to the actual rotor tip gap 

values, which are confidential. For this reason all tip clearance data in Tab. 6.2 have been 

‘scaled’ with the respective blade heights (‘ℎ𝑏𝑖𝑛’ at L.E. and ‘ℎ𝑏𝑜𝑢𝑡’ at T.E.).  

Fig. 6.4 - Gaussian probability distributions of the input variables 

 

Gaussian probability distributions (Fig. 6.4) were assigned to the two input variables, with 

standard deviation (𝜎) equal to 10% of the corresponding mean value (‘𝜇’). According to 

the definition of Gaussian (or ‘normal’) probability density function in equation (6.1), the 

99.73% of input samples is concentrated inside the ± 3σ range centered on the mean value. 

Therefore in Tab. 6.2 the ‘Min’ and ‘Max’ clearance values only identify the uncertainty 

limits of the input variables, since the samples used for the UQ analysis will be almost 

totally included in the ranges: 𝑇𝐶𝐿𝐸 = 3.5 − 6.5 %ℎ𝑏𝑖𝑛 and  𝑇𝐶𝑇𝐸 =  2.45– 4.55 %ℎ𝑏𝑜𝑢𝑡 . 

On the one hand the maximum clearance values inside the aforementioned ranges can 

realistically correspond to the cold blade, i.e. to the turbine start-up phase (when the 

internal combustion engine is fired up), on the other hand the minimum values simulate the 

conditions of maximum stress (when the blade tip is very close to the shroud). 

𝑓𝑛𝑜𝑟𝑚𝑎𝑙(𝑥)  =  
1

√2𝜋𝜎
𝑒𝑥𝑝 [−

1

2
(

𝑥 − 𝜇

𝜎
)

2

] (6.1) 

𝜎 =  √∑
1

𝑁 − 1
(𝑥𝑖 − 𝜇)2

𝑁

𝑖 = 1

 (6.2) 

The rotor clearance uncertainties are a consequence of the deformation of turbine blades 

during service. Two main factors can explain this phenomenon: 

1) thermal stress, stronger at the LE where the hot gases have not yet undergone the 

rotor expansion which causes a remarkable pressure and temperature drop; 

2) centrifugal stress (quadratic with rotational speed), stronger at the TE where the 

blade extends mainly in the radial direction, along which the centrifugal force acts. 

At the blade leading edge the variation range (‘Min-Max’) assigned to the rotor tip 

clearance is greater in terms of blade height percentage and this is related to a third factor, 

i.e. the axial thrust on rotor bearings. On this issue many authors investigated [81, 82] and 
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concluded that the thrust contribution of the leakage flow in the rotor backside cavity is 

usually higher than the momentum variation contribution due to blade flow deflection. The 

overall thrust tends to push the impeller toward the shroud at the LE, resulting in a further 

reduction of the existing gap (while at TE the axial thrust has no effect on tip clearance). 

The response functions selected for this UQ problem are twin scroll radial turbine 

performance parameters, whose definitions are reported below for completeness: 

• ‘overall’ expansion ratio, i.e. the ratio between volute inlet total pressure and 

tailpipe outlet static pressure. In the present turbine volute inlets cross sections are 

the same, thus it is valid to derive from equation (1.27) the following: 

𝑃𝑅𝐹 =  
𝑝𝑡1 𝑠ℎ + 𝑝𝑡1 ℎ𝑢𝑏

2𝑝4
 (6.3) 

• rotor expansion ratio (𝑃𝑅𝐹𝑟𝑜𝑡𝑜𝑟), which has the same definition reported in 

equation (6.3) but uses the static pressure measured at rotor outlet (𝑝3) instead of 

the turbine tailpipe outlet pressure (𝑝4); 

• mass flow ratio, i.e. the ratio between the mass flow through one of the two 

branches and the overall mass flow processed by the turbine: 

𝑀𝐹𝑅𝑠ℎ  =  
�̇�𝑠ℎ

�̇�𝑡𝑜𝑡
;  𝑀𝐹𝑅ℎ𝑢𝑏  =  

�̇�ℎ𝑢𝑏

�̇�𝑡𝑜𝑡
 (6.4) 

• mass flow parameter, used to estimate turbine flow capacity. In case of twin entry 

turbines the MFP is calculated through the mass flow ratios to consider the 

contribution of each volute branch (‘hub’ or ‘shroud’ rotor side) on total mass flow: 

𝑀𝐹𝑃 =  �̇�𝑡𝑜𝑡

√𝑀𝐹𝑅𝑠ℎ𝑇𝑡1𝑠ℎ + 𝑀𝐹𝑅ℎ𝑢𝑏𝑇𝑡1ℎ𝑢𝑏

𝑝𝑡1𝑠ℎ + 𝑝𝑡1ℎ𝑢𝑏

2

 (6.5) 

• ‘overall’ total to static efficiency, i.e. the ratio between the actual total enthalpy 

drop (ℎ01 − ℎ04) and the total to static enthalpy variation in case of isentropic 

transformation from volute inlets to tailpipe outlet; 

𝜂𝑡𝑠  = [1 − (
𝑇𝑡1

𝑇𝑡3
)] [1 − (

1

𝑃𝑅𝐹
)

(
𝑘−1

𝑘
)

]⁄  (6.6) 

• ‘rotor’ total to static efficiency, which has the same definition reported in equation 

(6.6) but uses the rotor expansion ratio (𝑃𝑅𝐹𝑟𝑜𝑡𝑜𝑟) instead of the overall one (𝑃𝑅𝐹). 

In conclusion four response functions were identified: 𝑃𝑅𝐹𝑟𝑜𝑡𝑜𝑟, 𝑀𝐹𝑃, 𝜂𝑡2𝑠 𝑟𝑜𝑡𝑜𝑟 and  𝜂𝑡2𝑠. 

 

6.4.  Results 

The uncertainty quantification workflow synthetically involves the following steps: 

I. the UQ algorithm provides the rotor tip clearance values at blade leading and 

trailing edge, selecting them within the respective variation ranges based on the 

input probability density functions specified inside Dakota input file; 

II. the rotor mesh is then generated and imported into the computational model (Ansys 

CFX® platform); 

III. the CFD simulation is performed and finally the response functions values are 

extracted through post-processing in order to be passed to the UQ algorithm. 
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This section deals with the comparison of the results achieved using two different 

uncertainty quantification approaches: Surrogate-Based UQ and Polynomial Chaos 

Expansion. For the theoretical concepts underlying these two techniques, the reader can 

refer to chapter 2, while paragraph 4.5 contains more details on the UQ platform 

specifically configured for this case study. 

 

6.4.1. Surrogate-Based UQ main outcomes 

At first, a 64-sample Design of Experiments (DoE) was generated with the Latin 

hypercube sampling method: a suitable number of numerical simulations is necessary to 

obtain, through RSM, a metamodel which is a good approximation of the true ‘physical’ 

model (the turbine CFD model). Then the input probability distributions described in 

paragraph 6.3 were passed to the Surrogate-Based UQ method (LHS is again used for 

sampling) which was applied to the surrogates to finally evaluate the response function 

statistics. An example of response surface generated with the SB-UQ approach is reported 

in Fig. 6.5 for the overall total to static efficiency of the twin scroll turbine (equation (6.6)). 

Fig. 6.5 - SB-UQ: overall total to static efficiency response surface and samples (DoE/UQ) 

 
Fig. 6.5 shows the contours on the response surface to visualize the overall variation of the 

turbine efficiency as a function of the input parameters (rotor tip clearances at blade LE 

and TE). The blue scattered points represent the 𝑁𝐷𝑜𝐸 = 64 points of the DoE, which 

correspond to 64 different combinations of rotor clearance values, i.e. to a database of 64 

CFD simulations. This computational effort is necessary to build a reliable surrogate of the 

numerical model through the RSM (Gaussian Process). 

In order to compute the statistics of the response function, the SB-UQ algorithm performs 

on the metamodel 𝑁𝑈𝑄 = 6400 function evaluations (two orders of magnitude greater than 

those used for DoE), represented by the red dot cloud in Fig. 6.5. The overall efficiency 

variation inside the DoE is about 6% (see Fig. 6.5 vertical axis), but most of the sampling 

points of the UQ method fall within a smaller range, quantifiable by the efficiency PDF. 
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The resulting discretized probability distribution of the overall efficiency is plotted in Fig. 

6.6, where each interval of the histogram corresponds to a 0.12% efficiency difference. 

The input uncertainties (Fig. 6.4) are mapped in an efficiency variation range of 2.2%, 

within which it is possible to fall with non-zero probability. This is a significant outcome: 

in a fixed operating point, subject to rotor tip clearance uncertainty (see Tab. 6.2), the 

overall efficiency variability is approximately 2%. 

Fig. 6.6 - SB-UQ: overall efficiency probability bars (in blue) and corresponding reference 

Gaussian trend (same mean and standard deviation) in red line 

 

Rotor total to static efficiency (i.e. calculated using the ‘rotor’ expansion ratio instead of 

the ‘overall’ expansion ratio) has a slightly different behaviour and larger sensitivity within 

the DoE (7% of variation), as shown in Fig. 6.7. 

 

Fig. 6.7 - SB-UQ: rotor total to static efficiency response surface and samples (DoE/UQ) 



121 

 

The rotor efficiency higher sensitivity (compare Fig. 6.5-6.7) can be explained considering 

that tip gap variations directly affect the rotor efficiency, while the stage efficiency also 

includes volute and tailpipe losses which tend to mitigate the effect of rotor tip clearance 

change. The comparison between the two different definitions of efficiency continues with 

the analysis of the respective discretized probability distributions: the rotor total to static 

efficiency PDF is more pointed and less dispersed than the ‘overall’ one (see Fig. 6.6–6.8). 

Fig. 6.8 - SB-UQ: rotor efficiency probability bars (in blue) and corresponding reference 

Gaussian trend (same mean and standard deviation) in red line 

 

By examining Fig. 6.5 and 6.7 it can be noted that the turbine efficiency (overall or rotor 

only) presents a greater sensitivity with respect to variations in tip clearance at blade TE: in 

fact, by setting a tip gap value at the LE, the efficiency absolute variation is approximately 

3% against a small 1-1.5% in the opposite case (i.e. fixing a tip gap value at the TE). In 

conclusion, the gradient (and therefore the slope) of the efficiency response surfaces is 

remarkably higher in the direction of variation of the TE tip clearance. 

Among the statistical quantities provided by the UQ analysis, the ‘Skewness’ (equation 

(6.7)) and the ‘excess Kurtosis’ (equation (6.8)) are computed as follows: 

𝑆𝑘 = 𝐸 [(
𝑅𝑖 − 𝜇𝑖

𝜎𝑖
)

3

]  ≅  
1

𝜎𝑖
3

[∑(𝑟𝑖𝑘 − 𝜇𝑖)3𝜔𝑘

𝑁𝑝

𝑘=1

] (6.7) 

𝐾𝑢 = 𝐸 [(
𝑅𝑖 − 𝜇𝑖

𝜎𝑖
)

4

] − 3 ≅  
1

𝜎𝑖
4

[∑(𝑟𝑖𝑘 − 𝜇𝑖)
4𝜔𝑘

𝑁𝑝

𝑘=1

] − 3 (6.8) 

where 𝜇𝑖 is the mean, 𝜎𝑖 is the standard deviation and 𝐸 is the ‘expectation operator’.  

The skewness (𝑆𝑘) is a measure of the asymmetry of the probability distribution of a real-

valued random variable about its mean, while the excess Kurtosis (𝐾𝑢) describes the shape 

of a PDF with respect to the Gaussian distribution (which has 𝐾𝑢=0). 

The corresponding values of these statistical moments are reported in next Tab. 6.3 and the 

following considerations can be drawn: 
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• overall efficiency → comparing the discretized probability function with the 

corresponding reference Gaussian it is clear that the distribution is ‘left-skewed’ 

(𝑆𝑘<0), i.e. the left tail is slightly longer and the mass of the distribution is shifted on 

the right of Fig. 6.6. Furthermore, 𝐾𝑢<0 and the distribution is defined ‘platykurtic’ 

because it is flatter than the corresponding Gaussian, resulting in thinner tails; 

• rotor efficiency → the distribution is ‘right-skewed’ (𝑆𝑘>0), i.e. the right tail is longer 

and the mass of the distribution is shifted on the left of Fig. 6.8. In this case 𝐾𝑢>0 and 

the distribution is defined ‘leptokurtic’ because it is more pointed than the 

corresponding Gaussian, resulting in thicker tails. 

 

Tab. 6.3 -  SB-UQ: statistical moments of 3rd and 4th order for the total to static efficiency 

referred to the rotor only or to the overall turbine respectively 

Quantity of interest Skewness (𝑺𝒌) Excess Kurtosis (𝑲𝒖) 

ETA_t2s_Overall −0.0195 −0.3046 

ETA_t2s_Rotor 0.2982 2.3968 

 

The difference between the probability distributions of efficiency calculated for the rotor 

only and for the whole stage can be explained comparing the respective response surfaces. 

In Fig. 6.7 the surface has an inflection at the rotor tip clearance average values; since the 

input distributions are Gaussian, the majority of UQ samples falls around their mean values 

(where the response surface flattens) resulting in a more concentrated probability density 

for the rotor efficiency. The aforementioned inflection in rotor efficiency is due to the 

peculiar behaviour of the rotor pressure ratio, whose response surface is shown in Fig. 6.9. 

 

Fig. 6.9 - SB-UQ: rotor pressure ratio response surface and samples (DoE/UQ) 
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The PDF of the 𝑃𝑅𝐹𝑟𝑜𝑡𝑜𝑟 obtained with the UQ analysis is displayed in Fig. 6.10, where 

the input uncertainties are mapped in a variation range of 0.1, equal to 2% of the mean 

value of the distribution. The rotor pressure ratio probability distribution is almost uniform 

within this interval with the highest probability peaks at around 8%. 

Fig. 6.10 - SB-UQ: rotor pressure ratio probability bars (blue) and corresponding 

reference Gaussian trend (same mean and standard deviation) in red line 

 

Fig. 6.11 shows the response surface of the mass flow parameter with the data set points; it 

is evident from the surface gradient that the tip gap at blade trailing edge (𝑇𝐶𝑇𝐸) has a 

greater influence on the MFP than the tip gap at blade leading edge (𝑇𝐶𝐿𝐸). 

 

Fig. 6.11 - SB-UQ: mass flow parameter response surface and samples (DoE/UQ) 
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The rotor tip clearance reduction at blade trailing edge (i.e. TE blade tip closer to the 

shroud surface) leads to an appreciable decrease of the mass flow parameter, namely of the 

turbine exhaust gas processing capacity. This result agrees perfectly with the radial turbine 

design theory, which teaches that the aerodynamic blockage in the exducer (final part of 

the blade) limits the impeller blades number (see paragraph 1.2.2). 

The discretized probability distribution of the MFP is shown in Fig. 6.12. The 6400 results 

of the sampling-based UQ algorithm are concentrated in a small range of 0.02 

[(kgK^0.5)/bar], equal to 0.8% of the mean value of the distribution. Overall, it can be 

noted that rotor tip gap uncertainties have a limited impact on turbine mass flow, which is 

only slightly affected by tip clearance uncertainty at blade trailing edge. 

Fig. 6.12 - SB-UQ: mass flow parameter probability bars (blue) and corresponding 

reference Gaussian trend (same mean and standard deviation) in red line 

Although in this case the MFP sensitivity to rotor tip gap uncertainties is limited (overall 

variation within the DoE of about 1.5% of the mean value), it should be noted that the 

trailing edge tip clearance may have a stronger impact if a diffuser is placed downstream of 

the wheel, limiting the turbine permeability through diffuser blockage. 

 

6.4.2. Surrogate model validation 

The surrogate models given by Dakota’s ‘Surfpack’ toolset allows to compute diagnostic 

metrics based on the differences between the ‘observed’ value 𝑜(𝑥𝑖), and the metamodel 

prediction 𝑝(𝑥𝑖) for the training points 𝑥𝑖 [28]. Three types of ‘error’ can be distinguished: 

1) simple prediction error with respect to the training data. In this case the points 𝑥𝑖 

are those used to train the model; 

2) prediction error estimated by cross-validation, when the points 𝑥𝑖 are selectively 

omitted from the build; 

3) prediction error with respect to challenge data, which are supplementary points 𝑥𝑖 

provided by the user. 

The resulting metrics must be interpreted very carefully: e.g. in case of interpolatory 

models, like that used in this case for the surrogates generation, simple prediction error (1) 

will almost always be zero and therefore must be neglected, while options (2) and (3) 

remain valid to compute diagnostic metrics. 
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As done in chapter 5 for the UQ analysis on the supersonic nozzle, a cross-validation was 

performed for the radial turbine metamodels in order to verify their reliability.  

At first the k-fold cross-validation is considered: the results obtained from a ‘4-fold’ cross-

validation are reported in Tab. 6.4 including the root mean squared, the mean absolute 

value and the maximum absolute value of the prediction error (calculated between the CFD 

value and the surrogate model prediction for the training points). The determination 

coefficient (𝑅2) is meaningful for polynomial models, but less for other model types. 

It should be noted that the average and maximum absolute values of the prediction error 

(last two rows of Tab. 6.4 and 6.5) are reported in relative percentage form with respect to 

the corresponding mean values of the 64-point DoE.  

 

Tab. 6.4 – Diagnostic metrics for the 4-fold cross validation of response surfaces 

Metrics 𝜼𝒕𝒔 𝜼𝒕𝒔_𝒓𝒐𝒕𝒐𝒓 𝑷𝑹𝑭𝒓𝒐𝒕𝒐𝒓 
𝑴𝑭𝑷 

[kgK^0.5/bar] 

Root mean squared 

(RMS) 
5.766 x10-4 1.428 x10-3 1.794 x10-2 1.356 x10-3 

Mean absolute value 

 (%mean value) 
0.08% 0.20% 0.33% 0.04% 

Maximum absolute value 

(%mean value) 
0.30% 0.97% 1.52% 0.15% 

 

The results of the ‘4-fold’ cross-validation attest to the reliability of the metamodels, with 

average errors never above 0.5% and maximum errors contained within 1.5%.  

In addition, the ‘Prediction Error Sum of Squares’ (PRESS) was performed. 

 

Tab. 6.5 - Diagnostic metrics for the Leave-one-out cross validation (PRESS) of surrogates 

Metrics 𝜼𝒕𝒔 𝜼𝒕𝒔_𝒓𝒐𝒕𝒐𝒓 𝑷𝑹𝑭𝒓𝒐𝒕𝒐𝒓 
𝑴𝑭𝑷 

[kgK^0.5/bar] 

Root mean squared 

(RMS) 
5.116 x10-4 1.339 x10-3 1.738 x10-2 1.393 x10-3 

Mean absolute value 

(%mean value) 
0.07% 0.17% 0.29% 0.04% 

Maximum absolute value 

(%mean value) 
0.27% 1.03% 1.71% 0.15% 

 

The diagnostic metrics in Tab. 6.5 further confirm the outcomes of the 4-fold cross 

validation. As expected, the maximum error increases slightly (1.71%) because in this case 

the number of partitions used to assess the statistics corresponds to the number of training 

points. Nevertheless, maximum errors within 2% are considered acceptable and certify the 

validity of the UQ results already discussed in section 6.4.1.  

The SB-UQ approach will therefore be taken as a reference to evaluate the quality of the 

PDFs obtained with PCE of different orders in the next paragraph. 

 

6.4.3. PCE: comparison of the results obtained from different polynomial orders 

Polynomial chaos expansions (PCE) use multidimensional orthogonal polynomial 

approximation formed in terms of standardized random variables. In the present case study 
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all random inputs can be described using independent normal, uniform, exponential, beta 

and gamma distributions, hence Askey polynomials (see paragraph 2.6) can be directly 

applied. The set of polynomials are used as an orthogonal basis to approximate the 

functional form between the stochastic response output and each of its random inputs. It 

should be remembered that although the PCE method provides analytic statistical moments 

of the response functions, the cumulative distribution function probabilities are evaluated 

numerically by sampling (LHS) on the expansion. 

In this application the Gaussian quadratures have been selected using an isotropic approach 

because the two input variables have the same physical meaning. This means that the UQ 

algorithm uses the same quadrature order 𝑚𝑖𝑗  =  𝑚 for the input variables (𝑛= 2 

dimensions), resulting in a total of 𝑚𝑛 function evaluations to compute the PCE 

coefficients (𝛼𝑗): e.g. for a 4th order 42 = 16 CFD simulations are needed.  

 

The Polynomial Chaos Expansion technique requires the user to specify the expansion 

order of the multivariate polynomial approximation and the polynomial order bounds for 

each input variable. The GP algorithm previously used in the Surrogate-Based approach 

(section 6.4.1) requested a 2nd order polynomial for the trend function of each response 

function and the highest total polynomial order of any term in the trend function was two. 

However, if no information on the response functions behaviour is available, what is the 

proper polynomial order for each QoI of the UQ problem? To answer this question it is 

essential to compare the output PDFs resulting from different PCE orders. 

In this section the results of a 2nd, 3rd and 4th order polynomial expansion are compared to 

give some guidelines for future UQ applications on twin scroll radial turbines. Starting 

from the 𝜂𝑡𝑠, the comparison among the respective discretized PDFs is shown in Fig. 6.13. 

Fig. 6.13 - PCE vs. SB-UQ: overall efficiency probability distributions obtained from 

polynomial expansions of different orders compared to the ‘Surrogate-Based’ reference 

 

It is interesting to note that the PDFs obtained with 2nd and 4th order PCEs are more similar 

near the mean value, while 3rd order polynomial expansion PDF differs from the previous 

ones, with higher probability peaks close to the probability distribution mean value. If the 
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SB-UQ diagram bars are taken as reference, the closest PDF stems from the 4th order PCE, 

especially considering the central bars, associated with the highest probability levels.  

In order to provide the reader with a quantitative idea of the maximum error made in 

estimating the probability distribution of a QoI with a certain PCE order, the PDFs are 

compared using the same response levels for each quantity of interest. This means that for 

a given QoI the probability of occurrence inside a definite bin, estimated with a determined 

order of the PCE, was compared with the corresponding one (same bin) coming from the 

SB-UQ method. Once this operation was performed, the 'maximum absolute (no sign) 

probability differences' were identified and collected in a table. For example, considering 

the probability differences between the discretized trends obtained with the PCE and the 

SB-UQ 'reference' distribution in Tab. 6.6, the 3rd order PCE gives the most different PDF 

from SB-UQ prediction, while 2nd and 4th order polynomial expansions differ by 0.4%.  

At this point, is it worth doing 16 CFD simulations instead of 4 (minimum number 

required by 4th and 2nd order PCE respectively) for such a small improvement? The answer 

to this question can only be given by considering the set of all response functions. 

 

Tab. 6.6 - Overall efficiency maximum probability differences from SB-UQ reference  

Eta_t2s : max. absolute probability difference - PCE vs. SB-UQ 

2nd 3rd 4th 

1.22% 2.22% 0.83% 

 

Fig. 6.13 and Tab. 6.6 highlight an important outcome: with the 2nd order PCE it is possible 

to get an overall efficiency probability distribution which differs from the SB-UQ 

‘reference’ by a maximum of 1%. Therefore, the PCE technique allows to obtain optimal 

probability predictions with a much lower computational effort: from 64 CFD simulations 

needed for the metamodel-based approach to just 4 simulations for the 2nd order PCE. 

Fig. 6.14 -  PCE vs. SB-UQ: rotor efficiency probability distributions comparison 
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The discretized PDFs of the 𝜂𝑡2𝑠 𝑟𝑜𝑡𝑜𝑟 in Fig. 6.14 show that the 3rd order polynomial 

expansion still provides the most pointed distribution, as noted for the overall efficiency. 

Moreover, lower order (2nd and 3rd) PCEs give more concentrated probabilities around the 

PDFs mean value, while 4th order PCE and SB-UQ display a greater probability dispersion. 

In this case the probability differences with respect to SB-UQ reference indicate a larger 

gap between the 2nd and 4th order polynomial PDFs, as confirmed  by Tab. 6.7; the 

maximum probability difference of the 2nd order PCE is twice that of the 4th order PCE. 

The wider gap found between rotor efficiency PDFs suggests the use of a 4th order PCE. 

 

Tab. 6.7 - Rotor efficiency maximum probability differences from SB-UQ reference 

Eta_t2s_rot : max. absolute probability difference PCE vs. SB-UQ 

2nd 3rd 4th 

19.39% 25.13% 9.31% 

 

All PCE-derived probability distributions for the rotor pressure ratio differ in shape from 

the SB-UQ reference; furthermore, lower order (2nd and 3rd) polynomial expansions lead to 

greater probability dispersion within the dataset, as shown in Fig. 6.15 below. 

Fig. 6.15 - PCE vs. SB-UQ: rotor pressure ratio probability distributions comparison 

 

Tab. 6.8 - Rotor pressure ratio maximum probability differences from SB-UQ reference 

PRF_rot : max. absolute probability difference PCE vs. SB-UQ 

2nd 3rd 4th 

4.52% 3.25% 3.98% 

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

PRF_rot [-]

PRF_rot PROBABILITY - SB-UQ vs PCE

pce_2nd

pce_3rd

pce_4th

sb_uq



129 

 

Considering the maximum absolute probability differences reported in Tab. 6.8 for the 

rotor pressure ratio, the gap from the SB-UQ reference is always around 3–4% for all PCE 

orders. Nevertheless, it should be stressed that the 4th order PCE is the one that best fits 

qualitatively to the results of the SB-UQ, as shown in Fig. 6.15. 

 

Finally, the mass flow parameter is examined: the PDFs are almost entirely contained in a 

range of amplitude equal to 0.8% of the mean value of the distribution (see Fig. 6.16). 

Analyzing the data in Tab. 6.9 it can be concluded that quantitatively the 4th order PCE is 

the solution that best approximates the probability distribution given by the Surrogate-

Based UQ approach, with a maximum error of about 3%. 

 

Tab. 6.9 - Mass flow parameter maximum probability differences from SB-UQ reference 

MFP : max. absolute probability difference PCE vs. SB-UQ 

2nd 3rd 4th 

5.58% 9.59% 3.34% 

 

Fig. 6.16 - PCE vs. SB-UQ: mass flow parameter probability distributions comparison 

 

As a general conclusion of the analysis of uncertainty quantification results: 

• two UQ approaches (Surrogate-Based and PCE) were studied and compared;  

• the results of the UQ method based on metamodels were validated through cross 

validation and taken as a reference for evaluating PCE capabilities;  

• the best polynomial chaos expansion order for the case of the twin scroll turbine was 

identified in the 4th order and validated using the results of the Surrogate-Based UQ 

approach.   
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Conclusions and perspectives 
 

 

The doctoral thesis achieved the prescribed purposes as a result of a well-defined planning 

of the research activity.  

The detailed fluid dynamic characterization of twin entry turbines allowed to understand 

the main parameters which typify and influence their fluid dynamic performance. In 

addition, the formulation of brand new parameters and indices related to the fluid dynamic 

performance of the twin scroll volute offers the possibility of future improvements in 

automated procedures for design optimization of twin entry radial turbines.  

The development of an in-house platform for UQ analysis, first tested on the industrially 

interesting test case of the supersonic nozzle, represents a relevant scientific contribution in 

the perspective of introducing UQ approaches in consolidated industrial design and 

verification processes. 

The application of the UQ platform to the CFD simulation of a twin scroll radial turbine 

with geometric uncertainties in the rotor tip clearances at blade leading edge and trailing 

edge demonstrated the capabilities and large potential of these numerical techniques for 

turbomachinery design purposes. The Surrogate-Based UQ approach is a well established 

UQ technique for several applications, while the use of Polynomial Chaos Expansion is 

very attractive, as it requires a much lower number of individuals in the CFD database; 

nevertheless, the order of the polynomial strongly affects the final distributions.  

The effects of rotor tip gap uncertainties were quantified and the overall results were 

confirmed by radial turbine design practice. 

The UQ analysis applied to twin scroll radial turbines provides the designer with more 

realistic information on expected performance at a given working point by introducing the 

effects of operational geometric uncertainties into CFD simulation. Performance data 

associated with uncertainty margins allow designers to better correlate simulated data with 

actual performance.  

 

 

The doctoral thesis proved to industry the high potential of UQ methodologies in making 

the prediction of the expected performance of a component subject to several sources of 

uncertainty more reliable. 

The application of uncertainty quantification techniques to CFD is therefore proposed as a 

new industrial standard for research and development departments. 
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Nomenclature 
 

 

Symbols  

     

a speed of sound [m/s] 

b blade height [mm] 

c absolute velocity [m/s] 

d derivation symbol 

h specific enthalpy [J/kg], representative cell dimension (GCI), blade 

height (leading/trailing edge) [mm] 

k specific heat ratio 

l diffuser length [m], rotor axial size [mm] 

m mass [kg], mean value 

min minimum value of a distribution 

ṁ mass flow rate [kg/s] 

p static pressure [Pa], observed order of accuracy (GCI) 

r radial coordinate, radius [m], grid refinement factor (GCI) 

r2 nozzle reference condition: normal shock wave at outlet section 

r3 nozzle reference condition: supersonic isentropic expansion 

u peripheral velocity [m/s] 

w relative velocity [m/s] 

y+ dimensionless wall distance 

z axial direction [m] 

zb blade number 

A area [m^2] 

AR area ratio (geometry), aspect ratio (mesh quality) 

Cp static pressure recovery (diffuser), fluid specific heat at constant 

pressure [J/kgK] 

D diameter [m] 

ERU unequal expansion ratio 

ETA_t2s, 

ETA_t2s_Overall 
overall total to static efficiency 

ETA_t2s_Rotor rotor total to static efficiency 

Ku kurtosis 

L specific work [J/kg] 

M Mach number 

MAX maximum value of a distribution 

MFP Mass Flow Parameter [(kgK0.5/s)/bar] 
MFPR Mass Flow Parameter ratio (unequal admission) 

MFR Mass Flow Ratio 

MW Molecular Weight, molar mass [kg/kmol] 

N rotational speed [rev/min], number of samples (DoE, SB-UQ) 

P power [W] 

PRF Pressure Ratio Flow 

R specific gas constant [J/kgK] 
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Su Sutherland’s coefficient 

Sk skewness 

TC_LE tip clearance at blade leading edge [mm] 

TC_TE tip clearance at blade trailing edge [mm] 

T static temperature [K] 

U uncertainty 

VR Velocity Ratio 

X axial coordinate [m] 

α absolute flow angle [deg] 

β relative flow angle [deg] 

βb blade metal angle [deg] 

δ half-opening angle of the diffuser 

ε expansion ratio 

η efficiency 

ϑ angular coordinate, crank angle [deg], circumferential direction 

λ incidence factor, admission ratio 

μ dynamic viscosity [Pa s], mean value (Gaussian distribution function) 

𝜉 dimensionless loss coefficient 

π total pressure loss coefficient (diffuser) 

ρ density [kg/m^3] 

σ standard deviation 

φ flow coefficient 

ω angular speed [rad/s] 

Δ difference, variation 

θ non-dimensional mass flow rates 

 

Superscripts and subscripts 

 

0 total state 

1 volute inlet (turbine inlet) section, nozzle inlet section 

2 volute outlet/rotor inlet section 

3 rotor outlet/tailpipe inlet section 

4 diffuser/tailpipe outlet (turbine outlet) section 

95% associated with a 95% probability of occurrence 

a advance, atmospheric, specific work lost in friction 

adim dimensionless 

air referred to air 

area averaged on area 

atm atmospheric 

b blade 

bin blade inlet 

bout blade outlet 

both referred to both twin entry volute branches 

c closing, metal angle 

centrifugal centrifugal force 

const identifies the volute limb at constant pressure ratio (unequal 

admission) 
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d delay, discharge, diffuser, dynamic 

effective effective 

exit outlet nozzle section 

exp experimental 

firing firing sequence 

free flow identifies the volute limb for which the pressure ratio is free to vary 

(unequal admission) 

hub rotor hub side (identification of the volute branch) 

i inner (annular diffusers) 

id, ideal ideal case 

in inlet nozzle section 

limb generic twin scroll volute branch 

m meridian component 

mass averaged on mass flow 

max maximum value 

min minimum value 

normal referred to a normal or Gaussian distribution 

o opening, outer (annular diffusers) 

out outlet nozzle section 

partial partial admission condition 

r radial 

ref reference value 

rel relative 

rid               reduced 

rot, rotor relative to the rotor only 

s isentropic, discharge (static pressure), static condition 

sh rotor shroud side (identification of the volute branch) 

ss isentropic stage 

t total condition, “true” value 

tot overall 

ts, t2s total to static 

tt total to total 

twin entry related to twin entry turbines type 

u unequal 

x axial 

x-r axial to radial 

θ, ϑ         circumferential component 

* normalized value 

DoE referred to the Design of Experiments 

LE blade Leading Edge 

MAX maximum value 

MIN minimum value 

TE blade Trailing Edge  

TM Thermo-Mechanical 

UQ referred to the Uncertainty Quantification analysis 
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Acronyms 

 

BCs Boundary Conditions 

CFD Computational Fluid Dynamics 

CDF Cumulative Distribution Function 

DACE Design and Analysis of Computer Experiments 

DoE Design of Experiments 

ER Expansion Ratio 

GCI Grid Convergence Index 

GP Gaussian Process 

HPC High Performance Computer 

ICE Internal Combustion Engine 

IFR Inflow Radial 

LE blade Leading Edge 

LHS Latin Hypercube Sampling 

MCM Monte Carlo Method 

MFP Mass Flow Parameter [(kgK0.5/s)/bar] 
MFR Mass Flow Ratio 

MLE Maximum Likelihood Estimation 

P Pressure side 

PC Polynomial Chaos 

PCE Polynomial Chaos Expansion 

PDF Probability Density Function 

PR, PRF Pressure Ratio Flow 

PRESS Prediction Error Sum of Squares (cross-validation) 

QoI Quantity of Interest 

RANS Reynolds Averaged Navier-Stokes 

RMS Root Mean Square 

RSM Response Surface Methodology 

S Suction side 

SA Sensitivity Analysis 

SB Surrogate-Based 

SBUQ, SB-UQ Surrogate-Based Uncertainty Quantification 

SST Shear Stress Transport 

TE blade Trailing Edge 

UQ Uncertainty Quantification 
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Appendix A 
 

 

The kind of uncertainty source leads to a distinction into three main uncertainty categories: 

1) operational, such as BCs or fluid properties (see the supersonic nozzle in chapter 5); 

2) geometrical, like the rotor tip clearance addressed in chapter 6; 

3) numerical, i.e. related to modelling issues and numerical errors. 

This appendix concerns a mesh-based uncertainty quantification analysis which shows the 

application of the Grid Convergence Index method (‘GCI’- illustrated in section 2.4) to the 

twin scroll turbine case (main subject of chapter 6).  

 

Twin entry volute Grid Convergence Index 

The goal of this procedure is to quantify the mesh influence on the evaluation of some 

performance parameters of twin entry radial turbines in order to give an uncertainty 

estimate 𝑈95% for each of them. By denoting the generic performance parameter with′𝑓′, 
the aim is therefore to provide an interval 𝑓 ± 𝑈95% within which the true value ′𝑓𝑡′  
probably falls, with probability of 95% (confidence level compatible with the range ±2𝜎 

for a Gaussian distribution). The concept underlying the GCI is to calculate the error 

associated with the use of a certain computational mesh with respect to a reference solution 

obtained through an asymptotic approach. 

At first, three significantly different volute grid resolutions were selected. The GCI 

procedure recommends not to use different grid refinement factors in different directions, 

because this results in erroneous observed order of accuracy ‘𝑝’ (see equation (2.17)). 

Consequently, in this case the mesh parameters assigned to each geometry patch are kept 

fixed, while for the global mesh size a ‘scale factor’ between two consecutive meshes (e.g. 

coarse to medium or medium to fine) was chosen, in order to refine the volute grid 

isotropically. 

Fig. A.1 – From left to right: coarse, medium, fine mesh resolution on a volute cross cut  

 

Given the geometric complexity of the component, to simulate the twin entry volute it is 

necessary to generate an unstructured mesh. Equation (2.16) is used to derive, for each grid 

refinement level, the representative grid dimension 'ℎ’, which corresponds to the cubic root 

of the mean value of the elements volume (see Tab. A.1). 
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A major constraint of the GCI procedure is that the grid refinement factor (ratio between 

the ‘ℎ’ values of two consecutive meshes -  𝑟 =  ℎ𝑐𝑜𝑎𝑟𝑠𝑒/ℎ𝑓𝑖𝑛𝑒 ) must be greater than 1.3. 

In this specific case it results  𝑟21 = ℎ2/ℎ1 = 1.324 and  𝑟32 = ℎ3/ℎ2 = 1.525 respectively. 

 

Tab. A.1 – Reference data and representative mesh size for each grid resolution 

RESOLUTION Size [Mcell] Volume [mm^3] 
Representative grid 

dimension [mm] 

FINE #1 10.9 558790 0.372 

MEDIUM #2 4.7 558472 0.493 

COARSE #3 1.3 558081 0.751 

 

Once the grid resolutions were chosen, CFD simulations at fixed point and in equal 

admission were perfomed to determine the values of key variables for the twin entry 

turbine under investigation. However, before calculating discretization errors, it is essential 

to ensure that the convergence of the calculation is achieved. The rule of thumb is to obtain 

a reduction of at least three orders of magnitude in the normalized residuals for each solved 

equation over the entire computational domain. It is important to remember that three 

different mesh resolutions are considered sufficient for the calculation of the observed 

order of the method if some of the values of the generic variable ′𝜑′ predicted on the three 

grids are in the asymptotic region for the simulation series. The following images show the 

grid dependency for each performance parameter of the twin scroll volute examined: 
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Fig. A.2 – Grid dependency for key twin scroll volute parameters: a) mass flow parameter, 

b) shroud and hub mass flow ratio, c) both, shroud and hub dimensionless total pressure 

drop, d) absolute flow angle ratio, e) axial to radial velocity ratio 

 

Tab. A.2 shows the results of the five-step procedure (more details at section 2.4) applied 

to calculate the mesh-based uncertainty. For each performance parameter of the volute, the 

following quantities are collected: 

➢ 𝜑1, 𝜑2, 𝜑3 are the values of the parameter whose uncertainty estimation has to be 

determined, obtained with fine, medium and coarse grid respectively; 
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➢ 𝑝 is the apparent (or observed) order of the method, calculated through a fixed 

point iterative process; 

➢ 𝑒𝑎
21 and 𝑒𝑒𝑥𝑡

21  respectively represent the ‘approximate’ and ‘estimated’ extrapolated 

relative error in dimensionless form; 

➢ 𝜑𝑒𝑥𝑡
21  or ‘extrapolated value’ of the variable, that corresponds to the fine grid 

solution (𝜑1) plus the estimated error; 

➢ 𝐺𝐶𝐼 𝑓𝑖𝑛𝑒
21  i.e. the grid convergence index associated with the finest grid resolution. 

This value corresponds to two times the relative standard deviation. 

 

Tab. A.2 – Results summary of the GCI procedure applied to various performance 

parameters of the twin entry volute  

Var. 𝑴𝑭𝑷 𝑴𝑭𝑹𝒔𝒉 𝑴𝑭𝑹𝒉𝒖𝒃 
𝜟𝒑𝒕 𝒃𝒐𝒕𝒉

𝒑𝒕𝟏 𝒃𝒐𝒕𝒉
 

𝜟𝒑𝒕 𝒔𝒉

𝒑𝒕𝟏 𝒔𝒉
 

𝜟𝒑𝒕 𝒉𝒖𝒃

𝒑𝒕𝟏 𝒉𝒖𝒃
 𝜶𝑹𝒂𝒕𝒊𝒐 𝑽𝑹𝒙−𝒓 

𝝋𝟏 2.522 47.2% 52.8% 3.9% 4.0% 3.3% 1.0201 0.1269 

𝝋𝟐 2.517 47.2% 52.8% 3.9% 4.1% 3.4% 1.0177 0.1456 

𝝋𝟑 2.489 47.6% 52.4% 4.1% 3.6% 3.7% 1.0075 0.2197 

𝒑 3.30 4.84 4.92 6.86 4.80 2.02 2.86 2.67 

𝝋𝒆𝒙𝒕
𝟐𝟏  2.526 47.24% 52.76% 3.874% 4.011% 3.166% 1.0221 0.1102 

𝒆𝒂
𝟐𝟏 0.22% 0.12% 0.11% 0.33% 1.68% 3.25% 0.24% 14.75% 

𝒆𝒆𝒙𝒕
𝟐𝟏  0.14% 0.04% 0.04% 0.06% 0.59% 4.46% 0.19% 15.17% 

𝑮𝑪𝑰 𝒇𝒊𝒏𝒆
𝟐𝟏  0.18% 0.05% 0.04% 0.07% 0.74% 5.34% 0.24% 16.46% 

 

The final results of the GCI method are shown in Tab. A.3 which reports each of the key 

variables of the simulated twin entry volute with a value (‘𝑓’ - relative to the finest grid) 

and the corresponding ‘numerical’ uncertainty deriving from the mesh resolution. Within 

these intervals there is a 95% probability of finding the true value ‘𝑓𝑡’ of each performance 

parameter. 

 

Tab. A.3 – 95% probability intervals for each twin scroll volute performance parameter 

PARAMETER FINEST GRID VALUE (𝒇) ± 𝑼𝟗𝟓% (2𝝈) 

𝑴𝑭𝑷 2.522 ± 0.005 

𝑴𝑭𝑹𝒔𝒉 47.22% ± 0.03% 

𝑴𝑭𝑹𝒉𝒖𝒃 52.78% ± 0.02% 

𝜟𝒑𝒕 𝒃𝒐𝒕𝒉 𝒑𝒕𝟏 𝒃𝒐𝒕𝒉⁄  3.876% ± 0.003% 

𝜟𝒑𝒕 𝒔𝒉 𝒑𝒕𝟏 𝒔𝒉⁄  4.035% ± 0.030% 

𝜟𝒑𝒕 𝒉𝒖𝒃 𝒑𝒕𝟏 𝒉𝒖𝒃⁄  3.308% ± 0.176% 

𝜶𝑹𝒂𝒕𝒊𝒐 1.020 ± 0.002 

𝑽𝑹𝒙−𝒓 0.127 ± 0.021 
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The results shown in Tab. A.2 and A.3 lead to the conclusion that a single parameter has 

rather large margins of uncertainty in relation to its value, i.e. the axial to radial velocity 

ratio (𝑉𝑅𝑥−𝑟), which quantifies how much the exhaust gas direction at rotor inlet is 

different from the ideal case of purely radial flow. This outcome is not surprising because 

the flow axial velocity at the rotor-stator interface is very low in equal admission, 

consequently the velocity ratio assumes values close to zero and this tends to amplify the 

effect of the uncertainty deriving from the grid. 

 

As a general conclusion of this appendix, good practice in computational fluid dynamics 

should include the evaluation of the grid spacing impact on global parameters, followed by 

model assessment and uncertainty quantification. 
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