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Abstract 

Biopolymers, generally prepared from renewable sources, have attracted increasing attention 

due to their unique properties, such as nontoxicity, biodegradability and biocompatibility. 

Indeed, the above materials have been widely applied in the biomedical field, in the 

development of electronic devices as well as in the food packaging. Two of the most 

extensively studied and exploited biopolymers are poly(lactic acid) (PLA) and 

polycaprolactone (PCL), which have been the objects of the present work. Despite the 

significant interest in these polymers, for large-scale exploitation of both PLA and PCL, it is 

necessary to take into account some specific issues concerning their properties. In this regards, 

it is relevant to underline that the methods, which can be applied for improving their 

characteristics or those used for disclosing new features, have to take into account the 

economic impact and the "bio" nature of the material, which should be maintained in the final 

formulation. In particular, in the case of PLA, one of the major issues, which reduces its 

exploitation in durable applications, is its low hydrolytic stability, compared with other similar 

materials. Moreover, in the applications requiring high gas barrier, the use of PLA is critical 

and needs a further reduction of its gas permeability. Furthermore, concerning exploitations, 

where electrical and thermal conductivity is demanded, the insulating nature of the above 

biopolymers, requires the applications of proper conductive fillers. As such, the main aim of 

the thesis work has been the improvement of the two biopolymer properties, developing novel 

formulations, whose design has taken into account all the mentioned issues. 

In the case of PLA, the barrier properties, the resistance to hydrolytic degradation as well as 

the antistatic features have been improved by modifying the material surface by means of the 

application of methods based on the chemical grafting or the Layer by Layer deposition and 

on the use of proper fillers, such as Polyhedral Oligomeric Silsesquioxane (POSS) and 

graphene oxide (GO). In addition, formulations capable of imparting thermal conductivity to 

PCL have been studied, combining the biopolymer with graphite nanoplatelets (GNP). 
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Outline of the thesis  

Chapter 1 is dedicated to the description of biopolymers and biopolymer-based composites. 

In particular, classification, advantages and applications of biopolymers and their composites 

are reported. Moreover, the synthesis, properties, applications and modification of poly(lactic 

acid) (PLA) and polycaprolactone (PCL), which are the objects of this thesis, are emphatically 

introduced as well as the frequently used carbon-based nanofillers. 

Chapter 2 is focused on a novel method to enhance polylactide hydrolysis resistance based on 

polyhedral oligomeric silsesquioxane (POSS) grafting on the surface of poly(L-lactide) 

(PLLA) films. The occurrence of the reaction between an amino-POSS /POSS-NH2) and 

PLLA films at mild conditions (40oC or 60oC) are verified by IR measurements. The stability 

of both neat PLLA film and POSS-NH2-grafted films are tested by putting them in contact 

with water at 50 oC for several weeks. Indeed, the neat PLLA film are found to break into 

small pieces after 4 weeks contact with water while the POSS grafted PLLA films kept their 

relatively high integrity. This relevant improvement in hydrolysis resistance is believed to be 

caused by presence of super-hydrophobic POSS molecules on the surface of PLLA films, 

which acting as a barrier, protect PLLA films from contact with water directly, thus enhancing 

their hydrolysis resistance. 

Chapter 3 describes the application of Layer-by-Layer (LbL) assembly method in modifying 

the surface properties of PLLA films. The positively charged chitosan (CH) and branched 

polyethylenimine (BPEI) solutions are used to couple with negatively charged graphite oxide 

(GO) to create bi-layers of GO on the surface of PLLA films, following a very simple dipping, 

washing and drying procedure. The growth of the GO on PLLA surface is simulated using Si 

wafers as substrates and it is monitored by IR. BPEI is found to have much better combination 

result with GO compared to CH due to the dependence of ionization degree of GO carboxyl 

groups on pH. The O2 permeability of PLLA LbL-treated films is found to decrease compared 

to neat PLLA films. The reduction of GO deposited on the PLLA films is performed by using 
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sodium borohydride (NaBH4), and the resulted systems are found to have promising antistatic 

properties. 

Chapter 4 is focused on the preparation of nanopapers based on PCL and graphite 

nanoplatelets (GNP) with the aim at achieving both high thermal conductivity and mechanical 

properties. The PCL-GNP nanopapers are prepared by simply solution blending, sonication, 

filtration, drying and pressing. Nanopapers with different PCL content (from ca.5 wt.% to 20 

wt.%) are obtained by adjusting the initial ratio between PCL and GNP in the suspensions. 

The crystallization temperature of PCL when added in the GNP nanopapers is found to 

increase by ca. 20 oC with respect to the neat polymer. Moreover, extra melting peaks at 

relatively high temperatures are found for all the composite nanopapers, which to the best our 

knowledge were never reported in the literatures. It is relevant to underline that some of the 

peaks at high temperatures are found to be related to the structuring of PCL chains in the 

galleries of GNP. Concerning the thermal conductivities of the nanopapers, the insertion of 

PCL chains leads to a slight decrease of thermal diffusivity. Nevertheless, the nanopapers 

prepared by the combination of GNP and limited amount of PCL, can maintain high thermal 

conductivity (ca. 160 Wm-1K-1 for nanopaper with ca. 8wt.% of PCL). Moreover, the prepared 

systems show good mechanical properties, as evidenced by the DMTA temperature sweep 

measurements. 
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1 State of art  

1.1 Biopolymers  

Polymers are a class of “giant” molecules with long chains that are consisted of discrete 

building blocks linked together. The simple building blocks are usually called monomers, 

while for building blocks with complicate structures are sometimes referred as “repeat units”. 

Since the first synthetic plastic was produced by John Wesley Hyatt in 1869, petroleum-based 

polymer plastics have flourished due to their light weight, easy processing, excellent strength, 

versatility, durability, and low cost.1 Over the past decades, polymer materials have become 

an indispensable part of human life, while bringing very large convenience to human beings, 

the fast development of petroleum-based products also caused serious pollution to the 

environment, which in turn affected the health of human and the survival of other species.2 

According to the latest report, approximately 350 million tons of synthetic polymers are 

produced over the world every year and the demand is further increasing, and most of these 

plastics had been abandoned after being used, which resulted in a large amount of plastic 

waste accumulation, causing non-negligible damage on environment and threatening the 

safety of biosphere.3 In addition, the increasing demand of petroleum-based polymer 

materials are exacerbating the depletion of petroleum resources, it is not hard to imagine that 

the production of petroleum-based polymers will be hindered by limited resources and rising 

raw material prices in the near future.  

The rising concern about escalating price of fossil fuel and their impact on environment, as 

well as the limited applications of fossil-based polymers have made it necessary to search for 

substitutes for petrochemical plastics. The development of more sustainable processes for a 

greener and bio-based future is the current global goal, which has led to great interests in 

researching in bio-based polymers, which are the most promising alternatives of fossil fuels. 

Biopolymers are usually referred as polymers that developed from living beings, and the name 

indicates that they are biodegradable polymers. The development of biopolymer-based 
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materials from renewable resources is an very active research area that is attracting increasing 

scientific and industrial attentions.4, 5  

The first generation of bio-based polymers were dependent on the synthesis of the building 

blocks (monomers), including lignocellulosic biomass (starch and cellulose), fatty acids, and 

organic waste. The term “Biodegradable” describes the functionality of a polymer, 

“biodegradability”. Polymers with biodegradability can degrade under the action of several 

microorganisms such as molds, fungi, and bacteria within a specific period and will not cause 

any damage to environment. The Japan Bioplastics Association (JBPA) defined the term 

“biodegradability” as the characteristic of a material that can be microbiologically degraded 

to the final products of carbon dioxide and water without harming the environment, which 

can be recycled in the nature. The biodegradability of plastics can be determined by following 

the ISO methods and only the plastics that meet all the rigorous criteria (e.g., contents of 

heavy metals, safe intermediate reaction products) can be classified as green plastics. 

1.1.1 Classification of biopolymers 

By considering the source of raw materials and the biodegradability of synthetic products, 

biopolymers can be divided into three categories, as presented below: 

Type-A: biopolymers made from renewable raw materials (also only partially from 

renewable), and being biodegradable; 

Type-B: biopolymers made from fossil fuels, and being biodegradable; 

Type-C: biopolymers made from renewable raw materials (also only partially from 

renewable), and not being biodegradable. 

The biopolymers of type-A can be produced under biological systems or chemically 

synthesized from bio-based raw materials (e.g., corn, sugar, starch, etc.). Biodegradable bio-

based biopolymers include synthetic polymers from renewable resources such as poly (lactic 

acid) (PLA), as well as biopolymers produced by microorganisms, such as PHAs, and also 

natural occurring biopolymers, like starch and proteins. As one kind of the most promising 
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biopolymers, biodegradable biopolymers made from renewable raw materials are attracting 

global concern and will be the main direction of the polymer development in the future. 

The biopolymers of type-B are produced from fossil fuel and being biodegradable, such as 

synthetic aliphatic polyesters made from crude oil or natural gas, and are certified 

biodegradable and compostable. PCL, poly (butylene succinate) (PBS), and certain 

“aliphatic–aromatic” co-polyesters are at least partly fossil fuel-based polymers. 

The biopolymers of type-C can be produced from biomass or renewable resources and are 

non-biodegradable. Non-biodegradable bio-based biopolymers include (1) synthetic 

polymers from renewable resources such as specific polyamides from castor oil (polyamide 

11), specific polyesters based on bio-propane diol, bio-polyethylene (bio-LDPE, bio-HDPE), 

bio-polypropylene (bio-PP), or bio-poly (vinyl chloride) (bio-PVC) based on bioethanol, etc.; 

(2) natural occurring biopolymers such as natural rubber or amber. A detailed classification 

of the most common biopolymers is shown in Table 1-1. 

Table 1-1 Classification of the most common biopolymers. 

 Biodegradable Non-biodegradable 

Bio-based CA, CAB, CAP, CN, P3HB, 

PHBHV, PLA, starch, chitosan 

PE (LDPE), PA11, PA12, PET, 

PTT 

Partially bio-based PBS, PBAT, PLA blends, 

starch blends 

PBT, PET, PTT, PVC, SBR, ABS, 

PU, epoxy resin 

Fossil fuel-based PBS, PBSA, PBSL, PBST, 

PCL, PGA, PTMAT, PVOH 

PE (LDPE, HDPE), PP, PS, PVC, 

ABS, PBT, PET, PS, PA6, PA66, 

PU, epoxy resin, synthetic rubber 

ABS, acrylonitrile-butadiene-styrene; CA, cellulose acetate; CAB, cellulose acetate butyrate; CAP, cellulose 

acetate propionate; CN, cellulose nitrate; HDPE, high-density polyethylene; LDPE, low-density polyethylene; 

P3HB, poly(3-hydroxybutyrate); PA11, aminoundecanoic acid-derived polyamide; PA12, laurolactam-derived 

polyamide; PA6, polyamide 6; PA66, polyamide 66; PBAT, poly(butylene adipate-coterephthalate); PBS, 

poly(butylene succinate); PBSA, poly(butylene succinate-co-adipate); PBSL, poly(butylene succinate-co-

lactide); PBST, poly(butylene succinate-co-terephthalate); PBT, poly(butylene terephthalate); PCL, poly(ε-

caprolactone); PE, polyethylene; PET, poly(ethylene terephthalate); PGA, poly(glycolic acid); PHBHV, poly(3-
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hydroxybutyrate-co-3-hydroxyvalerate); PLA, poly(lactic acid); PP, polypropylene; PS, polystyrene; PTMAT, 

poly(methylene adipate-co-terephthalate); PTT, poly(trimethylene terephthalate); PU, polyurethane; PVC, 

poly(vinyl chloride); PVOH, poly(vinyl alcohol); SBR, styrene-butadiene rubber. 

1.1.2 The advantages of biopolymers  

Polymer products have become widely used materials in everyday life due to their immense 

advantages over metals, such as low cost of production, lightweight nature, easy processing, 

corrosion resistance, and high impact strength, etc. Being a special classification of polymers, 

apart from all the advantages belonging to traditional ones, biopolymers possess many unique 

properties, which the traditional polymers do not have.  

In contrast to fossil-based polymers that rely on the fossil resources, which are not being 

newly formed at any significant rate, biopolymers are mainly produced by using renewable 

biomass resources, such as vegetable oil, cornstarch, pea starch, algae, and so on. The stocks 

of these biomass resources in the nature are very huge and mainly come from plants, animals 

and microorganisms, being reproducible artificially from biological starting materials or 

under the nature procedures of biological system. The huge storage capacity and their 

reproducibility make biomass resources great prospect for the production of biopolymers, 

thus cut down the dependence on fossil resources. 

Apart from limitation of the resources, the biodegradable character of biopolymers is another 

great advantage with respect to traditional fossil-based polymers, which can help to decrease 

the environmental pollution problems from synthetic polymer plastics. As previously 

mentioned, the increasing demand of plastic products and their extremely stable chemical 

properties have led to a huge accumulation of plastic wastes in the nature, causing a non-

negligible impact on the environment and is also threatening the survival of many organisms, 

and even leading to their destruction.6-9 Plastic wastes from biopolymers can be biodegraded 

by aerobic degradation or anaerobic digestion in the nature without causing any harms to the 

environment.10 In the presence of microorganisms, such as bacteria and fungi, the 

biodegradation process starts from the broken of the polymer chains. During the aerobic 
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biodegradation, the biopolymer wastes can be decomposed into carbon dioxide and water and 

then will be cyclic utilization in biosphere. While during the anaerobic biodegradation, water 

and methane will be the degradation products,10 which is also recyclable in the nature and 

does no harm to the environment and other creatures in the biosphere.  

A third advantage of biopolymers with respect to fossil-based polymers is the non-toxicity 

and their biocompatibility with human body, which is already widely used in the fields of 

drug delivery 11-13 and tissue engineering,14-16 as well as food packaging.17-19  

1.1.3 The application of biopolymers 

In the area of biomedical applications, such as those in tissue engineering,14-16, 20 

pharmaceutical carriers and medical devices,11-13, 21 biopolymer materials have been widely 

used. Gelatin, a common biopolymer, was widely applied in medicine for dressing wounds.22-

24 Porous gelatin scaffolds and films were produced combined with solvents or gases, which 

enable the scaffolds and films to hold drugs or nutrients to the wound that needs healing.25 

Electro-spun PLGA-based scaffolds had been applied extensively in biomedical engineering, 

such as tissue engineering and drug delivery systems.26 

In the field of packaging, biopolymers are used as food packaging materials, and 

encapsulation matrices for functional foods. Starch and PLA are potentially the most attractive 

types of biodegradable materials due to the balance of their properties and the fact that they 

are now commercially available.27 Chitosan has shown great potential as an antimicrobial 

packaging agent to preserve food against a wide variety of microorganisms.28-30 Incorporating 

antimicrobial compounds into edible films or coatings provides a novel way to improve the 

safety and shelf life of ready-to-eat foods. To be a versatile biopolymer, chitosan, can also be 

used in water treatment processes as flocculant and will biodegrade in the environment over 

periods of weeks or months.31 Amylose, when mixed with plasticizers have excellent potential 

in forming thin films for various food and packaging applications.32 Lysozyme is one of the 

most frequently used antimicrobial enzymes in packaging materials, since it is a naturally 
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occurring enzyme.33, 34  

1.2 Poly (lactic acid) (PLA) 

Poly (lactic acid) or polylactide known as PLA is one of the most used biopolymers in recent 

years. PLA is produced either by ring-opening polymerization of lactides or by condensation 

polymerization of the lactic acid monomers, which can be obtained from the fermentation of 

corn, beet-sugar, cane sugar etc.35-37 PLA has been of significant research interest due to its 

biocompatibility and biodegradability that leading to applications in medical science and 

biotechnology. It possesses desirable characteristics include the decomposition into naturally 

occurring metabolites via hydrolysis or enzymatic processes.38 Over the past decades, the 

degradation of PLA materials has been studied in the field of practical medical applications 

such as drug delivery systems, sutures, and surgical implants.39-41 PLA has been studied for 

implantations including architecturally fabricated stents, which could replace conventional 

metallic stents. Compared to the conventional metallic or non-biodegradable polymers, the 

huge advantage of PLA-based biopolymers is the ease removal by the body system itself and 

the retention of shape during time. 

Due to its biodegradation ability, PLA presents a major advantage in entering in the natural 

cycle, implying its return to the biomass, which is explored to be an alternative solution to 

solve the ecological problem of plastic waste accumulation, with a major focus on 

packaging.42-45 PLA can be used to produce various commercial products through different 

production processes. These products made of PLA, after being discarded, could be 

completely biodegradable and can be converted into carbon dioxide and water, which can be 

recycled by the biosphere without leading any damage to the environment. The sustainable 

life cycle of PLA-based products in nature is shown in Figure 1.1. 
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Figure 1.1 Sustainable life cycle of PLA in nature.38 

Furthermore, PLA has been proposed as a renewable and degradable plastic for uses in service 

ware, waste-composting bags, mulch films, controlled release matrices for fertilizers, 

pesticides, and herbicides.46 All these attributes of PLA lead to the great development of green 

packaging materials, which is currently the focus of research and demand from common 

people to environmentalists throughout the world. 

1.2.1 Synthesis and classification of PLA 

PLA is a biodegradable thermoplastic derived from lactic acid or lactide. Both polylactide and 

poly(lactic acid) with the abbreviation of PLA are the same chemical products; only they 

differ from each other in means of production monomers. Because of chirality, lactic acid (LA) 

has two optical isomers: L-lactic acid and D-lactic acid. These two different optical isomers 

correspond to three different isomers of the cyclic dimers, namely L-lactide, D-lactide, and 

meso-lactide respectively, as shown in Figure 1.2, and the D-, L- or meso-form is optically 

inactive. L-lactic acid is the natural and biologically important isomer, and D-form can be 

produced either by microorganisms or by racemization. Lactic acid was primarily found in 

the fermented milk products, such as yogurt, kefir, and some cottage cheeses. Lactic acid is 

commercially manufactured by bacterial fermentation process using various substrates like 

corn, potato, beet, cane sugar, dairy products and even from agricultural waste materials.47 

Fermentative production of LA can offer great advantage in producing the optically pure L- 

or D-LA. The optical purity of LA is an essential factor that can determine the physical 

properties of PLA. Polymers with high L-type LA can be used to produce crystalline product 
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whereas the high D-type (＞15%) will result in an amorphous product. 

 

Figure 1.2 Optical isomers of lactic acid and lactide. 

Poly(lactic acid) can be synthesized by using reaction starting from lactic acid (Figure 1.3a) 

or by ring opening polymerization of lactide monomers (Figure 1.3b). The major limitation 

of the direct polycondensation reaction is the low molecular weight of the produced products. 

The generated water during the polymerization process has to be removed continuously, and 

rapidly equilibrium occurs between polymerization and de-polymerization reaction. In 

addition, long reaction time and high temperature are needed for the direct polymerization of 

lactic acid. To overcome the limitation, lactic acid is initially oligomerized and catalytically 

dimerized to produce the cyclic lactide monomers. The high molecular weight polylactide can 

be produced from lactide monomers by ring opening polymerization. 

 

Figure 1.3 Synthetic PLA by direct polycondensation of lactic acid (a) and by ring opening 

polymerization of lactide monomers (b). 

The stereo-chemical composition of the lactide monomer stream can determine the stereo-

chemical composition of the resulting polymer since bonds to the chiral carbons will not be 
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broken in polymerization process. Poly(L-lactide) can be polymerized from only L-lactide 

and the same situation for poly(D-lactide). However, the polymerization of the mixture of 50% 

of D-lactide and 50% of L- lactide will produces poly (DL-lactide), which is an amorphous 

polymer. In addition, PLA can be produced with varying fractions of L- and D-lactide to 

obtain products with different crystallization properties. To get PLA products with proper 

mechanical properties, the unreacted lactide monomers need to be removed from the 

polymeric matrix after the polymerization process, as they can act as plasticizer leading to 

poor mechanical strength and thermal stability of PLA, thus decreasing shelf life of the 

products made of PLA. 

1.2.2 Properties of PLA 

As previously mentioned, because of the molecule chirality of lactic acid, PLA exists in three 

forms: poly (L-lactic acid), poly (D-lactic acid) and poly (meso-lactic acid). It is already well 

reported that the properties of PLA depend largely on the ratio and the distribution of the two 

isomers and the molecular weight of the final product. The glass transition temperature (Tg) 

of conventional PLA is about 50 to 70 °C, and the melting temperature (Tm) is between 170-

190 °C. The Tg and Tm of PLA decrease with increasing content of D-lactic acid in the polymer. 

The general properties of the conventional PLA are shown in Table 1.1. PLA with high 

molecular weight is a thermoplastic with high rigidity, colorless and shiny appearance, 

possessing similar properties as polystyrene (PS). Amorphous PLA is soluble in most of the 

organic solvents, such as THF, chloroform, benzene, and dichloromethane; but the crystalline 

PLA can only be dissolved in some of the organic solvents (chloroform, benzene) at high 

temperature.   

Table 1-2 The general properties of conventional PLA.45, 48 

Properties  PLA Properties  PLA 

Molecule weight 

Glass transition T (oC) 

Impact strength (J/m) 

Bending strength (MPa) 

Young modulus (MPa) 

Elongation at break (%) 

10-30 (×104) 

50-61 

16-26 

88-106 

3750-3900 

4-10 

Crystallinity (%) 

Melting point (oC) 

Vicat softening T (oC) 

Distortion T (oC) 

Tensile strength (MPa) 

Melt index (10 min)(g/min) 

10-40 

130-215 

52-165 

50-55 

44-59 

0.2-2.0 
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Nature derived lactides are mostly in L-form and exhibit crystalline behavior. The 

crystallization behavior of polylactides depends on its thermal history,49 amount and type of 

additives,50 and stereo sequence distribution.51 In addition, crystallization also depends upon 

optical purity. It was reported that at least 72% threshold optical purity in composition is 

required to obtain significant crystallinity of polylactides,51, 52 otherwise, when the content of 

D-lactic acid is higher than 30%, PLA exists as an amorphous polymer.53-55 Depending on the 

optical isomers of lactic acid or lactide, PLA can form three types of crystals with different 

helical conformations, namely α, β and γ-form.56 Within all of them, α-form is the most stable 

crystal and can be produced by melting crystallization, cooling crystallization and solution 

crystallization, with a higher melting temperature, which is around 185 °C.57 The β-form 

crystal, which is less stable, can be formed from the transition of α-form under high tensile 

stress, with a slightly lower melting point of 175 °C.56 The γ-form crystal can be obtained by 

epitaxial growth on the hexamethylbenzene substrate.57, 58 The crystallization rate and 

crystallinity of PLA are limited by its high glass transition temperature, and the crystallinity 

can have a significant effect on the properties of products made of PLA, such as melting 

temperature, mechanical strength, barrier properties, and degradation property.59 The 

mechanical properties of PLA can be determined by the molecular weight, the higher the 

molecular weight, the greater the mechanical strength of PLA. Studies have shown that when 

the average molecular weight of PLA doubles, the tensile modulus triples, and the tensile 

strength increases several times.59 Even the strong tensile strength and Young's modulus make 

PLA comparable with traditional plastics, such as polypropylene (PP), polyethylene (PE), and 

polystyrene (PS), the poor toughness and the relatively low distortion temperature are limiting 

its development and application in every field. Table 1.2 gives a simple comparison of the 

general properties between PLA and fossil-based traditional polymers.  
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Table 1-3 Comparison of general properties between PLA and fossil-based polymers.  

Sample  PLA PP PS PET 

Density (g/cm3) 1.26 0.91 1.05 1.40 

Tensile strength (MPa) 53 31 45 54 

Tensile modulus (MPa) 3.4 0.9 2.9 2.8 

Elongation at break (%) 6 120 2.9 130 

Glass transition T (oC) 55 -10 105 75 

Distortion T (oC) 55 95 75 67 

The rich ester groups of PLA molecular chain make it easy to hydrolyze, thermal degradation 

can easily occur especially when PLA was processed at high temperature and humidity. Being 

a biodegradable polymer, the degradation rate of PLA is very slow. The degradation cycle of 

PLA-based products usually takes several months to several years. In the application of some 

disposable products area, PLA, not being able to degrade rapidly after being discarded, results 

in some kind of garbage accumulation. Therefore, the recycling of PLA is also very important 

and a large amount of research has focused on the recycling of PLA materials, of which 

thermo-mechanical recycling is widely studied to be a feasible recycling method for it.60 

1.2.3 Applications of PLA 

The interesting features of PLA, such as easy processing, good mechanical properties, 

transparency, biodegradability, and good biocompatibility, are making it available in a wide 

range of fields. While, at the beginning, when the high molecular weight PLA was firstly 

investigated and produced, its applications were deeply limited by the high cost of production, 

and it was mostly used in the biomedical field.39-41, 61 Nowadays, with further improvement 

of its synthetic conditions, the production cost was largely decreased, which promoted greatly 

the investigation and application of PLA.  

The good biocompatibility and biodegradability, as well as excellent physical and mechanical 

properties of PLA have made it be widely used in the field of biomedicine, mainly in non-

removable surgical sutures, sustained release of drugs, orthopedic materials, infusion tool 
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products, etc.62 The good biocompatibility of PLA with the human body makes it a promising 

material as surgical suture into human body, which can be degraded by itself after the wounds 

are healed. The unnecessary removal of PLA-based surgical suture can avoid the secondary 

injury to the patients during removal. In order to reduce or avoid damage to the organs of 

other parts of the body during the medical process, it is necessary to use a carrier that can 

regulate the precise delivery of the drug. The good biodegradability and excellent 

biocompatibility of PLA have been widely used in the process of drug sustained release 

treatment.63, 64  

In the field of food packaging, in order to ensure the safety of the foods, the selected packaging 

materials should have good barrier properties, excellent optical characteristics, and being 

easily molded properties. In addition, as food packaging materials, they must also have good 

anti-migration, anti-residue characteristics, chemical stability and good heat resistance. The 

application of PLA in the packaging field has attracted widespread attention, not only because 

PLA is derived from renewable plants and being biodegradable, but also because the thermal 

and mechanical properties of PLA products can be regulated by adjusting the processing 

parameters or by adding different additives according to demand. Nowadays, PLA is mainly 

used in food packaging, such as the packaging of vegetables, fruits, disposable tableware, 

etc.65 After being discarded, these packaging products will be naturally degraded in about 6 

months in the soil, which can help avoid the accumulation of white pollutions.  

Based on the micro-nano structure and super-hydrophilic construction of PLA surface, PLA 

microporous membrane can be used for oil-water separation, achieving efficient separation of 

oil-water mixture.66-68 Meanwhile, the surface functionalized PLA microporous membrane 

also have anti-pollution and antibacterial properties.67 Gu et al. used non-woven fabric of PLA 

to be the raw material, and functionally modify the fiber surface with dopamine, and then 

loaded with micron-sized polystyrene (PS) microspheres and silica nanoparticles to build an 

ultra-wet and multi-stage oil-water separation composites with high efficiency and high 

reusability.68 The construction of environment-friendly PLA oil-water separation materials 
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provides an effective solution to reduce seawater pollution caused by crude oil leakage. At 

the same time, the use of biodegradable oil-water separation materials reduces the secondary 

pollution on the environment after the discard of materials, and maintains the sustainable 

development of the environment. 

In order to alleviate the pressure on the use of petroleum energy and the intensification of the 

greenhouse effect, many companies have applied plastic products made of PLA materials to 

the electronics field to make laptop computer materials, mobile phone case materials, DVD 

case materials and so on. These products emit only a small amount of carbon dioxide during 

use and after being discarded, which is about 15% less than petroleum-based plastics. 

Comparative mechanical properties of PLA-based products can be achieved by either 

preparing PLA related composites or by adjusting the processing parameters.69 the Nippon 

Electric Company (NEC) has developed a PLA plastic that can be widely used in most 

electronic products, this PLA product has good flame retardance and can have excellent fire 

prevention effects without the addition of phosphorus-based or halogen flame retardants, 

which has attracted extensive attention from companies of electronics field.70 

1.2.4 Modification of PLA 

Concerning the specific properties of PLA, it is worth mentioning that its weak toughness, 

low impact strength and relatively small elongation at break are limiting its applications in 

some fields, where toughness and impact resistance are critical. Meanwhile, the low melting 

point of PLA makes it unsuitable for high temperature applications. PLA has a higher 

permeability than other plastics, which makes moisture and oxygen go through more easily 

than other materials, resulting in a faster food spoilage process. Thus, PLA is not 

recommended for long-term food storage applications. To overcome the weakness of low 

toughness of PLA, different strategies had been used, such as copolymerization, plasticization, 

compounding and blending.48 The impact strength has been improved by adding various 

fillers, which can also help decrease the permeability and increase the lifetime of PLA-based 
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products.71-74 Surface functionalization of PLA film is another frequently used method to 

improve the barrier property of this polymer.27, 75-78 Here, we mainly focus on the modification 

of PLA by using graphene-related materials (GRM) and the surface modification of PLA-

based films.  

As one of the most promising nanomaterials, graphene is a single atomic layer of sp2 carbon 

atoms bonded together in hexagonal lattices.79 It has attracted attention of the worldwide 

scientific community since was ever discovered owing to its outstanding electrical, thermal 

and mechanical properties.80 Unfortunately, the industrial scale production of graphene still 

remains very challenging, even different kinds of producing techniques had been 

developed.81-83 Graphene-related materials, including single layer graphene, few layered 

graphene (FLG), graphite nanoplatelets (GNP), graphene oxide (GO) and reduced graphene 

oxide (rGO), are multifunctional nanostructured building blocks with extraordinary properties, 

which are typically used in the field of polymer nanocomposites to improve the mechanical, 

thermal and electrical properties of the polymer matrix.84-90 In recent years, PLA/GRM 

composites have been prepared by dispersing graphene-based nanosheets in a PLA matrix to 

improve the performance or give new properties to polymer matrix.. The mechanical and 

thermal properties as well as the crystallization behavior of PLA can be significantly 

improved by adding GRM into PLA matrix.91 The generally used preparation methods for 

PLA/GRM composites includes solution intercalation, in-situ polymerization and melting 

blending method.92  

In the case of the solution intercalation, polymers are dissolved into organic solvents to 

prepare solutions, in which the GRM nanoparticles can be well dispersed to get suspensions 

with combined polymer chains and nanoparticles. The polymer composites were finally 

obtained after the solvents were volatilized or removed by filtration. The composite materials 

prepared by solution intercalation usually have high quality due to the sufficient interaction 

between polymer chains and nanoparticles in the solvent. Li et al.93 performed a comparative 

crystallization study on two types of PLA composites with carbon nanotubes (CNT) and 
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graphene nanosheets (GNS) prepared by solution coagulation. They found that both CNT and 

GNS could serve as heterogeneous nucleation agents, shortening the induction period of 

crystallization and accelerating the crystallization of PLA.  

The in-situ polymerization approach is a method of preparing PLA/GRM composite materials 

by polymerizing the mixed GRM particles and the liquid phase monomers under the action 

of initiators. Li and coworkers dispersed GO in lactic acid monomers and prepared PLA/GO 

composites by in-situ polymerization.93 The mechanical properties and thermal stability of 

the PLA/GO composites were improved with respect to the neat PLA. SEM micrographs of 

the PLA/GO composites showed agglomerations of GO in the PLA matrix, which was 

believed to be caused by the Van der Waals interaction among GO as well as the poor 

compatibility of GO with the polymer matrix. 93 

Melt blending is a method in which polymers and GNPs are melt blended under the action of 

thermal and shear stress by using processing techniques such as extrusion and injection 

molding. Villmow et al.94 reported the influence of melt-mixing conditions on the dispersion 

of MWCNT within PLA matrix with the aim to develop a guideline for plastic manufacturers. 

The key-challenge was to achieve a suitable distribution and dispersion of MWCNT to ensure 

low percolation thresholds, combined with high mechanical performance. Wu et al.95 

investigated the effect of various functionalized MWCNT on the rheology and thermal 

stability of PLA nanocomposites, prepared by melt compounding. Carboxylic- and hydroxyl-

functionalized as well as purified MWCNT were used as models. The above study 

demonstrated that the best dispersion level of MWCNT within the PLA matrix was achieved 

with carboxylic-functionalized MWCNT, as highlighted by rheological measurements and 

TEM analyses. The melt blending method is currently the most commonly used preparation 

process for PLA blending and modification, due to the advantages of its simple processing 

technology. However, in the process of melt blending, the poor mobility of PLA 

macromolecular chains together with its high viscosity, make difficult for GRM particles to 

be evenly dispersed in the PLA matrix, resulting in poor modification effects.  
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Apart from the mostly used modification methods mentioned above, which are mainly used 

to modify the bulk properties of PLA, chemically and physically surface modification is 

another strategy to change the surface properties of PLA films without affecting the bulk 

properties. Pellis et al.96 investigated the potential for introduction of carboxylic and hydroxyl 

groups on surface of PLA films to improve loading ability with the chemotherapeutic drug 

doxorubicin via ionic interactions. They found that by tuning the extent of enzymatic 

hydrolysis on surface of PLA films, it is possible to tune the degree of surface hydrophilicity 

and roughness to PLA films. Due to the introduction of carboxylic and hydroxyl groups on 

PLA surface, the binding of the chemotherapeutic drug doxorubicin by electrostatic 

interactions was enhanced while the release of the chemotherapeutic drug doxorubicin was 

driven by electrostatic interactions.96 In another work of the same group,97 an enzymatic 

process for the grafting of carboxylic acids onto the surface of poly(L-lactic acid) (PLLA) 

films was developed using candida antarctica lipase B as a catalyst. Enzymatic hydrolysis of 

PLLA film, using Humicola insolens cutinase, was also reported. The grafting of hydroxyl 

and carboxylic groups on the surface of PLLA films resulted in a decrease of water contact 

angle from 74.6 to 33.1°. However, from the results of yield measurements, no significant 

difference was observed between functionalizing pre-hydrolyzed and non-pre-hydrolyzed 

films, which was believed to be caused by the rearrangement of the outer polymer chains in 

the hydrophobic reaction environment.97 Guo et al.98 introduced a two-step process to produce 

PLA films with an electroactive hydrophilic surface by covalent modification with aniline 

tetramer (AT), which was done firstly by the photo-grafting of acrylic acid and maleic 

anhydride onto PLA film, and subsequent coupling with conductive aniline AT. They reported 

that PLA films, after grafting AT, got an electrically conductive surface, and the conductivity 

increased with increasing AT content on the surface.98 Different chemical modification 

strategies had been used to obtain various surface properties of PLA films, such as cell-

adhesion properties,99 wettability to water100 and so on. The key aspect of the chemical 

modification of PLA surface is the reaction between the end functional groups of PLA chains 
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and the modifier, or the introduction of an intermediate molecule, which can react with both 

PLA and the modifier. Compared to chemical modification strategies, the physical 

modification of PLA surface has a much easier operation process, which mainly relies on the 

interaction between positive and negative charges. Layer-by-layer (LbL) assembly is one of 

the mostly used physical modification methods for PLA-based films, which has attracted 

extensive attentions in different application fields of PLA films.101-106 The standard 

conventional method for LbL assembly on planar substrates is immersive assembly, whereby 

the substrate is sequentially immersed into polymer solutions for deposition, with rinsing 

steps between the deposition steps. Gong et al.104 grafted chondroitin sulfate and collagen 

type I onto the surface of aminolyzed PLLA membranes and porous scaffolds by LbL 

assembly to enhance the cell–material interaction. According to the results of chondrocyte 

culture, they demonstrated that the cell attachment, viability, proliferation and morphology of 

the modified PLLA membranes were apparently improved in comparison with those of the 

untreated PLLA. Halász and coworkers produced LbL deposition of cellulose nanocrystals 

and chitosan onto PLA films and bottles to reduce the water vapor permeability and thus 

reduce the hydrolysis of PLA.103 He et al.105 prepared a LbL structure of PLA-PEI-GO by 

immersing PLA films into PEI solution and GO suspension alternately. It was found that the 

oxygen barrier properties was significantly improved while with unsatisfied water vapor 

barrier properties, which was believed to be caused by the hydrophilic functional groups of 

GO.  

1.3 Polycaprolactone (PCL) 

Polycaprolactone (PCL) is synthetic biodegradable polyester with good resistance to water, 

oil, solvent and chlorine, which can be produced from crude oil. Being one of the earliest 

synthesized polymers in the early 1930s, PCL has become commercially available following 

efforts to identify synthetic polymers that could be degraded by microorganisms. Attention 

was drawn to PCL and its copolymers owing to their numerous advantages over other 
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biopolymers in use, including the tailorable degradation kinetics, mechanical properties, ease 

of shaping and manufacture, and the controlled delivery of drugs. PCL is a hydrophobic, semi-

crystalline polymer; having a glass transition temperature (Tg) of ca. − 60 °C and melting 

point ranging between 59 and 64 °C, enabling an easy formability process at relatively low 

temperatures. The number-average molecular weight of PCL samples may generally vary 

from 3000 to 90,000 g/mol.107 The crystallinity of PCL tends to decrease with increasing 

molecular weight. The good solubility, low melting point and exceptional blend-compatibility 

of PCL have stimulated extensive research into potential applications in a wide range of fields, 

such as food packaging, medical implant, and controlled drug delivery system and so on.12, 14, 

15, 18, 22, 108 

1.3.1 Synthesis and properties of PCL  

PCL can be prepared by either ring-opening polymerization (ROP) of cyclic monomer ɛ-

caprolactone using a variety of catalysts or via free radical ring-opening polymerization of 2-

methylene-1-3-dioxepane.109, 110 General synthetic methods for polycaprolactone is shown in 

Figure 1.4. There are different mechanisms that can be used for the polymerization of PCL, 

which are anionic, cationic, co-ordination and radical. Each of these mechanisms can affect 

the resulting molecular weight, molecular weight distribution, end group composition and 

chemical structure of the copolymers.107  

 

Figure 1.4 General synthetic strategies for PCL. 

As a biopolymer, PCL has been identified for its potential commercial applications. In contrast 

to conventional plastics such as polypropylene (PP) and polyethylene (PE) and so on, which 
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require hundreds or even thousands of years to fully degrade, PCL biodegrades into naturally 

occurring products within only a few years.15 Like many other biopolymers, PCL did not have 

the mechanical properties to be applied in high load bearing applications, which is currently 

limiting its use. Nevertheless, it possesses superior rheological and viscoelastic properties 

over many of its resorbable-polymer counterparts. PCL exhibits high crystallinity and is 

highly hydrophobic, thus having relatively lower biodegradation rate compared to other 

biopolymers.111 The homo-polymer PCL has a total degradation of 2–4 years depending on 

the molecular weight of PCL chains used for the devices.112-114 The rate of hydrolysis can be 

altered by copolymerization with other lactones, glycosides or lactides.107 Extensive studies 

by some researchers concerning the in vitro and in vivo degradation of PCL scaffolds, 

detected no evidence of internal catalysis demonstrated by uniform molecular weight 

distribution over time, and cross-sectional examination of the scaffold struts over 6 months.115 

Other degradation studies using PCL in separate in vitro and in vivo conditions reported that 

both hydrolytic degradation rates were similar, and thus concluded that enzymatic 

involvement in the first stage of degradation phase was not a significant influence factor in 

the degradation process of PCL.116, 117 Therefore, PCL is an interesting material for application 

requiring long degradation time.. To have a clear awareness of the properties of PCL, the 

physical-mechanical properties of several degradable polymers, (PCL, PLA, L-PLA, DL-

PLA, PGA, PHB), had been summarized and compared by Van de Velde and Kiekens.118 

Some of these properties are listed in Table 1-4, which included the polymer density ρ, the 

tensile strength σ, the tensile modulus E, the elongation at break ε, the glass transition 

temperature Tg and melt point Tm.  



1. State of art 

23 

 

Table 1-4 Physical properties of various biopolymers.118 

Properties 

Type of biopolymers 

PCL PLA L-PLA DL-PLA PGA PHB 

ρ (gcm-3) 1.1 1.2 1.3 1.3 1.5-1.7 1.2 

σ (MPa) 21-42 20-60 15-150 28-50 60-100 40 

E (GPa) 0.2-0.4 0.4-3.5 2.7-4.2 1.0-3.5 6.0-7.0 3.5-4.0 

ε (%) 300-1000 3-6 3-10 2-10 2-20 5-8 

Tg (oC) -60- -65 45-60 55-65 50-60 35-45 5-15 

Tm (oC) 58-65 150-162 170-200 - 220-233 168-182 

1.3.2 Crystallization behavior of PCL and PCL related nanocomposites 

The crystallization of PCL is connected by the two basic stages of working mechanism, 

namely the homogeneous nucleation at a given temperature and the growth of small to large 

crystals, which mainly depends on temperature. The homogeneous nucleation is considered 

to be initiated as soon as a pertinent critical free energy barrier was overcome. The path of 

homogeneous nucleation may be clarified within the classical nomenclature. It starts with 

embryos, which need to increase the free energy for further growth in size and perfection. The 

embryos must move by fluctuation across the barrier of the critical nucleus, described as the 

saddle point in the size and perfection landscape of the free enthalpy of formation. This leads 

to the supercritical nucleus that can grow with a thermos-dynamically permitted decrease in 

the free enthalpy of formation. The actual rate of progress can be additionally determined by 

kinetic factors which also are size and perfection dependent, creating a much more intricate, 

multidimensional free enthalpy landscape. 

The kinetics of nucleation and crystallization of PCL was well studied by Evgeny and 

coworkers,119 using differential fast scanning calorimetry (DFSC) technique, which allows 

temperature control of the samples and determination of its heat capacity using super-high 

heating rates up to 50,000 K/s. They found that the crystal growth and nucleation cannot be 

fitted with a single viscosity-related term which slows the process in parallel to the bulk glass 

transition kinetics. Particularly the nucleation rate needs to be much faster, the local viscosity 
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terms as can be known from dielectric and heat capacity measurements for large-amplitude 

motion of molecules. Following nucleation, a growth of small to large crystals, depending on 

temperature, occurs as the second stage. In the past, a new growth barrier in the form of the 

secondary or molecular nucleation was assumed. The molecular nucleation was thought to 

introduce the molecular segregation on crystallization.120, 121 However, their new data gave a 

hint that the segregation may have already occurred before or in the nucleation stage. Further 

growth of the initial crystals at a given temperature was hindered by the slow, long-range 

diffusion, leading ultimately to a sufficient amount of rigid-amorphous fraction with a higher 

glass transition temperature to stop the further growth. The melting of crystals retains nuclei 

that can enhance the cold crystallization behavior for low melting temperatures. For high 

melting temperature such nucleus retention which was called self-nucleation in the past were 

found to survive heating above the equilibrium melting temperature.  

The crystallization behavior of PCL based nanocomposites was studied by many researchers 

using different PCL composites systems.122-129 Xu et al. studied the non-isothermal 

crystallization behavior of the multiwall carbon nanotube (MWNT) reinforced PCL 

composites, prepared by using a simple melt-compounding method.122 They claimed that the 

non-isothermal crystallization behavior of the PCL/MWNT nanocomposites exhibited strong 

dependency of crystallinity, crystallization temperature, halftime of crystallization (t1/2) and 

Avrami exponent (n) on the MWNT content and cooling rate. The MWNT in the 

nanocomposites exhibited a high nucleation activity. All the crystallization activation energies 

(Ea), calculated with the Kissinger model for the composite systems, were higher than that of 

the neat PCL. In addition, the Ea values of the nanocomposites were found to gradually 

decrease with increasing content.122 Very similar results on Ea in PCL/MWNT 

nanocomposites were obtained from the work of Wu et al.124 Wang and coworkers studied the 

crystallization and mechanical properties of PCL/GO nanocomposites prepared by using in-

situ polymerization method.123 The effect of GO on crystal structure, crystallization behavior 

and spherulitic morphology of the PCL matrix were investigated and the results showed that 
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the crystallization temperature of PCL was enhanced significantly due to the presence of GO 

in the nanocomposite systems. However, the addition of GO did not affect the crystal 

structure.123 Gu et al. prepared PCL/RGO nanocomposites by injection molding and studied 

the effects of RGO on the crystallization behavior of PCL matrix.125 RGO was found to be an 

effective nucleation agent for PCL. Their results, obtained by wide angle X-ray diffraction 

and small angle X-ray scattering measurements, showed that the incorporation of RGO can 

enhance the orientation degree of PCL crystals in the flow direction without affecting the 

crystal structure of PCL. Moreover, the orientation of PCL chains was found to be enhanced 

with the increase of RGO content, which was believed to be attributed to the obstruction of 

RGO on the motion of PCL chains.125  

1.3.3 Applications of PCL 

As previously mentioned, due to the excellent biocompatibility, flexibility, and thermo-

plasticity, PCL and PCL based composites/nanocomposites have been proposed for use in 

various biomedical and biomaterial applications.12, 14, 15, 22, 112, 116 

PCL is suitable for controlled drug delivery due to a high permeability to many drugs and 

excellent biocompatibility. The fact that PCL degrades at a slower rate than other biopolymers 

such as PLA, PGA, PLGA and its copolymers makes it the most suitable materials for long-

term drug delivery systems over a period of more than 1 year.130 Drug release rates from PCL 

also depends on type of formulation, method of preparation, PCL content and percent of drug 

loaded. The ability of PCL to form compatible blends with other polymers can affect their 

degradation kinetics, facilitating tailoring and thus fulfill its applications. The advantages of 

PCL for these applications include tailorable degradation kinetics, mechanical properties, ease 

of shaping and manufacture, enabling appropriate pore sizes conducive to tissue in-growth, 

and the controlled delivery rates of drugs contained within their matrix.107 Functional groups 

could also be added by chemical reactions to make the polymer more hydrophilic, adhesive, 

or biocompatible which enabled favorable cell responses. Pitt and co-workers undertook 
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several studies including degradation studies both in vitro131 and in vivo.132 Later on, the 

subdermal delivery of l-methadone within PCL microspheres was investigated.133 And since 

then, PCL has been utilized as an ultra-thin film for dressing cutaneous wounds,22, 134 release 

vehicle for the chemical antiseptic chlorohexidine,135 as well as in dentistry.22  

Tissue engineering is closely related with applications that repair or replace portions of or the 

whole tissue. Developments in tissue engineering have yielded numerous set of tissue 

replacement parts such as scaffold fabrications, bone engineering, blood vessel engineering, 

skin engineering, nerve engineering and so on.107 One of the goals of bone tissue engineering 

is to create tissue replacements by culturing bone cells on synthetic three-dimensional porous 

scaffolds, which can promote new tissue formation by providing a high surface that promote 

the attachment, migration, proliferation, and desired differentiation of connective tissue. PCL 

can be used in a wide range of scaffold fabrication technologies and its relatively inexpensive 

production routes, compared with other aliphatic polyesters, is a huge advantage. The 

realization that PCL possesses superior rheological and viscoelastic properties over many of 

its resorbable polymer counterparts renders the ease to manufacture and manipulate into a 

large range of scaffolds.107 

In food packaging, a major emphasis is on the development of high barrier properties against 

the diffusion of oxygen, carbon dioxide, flavor compounds, and water vapor.136 Moreover, 

several nanostructures of PCL had been used to provide active and/or smart properties to food 

packaging systems, as exemplified by antimicrobial properties, oxygen scavenging ability, 

enzyme immobilization, or indication of the degree of exposure to some detrimental factors 

such as inadequate temperatures or oxygen levels.136 

1.3.4 PCL-based nanocomposites 

As previously mentioned, PCL has been attracting widespread attentions mainly in the fields 

of biomedicine and tissue engineering. However, the relatively poor mechanical properties of 

PCL are restricting its applications in the fields where high moduli are indispensable 
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requirements. The incorporation of nanofillers, such as graphene, graphite oxide, carbon 

nanotubes, layered silicate and nanoclays has provided an effective method to improve the 

physical-mechanical properties of PCL.128, 137-140 Among these nanofillers, graphene and 

carbon-related nanomaterials are the most promising materials to enhance the properties of 

PCL duo to their fantastic properties.79, 80, 141-144   

Wang et al. prepare PCL/GO nanocomposites by in situ polymerization at low GO loadings.123 

They reported that, compared to the pure PCL, the thermal stability of PCL was remarkably 

increased with the addition of GO nanosheets. Moreover, the tensile strength and Young’s 

modulus of PCL with incorporation of GO were greatly improved without a significant 

decrease of the elongation at break. The results from SEM measurements showed not only a 

homogeneous dispersion of GO but also a strong interfacial adhesion between GO nanosheets 

and PCL matrix.123  

Zeng and coworkers145 prepared PCL nanocomposites with poly(sodium 4-styrenesulfonate) 

(PSS) functionalized graphene nanosheets (GNS) through solution coagulation with GNS 

loading of 0.05 to 1.0 wt.%. The results from tensile tests showed that both the tensile strength 

and the Young's modulus of PCL were increased gradually with increasing the loading of GNS 

within 0.5 wt.%, meanwhile the elongation at break of the nanocomposites increased slightly. 

Conversely, when the loading of GNS was higher than 1.0 wt.%, the tensile strength and 

elongation at break reduced considerably due to the aggregation of GNS , which phenomenon 

was demonstrated from their SEM results.145  

By using the solution evaporation technique, Pan et al. fabricated PCL/MWNT composite 

scaffolds for bone tissue engineering application, with MWNT loading up to 2.0 wt.% in PCL 

matrix.14 They claimed that the tensile and compressive modulus of the composite scaffolds 

were significantly increased with increasing MWNT loadings. The bone-marrow-derived 

stroma cells (BMSC) on the composite scaffolds differentiated down the osteogenic lineage 

and expressed high levels of bone marker alkaline phosphatase (ALP). The proliferation and 

differentiation of the BMSC of scaffolds with low MWNT loadings (0.5 wt.%) were found to 
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be enhanced more than that of scaffolds with the higher MWNT loadings.14  

The effect of GO as an enforcing filler on the properties of PCL was studied by Kai et al.146 

The Young’s modulus and tensile strength of PCL was increased to 1000 MPa and 26 MPa 

respectively, which are around 3.0 and 1.7 times of the neat PCL. Furthermore, results from 

WAXD measurements showed an expansion of the GO interlayer distance from 0.6 nm to 1.1 

nm in the PCL/GO composite, which indicated the intercalation of the PCL chain into the GO 

layers, leading to a higher reinforcing effect than graphite on the mechanical properties of 

PCL.146 

Nanocomposites based on PCL and thermally reduced graphene oxide (TRGO) were prepared 

via a solution mixing method at low TRGO loadings of 0.5 wt% and 2.0 wt% by Zhang and 

coworkers.128 TEM observations revealed good dispersion of TRG throughout the PCL matrix 

and SEM measurements showed a strong interfacial adhesion between TRG and PCL matrix. 

The storage modulus of the PCL/TRGO nanocomposites had been greatly improved by ca. 

200% and 300% at -80 oC with incorporating 0.5 and 2.0 wt% of TRGO respectively, as 

compared with neat PCL.128 A detailed review about the effect of nanofillers on the 

functional properties of biopolymer-based films had been published by Jamróz et al.138 

1.4 Graphene and graphene related materials  

Graphene, which was firstly discovered in 2004,147 is a single atomic layer of sp2 carbon 

atoms bonded together in hexagonal lattices,79 as illustrated in Figure 1.5a. Being the stiffest 

and strongest known material with Young’s modulus and ultimate strength of up to 1 TPa and 

130 GPa,148 respectively, graphene is one of the most promising nanomaterials, which has 

been making a huge impact in many fields of science and technology. The unique 

physicochemical properties has made it a great potential for providing new approaches and 

critical improvements in the field of electrochemistry. However, even different kinds of 

producing techniques had been developed,81-83 the industrial-scale production of graphene 

still remains very challenging, which is restricting its applications in many fields. Graphene-
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related materials (GRM), including single layer graphene, graphite nanoplatelets (GNP), 

graphene oxide (GO) and reduced graphene oxide (rGO), are multifunctional nanostructured 

building blocks with extraordinary properties, which are typically used by considering that 

their large-scale production for industrial applications are available. 

 

Figure 1.5 molecule structures of graphene (a), graphene oxide (b), reduced graphene oxide (c). 

Graphite nanoplatelets which are also called graphite nanosheets (GNS) are another form of 

graphene consisting several stacked graphene sheets. The mostly used methods to produce 

GNP are the physical exfoliation and the thermal expansion of natural graphite flakes.149, 150   

GNP possesses very similar properties as graphene and it is a promising reinforcement for 

high-performance composites, however, the properties of GNP can be affected by many 

factors, such as the dimension, the number of graphene layers, as well as the preparation 

methods.149 A number of GNP-based polymer nanocomposites had been successfully 

prepared for different application fields by using different preparation methods.88, 93, 151-157  

Graphene oxide (GO) is an oxidized form of graphene that contains epoxide, carbonyl, and 

hydroxyl functional groups on the surface and edges, which allow the formation of hydrogen 

bonds, molecule structure of GO is shown in Figure 1.5b. GO consists of a single-layer of 

graphene oxide and is usually produced by the chemical treatment of graphite through 

oxidation, with subsequent dispersion and exfoliation in water or suitable organic solvents.158, 

159 The oxygen functional groups have been identified as mostly in the form of hydroxyl and 

epoxy groups on the basal plane, with smaller amounts of carboxy, carbonyl, phenol and 

lactone at the sheet edges.160, 161 The oxygenated groups in GO can strongly affect its 

electronic, mechanical, and electrochemical properties due to the interactions of the groups 

between different GO flakes and the restrictions of the electron path. 
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In spite of the many advantages of GO, this nanomaterial is structurally defective, electrically 

insulating and mechanically poorer than graphene. To improve its properties, the chemical or 

thermal reduction of GO aimed at removing oxygen functional groups and regenerating the 

sp2 network had been widely studied, providing rGO (molecule structure is shown in Figure 

1.5c),162-166 which can be considered as an intermediate structure between the ideal graphene 

sheet and the highly-oxidized GO, thus maintaining some and losing some other properties of 

both materials. Moreover, rGO can be obtained from both chemical and thermal reduction of 

GO, leading to a lower oxygen content than GO. The hydrogen bond between rGO and the 

polymer matrix, as well as between rGO sheets, is the main factor contributing to poor 

distribution of rGO in polymer matrix.167  

Carbon nanotubes (CNTs) were firstly found by Iijima in 1991, and attracted worldwide 

attentions from researchers and industrialist due to their outstanding electrical, mechanical, 

and thermal properties.168 A carbon nanotube can be defined as a cylinder composed of rolled-

up graphene plane with diameters in nanometer scale. Although similar in chemical 

composition to graphene, CNTs are highly isotropic, and its special topology distinguishes 

nanotubes from other carbon structures and gives them unique properties. CNTs are tougher 

than steel, weightless when compared with aluminum, and far more electrically conductive 

than copper.168 Besides being flexible, CNTs also have low density, high strength, and larger 

surface area.169 There are basically two main kinds of CNTs: single walled carbon nanotubes 

(SWCNTs) and multi-walled carbon nanotubes (MWCNTs), structures of them are as 

illustrated in Figure 1.6. SWCNTs consists of a single graphene layer rolled up into a seamless 

cylinder with diameters of ca. 0.5-1.5 nm.170 On the other hand, MWCNTs is defined by two 

or more concentric cylindrical shells of graphene sheets coaxially arranged around a central 

hollow core with van der Waals forces between adjacent layers.169 
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Figure 1.6 Molecule structure of SWCNT (left) and MWCNT (right).171 

However, like other fillers, CNTs also have drawbacks that are limiting their applications to 

a certain extent. The major issue with CNTs is their dispersion ability in polymer matrices, 

caused by their entangled bundles during the growth, which are quite difficult to disperse. 

Researchers have tried different techniques to disperse CNTs uniformly into the polymer 

matrix. Indeed, the surface chemical modification with functional groups is one of the most 

used techniques to improve the dispersion of CNTs, which were combined with polymers 

using different mixing techniques such as solution mixing, melt blending, and in situ 

polymerization.172-174 

1.5 Polyhedral oligomeric silsesquioxane 

Polyhedral oligomeric silsesquioxane (POSS) has been described as a 3D “cage-shaped” 

molecule composed of a silicon–oxygen framework bonded to organic groups, which makes 

it compatible with a polymer matrix.175 Unlike conventional nanofillers, POSS molecules 

formulated in the resin are induced by shear to “self-assemble” throughout the matrix into 

particle size of 25–200 nm. In the nanocomposites, POSS is reportedly that can provide 

modulus improvement and tensile strength improvement. In POSS, nucleating agents are 

reported to be useful for initiating the self-assembly of POSS nanoparticles and providing the 

property enhancements. POSS is unique in that it has an inorganic silicate core and organic 

exterior. This microstructure can provide mechanical stiffness and thermal stability as well as 

good fire retardant. POSS have also attracted a lot of attention due to their function that can 
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be used as ceramic precursors in nanocomposites. POSS has the capability to control the 

movement of polymer chains and simultaneously does not affect the process ability and 

mechanical reinforcement. 

1.6 Layer-by-layer approach 

Layer-by-layer (LbL) self-assembly176 is a frequently-used method in nanomaterial 

fabrication, device fabrication. One of the important aspects of this technique is its universal 

application to almost all element assemblies that can be charged. Layer-by-layer self-

assembly has several advantages including low process temperature, high molecular 

resolution of composition, easy for the thickness control, and a wide variety of appropriate 

building blocks. It has been widely used by researchers in different fields from the time it was 

firstly demonstrated. The alternate adsorption of oppositely charged macromolecules can be 

used to produce complex heterogeneous architectures. 
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2 POSS surface grafting to enhance the hydrolysis resistance of 

polylactide 

2.1 Introduction  

Polylactide (PLA), a biodegradable polyester, is one of the most interesting and sustainable 

substitutes of polymers from fossil resources.1 Nevertheless, one of the major issues that 

reduces its exploitation in durable applications is its low hydrolytic stability compared with 

similar materials.2 Indeed, PLA degrades by hydrolysis of the backbone ester groups, which 

reaction was demonstrated to be auto-catalyzed by the polymer carboxylic acid end groups.3 

In particular, the degradation rate can be influenced by many features, such as the polymer 

chemical structure, molecular mass, molecular mass distribution, morphology, water diffusion 

rate into the matrix and water amount in the polymer.3 The polymer decomposition is affected 

mainly by the polymer reactivity with water and availability of the ester groups to water and 

catalysts and it is accelerated by temperature.3-5 In order to improve such features, several 

methods were developed based on the modification of the polymer structure,1 on the blending 

with other polymers,3 or with suitable fillers/nanofillers.6-8 Although the above approaches 

were found to affect the polymer degradation, several drawbacks have to be taken into account 

for their use, including the change of the polymer features such as the transparency and the 

dispersibility of the additives. In this light, the development of easy approaches, using mild 

conditions, capable of enhancing the hydrolysis resistance of the polymer without affecting 

the bulk properties is a crucial issue for extending PLA exploitation. 

On this basis, a valuable method should consider the change of the polymer surface without 

affecting its bulk. It is worth underling that the surface of PLA film was mainly modified by 

using plasma9, 10 and gas phase treatment.11 In general, these methods were applied to enhance 

the PLA surface hydrophilicity, which modification turned out to increase the polymer 

hydrolytic degradation.8-10 

In our innovative approach, with the aim at limiting the hydrolytic degradation of PLA, an 
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amino-functionalized polyhedral silsesquioxane (POSS) was used to graft to the surface of 

the polymer through an aminolysis reaction,12 thus modifying the surface properties. Indeed, 

POSS are soluble in common organic solvents and they are generally combined with polymers 

in order to obtain organic/inorganic systems with enhanced properties with respect to the 

matrix.13, 14 Generally, in order to produce polymer/POSS systems, melt or solvent blending 

were applied, by using a solvent capable of solubilizing both the silsesquioxane and the 

polymer in the case of the latter method.15 In our approach, the polymer film is simply exposed 

to a solution of POSS to obtain a heterogenous reaction on the polymer surface. The reaction 

mechanism between POSS-NH2 and PLLA was shown in Figure 2.1. Both the neat and treated 

films were characterized by using Fourier Transform Infrared Spectroscopy (FTIR), X-ray 

Photoelectron Spectroscopy (XPS), Field Emission Scanning Electron Microscopy (FE-SEM), 

Differential Scanning Calorimetry (DSC), Thermo-Gravimetric Analysis (TGA) and contact 

angle measurements, while the hydrolytic degradation was followed by monitoring the film 

morphology over time. 

 
Figure 2.1 Mechanism of the reaction between POSS-NH2 and PLLA. 
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2.2 Experimental 

2.2.1 Materials  

Poly(l-lactide) (PLLA) was purchased from Nature Works (BV, Naarden, The Netherlands), 

grade 2002D, Mn = 100,000 g/mol, with a residual monomer content less than 0.3% by mass, 

while aminopropyl heptaisobutyl-POSS (structure was shown in Figure 2.2, referred as 

POSS-NH2 from now on) was obtained from Hybrid Plastics (Hattiesburg, MS, USA). Hexane 

and dichloromethane (Sigma-Aldrich, Milano, Italy) were used without further purification.  

2.2.2 The preparation of POSS grafted PLLA films 

PLLA was dissolved in dichloromethane (concentration of 2 g/dL), cast on a glass Petri dish 

and it was allowed to air-dry. Then, with the aim at completely removing the solvent, the 

resulting films were dried in vacuum for 4 h at 40 oC and 4 h at 80 oC. Finally, the transparent 

films, which were formed on the dish with thickness of about 100 µm, were peeled off. The 

films were cut into squares of size 2 × 2 cm2 and were dipped in 20 mL of a solution of POSS-

NH2 in hexane (2% w/w) by applying different time (4 and 8 h) and temperatures (40 oC and 

60 oC). The above solvent was chosen on the basis of its capability of dissolving the 

silsesquioxane but not the polymer. The treated film was then washed with 20 mL of fresh 

hexane for one hour at the same temperature applied for the reaction under magnetic stirring 

and with another 20 mL of fresh hexane overnight at room temperature. At the end, the film 

was allowed to dry in air and underwent the same thermal treatment as that used for the neat 

PLLA film, namely 4 h at 40 oC and 4 h at 80 oC. The samples were defined by indicating in 

the code the treatment time and temperature (as an example: PLLA_POSS_4_40 indicates a 

film treated with POSS-NH2 for 4 h at 40 oC). 
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Figure 2.2 The structure of aminopropyl heptaisobutyl POSS (POSS-NH2). 

2.2.3 Characterization 

A field emission scanning electron microscope (Supra 40 VP from Zeiss, Jena, Germany), 

holding a backscattered electron detector, was used to examine the developed material 

morphologies. The films were submerged in liquid nitrogen (30 min) and then they were 

fractured cryogenically. A sputter coater (Polaron E5100 by Quorum Technologies Ltd, 

Laughton, UK) was used to thinly sputter-coat the films with carbon.  

A Mettler-Toledo (Greifensee, Switzerland) TGA 1 thermo-gravimetric analyzer was applied, 

under a flow of nitrogen of 80 mL/min, from 25 to 800 oC, with a heating rate of 20 oC/min, 

to study the thermal decomposition of the neat PLLA and of the treated films. Volatilization 

onset temperatures (Tonset) were taken at 3% weight loss and temperatures for maximum 

volatilization rate (Tmax) were taken from at the maximum of derivative weight plot. Both 

Tonset and Tmax are typically reproducible to ± 3 oC.  

IR spectra were recorded by means of an IFS66 spectrometer by Bruker (Milano, Italy) 

considering a spectral range of 400-4000 cm−1.  

Differential scanning calorimetric analysis was performed between 25 and 250 oC, with the 

same heating and cooling rate of 10 oC/min, under a continuous nitrogen purge by using a 

DSC1 STARe calorimetric apparatus from Mettler (Greifensee, Switzerland). Glass transition 

temperatures (Tg) were taken at midpoint of the transition on second heating plots, while cold 
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crystallization temperatures (Tcc) and melting temperatures were taken (Tm) were taken as 

peak values on the second heating plot. Tg, Tcc and Tm are typically reproducible to ± 1o.  

Contact angle experiments were carried out at room temperature by means of an attention 

contact angle meter and by exploiting pure water as probe liquid. In order to evaluate the film 

resistance to hydrolysis, small pieces of PLLA films (area of 1 × 1 cm2), which were 

previously dried overnight, were dipped into 10 mL of 0.1 M phosphate buffer solution (pH 

= 7.4) at 50 oC. The morphology of the degraded films was evaluated by FE-SEM analysis. 

XPS measurements were accomplished by using a VersaProbe5000 by Physical Electronics 

(Chanhassen, MN, USA) equipped with a monochromatic Al source and a hemispherical 

analyzer. Both survey scans and high-resolution spectra were recorded by using a spot size of 

100 µm. In order to eliminate the adsorbed molecules, the films were kept under vacuum for 

15 h prior to the tests. A Shirley background function was exploited to adjust the spectra 

background. The curve fitting was accomplished by using a Gaussian (80%)–Lorentzian (20%) 

peak shape by minimizing the total square-error fit. 

2.3 Results and Discussion 

The characteristics of the films treated with POSS-NH2 were compared with those of the neat 

PLLA films by investigating the influence of reaction temperature and contact time on the 

final features of the materials. At first, the occurrence of the reaction was studied by means 

of infrared spectroscopy. Figure 2.5 compares the FTIR spectrum of the neat PLLA film with 

that of a film treated with POSS-NH2 at 60 oC for 8 h (PLLA_8_60). For the former sample, 

typical bands for PLA2 were detected. In the treated film, together with the typical bands of 

PLLA spectrum, a new band at ca. 1600 cm−1 and a shoulder at ca. 1650 cm−1 (enlarged 

spectra were shown in Figure 2.4) appear, which can be ascribed to amide group formation.12 

Moreover, in the spectrum of the treated film, a slight deformation of the band at ca. 1080 

cm−1 is visible, this change might be related to the presence of the silsesquioxane on the 

surface (Figure 2.4B). Indeed, a strong signal is present in this region in the spectrum of 
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POSS,14 which belongs to the stretching of Si-O. Despite no strict correlation between the 

intensity of the above signals with contact time and the temperature was found, in the case of 

the samples exposed to the silsesquioxane for a shorter reaction time, namely 

PLLA_POSS_4_40 and PLLA_POSS_4_60, the band at 1600 cm−1 is barely visible.  

 

Figure 2.3 FTIR spectra of (a) neat PLLA and (b) PLLA_8_60 film. 

 

Figure 2.4 (A) FTIR spectra of: (a) PLLA neat film, (b) PLLA_POSS_8_60 in the range 1900-1400 cm−1, 

(B) FTIR spectra of: (a) PLLA neat film, (b) PLLA_POSS_8_60 in the range 1110-1060 cm−1. 
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Figure 2.5 (A) XPS spectrum of POSS-NH2 in the energy region typical for N 1s photoelectrons, (B) XPS 

spectrum of PLLA_8_60 materials film and (C) photo of PLLA_8_60 film. 

XPS measurements were performed to further corroborate these findings. The survey scans 

indicated the presence of Si in the treated samples, with a concentration around 5% in the 

films PLLA_POSS_8_40 and PLLA_POSS_8_60. Moreover, considering the chemical 

environment of N atoms, while POSS-NH2 (Figure 2.5A), as previously reported,16 was found 

to hold a single N 1s peak centered at (399.7 ± 0.2) eV, which is ascribable to the presence of 

–NH2 functionalities, the XPS spectrum of PLLA_POSS_8_60 showed two N species: one 

centered at (399.8 ± 0.2) eV, and the second centered at (401.6 ± 0.2) eV (Figure 2.5B). All 

other treated films showed a similar behavior. This finding demonstrates the modification of 

N chemical environment, which can be associated to the reaction of POSS-NH2. The surface 

and the cross-sections of the treated films were analyzed by FE-SEM measurements coupled 

with Energy-Dispersive X-ray Spectroscopy (EDS) analysis, considering in particular Si 

dispersion, related to POSS distribution. Figure 2.6 shows a cross-section micrograph of the 

film, along with the elemental analysis. Indeed, while EDS measurements evidenced the 

presence of Si on the surface, whose concentration was found to be the same in the various 

analyzed points. The above element was not detectable in the cross section, further evidenced 

the deposition of POSS on the surface, which, as proved by FTIR and XPS measurements, 



2 POSS surface grafting to enhance the hydrolysis resistance of polylactide 

52 

 

was found to be covalently linked to the surface (reaction scheme reported in Figure 2.1). It 

is worth underlining that despite the silsesquioxane deposition, the film appears to be 

transparent (Figure 2.5C), which property results to be essential for the practical applications 

of the material. 

 

Figure 2.6 (left) FE-SEM of PLLA_POSS_8_60 film cross-section and (right) EDS analyses of the surface 

(point a) and cross-section (point b). 

The thermal properties of the films were analyzed by DSC and TGA measurements. While 

DSC results evidenced a scarce influence of POSS deposition on PLLA crystallization. As 

shown in Table 2-1, the glass transition temperature, cold crystallization temperature and 

melting temperature of the reacted films did not have any difference compared to that of the 

untreated PLLA film, which is within our expectation due to the low POSS-NH2 that only 

exists on the surface. TGA measurements demonstrated a slight improvement on thermal 

stability of the treated films, as shown in Table 2-2. Compared to the untreated PLLA film, 

both the onset degradation temperature (Tonset) and the temperature corresponding to the 

maximum weight loss rate (Tmax) turned out to increase by increasing the reaction temperature 

and contact time that applied in the treatment of the films with POSS-NH2. The maximum 

difference of Tmax between neat PLLA and treated films was found to be around 10 oC for the 

sample PLLA_POSS_8_60. It is worth to underline that the influence of POSS on the 
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degradation temperature of nanocomposites was widely studied and its specific effect was 

related to the formation of a silica layer on the surface of the polymer, behaving as a barrier 

and limiting the material decomposition.17 

Table 2-1 DSC results from second heating. 

Sample code Tg (oC) Tcc (oC) Tm (oC) ΔHcc (J/g) ΔHm (J/g) 

PLLA 60 130 153 5 6 

PLLA_POSS_4_40 61 133 154 5 6 

PLLA_POSS_8_40 60 131 154 4 6 

PLLA_POSS_4_60 60 130 153 5 6 

PLLA_POSS_8_60 60 130 153 5 6 

Tg: glass transition temperature, Tcc: cold crystallization temperature, Tm: melting temperature, ΔHcc: enthalpy 

of the cold crystallization, ΔHm: melting enthalpy. 

Table 2-2 TGA and contact angle results of the treated and untreated films.  

Sample code Tonset (oC) Tmax (oC) Contact angle (⁰) 

PLLA 329 367 71 ± 2 

PLLA_POSS_4_40 331 369 87 ± 1 

PLLA_POSS_8_40 334 371 91 ± 2 

PLLA_POSS_4_60 341 374 91 ± 2 

PLLA_POSS_8_60 348 378 101 ± 1 

In order to analyze the effect of the treatment on the surface wettability of the film, contact 

angle measurements were carried out. As previously mentioned, among various factors 

affecting the decomposition of PLA (which mostly occurs through hydrolysis of the backbone 

ester groups), the polymer reactivity with water and the accessibility of its ester groups to 

water were found to strongly determine the polymer degradation rate.4 On this basis, 

considering that a modification of the surface wettability can directly lead to a change of the 

polymer hydrolytic decomposition, it is possible to infer that contact angle measurements can 

give significant information on the material behavior. Figure 2.7 showed the contact angle 

measurements of the samples as a function of the reaction conditions, namely the reaction 

temperature and time, and the results were also summarized in Table 2-2. The untreated PLLA 

film was found to be characterized by a contact angle of 71o ± 2o, which is similar to that 

reported in the literature for neat PLA.18 It is clear that the treatment with the silsesquioxane 
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had leaded to an increase of the contact angle, which was found to be incrementally affected 

by the applied conditions, as this value increased by increasing the reaction time and 

temperature. In particular, the contact angle of the film treated for 8 h at 60 oC, namely 

PLLA_POSS_8_60, reached ca. 100o, which value proves the formation of a hydrophobic 

surface or might be related to an increase of the surface roughness. The influence of 

silsesquioxanes on surface properties was previously demonstrated for other POSS/polymer 

systems. Misra et al.19 found an increase of surface hydrophobicity for PP/octaisobutyl-POSS 

nanocomposites with respect to the neat polymer matrix. While in a previous work of ours, 

the increment of contact angle was obtained for nanostructured films based on poly(styrene-

co-maleic anhydride) and POSS.16 These latter results were explained by considering the 

effect of the hydrophobic groups, linked to the silsesquioxane structure and the enhancement 

of surface roughness of the nanocomposite films. Also in our case, the increase of contact 

angle can be attributed to the hydrophobicity of POSS molecules, which, as previously 

demonstrated, turned out to be grafted to the polymer surface.  

 

Figure 2.7 Water droplet placed on: (a) neat PLLA film, (b) PLLA_POSS_4_40 film, (c) 

PLLA_POSS_8_40 film, (d) PLLA_POSS_4_60 film and (e) PLLA_POSS_8_60 film. 

The decomposition behavior of the PLA-based films was investigated by analyzing the 

macroscopic and microscopic morphology of films. Both neat and treated samples were put 

in contact with water at 50 oC. The evaluation of the degradation process by measuring the 

weight loss of the samples turned out to be difficult, as mainly for the neat PLLA films, a 

relevant loss of integrity appears already after 20 days and was totally broken into small pieces 

after 4 weeks in water at 50 oC, as shown in Figure 2.8. Contrarily, the films treated with 

POSS-NH2, which were also kept in the same condition as the neat PLLA film (contact with 

buffer for 4 weeks at 50 oC), have maintained their dimensional integrity, showing a much 
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higher stability with respect to the neat PLLA film.  

 

Figure 2.8 Photos of (a) PLLA film and (b) PLLA_POSS_8_60 film after being in contact with the buffer 

for 4 weeks at 50 °C. 

The morphology of the degraded films was analyzed by means of FE-SEM measurements. 

Figure 2.9 shows the micrographs of the surfaces of the samples PLLA and 

PLLA_POSS_8_60, which were put in contact with the buffer at 50 °C for two and four weeks. 

While the surface of the neat films appeared to be homogeneous and uniform, significant 

changes were visible in the films which underwent a degradation process. The neat PLLA 

films showed the morphology typical of banded spherulites, which gave evidence of the 

presence of PLA crystallites,20 while increasing the contact time the surface roughness and 

cracks seemed to increase (Figure 2.9c). This phenomenon is explained by considering that 

the hydrolysis of the film, which involves the amorphous fraction of the polymer and produces 

short chains, easily solubilized in water, making the crystalline structure become visible. In 

the case of the POSS-treated samples, although the degradation led to an increase of the 

surface roughness, the spherulite morphology was not visible. This finding demonstrates that 

the degradation mechanism of the films is significantly affected by the presence of the 

silsesquioxane. It is possible to infer that the POSS surface grafting limits the degradation of 

the polymer amorphous fraction, thus leading to an enhancement of the materials resistance. 
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Figure 2.9 FE-SEM micrographs of: (a) neat PLLA film treated with the phosphate buffer solution at 50 °C 

for two weeks (left image at lower magnification, right image at higher magnification), (b) 

PLLA_POSS_8_60 film treated with the phosphate buffer solution at 50 °C for two weeks (left image at 

lower magnification, right image at higher magnification), (c) neat PLLA film treated with the phosphate 

buffer solution at 50 °C for four weeks (left image at lower magnification, right image at higher 

magnification), (d) PLLA_POSS_8_60 film treated with the phosphate buffer solution at 50 °C for four 

weeks (left image at lower magnification, right image at higher magnification). 

2.4 Conclusions 

This work demonstrated the effectiveness of the surface grafting of an amino-functionalized 

polyhedral oligomeric silsesquioxanes on improving the resistance to the hydrolytic 

degradation of poly(l-lactide) films. The developed method, which is simple and easily 

scalable, is based the aminolysis reaction between the amino group of the silsesquioxane and 

the polymer functionalities. The characterization measurements gave evidence of the POSS 

grafting occurrence as well as the increment of the surface hydrophilicity, which limited the 

hydrolytic degradation of the films. 
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3 Graphite oxide nanocoating as a sustainable route to extend 

the applicability of biopolymer-based film 

3.1 Introduction 

The challenge for the large-scale exploitation of polymers from renewable resources, as 

alternative to fossil based polymers, is mainly related to their production costs and properties.1 

On this basis, the methods applied for improving their characteristics or disclosing new 

properties have to take into account the economic impact while maintaining the “bio” nature 

of the material.1 One of the most promising and widely applied biopolymers is polylactic acid 

(PLA), which is mainly used as packaging material.2, 3 However, the exploitation of PLA is 

limited in applications requiring high gas barrier or antistatic properties. In order to improve 

PLA barrier properties different strategies, based mainly on the bulk inclusion of organic or 

inorganic additives, have been developed aiming at creating tortuous paths capable of slowing 

down diffusing gas molecules.2, 3 On the other hand, antistatic properties are traditionally 

obtained by the bulk inclusion of organic antistatic agents, which form electrostatic discharge 

channels upon migration onto the surface and by absorbing moisture.4, 5 A relevant drawback 

of this method is that long-term antistatic effects cannot be maintained due to additive loss 

from the polymer surface.6 In order to solve this issue, carbon materials,7 metals8 and more 

recently graphite/graphene9, 10 were employed as conductive additives. Indeed, these fillers 

may be added to the polymer matrix by different methods to confer electrical conductivity 

properties as long as their concentration is high enough to produce conduction pathways.11 

Unfortunately, the formation of efficient tortuous paths or conducting percolated networks is 

strictly related to the filler optimal dispersion within the polymer matrix, which is typically 

challenging. To improve particles dispersion, a chemical modification may be exploited to 

improve compatibility with the polymer.12 However, this implies laborious and not always 

environmental friendly processes. In addition, the additives added to the pristine polymer to 

enhance gas barrier and/or surface electrical conductivity usually reduce the transparency of 
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the resulting composite/nanocomposite films. It is thus apparent that the development of 

biopolymer films suitable to be used in the gas barrier/antistatic packaging fields should take 

into account several issues. In this context, the use of an approach capable of producing films 

characterized by high transparency, low gas permeability and good antistatic properties while 

maintaining the sustainable features of the polymer would allow for a step forward in the 

exploitation of biopolymers. From this point of view, the use of the Layer-by-Layer (LbL) 

assembly as surface nano-structuring tool represents an ideal solution. Indeed, the LbL 

technique offers several advantages such as: coating design freedom, green features and the 

possibility to use conducting carbon-based material as layer components.13 As far as PLA is 

concerned, the LbL was mainly applied in the biomedical field.14, 15 Carbon based materials 

can be easily incorporated into LbL coatings targeting gas barrier or electrical properties.16-18 

For example, graphite oxide (GO) has been recently employed in combination with positively 

charged polyelectrolytes.16 Indeed, GO is negatively charged in aqueous solution because of 

its functional groups such as carboxylic acid and phenolic hydroxyl groups.17 Chemical 

reduction and annealing post treatments can be employed in order to recovery the electrical 

properties of the LbL assembled multilayered GO films.18 It was found that, in reduced GO 

LbL films, both the sheet resistance and the optical transmittance can be effectively controlled 

by changing the number of bi-layers. Thus, in the present work, focusing on the development 

of poly(L-lactide) (PLLA) films applicable in the field of antistatic packing, we applied the 

LbL process as an environmental friendly method capable of maintaining the bulk properties 

of the biopolymer while modifying its surface. To the best of the authors’ knowledge, this 

manuscript represents the first attempt employing the LbL in order to produce antistatic PLA. 

To this aim, positively charged chitosan (CH) or branched polyethylenimine (BPEI) have been 

coupled with graphite oxide (GO) in a LbL fashion. 
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Figure 3.1 Scheme of the Layer-by-layer deposition procedure. 

In the assembly, BPEI and CH have been selected as positive counterparts due to their peculiar 

features when employed in LbL assemblies. BPEI is well known for its good adhesion 

properties and stable coating growth.19 On the other hand, CH represents a green 

polysaccharide which efficiency in the build-up of efficient gas barrier coatings has been 

already demonstrated.20 A comparison between the two systems would allow for the selection 

of the optimal solution based on coating growth and performances. In order to maintain the 

procedure as sustainable as possible the deposition process was performed in water and the 

subsequent GO reduction was accomplished by water-soluble reducing agent. The 

characteristics of the modified films, in terms of morphology, wettability, permeability and 

surface electrical conductivity, were studied as function of the number of deposited bilayers 

and the type of positive polyelectrolyte. 

3.2 Materials and methods 

3.2.1 Materials 

Poly (L-lactide) (PLLA) is a commercial product purchased from Nature Works Co. Ltd. 

U.S.A. (2002D, Mn = 100.000 g/mol) with a residual monomer content less than 0.3% by 

mass. Dichloromethane, sodium borohydride (NaBH4), branched poly(ethyleneimine) (BPEI, 
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Mw ~ 25.000 g/mol) and chitosan (CH, Mw ~ 190.000–310.000 g/mol) were purchased from 

Sigma-Aldrich. Graphite oxide (GO), as 1 wt.% suspension in water, was purchased from 

AVANZARE Innovacion Tecnologica (Navarrete-La Rioja, Spain). Solutions and suspensions 

employed were prepared using ultrapure water having a resistance of 18.2 MΩ, supplied by a 

Q20 Millipore system (Milano, Italy). Single side polished (1 0 0) silicon wafer was used to 

study the growth of the layers. BPEI solution had a solid content of 1 wt.% and chitosan 0.5 

wt.%; the pH was kept unmodified for BPEI while it was adjusted to 4 with 0.25 wt.% of 

acetic acid for chitosan. 

3.2.2 PLLA film preparation and LbL deposition on films 

Films were obtained by solubilizing PLLA pellets at a final concentration of 0.5 wt.% in 

dichloromethane. The obtained PLLA solution (10 mL) was then casted in a Petri dish (10 cm 

diameter) and dried in air to remove the solvent. Then, the solidified films were further dried 

in a vacuum oven for 4 h at 40 °C and 4 h at 80 °C. Finally, the films were cut into squares of 

size 3.5 × 3.5 cm2 to be used for the LbL deposition. As shown in Figure 3.1, PLLA films 

were alternately immersed into negatively and positively charged suspensions. The first 

immersion period for the BPEI activation layer was set at 20 min, in order to promote the 

homogeneous growth of the subsequent BPEI/GO bi-layer (BL). The subsequent layers were 

obtained with 4 min of dipping. After each immersion step, the film was washed with 

deionized water for 1 min to remove the excess of ionic species and dried by a flow of 

compressed air. The process was repeated until films characterized by a different number of 

BL (5, 10 and 15) were prepared. The same procedure was applied for the LbL deposition 

based on CH. The samples are coded by the type and the number of BL (as an example: 

PLLA_BPEI_GO_15 indicates 15 BL of BPEI and GO onto PLLA).  

NaBH4 solution in water with a concentration of 0.1 mol/L was used for the reduction of GO-

based films (GOr in the code of the films). The films were dip in 20 mL of the above solution 

for two hours at room temperature, then they were extensively washed and finally dried in 
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vacuum overnight at 40 °C.  

Si wafers employed to monitor the coating growth were alternately dipped into solutions of 

positively charged polyelectrolytes (BPEI or CH) and negatively charged (GO) in order to 

deposit a coating consisting of 10 BL repetitive unit, following the totally same procedures as 

used for PLLA films. Infrared spectroscopy measurement was performed after each BL 

deposition to monitor the growth of the signals belonging to GO. 

3.3 Characterization 

Fourier Transform Infrared (FT-IR) spectroscopy was used to monitor the growth of the LbL 

assembly using a Perkin Elmer Frontier FT-IR/FIR spectrophotometer (16 scans and 4 cm−1 

resolution). IR spectra were acquired after each deposition step.  

A Zeiss Supra 40 VP field emission scanning electron microscope (FE-SEM) equipped with 

a backscattered electron detector was used to examine the composite morphologies. The 

samples were sputter-coated with a thin carbon layer using a Polaron E5100 sputter coater. 

Contact angle measurements were carried out by a Basler as A780 contact angle analyzer, 

using the sessile drop method, and the Oneattension software at a minimum of 2 different 

locations for each film. 

Oxygen and water vapor permeability measurements were performed using an Extraperm 

apparatus (Extra Solutions, Italy). The test were performed at 23 °C in dry (0% R.H.) and 

humid (50% R.H) conditions for oxygen permeability while water vapor permeability was 

assessed at 23 °C and 50% R.H. Due to the small size of the prepared films, the samples were 

tested using an aluminum mask to reduce the exposed area to 2.0 cm2. 

Conductivity tests, which were performed accordingly with the ASTM D257 method, were 

carried by applying a picoammeter (Keithley) and by using films of 1 × 1 cm (with a thickness 

of ca. 100 μm). The instrument was zeroed before the 300 V voltage application. Two 

rectangles of silver glue (3 × 8 mm), spaced 3 mm apart, were deposited on the films in order 

to form the electrical contact. The surface resistivity (ρs) was calculated by applying the 
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following equation: 

ρs = Rs P/G: where Rs is the surface resistance, P is the perimeter of electrodes and G is the 

gap between electrodes. 

3.4 Results and discussion 

In this work, the surface modification of poly(L-lactide) (PLLA) films was performed by 

applying the Layer by Layer (LbL) technique and by using two types of positively charged 

polyelectrolytes, chitosan (CH) and branched polyethylenimine (BPEI). Indeed, these 

molecules, holding amino groups and being positively charged, are potentially capable of 

interacting with the surface of PLLA as well as of promoting the GO deposition. The 

concentrations of CH and BPEI were chosen on the basis of the conditions reported in the 

literature and on their solubility.21, 22 

The coating growth was monitored by IR spectroscopy. The spectra of neat CH, neat BPEI 

and GO are reported in Figure 3.2. The IR spectrum of CH (Figure 3.2a) shows peaks at 

approximately 3380 and 3296 cm−1 associated to O-H and N-H stretching, while signals at 

2922, 2868, 1406 and 1320 cm−1 were assigned to C-H bond.21 The sharp peak at 1578 cm-1 

and the shoulder at 1636 cm−1 can be attributed to asymmetric and symmetric stretching 

vibration mode of the protonated amine NH3+. The latter signal is also ascribed to O-H 

stretching vibration in residual water. The peaks at 1070 and 1140 cm−1 were assigned to 

pyranose rings and amino groups. BPEI shows a similar spectrum (Figure 3.2b) with bands 

at 3320 (N-H stretching), 2947, 2832, 1466 and 1299 cm−1 (C-H bond), 1555 cm−1 (N-H 

bending), 1405 and 1031 cm−1 (C-N stretching).22 Neat GO (Figure 3.2c) shows a broad band 

at 3346 cm−1 which can be assigned to the stretching mode of O-H group. The main signals 

are related to COOH functional groups and are found at 1616 and 1410 cm−1 for the 

deprotonated form COO- (asymmetric and symmetric stretching, respectively) and 1704 cm−1 

for C=O in the undissociated form. The peaks at 1194 and 1038 cm−1 may be attributed to C-

OH and C-O, respectively.23 
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Figure 3.2 FT-IR spectra of: (a) CH, (b) BPEI and (c) GO. 

The LbL assemblies of the CH/GO and BPEI/GO systems on model silicon substrate are 

reported as 3D plot in Figure 3.3, along with the evolution in absorbance for selected 

functional groups as a function of deposited BL number (Figure 3.4) and the SEM images of 

the cross sections of 10 BL coatings (Figure 3.5). As far as CH/GO is concerned, the 

characteristic signals of both components can be found at 1115, 1185, 1288, 1495 and 1701 

cm−1. In particular, the signals at 1631 and 1731 cm−1 (related to GO) turned out to grow 

proportionally to the number of deposited BL (Figure 3.4a), thus confirming the occurrence 



3Graphite oxide nanocoating as a sustainable route to extend the applicability of biopolymer-based film 

66 

 

of a LbL assembly, in agreement with what previously reported in the literature.24 In the case 

of the films based on BPEI (Figure 3.3b), the observed signals appear more intense with 

respect to CH/GO. In particular, the characteristic peaks associated to dissociated carboxylic 

groups on GO are well visible at 1631 and 1388 cm−1 (asymmetric and symmetric stretching, 

respectively). These signals appear more intense with respect to those found in neat GO and 

CH/GO assembly. This is explained by considering that the ionization degree of GO carboxyl 

groups is pH dependent. Indeed, while for neat GO and CH/GO IR spectra are collected after 

adsorption from acidic pH, during BPEI adsorption the adsorbed GO is exposed to basic pH 

values (pH = 9–10) that promote the dissociation of carboxyl groups.19, 25 

 

Figure 3.3 Coating growth as a function of each deposited BL by infrared spectroscopy of restricted IR 

region between 1000 and 2000 cm−1 of: (a) CH/GO and (b) BPEI/GO on model silicon surface. 

In the final LbL assembly, this phenomenon results in a strong increase of the signals 

associated to COO- and a decrease of the COOH peak. In addition, the signals related to COO- 

show a shift with respect to neat GO; this is ascribed to the interaction of the functional group 

with the BPEI protonated amines and further highlights the occurrence of a LbL deposition 

through electrostatic interactions. As observed for the CH-based system, the peaks 

characteristic of GO linearly increased as function of BL number (Figure 3.4b).  
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Figure 3.4 Evolution of the IR signals at 1631 and 1731 cm−1 as function of bi-layer number of: (a) CH/GO 

and (b) BPEI/GO. 

 
Figure 3.5 SEM micrographs of the cross section of the 10 BL coating deposited on silicon wafer of: (a) of 

CH/GO and (b) BPEI/GO. 

The remarkable difference in intensity at 10 BL between the two systems suggests that 

BPEI/GO grows thicker than CH/GO. This is further confirmed by FE-SEM observations 

performed on the cross-section of 10 BL assemblies (Figure 3.5) where thicknesses of 40 and 

200 nm were evaluated for CH- and BPEI-based systems, respectively. This can be ascribed 

to the different nature of the employed polycations. Indeed, as previously commented, BPEI 
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is well known for its good adhesion and coating growth promoting properties; in addition, the 

change of local pH during the assembly also plays a crucial role as also demonstrated for other 

BPEI LbL assemblies.19 

During BPEI adsorption the increased dissociation of GO carboxyl groups in the previously 

adsorbed layer results in an increased negative charge to be compensated. Similarly, the acidic 

pH of GO suspension improves the protonation degree of BPEI and results in more GO 

adsorbed. Such phenomena do not occur in the CH-based assembly due to the acidic pH of 

the chitosan solution and limit the amount of adsorbed CH and GO at each deposition step 

thus resulting in a thinner coating with respect to BPEI as also demonstrated by SEM 

observations in Figure 3.5. The influence of the treatment on the film wettability was studied 

by static contact angle measurements on neat PLLA and films treated by a different number 

of deposition BL (Figure 3.6). The values obtained are summarized in Table 3-1.  

 

Figure 3.6 Water contact angle images of: (a) PLLA, (b) PLLA_BPEI_GO_5, (c) PLLA_BPEI_GO_10, (d) 

PLLA_BPEI_GO_15, (e) PLLA, (f) PLLA_CH_GO_5, (g) PLLA_CH_GO_10 and (h) 

PLLA_CH_GO_15. 

Table 3-1 Contact angle of the neat PLLA film and of the LbL treated films. 

Sample code Contact angle (⁰) Sample code Contact angle (⁰) 

PLLA 80.6 ± 0.2 PLLA 80.6 ± 0.2 

PLLA_BPEI_GO_5 50.5 ± 0.3 PLLA_CH_GO_5 59.6 ± 0.3 

PLLA_BPEI_GO_10 31.7 ± 0.5 PLLA_CH_GO_10 59.6 ± 0.1 

PLLA_BPEI_GOr_10 68.3 ± 0.5 PLLA_CH_GOr_10 77.0 ± 0.3 

PLLA_BPEI_GO_15 30.2 ± 0.5 PLLA_CH_GO_15 54.8 ± 0.1 
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The neat PLLA film (Figure 3.6a and 3.6e) was found to hold a contact angle of ca. 80°, in 

agreement with the data reported in the literature.26 The deposition of a single layer of BPEI 

or CH did not produce a significant modification of the material wettability and the measured 

contact angles (85° for CH based film and 78° for BPEI based film) were in agreement with 

previous reports for the two neat polymers.27, 28 On the contrary, the deposition of an assembly 

containing GO resulted in a reduction of the contact angle, which value turned out to decrease 

by increasing the number of the deposition BL. This was more relevant for BPEI-based 

assemblies. Indeed, in the case of CH, the maximum contact angle after15 BL was 54.8° while 

for PLLA_BPEI_GO_15 reached 30.2°.  

Wettability data for systems containing GO, either on the surface or in the bulk, are reported 

in the literature.28-32 In the case of bulk addition of GO within a polymer, the wettability turned 

out to depend on the matrix characteristics, the GO concentration and its functionalization.28 

The presence of GO typically resulted in hydrophilic surfaces, with water contact angles 

smaller than or equal to 45°.30-33 Nevertheless, different aspects have to be taken into account. 

Indeed, when GO is deposited on a surface, as in the case of our systems, the substrate effect 

as well as the homogeneity of the deposition might influence the surface wettability. Moreover, 

as previously mentioned, the characteristics of graphene oxide, in terms of its 

functionalization degree, was found to affect the contact angle values. On the basis of these 

aspects, it is possible to hypothesize that by increasing the number of the deposition layers, 

the homogeneity of the deposited coatings increases. Indeed, as reported in Table 3-1, the 

variation of the contact angles turned out to decrease by increasing the number of deposition 

BL and reached a plateau after 10 BL. The different values between CH- and BPEI-based 

systems can be ascribed to the different contributions of the employed polycations and the 

different percentage of ionized groups/ionic bonds in the final assembly as evaluated by IR 

spectroscopy. This choice was mainly related to the need to keep the developed approach as 

simple as possible in order to make it more easily applicable. In this light, it is desirable to 

use as few depositions as possible. 
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On this basis, considering the slight difference between 10 and 15 BL, only 10 BL coatings 

were further investigated. Moreover, also the different wettability obtained by using the two 

types of polycations might be explained by taking into account the morphology of the 

deposition, which should depend on the specific interactions of the molecules with the 

polymer surface and with GO. In order to assess the film morphology, both optical microscopy 

and FE-SEM measurements were carried out. The photos of the neat and the 10 BL treated 

films, are reported in Figure 3.7. The above images evidenced for the formation of a 

homogeneous coating at micron scale, highlighting the presence of GO nanoplatelets of 

variable dimensions. 

 

Figure 3.7 Optical images of: (a) neat PLLA film, (b) PLLA_CH_GO_10 and PLLA_BPEI_GO_10. 

 
Figure 3.8 SEM micrographs of: (a) PLLA, (b) PLLA_BPEI_GO_10 and (c) PLLA_CH_GO_10. (d) 

Photograph of PLLA_BPEI_GO_10 film after reduction. 

(a) (b) (c)

100 m
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FE-SEM micrographs of 10 BL samples (Figure 3.8) evidenced a wrinkled morphology 

typical of GO-based coatings while showing further differences in the two film surface 

morphologies. Indeed, while the film based on BPEI (Figure 3.8b) was characterized by a 

rather flat and a homogenous GO layer, the one prepared by using chitosan (Figure 3.8c), 

displayed a much higher roughness. As previously mentioned, one key feature for the films 

applicability is related to their transparency. Digital images of the films after the reduction 

treatment highlight the characteristic black color typical of graphite while also showing a 

good transparency of the LbL treated film (Figure 3.8d). This demonstrates that, conversely 

to bulk modification, this LbL treatment allows to maintain a fairly good transparency of the 

coated film.  

With the aim at obtaining films characterized by surface electrical conductivity, the GO 

deposited on the surface of the PLLA films was reduced by sodium borohydride (NaBH4).
18 

As reported in the literature, contact angle measurements can give evidence of the reducing 

occurrence by showing a decreased wettability.18 For example, in the case of GO nanopaper, 

the contact angle increased from 45.1° to 67.3° after aluminum reduction at 100-200 °C.28 

Similarly, Some et al.34 described a reduction treatment under light exposure based on sodium 

benzophenone or sodium benzophenone in the presence of hydrazine, which increased the 

contact angle of GO films from 48.3° to 98.9°. As far as samples prepared in this work are 

concerned, values reported in Table 3-1 and images in Figure 3.9 clearly show an increase in 

contact angle for 10 BL films after reduction. This was more apparent for BPEI/GO system 

that displayed an overall increase of 38.1° with respect to the 17.7° increase measured for 

CH/GO. By comparing these values with those reported in the literature, it is possible to infer 

that the applied reduction treatment, although based on mild conditions, leaded to a relevant 

increase of the surface hydrophobicity thus indicating a significant degree of reduction. The 

reduction of GO was also evaluated by means of IR spectroscopy (Figure 3.10). Only the 

BPEI/GO sample was evaluated as in the case of CH the presence of the oxygen contained in 

the polymer chemical structure might affect the results of the measurements. By comparing 
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the spectra before and after reduction, it is possible to observe a decrement of the absorption 

bands at 1700 cm−1 and at 1100 cm−1, which can be related to the oxygen-based groups. This 

further confirms the occurrence of the reduction reaction.  

 

Figure 3.9: Water contact angle images of: (a) PLLA_BPEI_GO_10, (b) PLLA_BPEI_GOr_10, (c) 

PLLA_CH_GO_10 and (d) PLLA_CH_GOr_10. 

 

Figure 3.10 FT-IR spectra of: (a) 10 BL of BPEI/GO deposited on silicon wafer before reduction and (b) 

10 BL of BPEI/GO deposited on silicon wafer after reduction. 

The barrier and permeability performances of PLA films have been widely studied because 

of the relevant impact of these features on the material applications.35, 36 Oxygen barrier 

properties in dry and humid conditions as well as water vapor permeability have been 

evaluated for neat PLLA and 10 BL treated films (Figure 3.11 and Table 3-2). 

A common approach to improve PLA gas barrier properties is represented by the bulk 

inclusion of layered silicates that normally results in a 50% reduction in oxygen permeability 

but also shows negative impact on the optical properties.35, 36 A more efficient approach is 

based on the LbL deposition of clay, which was found to decrease the oxygen permeability 

by 96%.37 In this work, the films treated with BPEI/GO showed a 70% reduction of the 

oxygen permeability both at low and at high relative humidity (RH). Such results can be 

ascribed to the well-known LbL brick and mortar structures where nanoplatelets are oriented 

parallel to the film surface and perpendicular to the gas flux. This creates a tortuous path 

towards the molecules of the permeating gas thus resulting in improved barrier performances. 

(a) (b) (c) (d)
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Figure 3.11 (a) O2 and H2O permeability of: PLLA, PLLA_BPEI_GO_10, PLLA_BPEI_GOr_10 and 

PLLA_CH_GO_10, photos of: (b) PLLA and (c) PLLA_BPEI_GOr_10 films after being rubbed with a 

woolen cloth and putted in contact with polystyrene particles. 

Table 3-2 Oxygen and water permeability of the neat PLLA and of the LbL treated films. 

 O2 Permeability 

[cc•mm•m-2•day-1•bar-1] 

@ 23°C 0% RH 

O2 Permeability 

[cc•mm•m-2•day-1•bar-1] 

@ 23°C 75% RH 

H2O Permeability 

[g•mm•m-2•day-1•bar-1] 

@ 23°C 75% R.H. 

PLLA 13.4 ± 4.0 14.1 ± 3.6 1.5 ± 0.4 

PLLA_BPEI_GO_10 3.0 ± 0.3 2.5 ± 1.0 1.3 ± 0.2 

PLLA_BPEI_GOr_10 3.4 ± 0.3 8.3 ± 2.4 2.0 ± 0.1 

PLLA_CH_GO_10 6.3 ± 1.1 9.5 ± 0.6 1.3 ± 0.4 

The performed reduction treatment leads to an increase of the permeability, which increment 

resulted to be slight at low RH and relevant only at high RH. On the other hand, CH/GO films 

showed a more limited decrease of the permeability. This finding is in agreement with the 

previous characterization that provided evidence of the formation of a thinner and rougher 

deposition layer for the chitosan-based films. The obtained results have been compared with 

previous works dealing with PLA films modified for improved barrier properties. To this aim, 

LbL surface modification and bulk nanocomposites approaches have been considered.20, 37-41 

A detailed permeability values in dry and humid conditions from various literatures are 

summarized and reported in Table 3-3. As far as LbL assemblies are concerned, it is possible 
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to observe that relevant reductions in permeability were achieved only after depositing either 

30–70 BL or 10 quad-layers (QL). 

Table 3-3 Oxygen permeability values of PLA films from various literatures. 

 

O2 Permeability  

@ 23°C 0% RH 

[cc•mm•m-2•day-1•bar-1] 

O2 Permeability  

@ 23°C 50% RH  

[cc•mm•m-2•day-1•bar-1] 

CHI/HMMT-LbL37  N.A 0.635 

CHI/MMT-LbL22  1.2 (10BL) N.A 

BPEI/NFC-LbL38  N.A 5.5 (20BL), 1.02 (50BL) 

BPEI/CMC-LbL38  N.A 5.8 (20BL), 1.26 (50BL) 

BPEI/NF-LBL9  11.4 10.5 

BPEI/NF/BPEI/MMT-LbL9 2.1 (6QL), 0.25 (10QL) 3.2 (6QL), 0.5 (10QL) 

PLA/NFNS composite10 4.72 N.A. 

PLA/EFNS composite10 2.03 N.A. 

PLA/AFMMT composite10 8.81 N.A. 

PLA/ EFMMT composite10 8.63 N.A. 

PLA/OMM composite41 N.A. 10.7 (5%wt), 9.4 (10%wt) 

N.A. Not Available, HMMT: homogenized montmorillonite, NFC: nano-fibrillated cellulose, CMC: 

carboxymethyl cellulose, QL: quad-layer, NF: nafion, NFNS: amino functionalized nano-silica, EFNS: epoxy 

functionalized nano-silica, AFMMT: amino functionalized MMT, EFMMT: epoxy functionalized MMT, OMM: 

organic-modified mica. 

The results obtained in this work with 10 BL of BPEI/GO are in the same range of a 10 BL 

coating comprising chitosan and montmorillonite20 and superior to previously developed 

systems based on BPEI coupled with either cellulose nanofibrils or carboxymethyl cellulose.38 

On the other hand, permeability values similar to 10 BL of BPEI/GO can be achieved by bulk 

nanocomposites prepared by in situ polymerization of L-lactide in the presence of 

functionalized nanoparticles followed by solvent casting from chloroform.40 However, this 

latter approach appears less practical and more complicated than the surface nano-

structuration proposed in this manuscript. The effect of the surface treatment on the antistatic 

properties of the films was evaluated by measuring the surface resistivity of the optimal 
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formulation based on BPEI and by employing a practical method. Considering the Figure 

3.10b and 3.10c resulted from the procedures exhibited in Figure 3.12, it is apparent that the 

neat PLLA film, after being charged, was capable of attracting the polystyrene particles, while 

the coated PLLA did not retain those.  

 
Figure 3.12 Comparison of antistatic properties of the neat PLLA and reduced LBL coated PLLA films. 

Although the above method is very simple, it gives a preliminary indication of the antistatic 

features of the treated films, it has been widely used for industrial applications. A 

quantification of the effect of the coating was evaluated by accomplished surface resistivity 

(ρs) measurements by using a picoammeter. Indeed, a decrease of the film surface resistivity 

from 6.3 × 1012 Ohms/square for PLLA film to 7.3 × 1011 Ohms/square for 

PLLA_BPEI_GOr_10 was found. Although the above decrement is not as high as those 

reported in the literature for other systems,9 it has been demonstrated to be enough to result 

in an antistatic surface. From an overall point of view, the achieved barrier and antistatic 

properties make the developed BPEI/GO assembly a promising and attractive alternative to 

the classical antistatic packaging systems for PLLA. 

3.5 Conclusions 

In this work, modified PLLA films with good oxygen barrier, transparency and antistatic 
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properties were developed. This set of properties makes the prepared materials applicable in 

the antistatic packaging field. Indeed, the proposed approach involves the Layer-by-Layer 

(LbL) deposition of functional coatings comprising either deposition of chitosan (CH) or 

branched polyethylenimine (BPEI) in combination with graphite oxide (GO). The 

characterization results evidenced the more effectiveness of BPEI with respect to CH as 

positive counterpart in the LbL assemblies. Coating growth was investigated by IR 

spectroscopy coupled with microscopy observations showing that the BPEI/GO system is 

capable of growing thicker, while producing more homogeneous coatings than CH/GO. This 

was further confirmed by static contact angle measurements. Film coated by 10 BL BPEI/GO 

showed a 70% reduction in oxygen permeability in both dry and humid conditions. The same 

coating was subjected to a reduction post treatment capable to confer antistatic properties to 

the coated film. The conditions applied in the LbL deposition, with a limited number of 

bilayers, and the subsequent reduction of GO, carried out in water and at room temperature, 

result in a sustainable and easily scalable method for the modification of polymer surface 

properties. This is of particular interest in the case of biopolymers, such as PLA, allowing 

extending their applicability range towards novel and attractive application, by the 

engineering of surface properties and retaining the bulk properties. 
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4 Polycaprolactone/graphite nanoplates composite nanopapers  

4.1 Introduction 

Nanopapers, which are thin sheets or films composed of self-assembled individual 

nanoparticles, generally obtained by filtration of a suspension in a solvent, have gained 

increasing interest for their unique properties, such as mechanical properties, gas barrier and 

flame retardancy.1-6
 Indeed, the above features are mainly related to the highly concentrated 

nanoparticles, which are tightly packed in the thin film, because of their strong self-

interactions7, 8 or mediated through a binding polymer, in the so-called brick and mortar 

structures.9-14 Among the different lamellar nanoparticles which can be exploited in the 

preparation of nanopapers, graphene-related nanomaterials, such as graphite nanoplatelets 

(GNP) and multilayer graphene represent ideal systems for producing high-performance 

nanopapers, they being characterized by ultrahigh strength, excellent electrical and thermal 

conductivity.15-19 Concerning the preparation of GNP nanopapers, two issues have to be 

considered, which are the exfoliation and dispersion of individual graphene nanosheets in a 

medium and the strong bonding among graphene nanosheets in the resulting nanopapers. In 

order to overcome the dispersion problem, covalently functionalization of graphene was 

usually exploited.17, 20-24 Huang et al.17 prepared graphene nanopapers by flow-directed 

assembly starting from benzenesulfonic acid functionalized graphene nanosheets, which 

approach facilitated the dispersion of graphene nanosheets in water and allowed the 

preparation of nanopapers. Mechanical and electrical properties of the above nanopapers 

turned out to depend on the annealing temperature as well as on the degree of functionality. 

Similarly, Korkut et al.25 produced graphene network by tape casting surfactant-stabilized 

aqueous suspensions of functionalized graphene sheets. In this case, the removal of the 

polymer matrix and the surfactant allowed obtaining a self-supporting and electrically 

conducting graphene-based tapes. An alternative strategy to promote the graphene dispersion 

consists in the application of graphene oxide (GO),26, 27 which, containing hydroxyl and epoxy 
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groups on the basal planes and carboxyl groups on the hedges, results to be easily dispersible 

in water.26, 28-30 By applying this approach, Chen et al.16 prepared graphene papers starting 

from GO dispersions reduced with hydrazine. Indeed, the above reduction step, which is 

essential to restore the conductivity properties of the material, represents a limitation of the 

method as the complete reduction of GO can be hardly achieved and the graphite structure 

can be partially damaged.31-35 

The major drawbacks of the graphite-based nanopapers, particularly of those made of GNP, 

is their limited toughness and deformability, which is mainly related to the scarce bonding 

among nanosheets. Indeed, as reported in the literature, typically the elongation at break is 

less than 1.0 %, thus limiting the nanopapers practical applications.16, 17, 25, 36 As such, the 

incorporation of limited amount of polymers into the GNP nanopapers, in a brick and mortar 

organization, may enhance their toughness and deformability. However, the presence of non-

conductive polymer between GNP is clearly expected to decrease thermal and electrical 

conductivity of the nanostructure. In this light, the development of one-step method to prepare 

GNP-based nanopapers with high mechanical properties and thermal conductivity still 

remains challenging for industrial applications. To promote the thermal conductivity, highly 

crystalline polymers should be applied,37-44 while to enhance the final ductility of the 

nanopaper, sufficient polymer mobility should be granted. With this in mind, 

polycaprolactone (PCL) was selected, based on its high crystallinity and capability of strong 

nucleation on carbon nanostructures45 coupled with a low glass transition temperature. 

Furthermore, the PCL is a biodegradable and biocompatible polymer, in principle allowing 

application of the GNP/polymer system also in the biomedical field.46-48 In this work, 

GNP/PCL nanopapers were prepared with a polymer content ranging from 5 wt.% to 20 wt.% 

by applying a solution blending approach, followed by filtration, drying and pressing 

treatments. The nanopapers have been characterized for their crystallinity, morphology 

mechanical and thermal conductivity properties, highlighting a set of performance suitable 

for application in flexible heat exchangers, including flexible electronics49 as well as wearable 
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and implantable devices.50, 51 

4.2 Experimental part 

4.2.1 Materials 

Polycaprolactone (PCL) is a commercial product purchased from Perstorp UK limited 

(Capa6500, Mn = 50000, Tm = 56 oC, Tc = 29 oC). Graphite nanoplatelets (GNP) used in this 

work is supplied by AVANZARE (Navarrete, La Rioja, Spain) prepared via rapid thermal 

expansion of over oxidized-intercalated graphite, as previously reported52 and used as 

supplied without any further treatments. Dimethylformamide (DMF) (99.8%,) purchased 

from Sigma-Aldrich was used as solvent.  

4.2.2 Preparation methods 

Nanopapers were prepared by filtration following the procedure, presented in Figure 4.1 and 

described hereunder. 

 

Figure 4.1 Preparation procedure of the nanopapers. 

Different amount of PCL pellets (25 mg, 50 mg, 250 mg and 500 mg) were dissolved into 150 

ml DMF at 60 oC for 1 hour in order to obtain solutions with different polymer concentrations. 

GNP powder (50 mg) was added into the prepared PCL solutions. Homogeneous suspensions 

(no obvious big GNP particles can be seen when transferred to the filter) were obtained by 

applying a sonication treatment in pulsed mode (5 s on and 5 s off) for 30 min with power set 
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at 30% of the full output power (750 W), accomplished with an ultra-sonication probe (Sonics 

Vibracell VCX-750, Sonics &Materials Inc.) with a 13 mm diameter Ti-alloy tip. The 

suspension was transferred into a filtration system equipped with a polyamide supported 

membrane (0.45µm nominal pore size, diameter 47 mm, Whatman) and left for filtration 

overnight. After filtration, the cake containing GNP and adsorbed PCL, over the nylon 

membrane, was dried in two steps, firstly at 70 oC for 2 hours to remove most of the solvent 

and later at 120 oC for 1 hour to complete solvent removal. Drying in two steps was adopted 

to avoid cracking of the film, observed when drying in one step at 120 oC, due to the high 

solvent evaporation rate. Finally, nanopapers were obtained by applying a 6 tons load for 30 

minutes on the PCL-GNP cakes after being peeled off from nylon membrane at room 

temperature (RT). Larger nanopapers were also prepared using 90 mm membrane filters and 

using 200 mg GNP suspended in 600 ml DMF, while maintaining the same preparation 

procedure. Hot pressing (80oC and then cooled down to 30oC by water cooling of compression 

plates) was applied to specimens, to further consolidate the nanopaper structure. Samples 

codes was defined by indicating the initial ratio of PCL and GNP in the suspensions before 

filtering, the dimension of the prepared nanopapers and the pressing method, as shown in 

Table 4-1.  

Table 4-1 Nanopapers list, with codes and preparation conditions. 

Sample code 
Ratio 

PCL : GNP in suspension  

Diameter 

[mm] 
Pressing method  

PCL10-GNP1-SC 10 : 1 47 RT 

PCL10-GNP1-LH 10 : 1 90 80oC 

PCL5-GNP1-SC 5 : 1 47 RT 

PCL5-GNP1-LH 5 : 1 90 80oC 

PCL1-GNP1-SC 1 : 1 47 RT 

PCL1-GNP1-LH 1 : 1 90 80oC 

PCL1-GNP2-SC 1 : 2 47 RT 
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4.2.3 Characterization 

Thermal gravimetrical analysis (TGA) was performed with a Mettler-Toledo TGA 1 thermo-

gravimetric analyzer. Samples with weight of 5-8 mg were heated from 35 oC to 900 oC under 

a nitrogen flow of 80 ml/min and then were kept at 900 oC for 20 minutes under oxygen at 

the same flow rate.  

A Zeiss Supra 40 VP field emission scanning electron microscope (FE-SEM) equipped with 

a backscattered electron detector was used to examine the morphologies of the nanopapers. 

Differential scanning calorimetric (DSC) analysis was performed under a continuous nitrogen 

purge on a Mettler calorimetric apparatus, model DSC1 STARe/E System. The samples, 

having a mass between 2.5 and 6 mg, were firstly heated from -10 oC to 200 °C, then cooled 

down to -100 oC and finally heated to 200 °C again. A scanning rate of 10 °C/min was used 

on both heating and cooling. 

The crystallinities (Xc) of PCL into different nanopapers were calculated by considering their 

real contents ΦPCL, following the equation as below: 

                     𝑋𝑐(%) = 
∆𝐻𝑚

𝛥𝐻𝑚
0 ×∅𝑃𝐶𝐿

× 100%                         (1) 

where ∆𝐻𝑚 is the measured heat of fusion, ∅𝑃𝐶𝐿 is the PCL content in the nanopapers and 

∆𝐻𝑚
0  is melting enthalpy of the 100% PCL crystalline (139.5 J/g). 

Successive self-nucleation and annealing tests were performed on 2.5 ± 0.3 mg to compensate 

for the heating rate increase. The following experimental protocol was adopted: (a) heating 

up to 175 °C (3 min isotherm at 175 °C) to erase thermal history and crystalline memory; (b) 

Cooling from the melt (i.e., 175 °C) to 0 °C at 20 °C/min to create a standard crystalline state; 

(c) Fractionation 1: Heating the sample until a Ts1~Tm, end of the studied transition, e.g., 

127 °C. Held this temperature for 5 minutes and then cooling to 0 °C at 50 °C/min. Then, heat 

the sample until the Ts2, which will be equal to Ts1-2.5 °C. At least fourth Ts is studying to 

cover the highest melting peak. (d). Fractionation 2: After Fractionation 1, the sample was 

cooled until 0 °C at 20 °C/min (then the other steps were performed at 50 °C/min). In this 

case, the fractionation window was changed from 2.5 to 5 °C. Generally, the first Ts in 
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Fractionation 2 was 92 °C. Then, a range of around 50 °C (92 to 42 °C) was covered to 

fractionate the transitions calculated at approximately 85 and 76 °C. (e). Final Heating: Heat 

the sample from 0 °C to 175 °C at 20 oC/min. 

The thermal diffusivity (α) of the prepared nanopapers was measured at 25°C using the xenon 

light flash analysis (LFA) (Netzsch LFA 467 Hyperflash). The samples were cut in disks with 

a diameter of 23 mm and the measurements were carried out in a special in-plane sample 

holder, in which the sample is heated in the central region and the temperature rise was 

measured on the outer ring of the sample. Measurements were carried out five times for each 

sample to get an average thermal diffusivity.  

Wide Angle X-ray Scattering (WAXS) measurements were performed on a Xeuss 2.0 

SAXS/WAXS system (Xenocs SA, France). X-ray radiation (wavelength = 1.5418 Å) was 

produced by means of the Cu Kα radiation generator (GeniX3D Cu ULD) at 50 kV and 0.6 

mA. Scattered signals were collected by a semiconductor detector (Pilatus 300 K, DECTRIS, 

Swiss) with a resolution of 487 × 619 pixels (pixel size 172 × 172 μm2). 

Thermal conductivity was calculated from the measured diffusivity values, multiplied by the 

density and specific heat capacity of the different materials: 

                       K = ρ × α × 𝐶𝑝                                   (2) 

K, thermal conductivity; ρ, density of the nanopapers; 𝐶𝑝, specific heat capacity of different 

materials. 

The specific heat capacities of nanopapers (𝐶𝑝𝑛) were calculated by the weighted average of 

𝐶𝑝 values of PCL and graphite (0.71 Jg-1K-1at RT)53 for each sample: 

𝐶𝑝𝑛 = 𝐶𝑝𝑃 × ƟPCL + 𝐶𝑝𝐺 × (1- ƟPCL)                        (3) 

𝐶𝑝𝑃, specific heat capacity of PCL, which is around 2.0 Jg-1K-1at RT;54 ƟPCL, weight percentage of 

PCL in the nanopapers; 𝐶𝑝𝐺, specific heat capacity of graphite. 

Thermomechanical properties of nanopapers at different temperatures were investigated by 

using a Q800 Dynamic Mechanical Analyzer (DMA). The samples were cut into rectangular 

specimens with dimension of 5×20 mm2. The specimen was performed a temperature scan, 

from room temperature to 150 oC at a heating rate of 2 oC/min, strain of 0.05% and frequency 

of 1 Hz. Deformation under constant load was carried out at 120 °C under 5 MPa, for 8 hours, 
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followed by deformation recovery at zero load and the same temperature for 8 hours. 

4.3 Result and discussion 

Composite nanopapers easily obtained by filtration of GNP/PCL suspension demonstrated 

high flexibility. Indeed, freestanding nanopapers can easily be bent and even folded and then 

again restored to planar, without breaking, which is impossible for the neat GNP nanopaper, 

exhibiting remarkable brittleness. As a representative example, pictures for PCL10-GNP1-SC 

nanopaper are reported in Figure 4.2. 

 
Figure 4.2 Photographs of freestanding nanopaper PCL10-GNP1-SC: (a) initial nanopaper; (b) 

nanopaper bent 90o; (c) folded nanopaper; (d) recovery after being bended and folded. 

 

Figure 4.3 SEM micrograph for cross-section of different nanopapers, (a) PCL1-GNP1-LH, (b) PCL10-

GNP1-LH, (c) PCL1-GNP1-SC, (d) PCL10-GNP1-SC. 
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The morphology of nanopapers in cross-section were investigated by SEM (Figure 4.3), 

showing thin deposition of PCL onto the highly oriented GNP flakes. Comparing nanopapers 

compressed at room temperature vs the corresponding prepared by hot pressing, significant 

differences can be found in both thickness and porosity. Indeed, room temperature 

compressed nanopapers (Figure 4.3c and d) exhibit a higher thickness, typically in the range 

of 100 μm and delaminated structure. On the other hand, hot pressed counterparts (Figure 

4.3a and b) are clearly thinner (approx. 30 μm) and more compact, especially for higher 

PCL/GNP ratio, evidencing the hot pressing stage to consolidate the structure once PCL is 

above its melting temperature. 

The amount of PCL retained by GNP flakes during filtration was investigated by 

thermogravimetry measurements. Indeed, as PCL has a much lower decomposition 

temperature (Tmax at ca. 400 °C) than GNP, it is possible to calculate the polymer content 

inside the nanopapers from the residual weight at 600°C, as summarized in Table 4-2. 

  Table 4-2 PCL content inside nanopapers, obtained from TGA residual weight. 

Sample Weight percentage of PCL (wt.%) 

PCL10-GNP1-SC 17 ± 3 

PCL10-GNP1-LH 20 ± 3  

PCL5-GNP1-SC 10 ± 1 

PCL5-GNP1-LH 15 ± 3 

PCL1-GNP1-SC 6.3 ± 0.5 

PCL1-GNP1-LH 7.6 ± 1 

PCL1-GNP2-SC 6 ± 0.6 

The polymer fraction in the nanopapers is clearly much lower than the polymer concentration 

in the suspension, relative to GNP, demonstrating that only a limited fraction of PCL can be 

adsorbed onto the GNP flakes and retained in the nanopapers. However, the PCL 

concentration within the nanopapers is increased by increasing the initial concentration of 
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PCL in the suspensions, relative to GNP. Indeed, ca. 6 wt.% PCL was obtained in PCL1-

GNP2-SC whereas concentrations up to about 20 wt.% were obtained for PCL10-GNP1-LH 

nanopapers. The PCL content in nanopapers is affected by the initial concentration of the 

polymers, but it appears to be mainly dependent on the interaction between PCL molecule 

chains and GNP surface. When the concentration of PCL in the initial suspensions is low, such 

as PCL1-GNP1 and PCL1-GNP2, the low viscosity of the PCL solution leads to a relatively 

fast filtration process. When the concentration of PCL solution is gradually increased, the 

viscosity is increased and this may contribute to retain a higher PCL fraction. 

To investigate the organization of PCL chains between GNP, the PCL crystallinity within the 

nanopapers was addressed, as chain confinement is known to potentially affect crystallinity.55, 

56 Beside the fundamental study, crystallinity is also related to the envisaged application of 

these nanaopapers in heat exchangers. Indeed, crystallinity is one of the most important 

factors controlling thermal conductivity of polymer materials.38, 40, 42, 43 Crystalline polymers 

exhibit higher thermal conductivity than amorphous polymers due to the ordered crystal 

structure, while the random chain conformation in amorphous polymers reduces the phonon 

mean free path and causes phonon scattering, thus decreasing the heat transfer efficiency.39, 43 

The crystallization and melting behaviors of the prepared nanopapers and the neat PCL were 

characterized by using DSC and results are reported in Figure 4.4 and Table 4-3. On cooling 

plots (Figure 4.4a) crystallization of pristine PCL can be clearly observed as a sharp peak with 

max temperature at ca. 28 °C, which is consistent with the well-known crystallization of PCL. 

On the other hand, the crystallization temperature (Tc) for PCL in the presence of GNP raised 

to ca. 47 oC, i.e. about 20 oC higher than that of the neat PCL, suggesting a significant 

nucleation activity of GNP flakes on PCL. This crystallization peak is clearly visible for 

PCL10-GNP1-LH and PCL10-GNP1-SC, while significantly lower and broader signals were 

obtained for PCL5-GNP1-SC, PCL1-GNP-SC and PCL1-GNP2-SC, which can be partially 

explained in terms of lower polymer contents within the latter nanopapers. 
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Figure 4.4 DSC curves for the cooling (a) and second heating (b) stage. 

The increased Tc for PCL within the nanopapers can be interpreted based on previous 

literature reports describing strong nucleation activity of graphene-related materials in 

nanocomposites.57-60 For PCL, Ahmed et al.61 reported the effect of GO on the non-isothermal 

crystallization behavior of PCL, demonstrating an increase in Tc of PCL/GO nanocomposite 

to ca. 35 oC, compared to ca. 26 oC for the neat PCL, with 1.0 wt.% GO loading. Similar 
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results were reported for PCL/rGO nanocomposite by Wang et al.,59 with an increase of ca. 

10 oC on Tc for the nanocomposite compared to neat PCL. Zhang and coworkers62 produced 

nanocomposite based on PCL and thermally reduced graphene oxide (TRGO) and reported 

Tc of nanocomposite to increase to around 36 oC with TRGO loading of 2 wt.% from 25 oC 

of neat PCL. Zeng et al.63 studied the crystallization behavior of PCL/Poly(sodium 4-

styrenesulfonate) functionalized GNP (FGNP) composites. Under cooling rate of 10 oC/min, 

they found that, Tc increase of ca. 8°C and 11°C with addition of 0.05 wt.% and 1 wt.% of 

FGNP, respectively. A detailed study on non-isothermal crystallization behavior of PCL and 

PCL nanocomposites with different nanofillers (including GO and graphite powder) and 

different loadings was done by Kai el at.,64 the increase in Tc for all the prepared composite 

being within 10 oC.  

Crystallization temperature shift obtained in this work are significantly higher than previously 

reported for PCL containing graphene related materials, which can be explained by the limited 

fraction of PCL into the nanopapers, leading to a high interfacial area between GNP and the 

polymer chains, maximizing nucleation density. Beside Tc shift, it is important to note that 

extra crystallization peaks at ca. 58, 76 oC and a broad signal above 100 oC were found for all 

the nanopapers, which did not exist in the case of neat PCL. Relative intensities for these 

signals, compared to the main crystallization peak, seems to increase when decreasing the 

total PCL content, thus suggesting such signals to become more important when having little 

PCL, strongly confined onto GNP flakes.  

From the results of second heating, a main endothermic signal in the range between 55 and 

58 °C, corresponding to the well-known melting of PCL is clearly observable for both pristine 

polymer and nanopapers, except for PCL1-GNP2-SC (Figure 4.4b). Furthermore, additional 

signals are found in thermograms for the nanopapers. Indeed a first distinctive features for the 

nanopapers is found at ca. -62 oC, which is assigned to the glass transition of PCL.65 This 

signal is not visible in pristine PCL, and may therefore suggest a significant fraction of PCL 

in nanopapers to remain amorphous during the cooling stage. It is worth noting that the main 
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melting signal for PCL in nanopapers is slightly delayed to higher temperature, compared to 

pristine PCL, which might be related to the adsorption effect of PCL crystal on the GNP 

surface. In addition, extra melting peaks at ca. 75, 84 and a broad signal around 120 oC were 

observed for the composite nanopapers, which were not found for neat PCL, and 

corresponding to the above described signals for the cooling stage, suggesting the existence 

of different PCL chain organization. To the best of the authors’ knowledge, such high PCL 

chain organization were never reported for the crystallization of PCL and might be related to 

a peculiar organization of PCL chains on the surface of GNP. 

In principle, melting peaks at higher temperatures may be related to higher stability PCL 

crystals, possibly characterized by higher lamellar thickness or different crystalline forms. 

However, the thermodynamic melting temperature of PCL was reported to be around 70 oC,66 

so that crystals with melting point above that temperature may not correspond to the same 

crystalline phase.  

It is worth mentioning that the effect of temperature during nanopapers pressing appears to 

have some effect on the crystallization behavior of the PCL in nanopapers at relative high 

temperatures. Indeed, by the comparison of PCL10-GNP1-LH vs PCL10-GNP1-SC, as well as 

PCL1-GNP1-LH vs PCL1-GNP1-SC, smaller enthalpies were found for the PCL high 

temperature melting peaks, suggesting annealing at 80°C may affect the organization structure 

of the higher stability PCL fraction, as shown in Table 4-3.  

To quantify the relative amounts of the different crystalline population, the enthalpies of the 

peaks from second heating stage were calculated, taking into account of the actual PCL 

contents in nanopapers, and reported in Table 4-3. The melting enthalpy of the most intense 

peak (at ca. 57 oC) was found to increase with increase content of PCL in the nanopapers, 

which is found to be reverse for peaks at relative high temperatures (peak B, C, D) (Figure 

4.5). Trends for melting signals A, B and C suggest a strong role of GNP in organizing PCL 

crystals upon cooling. When a limited amount of PCL present in between GNP, the interaction 

between PCL chains and GNPs could promote the nucleation process, resulting in higher Tc 
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of PCL. Furthermore, GNPs could also restrict cooperative movements of PCL chains causing 

a reduction in the total crystallinity of PCL inside the nanopapers. Indeed, the total 

crystallinity of all the peaks for PCL in nanopapers is always lower than in pristine PCL and 

is found to decrease with decreasing PCL contents. 

Table 4-3 Calculated enthalpy and the total crystallinity of the peaks from second heating stage. 

Samples 
ΔH (J/g) of the peaks from second heating stage 

A B C D Total 𝑋𝑐  

Neat PCL 66.3 - - - 66.3 47.5% 

PCL10-GNP1-LH 33.0 2.3 0.5 - 35.8 25.6% 

PCL10-GNP1-SC 27.2 2.8 0.9 0.8 31.7 22.7% 

PCL5-GNP1-LH 22.7 3.4 0.8 - 26.9 19.3% 

PCL5-GNP1-SC 24.0 3.6 1.0 1.2 29.8 21.4% 

PCL1-GNP1-LH 5.3 1.5 1.4 0.4 8.6 6.2% 

PCL1-GNP1-SC 4.5 2.7 1.9 4.1 13.2 9.5% 

PCL1-GNP2-SC 2.0 3.0 1.8 4.8 11.6 8.3% 

 

Figure 4.5 Integral enthalpy values of the peaks from 2nd heating vs PCL content. 
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diffraction was carried out on the cold-pressed nanopapers. As expected, the high content of 

GNP determines a strong signal at 2θ = 26.5o (Figure 4.6), corresponding to an interlayer 

spacing of 0.34 nm with an index of (002).58 It is relevant to underline that, from the XRD 

result on PCL5-GNP1-SC with a 10 times larger accumulation time (Figure 4.6b), only the 

characteristics peaks of PCL were found at 2θ = 21.4°, 22.0° and 23.7°, corresponding to 

(110), (111) and (200) planes of the orthorhombic crystal form,67 which provides evidence for 

the existence of only one PCL crystalline form. 

 
Figure 4.6 XRD patterns of the cold-pressed nanopapers. 

To further study the origin of the signals that are found at relatively high temperatures, the 

successive self-nucleation and annealing (SSA) treatments were applied to all the nanopapers, 

focusing on the transitions of the potential crystal structures at the higher temperatures (e.g., 

76, 85, and 120 °C). The general protocol is shown in Figure 4.7 and described in the 

characterization part. 

 

Figure 4.7 SSA protocol employed to all the samples. 
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Figure 4.8 WAXS patterns taken during the final heating of SSA on the selected nanopapers; (a), (b): at 

range of 25 to 87.5 °C, and (c), (d): from 60 to 85 °C. The vertical dashed lines indicate the position of the 

PCL main planes. 

WAXS patterns were taken on the previously fractionated nanopapers, PCL1-GNP1-SC and 

PCL10-GNP1-SC (without the final heating) in a hot stage. The SSA final heating of the 

above samples was performed in the hot stage of the BSRF, in which WAXS patterns can be 

taken simultaneously. The selected heating rate was 5 °C/min, exposure time of 25 seconds 

was used, and a period time of 5 seconds. Thus, a pattern was taken every 30 seconds (every 

2.5 °C). The WAXS patterns at selected temperatures are shown in Figure 4.8. 
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Figure 4.8a shows the main peaks of the PCL, corresponding to the reflections of the (110) 

and (200) planes. The reflections of the (102) and (210) planes were also detected, although 

they are weaker compared to the main plane reflections. These signals are not typically 

reported in the literatures. Regarding the GNP, the intense peak at q~ 19 nm-1 corresponds to 

GNP in both PCL10-GNP1 (Figure 4.8a) and PCL1-GNP1 (Figure 4.8b). 

Figure 4.8b also shows the main peaks of the PCL, which are much weaker compared to 

Figure 4.8a due to its low PCL content in the nanopaper. In this case, interestingly, the peaks 

of the (200) and (210) planes have comparable intensities as the characteristic peaks of PCL. 

In Figure 4.8c and d, we selected the patterns from 60 to 85 °C, which corresponds to the 

fractionated PCL. In both cases, it is observed that the main peak of the PCL becomes less 

intense at 67.5 °C. It is interesting to note that the peak of the (210) plane has a similar 

intensity as that of the (110). In Figure 4.8c, before obtaining an amorphous halo, it is still 

observed two weak signals between 77.5 and 80 °C. It is worth noting that these temperatures 

are comparable or even higher to the equilibrium melting point of the PCL. Figure 4.8d shows 

similar behavior as Figure 4.8c. At 85 °C, it is clearly observed that the PCL is completely 

molten; hence the endothermic peak at around 85 °C does not correspond to the melting 

process of the PCL.   

 

Figure 4.9 WAXS patterns taken during the final heating of SSA from 87.5 to 130 °C. 
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Figure 4.9 shows that in the range from 87.5 to 130 °C, the PCL is completely molten; hence 

the transitions signals detected by DSC experiments do not correspond to the thermal 

transition of the PCL. 

 

Figure 4.10 SSA Final Heating for the selected nanopapers. The blue dashed lines indicates the 

fractionation at high temperatures, with a fractionation windows of 2.5 °C; whereas the green dashed lines 

indicated the fractionation performed at lower temperatures, with a fractionation windows of 5 °C.  

For comparison purposes, the SSA experiments were repeated to have the same SSA profile 

in all the cold-pressed samples, including the neat PCL. Figure 4.10 compares the SSA final 

heating of the neat PCL, PCL1-GNP1-SC, PCL5-GNP1-SC, and PCL10-GNP1-SC. 

As shown in the figure above, only the peak at ca. 75 °C (non-isothermal test) can be 

fractionated, whereas the peaks at ca. 85 and 125 °C remain unfractionated, despite the 

applied protocol. Let us consider that the Ts = 42 to 57 °C fractionated the “unoriented” PCL, 

and Ts = 62 to 82 oC fractionated the “oriented” PCL (the shadow zone). If we calculated the 
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partial areas of the mentioned regions, we can found that as the ratio PCL/GNP decrease, the 

“oriented” PCL area increase. For the PCL1/GNP1, the sum of the partial area corresponding 

to the unoriented PCL is 38.2%, whereas for the oriented PCL is 61.8%. For the PCL5-GNP1, 

the unoriented PCL is 63.2%, and the oriented PCL is 36.8%, and for the PCL10-GNP1, the 

unoriented PCL is 72.2%, and the oriented PCL is 27.8%. These results, together with the 

ones of the other samples, are summarized in Table 4-4, indicating that with a higher GNP 

surface, more PCL chains can be absorbed and oriented, which is in line with the WAXS 

results.  

Table 4-4 Ratio of oriented and unoriented PCL in partial area for the cold-pressed nanopapers.  

Sample Partial Area, unoriented PCL (%) Partial Area, oriented PCL (%) 

PCL1-GNP2-SC 24.0 76.0 

PCL1-GNP1-SC 38.2 61.8 

PCL5-GNP1-SC 63.2 36.8 

PCL10-GNP1-SC 72.2 27.8 

PCL20-GNP1-SC 92.2 7.8 

From the results of WAXS and SSA, we already knew that the peak at ca. 120 oC is not related 

to any crystalline or oriented structures of PCL, the absorption effect of PCL chains on GNP 

surface was assumed and thus the recycled rinse treatments in toluene were performed on this 

basis. The nanopapers, PCL10-GNP1-SC and PCL1-GNP1-SC, were selected to be washed 

for 12 hours, and the washed nanopapers were dried in vacuum at 30 oC for 1 day to remove 

the solvent completely, after which DSC measurements were performed following the same 

procedures as before, results were shown in Figure 4.11. 

It is very clear that, after the washing treatments, the signals under 100 oC from the 2th heating 

of DSC measurements disappeared completely for both nanopapers and only the peak at 

around 125 oC survived. Moreover, the DSC cooling showed the similar behavior as heating, 

demonstrating that this behavior is reversible, further supporting for our assumption that this 

peak at such high temperature might be related to the adsorption behavior of PCL chains on 

the GNP surface. 
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Figure 4.11 DSC measurements on selected nanopapers before and after being washed. 

 

Figure 4.12 The d-spacing as a function of temperature calculated from shift of the q values upon heating. 

In the case of the graphene, we have detected some shift of the q values upon heating (from 

25 to 200 oC) and upon cooling from the melt (from 200 C to 25 oC). We have calculated the 

d-spacings and plotted as a function of the temperature, as shown in Figure 4.12. Jumps in d-

spacing at around 88 oC during the heating, and 121 oC during the cooling, as well as a final 

jump from 127 to 200 oC (heating) and 200 to 124 oC (cooling) occurred, in both cases such 

jumps coincides with the endotherms or exothermic peaks detected by DSC. These jumps 
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might be related to the thermal expansion of the graphene, however further studies are needed 

in order to determine their origin.  

 

Figure 4.13 Temperature sweep DMTA measurement on selected nanopapers. 

To investigate the thermomechanical properties of the nanopapers, temperature sweep 

measurements were performed on hot pressed nanopapers, namely PCL10-GNP1-LH, PCL5-

GNP1-LH and PCL1-GNP1-LH by DMTA, results are shown in Figure 4.13. These 

nanopapers demonstrated a significant stiffness at room temperature, with a storage modulus 

ranging between approx. 7 and 15 GPa, higher stiffness corresponding to lower PCL content, 

as expected. Interestingly, storage and loss moduli decay vs temperature is relatively limited 

and remarkable stiffness are retained for temperature far above the melting of PCL. Indeed, 

the storage modulus at 150 oC is about 2.3 and 6.4 GPa of PCL10-GNP1-LH and PCL1-
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GNP1-LH, respectively, suggesting a very strong adhesion of GNP plates to PCL, even after 

the polymer melting. The α transition, taken as the maximum of tanδ, is observable at about 

90 oC in all nanopapers, suggesting a remarkable confinement of PCL macromolecules in 

galleries between GNP flakes.  

 
Figure 4.14 Strain (empty symbols) and Strain Recovery (solid symbols) plots from creep tests at 120 
oC, 5 MPa stress on selected nanopapers. 

The influence of PCL molecule chains on the load-bearing capability of GNPs was further 

investigated by creep tests. Creep test was carried out at 120 oC under 5 MPa stress, which is 

representative of operating conditions for low temperature heat exchanger, and result are 
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the melting of PCL, further supporting for the polymer confinement and strong adhesion to 

GNP. 

Envisaging application of these flexible PCL/GNP nanopapers as heat spreaders, thermal 

diffusivity (α) of the nanopapers was measured and reported in Table 4-5. Pristine GNP 

nanopapers has a thermal diffusivity in the range of 140 mm2/s, which may be competitive 

with traditional metal foils68, 69. Diffusivity values for the GNP/PCL nanopapers was found in 

the range 110-140 mm2/s, with a generally decreasing trend with increasing content of PCL, 

according with the inclusion of a poorly conductive polymer.70  

Table 4-5 The calculated Cp and in-plane thermal conductivity of all the nanopapers at 25°C. 

While thermal diffusivity represent the efficiency of heat spreading onto a surface, the heat 

flux obtained in a heat exchanger, given a certain temperature gradient, is quantified by the 

thermal conductivity. Thermal conductivity values (Table 4-5) are strongly dependent on the 

nanopaper density, which lowest for the highly porous GNP nanopaper and increased in the 

presence of PCL, acting as a binder between GNP flakes. Furthermore, hot pressing allows to 

obtain a significantly higher density compared to cold pressed counterparts, yielding a 

straightforward enhancement in the thermal conductivity of nanopapers, up to around 166 W 

(mK)-1 for PCL1-GNP1-LH. It is relevant to underline that, due to the existence of continuous 

Sample ΦPCL 

(wt.%) 

Cp 

(Jg-1K-1) 

Density  

(𝒈𝒎−𝟑) 

α  

(𝒎𝒎𝟐𝒔−𝟏)  

K  

(𝑾𝒎−𝟏𝑲−𝟏) 

Pristine GNP-SC 0 0.71 1.00 150 ± 3 106.5 ± 2.1 

PCL10-GNP1-SC 17 ± 3 0.93 0.58  116 ± 1 62.6 ± 0.5 

PCL10-GNP1-LH 20 ± 3 0.97 1.31  138 ± 5 175.4 ± 6.7 

PCL5-GNP1-SC 10 ± 1  0.84 0.64  130 ± 3 69.9 ± 1.6 

PCL5-GNP1-LH 15 ± 3 0.90 1.39  127 ± 1 158.8 ± 1.3 

PCL1-GNP1-SC 6.3 ± 0.5 0.79 0.96  138 ± 2 106.0 ± 1.5 

 PCL1-GNP1-LH 7.6 ± 1  0.81 1.41  146 ± 2 166.7 ± 2.3 

PCL1-GNP2-SC 6.0 ± 0.6    0.79 1.06  145 ± 1 121.4 ± 0.8  
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GNPs networks, the thermal conductivities of our nanopapers are much higher than that of 

reported for conventional GRM nanocomposites with very limited loading of the thermal 

conductive nanofillers.71-74 Instead, nanopapers developed in this work target superior thermal 

conductivity properties coupled with high thermomechanical properties, which effectively 

bridge the property domains of polymeric materials and conductive ceramics. A comparison 

between our material and other highly filled nanostructured materials is reported in Table 4-6, 

further supporting both high thermal conductivity and stable thermomechanical properties of 

the obtained nanopapers. 

Table 4-6 The TC values at room temperature for different flexible composite materials.  

Material Nano-filler loading 

ca. 

TC (Wm-1K-1)  

ca. 

G’(GPa) 

 ca. 

LCP/Graphite75 70 wt.% 28.3 15 

PVDF/AIN76 60 vol.% 11.5 15 

PBz/BN77 78 vol.% 32.5 10 

PPS/BN/CNT78     51 wt.% 1.7 - 

PDMS/VAGF79 92 wt.% 614.8 0.5 

CNFG80 50 wt. % 164.7 2.6 

NFC/GNs81 90 wt.% 240.5 2.0 

CNF/rGO82 50 wt.% 7.3 7.5 

NFC/BN83 50 wt.% 145.7 - 

NFC/GNP84 75 wt.% 59.5 5.0 

PI/h-BN85 60 wt.% 7.0 - 

PVA/BN86 50 vol.% 30.0 - 

PCL/GNP (in this work) 90 wt.% 166.0 15 

LCP, liquid crystal polymer; PVDF, polyvinylidene fluoride; AIN, aluminum nitride; PBz, polybenzoxazine; 

BN, boron nitride; PPS, polyphenylene sulfide; CNT, carbon nanotube; PDMS, polydimethylsiloxane; 

VAGF, vertically aligned graphene film; CNFG, flexible graphene/cellulose nanofiber; GNs, graphene 

nanosheets; NFC, nano-fibrillated cellulose; PI, polyimide; h-BN, hexagonal BN; PVA, poly(vinyl alcohol);  

“-“, not reported. 

4.4 Conclusion  

In this work, following the simple solution blending, sonication, filtration, drying and pressing 

procedures, the preparation of PCL/GNP nanopapers was carried out to combine thermal and 

mechanical properties of graphite nanoplates with a soft, tough and crystalline polymer, acting 
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as an efficient binder between nanoplates. Nanopaper characterization evidenced 

crystallization of PCL is dramatically affected when confined between GNP. Indeed, in 

addition of the main melting peak, corresponding to pristine PCL, higher temperature 

transitions were observed, possibly corresponding to higher stability crystals and order-

disorder transitions in the organization of PCL chains between GNP. Superior thermal and 

thermomechanical properties were obtained for PCL/GNP nanopapers, in terms of high 

viscoelastic moduli, retained up to temperatures well above the melting point of PCL, as well 

as thermal conductivities above 160 Wm-1K-1, thus proving prepared materials to bridge the 

property domains of polymeric materials and conductive ceramics. 
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5 Conclusion  

5.1 Conclusion 

During the 3 years of my PhD study, I worked on different projects related to the development 

of novel formulations based on biopolymers. The achievements we have obtained are 

summarized as below: 

1,Poly(L-lactide) (PLLA) films with improved resistance to the hydrolytic degradation were 

fabricated by the surface grafting of an amino-functionalized polyhedral oligomeric 

silsesquioxanes (POSS-NH2) under mild conditions. The occurrence of the reaction between 

POSS-NH2 and the PLLA chains on the surface of the films was verified by FT-IR and EDS 

measurements.  

2, PLLA films with good oxygen barrier property, transparency and antistatic properties were 

developed. The proposed approach involves the Layer-by-Layer (LbL) deposition of 

functional coatings comprising either deposition of chitosan (CH) or branched 

polyethylenimine (BPEI) in combination with graphite oxide (GO). The reduction of the 

deposited GO layer on PLLA surface resulted in an antistatic surface of the films, making the 

prepared materials applicable in the antistatic packaging field. 

3, Following a simple solution blending, sonication, filtration, drying and pressing procedure, 

composite nanopapers based on polycaprolactone (PCL) and graphite nanoplatelets (GNP) 

were fabricated. The resulted composite nanopapers were found to have a PCL content range 

of ca. 8 wt.% - 20 wt.%. The high GNP content resulted in a relatively high thermal 

conductivity of the composite nanopapers due to existence of the conductive GNP network. 

The confinement, as well as the adhesion effect of the polymer chains inside GNP galleries 

also endowed the nanopapers with good mechanical properties.  
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