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Abstract

Category theory, especially topos theory, admits a new perspective on the study of logic

and mathematical foundations. In this dissertation, we provide an introduction to the de-

velopment of logic in a topos, and show why this logic does not validate the law of excluded

middle. Assuming no prior knowledge of category theory, we motivate and introduce some

main concepts of categories that allow for defining a topos. We briefly provide an introduc-

tion to order theory, giving the tools needed for analysis of the subobject algebras in a topos.

We introduce the domain of formal logic and define propositional logical valuations on the

subobject algebras and on a topos. We end with showing how the topos logic is intuitionistic,

by virtue of the subobject algebras being Heyting algebras.
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Chapter 1

Introduction

Abstraction is a powerful idea in mathematics. Taking an abstract, ‘external’ view of

something often elicits deeper understanding — an idea that has lead to the modern success

of category theory. This dissertation takes an abstract view of mathematics and logic, and

through this perspective connects the two domains together.

Categories and internal languages

In the 1940s, during their study into natural transformations in algebraic geometry, Samuel

Eilenburg and Saunders Mac Lane began to develop the mathematical field now known as

category theory. This domain takes an extrinsic viewpoint of areas of mathematics, and con-

cerns itself with relationships between things more than internal structures, for example, as

in set theory. For example, when looking at topological spaces, category theory cares more

about the continuous functions between them than the spaces themselves. A category is

thus a collection of objects (like topological spaces) and arrows between them (like contin-

uous functions).

Later, in the 1950s, Alexander Grothendieck began detailed investigations of a special

type of category: a topos. These are categories that, in some sense, look like the category of

sets. William Lawvere furthered topos theory by showing that mathematics can be founded

within it, whereby an ‘internal logic’ of toposes is identified and used to develop an axioma-

tisation of set theory [Law66]. This internal logic takes the form of arrows in a category,

which represent both logical propositions and logical connectives. Curiously, this logic is

not classical — the name given to the everyday logic of mathematics. It is weaker than clas-

sical logic: fewer statements come out valid. This is by virtue of it lacking the law of excluded

middle, which requires statements to be either true or false. Lacking this law is what defines
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an intuitionistic logic — the type of logic championed by constructive mathematicians, who

maintain that a proof of existence of an object is meaningless without a process of construc-

tion.1

Aim and prospectus

This work aims to provide a detailed introduction to the categorial analysis of logic in toposes,

and to explain why this topos logic is intuitionistic.2

The principle source for this dissertation is Robert Goldblatt’s book Topoi: The Cate-

gorial Analysis of Logic, which is considered by many to be the definitive introduction to

understanding logic in a topos [Gol84]. This dissertation will differ in Goldblatt’s approach,

however, by taking a more intuitive journey in understanding just how different ideas can be

leveraged to introduce logic into categories, rather than outright defining a categorial logical

system. The journey will be enriched and contextualised using Awodey’s work on category

theory, Rasiowa’s work on algebraic logic, and Priest’s work on non-classical logic [Awo06;

Ras74; Pri08].

We will begin in Chapter 2 with an overview of some basic ideas and definitions in cate-

gory theory, before defining the key type of category we are interested in: a topos. In Chapter

3, we will digress into an introduction to order theory, where we define lattices and algebras.

These structures have established connections to logic, and so provide a natural starting

point for logical analysis. We will walk through how one might identify and use this lattice

structure within the context of categories in Chapter 4. Chapter 5 is where we will formally

examine logic, introduce how logical analysis could be done in a topos, and answer the ques-

tion of the connection between this topos logic and intuitionistic logic. Finally, in Chapter 6

we will provide a brief discussion on how this theory can be progressed, and what questions

one might ask next.

1Constructivist mathematics was formalised over the early decades of the 20th century by L.E.J. Brouwer.
2The word ‘categorial’ means pertaining to categories.
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Chapter 2

Categories and Toposes

To begin, we need to explain some basic concepts of category theory. We will define what

a category is, and introduce some features we may encounter within one, such as products,

limits and subobjects. We conclude this chapter with the definition of a topos — a special

type of category whose properties will become the focus of later chapters.

2.1 Definition

If one walks into a room of mathematicians and begins to talk about sets, one assumes a

‘universe of discourse’ — a world that we agree upon, within which these objects known

as sets exist. We understand there to be connections between sets in this universe, which

we call functions. These mappings obey specific rules of structure, for example, we can

compose functions to find a new one and there is always an identity function for each set.

Now, if one ceases set-based discussion and begins talking about groups, the universe of

discourse changes. This new universe comprises of the objects known as groups, and there

are new mappings between them — the group homomorphisms.

What about if we considered the world of all topological spaces? Or all lattices? Or rings?

If we looked hard enough in these worlds, we would notice structure similar to what we saw

with sets and groups, where there are maps between the objects that seem to obey certain

rules. When we step back from these ‘worlds of mathematics’, we are glimpsing categories.

Definition 2.1 (Category). A category C is a structure comprised of the following:

(a) A collection of things called objects, a,b,c, ...

(b) A collection of things called arrows3, f , g ,h, ...

Key sources for Chapter 2: [Awo06], [Gol84].
3Arrows are also known as morphisms.
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(c) For each arrow f , there are objects dom( f ) (the domain of f ) and cod( f ) (the codomain

of f ). If a = dom( f ) and b = cod( f ), we write

f : a −→ b

(d) For each two arrows f and g with cod( f ) = dom(g ), there is an arrow

g ◦ f : dom( f ) −→ cod(g )

called the composite of f and g . Composite arrows must satisfy associativity:

h ◦ (g ◦ f ) = (h ◦ g )◦ f

for all f : a → b, g : b → c,h : c → d .

(e) For each object b, there is a unique arrow idb : b → b called the identity arrow, such

that for f with cod( f ) = b and g with dom(g ) = b,

f = f ◦ idb , g = idb ◦g .

Remark 2.2. Note the use of the word ‘collection’ when referring to the collective noun of

objects and arrows — this is purposefully not ‘set’ or ‘class’. Most of these collections are “too

big” to be sets, having to be described as proper classes in the language of set theory.4 We do

not, however, use the word ‘class’ to describe them for a more philosophical reason. Some

mathematicians, such as Lambek and Lawvere, consider category theory to be an alternate

foundation of mathematics, and through the language of categories are able to define and

describe the theory of sets and classes.5 Hence to use this terminology would be circular if

one were to adopt this view — a perspective we are agnostic to as of writing. Nonetheless

it is perfectly consistent to assume set theory as a foundation and use its terminology as

descriptors for category theory. Thus, despite fascination over these particularities, for the

time being we may assume a ‘collection’ of objects or arrows to be a class.

4The most widely accepted formal foundation for mathematics is Zermelo-Fraenkel set theory. In this the-
ory we have to distinguish between small classes (which are sets) and proper classes (which are not). Proper
classes are like sets in that they contain things, but they have cardinalities so large to keep them on equal foot-
ing as sets would cause paradoxes. An exploration of this distinction can be found in [Mad83]. See Chapter 1,
section 8 of [Awo06] for more details on small and large categories.

5For Lawvere’s approach to a categorial foundations of mathematics see [Law66]. For a recent review of the
area by Lambek and Scott see [LS11].
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In this theory of categories, we often use commutative diagrams of objects and arrows to

communicate information. With objects a,b,c and arrows f , g ,h between them, we say that

the diagram

a b

c
h

f

g (2.1)

commutes if (and only if) h = g ◦ f . More complicated diagrams are said to commute if each

triangle within it commutes. As an example, requirement (e) in Definition 2.1 can rephrased

as saying that

a b

b c

f

f

idb
g

g

(2.2)

must commute. Requirement (e) also implies that identity arrows must be unique. To see

this, let idb and id′
b be two identity arrows on the object b (i.e., a = c = b and f = g = id′

b in

Diagram (2.2)). Then idb ◦ id′
b = id′

b and idb ◦ id′
b = idb (consider the left and right triangles

of (2.2)), hence id′
b = idb .

In addition to ‘commute’, another piece of categorial jargon we frequently use is ‘factor’.

Considering Diagram (2.1), we say that the arrow h factors through each of f and g . That is,

h factors through e when it is equal to the composition of e and with some other arrow.

Below are some common categories that mathematicians work in. Categories are usually

notated with short, boldface names.

Example 2.3. The following structures are categories.

(a) The category 1 is the category uniquely determined by the property of having exactly

one object and arrow — call them a and the identity of a, ida . This object-arrow pair

can be relabelled however we want, but the categorial structure will remain the same

— which is what we care about in the study of categories. Because of this, we can say

that 1 is unique (at least up to some relabelling). Similarly, 2 is the category uniquely

determined by having two objects and three arrows.
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1 : a 2 : a b

ida

From now on, we may omit drawing any identity arrow loops in commutative dia-

grams.

(b) Set is the category of sets, with sets as objects and total functions between sets as

arrows. We will frequently return to Set for concrete examples of important categorial

concepts and definition. Set is also a topos, a concept to be elaborated on at the end

of this chapter.

(c) Set→ is the category of arrows of Set. Equivalently this is the category with set func-

tions as objects. The Set→ arrows are defined in terms of pairs of Set arrows. Given

sets A,B ,C ,D with functions f : A → B , g : C → D (so f and g are objects of Set→), an

arrow

f g
(i , j )

(2.3)

in Set→ is a pair (i , j ) of functions such that

A C

B D

f

i

g

j

(2.4)

commutes.

(d) Grp has groups as objects and group homomorphisms as arrows, while the category

Ring has rings as objects and ring homomorphisms as arrows.

(e) Met has metric spaces as objects and contraction maps as arrows. The category Top

has topological spaces as objects and all continuous functions as arrows.

(f) Pos has partially ordered sets as objects and monotone increasing functions as arrows.

Before moving to an analysis of various possible structures that can appear in categories,

we first define the so-called hom-set of two objects.
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Definition 2.4. Given a category C with objects a and b, the collection of all arrows from

a to b (i.e., all arrows f with dom( f ) = a and cod( f ) = b) is known as the hom-set, denoted

C (a,b).

This collection of arrows will turn out to have great importance when we start talking

about subobjects and truth values — but more on that later.

2.2 Arrows

We will now define and discuss various types of structures that can appear in a category.

Specifically, these will be the structures required for the definition of a topos. We begin by

focusing on the arrows in a category, and the different ways they can interact and exist.

2.2.1 Monic

When considering functions between sets, we call a function f : A → B injective if it satisfies

f (x) = f (y) =⇒ x = y.

If we have some further functions g ,h : C → A, then the equality ( f ◦g )(x) = ( f ◦h)(x) implies

that g (x) = h(x). So injectivity also results in a left cancellation property. This becomes the

basis for defining a certain type of arrow.

Definition 2.5 (Monic arrow). In a category C , an arrow f : a → b is monic if for any two

arrows g ,h : c → a the equality f ◦ g = f ◦h implies that g = h.

c a b
g

h

f
(2.5)

We draw monic arrows with a tail (�). Monic arrows are also known as left cancellable.

Example 2.6. In Set, monic arrows are exactly those functions that are injective. We have

seen that injective arrows must be monic. For the converse, suppose f : A�B is monic and

let x, y ∈ A, assuming that f (x) = f (y). Consider the functions g ,h : {w} → A where g (w) = x

12



and h(w) = y , noting that {w} can be any singleton object. Then f ◦g = f ◦h, so g (w) = h(w)

by left cancellation, and thus x = y .

A simple result that we will use later is that the composition of monic arrows is also

monic.

Proposition 2.7. Let e and f be monic arrows as shown in the diagram below. Then e ◦ f is

monic too.

d a b c
g

h

f e (2.6)

Proof. Suppose there exist arrows g ,h : d → a such that (e◦ f )◦g = (e◦ f )◦h. Then e◦( f ◦g ) =
e◦( f ◦h) by associativity of arrows, giving that f ◦g = f ◦h because e is monic. But f is monic

too, so g = h, and hence (e ◦ f ) is monic.

2.2.2 Epic

As well as injective functions on sets we can have surjective functions. These functions turn

out to have a similar cancellation property, but now they are right cancellable. The categorial

abstraction of surjective functions are epic arrows.

Definition 2.8 (Epic arrow). In a category C , an arrow f : a → b is epic if for any two arrows

g ,h : b → c the equality g ◦ f = h ◦ f implies that g = h.

a b c
f g

h
(2.7)

We draw epic arrows with a double arrow head (�). Epic arrows are also known as right

cancellable.

Example 2.9. In Set, epic arrows are exactly those functions that are surjective.

Like monic arrows, the composition of epic arrows remains epic.

Proposition 2.10. Let e and f be epic arrows as shown in the diagram below. Then f ◦ e is

epic too.

d a b ce f g

h
(2.8)
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Proof. Suppose there exist arrows g ,h : d → a such that g ◦( f ◦e) = h◦( f ◦e). Then (g ◦ f )◦e =
(h ◦ f )◦ e by associativity of arrows, giving that g ◦ f = h ◦ f because e is epic. But f is epic

too, so g = h, and hence ( f ◦e) is epic.

2.2.3 Iso

A function that is both injective and surjective is known to be an isomorphism of sets — it

is simply a relabelling of elements that does not change any structure. Abstracting to cate-

gories, we can have similar constructions called iso arrows.

Definition 2.11 (Iso arrows and objects). In a category C , an arrow f −1 : b → a is an inverse

arrow for f if f −1 ◦ f = ida and f ◦ f −1 = idb . Equivalently, the diagram

a bida

f

f −1

idb (2.9)

commutes. When an arrow f : a → b has an inverse we say that it is iso, and objects a and b

are isomorphic, denoted a ∼= b. In a commutative diagram we may write an iso arrow k with

two arrowheads, meaning that the arrow commutes in either direction.6

The inverse to an arrow f , should it exist, must be unique. To see this, suppose both f −1

and g are inverses of f . Then g = ida ◦g = ( f −1 ◦ f )◦ g = f −1 ◦ ( f ◦ g ) = f −1 ◦ idb = f −1.

Iso arrows were motivated as abstractions of those arrows that are both monic and epic.

The next proposition confirms that, like how injective and surjective functions are bijective,

monic and epic arrows are iso.

Proposition 2.12. Suppose f : a → b is iso with inverse f −1 : b → a. Then f is monic and epic.

Proof. (Adapted from the proof for Prop. 2.6 in [Awo06, p. 27]). Suppose there exist arrows

6In category theory, constructions can only be defined up to isomorphism. This is due to properties (d)
and (e) in the definition of a category (Def. 2.1), and how they interact with iso arrows — any arrow-theoretic
construction involving an object a will extend via composition with iso arrows to all objects isomorphic to a.
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g1, g2,h1,h2 such that f ◦ g1 = f ◦ g2 and h1 ◦ f −1 = h2 ◦ f −1.

c a b

a d

g1

g2

f

ida
f −1

h1

h2

(2.10)

Then f −1◦ f ◦g1 = f −1◦ f ◦g2 and h1◦ f −1◦ f = h2◦ f −1◦ f . But f −1◦ f = ida , so ida ◦g1 = ida ◦g2

and h1◦ida = h2◦ida , that is, g1 = g2 and h1 = h2. Thus f is monic and f −1 is epic. Swapping

the order of f and f −1 then gives them both as epic and monic.

While all iso arrows are monic and epic, the converse does not always hold.7

2.2.4 Unique arrows

The remaining definitions in this chapter will all be relative to an arbitrary category C .

Definition 2.13 (Initial object). An object 0 is initial if for every object a there is precisely

one arrow from 0 to a.

There are two notations used for this unique arrow from 0 to a — we may use either

0a : 0 → a or ! : 0 → a (the exclamation mark is often used to denote unique arrows).

Dual to initial objects are terminal objects.

Definition 2.14 (Terminal object). An object 1 is terminal if for every object a there is pre-

cisely one arrow from a to 1.

Similarly as with initial objects, we denote the unique arrow from a to 1 as either 1a : a → 1

or ! : a → 1.

Example 2.15. In Set, the empty set is an initial object and any singleton — a set with a single

element — is a terminal object. Recall that the arrows in Set are total functions between sets.

I.e., if f : X → Y is an arrow then it is a subset of the Cartesian product X ×Y , such that each

element x ∈ X appears exactly once.

7For examples, see [Gol84, pp. 40–41].
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If X = ; then the product X ×Y is empty. This empty relation is known as the empty

function (it still vacuously satisfies the definition of a function), and it exists for any Y . It is

also the only such function that can exist between ; and Y . Hence there is exactly one arrow

from ; to every set Y in Set, so ; is an initial object.

Now taking Y to be the singleton {?}, we have the constant function f : X → {?} that

maps every x ∈ X to ? ∈ Y . Notice that f is also the only subset of X ×Y that satisfies the

definition of a total function. So for any set X in Set there exactly one arrow from X to {?} —

the constant function — and hence {?} is terminal.

A natural question to ask while we are defining these various categorial concepts is whether

the constructions they identify are unique or not. We will show later, after considering limits

and colimits, that in all cases these objects are defined up to isomorphism.

2.3 Duality

Definition 2.16. Let C be a category. The dual category of a category, C op, consists of

(i) the same collection of objects as C ;

(ii) the reverse of each arrow in C , i.e., the same arrows f as in C but dom( f ) and cod( f )

are swapped.8

Furthermore, if Σ is a statement using terms defined in Definition 2.1 then the dual state-

ment Σop is obtained by replacing every instance of

(i) “dom" for “cod",

(ii) “cod" for “dom",

(iii) and “h = f ◦ g " for “h = g ◦ f ".

The statement Σ can be a definition (e.g., that of a monic arrow) or a result (e.g., any

two limits over the same diagram are isomorphic — although this is a result we will arrive at

later). In effect, taking the dual of Σ means reversing all the arrows in a descriptive commu-

tative diagram, like the one used in the definition of a monic arrow.

8Mac Lane provides a justification that C op is indeed a well-defined category in [Mac98, p. 33].
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Definition 2.1 itself turns out to be an invariant statement under this operation of taking

the dual statement. This result leads to the remarkable duality principle:

the statement Σ is true of C if and only if Σop is true of C .9

The duality principle means that when operating in the study of categories, we need only

prove half as many results, as the other half will follow by duality. We also need only provide

detailed definitions of half as many categorial constructions.

Example 2.17. The following constructions exhibit duality.

(a) The definition of monic arrows is dual to the definition of epic arrows. Notice that the

diagram used in Definition 2.5 is dual to the diagram used in Definition 2.8, and the

left cancellation requirement ( f ◦ g = f ◦h =⇒ g = h) is dual to the right cancellation

requirement (g ◦ f = h ◦ f =⇒ g = h).

(b) Because of monic-epic duality, the dual of any theorem that applies to monic arrows

will apply to epic arrows (and vice versa). For example, Proposition 2.10 which applies

to epic arrows is precisely the dual of 2.7, which applies to monic arrows.

(c) The definition of an initial object is dual to the definition of a terminal object.

2.4 Products and Equalisers

When defining products and equalisers we introduce the notion of a universal construction.

This is where we define something to have a certain arrow-theoretic relationship within a

category, and then demand that it is the most ‘universal’ version of that thing. This hazy

idea should become clear with the categorial abstraction of a familiar concept: the cartesian

product.

Definition 2.18 (Product). Let a and b be objects in a category C . A product of a and b is an

object a ×b with arrows

pra : (a ×b) → a, prb : (a ×b) → b

9A justification for the duality principle can be found in [Awo06].
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such that for any object c and pair of arrows f : c → a, g : c → b there is precisely one arrow

〈 f , g 〉 : c 99K (a ×b) that satisfies pra ◦ 〈 f , g 〉 = f and prb ◦ 〈 f , g 〉 = g .10 Equivalently, 〈 f , g 〉 is

the unique arrow ensuring that

c

a a ×b b

f

〈 f ,g 〉
g

pra prb

(2.11)

commutes. The arrows pra and prb are known as projection arrows, and may be written pr1

and pr2, respectively, to denote which element of the ordered product arrow 〈 f , g 〉 they pick

out. We shall sometimes draw unique arrows that exist by virtue of some definition with a

dashed line as we have done above.

Notice there are two parts to the definition of the product p of a and b. The first requires

an arrow-theoretic relationship of p to a and b, namely the existence of the projection ar-

rows. The second part demands that any other object c that also has arrows to a and b —

i.e., any other object that could play the role of p in this construction — has a unique factori-

sation through p. This positions the object p as the universal version of this construction,

through which all other similar constructions factor.

Definition 2.19 (Equaliser). An equaliser of a pair of arrows with common domain and

codomain, f , g : a → b, is an object m along with an arrow e : m → a such that f ◦ e = g ◦ e,

where for any other arrow h : c → a that satisfies f ◦h = g ◦h there exists a unique arrow

k : c → m such that e ◦k = h.

m a b

c

e
f

g

k h
(2.12)

As with products, notice that Definition 2.19 has two parts: the requirement that e ‘equalises’

the two arrows f and g (e ◦ f = e ◦ g ), and that any other such equalising arrow h factors

uniquely through it.

10The label of the object a × b is just a name that illustrates its existence in terms of the definition of the
product. This is not denoting some binary operation on the objects a and b themselves.
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2.5 Limits

To discuss limits, let us first formalise the arrow and object drawings we have been using to

explain concepts in category theory.

Definition 2.20 (Diagram). A diagram D in a category C is a collection of objects in C

d1,d2,d3, . . . , and a collection of arrows between them g : di → d j , where the arrows are

from C as well.11

Note that a diagram is not required to satisfy the axioms for being a category itself. It is

just a ‘portion’ of the entire category; if we think of C as a directed graph then a diagram is a

subgraph.

Definition 2.21 (Cone). Let D be a diagram in a category C . A cone over D is an object c and

a collection of arrows fi : c → di , one fi for each object di in D , such for any arrow g : di → d j

in D , g ◦ fi = f j . Equivalently, c and the arrows fi are such that the diagram

c

di d j

fi f j

g
(2.13)

commutes.

A universal cone over D — a cone through which all others factor — is known as a limit.

Definition 2.22 (Limit). Let D be a diagram in a category C . A limit over D is a cone l with

arrows hi : l → di , such that if c with arrows fi is also a cone for D then there exists a unique

arrow k : c 99K l where, for all hi and fi , hi ◦ k = fi . Equivalently, k is the unique arrow

11There is a more formal way to define a diagram than we have done in Definition 2.20. The other definition
involves functors and index categories, however as this dissertation avoids discussion of functors we have
opted for a simpler approach that treats a diagram as a ‘portion’ of C .
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allowing the diagram
c

l

di d j

k
fi f j

hi h j

g

(2.14)

to commute.

Proposition 2.23. If a limit over D exists, it is unique up to isomorphism.

Proof. To see this, suppose that l and l ′ are limits over D (with arrows hi : l → di and

hi
′ : l ′ → di respectively). Then, because both l and l ′ are cones and limits for D , they uniquely

factor through each other. So there exist unique arrows k : l ′ 99K l and k ′ : l 99K l ′ such that

hi
′ = hi ◦k and hi = hi

′ ◦k ′ for all i . This gives the following commutative diagram for each

di in D .

l l ′

di

k ′

hi

k

hi
′

(2.15)

Since k and k ′ are unique with respect to the above diagram, the composition must also be

the unique arrow k ◦ k ′ : l → l such that hi = hi ◦ (k ◦ k ′). But this composition is just the

identity arrow on l , idl , as identity arrows are also unique. A similar argument gives that

k ′ ◦k = idl ′ . Hence k and k ′ are inverse to each other, thus l and l ′ are isomorphic.

Moving forward, we will now refer to the limit over D , should it exist.

Example 2.24. Consider the empty diagram D in C that consists of no objects or arrows. A

cone over D will be an object c without any arrows. By Definition 2.22, a limit over D is then

an object l such that for any other cone over D (i.e., any object c in C ), there is a unique

arrow k : c 99K l . But this is just the definition of a terminal object (Def. 2.14). So we say that

a terminal object is a limit over the empty diagram.

Example 2.25. Suppose the diagram D consists of two objects a and b, and two arrows f

and g between them.

a b
f

g
(2.16)
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A cone over D is then an object c and arrows h : c → a, j : c → b such that j = f ◦h and

j = g ◦h. Hence f ◦h = g ◦h, so h has the property of ‘equalising’ f and g .

c

a b

h j

g

f
(2.17)

So, the limit over D is an object l and arrow h that has this equalising property of f and

g ( f ◦h = g ◦h), such that any other such object and arrows factors uniquely through it.

Note that the existence of j = f ◦h = g ◦h is guaranteed by the commutativity of arrows in

categories so we can drop it from the requirement of a limit over D . Then this limit is just

the previously defined equaliser of f and g .

Example 2.26. For our final example of a limit, suppose D is the diagram consisting of ob-

jects a and b, and no arrows. A cone over D will then be an object c with arrows fa : c → a

and fb : c → b.

a c b
fa fb

(2.18)

The limit over D is then the product of a and b as defined in Definition 2.18.

Remark 2.27. As demonstrated above in Proposition 2.23, limits are unique up to isomor-

phism. Because terminal objects, equalisers and products are special cases of limits, we

conclude that these constructions are also unique up to isomorphism. As such, should these

constructions exist in a category, we will now refer to the terminal object, the equaliser of f

and g , and the product of a and b.

The dual construction to a limit is a colimit — essentially the definition of a limit with the

arrows reversed. This definition requires the dual notion to a cone, unsurprisingly known as

a co-cone.

Definition 2.28 (Co-cone). Let D be a diagram in a category C . A co-cone under D is an

object c and a collection of arrows fi : di → c, one fi for each object di in D , such for any

arrow g : di → d j in D , f j ◦g = fi . Equivalently, c and the arrows fi are such that the diagram
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di d j

c

g

fi f j

(2.19)

commutes.

A colimit is then the universal co-cone under D .

Definition 2.29 (Colimit). Let D be a diagram in a category C . A colimit under D is a co-

cone l with arrows hi : l → di , such that if c with arrows fi is also a cone for D then there

exists a unique arrow k : l 99K c where, for all hi and fi , k ◦hi = fi . Equivalently, k is the

unique arrow allowing the diagram

di d j

l

c

hi

g

fi

h j

f j

k

(2.20)

to commute.

A category is said to be complete if limits exist over every diagram.12 If limits only ex-

ist over all finite diagrams then the category is finitely complete. Dually, a category is co-

complete if colimits exist under every small diagram, and finitely co-complete if colimits un-

der every finite diagram.

2.6 Some limits and colimits of interest

2.6.1 Coproducts and coequalisers

Applying our knowledge of colimits, we can dualise two earlier constructions. First recall

that the product of objects a and b is the limit over the diagram consisting of just the objects

12This is not quite true. The definition of completeness requires limits only over all small diagrams, whose
collections of objects and arrows have cardinality smaller than a proper class — i.e. they are sets [Awo06,
p. 167]. However, for our purposes this distinction is inconsequential.

22



a and b (Example 2.26). The coproduct is then just the colimit under this same diagram.

More explicitly, it is defined the following way in [Gol84, p. 54].

Definition 2.30 (Coproduct). The coproduct of a and b is an object a + b with arrows

ia : (a +b) → a, ib : (a +b) → b, such that for any object c and pair of arrows f : a → c, g : b → c

there is precisely one arrow [ f , g ] : (a+b) 99K c that satisfies [ f , g ]◦ia = f and [ f , g ]◦ib = g .13

a a +b b

c

ia

f

[ f ,g ]

ib

g

(2.21)

Secondly, we can dualise the equaliser. Recalling that the equaliser of f , g : a → b is the

limit over this same diagram (Example 2.25), the coequaliser is the colimit under f , g : a → b.

Definition 2.31 (Coequaliser, [Gol84]). The coequaliser for a pair of arrows f , g : a → b is an

arrow q : b → e such that q ◦ f = q ◦ g , and if there exists an h : b → c such that h ◦ f = h ◦ g

then there is a unique arrow k : e 99K c such that h = k ◦e.

a b e

c

f

g

q

h

k
(2.22)

2.6.2 Pulling back

We now introduce a categorial construction central to our later discussion of toposes and

logic.

Definition 2.32 (Pullback). A pullback is a limit over a diagram that consists of a pair of

arrows f , g with common codomain c.

b

a c

g

f

(2.23)

13The coproduct is also known as the sum of a and b, hence the notation using +. Additionally, as in the
case of the product, the object + is only notation for the arrow construction and does not refer to any addition
operation on the objects themselves.

23



Explicitly, a pullback of the above diagram is an object d along with arrows f ′ : d → b,

g ′ : d → a such that g ◦ f ′ = f ◦ g ′, where if e is an object with arrows i : e → b, j : e → a that

satisfy g ◦ i = f ◦h, there exists a unique arrow k : e 99K d such that f ′ ◦k = i and g ′ ◦k = h.

e

d b

a c

k

i

h
f ′

g ′ g

f

(2.24)

The (d ,b, a,c) square in the above definition is known as a pullback square, and we say that

f ′ (or g ′) is the result of pulling f back along g (or g back along f ).

Remark 2.33. One may have noticed that a limit over the diagram a
f−→ c

g←− b would contain

an arrow e : d → c in addition to arrows f ′ : d → b and g ′ : d → a. However since arrows in

cones and limits commute (Definitions 2.21 and 2.22), we know that e = f ′ ◦ g = g ′ ◦ f , so

we omit it when defining pullbacks. This composition arrow e will become important later,

however, in the discussion of meets and joins in Chapter 4.

The following lemma will prove especially useful when proving properties of structures

defined in terms of pullbacks — of which we will see many.

Lemma 2.34 (Pullback Lemma (PBL)). Suppose that the diagram

x y z

a b c

u

h

v

i j

f g

(2.25)

commutes.

1. If the outer rectangle and the right square are pullbacks, then so is the left square. We say

‘outer rectangle’ to refer to the (x, z, a,c) commutative square, with arrows (v ◦u, g ◦ f ,

h, j ).

2. If the left and right squares are pullbacks, then so is the outer rectangle.
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Proof. We first consider the case where the outer rectangle and right square are pullbacks.

Suppose that there is an objectΞwith arrows ξ1 :Ξ→ y and ξ2 :Ξ→ a such that i ◦ξ1 = f ◦ξ2.

We then have the following commutative diagram.

Ξ

x y z

a b c

ξ1

ξ2
u

h

v

i j

f g

(2.26)

To show that the left square is a pullback we have to find a unique arrow from Ξ to x that

commutes in Diagram (2.26). We can deduce that the composition arrow v ◦ξ1 :Ξ→ z exists

and commutes in (2.26). Then j ◦ v ◦ ξ1 = g ◦ f ◦ ξ2, and the outer rectangle is a pullback

square so there exists a unique arrow k :Ξ 99K x such that the following diagram commutes.

Ξ

x y z

a b c

k

ξ2

v◦ξ1

u

h

v

i j

f g

(2.27)

For k to commute in (2.26), we need that u ◦k = ξ1. Since the right square is a pullback

and j ◦ v ◦ ξ1 = g ◦ f ◦ ξ2, there exists a unique arrow from Ξ to y that commutes in (2.27).

But we have seen that ξ1 satisfies this role — so it must be this unique arrow, and hence

u ◦k = ξ1. Thus the left square is a pullback.

We now consider the case of the left and right squares being pullbacks. As before, sup-

pose that there is an objectΞwith arrows ξ1 :Ξ→ z and ξ2 :Ξ→ a such that j ◦ξ1 = g ◦ f ◦ξ2.
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This gives the following commutative diagram.

Ξ

x y z

a b c

ξ2

ξ1

u

h

v

i j

f g

(2.28)

To show that the outer rectangle is a pullback we have to find a unique arrow from Ξ to

x that commutes in Diagram (2.28). Because the right square is a pullback there exists a

unique arrow k ′ : Ξ 99K z that commutes in (2.28). But the left square is a pullback too, so

this arrow implies the existence of a unique arrow k :Ξ 99K x making the following diagram

commute.

Ξ

x y z

a b c

ξ2

k ′
k

ξ1

u

h

v

i j

f g

(2.29)

So the commutativity of (2.28) implies the existence of the unique commuting k. Thus the

outer rectangle is a pullback.14

A simple fact about pullbacks is the following proposition, which we will prove now while

still in the headspace of pullbacks. 15 It will be used later in Chapter 4.

Proposition 2.35. Suppose that

a b

c d

f ′

g ′ g

f

(2.30)

is a pullback square. If f is monic, then f ′ is also monic.
14Note that in the Pullback Lemma, it is not the case that the outer rectangle and left square being pullbacks

implies that the right square is one too.
15This is given as an exercise in [Gol84, p. 68].
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Proof. Assume there are arrows h, j : e → a such that f ′ ◦h = f ′ ◦ j . We aim to show that

h = j . By the assumption, g ◦ f ′◦h = g ◦ f ′◦ j . The pullback square commutes, which means

that g ◦ f ′ = f ◦ g ′, hence f ◦ g ′ ◦h = f ◦ g ′ ◦ j . Since f is monic, we can cancel on the left to

obtain that g ′ ◦h = g ′ ◦ j . This is shown in the commutative diagram below.

e

a b

c d

h

j

f ′◦h= f ′◦ j

g ′◦h=g ′◦ j

f ′

g ′ g

f

(2.31)

Now we use the pullback property to conclude that the arrow from e to a must be unique,

and thus h = j .

2.7 Subobjects

2.7.1 Definition

At the beginning of this chapter, we claimed that categories tend to formalise the notions of

‘universes of discourse’ in mathematics. We have seen how various categorial constructions

serve to generalise familiar objects, like Cartesian products or the empty set. What about the

relation between objects that is inclusion — i.e., the idea of being a subset or a subobject?

Consider a set Y and a (proper) subset X ⊆ Y . Because each x ∈ X has the property of

being an element of Y too, we can associate with X its injective inclusion map ι : X ,→ Y ,

where ι(x) = x. Here, x is treated as a member of X while ι(x) is treated as a member of

Y . Because ι is injective we know it will be monic in Set, so we may be tempted to define a

subobject of an object d to be some object a with a monic arrow f : a� g . This definition

would turn out to serve us well, however one more observation encourages a modification.

Given our subset X ⊂ Y there might exist some set X ′, where X ′ is a relabelling of X

through a bijection b : X ′ → X . Then the composition function ι◦b : X ′ → Y would remain

injective and so be monic in Set, meaning X ′ along with ι◦b would be a categorial subobject
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of Y under the above definition. But it seems that X ′ and X are not really different subsets as

one is just a relabelling. Bijections are iso arrows in Set, so it then makes sense to modify the

definition of a subobject to account for this isomorphism of domains.16 By doing this, we

collapse the many different monic arrows f ′ that ‘play the same role’ as f into one distinct

object — an equivalence class.

An equivalence relation is a binary relation ∼ that is

(i) reflexive: x ∼ x;

(ii) transitive: if x ∼ y and y ∼ z then x ∼ z;

(iii) symmetric: if x ∼ y then y ∼ x.

Given an element x, the equivalence class x is the collection of all elements related to x by

∼.

Definition 2.36 (Subobject). Let d be an object in a category C , and let f : a � d and

g : b� d be monic arrows into d . We say that f ' g if a ∼= b, i.e., the domains a and b

are isomorphic (Def. 2.11). A subobject of d is an equivalence class of all arrows related by

', denoted f where f is a representative arrow of this collection. We denote the class of all

subobjects of d as Sub(d).

a

d

b

f

∼=

g

(2.32)

It is straightforward to see that' is indeed an equivalence relation (it is a result of∼=being

an equivalence relation), and so this notion of subobjects is well-defined. Let f : a� d ,

g : b� d and h : c� d be monic arrows into d .

(i) Reflexive: Since the identity arrow on a is an isomorphism, we have that a ∼= a so f ' f .

16A further justification for defining subobjects in terms of their equivalence classes will become apparent
in Chapter 4, when we begin to explore the partially ordered structure of Sub(d).

28



a

d

a

f

ida

f

(2.33)

(ii) Transitive: If f ' g and g ' h then a ∼= b and b ∼= c. So taking the composition of iso

arrows from a to c we obtain an isomorphism a ' c. Hence f ' h.

a

b d

c

f∼=
g

∼=
h

∼= (2.34)

(iii) Symmetric: If f ' g then a ∼= b. This is the same as b ∼= a, so g ' f .

We thus obtain an equivalence relation.

Remark 2.37. We will often refer to ‘the subobject f ’ in place of ‘the subobject f ’. While

technically incorrect, this poses no direct issues since categorial constructions are defined

up to isomorphism of objects, and so anything involving subobjects will remain stable under

the equivalence relation '. We will, however, resort to f when the distinction is required.

The important point is that f ' g if and only if f = g .

2.7.2 Factorisation

Given a function between sets f : A → B it is always possible to decompose it into a surjec-

tion e : A → f (A) and an injection m : f (A) ,→ B . This is done by first mapping each x ∈ A to

f (x) in f (A), and then injecting this set into the codomain B through the inclusion map.

Under some conditions, this process of ‘function factorisation’ can be abstracted to cat-

egories. Importantly, this means that for any f : a → d we can find ‘the part of f ’ that is a

subobject of d — the monic part of the factorisation given in the following theorem.

Theorem 2.38 (Epi-monic factorisation). Let C be a category that admits pullbacks and co-

equalisers. Further suppose that the pullback of any epic arrow remains epic. Then for any
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arrow f : a → b there exist arrows e and m such that f = m◦e, where e is epic and m is monic.

Moreover, if we also have that f = v ◦u where v is monic, then m = v ◦k for some arrow k.

The middle object domm = code is called f (a), and we call the construction the epi-monic

factorisation of f .17

a b

f (a)

f

e m

(2.35)

The proof for this theorem introduces some interesting concepts and is required for our

future discussion of lattice joins in Sub(d) in Chapter 4, but does not add any substantive

understanding to our journey of understanding logic in categories. It is given in Appendix

A.

2.7.3 Classification

A construction seen throughout many areas of mathematics is a characteristic function of

a subset. This is where we characterise a subset X ⊆ Y by mapping the elements of Y that

are also in X to 1, and the remaining elements of Y to 0.18 This mapping is known as the

characteristic function of X , χX : Y → {0,1}. Given that {1} ⊂ {0,1}, we can illustrate the

connection of how {1} is to {0,1} as X is to Y through the following pullback square.

X Y

{1} {0,1}

ι

! χX (2.36)

Abstracting this notion, we arrive at the categorial equivalent construction for charac-

terising subobjects.19

Definition 2.39 (Subobject classifier). Let C be a category with terminal object 1. A sub-

object classifier for C is an object Ω along with a monic t : 1� Ω such that for any monic

17Goldblatt labels the arrows e and m by f ∗ and im f respectively [Gol84, p. 112].
18This assumes, of course, that everything in Y is either in X or not. A simple assumption that all mathe-

maticians learn to do in their education, but nonetheless ironic considering where this study of subobjects will
take us.

19For a full explanation of how one arrives at this abstraction, see [Gol84, pp. 79–81].
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f : a� d there exists a unique arrow χ f making

a d

1 Ω

f

! χ f

t

(2.37)

a pullback square. The arrow χ f is called the characteristic arrow or character of f .

We call the arrow t the ‘true’ arrow for reasons that will become clear in Chapter 5. Fur-

thermore, thinking intrinsically, the characteristic arrow can be interpreted as mapping the

‘a part of d ’ to the ‘true part of Ω’.

An important result that will come in use when discussing the internal structure of Sub(d)

is that there is a one-to-one relationship between subobjects of d and character arrows from

d to Ω.20

Proposition 2.40. Suppose we have the monic arrows f : a� d and g : b� d in a category

C with a subobject classifier. Then

f ' g if and only if χ f =χg .

That is, there is exactly one characteristic arrow for each subobject equivalence class f̄ .

Proof. First assume that f ' g . This means there exists an iso arrow k with inverse k−1 such

that
a

d

b

f

k

g

k−1 (2.38)

commutes. Since f is monic, we can classify it using the subobject classifier. So, onto the

above diagram, append the diagram of the characteristic arrow χ f (in Def. 2.39) to form the

following commutative diagram. (Note that the existence and commutativity of 1b : b → 1 is

20This result essentially tells us that in an area of mathematics where we can characterise things that look
like subsets (i.e., subobjects) by things that look like functions (i.e., arrows), the subobject classifier is a good
way of doing it.
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guaranteed by the composite arrow k−1 ◦1a and uniqueness of arrows to terminal objects).

b

a d

1 Ω

k−1

g

!

f

!

k

χ f

t

(2.39)

To show that χ f =χg we need to establish χ f as a character for g , i.e., showing that the outer

square is a pullback. To this end, suppose there exists an objectΞwith arrows ξ1 :Ξ→ d and

ξ2 :Ξ→ 1 that commutes with the above diagram.

Ξ

b

a d

1 Ω

ξ1

ξ2

m

k◦m

g

!

f

!

k

χ f

t

(2.40)

Since the (a,d ,1,Ω) square is a pullback square (by definition of the subobject classifier),

there exists a unique arrow m : Ξ 99K a where ξ1 = f ◦m and ξ2 = 0a ◦m. Therefore, taking

the composition arrow k ◦m : Ξ→ b we find a unique arrow (unique because m is unique)

that factors the outer square through the (b,d ,1,Ω) square. Thus the (b,d ,1,Ω) square is a

pullback and χ f =χg by uniqueness from Def. 2.39.

Conversely, assume that χ f =χg . Then the following two squares are pullbacks.

a d

1 Ω

f

! χ f =χg

t

b d

1 Ω

g

! χ f =χg

t

(2.41)

Recall that from Definition 2.32, these pullbacks are both limits over the diagram

1 Ω dt χ f =χg
.
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But limits over the same diagram are unique up to isomorphism, as shown in Proposition

2.23. Therefore there must exist an iso arrow k : a → b, i.e., a ∼= b so f ' g .

This discussion of subobject classifiers concludes our brief introduction to some con-

structions in category theory. We now have (almost) enough to define the type of category

that will turn out to be central to later discussions of logic: a topos.

2.8 Toposes

Before we define a topos, we need to briefly address a missing piece of the upcoming defini-

tion. One of the conditions for a category to be a topos is that is has exponentiation. For the

sake of brevity and relevance, this dissertation will sidestep disscussing such a concept. An

understanding of exponentiation will not be required in our discussion of logic in a topos —

it is simply another construction, like limits, one may demand to see in a category.

With that disclaimer said, we now turn to defining the type of category that we will focus

on from now on.

Definition 2.41 (Topos). An elementary topos is a category that satisfies the following prop-

erties:

(i) limits exist over all finite diagrams;

(ii) co-limits exist under all finite diagrams;

(iii) there exists a subobject classifier Ω;

(iv) the category has exponentiation.

We usually denote a topos by E (a cursive E).21

21There are various equivalent definitions for toposes. Recall from §2.5 (Limits) that categories with property
(i) are finitely complete, while categories with (ii) are finitely co-complete. In fact, a category is finitely complete
if and only if it has a terminal object and pullbacks for each arrow pair with common codomain, and finitely
co-complete if it has an initial object and pushouts for each arrow pair with common domain [HS07]. So an
equivalent list of defining properties for a topos is

(i′) there exists a terminal object and pullbacks;
(ii′) there exists an initial object and pushouts;

(iii′) there exists a subobject classifier Ω;
(iv′) the category has exponentiation.

Furthermore, categories with properties (i) and (iii) are known as being Cartesian closed. It has then
been shown that Cartesian closed categories with a subobject classifier are necessarily finitely co-complete
[KLM75]. Therefore another equivalent definition of a topos is a category where

(i′′) it is Cartesian closed; (ii′′) there exists a subobject classifier Ω.
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Remark 2.42. The word elementary in the definition identifies a specific type of topos, but

this distinction is unimportant for our discussion so we will just refer to these constructions

as toposes.22

Example 2.43. The following categories are toposes.23

(a) Set, where the subobject classifier is given by the previously discussed two-valued set

{0,1}.

(b) Set→, whose subobject classifier is rather more elaborate than the one in Set. It takes

the form of a function between a three-valued set and {0,1}, accounting for how set

functions act on subsets. This is explored in more detail in Example 5 of [Gol84, pp. 86–

88]. The more exotic nature of Ω in Set→ leads to notable difference to Set when con-

sidering the ‘topos logic’, which will be discussed in Chapter 5.

An important feature of toposes is the following. A proof can be found in [LS86, pp. 157–

158], Lemma 6.5.

Theorem 2.44. The pullback of an epic arrow in a topos remains epic.

Using this, we can form epi-monic factorisations. These will allow for a description of lattice

joins in Sub(d) — but this will be covered in Chapter 4

Corollary 2.45. Any arrow f in a topos can be factored as f = e ◦m, where e is epic and m is

monic.

Proof. Toposes admit all finite limits and colimits, so pullbacks and coequalisers can always

be constructed. Then, using the above theorem, we can apply Theorem 2.38 to obtain the

result.

22Another type of topos is a Grothendieck topos. See [Joh77] for more on the distinction.
23Convinced by Johnstone’s ‘thermoi’ argument, we use the ‘toposes’ instead of ‘topoi’ as the plural. “I do

so because (in its mathematical sense) the word topos is not a direct derivative of its Greek root, but rather a
back-formation from topology. I have nothing further to say on the matter, except to ask those toposophers
who persist in talking about topoi whether, when they go out for a ramble on a cold day, they carry supplies of
hot tea with them in thermoi.” [Joh77, pp. 12–13].
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Now that we know the definition of a topos, we move to examine another area of mathe-

matics: order theory. The results and algebraic constructions we will encounter turn out to

act as connections between toposes and logic, by virtue of the structure found in Sub(d) —

which will be explored in Chapter 4.
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Chapter 3

An Introduction to Order

In Chapter 2 we introduced the basic ideas needed to understand the inner workings of

categories — structures like products, limits, and pullbacks. We then defined a special type

of category: a topos. We motivated category theory as something that looks at the ‘big pic-

ture’ of an area of mathematical discourse. In Chapter 4, we will forgo such a wide viewpoint

and instead focus on an individual object in a category and its collection of subobjects. We

will see that under some simple criteria requiring existence of initial and terminal objects, a

rich structure presents itself in this collection.

However, before we can begin discussing this structure we first need to establish some

preliminaries of order theory, namely the notions of posets and lattices. A lattice, like a group

or a topological space, is simply a set endowed with some special relations. One can think of

a lattice as a network of points with a notion of ‘up’ and ‘down’, and a way to connect distant

points together. We will first define posets, which constitute the foundation of lattices. Then

we will introduce various properties one may demand to see in a lattice.

3.1 Posets

A poset is a set with some notion of less than or equal to and greater than or equal to.

Definition 3.1 (Poset). A partially ordered set (or poset) is a set P equipped with a binary

relation ≤ that obeys the following properties for all x, y, z in P :

(i) reflexivity: x ≤ x;

(ii) transitivity: if x ≤ y and y ≤ z then x ≤ z;

Compare this Chapter with Chapters 1 and 2 in Birkhoff [Bir67], and Chapter 1 in Rasiowa and Sikorski,
[RS68]. Specifically, Chapter 1, sections §1, §2, §4, §5, §6, §9, §10, and Chapter 2, sections §10, §11 in Birkhoff;
and Chapter 1, sections §5, §6, §9, §10, §11, §12 in Rasiowa and Sikorski.
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(iii) antisymmetry: if x ≤ y and y ≤ x then x = y .

The relation ≤ is known as a partial order on P . We sometimes write a poset as the tuple

P = (P,≤).

Given a poset (P,≤), a bottom is an element ⊥ ∈ P such that ⊥ ≤ x for all x ∈ P , while a

top is an element > ∈ P such that x ≤> for all x ∈ P .24 Using the property of antisymmetry,

it is clear that if such elements exist they must be unique. For example, >′ ≤ > and > ≤ >′

implies that >′ =>.

A canonical example of a poset is the set of all subsets of some set X (also known as the

power set of X , P (X )), with the set inclusion relation ⊆ being the partial order. This poset

(P (X ),⊆) has the top element X and the bottom element ;.

Definition 3.2. Given a set X of elements in P , we have the following definitions.

1. y ∈ X is the minimum of X if y ≤ x for all x ∈ X , written y = min X . Note that if y ′ and

y are both minimums, then y ≤ y ′ and y ′ ≤ y so y = y ′ by antisymmetry, i.e., if it exists,

then the minimum of X is unique.

2. a ∈ P is a lower bound for X if a ≤ x for all x ∈ X . Notice that a is also the minimum of

X if a ∈ X .

3. a is the infimum (greatest lower bound) if a′ ≤ a for all other lower bounds of a′ of X ,

written a = inf X . If inf X exists it is unique by antisymmetry.

4. z ∈ X is the maximum of X if x ≤ z for all x ∈ X , written z = max X . If max X exists it is

unique by antisymmetry.

5. b is an upper bound for X if x ≤ b for all x ∈ X . Notice that, similar to the lower bound

definition, b is also the maximum of X if b ∈ X .

6. b is the supremum (least upper bound) of X if b ≤ b′ for all other upper bounds b′,

written b = sup X . If sup X exists it is unique by antisymmetry.

3.2 Lattices

Given a poset with infimums and supremums, we can define a lattice.

24The bottom (respectively top) element in a poset is also referred to as the least (greatest) element, mini-
mum (maximum) element, or zero (unit) element.
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Definition 3.3 (Lattice). Let (L,≤) be a poset where for any two elements x, y ∈ L, inf{x, y}

and sup{x, y} exist. Denote them as

x a y := inf{x, y}, x ` y := sup{x, y}.

These operationsa and` are called meet and join respectively.25 The structure (L,≤,a,`)

is then called a lattice (which we sometimes simply write as L). The lattice is complete if it

admits supremums and infimums for every subset X of L.

The operations of meet and join give rise to an interesting algebraic structure, as shown

by the next lemma from [Bir67, p. 8].

Lemma 3.4 ([Bir67]). Let (L,≤,a,`) be a lattice. The meet and join operations satisfy the

following laws:

(i) Idempotence: x a x = x, x ` x = x

(ii) Commutativity: x a y = y a x, x ` y = y ` x

(iii) Associativity: x a (y a z) = (x a y)a z, x ` (y ` z) = (x ` y)` z

(iv) Absorption: x a (x ` y) = x ` (x a y) = x

Furthermore, x ≤ y is equivalent to each of the conditions

x a y = x and x ` y = y.

Proof. These laws follow directly from the definitions ofa and`. For example, x a x = inf{x},

and x ≤ x so inf{x} = x by the definition of the infimum. The proof for the remaining laws

can be found in [Bir67].

We now introduce some further requirements that one can demand of a lattice.

3.2.1 Distributivity

Definition 3.5. A distributive lattice (L,≤,a,`) is one that obeys the following two laws for

all x, y, z ∈ L:

25The standard notation for meet and join is ∧ and ∨ respectively — different to what we have introduced
here. We have opted for the same shapes but with flatter corners to differentiate them from the logical opera-
tions of conjunction and disjunction, which will be introduced in Chapter 5.
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(i) x a (y ` z) = (x a y)` (x a z)

(ii) x ` (y a z) = (x ` y)a (x ` z)

These two requirements are in fact equivalent, as shown in [Bir67, p. 11].

Proposition 3.6 ([Bir67]). A lattice L obeys law (i) in Definition 3.5 for all x, y, z ∈ L if and

only if it obeys law (ii) for all x, y, z ∈ L.

Proof. We prove that (i) implies (ii). Let x, y, z ∈ L and assume property (i) in Def. 3.5. Then

(x ` y)a (x ` z) = (
(x ` y)a x

)
`

(
(x ` y)a z

)
(assumption of (i))

= x `
(
z a (x ` y)

)
(absorption and commutativity)

= x `
(
(z a x)` (z a y)

)
(assumption of (i))

= (
x ` (z a x)

)
` (z a y) (associativity)

= x ` (z a y) (absorption)

The proof for the converse is of the same structure but with a and ` operations inter-

changed.

3.2.2 Boundedness

Given a lattice structure (L,≤,a,`), if a bottom element ⊥ exists in the poset (L,≤) then we

say that it is a bottom element for the lattice too. Similarly, if a top element > exists for the

poset then it is a top element for the lattice.

Definition 3.7. If the poset (L,≤) constituting a lattice (L,≤,a,`) has both a bottom and a

top element, then the lattice is bounded. Such a lattice may be written as the tuple (L,≤,a,`,>,⊥).

Top and bottom elements interact with the meet and join operators in the following way.

Corollary 3.8. If a lattice L has a bottom ⊥ then for all x ∈ L,

x a⊥=⊥, x `⊥= x.

If a lattice L has a top > then for all x ∈ L,
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x a>= x, x `>=>.

Proof. This follows from the final result in Lemma 3.4, noting that ⊥≤ x ≤> for all x.

3.2.3 Complementation

Complementation in lattices gives a notion of an ‘opposite element’.

Definition 3.9 (Varieties of complementation in a lattice). Let (L,≤,a,`) be a lattice and let

x, y, z ∈ L. We then have the following definitions.

1. Suppose that L is a bounded lattice. Then y is a complement of x if x a y = ⊥ and

x ` y =>. If a complement of x exists we denote it x?. If every element has a comple-

ment then we say that the lattice is complemented.

2. Next suppose that L has a bottom ⊥ but not necessarily a top. Then y is a pseudo-

complement of x if it the maximum of all elements y ′ such that x a y ′ =⊥. If a pseudo-

complement of x exists we denote it −x, and we can write it as

−x = max{y ∈ L | x a y =⊥}.

If every element has a pseudo-complement then the lattice is pseudo-complemented.

3. Finally, making no assumptions on the existence of top or bottom elements in L, we

say that z is a relative pseudo-complement of x with respect to y if it is the greatest

element such that (x a z) ≤ y . If a pseudo-complement of x relative to y exists we

denote it x A y , and we can write

x A y = max{z ∈ L | x a z ≤ y}.26

If for every pair x, y of elements the relative pseudo-complement x A y exists then the

lattice is called Brouwerian.27

There are some interesting immediate facts that arise from the above definition. First,

notice from the above Corollary 3.8 that ⊥=>? and >=⊥? in a bounded lattice. Secondly,

as we define −x and x A y to be maximum elements of a set, they must be unique if they

26Some mathematicians use the notation y : x [Bir67, p. 45] or x → y [RS68, p. 54] in place of x A y .
27These lattices were originally simply called pseudo-complemented lattices (like in [RS68]), however they

are now more widely known as Brouwerian (as in [Bir67]).
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exist. And thirdly, while a pseudo-complemented lattice is only assumed to be bounded

below, it turns out to be necessarily bounded above as well.

Proposition 3.10. A pseudo-complemented lattice L has a top element.

Proof. We know that L has a bottom element ⊥. Consider the pseudo-complement of ⊥,

−⊥ = max{y ∈ L | x a ⊥ = ⊥}. But all y ∈ L meet this criterion (Cor. 3.8) so −⊥ = maxL,

which is simply the definition of a top element >.

One may wonder what the difference between complements and pseudo-complements

is, since both complemented and pseudo-complemented lattices are bounded (comple-

mented by definition, pseudo-complemented by the above Proposition 3.10) and have sim-

ilar definitions. A simple example that illustrates the difference is the pentagon lattice N5.

Diagram (3.1) represents the lattice N5, where, for example, the line connecting the ele-

ments ⊥ and c means that ⊥≤ c since ⊥ is positioned lower than c. Given x, y on branches

in the diagram, where the two branches first intersect below we have the meet x a y and

where they first intersect above we have the join x ` y . E.g., a a c is the first intersection of

branches below a and c, which is ⊥.

⊥

c

b

a

>

(3.1)

The lattice N5 is complemented. This can be seen by looking at each element in turn:

>,⊥: these are always the complement of each other, as we saw above;

a: since aa c =⊥ and a` c => we have c = a?;

b: similarly, ba c =⊥ and b` c => means that c = b?;

c: from the above two cases, a = c? and b = c?.

So all elements have complements, and in the case of c it has two. All elements also have

pseudo-complements, which for a and b remain the same as their complements: c = −a
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and c =−b. For c, its pseudo-complement is b =−c — the greatest of its two complements.

Thus, from this example we see how the account of pseudo-complementation and (stan-

dard) complementation can differ. It also reveals another fact: that double complementa-

tion (and double pseudo-complementation) does not necessarily cancel, that is, it is not

always the case that (x?)? = x or −(−x) = x. When we manoeuvre from algebras to logic,

double complementation will manifest as double negation: “it is not the case that it is not

raining”. In only some cases will we be able to deduce from this that is it indeed raining — a

result of how sometimes double complementation does not cancel.

Returning from this digression, we introduce a different characterisation of relative pseudo-

complementation.

Proposition 3.11. The element x A y is the relative pseudo-complement of x with respect to

y if and only if the following statement holds for all elements a in the lattice:

a ≤ (x A y) if and only if (x a a) ≤ y.

Proof. This is simply a result of expanding the definition of a ‘greatest element’ in the defi-

nition of a relative pseudo-complement. I.e., (x A y) is the greatest of all elements a in the

lattice that satisfy (x a a) ≤ y .

If a bottom element is added to a Brouwerian lattice then pseudo-complementation is

gained, as the pseudo-complement of x is just its relative pseudo-complement with respect

to ⊥. This can be seen by comparing the definitions of −x and x A⊥ (noting that a ≤ ⊥ is

equivalent to a =⊥ since it is the bottom). This fact and the above Proposition 3.11 give the

following corollary.

Corollary 3.12. The element −x is the pseudo-complement of x if and only if the following

statement holds for all elements a in the lattice:

a ≤ (−x) if and only if (x a a) =⊥.
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3.3 Boolean and Heyting algebras

We have taken an excursion into lattice theory for the precise reason of introducing the fol-

lowing two types of lattices: Boolean and Heyting algebras. They have deep established

connections to logic which we will utilise in Chapter 5, when we find a surprising connec-

tion between the subobject structure of the terminal object 1 in a topos, and the structure of

the entire topos itself. But for now, let us define these lattices and leave the logic until later.

Definition 3.13. Let (L,≤,a,`) be a lattice.

(i) L is a Boolean algebra if it is distributive, bounded and complemented.

(ii) L is a Heyting algebra if it a Brouwerian lattice and has a bottom element.28

Remark 3.14. Throughout this dissertation we will assume any algebra being referenced to

be non-degenerate — containing more than a single element — unless specified otherwise.

It turns out that Heyting algebras are necessarily distributive and bounded. Distributiv-

ity follows from the following theorem proved in [Bir67, pp. 45–46] (since Heyting algebras

are Brouwerian).

Theorem 3.15 ([Bir67]). If L is a Brouwerian lattice then it is distributive.

For a top, take the relative pseudo-complement of any element x with respect to itself,

x A x. By considering Definition 3 in 3.9, we have that x A x = max{z ∈ L | x a z ≤ x}. But

by Lemma 3.4, x a z ≤ x is equivalent to x ≤ z. Therefore x A x = max{z ∈ L | x ≤ z} which

defines a top element of L. So if we require that all pseudo-complements exist in L, we must

have that for any x, y ∈ L, x A x = y A y => since top elements are unique.

Taking this into account, we then see that a Heyting algebra is like a Boolean algebra but

with relative pseudo-complementation instead of complementation. The next proposition

results in further connections between Heyting and Boolean algebras, for which a proof can

be found in [Gol84, p. 166].

Proposition 3.16. In a Boolean algebra, for all elements a,

28An lattice is called an algebra typically when it has some form of complementation on it. The two lattices
here have some notions of complements (Boolean by definition, Heyting by relative pseudo-complementation
with respect to ⊥) so we call them algebras.
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a ≤ (x?` y) if and only if (x a a) ≤ y.

This results in the following corollary, letting us think of a Heyting algebra as a gener-

alised Boolean algebra.

Corollary 3.17. In a Boolean algebra L we have the following:

(i) x A y = x?` y;

(ii) the lattice is Brouwerian;

(iii) L is a Heyting algebra

(iv) x? =−x;

(v) complements are unique.

Proof. By Proposition 3.16, for all a ∈ L, a ≤ (x?` y) if and only if (x a a) ≤ y . Then Propo-

sition 3.11 gives that x A y = x? ` y (i). Therefore a Boolean algebra admits all relative

pseudo-complements and so is Brouwerian (ii), and has a bottom element so is Heyting (iii).

We saw on page 42 that in a Brouwerian lattice with a bottom element it is possible to write

pseudo-complements as −x = x A ⊥. So using (i), −x = x A ⊥ = x? ` ⊥ = x?, giving (iv).

Finally, since pseudo-complements are unique we therefore have that the complements x?

are unique (v).

If all Boolean algebras are Heyting algebra, when are Heyting algebras Boolean? The

following proposition from [Joh82, p. 8] clarifies a precise answer.

Proposition 3.18. Let (L,a,`,A,⊥) be a Heyting algebra. Then the following three conditions

are equivalent.

(i) L is a Boolean algebra,

(ii) x `−x => for all x ∈ L,

(iii) −(−x) = x for all x ∈ L,

where −x is defined as x A⊥.

Partial proof. If (i) holds then the pseudo-complementation given by − is equivalent to

complementation by the above Corollary 3.17. Thus by the definition of complementation

(ii) holds. Conversely, if (ii) holds then − is a complementation operator (as we know that

x a−x =⊥ already), which means the algebra is Boolean (i). The proof for (i) =⇒ (iii) and
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(iii) =⇒ (ii) is given in [Joh82, p. 9]. These implications establish the equivalence of all three

statements.

We will see in the next chapter how these algebras manifest in a previously met structure:

Sub(d).
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Chapter 4

The Structure in Sub(d)

Having introduced some order theory concepts, we now turn to applying them to Sub(d)

— the collection of subobjects of an object d in a category. We will first see that Sub(d)

forms a poset when endowed with a rather natural ordering relation. We will then walk

through the development of finding meet, join and relative pseudo-complement operators.

The structure that emerges will turn out to have deep connections to logic, which we will

discuss in Chapter 5.

4.1 Subobjects form a poset

First, we will define an ordering relation on Sub(d). Recall that when discussing universal

constructions, we said that ‘the most universal X ’ is the one through which other things that

‘play the role of X ’ factor. Continuing this idea, we can say that a subobject f is ‘lesser than’

the subobject g if it factors through it. However since subobjects are not just arrows but

equivalence classes of arrows, we need to amend this definition slightly.

Definition 4.1. Let d be an object in a category C and let f : a� d , g : b� d be representa-

tives of the subobjects f , g (i.e., a is isomorphic to the domain of any other monic in f , and

similarly for g ). Then we say that f ≤ g when there exists an arrow h : b → a in C such that

f = g ◦h. That is, the diagram
a

d

b

f

h

g

(4.1)

commutes.

Key source for Chapter 4: [Gol84, pp. 146–166].
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Importantly, this definition makes sense as an extension from representatives to equiv-

alence classes.

Proposition 4.2. Definition 4.1 is well-defined: the statement f ≤ g does not depend on the

choice of representatives. That is, if f , f ′ ∈ f and g , g ′ ∈ g then there exists an h such that

f = g ◦h iff there exists an h′ such that f ′ = g ′ ◦h′.

Proof. Let f , f ′ ∈ f and g , g ′ ∈ g where f and g are defined as in Definition 4.1, and f ′ : a′� d ,

g ′ : b′� d . First suppose there exists an arrow h : b → a such that f = g ◦h. We know that f

and f ′ have isomorphic domains, as do g and g ′, so we can form the commutative diagram

a′

a

d

b

b′

f ′
v

f

h

g

w

g ′

(4.2)

where v and w are isomorphisms. So by taking h′ = w ◦h ◦ v we have that f ′ = g ′ ◦h′ as

required. The proof of the converse is the same but with f , g and f ′, g ′ swapped.

Now we reach the first substantive lemma for this section. The ordering relation we

found on Sub(d) is specifically a partial ordering, bounded above and below.

Lemma 4.3. Let d be an object in a topos E . Then Sub(d) equipped with ≤ forms a bounded

poset with top idd and bottom 0d .

Proof. There are five aspects to this: showing that ≤ is (a) reflexive, (b) transitive, (c) an-

tisymmetric, and that (d) idd is a top element and (e) 0d a bottom. We progress through

these properties one-by-one. Let f , g ,h be subobjects of d with representatives f : a� d ,

g : b� d ,h : c� d .
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(a) Reflexivity. Clearly we can write f as f = f ◦ ida , so f ≤ f .

a

d

a

f

ida

f

(4.3)

(b) Transitivity. Suppose f ≤ g and g ≤ h. Then there exist arrows v, w such that f = g ◦ v

and g = h ◦w . Combining these gives that f = (h ◦w)◦ v = h ◦ (w ◦ v), thus f ≤ h.

a

d

b

c

f

v

g

w

h

(4.4)

(c) Antisymmetry. Suppose f ≤ g and g ≤ f . Then there exist arrows v, w such that

f = g ◦ v and g = f ◦w . Combining these gives that

g ◦ idb = g = (g ◦ v)◦w = g ◦ (v ◦w).

Since g is monic we can cancel on the left, giving that idb = v ◦w . A similar process

with f leads to ida = w ◦ v . This is illustrated in the following commutative diagram.

b

a

d

b

a

g
widb

f

v

g

w

f

ida

(4.5)

Hence, by definition, v and w are iso arrows with each other as inverses (Def. 2.11).
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Thus the objects a and b are isomorphic and f and g are representatives of the same

subobjects. That is, f = g . From these three results ((a)–(c)) we conclude that (Sub(d),≤)

is a poset (Def. 3.1).

(d) By the definition of the identity arrow on d we have that f = idd ◦ f , so f ≤ idd . Hence

ida is the top element of the poset.

a

d

d

f

f

idd

(4.6)

(e) Since 0 is initial there exist unique arrows 0a : 0 → a and 0d : 0 → d . The composition

f ◦ 0a is also then unique, and so can only be one arrow: 0d . Hence 0d = f ◦ 0a , so

0d ≤ f and 0d is the bottom element of the poset.

0

d

a

0d

0a

f

(4.7)

Remark 4.4. Observe that in the above proof, the only categorial requirement that came

from E being a topos was the existence of an initial object. So Lemma 4.3 in fact applies to

any category with an initial object. We can generalise to all categories by removing the final

condition for a bottom element, that is, in all categories C , for any object d in C , (Sub(d),≤)

forms a poset with a top element.

From now on, for representative monic arrows f , g , the statement f ≤ g shall mean that

f ≤ g . I.e., that there exists an arrow h in such that f = g ◦h. Notice that when we interpret

≤ as an ordering on the monic arrows into d (rather than on the set of equivalence classes)

we still obtain reflexivity and transitivity, by the same proofs as above. We do not, however,

have antisymmetry. Rather, the proof for (c) above shows that f ≤ g and g ≤ f implies that
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f ' g . This is one of the motivating reasons behind redefining subobjects to be equivalence

classes under ', as then f ' g implies that f = g , so we achieve antisymmetry and thus a

partial order on Sub(d).

As warned about earlier in Remark 2.37, we will tend to refer to ‘the subobject f ’ instead

of ‘the subobject f ’ when there is no risk of confusion.

4.2 The Poset forms a Lattice

We have just seen that for any object d , the structure (Sub(d),≤) is a poset. We saw in §3.2

how a poset can be extended to a lattice structure if we can find infimums and supremums

for any two elements. So, given subobjects f , g , can we find other subobjects that represent

f a g = inf{ f , g } and f ` g = sup{ f , g }?

4.2.1 Infimums

For an object d in a topos E , suppose we have monic arrows f : a� d and g : b� d . Recall

from Definition 3.3 that the meet, l = f a g , is the infimum of { f , g }. That is, l : m� d is

monic; l ≤ f and l ≤ g ; and for any other l ′ where l ′ ≤ f and l ′ ≤ g , we have that l ′ ≤ l .

Unpacking this definition further, for l ≤ f and l ≤ g we need the existence of arrows h1,h2

such that
m

a d b

h1

l

h2

f g

(4.8)

commutes (so l = f ◦h1 and l = g ◦h2, i.e., l ≤ f and l ≤ g ). For l to be the infimum means

that any other l ′ factors through it. That is, if the arrows l ′,h′
1 and h′

2 exist as in the following
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diagram, then there exists an arrow k : m′ 99Km so l ′ = l ◦k.

m′

m

a d b

h′
1

h′
2kl ′

h1

l

h2

f g

(4.9)

But recall from Definition 2.22 that this is the limit over the diagram a
f−→ c

g←− b. This type of

diagram has a specific name for the limit: the pullback (Def. 2.32). Hence we define f a g

as the diagonal arrow in the pullback (which was discussed in Remark 2.33).

Definition 4.5 (Meet in Sub(d)). Given monic arrows f : a � d , g : b � d in a topos E ,

the meet of f and g , f a g : (a a b) −→ d , is defined as the diagonal arrow in the following

pullback square.29

(aa b) b

a d

f ′

g ′ fag g

f

(4.10)

Recall that the arrow f ′ (or g ′) is monic if f (or g ) is (Prop. 2.35), and that the composition

of two monic arrows gives a monic arrow (Prop. 2.7). Hence the arrow f a g certainly is a

monic arrow into d , so this is well-defined.

Lemma 4.6. Let f and g be subobjects of d in a topos E , with representatives f : a� d and

g : b � d. Then the subobject f a g exists and is the infimum of { f , g } under the partial

ordering ≤.30

Proof. Since E is finitely complete (Def. 2.41), the arrow f a g defined in Def. 4.5 exists.

Furthermore, it is monic so the equivalence class f a g exists. By definition, ( f a g ) =
f ◦ g ′ = g ◦ f ′, so f a g is a lower bound for f and g .

29The label of the object (aa b) is just a name that illustrates its existence in terms of arrows from a and b to
d . This is not denoting some lattice structure on the objects of the topos.

30Recall that f a g is defined to be the collection of all monic arrows into d with domain isomorphic to the
domain of f a g , the arrow defined in Def 4.5.
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Now to see that it is the greatest such bound, suppose there exists a subobject ξ that also

satisfies ξ≤ f and ξ≤ g . Let ξ :Ξ� d be a representative of this subobject. Then ξ= f ◦ξ1

and ξ = g ◦ ξ2 for some ξ1,ξ2. But by the definition of a pullback square (Def. 2.32), there

must exist a k :Ξ 99K (a a b) that ξ1 and ξ2 (and hence ξ) factor through. This is illustrated

in the following commutative diagram.

Ξ

(aa b) b

a d

ξ2

ξ1

ξk

f ′

g ′ fag g

f

(4.11)

Therefore, since ξ = ( f a g ) ◦ k we have that ξ ≤ f a g . The lower bound ξ was chosen

arbitrarily, so this is true for all lower bounds of { f , g }. Thus f a g = inf{ f , g }.

4.2.2 Supremums

We have identified a meet operation on subobjects, but can we identify a join? Given f : a� d

and g : b� d , we want a monic l = a ` b : m → d where l ≥ f and l ≥ g , and for any other

such upper bound l ′ we require that l ≤ l ′. For l to be an upper bound for f and g we need

arrows h1,h2 such that

a d b

m

f g

h1

l

h2

(4.12)

commutes. For l to be the least upper bound, we need that if l ′ is also an upper bound then

l = l ′ ◦ k for some arrow k (so l ≤ l ′). That is, if the arrows l ′,h′
1,h′

2 exist in the following
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diagram, then so does the arrow k.

a d b

m

m′

f g

h1

l

h2

kh′
1 l ′ h′

2

(4.13)

Notice that if the arrows l and l ′ were to be reversed then this construction would be

the colimit under the diagram a
f−→ c

g←− b. Nonetheless, we certainly are looking for some

sort of colimit construction that ensures existence of an arrow k whenever we have another

upper bound. Considering Diagram (4.12), one may notice similarities with the diagram

given for the definition of a coproduct (Def. 2.30), where the sum object (a +b) is the object

m, h1 and h2 are the arrows i1 and i2, and [ f , g ] is the supremum arrow l . Furthermore, the

colimiting behaviour of the coproduct does indeed ensure the existence of such an arrow k

as given in Diagram (4.13). An issue arises, however, with the nature of arrow [ f , g ] — it is not

guaranteed to be monic. This is why we introduced the concept of epi-monic factorisations

in Chapter 2: by invoking Theorem 2.38 we can factorise [ f , g ] into its epic and monic parts,

and then take the monic part as f ` g .

Definition 4.7 (Join in Sub(d)). Given monic arrows f : a � d , g : b � d in a topos E ,

the join of f and g , f ` g : (a ` b) −→ d , is defined as the monic part in the epi-monic

factorisation of the coproduct arrow [ f , g ].

a a +b b

c

ia

f

[ f ,g ]

ib

g

a +b d

a` b

[ f ,g ]

e f`g

(4.14)

The following lemma confirms that this gives the kind of arrow we desire. The proof is

adapted from [Gol84, pp. 151–153], part (2) of Theorem 1.

Lemma 4.8. Let f and g be subobjects of d in a topos E , with representatives f : a� d and

g : b� d. Then the subobject f ` g exists and is the supremum of { f , g } under the partial

ordering ≤.
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Proof. As in the proof to the previous lemma, since E is finitely co-complete by Definition

2.41, the arrow f ` g exists. By its own definition it is monic, so the equivalence class f ` g

exists. Furthermore, its definition has that f = ( f ` g )◦ (e ◦ ia) and g = ( f ` g )◦ (e ◦ ib), so

f ≤ ( f ` g ) and g ≤ ( f ` g ): f ` g is an upper bound bound for f and g .

Now, to show that it is the lowest such bound, suppose there exists a subobject ξ such

that f ≤ ξ and g ≤ ξ. Let ξ :Ξ� d be a representative of this other upper bound. Then f =
ξ◦ξ1 and g = ξ◦ξ2 for some arrow ξ1,ξ2. By the definition of the coproduct (Def. 2.30), there

exists a unique arrow [ξ1,ξ2] : (a+b) 99KΞ such that [ξ1,ξ2]◦ia = ξ1 and [ξ1,ξ2]◦ib = ξ2. Now,

since [ξ1,ξ2] is unique, the composition arrow ξ ◦ [ξ1,ξ2] must also be unique to Diagram

(4.15). However, we have defined [ f , g ] to be this unique arrow, so [ f , g ] = ξ◦ [ξ1,ξ2].

a a +b b

Ξ

d

ia

f [ f ,g ]

[ξ1,ξ2]

ib

g

ξ1

ξ2

ξ

(4.15)

But by the definition of f ` g , we already have the epi-monic factorisation [ f , g ] =
( f ` g ) ◦ e. Then, since ξ is monic, from Theorem 2.38 there must exist a k : (a ` b) → Ξ

where ( f ` g ) = ξ◦k.

Ξ

a +b d

a` b

ξ

[ f ,g ]

[ξ1,ξ2]

e f`g

k

(4.16)

Hence f ` g ≤ ξ. Thus f ` g = sup{ f , g }.

Putting the results from this section and last all together, we arrive at the following theo-

rem.

Theorem 4.9. Let d be an object in a topos E . Then (Sub(d),≤) equipped with the operations

a and`, where f a g := f a g and f ` g := f ` g , forms a bounded lattice. We write this as

(Sub(d),≤,a,`), but we may simply refer to it as Sub(d) or as the subobject lattice.
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Proof. By Lemma 4.3, (Sub(d),≤) forms a bounded poset. By Lemmas 4.6 and 4.8, infimums

and supremums exist for any two elements in Sub(d). Therefore this structure (Sub(d),≤,a,

`) is a lattice under Definition 3.3.

Remark 4.10. As in Remark 4.4, we make a brief note of how this result can generalise to

any category. For all categories, (Sub(d),≤) forms a poset with a top. What specific condi-

tions are then required for this to be a lattice? The meet operation required pullbacks for

its definition, so a category must have pullbacks of monics into d for infimums to exist on

(Sub(d),≤).31 The requirements for the join operation are somewhat more substantive. We

required coproducts for the [ f , g ] arrow, and then to allow for epi-monic factorisation we

needed pullbacks and equalisers, and the pullbacks of epic arrows needed to remain epic.32

These requirements are all used in the constructive proof of Theorem 2.38 in Appendix A.

Finally, if we require the category to have an initial object then the poset, and thus lattice, is

bounded.

4.3 The Lattice forms an Algebra

In Section 4.1 we saw that in a topos, for any object d , Sub(d) forms a poset. Then in the pre-

vious section we saw how we can go further and identify a meet and join structure. Can we

complete what was discussed in Chapter 3 and find complements, pseudo-complements,

and relative pseudo-complements? The answer, it turns out, is sometimes, yes, and yes. In

this section we will show how one can identify the relative pseudo-complement of f with re-

spect to g in Sub(d). From having relative pseudo-complements and a bottom (0d ), pseudo-

complements can be found (Corollary 3.12). Sometimes these pseudo-complements will be

complements in the standard sense as well, and sometimes they will not. The fact that there

is a distinction here is what makes toposes so interesting from a logical perspective, as this

results in the ‘topos logic’ (which we will examine in the next chapter) to be non-classical.

31A poset with a meet operation (and not necessarily a join) is called a meet-semilattice. So, any category
with pullbacks has that Sub(d) always forms a meet-semilattice.

32A poset with joins (and not necessarily meets) is called a join-semilattice. But because joins in Sub(d)
required pullbacks, if we have joins we necessarily have meets.
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4.3.1 Relative pseudo-complementation

Suppose we have monic arrows f : a� d , g : b� d . Recall from Chapter 3 that the relative

pseudo-complement of f with respect to g is an element l : m� d such that for any other

arrow h, h ≤ l iff ( f a h) ≤ g (Prop. 3.11). We can, however, characterise the statement

( f a h) ≤ g in an easier way by the following lemma from Goldblatt.

Lemma 4.11. If f , g and h are monic arrows into the object d in a topos, then f a h ' g a h

if and only if χ f ◦h =χg ◦h.

Proof. This is a simple application of Proposition 2.40 (uniqueness of characteristic arrows

using a subobject classifier) to pullback squares constructed from the definition of meet. A

full proof is provided in [Gol84, p. 163].

This gives the following corollary.

Corollary 4.12. With f , g ,h defined as above,

( f a h) ≤ g if and only if χ fag ◦h =χ f ◦h

Proof. (From [Gol84, p. 164].)33

( f a h) ≤ g iff ( f a h)a g ' f a h (Lemma 3.4)

iff ( f a g )a h ' f a h (commutativity and associativity)

iff χ fag ◦h =χ f ◦h (Lemma 4.11)

Now, we see that we want an arrow l where χ fag ◦h =χ f ◦h iff there exists a k such that

h = l ◦k (i.e., h ≤ l ). This condition is just that of an equaliser (Def. 2.19).

Definition 4.13 (Relative pseudo-complementation in Sub(d)). Given monic arrows f : a� d ,

g : b � d in a topos E , the relative pseudo-complement of f with respect to g , f A g :

33Note that this proof makes use of the identification of ' and = on the Sub(d) lattice. I.e., Lem. 3.4 applies
to the lattice structure of equivalence classes of arrows, not the arrows themselves. However, because f ' g iff
f = g , this can be applied to the arrows directly.
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(a A b) −→ d , is defined as equaliser of the characteristic arrows of f and f a g : χ f and

χ fag : d −→Ω.

(aA b) d Ω
fAg χ f

χ f ag
(4.17)

Lemma 4.14. Let f and g be subobjects of d in a topos E , with representatives f : a� d and

g : b� d. Then the subobject f A g exists and is the relative pseudo-complement of f with

respect to g under the partial ordering ≤.

Before proving this lemma, we note a simple proposition proved in [Gol84, p. 57].

Proposition 4.15. Suppose e is an equaliser. Then e is monic.

Given this fact, we can move to the proof concerning relative pseudo-complements.

Proof of Lemma 4.14. By virtue of E being a topos, the arrow f a g exists. Hence χ f and

χ fag exist as we have a subobject classifier, and then their equaliser f A g exists as we have

all finite limits. Every equaliser is monic (by the above Proposition 4.15), so the subobject

f A g exists.

For f A g to be the relative pseudo-complement of f with respect to g , by Prop. 3.11 we

need to show that for all other subobjects ξ,

ξ≤ f A g if and only if f a ξ≤ g . (?)

Let ξ : Ξ� d be a representative of ξ. Then (?) is equivalent to showing that ξ ≤ ( f A g ) if

and only if ( f a ξ) ≤ g . By the above Corollary 4.12, ( f a ξ) ≤ g iff χ fag ◦ξ = χ f ◦ξ. So we

need to establish that

ξ≤ ( f A g ) if and only if χ fag ◦ξ=χ f ◦ξ, (??)

which follows from the definition of f A g as the equaliser of χ f and χ fag .

(aA b) d Ω

Ξ

fAg χ f

χ f ag

k ξ
(4.18)

First suppose that χ fag ◦ ξ = χ f ◦ ξ. Then by the definition of equalisers (Def. 2.19) there

exists an arrow k : Ξ→ (a A b) such that ξ = ( f A g ) ◦k, that is, ξ ≤ ( f A g ). Next suppose
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that ξ ≤ ( f A g ), so ξ = ( f A g ) ◦k for some k. Then, as χ fag ◦ ( f A g ) = χ f ◦ ( f A g ) (Def.

4.13),

χ f ◦ξ=χ f ◦ ( f A g )◦k =χ fag ◦ ( f A g )◦k =χ fag ◦ξ.

Hence (??) has been established, and thus f A g is the relative pseudo-complement of f

with respect to g .

Given this lemma, we can use some of the definitions for specific lattices given in Chap-

ter 3.

Corollary 4.16. Given an object d in a topos, the lattice (Sub(d),≤,a,`) is Brouwerian.

Proof. Lemma 4.14 confirms that relative pseudo-complements exist for any two subobjects

in Sub(d). This is precisely the definition of a Brouwerian lattice (Def. 3.9).

Noting that Sub(d) has a bottom element gives a further refinement to this corollary.

Corollary 4.17. Let d be an object in a topos E . Then (Sub(d),≤,a,`) is a Heyting algebra.

Proof. Sub(d) is Brouwerian by Corollary 4.16. Toposes have initial objects, so the lattice

has a bottom. This defines a Heyting algebra (Def. 3.13).

4.3.2 Pseudo-complementation and complementation

In §3.2.3, we mentioned how pseudo-complements can be formed using relative pseudo-

complements and a bottom element of the lattice. Since Sub(d) forms a Heyting algebra,

we can carry out this construction and define − f := f A 0d . From the above Definition 4.13,

this is the equaliser of χ f and χ fa0d . But since 0d is the lattice bottom, using the lattice

properties in Corollary 3.8 we have that f a 0d = 0d . This leads to the following definition.

Definition 4.18 (Pseudo-complementation in Sub(d)). Given the monic arrow f : a� d in

a topos E , the pseudo-complement of f , denoted − f , is defined as equaliser of the charac-

teristic arrows of f and 0d , χ f ,χ0d : d −→Ω.

−a d Ω
− f χ f

χ0d

(4.19)
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Similar to with meets, joins and relative pseudo-complements, the pseudo-complement of

the subobject f is then − f =− f .

Remark 4.19. As with meets and joins, we note what constructions in the definition of a

topos were actually used for identifying relative pseudo-complementation (and hence pseudo-

complementation). We required equalisers to defineA, and one of the arrows being equalised

used the meet operation, so this in turn requires pullbacks (as discussed in Remark 4.10).

Furthermore, Lemma 4.11 requires the subobject classifier and its one-to-one relationship

of subobjects to characteristic arrows. So, a category with a subobject classifier, pullbacks

and equalisers will admit relative pseudo-complements in every Sub(d). If it has an initial

object then it will further admit pseudo-complements using the above Definition 4.18.

To see when these pseudo-complements become complements in the Boolean algebra

sense, we can use Proposition 3.18 — this tells us that Sub(d) is a Boolean algebra if and only

if −
(
− f

)
= f for all subobjects f .

With meets, join, relative pseudo-complements and pseudo-complements identified,

we are ready to do logic in Sub(d).
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Chapter 5

Logic in Toposes

In Chapter 2 we introduced categories (specifically toposes) and some possible struc-

tures within them. Using this, and the concepts introduced in Chapter 3, we were able to

identify a Heyting algebra structure on Sub(d), where d is any object in a topos E . Addi-

tionally, we have frequently remarked on the connections between Heyting and Boolean

algebras and logic. Now, is there a way to lift this subobject structure out of the land of

equivalence classes and into the the arrow and object framework of E ? Moreover, are there

connections between toposes and logic?

The first section in this chapter will introduce formal mathematical logic and valuations

on algebras. Using established results from Helena Rasiowa, we will precisely state what is

meant by the connection between logic and our algebras of interest. We will then show how

the subobject structure in toposes can be lifted into the arrow structure using the subobject

classifier and the terminal object. This will provide everything we need for the major result

of this dissertation: that topos logic is intuitionistic.

5.1 Formalised logic

To study logic is to study the validity of arguments. Given a statement, what other statements

does it entail? What are the rules of this entailment — in essence, what logically follows

from what? The logician examines different accounts of this entailment, and may argue for

different particular systems of logic as the ‘correct’ one. As we shall see, there is more than

the one option that we may be used to.

Before we can begin thinking about different logics and their entailments, we must first

Key sources for Chapter 5: [Pri08], [Ras74], [RS68], [Gol84].
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agree upon what a statement actually is.

5.1.1 Syntax

Formalised logic is done with so-called well-formed formulas (wffs), also known as state-

ments. The collection of wffs is defined recursively using an alphabet and a set of formation

rules, giving the correct way to construct new wffs from existing ones.

Definition 5.1. The propositional language (PL) is defined as follows. There is a set called

the alphabet for PL, comprised of the union of the following sets.

(a) An infinite number of propositional variables or atoms, P = {p0, p1, p2, . . . };

(b) The logical connectives {¬,∧,∨,⊃};

(c) The brackets {(, )}.

The collection of well-formed formulas W is then recursively constructed with the rules

1. Each atom pi is a member of W ;

2. For every wff α in W , (¬α) is also a wff.

3. For every two wffsα,β in W (including whenβ=α), each of (α∧β), (α∨β), and (α⊃β)

are also wffs.

For example, ‘((p1 ∧p12) ⊃ (¬p3))’ is a wff, while ‘(¬p4∧)∨p0(p1¬’ is not. When writing

wffs we will often neglect to write the outermost brackets .

The logical connectives introduced above in the PL alphabet are more than just ink

marks. They represent the operations of negation (¬), conjunction (∧), disjunction (∨), and

the material conditional (⊃). These are read as not, and, or, and implies, respectively. For

example, α∧β is read as α and β. To understand the operation of these connectives, we

need to build up a notion of semantics.

Remark 5.2. The propositional language we have introduced is zeroth order. A higher or-

der language is one that involves quantification (“for all”, “there exists”). Analysis without

quantifiers still provides a suitably meaningful distinction between classical and intuition-

istic logic, via the zeroth order statement of excluded middle. We will introduce this in more

detail shortly.
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5.1.2 Semantics

A classical truth value is an element of {0,1}, where 0 corresponds to ‘false’ and 1 to ‘true’.

Non-classical truth values can also comprise just the {0,1} set, or they can be more exotic,

featuring intermediate values or even the whole [0,1] continuum.34 We limit ourselves to

the classical case for now.

For our purposes, we can take the logical connectives as acting on truth values to output

truth values.35 Using x and y as variables over {0,1}, the following two tables list the output

of each connective given the possible inputs.

x ¬x
1 0
0 1

x y x ∧ y x ∨ y x ⊃ y
1 1 1 1 1
1 0 0 1 0
0 1 0 1 1
0 0 0 0 1

Table 5.1: Standard logical connectives

For example, we say that x implies y is false if x is true and y is false, but true in all other

cases.

We can extend the above truth tables to all sentences using a recursive truth assignment

function, V . This works similarly to how we recursively constructed the collection of sen-

tences.

Definition 5.3. A classical truth assignment or valuation is a function V : W −→ {0,1} that

maps each sentence to a truth value. This is done by first assigning each atom pi ∈ P a truth

value. Then, given the assignment for the atoms, V is extended to all of W with the rules

(a) V (¬α) =¬V (α)

(b) V (α∧β) =V (α)∧V (β)

(c) V (α∨β) =V (α)∨V (β)

(d) V (α⊃β) =V (α) ⊃V (β)

where the connectives operate on the truth values as in Table 5.1. Given a wff α, we say that

34For examples of these more exotic logics, see [Pri08]. Specifically, see Chapter 7 for examples of logics with
multiple truth values, and Chapter 11 for logics that use a continuum of truth values.

35More formally, the connectives assign statements to truth values, but only after a valuation has been car-
ried out on W . For an example of how such functions work, see [Pri08, p. 120].
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(i) α is satisfied by the valuation V if V (α) = 1;

(ii) α is a tautology or classically valid if every valuation V satisfies α, written as ÍCL α.36

The relation ÍCL is called the entailment relation of the semantics.

This definition means that, in practice, we can replace each atom in a wff with its truth

value as assigned by V . Then using the rules in the truth tables we can evaluate the entire

compositional wff.

Example 5.4. Take the wff (¬p1) ⊃ (p1 ∨p2) and suppose there is some valuation V on the

atoms p1, p2. By using the rules in Definition 5.3 we have that

V
(
(¬p1) ⊃ (p1 ∨p2)

)=V (¬p1) ⊃V (p1 ∨p2)

= (¬V (p1)
)⊃ (

V (p1)∨V (p2)
)

.

So if V (p1) = 1 and V (p2) = 0, we would have

V
(
(¬p1) ⊃ (p1 ∨p2)

)= (¬1) ⊃ (1∨0)

= 0 ⊃ 1

= 1.

Example 5.5. Now consider the wff p3 ∨¬p3 and suppose that V (p3) = 0. Then

V
(
p3 ∨ (¬p3)

)=V (p3)∨V (¬p3)

=V (p3)∨¬(V (p3))

= 0∨¬(0)

= 0∨1

= 1

This wff is, in fact, always going to evaluate to V
(
p3 ∨ (¬p3)

) = 1 no matter the assign-

36The ‘CL’ refers to the classical system of logic that we have defined using Table 5.1. Later we will discuss a
different system of logic whose valid statements do not align with the valid statements of classical logic. For
example, ÍCL¬¬p ⊃ p (double negations cancel in classical logic) while ÕI¬¬p ⊃ p (double negations do not
always cancel in an intuitionistic logic I).
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ment to the atoms. It is known as the law of excluded middle — it is saying that eitherα or its

negation must be true; there is no middle ground. It is precisely this statement that comes

under question in developing intuitionistic logic.

5.1.3 Logical consequence

We have so far seen how statements may be true or false with respect to a truth assignment.

There is another more practical method of establishing statements we take to be true —

proof.

Proving a statement γ involves taking earlier true statements and combining them in

ways that we know preserve truth, resulting inγ. One account of this idea are Hilbert systems.

In these systems, we start with a list of generalised statements called axioms which we take

to be true, and from the axioms we derive new statements via rules of inference.37

An example of a Hilbert system is the system L, given in [RS68, p. 188].

Definition 5.6. The Hilbert system L is comprised of the axioms (where α,β,γ are arbitrary

statements)

(A1) (α⊃β) ⊃ ((β⊃ γ) ⊃ (α⊃ γ)),

(A2) α⊃ (α∨β),

(A3) β⊃ (α∨β),

(A4) (α⊃ γ) ⊃ ((β⊃ γ) ⊃ ((α∨β) ⊃ γ)),

(A5) (α∧β) ⊃α,

(A6) (α∧β) ⊃β,

(A7) (γ⊃α) ⊃ ((γ⊃β) ⊃ (γ⊃ (α∧β))),

(A8) (α⊃ (β⊃ γ)) ⊃ ((α∧β) ⊃ γ),

(A9) ((α∧β) ⊃ γ) ⊃ (α⊃ (β⊃ γ)),

(A10) (α∧¬α) ⊃β,

(A11) (α⊃ (α∧¬α)) ⊃¬α,

(A12) α∨¬α,

along with the single rule of inference modus ponens.

Modus ponens: From the statements α and α⊃β, the statement β may be derived.

If α is derivable from the axioms alone then it is a theorem of L, denoted `L α, where

` is the consequence relation of the proof system. This is distinct from the notion of valid-

37An alternative type of deductive system is a Gentzen system, which typically feature more rules of inference
and fewer (or no) axioms than a Hilbert system.
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ity under entailment, which is concerned with valuation functions. In a proof system, we

methodically deduce new statements from established ones using a set machinery.

The important relationship between logical consequence and logical entailment comes

in the form of soundness and completeness. Given a proof system with consequence relation

` and a valuation with entailment relation Í,

(i) ` is sound with respect to Í when ` α implies Í α, i.e., all theorems are valid state-

ments;

(ii) ` is complete with respect to Í when Í α implies ` α, i.e., all valid statements are

theorems.

The reason for introducing the proof system L is its connection to classical logic, shown

by the following theorem.

Theorem 5.7. The system L with `L is sound and complete with respect to the classical logic

relation ÍCL.38

A proof can be found in [RS68, p. 189].

5.2 Putting values on algebras

We now illustrate the reason behind our earlier focus on lattices and algebras. Algebras with

meets, joins, a form of complementation, and a two place relation can be used to evaluate

logical statements.

5.2.1 Boolean validity

In the case of a Boolean algebra, a logical valuation is defined as below.

Definition 5.8. Let (B ,a,`,A,?) be a non-degenerate Boolean algebra where x A y =
x? ` y as in Corollary 3.17. Then, a B-valuation is a mapping VB : W → B constructed as

follows. First assign each atom pi ∈ P ⊂W an element in B to obtain a mapping VB : P → B .

This is extended to all of W by the rules

38This system L is by no means unique in this fact. There are many Hilbert systems that give equivalent
theorems, such as Frege’s original axiomatisation for classical logic.
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(a) VB (¬α) =VB (α)?;

(b) VB (α∧β) =VB (α)aVB (β);

(c) VB (α∨β) =VB (α)`VB (β);

(d) VB (α⊃β) =VB (α)AVB (β).

In this way, given an initial assignment of atoms to elements B , every possible wff is mapped

to an element in the algebra. Given a wff α, we say that

(i) α is satisfied by the B-valuation VB if VB (α) =>;

(ii) α is a tautology of B or valid in B if every B-valuation VB satisfies α, written as ÍB α.39

Boolean algebras are of interest to logicians due to their association with classical logic:

classical logic is sound and complete with respect to any (non-degenerate) Boolean algebra.

Theorem 5.9. Letα be a statement in the propositional language. Then for all non-degenerate

Boolean algebras B,

`L α if and only if ÍB α.

That is, the proof system L is sound and complete with respect to the semantic system on any

Boolean algebra.

Sketch of proof. To show soundness, we need to establish that each axiom of L is a tautology

of any Boolean algebra B , which is done by using lattice properties of meet and join. As an

example, consider (A2) under a valuation VB . By the rules in Definition 5.8, we have that

VB (α⊃ (
α∨β)

)=VB (α)A
(
VB (α)`VB (β)

)
=VB (α)?`

(
VB (α)`VB (β)

)
(definition ofA in a Boolean algebra)

= (
VB (α)?`VB (α)

)
`VB (β) (associativity in a lattice — Lem. 3.4)

=>`VB (β) (definition of a complement)

=> (Cor. 3.8)

So VB satisfies (A2). This valuation was arbitrary, so (A2) is a tautology of B . After showing

each axiom is a tautology, we need to show that the rule of modus ponens preserves validity.

The details of this can be found in [RS68, p. 258], Theorem 1.3.

39We interpret the top to mean ‘true’. Dually, the bottom will be interpreted ‘false’.
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Proving completeness involves manipulating structures in Boolean algebras that we have

not explored, namely ideals and algebra homomorphisms. The relationship to classical logic

comes from mapping any B to the Boolean algebra of two elements, and then interpreting

those elements through the truth tables in 5.1. The details can be found in [RS68, pp. 259–

260], Theorem 2.2.

Note that since the classical truth tables also provide a sound and complete account of

the tautologies of L (Thm. 5.7), we have that ÍC L α if and only if ÍB α for any Boolean alge-

bra. I.e., the tautologies of any Boolean algebra are exactly the same tautologies of classical

logic.

5.2.2 Heyting validity

If, instead of a Boolean algebra B we have a more general Heyting algebra H , then the above

definition of a B-valuation (Def. 5.8) can be modified to obtain an H-valuation, VH . Again,

we begin with an assignment of the atoms pi ∈ P to elements of H . This is extended with the

rules

(a) VH (¬α) =−VH (α);

(b) VH (α∧β) =VH (α)aVH (β);

(c) VH (α∨β) =VH (α)`VH (β);

(d) VH (α⊃β) =VH (α)AVH (β).

Given a wff α, we say that

(i) α is satisfied by the H-valuation VH if VH (α) =>;

(ii) α is a tautology of H or valid in H if every H-valuation VH satisfies α, written as ÍH α.

The difference to Boolean valuations is in rule (a), where complements are replaced by

pseudo-complements defined as −x = x A⊥. Because Boolean algebras are a specific type

of Heyting algebra where pseudo-complements are also complements (Cor. 3.17), when H

is Boolean this VH valuation becomes the previously defined VB valuation.

We saw in Theorem 5.9 that Boolean algebras provide an account of classical logic. What,

then, is the logic that corresponds to the more general Heyting algebras? A pointer comes

from the difference in between complement and pseudo-complement. Complements sat-

isfy x a x? = ⊥ and x ` x? = >, while pseudo-complements are only guaranteed to satisfy
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the former expression: x a−x =⊥. Now consider an H-valuation of axiom A12 for the sys-

tem L: VH (α∨¬α) =VH (α)`−VH (α). In a Boolean algebra we would know this to be equal

to > by the definition of complementation. However, in a Heyting algebra with pseudo-

complementation, this is not guaranteed. Hence the logic that is represented by Heyting

algebras is something like L with A12 removed.

The axiom A12 is the law of excluded middle (LEM). As discussed earlier, this law requires

that any statementαmust be true or not true. A classical logic system without LEM is said to

be intuitionistic. Removing LEM has dramatic effects on the nature of what can be proved;

it results in a mathematics where statements must be constructed, where proof of existence

of objects is impossible without outlining a practical method for their formation.40

Let I denote the Hilbert system of L with LEM removed, but retaining all other axioms

and the modus ponens rule of inference. This, then, is the system that corresponds to Heyt-

ing validity.

Theorem 5.10. Letα be a statement in the propositional language. Then for all non-degenerate

Heyting algebras H,

`I α if and only if ÍH α

That is, the intuitionistic proof system I is sound and complete with respect to the semantic

system on any Heyting algebra.

Sketch of proof. The process of this proof is similar to that of Theorem 5.9.

To show soundness, we need to establish that each axiom of I is a tautology of any

Boolean algebra H — this is done using lattice properties of a,`,A and −. Next, we need

to show that the rule of modus ponens preserves validity. The details of this can be found in

[RS68, p. 384], Theorem 2.5.

Proving completeness involves relating the Heyting algebra H to the topological notions

of open sets in a dense metric space. The details of the proof can be found in [RS68, pp. 385–

387], Theorem 3.2.

40This way of reasoning was championed by Luitzen E. J. Brouwer. His student, Arend Heyting, devised
Heyting algebras for the explicit purpose of modelling intuitionistic logic.
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Note that any statement derivable in I is derivable in L (since every axiom and rule in

I is in L), so intuitionistic logic is a sublogic of classical logic, as any intuitionistic theorem

will also be a classical theorem.

5.2.3 Sub(d) validity

Using the above notions of valuations on algebras, we can consider the case of Sub(d).

Definition 5.11. A Sub(d)-valuation is a function Vd : W → Sub(d) that maps each sentence

to a subobject of d . First, each atom pi is assigned a subobject fi . The mapping is then

extended inductively over the following rules.41

(a) Vd (¬α) =−Vd (α);

(b) Vd (α∧β) =Vd (α)aVd (β);

(c) Vd (α∨β) =Vd (α)`Vd (β);

(d) Vd (α⊃β) =Vd (α)AVd (β).

Furthermore, as in the previous definitions of valuations, given a wff α, we say that

(i) α is satisfied by the Sub(d)-valuation Vd if Vd (α) = id1;

(ii) α is a tautology of Sub(d) or valid in Sub(d) if every Sub(d)-valuation Vd satisfies α,

written as Íd α.

Theorem 5.12. In a topos, given a object d, the intuitionistic proof system `I is sound and

complete with respect to the entailment relation Íd on Sub(d).

Proof. By Corollary 4.17, Sub(d) is a Heyting algebra. Theorem 5.10 then gives the result.

So we see that intuitionistic logic has a strong connection with the logic defined on the

subobjects of a topos. Yet, our main question was concerning a different logical structure —

which we develop in the next section.

5.3 Lifting out of Sub(d)

We have developed a theory of lattices within the collection of subobjects of some object

d , and we have seen how logic can be encoded on this lattice. However, subobjects are not

41When we define valuations inductively we assume that Vd (α) and Vd (β) have already been assigned some
subobjects, like g and h. The operations given in rules (a)–(d) are then the algebraic operations on Sub(d) as
detailed in Lemmas 4.6, 4.8 and 4.14, and Definition 4.18.
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technically in a topos — a subobject is an equivalence class of monic arrows. The arrows are

parts of the category, but the equivalence classes are not. So, can we find a way to lift the

structure of the subobjects out of Sub(d) into the categorial arrow and object makeup of E ?

5.3.1 Connecting arrows in E

Recall that each subobject f in Sub(d) corresponds to exactly one characteristic arrow χ f :

d →Ω. This property will provide the suitable machinery for our desired lifting.

Definition 5.13. Given a topos E , let f : a � d and g : b � d be representatives of the

subobjects f and g in the subobject algebra (Sub(d),a,`,A,−). Then the operations ¬,∧,∨
and ⊃ are defined on the characters χ f and χg as follows.

1. ¬χ f :=χ− f

−a d

1 Ω

− f

! χ− f =¬χ f

t

(5.1)

2. χ f ∧χg :=χ fag

aa b d

1 Ω

fag

! χ f ag=χ f ∧χg

t

(5.2)

3. χ f ∨χg :=χ f`g

a` b d

1 Ω

f`g

! χ f `g=χ f ∨χg

t

(5.3)

4. χ f ⊃χg :=χ fAg

aA b d

1 Ω

fAg

! χ f Ag=χ f ⊃χg

t

(5.4)

Each of these arrows is a member of the hom-set E (d ,Ω) — the collection of arrows from

d to Ω. Additionally, note that Proposition 2.40 (characters are unique to their subobjects)

ensures this construction is independent on the choice of representative.

5.3.2 Logical arrows

The connectives defined in Definition 5.13 are essentially mappings on the arrows of E —

∧,∨ and ⊃ map an ordered pair of two arrows in E to a third, while ¬ maps one arrow to an-

other. Considering the earlier motivation for lifting the Sub(d) into the topos (that it would
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be nice to have structures that are actually in the topos), this has not gained much ground.

These mappings are externally defined relationships between arrows, only made possible

from an external viewpoint to the topos. There is, however, a way to have an internal map-

ping in a category: composition. The composition arrow f ◦g = h can be read as f mapping

g to h. With this motivation, we define the following logical connective arrows that give this

desired property.

Definition 5.14 (Logical connective arrows). The arrows ¬,∧,∨ and ⊃ in a topos E are de-

fined as follows.42

¬: The arrow ¬ :Ω→Ω is the character of the character of 01, χχ01
.43

1 Ω

1 Ω

χ01

! ¬:=χχ01

t

(5.5)

∧: The arrow ∧ :Ω×Ω→Ω is the character of the product arrow 〈t,t〉 : 1 →Ω×Ω.44

1 Ω×Ω

1 Ω

〈t,t〉

! ∧:=χ〈t,t〉

t

(5.6)

∨: The arrow∨ :Ω×Ω→Ω is the character of the coproduct arrow [〈t◦1Ω, idΩ〉,〈idΩ,t◦1Ω〉].45

Ω+Ω Ω×Ω

1 Ω

[〈t◦1Ω,idΩ〉,〈idΩ,t◦1Ω〉]

! ∨:=χ[〈t◦1Ω,idΩ〉,〈idΩ,t◦1Ω〉]

t

(5.7)

42For a full walkthrough of the development of these arrows see §6.6 in [Gol84].
43Taking the character of a character may seem rather elaborate, however the reason will become apparent

when considering truth values. We will interpret the character of 01, χ01 , as ‘false’. Recalling the intuition
behind the subobject classifier, the character of f into d is what maps the ‘ f part of d ’ to the ‘true part ofΩ’. In
this context, the character of χ01 is what maps the ‘false part of Ω’ to the ‘true part of Ω’ — i.e. it flips true and
false, which is exactly what we would expect of negation.

44Elaborating from the previous footnote, the point of this construction is to map the ‘part of Ω×Ω that is
true under conjunction’ to the ‘true part of Ω’. In the case of Set, the 〈t,t〉 subobject is the subset {(1,1)} in
Ω×Ω = {(0,0), (0,1), (1,0), (1,1)}. Note that in Table 5.1, 1∧1 = 1 while all other combinations give 0. Hence
(1,1) is the ‘part of Ω×Ω that is true under conjunction’ in Set.

45In Set, this complicated coproduct arrow picks out the subset {(0,1), (1,0), (1,1)}, which are the truth value
combinations that return 1 under ∨ in Table 5.1.
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⊃: The arrow ⊃:Ω×Ω→Ω is the character of e :É→Ω×Ω, the equaliser of ∧ and pr1.46

É Ω×Ω Ω

•

e ∧
pr1

É Ω×Ω

1 Ω

e

! ⊃:=χe

t

(5.8)

The next theorem establishes the desired properties of these arrows.

Theorem 5.15. Given a topos E with the arrows ¬,∧,∨ and ⊃ defined as in Definition 5.14,

the following identities hold.

(i) ∧◦〈χ f ,χg 〉 =χ fag

(ii) ∨◦〈χ f ,χg 〉 =χ f`g

(iii) ⊃ ◦〈χ f ,χg 〉 =χ fAg

(iv) ¬◦χ f =χ− f

Proof. We prove (iii) and (iv). The proofs for (i) and (ii) can be found in [Gol84, pp. 148–151],

Theorems 2 and 3.

(iii) By the definition of f A g (Def. 4.13), χ f ◦ ( f A g ) = χ fag ◦ ( f A g ). By the earlier

property (i) in this theorem, ∧◦〈χ f ,χg 〉 = χ fag . Also note that pr1 ◦ 〈χ f ,χg 〉 = χ f . So

we obtain that

pr1 ◦〈χ f ,χg 〉◦ ( f A g ) =∧◦〈χ f ,χg 〉◦ ( f A g ).

Then 〈χ f ,χg 〉◦( f A g ) equalises pr1 and∧. But the arrow e :É→Ω×Ωhas been defined

to be this equaliser, so there must exist a unique k : (a A b) 99KÉ that ensures the

square in (5.9) commutes.

Ξ

aA b d

Ω

É Ω×Ω

ξ1

ξ2

j

fAg

k 〈χ f ,χg 〉

χ f

∧◦〈χ f ,χg 〉

pr1

∧
e

(5.9)

46In Set, this equaliser e picks out the subset {(0,0), (0,1), (1,1)} — hence the notation É. These are the com-
binations that return 1 under ⊃ in Table 5.1.
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To see that this square is a pullback, suppose there exist arrows ξ1,ξ2 as in the above

diagram, such that 〈χ f ,χg 〉◦ξ1 = e ◦ξ2. Then

χ f ◦ξ1 = pr1 ◦〈χ f ,χg 〉◦ξ1

= pr1 ◦e ◦ξ2

=∧◦e ◦ξ2 (as e equalises pr1 and ∧)

=∧◦〈χ f ,χg 〉◦ξ1

So ξ1 equalises χ f and ∧◦〈χ f ,χg 〉. But f A g is defined to be this equaliser, so there

exists a unique arrow j : Ξ 99K a A b such that the entire diagram (5.9) commutes.

Thus the central square is a pullback.

Now, consider the following diagram (5.10). The top square is a pullback by the above

reasoning, while the bottom square is a pullback by definition of ⊃.

aA b d

É Ω×Ω

1 Ω

fAg

k

!

〈χ f ,χg 〉

e

! ⊃

t

(5.10)

Hence by the Pullback Lemma (2.34), the outer rectangle is a pullback. Since the outer

rectangle defines the subobject classifier acting on f A g , we get that ⊃ ◦〈χ f ,χg 〉 =
χ fAg .

(iv) As − f is the pseudo-complement of f in Sub(d), by Corollary 3.12 we have that for all

monic arrows g : b� d ,

g ≤− f iff f a g ' 0d . (5.11)

From the lattice properties we encountered in Chapter 3 (Lem. 3.4 and Cor. 3.8), g ≤
− f is equivalent to g a − f ' g , g ' g a g and f a g ' 0d ' 0d a g . Then (5.11)
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becomes

g a− f ' g a g iff f a g ' 0d a g . (5.12)

By Lemma 4.11, this is equivalent to

χ− f ◦ g =χg ◦ g iff χ f ◦ g =χ0d ◦ g . (5.13)

This implies that

¬◦χ− f ◦ g =¬◦χg ◦ g iff χ f ◦ g =χ0d ◦ g . (5.14)

We now establish four small facts.

First, consider Diagram (5.15) which shows the commutative square that defines χg .

b d

1 Ω

g

1b χg

t

(5.15)

From this we see that χg ◦ g = t◦1b (?). Next, consider the following diagram.

0 1

1 Ω

1 Ω

!=01

01 t

χ01

!=id1
¬=χχ01

t

(5.16)

The bottom square is the pullback that defines ¬, and the top is the pullback that

defines χ01 . Hence by the Pullback Lemma the outer rectangle is a pullback, and so

¬◦t=χ01 (??).

Thirdly, note that the composition arrow 1d ◦ g : b → 1 must exist, but 1b is defined to
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be the unique arrow satisfying this condition, so 1b = 1d ◦ g (???).

b d 1
g

1b

1d (5.17)

Finally, an examination of Diagram (5.18) shows that χ01 ◦1d =χ0d .

d

0 1

1 Ω

1d

χ01◦1d

0d

01

! χ01

t

(5.18)

To see this, first note that the bottom square is the pullback defining χ01 . The outer

square is thus a pullback as well, as any arrow ξ1 from some objectΞ to d will commute

with 1d to be give an arrow to 1, and so the pullback property of the (0,1,1,Ω) square

will guarantee an arrow k :Ξ 99K 0, ensuring that the outer square is a pullback as well.

Therefore, χ01 ◦1d =χ0d (????).

Using these four results,

¬◦χg ◦ g =¬◦t◦1b (?)

=χ01 ◦1b (??)

=χ01 ◦1d ◦ g (???)

=χ0d ◦ g (????)

Now, (5.19) becomes

¬◦χ− f ◦ g =χ0d ◦ g iff χ f ◦ g =χ0d ◦ g . (5.19)

But this is just equivalent to the equality

¬◦χ− f ◦ g =χ f ◦ g . (5.20)
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Recall that this holds for all monic arrows g into d . By Theorem 2.38, every arrow into

d can be factorised into an epic arrow and a monic arrow, where the monic part has

codomain d . Thus (5.19) holds for every arrow g into d , regardless of whether it is

monic. Therefore, ¬◦χ− f =χ f .

Thus, by Definition 5.13,

(i) ¬◦χ f =¬χ f ;

(ii) ∧◦〈χ f ,χg 〉 =χ f ∧χg ;

(iii) ∨◦〈χ f ,χg 〉 =χ f ∨χg ;

(iv) ⊃ ◦〈χ f ,χg 〉 =χ f ⊃χg .

5.3.3 The logic of a topos

So far, we have been undiscerning with the choice of the object d in E (d ,Ω). While our

zeroth-order logic of propositions and connectives could be carried out in any E (d ,Ω), what

makes ‘topos logic’ special is its higher order capabilities with internalised forms of existen-

tial and universal quantification ("there exists" and "for all").47 For reasons that we are un-

able to explain within this dissertation, these methods require constructions only available

on E (1,Ω).48

To move from Sub(1) to E (1,Ω) we use the characteristic arrows of subobjects. Doing

this, we can transfer over the bottom and top of the Sub(1) algebra. The top element of

Sub(1) is id1. The character of this arrow is then the previously defined classifying arrow t

for the subobject classifier (hence the name ‘true’ for this arrow).

1 1

1 Ω

id1

!=id1 χid1

t

(5.21)

If the character of the top element is ‘true’, we call the character of the bottom element ‘false’.

47These higher order constructions are what exponential objects are used for. Further, they utilise functors
and adjoints — two concepts we have not discussed. For details of the quantification arrows in a topos and
how E (1,Ω) is relevant to their construction see [Gol84, pp. 245–248].

48Additionally, E (1,Ω) gives a nice internal version of truth values. Observe that E (d ,Ω) is an external con-
struction: it does not exist anywhere within E as an object. There is an internal representation of it though,
given in terms of exponential objects (the material we skipped for brevity in Def. 2.41). In the case of E (1,Ω)
this exponential object (whatever that may be) collapses to be isomorphic to Ω itself — so Ω represents the
truth values of the logic.
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Hence, f :=χ0d .

0 1

1 Ω

01

!=id1 f :=χ01

t

(5.22)

This sheds some light on the earlier definition of the ¬ arrow. We now see that ¬ := χf ; see

the earlier footnote 43 on page 71 for more discussion on this. Furthermore, we saw in the

proof of Theorem 5.15 that ¬◦ t= χ01 (Diagram (5.16)), hence ¬◦ t= f — which is what we

would expect for negation.

Given a suitable structure on the topos itself, we can finally define validity in E .

Definition 5.16. An E -valuation is a function VE : W → E (1,Ω) that maps each sentence to

an arrow in E (1,Ω), which we call a truth value. Similar to the previous valuation function

definitions, this is done by first assigning each atom pi ∈ P a truth value VE (pi ) : 1 → Ω.

Then, given the assignment for the atoms, VE is extended to all of W with the rules

(a) VE (¬α) =¬VE (α) =¬◦VE (α). This is illustrated with the diagram:

1 Ω

Ω

V (α)

V (¬α) ¬ (5.23)

(b) VE (α∧β) =VE (α)∧VE (β) =∧◦〈VE (α),VE (β)〉
(c) VE (α∨β) =VE (α)∨VE (β) =∨◦〈VE (α),VE (β)〉
(d) VE (α⊃β) =VE (α) ⊃VE (β) =⊃ ◦〈VE (α),VE (β)〉.

Rules (b), (c) and (d) are illustrated in the diagram:

1

Ω Ω×Ω Ω

Ω Ω Ω

V (α)

〈V (α),V (β)〉
V (β)

pr1 pr2

∧ ∨ ⊃

(5.24)

Furthermore, given a wff α, we say that

(i) α is satisfied by the E -valuation VE if VE (α) = t;
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(ii) α is a tautology of E or valid in E if every E -valuation VE satisfies α, written as ÍE α.

The system of logical connective arrows in a topos along with the above semantics is

what we have been referring to throughout this dissertation as ‘topos logic’. Now that we

have a grasp on how logic in a topos arises, we move to analysing its structure. The next

theorem provides the final piece of information to answer the question we began with: what

does it mean for topos logic to be intuitionistic?

Theorem 5.17. Let γ be a statement in the propositional language, and let E be a topos. Then

ÍE γ iff Í1 γ.

That is, the logic defined in E has the same tautologies as the language on Sub(1).

Proof. We show that there exists an E -valuation that does not satisfy γ if and only if there

exists a Sub(1)-valuation that does not satisfy γ.49

Suppose that there is a Sub(1)-valuation V1 such that V1(γ) 6= id1. By definition, V1 first

assigns the atoms pi as such: V1(pi ) = fi . Construct the E -valuation VE by setting the as-

signment of the atoms as the characters of the V1 assignments. That is, VE (pi ) = χV1(pi ) =
χ fi : 1 →Ω, where fi : ai → 1 is a representative of fi .

ai 1

1 Ω

V1(pi )= fi

! VE (pi )=χ fi

t

(5.25)

We aim to show that VE (α) = χV1(α) for all statements α, not only the atoms. To this end we

proceed inductively through the logical connectives. Assume that for statements α and β,

it is the case that VE (α) = χV1(α) and VE (β) = χV1(β). Then, we have the following equalities

over the four logical connectives.

49This uses that a statement of contraposition (¬p =⇒ ¬q) is the same as a statement of implication (q =⇒
p). Ironically, this equivalence is not always valid in an intuitionistic logic, so we find ourselves proving the
intuitionism of topos logic using non-intuitionistic methods.
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Negation:

VE (¬α) =¬VE (α) (Def. 5.16 (a))

=¬χV1(α) (assumption)

=χ−V1(α) (Def. 5.13 (1))

=χV1(¬α) (Def. 5.11 (a))

Conjunction:

VE (α∧β) =VE (α)∧VE (β) (Def. 5.16 (b))

=χV1(α) ∧χV1(β) (assumption)

=χ[V1(α)aV1(β)] (Def. 5.13 (2))

=χV1(α∧β) (Def. 5.11 (b))

Disjunction:

VE (α∨β) =VE (α)∨VE (β) (Def. 5.16 (c))

=χV1(α) ∨χV1(β) (assumption)

=χ[V1(α)`V1(β)] (Def. 5.13 (3))

=χV1(α∨β) (Def. 5.11 (c))

Material conditional:

VE (α⊃β) =VE (α) ⊃VE (β); (Def. 5.16 (d))

=χV1(α) ⊃χV1(β) (assumption)

=χ[V1(α)AV1(β)] (Def. 5.13 (4))

=χV1(α⊃β) (Def. 5.11 (d))

Thus, starting with the base case of the atoms (where we know that VE (pi ) = χV1(pi )), we
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have by induction that VE (α) = χV1(α) for all statements α. Then, if V1(γ) 6= id1, by unique-

ness of characteristic arrows to their subobjects (Prop. 2.40) we know that χV1(γ) 6= χid1 . We

saw earlier that t = χid1 , and furthermore VE (γ) = χV1(γ) by the above inductive argument.

Therefore, VE (γ) 6= t, i.e., the valuation VE does not satisfy γ.

Now suppose there exists a E -valuation VE that does not satisfy γ, so VE (γ) 6= t. Using a

similar process as above, we can construct an Sub(1)-valuation that does not satisfy γ. Con-

sider the assignment of each atom VE (pi ), and take its pullback along t to obtain a monic

fi : ai � 1 (this is monic by Prop. 2.35, because t is monic). This gives that VE (pi ) = χ fi .

Construct V1 by assigning to each pi the corresponding pullback of VE (pi ) along t, fi . Then

VE (pi ) = χV1(pi ). The same induction argument as before gives that VE (α) = χV1(α) for all

statements α, and hence χV1(γ) = VE (γ) 6= t = χid1 , so V1(γ) 6= id1 again by uniqueness of

characters to subobjects (Prop. 2.40). That is, V1 does not satisfy γ.

Thus, it is not the case that ÍE γ iff it is not the case that Í1 γ. In other words, ÍE γ iff

Í1 γ.

Before we conclude with the final theorem, let us pause to review. We have seen that

‘topos logic’ is a form of reasoning definable in the structure of arrows in E (1,Ω) in a topos,

where propositions are connected via the composition of product arrows and logical con-

nective arrows.

However, this structure does not exist on its own. There is a deeper, external structure

beneath it — Sub(1). We saw that the subobjects of the terminal object 1 form, in general, a

Heyting algebra. We have seen how valuation functions can be applied to Heyting algebras

in general, and how that results in intuitionistic logic. And so valuation functions applied to

Sub(1) will be intuitionistic too. Furthermore, the previous theorem has established a one-

to-one correspondence of tautologies of E with tautologies of Sub(1). This leads to our final

theorem.

Theorem 5.18. Given a topos E , the intuitionistic proof system `I is sound and complete

with respect to the semantic relation ÍE .

Proof. By Theorem 5.12, `I is sound and complete with respect to Í1. Then by the previous
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theorem, Í1 gives the same tautologies as ÍE . Thus `I is sound and complete with respect

to ÍE .

So the logic of a topos is, in general, an intuitionistic logic. We say ‘in general’ as it is

certainly possible for the logic to be classical. This will happen when the logic on Sub(1) is

classical, which happens when Sub(1) is a Boolean algebra. Recall from §4.3.2 that Sub(d) is

Boolean precisely when −(− f
)= f for all f : a� d . From Theorem 5.15, χ−(− f ) =¬◦χ− f =

¬◦¬◦χ f . Then by uniqueness of characters (Prop. 2.40) −(− f ) = f iff ¬◦¬◦χ f = χ f , i.e.

¬◦¬ = idΩ. This is precisely the condition for the logic in E to be classical (and for every

subobject algebra in E to be Boolean).50

We conclude this chapter with examples of toposes that exhibit classical and non-classical

logics.

Example 5.19. The following toposes have different logics.

(a) Recall that in Set the subobject classifier is the two-valued set {0,1}. The negation

arrow ¬ : {0,1} → {0,1} acts by swapping the values; i.e., ¬(0) = 1 and ¬(1) = 0. Clearly

this means that ¬(¬(x)) = x, so ¬◦¬= idΩ and hence the logic on Set is classical.

(b) Our other example of a topos in §2.8 was Set→. This topos has that ¬◦¬ 6= idΩ, and so

the logic is intuitionistic.51

50The semantics we defined in Definition 5.16 are external to the topos. They utilise a mapping VE that
has no representation in E . Furthermore, the set of wffs W is external. An internal structure can be built
up, however. This is done by composing the logical connective arrows with each other to build more complex
statements, but they remain as arrows fromΩ×Ω×·· ·×Ω toΩ (a newΩ is introduced in the domain every time
we utilise a product arrow, like how VE is recursively established in diagram (5.24)). The ability to construct
statements within a topos without a reliance on external elements is what makes topos logic special from a
foundational point of view. It still carries the same properties as our external semantics we have discussed, in
that ¬◦¬= idΩ precisely when the logic validates the law of excluded middle.

51Set→ can also be viewed as a category of functors (which we have not introduced) from the category 2 to
Set, written as Set2. It turns out that for any (small) category C , the category SetC of functors from C to Set
is a topos. Considering the logic on this topos, the interpretation is that each Set gives a site for classical logic,
but the overall structure SetC resembles an intuitionistic logic. This resembles the notion of a Kripke frame as
a model for non-classical logics.
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Chapter 6

Conclusion

Review

The logic in a topos is a powerful tool; so much so that mathematicians like Lawvere and

Lambek have posited it as an alternate foundation for the entirety of mathematics [Law66;

LS11]. This dissertation began with two questions: What is topos logic? Why is it said to be

intuitionistic? Answering these questions required introducing a great deal of mathematical

machinery.

We began with an introduction to the domain of categories in Chapter 2. We encoun-

tered some important concepts like duality and universal constructions, before moving to

define the specific type of category that forms the basis for our later discussion: a topos.

In Chapter 3 we moved from the arrows and objects of category theory, and looked at

concepts of order. We introduced what it means for a set to form a poset, a lattice, and a

Boolean or Heyting algebra. We examined the connection between these two algebras, and

saw that a Boolean algebra is precisely a Heyting algebra where double complementation

eliminates.

We returned to arrow-theoretic constructions in Chapter 4. A partial ordering on the

subobjects of an object was identified, and we were able to further identify meets, joins,

relative pseudo-complements and pseuo-complements, giving a Heyting algebra structure.

In Chapter 5 we began to think about logic. We introduced the basics of formal propo-

sitional logic: an alphabet, semantics, proof, and how these ideas relate through soundness

and completeness. We saw how truth is evaluated through a valuation function, and how

such valuation functions can be defined on the subobject algebras in a topos. This gave an

intuitionistic logic; it did not validate the law of excluded middle.
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The subobject algebra is a structure external to the topos, so we lifted the logic out of

the subobjects and into the topos through the subobject classifier and specific arrows that

take the role of logical connectives. From here, we could define a valuation function on

the topos itself, giving an answer to the question: what is topos logic? Despite lifting the

logic out of the subobject structure, we saw how validity on the topos was still intimately

connected to validity on the subobject algebra — they have the same tautologies. And thus

because the subobject logic is intuitionistic, so too is the topos logic. This answered our

second question: why is topos logic intuitionistic? We concluded with an account of when

this topos logic becomes classical: it is precisely when double negation eliminates.

A difference in logics

As mathematicians, we often take our choice of logic for granted. Our definitions and results

are built upon a logical foundation that is commonly taken to be standard and proper —

classical logic. While it may be considered the standard logical system, some logicians are

of the view that it is no more (or even less) entitled than any other logical system, of which

there are many.52

An intuitionistic logic allows statements to be neither true nor false. What about a logic

that allows statements to be both true and false? This is nearing what is known as a para-

conistent logic, where statements can be inconsistent without causing problems throughout

the entire logical structure. This has real use when structures may be known to contain in-

consistencies, such as databases or human beliefs. Given that intuitionistic logics can be

represented in toposes, are there categories that represent paraconsistent logics?

The intuitionistic nature of topos logic came from the Heyting algebra structure on Sub(1).

Therefore, for the categorial logic to be paraconsistent we would expect the structure on

Sub(1) to be something that models paraconsistent logic. The Heyting structure on Sub(1)

arose from the account of relative pseudo-complementation and pseudo-complementation,

so these would need to be modified to achieve a different type of algebra. Mortensen and

Lavers have proceeded this way in [ML95] by defining a paraconsistent algebra which is

52See [Pri08] for many different such logics, each with benefits and weaknesses of reasoning.
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somewhat dual to a Heyting algebra, and showing how one can arise in a category by us-

ing a so-called ‘complement-classifier’ — a modification of the subobject classifier. Then,

using some modified definitions for logical connective arrows and a valuation function, a

paraconsistent logic can be found in a type of category they call a ‘complement-topos’. They

further argue that a complement-topos is, in fact, a different way of looking at a topos, and

so toposes themselves admit a paraconsistent logic. This analysis is extended by Estrada-

González in [Est10] and [Est15], who concludes that the logic in a topos “is a truly protean

categorial creature which can accommodate the most diverse descriptions and support an

enormous variety of logics”, be them intuitionistic or paraconsistent.

Some further questions of categorial paraconsistent logic remain, however. The logic in

a topos can fully axiomatise set theory and thus provide an alternate foundation for mathe-

matics. Can the paraconsistent logic in a complement-topos do the same? Could it form a

foundation for a paraconsistent theory of mathematics? Furthermore, the logic developed

by Mortensen and Lavers is not a standard paraconsistent logic. So, given a commonly stud-

ied paraconsistent logic, such as Priest’s Logic of Paradox [Pri79], does there exist a category

that where this logic can be identified on the arrows? Answers to these questions would pro-

vide an interesting method of analysis of these non-classical logics. If many different types

of mathematics (classical, intuitionistic, paraconsistent) could be internalised in categories,

it would give us reason to question the tenet of classical foundations, as, in this setup, a

classical foundation of mathematics would be but one choice of categorial foundation —

namely, Set.
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Appendix A

Epic-monic factorisations

We first need a smaller fact concerning coequalisers.

Proposition A.1. Suppose q : b → c coequalises f , g : a → b. Then q is epic. That is, for any

two arrows h1,h2 : c → d, if h1 ◦q = h2 ◦q then h1 = h2.

This is Proposition 3.18 in [Awo06, p. 58], where the proof is just the dual of the proof

given for Prop. 3.15 in [Awo06, p. 56]. Having established this fact, we move to the proof for

Theorem 2.38.

Theorem A.2 (Epi-monic factorisation). Let C be a category that admits pullbacks and co-

equalisers. Further suppose that the pullback of any epic arrow remains epic. Then for any

arrow f : a → b there exist arrows e and m such that f = m◦e, where e is epic and m is monic.

Moreover, if we also have that f = v ◦u where v is monic, then m = v ◦k for some arrow k.

The middle object domm = code is called f (a), and we call the construction the epi-monic

factorisation of f .

a b

f (a)

f

e m

(A.1)

Proof for Theorem 2.38. The proof is constructive. Begin by forming the pullback of f along

itself to obtain two arrows f1 and f2.53

F a

a b

f2

f1 f

f

(A.2)

53(F, f1, f2) is known as the kernel pair of f .
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Now let e : a → f (a) be the coequaliser of f1 and f2. Because f also coequalises these arrows

( f ◦ f1 = f ◦ f2 by the definition of f1, f2) there exists a unique arrow m : f (a) 99K b such that

f = m ◦e.

F a f (a)

b

f1

f2

f

e

m
(A.3)

Because e is a coequaliser it is epic by the above proposition.

Now we turn to showing that m is monic. To do this, first take the pullback of m along

itself to obtain the arrows m1,m2 : M → f (a). We show that m1 = m2.

M f (a)

f (a) m

m2

m1 m

m

(A.4)

We can append the arrows e : a → f (a) onto this diagram. Then form three pullbacks:

(1) First, the pullback of e and m1, shown as the bottom left square in Diagram (A.5). The

pullbacks of m1 and e are labelled as φ1 and φ2 respectively. Because e is epic and the

pullback of epic arrows are epic we have that φ2 is epic too.

(2) Second, the pullback of e and m2, shown as the top right square in (A.5). The pullbacks

of e and m2 are labelled as π1 and π2 respectively. Similar to above, because e is epic

we have that π1 is epic.

(3) Finally, the pullback of π1 and φ2, shown in the top left in (A.5). The pullbacks of π1

and φ2 are labelled as γ1 and γ2 respectively. Because π1 and φ2 are epic we have that

γ1 and γ2 are epic, and so the composition α=π1 ◦γ2 =φ2 ◦γ1 is epic. (Prop. 2.10).

Γ Π a

Φ M f (a)

a f (a) m

α

γ2

γ1

π2

π1 e

f
φ2

φ1

m2

m1 m

e

f

m

(A.5)
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Because all of these squares are pullbacks, by the Pullback Lemma (Lem. 2.34) we have

that the entire outer square (Γ, a, a,m) is a pullback. But this is then the pullback of f =
m ◦ e along itself, which we have already defined to give the arrows f1, f2 in Diagram (A.2).

Pullbacks are a type of limit, and limits are unique up to isomorphism by Proposition 2.23.

Hence there exists an iso arrow k between F and Γ such that the diagram

F

Γ Π a

Φ M f (a)

a f (a) m

k

f1

f2

α

γ2

γ1

π2

π1 e

f
φ2

φ1

m2

m1 m

e

f

m

(A.6)

commutes.54 Examining (A.6), we find that

m1 ◦α◦k = m1 ◦φ2 ◦γ1 ◦k = e ◦ f1

= e ◦ f2 (as e coequalises f1 and f2)

= e ◦π2 ◦γ2 ◦k

= m2 ◦π1 ◦γ2 ◦k

= m2 ◦α◦k.

Since α is epic we know that α◦k is epic (iso arrows are epic and monic, Prop. 2.12), so we

conclude that m1 = m2.

Now, suppose there exist arrows g ,h : c → f (a) where m ◦ g = m ◦h.

c f (a) m
g

h

m (A.7)

54As mentioned in Def. 2.11, the arrow k having a double arrowhead means that it commutes in either
direction.
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By the definition of m1 and m2 as the pullbacks of m along itself (A.4), there must exist a

unique arrow k : c 99KM such that

c

M f (a)

f (a) m

k

g

h

m2

m1 m

m

(A.8)

commutes. Hence, noting that m1 = m2, h = m1 ◦k = m2 ◦k = g . Thus m is monic.

We have so far established the existence of m and e as a factorisation for f , and shown

that m is monic and e is epic. We now show that m factors through any other monic arrow

into b that makes up a factorisation of f .

Suppose there exist arrows u, v that form some other factorisation f = v ◦u, where v is

monic. Recalling that f ◦ f1 = f ◦ f2 (A.2), we have that v◦u◦ f1 = v◦u◦ f2. Since v is monic (left

cancellable) this gives that u ◦ f1 = u ◦ f2, i.e., u coequalises f1 and f2. But we have defined e

to be this coequaliser, so there exists a unique arrow k : f (a) 99K c such that

F a f (a)

c b

f1

f2

e

u
k

m

v

(A.9)

commutes. Hence m = v ◦k, completing the proof.
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