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ABSTRACT 

Colorectal cancer (CRC) is the second most deadly cancer globally, and 30% of these 

cancers occur in the rectum. The primary treatment for CRC is surgery, often 

radiotherapy with adjuvant chemotherapy is used before or following surgical 

resection.  

Treatment carries with it a high cost and side effect burden while response rates 

remain unpredictable. Approximately 20% of patients have total tumour regression 

post chemoradiotherapy; however, most patients receive only partial or no benefit 

from treatment. The ability to predict which patients would benefit from standard 

treatment and those who should be directed to an alternative treatment or an 

accelerated pathway to surgery would potentially avoid lengthy and costly 

treatments that may only cause side effects for patients, improving survival rates 

and quality of life.  

In this study, the microbiome, immune cells and patient gene expression were 

evaluated for their use as predictive biomarkers for response to chemoradiotherapy 

in rectal cancer patients. Tumour and adjacent normal tissue biopsies were taken 

before treatment and had DNA and RNA extracted and sequenced. 

First, the methodology for analysing microbiomes via shotgun sequencing data was 

evaluated and improved, increasing taxonomic assignment accuracy by 11% and 

potentially decreasing analysis time more than nine-fold. Secondly, the sequencing 

technologies, Oxford Nanopore, 16S rRNA and RNA-sequencing, were evaluated for 

their ability to assess the microbiome. The results demonstrated that platforms had 

concordance with one another; however, this was reduced at the species level.  

Third, microbial transcription was used to assess rectal cancer microbiomes, 

correlating them with response rates. The results showed that microbial diversity 

did not contribute to radiotherapy response, but that individual microbes may 

influence response. It was hypothesised that species such as Hungatella hathewayi, 
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Fusobacterium nucleatum, Butyricimonas faecalis, Alistipes finegoldii, Bacteroides 

thetaiotaomicron, and B. fragilis may contribute to tumour regression by modulating 

metabolism and immune responses.  

Third, the abundance of infiltrating immune cells was predicted using RNA-

Sequencing data. Analysis indicated that the abundance of M1 macrophages and 

resting mast cells were correlated with response, while microbial transcription was 

correlated with the abundance of allergic and anti-tumour effector cells, as well as 

antigen-presenting cells. It was hypothesised that the microbiome might modulate 

anti-tumour immune responses directly, and indirectly by altering the tumour 

microenvironment. Microbes may help maintain a population of anti-tumour 

effector and antigen-presenting cells for tumour-antigen presentation during tumour 

cell death and neo-antigen uptake, which may be otherwise exhausted by targeting 

aspects of the inflammatory tumour microenvironment (i.e., lipid phagocytosis, anti-

bacterial and allergic responses).  

Lastly, machine-learning was employed to establish a panel of molecular biomarkers 

predictive of response, including microbial transcription, immune cells and gene 

expression. The final model demonstrated the ability to predict response with a 7% 

overall error rate, and that predicting response relied mostly on normal and tumour 

tissue gene expression, and tumour infiltrating immune cells. 

This study provides a panel of prognostic biomarkers which could be utilised to 

predict patient response. Additionally, it provides evidence for microbial-immune 

interactions that could be manipulated to enhance treatment and increase response 

rates. 
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1 CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

Colorectal cancer (CRC) has the third-highest incidence, and this frequency leads to 

the second-highest mortality of any cancer. Thirty percent of cases occur in the 

rectum [1]. In 2018 alone, 1.8 million new cases and 881,000 deaths were recorded 

globally, New Zealand and Australia had the second-highest rates of colon and 

rectal cancers (RC) [2]. There is increasing evidence that the microbiome plays a role 

in the development of CRC [3]. Fusobacterium nucleatum [4], enterotoxigenic 

Bacteroides fragilis [5], strains of Escherichia coli [6], and species from the oral cavity 

have been reported to produce potentially genotoxic compounds [7].  

RC is considered distinct from colon cancer and requires a different treatment 

strategy [1]. The greatest contributor to RC survival rates is early detection, while the 

disease is still localised [8]. Early detection allows for less invasive surgical resection, 

while higher stage tumours require more radical interventions, such as anterior 

resection and total mesorectal excision (TME), which involve defunctioning of the 

bowel before surgery, and often result in a temporary or permanent colostomy [1]. 

Although early detection is increasingly common in countries with nationalised 

bowel screening programmes, late-stage detection still frequently occurs. 

1.1.1 Epidemiology 

New Zealand and Australia have the second-highest RC incidence, at a rate of 15.6 

and 8.6 per 100,000 in males and females, respectively, and the third-highest 

mortality, globally [2]. RC accounted for 704,376 (3.9%) new cases and 310,394 (3.2%) 

cancer-related deaths in 2018, globally. Incidence and mortality rate is related to 

regional development, with increases in both incidence and mortality in Eastern 

European nations, China and Latin America. There is increasing incidence but 

reducing mortality in Canada, the U.K., Denmark and Singapore, while both 

mortality and incidence are reducing in the U.S., Japan and France [2]. These trends 
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reflect increased survival as nations adopt screening programmes and improved 

treatment [9].  

1.1.2 Risk factors 

The risk factors for RC are poorly understood and less well studied than colon 

cancers, partly due to studies combining patients with rectal and colon cancers into 

generalised CRC cohorts [10]. As sporadic disease accounts for the majority of 

reported cases (~75%) and is characterised by having no known underlying genetic 

predisposition [11], the involvement of lifestyle factors (e.g., smoking, alcohol/drug 

use), diet (e.g., excessive processed and red meat and inadequate fibre intake), 

exercise and the microbiome [12] may partly explain underlying causes. Human 

papillomavirus (HPV) has been implicated in CRC risk [13]; however, this is not a 

universal finding, with some studies suggesting HPV is not involved in RC [14], or 

CRC carcinogenesis [15]. A meta-analysis of 2630 adenocarcinomas showed CRC 

HPV prevalence at 11.2%, with different regions having substantive differences, and 

adenomas having a lower prevalence (5.1%) [16]. Further investigation into the role 

of HPV in CRC is required, as it may depend on the viral strain, geography or an 

individual’s genetics. 

In a comparative study of colon and rectal cancers, only sex and age correlated with 

RC [17]; however, there is a developing trend of increasing RC incidence in younger 

patients [18]. The incidence per 100,000 is 23.6 for males and 16.3 for females 

globally, and 41.7 and 32.1 in Australia/New Zealand, respectively [19]. There are 

differences in incidence between pre- and post-menopausal women, with 

individuals that have hormone replacement therapy post-menopause have a lower 

incidence of CRC, indicating that oestrogen may play a role in CRC aetiology [20]. 

However, the menopause-related risk may be adipose dependant, as lean women 

have been reported to have higher risk after menopause, and obese patients have a 

higher risk before menopause [20, 21]. The frequent occurrence of KRAS and BRAF 

mutations in CRC, as KRAS expression can be mediated by estrogen receptor (ER) to 
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allow escape from cellular senescence [22] and BRAF overexpression often co-occurs 

with ER inactivation, and is associated with worse prognosis [23]. This evidence 

suggests a role for oestrogen playing a role in carcinogenesis and CRC treatment 

outcomes [24-26]. Environmental exposure to oestrogen and pseudo-oestrogens may 

partly explain age and sex associations with CRC risk [27-29]. 

There is evidence for fewer factors protective of RC than for colon cancers [30]. Red 

meat and processed food consumption are thought to increase colon cancer 

incidence but have weaker associations with RC [31]. The protective effects of 

exercise have been shown in CRC, but are still debated in RC [32, 33], with meta-

analyses providing conflicting results [34, 35]. The differences in the effect of exercise 

may be due to the underlying cause of disease. A mouse model was used to show 

that tumour occurrence could be reduced with exercise, but only when occurring 

before carcinogen exposure [36]. Due to the rectum's role as a storage organ, it is 

subject to continuous potential carcinogen exposure, which may make pre-empting 

carcinogen exposure with exercise less effective [17]. 

1.2 CRCs 

CRCs can be separated into hereditary or sporadic. Hereditary CRCs are a result of 

one or more mutations in multiple inherited genes. Well defined inherited 

syndromes are responsible for 2%–5% of CRCs, 25%–30% of cases have a family 

history of CRC, indicating a yet to be discovered link, and ~75% are sporadic (i.e., no 

identified inherited risk). Details of the incidence and conferred risk of hereditary 

CRC are summarised in Table 1.1 [37-43]. Hereditary conditions are conferred by 

autosomal dominant mutations, making familial history and genetic testing useful 

for early detection and potential risk for developing CRC [44]. 

Table 1.1. Hereditary CRC syndromes 

Disease Clinical features Gene involved 
Lifetime 

CRC Risk 

Percent of 

CRC 

Incidence 
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Familial adenomatous 

polyposis (FAP)  

Hundreds to thousands of 

adenomatous polyps in colon and 

rectum  

APC  100% 1% 

Hereditary non-polyposis 

colorectal cancer (HNPCC)  

Family history of CRC and other 

cancers  

hMLH1, hMSH2, 

hMSH6, hMSH3, 

hPMS2  

37.6%–

78.9% 
2%–3% 

Peutz–Jegher's syndrome  
Small bowel hamartomatous polyps 

in and peri-oral pigmentation  
LKB1, STK11  39%–57% 1% 

Juvenile polyposis  
Hamartomatous polyps in stomach 

and large bowel  

SMAD4, PTEN, 

BMPR1A  
39%–68% 1% 

Details from [45], [46] and [47]. 

Sporadic cancers are caused by somatic mutations occurring due to DNA damage 

from carcinogens and environmental factors, such as microbes capable of sulphate 

and nitrate reduction, genotoxins, smoking and sedentary lifestyles [48]. When a 

tumour develops below the sigmoid colon, it is termed RC, with adenocarcinomas 

being the most common form of sporadic cancers in the large intestine, originating 

from a gland-type cell. 

1.2.1 Diagnosis 

CRCs typically present with bloody stools and rectal bleeding, changes in bowel 

habits and abdominal/anal pain, which may prompt further investigation by a 

general practitioner, such as physical examination, faecal occult blood test (FOBT) or 

faecal immunochemical test (FIT) [49]. Approximately 70% of RCs are identified 

with a physical per rectum examination; however, additional testing is required such 

as sigmoidoscopy or colonoscopy, biopsies and radiological imaging to confirm the 

diagnosis [50]. Screening programmes have been developed for symptomatic 

individuals and those over 60 in New Zealand [51]. However, there is an increasing 

incidence in patients under 40 [18, 52], and many patients are asymptomatic [53, 54]. 

1.2.2 Histology and staging 

Histological grading of CRC is generally based on the proportion of glandular 

differentiation, although using cell cluster and glandular structure during grading is 
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also common [55]. Grading systems are still debated and updated regularly; 

however, there are variations in clinical interpretation and differences in institutional 

and national guidelines [52, 53]. 

Staging is performed via rectoscopy, trans-rectal ultrasound, and computer-aided 

tomography (CT) scan, while magnetic resonance imaging (MRI) is the most 

powerful imaging tool for staging, and for informing treatment and surgical options 

[56][50]. As the lower rectum's venous drainage bypasses the liver, lung nodules are 

more common than liver metastasis as a primary metastatic site, and chest CT or 

positronic electron emission (PET) scans are needed to detect suspected metastases. 

Accurate staging is crucial for discovering which patients are candidates for 

chemoradiotherapy before surgery [57]. CRC staging is performed using tumour 

stage (T), lymph node invasion (N) and metastatic status (M). T1 and T2 tumours are 

limited to the bowel wall, while T3 is characterised by infiltration into the mesorectal 

fat. T4 tumours have penetrated other structures, with T4a indicating invasion of the 

peritoneal reflection, while T4b indicates invasion into adjacent organs [51].  

Five-year survival rates in the USA for CRC are 92% for stage I, 65% and 87% for 

stage IIA and B, respectively, and 90%, 72% and 53% for stage IIIA, B and C, 

respectively, while for metastatic and stage IV CRC five-year survival rates are 12% 

[19]. For RC, the five-year survival rates are for stage I: 88%; stage IIA/B: 81% and 

50%, respectively; stage IIIA/B/C: 83%, 72% and 58%, respectively; and stage IV: 13% 

[19]. In NZ, colon cancer rates are as follows, stage I: 80%, stage II: 71%, stage III 

63%–50% (depending on nodal status), stage IV: 6%, and for RC are 65% and 10%, if 

metastatic [58]. The Australian Institute of Health and Welfare does not provide a 

distinction between colon and rectal cancers [59]; however for CRC, for stages I–IV 

the five year survival rates are 89%, 74.5%, 44.5% and 12.6%, respectively [60]. 

1.2.3 The rectum 

The rectum is the terminal point of the colon before the sphincter muscles. The 

rectum is in contact with luminal contents for more extended periods than other 
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parts of the bowel; its primary role is temporary storage for faeces before excretion. 

Therefore it is subject to high levels of metabolites and waste products from 

digestion and from the microbiome [61], which have been associated with 

carcinogenesis [62]. The rectum is supplied with blood from the interior, middle and 

superior rectal arteries. It is drained by the superior, middle and inferior rectal veins 

from the internal and external haemorrhoidal plexus which bypass the liver [63, 64].  

1.2.4 Prognostic markers for RC 

Prognostic markers used for RC survival are tumour stage, location, morphology, 

differentiation, lymph-node involvement, vascular or mesorectal invasion, and 

metastases. Advanced stage, poorly differentiated [65], mucinous, and signet-ring 

cell cancers [66] are associated with poor prognosis, while a greater distance from 

the anal verge is a positive prognostic indicator for surgical outcomes [67]. 

1.3 The microbiome 

A microbiome is the community of microorganisms living in a given environment 

[68]. The gut microbiome has the highest microbial abundance in the human body, 

with hundreds of species being present in individuals from a pool of potentially 

thousands across the human population. It contains more than 30 times the number 

of human genes and usually exists in a symbiotic relationship with the host [69]. 

Microbes can affect host health in many ways, from metabolic activities [70], to 

altering nutrient absorption [71], and immune functionality [72, 73]. The gut 

microbiome can be influenced by host genetics [74], diet [75], lifestyle [76] and 

medical interventions [77]. A pathological imbalance in the gut microbiome is called 

dysbiosis. Dysbiosis can have consequences for health, being associated with 

irritable bowel syndrome (IBS) [78], malnutrition [79], mental health [80] and cancer 

[81]. Microbes can produce a variety of beneficial metabolites in the gut [79, 82]. Of 

the most well studied are short-chain fatty acids (SCFA), such as butyrate, 

propionate and acetate, produced from metabolising dietary fibre [83]. Summary 
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data for faecal levels of SCFAs can be found in Table 1.2. SCFAs can have 

immunomodulatory, neuronal, and microbial regulatory effects [84, 85], and 

butyrate can be used as an energy source for colonocytes [86, 87].  

Table 1.2. Short-chain fatty acids in different populations 

Study Population and Diet Acetate Propionate Butyrate 

  (mg/g faeces) 

Fleming et al. [88] US; self-selected, low and high fibre 2.75 1.22 1.64 

  (mM faeces) 

Muir et al. [89] 
Simulated Australian 56.1 15 18.4 

Simulated Chinese 39.9 12.8 12.2 

Takahashi et al. [90] 
Japanese; self-selected 36 22.3 17.5 

Japanese; controlled 45.2 23.6 19 

  (mmol/kg faeces) 

Høverstad et al. [91] Norwegian; self-selected 37.3 12.5 12.4 

Table adapted from [92]. 

1.3.1 The microbiome and CRC 

The majority of CRCs are thought to be sporadic and lifestyle and environmental 

factors (such as microbiomes), likely play a role in their initiation [11]. Bacterial 

species such as Fusobacterium nucleatum, Bacteroides fragilis and Helicobacter pylori 

have been shown to affect carcinogenesis [93-95].  

1.4 Microbial carcinogenesis 

Members and activities of the microbiome may not be sufficient for carcinogenesis 

alone, as the Knudson hypothesis suggests that an underlying predisposition may be 

required [96], such as gene mutations or a diet that can be metabolised into 

carcinogenic compounds [97-100]. The gastrointestinal tract acts as selective 

environments with differing shearing forces, oxygen levels, and nutrients that lead 

to differences in the microbiomes between proximal and distal CRCs [101]. Nutrient, 
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metabolite and oxygen levels change throughout the gut and are spatially 

distributed, with oxygen levels being higher closer to the lumen wall [102]. Simple 

carbohydrates are taken up rapidly by the host and the microbiome, the latter of 

which can convert simple nutrients into complex metabolic products [103]. In this 

sense, the gut can be thought of as a complex Winogradsky column, with species 

cross-feeding on the preceding communities' metabolic products [104].  

The tumour microenvironment is separate from the lumen and is generally hypoxic, 

due to unrestricted cell growth, which in turn forces anaerobic glycolysis and selects 

for anaerobic microbes [105, 106]. Facultative anaerobes may also maintain the 

hypoxic tumour environment, impacting treatment efficacy [107]. 

A significant increase in the diversity in tumours compared to controls was noted in 

a study of RC tumour microbiomes, and the samples were clustered into two 

enterotypes [108]. The majority of samples were those dominated by Bacteroides and 

Dorea genera, and another group had elevated amounts of Pseudomonas and 

Brevundimonas [108]. Higher levels of anaerobic bacteria were found in tissues, which 

is consistent with other CRC tumour microbiome studies [109], while ectosymbiont 

Parcubacteria and the Planctomycetes phyla, were identified as possible biomarkers 

for RC [108].  

The differences in microbes in CRC tumours could also be due to each area of the 

intestine expressing different genes, and primary tumour location is known to 

impact treatment efficacy [110-112], with left-sided tumours having better survival 

rates than right-sided tumours [113]. The colonisation of tissues by microbes is 

reflective of the selective microenvironment, and therefore, could be used as a 

prognostic marker [93, 109].  

1.4.1 Models of microbiome involvement in CRC 

There are three primary models for how the microbiome can contribute to cancer: 

the driver-passenger model, the keystone species model and the oral origin model. 
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The ‘driver-passenger’ model suggested by Tjalsma et al. states that toxigenic 

species, known as drivers, are causative of the disease, providing the “first hit”. 

Those microbes that are selected for by the subsequent tumour microenvironment 

are termed passengers [114]. However, drivers in one context may be passengers in 

another, and the presence of passenger species may be indicative of later-stage 

cancers [115].  

The keystone species model describes an organism which can alter its environment, 

allowing the colonisation of subsequent species which capitalise on the altered 

environment and cause carcinogenic changes in the host [116]. The keystone species 

model is similar to the driver-passenger model in that particular microbes produce 

alterations to the microbiome. However, it differs in that driver species may become 

displaced by passengers as the environment changes, whereas a keystone species 

might not be displaced. 

The oral origin model suggests that oral species are potential initiators of 

carcinogenesis [117], e.g. Fusobacterium nucleatum and Porphyromonas gingivalis, 

Parvimonas micra, Peptostreptococcus stomatis, Gemella morbillorum, Leptotrichia 

trevisanii [118], Selenomonas sputigena [109], Lachnospiracea intertie sedis [119], 

Treponema denticola and Tannerella forsythia [93], originate from the oral cavity and 

have been implicated in carcinogenesis. These species may require an already 

dysbiotic environment to establish residence in the gut and generate a genotoxic 

effect, requiring biofilm generation that is prevented in a healthy gut environment 

[120, 121].  

One model could explain carcinogenesis in one individual, while another may 

explain carcinogenesis in another. These models are not mutually exclusive, as an 

oral microbe may be a ‘driver’ or ‘keystone species’ when established in the 

gastrointestinal (GI) tract.  
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1.4.2 Mechanisms of microbiome associated CRC development 

Microbial species can contribute to carcinogenesis by altering their environment, 

causing inflammation, increasing cancer risk. Besides, microbes can act directly on 

cells in the gut to cause carcinogenesis in various ways.  

E-cadherin is a part of cellular junctions that maintain cellular adhesion and 

epithelial barrier functionality and can have immune-modulating effects [122]. It is a 

common cellular target for microbial pathogens, allowing bacteria to adhere and 

enter cells, and manipulate host cell signalling [123, 124].  

Enterotoxigenic Bacteroides fragilis can produce the Bacteroides fragilis toxin (BFT), a 

metalloprotease that leads to cleavage E-cadherin [125, 126], leading to the 

accumulation of free β-catenin that acts as a co-activator of T cell factor transcription 

factor (TCF), and the transcription of genes in the Wnt signalling pathway, which are 

involved in cell growth and proliferation [127]. Additionally, Fusobacterium 

nucleatum produces FadA, an adhesion protein that also interacts with E-cadherin, 

modulating β-catenin signalling [128, 129]. Other microbes that are known to target 

E-cadherin are Campylobacter jejuni [130], Escherichia coli [131], Shigella flexneri [132], 

Helicobacter pylori [133], Pseudomonas aeruginosa, Serratia marcescens [134], Clostridium 

perfringins [135] and Enterococcus facium [136]. Reduced E-cadherin membrane 

expression and increased cytosolic E-cadherin are associated with higher vascular 

endothelial growth factor-A levels and predict poor survival [137].  

Other carcinogenic compounds are known to be produced by bacteria. Colibactin 

from E. coli can cause double-strand breaks in DNA [138], and sulfidogenic 

compounds, such as hydrogen sulphide produced by Desulfobacter, Desulfobulbus, 

Desulfotomaculum, and Desulfovibrio genera and Bilophila wadsworthia [139], have also 

been shown to be genotoxic [140]. 
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1.4.3 Inflammation, oxygen and microbiota 

Mucous is the primary physical protection of the intestinal epithelium. If this 

mucous barrier is compromised, the gut's epithelial lining can be directly affected by 

microbial metabolites and toxins. Some Bacteroidetes and Clostridia can limit 

inflammation in the gut by producing SCFAs, which can inhibit pro-inflammatory 

neutrophil activity, stimulate regulatory T cells (Tregs), and enhance the intestinal 

barrier via regulating tight-junctions [141-143]. Additionally, Clostridia can stimulate 

mucous production, protecting the intestine from inflammatory stimuli, and 

decreasing gut permeability [144].  

Inflammation in the gut due to dysbiosis can increase blood flow to the area, which 

increases oxygen in the lumen. The sudden influx of oxygen can further dysbiosis 

via overgrowth of bacteria capable of aerobic respiration such as Enterobacteriaceae, 

which can rapidly outcompete anaerobic commensal species which cannot compete 

in an oxygen-rich environment [145]. Additionally, tumour hypoxia is frequently 

encountered in the tumour microenvironment and may play a role in microbial 

selection [102, 105, 146].  

Continued inflammation allows microbes and microbial compounds to interact 

directly with the epithelial surface causing damage and increased inflammatory 

responses [147]. The damaged epithelial cells provide a source of phospholipids, that 

when metabolised, the carcinogens ammonia and acetal aldehyde are produced as 

byproducts [148, 149]. This reduced defence against lumen content, microbial 

compounds, and pathogen colonisation increase CRC risk [150].  

Biofilms are structures comprised of a matrix of polymeric substances such as 

polysaccharides that give bacterial communities microenvironments in which they 

are protected from shearing forces, immune responses, and antimicrobial 

compounds, enhancing their survival and growth by concentrating metabolites [151, 

152]. In the oral cavity, biofilms can cover teeth and sequester acids that allow the 

microbes to survive, but also cause tooth decay and carcinogenesis [153], as they can 
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concentrate carcinogenic compounds, concentrating their effects in a localised area 

[154]. When inside a biofilm, microbes exhibit different phenotypes that can quickly 

change, leading to diversity among otherwise homogenous communities [155], as 

biofilms can facilitate horizontal gene transfer (HGT) from one species to another 

[156], and concentrating quorum sensing homoserine lactones can trigger pathogenic 

gene expression [157]. 

Receptor interactions between bacterial cells allow the co-aggregation of multiple 

species within biofilms [158]. Biofilm-producing species from the oral microbiome 

appear in the gut and may have a role in the early-stage carcinogenesis [159], such as 

the cancer-associated Porphyromonas gingivalis, which has been identified in CRC 

tissue samples [93]. Other transient oral species such as Treponema denticola, F. 

nucleatum and Tanerrella forsythia can survive in the gut by forming these proxy-oral 

communities, sheltered from the general gut environment [160]. Additionally, 

Campylobacter showae, strain CC57C, has been shown to co-aggregate with a 

carcinogenic strain of F. nucleatum via adhesion proteins [109].  

Increased biofilms have been seen on CRC tumours in comparison to adjacent and 

healthy tissues, particularly on right-sided tumours, which are associated with poor 

prognosis [161]. These associations may be not causative of CRC but may simply be 

more prominent in the CRC environment. 

1.4.4 The microbiome of tumour tissues 

Healthy gut microbiome communities average ~160 species per person from a pool 

of more than 1150 characterised species [162]. Studies investigating the gut 

microbiome routinely use faecal samples; however, faecal microbiomes are not 

representative of tissue microbiomes [163, 164]. Therefore, studies using tissue 

samples may be more relevant for the study of treatment and pathogenesis, as many 

bacterial toxins rely on interactions with host-cell components, such as E-cadherin, to 

have pathogenic outcomes [123]. Despite this potential for radical diversity, the 

microbial communities of tumour tissues are dominated by four main phyla, 
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Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria [165]. Therefore, the 

discriminatory power of communities based on lower taxonomic classifications such 

as phylum is lacking, and distinctions need to be identified at the species, strain and 

functional metabolic level for microbiome-based phenotype classifications. 

Furthermore, certain microbial products are only produced by certain species within 

a genus, and strains within a species, i.e., Escherichia coli are common microbiome 

constituents; however, some strains are benign while others are capable of 

producing deadly toxins [166]. 

1.4.4.1 Diversity 

Alpha diversity is the diversity (i.e., number of different members) of members 

within an individual sample. Tumours have been found to have higher levels of 

alpha diversity compared to controls [108, 167-169]; however, some studies have 

found the opposite [170], or find the differences to be insignificant [119, 139, 171, 

172]. Alpha diversity has been reported as being higher in CRC than in adenomas 

[173], and lower alpha diversity has been reported in survivors of CRC, compared to 

non-survivors [174]. The significance of alpha diversity in different studies may 

reflect the cohorts used, study design and chosen diversity measures [175].  

Differences in tumour diversity may be more significant in different 

countries/regions [172]. Another factor is biopsy location, as demonstrated in one 

experiment, which took adjacent tissue from 5 cm and 10 cm distant from tumours, 

and found greater diversity in the 10 cm samples, although this was not statistically 

significant [119]. 

Taking the studies above into account, and according to a recent meta-analysis, 

alpha-diversity cannot reliably be used to distinguish between disease states [176]. 

Instead, distinct taxa within communities should be considered the relevant factors 

[176]. 
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Beta diversity as a measure of differences in composition between groups. Beta 

diversity distinguishing between differences in taxa between individuals, rather than 

comparing the level of different taxa within individuals as with alpha diversity. For 

example, beta diversity allows for the categorisation of samples into enterotypes, or 

defined microbial communities, such as was performed by Arumugam et al. in 2011 

[177], placing subjects into one of three broad clusters, based on 16S analysis of 

faecal samples. Enterotyping was also utilised by Thomas et al. [108] in which the 

majority of RC patients were separated from healthy patients into an enterotype 

categorised by higher Dorea and Bacteroides [108]. Additionally, a study by Sobhani 

et al. found significant beta diversity differences between healthy and CRC patients, 

and between healthy patients with and without high methylation of genes associated 

with CRC [178]. Beta diversity is a more useful measure of evaluating differences 

between the microbial communities of disease states, as it takes into account inter-

sample variability. 

1.4.4.2 Composition of the CRC tumour microbiome 

1.4.4.3 Phyla 

The most dominant phyla in tissues reported are Firmicutes, Bacteroidetes and 

Proteobacteria [93, 108, 167, 170, 172, 174, 175]. Fusobacteria is also found to be a 

predominantly abundant phylum [93, 108, 167, 171, 173-175], although not as 

frequently. Additionally, some studies find Synergistetes [170], Actinobacteria [108, 

172], Verrucomicrobia, and Parcubacteria (candidate phyla OD1) [108] as highly 

abundant phyla in tumour tissues. Lower abundance of Firmicutes [167, 171, 172, 

179], Bacteroidetes [121, 167, 171], Clostridiales [171], and Bacilli [121] have been 

reported in tumours compared to normal tissue, while Proteobacteria have been 

reported as both scarce [175] and enriched [167], in different instances.  
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1.4.4.4 Genera 

Across studies, more than 80 genera are reported as enriched in colorectal tumours, 

with varied support. Fusobacterium [93, 109, 119, 164, 167, 170-175, 179-182], and 

Bacteroides [93, 108, 119, 164, 170, 175, 181, 183] are the most widely reported. Genera 

found to be enriched and depleted in tumour tissues (compared to normal tissues) 

can be found in Table 1.3. 

There is often an overlap with the genera found to be enriched in tumours in some 

studies and depleted in others, such as Bacteroides [118, 167, 171, 173], 

Faecalibacterium, Kluyvera [179], Blautia, Alistipes [173], Parabacteroides, Ruminococcus 

[168], Sutterella, and Collinsella [173]. Taxa found to be decreased in tumours, without 

contradiction appear in the literature more rarely, implying that the tumour 

microenvironment contains substantial heterogeneity across populations, selecting 

for a variety of microbiomes in different circumstances. However, this may also 

indicate technical limitations of microbiome studies, for instance, where different 

taxa are omitted with different cut-offs for rarity or sampling differences. Genera 

reported to be enriched consistently, and those with conflicting reports of 

enrichment will likely provide the greatest insight into differences between tumour 

microbiomes. 

1.4.4.5 Species 

Some species have been identified as being enriched in tumour tissue, although due 

to difficulties in resolving to the species level generally, and particularly using 16S 

rRNA, these reports are less frequent in the literature and should be considered to be 

less accurate assessments. Species found to be enriched and depleted in tumour 

tissues can be found in Table 1.4.  

Species associated with the oral microbiome are reported to be enriched in tumour 

tissues. They tend to be anaerobic, have biofilm production and modification 

capability, are implicated in dental plaques and oral disease, such as periodontitis 
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[184, 185]. Oral species found in tumours include F. nucleatum [109, 118, 171, 174, 181, 

182] F. periodonticum [118, 181], Parvimonas micra, Peptostreptococcus stomatis, Gemella 

morbillorum, Leptotrichia trevisanii [118], Selenomonas sputigena [109], Lachnospiracea 

intertie sedis [119], Porphyromonas gingivalis, Treponema denticola and Tannerella 

forsythia [93]. Faecalibacterium prausnitzii, is commonly associated with good gut 

health due to its ability to produce butyrate [186]; however, it has been reported as 

being both enriched [174, 181], and decreased [118, 169, 173] in tumours. 
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Table 1.3. Genera reported as enriched and depleted in tumour tissues. 

Enriched (E) Depleted (D) Conflicting Reports 

Genera Ref. Genera Ref. Genera Ref. Genera Ref. 

Bulleida [172, 175] Paraprevotella [119, 175] Anoxybacillus [109] Alistipes E: [139, 164]; D: [173] 

Campylobacter [109, 172, 175] Parvimonas [164, 172, 173, 175, 180] Bacilli [121] Bacteroides 

E: [93, 108, 119, 164, 

170, 175, 181, 183]; D: 

[118, 167, 171, 173] 

Clostridium [93, 108, 121, 164, 175] Peptostreptococcus [164, 170, 175, 180] Citrobacter [179] Blautia 
E: [93, 119, 164, 169, 

181]; D: [173] 

Coriobacterium [172, 179] Porphyromonas 
[93, 115, 139, 164, 170, 172, 

175] 
Cronobacter [179] 

Faecalibacteriu

m 

E: [93, 164, 174, 181]; D: 

[179] 

Desulfovibrio [108, 175] Prevotella [93, 119, 169, 170, 175] Enterobacteria [179] Kluyvera E: [179, 183]; D: [179] 

Dorea [108, 181] Roseburia [93, 164, 168, 172, 179] Holdemania [109] Parabacteroides E: [108, 139]; D: [168] 

Gemella [170, 172, 173, 180] Selenomonas [93, 109] Microbacterium [109] Ruminococcus 
E: [121, 139, 164]; D: 

[168] 

Granulicatella [170, 180] Shewanella [164, 174] Pseudoflavonifractor [109]   

Haemophilus [170, 180] Staphylococcus [139, 169] Serratia [179]   

Leptotrichia [109, 173] Streptococcus [115, 119, 170-172, 175, 180] Shigella [179]   

Odoribacter [108, 139, 175] Treponema [93, 175] Sutterella [173]   

Fusobacterium [93, 109, 119, 164, 167, 170-175, 179-182] Veillonella [115, 170, 180] Collinsella [173]   
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Table 1.4. Species reported as enriched and depleted in tumour tissues. 

Enriched (E) Depleted (D) Conflicting Reports 

Species Ref. Species Ref. Species Ref. Species Ref. 

Aggregatibacter aphrophilus [171] Fusobacterium necrophorum [118, 181] Acinetobacter baumannii [171] Faecalibacterium prausnitzii 
E: [174, 181]; D: 

[118, 169, 173] 

Akkermansia muciniphila [169] Fusobacterium nucleatum [109, 118, 171, 174, 181, 182] Acinetobacter sp. [171]   

Bacteroides fragilis [108, 118, 174, 181] Fusobacterium periodonticum [118, 181] Alistipes putredinis [173]   

Bacteroides massiliensis [181] Gemella morbillorum [118] Bacteroides dorei [118]   

Bacteroides uniformis [108] Hafnia alvei [183] Bacteroides stercoris [118]   

Bilophila sp. [108] Lachnospiracea intertie sedis [119] Bacteroides vulgatus [118]   

Blautia coccoides [169] Leptotrichia hofstadii [109] Collinsella aerofaciens [173]   

Blautia sp. Marseille [181] Leptotrichia trevisanii [118] Enterobacter cloacae [171]   

Campylobacter showae [109] Methylobacterium suomiens [174] Fusobacterium mortiferum [118]   

Citrobacter freundii [183] Parvimonas micra [118] Fusobacterium necrogenes [118]   

Clostridium sensu strictu [119] Peptostreptococcus stomatis [118] Fusobacterium ulcerans [118]   

Comamonadaceae acidovrax spp. [119] Porphyromonas gingivalis [93] Fusobacterium varium [118]   

Coprococcus comes [181] Selenomonas sputigena [109]     

Dorea longicatena [181] Tannerella forsythia [93]     

Escherichia coli [183] Treponema denticola [93]     

Fusobacterium hwasooki [93]       
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1.4.5 Neoadjuvant treatment of RC 

The predominant treatment for RC is surgical resection, often with neoadjuvant 

chemoradiotherapy (nCRT). Neoadjuvant treatments are administered before surgery 

to shrink more advanced tumors in order to improve outcomes. These include 

chemotherapy, radiation therapy or hormone therapies. As well as the localised 

primary tumour effects, neoadjuvant treatments are used to control metastatic disease 

[187]. The main goal of neoadjuvant treatment in RCs is to reduce tumour mass before 

surgery to reduce the volume of tissue removed.  

1.4.6 Tumour regression grading 

Tumour regression grading (TRG) is a method of categorising the level of tumour 

regression after cytotoxic treatment, based on the relative amount of tumour remaining 

after therapy or level of fibrosis induced relative to the level of residual tumour. There 

are multiple systems for TRG, such as the American Joint Committee on Cancer (AJCC), 

Dworak, Mandard, and Ryan systems, as well as modified systems that take into 

account lymph nodes and primary tumour regression [188].  

Dworak TRG has five grades of regression: Four: complete regression where no residual 

tumour cells are seen, termed pathological complete response (pCR); three: near-

complete regression where very few tumour cells are seen; two: moderate regression 

where significant fibrotic changes are detected with few tumour cells or groups of cells; 

one: minimal regression where tumour cells are dominant with some fibrosis; and zero: 

where no regression is seen [189]. As Dworak scoring is the main method of regression 

scoring at Christchurch hospital, it was used for all patients throughout this thesis. 
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1.4.7 Adjuvant chemotherapy 

Capecitabine is a chemotherapy drug which is the currently prescribed prodrug of 5-

fluorouracil (5-FU). 5-FU is a uracil analogue with an attached fluorine atom, which 

once converted from the prodrug capecitabine, can be converted into three downstream 

metabolites that poison the available pools of uracil and thymine, which interrupts 

proper DNA and RNA synthesis. The incorporation of these analogous metabolites 

causes double-stranded breaks and improper DNA replication and RNA transcription, 

interrupting the cell cycle and leading to apoptosis.  

Normally, uracil is modified with a methyl group by thymidylate synthase (TS) to be 

converted into thymine. Fluro-deoxyuridine monophosphate (FdUMP) inhibits TS, 

preventing thymine conversion from uracil. 5-FU is converted into fluorodeoxyuridine 

triphosphate (FdUTP) and interferes with DNA synthesis when used in place of 

thymine. Additionally, conversion into fluorouridine triphosphate (FUTP) is used in 

place of uracil to inhibit RNA formation. 5-FU may cause hepatic toxicity; however, 

approximately 80% of the conversion process occurs in the liver, which is the primary 

location for colorectal metastases [190]. Despite this, even with severe liver dysfunction, 

it is considered effective and safe compared to other therapies [191]. 

Capecitabine has mostly replaced intravenous 5-FU due to its improved safety and 

efficacy profile [192]. It is the mainline drug used in nCRT for CRC treatment in NZ, 

and it can be used as an adjuvant monotherapy therapy and radiosensitiser, with tablets 

being taken on the day of radiotherapy treatment. The standard dose is 1250mg/m2 and 

is associated with several adverse events such as nausea, diarrhoea, vomiting, stomatitis 

(inflammation of the mouth and lips, which may result in ulceration), hand-foot 

syndrome, which results in tingling, numbness, and broken skin and ulceration of the 

hands and feet. Additionally, polymorphisms and copy number variation of the TS 

gene can lead to tumour resistance and patient oversensitivity [190].  
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Leucovorin is often included in a 5-FU therapy to mitigate the negative impact 5-FU has 

on healthy tissue by acting as a folate supplement, a precursor for thymine.  Leucovorin 

has also been shown to improve treatment and survival outcomes by increasing the 

pool of tetrahydrofolate, which can be utilised for TS inhibition and 5-FU metabolite 

synthesis [193]. The frequent lack of tolerance to the drug can often lead to patients 

ceasing their treatment early. Combination chemotherapies include FOLFOX 

(leucovorin, 5-FU and oxaliplatin) and FOLFIRI (leucovorin, 5-FU, irinotecan). Post 

initial treatment and surgery, a combination chemotherapy regimen of capecitabine and 

cisplatin (CAPOX) is often used to prevent or treat recurrence, with or without 

additional radiotherapy [194, 195]. 

1.4.8 Radiation therapy 

Radiation therapy involves using ionising radiation via linear energy transfer (LET) to 

kill cancer cells and has been used for this purpose since 1896, soon after x-rays were 

first discovered, although the mechanism of action was not understood at the time 

[196]. Approximately 50% of all cancer patients will receive radiation therapy during 

their treatment, particularly for non-operable cancers and palliative treatment [197].  

CRC patients receive short-course radiation over five days or long-course radiation over 

several weeks. The benefit of short-course radiation is that it can be delivered quickly in 

palliative care scenarios, or for patients with low tolerance to the treatment. A 

retrospective study of 28,193 non-metastatic RC patients receiving short- or long-course 

radiation found no statistically significant benefit of long-course over short-course 

radiation; however, it was found that a longer interval between therapy and surgery 

correlated with higher pathological complete response (pCR) rates [198].  

The primary mechanism of action for RT is causing damage to the cells and DNA of 

tumour tissue via direct damage to the DNA, or through LET ionising water molecules 
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in the cell, generating reactive oxygen species (ROS), which in turn damage DNA or 

proteins required for critical cell functions, resulting in cell cycle cessation, and cell 

death [197].  

Paradoxically, therefore, a lack of water in combination with tumour hypoxia, which 

would otherwise hinder the growth of tumour cells, are significant factors that can 

reduce the effectiveness of radiotherapy, and is thus an area of significant research 

interest [199-205]. Hypoxic conditions occur due to a lack of proper blood supply and 

increased metabolism and cell division which rapidly depletes available oxygen [105].  

As with many cancer therapies, radiotherapy impacts both tumour cells and healthy 

tissues of the patient, causing adverse side effects such as fatigue, mucositis, intestinal 

breakdown, gastrointestinal symptoms, bleeding, and changes in appetite, which are all 

associated with poor outcomes and quality of life reductions [206, 207].  

1.4.9 Surgery 

The surgical approaches post RT are usually limited resection of the malignant tissue or 

total mesorectal excision (TME) for advanced and invasive cancers [208]. Rates of good 

surgical outcomes and avoidance of temporary and permanent stoma differ between 

the sexes, principally due to anatomical differences between the musculature of 

respective pelvic floors [209, 210]. Additionally, the female colon is longer on average, 

with shorter anal canal and rectum than males, which may contribute to more 

significant surgical complications during resection and increased rates of stoma in older 

females [211, 212]. Stoma implementation can cause psychological issues and sexual 

dysfunction in both sexes [213, 214]. 
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1.4.10  Prognostic markers of response to neoadjuvant treatment 

The optimal result of neoadjuvant treatment is a pCR or complete regression. However, 

this outcome occurs only for approximately 10-25% of patients [215], with some studies 

reporting rates lower than 1% [216].  

Predictive markers for pCR is a field of research attracting significant attention. Clinical 

features also have predictive value for neoadjuvant treatment outcomes, such as 

tumour size, distance from the anal verge, nodal involvement, the time between nCRT 

and surgery, pre-treatment serum carcinoembryonic antigen (CEA) levels, 

differentiation, and macroscopic ulceration [217, 218].  

1.4.11  Molecular prognostic markers 

There are no predictive molecular biomarkers for nCRT response that have been 

validated for clinical use [219]. However, potential molecular markers for response to 

therapy include mutations and copy number of oncogenes. The roles of PT53, KRAS, 

BRAF and PIK3CA as prognostic markers in nCRT is not definitive, with some studies 

showing no association [220-222], while other researchers have shown positive 

associations with response to nCRT [223], such as wild-type PT53 gene being associated 

with a more significant response to nCRT [224]. It is speculated that these results may 

be due to the location of mutations in these genes, indicating that taking a personalised 

approach to research and treatment may provide better outcomes for some patients 

[225, 226].  

Groupings of tumours with common factors, such as the consensus molecular subtypes 

(CMS) [227] may be more informative [228-230]. Subtypes such as those exhibiting 

hypermethylation of DNA and chromosomal instability [231, 232] have proved the most 

informative in RCs. Gaedcke et al. found ten differentially methylated regions which 

were predictive of disease-free survival (DFS) [233] while Murcia et al. found higher 
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genetic instability associated with a greater response to nCRT [232]. Alternatively, as 

suggested by Ma et al., continuous subtypes may provide more reproducible results in 

terms of prognosis, stage, and grade using transcription data than the discrete 

subtyping CMSs provide [234]. 

Many differentially expressed genes have been associated with response to therapy, a 

summary of which can be found in Table 1.5. An increase in XRCC3 (x-ray repair cross-

complementing protein), a gene involved in DNA repair, has been associated with 

nCRT resistance [235, 236]. Karagkounis et al. showed that between responders and 

non-responders, decreased neuronal pentraxin-2 (NPTX2) expression in tumours was 

associated with an increased response to nCRT and DFS [237]. Differential expression of 

the zinc finger protein ZNF160, Helicase For Meiosis 1 (HFM1), additional sex combs-

like protein 2 (ASXL2), aldo-keto reductase family 1 member C3 (AKR1C3), C-X-C motif 

chemokine ligands (CXCL9–11), indoleamine dioxygenase-1 (IDO1) and matrix 

metalloproteinase-12 (MMP12) have also been used to discriminate between response 

groups, with varying accuracy [238]. However, these genes are not used clinically for 

routine screening. 

Table 1.5. Summary of genes thought to be involved in therapy response. 

Gene Name Function Ref. 

XRCC3 
X-ray repair cross-

complementing 3 

Member of the RecA/Rad51-related protein family, participate in 

homologous recombination to maintain chromosome stability and repair 

DNA damage. 

 [235, 

236] 

NPTX2 Neuronal pentraxin 2 

Involved in excitatory synapse formation and plays a role in the 

clustering of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid (AMPA)-type glutamate receptors at established synapses, 

resulting in non-apoptotic cell death of dopaminergic nerve cells. 

[237]  

ZNF160 Zinc finger protein 160 Zing-finger protein and may function in transcription regulation. [238]  

HFM1 Helicase for meiosis 1 ATP-dependant DNA helicase expressed mainly in germ-line cells. [238]  
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ASXL2 ASXL transcriptional regulator 2 

Epigenetic regulator that binds histone-modifying enzymes involved in 

assembly of transcription factors. Mutations in this gene have been 

associated with cancers across several tissue types. Has a role in 

neurodevelopment, cardiac function, adipogenesis and 

osteoclastogenesis. 

 [238]  

AKR1C3 
Aldo-keto reductase family 1 

member C3 

Member of the aldo/keto reductase superfamily. Catalyses reduction of 

prostaglandins, phenanthrenequinone and oxidation of 9-alpha,11-beta-

PGF2. May play a role in allergic diseases and controlling cell growth 

and differentiation. 

 [238]  

CXCL9 C-X-C motif chemokine ligand 9 
Antimicrobial gene involved in T cell trafficking. Is a chemoattractant 

for lymphocytes. 
[238]  

CXCL10 
C-X-C motif chemokine ligand 

10 

Antimicrobial gene, stimulates monocytes, NK and T cell migration and 

modulation of adhesion molecule expression. 
[238]  

CXCL11 
C-X-C motif chemokine ligand 

11 

Antimicrobial gene, induces a chemotactic response in activated T cells, 

and is the dominant ligand for CXCLR3 and is induced by INF-γ. 
 [238] 

IDO1 Indoleamine 2,3-dioxygenase 1 

Catalyses the rate-limiting step in tryptophan catabolism. Thought to 

play roles in antimicrobial and anti-tumour processes, neuropathology, 

immunoregulation, and antioxidant activity. Expressed in dendritic 

cells, monocytes and macrophages and modulates T cell behaviour. 

[238]  

MMP12 Matrix metallopeptidase 12 

Involved in the breakdown of extracellular matrix. Degrades soluble 

and insoluble elastin and may play a role in aneurysm formation, and 

mutations in the gene are associated with chronic obstructive 

pulmonary disease. 

 [238] 

 

1.5 Microbial and immune interactions with neoadjuvant treatment 

When treating cancers, the microbiome is being increasingly shown to have 

consequences for cancer treatment. The microbiome has been shown to affect 

immunotherapy, chemotherapy, and radiation therapy [239-241], particularly in CRCs 

[242].  
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1.5.1 Chemotherapy 

During 5-FU treatment, folate metabolism is a crucial factor due to its role in thymine 

and uracil synthesis [243, 244]. The gut microbiome is known to impact the uptake of 

metabolites [71] and research using a Caenorhabditis elegans model has demonstrated 

folate uptake is modulated by E. coli and can alter the lifespan of the host, independent 

of supplementation [245, 246]. The role of microbiota in the treatment of cancer with 5-

FU was investigated with live bacteria, and different strains of live E. coli were found to 

impact the efficacy of 5-FU [211]. Many different strains of E. coli are prominent in the 

gut microbiome and have been shown within CRC tumour tissues [109, 183, 247].  

Irinotecan, another drug used for CRC treatment, is deactivated by the liver via 

glucuronidation. It has been shown that when re-entering the intestine through the bile 

duct as waste, it can be reactivated by microbial β-glucuronidases [248]. This conversion 

increases the drug's toxicity and exacerbates side effects like diarrhoea, which affect the 

majority of CRC patients [249].  

1.5.2 Radiation therapy  

Radiation kills cells by using large amounts of energy in a targeted area to damage 

membranes, proteins and DNA by generating free radicals and ROS. As cells die, they 

release pro-inflammatory and immunostimulatory molecules which attract more 

immune cells to the site. The abscopal effect can also be induced, which produces a 

systemic immune response to distant malignancies with radiotherapy, in addition to 

localised effects [250]. The microbiome's role in radiation therapy outcomes and related 

immune interactions has been gaining attention in the research space [242]. 

One of the main side effects of nCRT therapy, particularly when used in areas 

containing mucosae, such as the oral cavity or pelvic region, is mucositis. Mucositis 

symptoms include pain, ulceration, bleeding, nausea vomiting diarrhoea and 
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constipation [251], which leads to reduced quality of life and poorer outcomes for 

patients [252]. Mucositis has been associated with upregulated expression of pro-

inflammatory cytokines IL-1β, IL-6, and tumour necrosis factor (TNF) [253]. The 

microbiome has been implicated in increasing severity of mucositis, with reported 

increases of Enterobacteriaceae and Bacteroides, and decreases in health-associated 

Bifidobacterium and F. prausnitzii [254]. 

As mentioned in a previous section, E-cadherin is a common target for numerous 

microbes and may have an immune-modulating effect [123]. The association of E-

cadherin expression with survival may be immunologically mediated, as it has been 

demonstrated that E-cadherin adhesion disruption causes dendritic cells (DCs) to 

mature to a regulatory phenotype, rather than an antigen-presenting effector phenotype 

[122], leading to enhanced tumour progression, lack of T cell proliferation, and 

microbial persistence [255]. 

E-cadherin mediated maturation of dendritic cells is impactful, as DCs are antigen-

presenting cells that act as a central regulator of immune activity. DCs are capable of 

uptaking and presenting antigens for CD8 and natural killer (NK) cells to target. This 

factor is exacerbated by the immunosuppressive effects of radiation on dendritic cells, 

causing continued release IL-10 and becoming less effective at priming T-cells [256].  

1.6 Microbiome sequencing and analysis 

Sequence analysis pipelines involve data processing (quality control and sequencing 

trimming), analysis and statistical validation. With advances in Next-Generation 

Sequencing (NGS), throughput has increased dramatically, and the cost has decreased 
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considerably (Figure 1.1).

 

Figure 1.1. The Carlson Curve. Demonstrating the cost of sequencing over time. Image sourced from National Human Genome 

Research Institute (www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost) 

The first sequencing experiments involved fragmenting sequences and transforming 

them into a bacterial artificial chromosome (BAC) to be amplified as the bacterial 

population that contains it multiplies [257]. Alternatively, Sanger sequencing is a low 

throughput method, that involves binding fluorescently tagged nucleotides to a 

template sequence, which are then used to generate a digital sequencing read via 

fluorescence detection [258].  

Using modern NGS techniques, higher throughput options are available. With millions 

of sequence reads being produced from template sequences directly with synthesis-

based methods such as bridge amplification used in Illumina sequencers, or non-

synthesis-based methods like Oxford Nanopore Technologies (ONT) long-read 

sequencing.  
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In this thesis, RNA-Seq was performed using Illumina sequencing, 16S rRNA 

sequencing was performed using amplicon sequencing on an Illumina platform, and 

ONT sequencing was carried out on the GridION 5X. RNA-Seq was used for host and 

microbiome analysis of transcribed genes, while 16S rRNA and ONT sequencing were 

used only to analyse the microbiome. 

1.6.1 Illumina sequencing 

Illumina sequencing has evolved considerably since its inception, with the MiSeq, 

HiSeq and most recently, NextSeq and NovoSeq platforms now available. The principal 

difference between Illumina sequencing and other technologies is the employment of 

bridge amplification [259]. This process involves binding primers to nucleotide 

sequences, which are then attached to adapters that allow binding to a flow cell. The 

sequences are separated into a single strand, and the bound sequences are then 

supplied with raw nucleotides with fluorescent tags, which produce signals when 

incorporated during synthesis. These signals can then be interpreted and recorded as 

the supplied strand is sequenced, which provides a digital sequencing read. The 

synthesised double strand is then separated again, rebound, and sequenced again, thus 

amplifying the original sequence repeatedly. 

1.6.2 Oxford nanopore long-read sequencing 

ONT sequencing is a relatively new, non-synthesis-based method [260]. The reads can 

be up to a million base pairs long; however, they carry an inherently high error rate, 

which is decreasing over time with the introduction of new tools and technology [261].  

New tools for aligning sequences that incorporate ONT reads efficiently are becoming 

more widely available [262-264]. These tools often work a lot faster than traditional 

sequence aligners as the query sequence tends to be much larger unbroken sequence 

and can thus match to fewer places on a reference genome. The errors in ONT reads are 
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most common in homopolymeric repeat regions. Algorithms can be designed to 

compress homopolymeric regions into homopolymer compressed mers (HPC), allowing 

the algorithm to map long reads to a reference very rapidly; however, HPCs reduce 

ONT read sensitivity for some applications [265]. 

1.7 Sequencing techniques and methods 

1.7.1 Amplicon sequencing 

Amplicon sequencing is a process by which a region or sequence of interest is amplified 

exponentially using polymerase chain reaction (PCR) and sequenced at high depth, 

allowing for greater discriminative analysis of a region of interest, such as universally 

conserved genes like 16S rRNA or cpn60 for identifying bacteria and assessing 

phylogenetic relationships [266], or for genotyping analysis [267]. High read depth is 

required for variation analyses to avoid spurious conclusions from sequencing errors, 

with the recommended depth to be approximately 100–300x depending on the sample 

type and the study design. Read depth is essential when analysing single nucleotide 

polymorphisms, where many reads of the same region are required to identify single-

base differences and separate these from potential sequencing errors [268].  

1.7.2 Shotgun sequencing 

Shotgun sequencing is a short read sequencing technique that refers to sequencing all 

available nucleotides in a query sample. As an agnostic method of sequencing, it does 

not use any selection method or selective discrimination, sequencing everything in a 

given sample, thus reducing bias in downstream analyses. However, a downside of this 

method is that the resulting sequencing is less targeted and does not provide control 

over which reads are sequenced, resulting in low read number and depth of regions of 

interest, and a less informative analysis [269]. Shotgun sequencing is used less often 

than amplicon sequencing for microbiomes due to increased computational complexity, 
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reduced microbial specificity (leading to a reduced ability to measure abundance 

accurately), and experiments investigating tissue microbiomes (i.e., tumour biopsies) 

the resulting sequencing data contains mostly host sequences. 

1.7.3 Sequence alignment 

A primary step in genetic analysis of all kinds is alignment. The generated sequence 

reads are mapped or aligned to a reference genome, allowing comparison of the 

sequenced reads and the reference, giving insight into changes between the reference 

and subject for variation analysis. Alignment software can take into account the 

presence of insertions, deletions and fusions with tools like TopHat2 [270], or be built 

for speed, with efficient splice aware alignment such as with STAR which allows RNA 

to be aligned to genomes taking into account the location of intergenic regions [271]. 

ONT sequencing data requires specialised algorithms. One such tool is MiniMap2 

which can leverage the longer read length to quickly map reads to a reference genome 

and tolerate the ~15% error rate that is common in ONT reads, this is because longer 

reads and increased query sizes give the ability to skip over repetitive homopolymeric 

regions more easily [263].  

1.8 Transcriptomics 

RNA sequencing is used to research active gene expression or transcription, a field 

known as transcriptomics. By analysing the RNA present in a sample, researchers can 

discern which genes are being transcribed or are in active use in the sample under 

certain conditions. A standard method of performing gene expression experiments is 

subjecting cells or isolates to different stimuli to determine which genes are expressed 

and in what amount; the method is often used to determine the effects of treatments in 

both in vivo experiments samples taken from case and control patients. Transcriptomics 

requires annotated sequences, assignment of a gene name to identify it and a function, 
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predicted or known via experimentation; RNA function is predicted based on what is 

known about similar sequences [272]. 

The advantage of transcriptomics in studying the microbiome is that it can be used to 

analyse microbial activity and not just abundance; however, this provides additional 

challenges. Bacterial genomes are not always well-annotated and frequently contain 

errors [273]. There is genetic similarity between species and differences within species 

[274], as well as the complicating factor of horizontal gene transfer, which allows 

microbes to express genes that are not originally part of their genome [275], thus 

making discriminating between microbial species using transcriptomics or assigning 

function to transcripts accurately, particularly difficult. 

1.8.1 Gene set expression analysis 

Gene set expression analysis (GSEA) can computationally determine the statistical 

significance of differences between different biological states or phenotypes. Profiles 

built from gene expression data are compared to a gene set database or genome 

annotations to determine which genes are being expressed and at what level. Many 

tools and methods are available for gene expression analysis, such as the GSEA tools 

built by the Broad Institute which utilises the molecular signatures database (MSigDB) 

[276] containing more than 22,500 annotated human genes in the latest release. Other 

commonly utilised databases include gene ontology (GO) [277], the Kyoto Encyclopedia 

of Genes and Genomes (KEGG) [278], and MetaCyc [279]. 

GSEA software first defines a baseline to compare genes by their level of expression, 

then uses increases or decreases from this point to determine the increase or decrease in 

expression of other genes [276]. Differentially expressed genes are given an enrichment 

score and ranked based on how distant from the centre they are. 
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Hypothesis testing by Student’s t-tests, Welch’s t-test, paired t-tests, analysis of variance 

(ANOVA), or linear models are carried out on the results to determine the results' local 

significance. Local significance is a test of the strength of gene associations with the 

phenotype or state, while other methods additionally use global tests, which are used to 

compare the calculated associations, such as Wilcoxon rank-sum, Fisher’s Exact and 

Pearson’s Chi-squared tests [280]. 

1.8.2 Immune infiltration 

Tumour heterogeneity affects not just the genetics of cancer cells but also the cells 

which comprise a tumour. Other cells in the tumour microenvironment include 

fibroblasts, vascular cells, stem cells, adipocytes, pericytes and immune cells [281]. 

Transcriptomics can be used to identify cell types by their associated gene expression, 

which allows the determination of the proportion of tumour cells compared to stromal 

or immune cells in a tumour. Tools such as ESTIMATE provide a score for the 

proportion of different cell types in the tumour microenvironment using gene 

expression data [282].  

Additionally, the different immune cells present can be further scrutinised by profiling 

individual immune cell gene expression to determine the subpopulations of immune 

cells and their level of activity or stage of maturation. Software like xCell [283] and 

CIBERSORT [284] use gene expression data and compare it to databases of gene 

expression profiles associated with different cells, allowing discrimination between 

different immune cell subpopulations, such as M0, M1 or M2 macrophages. 

1.8.3 Transcriptomic analysis tools 

Similar to DNA sequencing, RNA can be aligned to a reference genome or 

transcriptome. RNA alignment can be done effectively for single organisms with Bowtie 

[285], STAR [271], or with BWA (Burrows-Wheeler Alignment) [286], or gene 
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quantification software can be used, such as Salmon [287]. Software specifically 

designed for RNA sequencing is required for alignment, as algorithms need to consider 

features unique to RNA-seq such as splicing, coding regions, and uracil nucleotides, 

which are not present in genomic sequences [288]. Splicing in human RNA is common, 

but not in prokaryotes. Splicing allows a single transcribed RNA to be processed into 

many different forms depending on which introns are excised and thus altering their 

function. Splice aware aligners such as STAR are built to handle the RNA transcripts 

generated from the genome and map them accurately to the reference genome. 

Typically, rRNA depletion is used before sequencing to prevent excessive rRNAs 

sequencing, which would otherwise comprise a substantial proportion of sequencing 

reads than are not phenotypically informative, reducing read depth of informative 

genes. However, this is often an incomplete process and can have drawbacks when 

applying RNA-Seq for microbial identification. 

1.9 Metagenomics 

Metagenomics, is an interdisciplinary field of study for the investigation of microbial 

communities using genetic sequencing, involving methods and concepts from 

immunology [73, 289, 290], microbiology [291], genetics [292, 293], ecological [294] and 

computer science [295, 296]. Many species have proven difficult to culture due to 

undiscovered metabolic and environmental needs, the limitations of culturing for 

microbial identification, lead to research focusing on genetic analysis [297-300]. 

Sequencing the DNA or RNA of microorganisms is a method for studying 

microorganisms culture-free. With advancements in sequencing techniques, such as 16S 

rRNA analysis, transcriptomics and whole-genome sequencing, sequencing has become 

a standard bacterial classification method. Additionally, metabolomics is often used to 

detect and study the metabolites produced in a sample, typically using liquid or gas 

chromatography, to augment metagenomic studies [301].   
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Metagenomic microbiome analyses use the extracted and sequenced nucleotides 

present in a sample to assess the microbial community present [302]. One of the most 

significant hurdles in the field is the data analysis bottleneck, as data is being produced 

much faster than it can be analysed [303]. 

Amplicon sequencing discrete genomic regions can improve the speed of analysis and 

reduce computational requirements by restricting the analyses to the most biologically 

conserved or informative data [303]. Marker genes like 16S rRNA in bacterial and 

archaeal analysis and internal transcribed spacer (ITS) regions for analysis of fungi are 

most often used for taxonomic assignment, as they are well conserved across species 

[304]. Heavily conserved genes can be used to construct phylogenetic relationships 

between organisms using the slowly acquired variability between them, which results 

in a reliable phylum to genus level taxonomy. However, variability in conserved genes 

is often less apparent between species that are more recently evolutionarily separated, 

making precise species identification within metagenomic samples challenging.  

1.9.1 16S rRNA amplicon sequencing 

The 16S rRNA gene is the most commonly sequenced marker in bacterial 

metagenomics, used to measure the abundance of identified microbes. The transcribed 

gene is part of the small ribosomal subunit, the 16S denoting a Svedberg number, 

indicating how quickly it would sediment during ultracentrifugation. Ribosomes are 

present in all species and critical for protein synthesis, making their loss or rapid 

alteration over evolutionary time, unlikely.  

The 16S rRNA gene is useful as it often exists in multiple copies in the genome, 

containing conserved regions critical for function, which flank nine variable regions that 

can tolerate minor changes that can differentiate between organisms based on 

evolutionary divergence. A significant advantage of 16S rRNA sequencing in 
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microbiome metagenomic analysis is that primers are specific to prokaryotes, reducing 

the potential for host sequencing contamination. 

Initially, a technique to separate the 5S rRNA gene by separating it from mixed samples 

with electrophoresis was utilised in the 1980s; a phylogenetic analysis was performed to 

determine the evolutionary distance between sequences. This method proved useful for 

analysing unculturable species from extreme environments, such as hydrothermal vents 

[305]. Using the 120bp region of 5S rRNA had its limitations, as electrophoresis was 

needed to separate the gene from other molecules, limiting the process to low 

complexity samples.  

It was suggested that larger genes could be used to increase the fidelity of the 

technique, such as the 23S rRNA gene; however, at approximately 3000bp, it would be 

time-consuming to analyse [306]. The 16S rRNA gene is approximately half the length 

and was easier to analyse. The initial method involved making a DNA library in 

bacteriophage, allowing them to replicate, and using a 16S rRNA specific probe to select 

clones, which could then be phylogenetically analysed [307]. With PCR, this labour-

intensive process could be sped up by amplifying only the variable regions of interest 

using known priming sites in flanking conserved regions [308, 309]. 

1.9.2 16S rRNA analysis 

The most commonly used tools and pipelines for 16s rRNA analysis are mothur [310], 

UPARSE [311], DADA2 [312], and QIIME [313]. QIIME remains the most common 

despite it being no longer supported by the developer, while its successor QIIME2 is 

available with a graphical user interface, it is more computationally intensive still lacks 

some of the functionality of the original [313, 314].  

R packages can be easily combined with these pipelines, such as data visualisation 

tools, included as part of a pipeline or by linking into other R packages such as ggplot 
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[315], phyloseq [316], and vegan [317]. More recently, Kraken2 has gained support for 

16S rRNA analysis, with the authors suggesting it is faster and more accurate than 

alternatives [318]; however, this has not been independently tested.  

1.9.3 16S classification strategies 

Using the software mentioned above, the primary method for assigning taxonomy to 

16S rRNA data is to cluster variant genomic regions into operational taxonomic units 

(OTUs). These can be constructed de-novo or against a closed reference. An issue with 

de-novo OTU picking is that the resulting OTUs are clustered relative to the others in 

the sample (with a similarity threshold of 3%), further limiting species-level 

identification and making them incomparable between sample sets. Alternatively, 

closed reference OTU picking involves comparing sample sequences to a reference 

database. This approach's downside is that the taxa being investigated must be present 

in the database, and the same reference database used between studies for results to be 

accurately compared [319]. However, the choice of a reference database for comparative 

purposes may lead to the use of inaccurate or out of date databases, such as the widely 

utilised GreenGenes (GG) database, last updated in 2013 [320-323]. 

Amplicon sequence variants (ASVs), produced by DADA2 and qiime2 [324] were 

developed to overcome the shortcomings of OTU picking [319]. They use no arbitrary 

dissimilarity threshold. They infer the biological reality in the sample before sequencing 

and take into account amplification errors. Studies show that ASVs can be more 

sensitive than OTU picking and better discriminate between ecological patterns in the 

environment [312, 325]. ASVs provide a higher resolution taxonomy assignment due to 

distinguishing between single nucleotides, rather than by overall sequence similarity 

[326], allowing more reliable assigning of sequences to the species level [327]. ASVs can 

also be used in other analysis pipelines, such as QIIME, where feature tables can be 

populated with ASVs in place of OTUs.  
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1.10 Metagenomic shotgun sequencing 

Metagenomic shotgun sequencing has advantages over 16S rRNA amplicon sequencing 

in that it can produce longer reads that are more useful for species detection and gene 

prediction [328]. Also, host DNA in a sample can be used to genotype the host at the 

same time as the microbial component, allowing for the simultaneous assessment of 

host-microbiome combinatorial phenotypes [329, 330], assuming appropriate read 

depth can be achieved.  

Colonisation potential, drug interactions, the presence of pathogens and polymicrobial 

signatures can be investigated, which can inform diagnosis, treatment, probiotic and 

prebiotic applicability. Additionally, discriminating between host and microbial reads 

bioinformatically is preferable to enriching the microbial community and remove host 

sequences before sequencing, which may introduce bias to the analysis [329, 331-333]. 

1.10.1  Taxonomic assignment with shotgun sequencing data 

With massive datasets being produced more routinely, more efficient methods for 

processing data are needed. Utilising k-mers makes it possible to use data containing 

sequences from multiple organisms and rapidly classify them. Many k-mer based 

classification tools are available for metagenomics, including 16s rRNA data [334] and 

single-threaded options [335]. One of the most popular options is Kraken [336]. While 

the Kraken successor, Centrifuge, was faster and required lower computational 

resources due to database compression, it had lower accuracy [337] and was ultimately 

superseded by Kraken2 [338].  

The major hurdle with k-mer based metagenomic classification is constructing 

databases, as publicly available databases are often generalised or severely out of date. 

Construction of a custom database requires more computational resources than are 
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required to utilise them; this requirement increases with the number of taxa used in an 

index, leaving them out of reach for many researchers [339].  

1.10.2 Meta-transcriptomics 

16S rRNA amplicon sequencing is used to answer questions of microbial abundance, 

‘How represented are microbes in the community?’, while meta-transcriptomics is used 

to measure the activity of microbes, ‘What are these microbes doing?’. Transcriptomics 

is used to infer what proteins are produced in a cell, in different environments or 

conditions [272]. Protein-coding genes are well enough conserved to allow for high-

resolution taxonomic assignment with RNA-Seq data [340].  

Software that can be used for this classification type are DIAMOND [338] and Kaiju 

[339], rapidly assigning sequences to taxa using translated protein databases. For 

instance, Kaiju has the advantage of providing accession numbers for the gene/protein 

of the aligned sequence, if the associated reference has been annotated, allowing for 

gene expression analysis at a community level. However, annotation of prokaryote 

genomes is incomplete and sometimes unreliable due to lineage trends [341], leading to 

homology-based automated annotation using software such as Prokka resulting in 

significant hypothetical proteins and unannotated regions [342, 343].  

1.11 Thesis hypotheses and aims 

This thesis's main aims were to investigate the bacterial and host factors associated with 

chemoradiotherapy outcomes and determine which could be used as predictive 

prognostic indicators. 

My hypotheses are that: 
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(i) Residual host reads interfere with the accuracy of taxonomic assignment 

in tissue microbiome analysis. 

(ii) Microbiomes influence host response to chemoradiotherapy; the with 

microbiomes differing between response groups. 

(iii) Bacteria are differentially abundant and have differential gene expression 

in different response groups, and their and gene expression impacts 

therapeutic outcomes. 

(iv) Immune cell infiltration significantly contributes to therapeutic outcomes, 

and the microbiome influences this immune infiltration. 

(v) In combination with host gene expression, immune cells and bacterial 

expression can be used as prognostic and predictive biomarkers of 

chemoradiotherapy response. 

 

To test these hypotheses, using a cohort of rectal tumours and adjacent normal tissue 

samples collected before chemoradiation therapy, this thesis aims to: 

(i) Improve methods for microbial assignment and database construction. 

(ii) Compare sequencing technologies for their applicability in microbiome 

analysis. 

(iii) Examine microbial gene expression using RNA-sequencing to identify 

taxa that may influence response to CRT in RC. 

(iv) Investigate immune cell infiltration in rectal tumours and relate this to the 

microbial abundance, microbial gene expression, and therapeutic 

response. 
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(v) Investigate the utility of the above factors in combination with patient 

gene expression to discover potential biomarkers of response to CRT. 

2 CHAPTER 2: METHODS 

2.1 Summary  

First, to validate method alterations, a synthetic dataset with known contents was used, 

and clinical RNA-Seq and Oxford Nanopore Technology (ONT) datasets were then 

used to determine the alterations' impact in a real-world context. Second, sequencing 

samples' comparative ability to assess the microbiome was assessed by sequencing 

samples RC patient tumour and normal tissue biopsies. The concordance of the relative 

bacterial abundance of taxonomies from the 16S rRNA, ONT and RNA-Sequencing 

platforms were assessed and measured using the altered methods.  

Third, the RNA-Seq data from the RC patient samples were used to evaluate and 

correlate bacterial transcription with chemoradiotherapy response. Fourth, RNA-Seq 

gene expression data was used to estimate the abundance of immune cells in patient 

biopsies. Then, the predicted immune cell abundance was correlated with response to 

radiotherapy and bacterial transcription. 

Finally, a panel of biomarkers was established by using sparse partial least squares 

regression. The biomarkers were refined during the development of a machine learning 

model to predict response to radiotherapy using bacterial transcription, immune cell 

abundance and gene expression. 

2.2 Ethics  

Informed written consent was given for the collection of tissues, and this study adheres 

to the relevant guidelines and regulations of the Health and Disability Ethics 

Committee (HDEC) and the University of Otago Human Ethics Committee (ethics 
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approval number: 18/STH/40), Māori consultation took place between Dr Purcell 

(primary supervisor) and the Māori Research Advisor, Karen Keelan, through the 

University of Otago, Christchurch Māori consultation process. A letter of support for 

the project was provided by Karen Keelan.  

2.3 Synthetic dataset 

The synthetic dataset consisted of RNA-sequencing (RNA-Seq) data from the NCBI 

read sequencing archive. Bioproject PRJNA588285, SRA: SRR10417449 and Bioproject 

PRJNA589694, SRA: SRR10445802 were accessed for both a human cell line (TPC-1, 

human papillary thyroid carcinoma) and Pseudomonas fluorescens sequencing reads, 

respectively. Both projects utilised Illumina 150 bp paired-end RNA-sequencing (RNA-

Seq) on the HiSeq X Ten platform. The human reads were concatenated with the P. 

fluorescens reads yielding the synthetic dataset, containing 31,233,071 and 9,590,255 

human and bacterial reads (23.49% bacterial and 76.5% human). The synthetic dataset 

was built by concatenating reads between the two read sets using the cat command. 

2.4 CRC cohort 

The CRC RNA-seq dataset (CRC-RNA) was taken from the repository of Visnovska et 

al., SRA: SRP117763, Bioproject PRJNA404030. An Illumina HiSeq 2500 was used to 

produce 125 bp paired-end RNA-seq reads from 33 CRC patients [344].  

2.5 RC cohort 

Rectal tumour samples and adjacent normal tissue were collected from 20 RC patients 

at Christchurch Hospital, New Zealand (CHCH). An additional cohort of 20 matched 

patient samples came from the Peter MacCallum Cancer Institute of Melbourne (PM), 

Australia. The PM cohort consisted of RNA samples extracted from patient tumour and 

adjacent tissue samples and is referred to as the PM cohort. All biopsies were collected 

prior to the commencement of treatment via colonoscopy or rectoscopy. 
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2.5.1 Metadata and cohort details 

Patient data were collected from the CHCH cohort medical records. All data was 

anonymised while age, sex, and information on disease status were collected (Table 2.1); 

however, only post-operative pathology reports were available for the PM cohort.  

Table 2.1. Demographics and tumour regression of combined Rectal Cancer (RC) cohort 

 Patients (n) 

Age  

32–86 years  

Mean = 63.6 years  

Sex  

Female 12 

Male 28 

Differentiation  

Well 2 

Moderate 28 

Poor 4 

NA 6 

Histology  

Mucinous 3 

Lymphovascular invasion 13 

Dworak Score  

Four 5 

Three 6 

Two 22 

One 7 

 

Patient medical records for the CHCH cohort were available (Table 2.2); however, the 

supplied metadata for the PM cohort was less comprehensive (Table 2.3). Patients 

received 5-FU based neoadjuvant chemoradiotherapy over the weeks before surgery. 
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Table 2.2. Christchurch cohort patient details 

Patient # Treatment RT dose Dworak Sex Age Tumour Size Metastasis Staging Biopsy date Differentiation 

1 LCCRT (capecitabine) 50.4 gy Four M 74 40 mm N T3N0M0 14/3/2018 Moderate 

2 LCCRT (capecitabine) 50.4 gy Three M 64 53 mm N T3dN2M0 2/07/2018 Well 

3 LCCRT (capecitabine) 50.4 gy One M 70 40 mm N T3N0M0 3/02/2018 Poor 

4 LCCRT (capecitabine) 50.4 gy Two M 59 32 mm Liver T4aN1M1 30/4/2018 Moderate 

5 LCCRT (capecitabine) 50.4 gy Four F 78 47 mm Lung T3N1M1 6/11/2018 Moderate 

6 LCCRT (capecitabine) 50.4 gy Four M 63 66 mm N T4aN0M0 6/11/2018 Moderate 

7 LCCRT (capecitabine) 50.4 gy Three M 65 53 mm N T3N2M0 19/3/2018 Well 

8 LCCRT (capecitabine) 50.4 gy Two F 50 50 mm N T3bN0M0 23/7/2018 Moderate 

9 LCCRT (capecitabine) 50.4 gy Two M 67 27 mm N T2N0M0 30/7/2018 Moderate 

10 LCCRT (capecitabine) 50.4 gy Two F 61 45 mm N T3bN1M0 8/01/2018 Moderate 

11 LCCRT (capecitabine) 50.4 gy Two M 75 75 mm N T4aN0M0 9/07/2018 NA 

12 LCCRT (capecitabine) 50.4 gy Two F 66 51 mm N T4N1M0 24/9/2018 Moderate 

13 LCCRT (capecitabine) 50.4 gy Four M 57 54 mm N T3N0M0 24/9/2018 NA 

14 RT 40 gy One M 80 42 mm N T3aN0M0 28/9/2018 NA 

15 LCCRT (capecitabine) 50.4 gy Three M 58 50 mm N T3N0M0 7/11/2018 Moderate 

16 LCCRT (capecitabine) 50.4 gy One F 73 60 mm N T3N1M0 13/12/2018 Moderate 

17 LCCRT (capecitabine) 50.4 gy One M 74 40 mm N T2N1M0 4/02/2019 Moderate 

18 LCCRT (capecitabine) 50.4 gy Two M 66 60 mm N T3N2M0 30/5/2019 Moderate 

19 LCCRT (capecitabine) 50.4 gy One M 76 80 mm N T4aN2M0 7/07/2019 Moderate 

20 LCCRT (capecitabine) 50.4 gy Two F 86 60 mm N T4bN2M0 9/08/2019 Moderate 

LCCRT: Long course chemoradiation therapy; RT: Radiation therapy; gy: gray unit; N: No; NA: Not Available; M: Male; F: Female 
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Table 2.3. Peter MacCallum cohort patient details 

Patient # Treatment RT dose Dworak Sex Age Differentiation 

21 LCCRT (capecitabine) 50.4 gy Three M 58 Moderate  

22 LCCRT (5-FU) 50.4 gy Two M 84 Moderate  

23 LCCRT (5-FU) 50.4 gy Four M 60 Moderate  

24 LCCRT (FOLFIRI) 50.4 gy Two M 62 Moderate  

25 LCCRT (NA) 50.4 gy Two M 39 Poor  

26 LCCRT (capecitabine) 50.4 gy Two M 62 Moderate  

27 LCCRT (capecitabine) 50.4 gy One M 44 Moderate  

28 LCCRT (capecitabine) 50.4 gy Two F 61 Moderate  

29 LCCRT (capecitabine) 50.4 gy One F 34 Moderate  

30 LCCRT (NA) 50.4 gy Two F 35 Moderate/Poor  

31 LCCRT (5-FU) 50.4 gy Two M 65 Moderate  

32 LCCRT (FOLFOX) 50.4 gy Two M 81 Moderate  

33 LCCRT(NA) 50.4 gy Two M 85 Moderate  

34 LCCRT (capecitabine) 50.4 gy  Two F 53 Moderate  

35 LCCRT (NA) 50.4 gy Two M 32 Moderate  

36 SCCRT (NA) 25 gy Two M 69 NA 

37 LCCRT (capecitabine) 50.4 gy Two M 75 Moderate  

38 LCCRT (FOLFIRI) 50.4 gy Two F 53 Moderate  

39 LCCRT (NA) 50.4 gy Three M 62 NA  

40 LCCRT (capecitabine) 50.4 gy Three F 69 NA 

LCCRT: Long course chemoradiation therapy; SCCRT: Short course chemoradiation RT: Radiation therapy; gy: gray 

unit; N: No; NA: Not Available; M: Male; F: Female 

 

The majority of patients receiving 50.4 gy of radiation throughout treatment, except for 

one patient receiving palliative therapy (40 gy) and another receiving short course (25 

gy). The age of patients ranged from 32–86 (mean = 63.5, median = 64.5), the cohort was 

30% female.  
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2.6 Nucleic acid extraction and sequencing 

2.6.1 Nucleic acid extraction 

The CHCH patient samples had both DNA and RNA extracted from tissue samples. 

The nucleotides were extracted from approximately 20 mg of tissue. Each of the tumour 

and matched normal biopsies were homogenised in a Precellys Evolution Homogenizer 

(Bertin Instruments, Montigny-le-Bretonneux, France), using zirconium beads and lysis 

buffer (Buffer RLT Plus, QIAGEN, Hilden, Germany). DNA and RNA were extracted 

using a QIAGEN Allprep DNA/RNA Mini Kit. Resulting DNA was quantified using a 

Qubit 2.0 instrument (Invitrogen, Carlsbad, CA, USA), and the DNA and RNA were 

quantified and Nanodrop 2000c spectrophotometer (Thermo Scientific, Asheville, NC, 

USA). The PM patient samples were previously extracted from tissue samples using the 

same method.  

2.6.2 GridION sequencing 

Size selection to 400 bp was performed on each of the samples, using a 0.45x volume of 

MAGBIO HighPrep magnetic beads (Gaithersburg, Maryland, USA). The Oxford 

Nanopore protocol (RBK_9054_v2_revD_23Jan2018) was followed for DNA sequencing 

using the SQK_RBK004 rapid kit. For each sample, triplicates of 400 ng genomic DNA 

were used, each had the volume adjusted to 7.5 µl with nuclease-free water, and 2.5 µl of 

barcode fragmentation mix added. The samples were incubated in a thermal cycler at 

30 °C for 1 minute and 80 °C for 1 minute. The barcoded samples were then pooled, and 

DNA was purified using AMPure XP beads and resuspended in 10 µl of 10 mM Tris-HCl 

pH 7.5 with 50 mM NaCl. Then, 1 µl of RAP (Rapid sequencing AdaPtor) was added to 

the barcoded DNA. The resulting libraries were loaded onto R9.4.1 (106) flow cells in 

groups of four and sequenced for 48 hrs. Base-calling was carried out using Guppy v3.0.3 

(Oxford Nanopore Technology developer access required). Porechop v0.2.3 
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(https://github.com/rrwick/Porechop) was used for demultiplexing, and barcode and 

adaptor removal.  

2.6.3 16S rRNA sequencing 

For each sample, 10 ng of DNA was used to prepare libraries that were sent for 16S 

rRNA amplicon sequencing by the Massey Genome Service (Massey University, New 

Zealand). The V3 to V4 regions of the 16S rRNA gene were amplified flanking primers: 

16SF_V3: 5′-TATG GTAATTGGCCTACGGGAGGCAGCAG-3′ and 16SR_V4: 5′-

AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT -3′). Libraries were prepared using 

the Illumina MiSeq 500 cycle Kit (V2), and sequencing was performed with PhiX control 

sequences.  

2.6.4 RNA sequencing 

RNA-sequencing was performed on the NovoSeq 6000 platform by Novogene 

(Singapore) using the Illumina V2 library prep. Ribo-ZeroTM Magnetic Kit (Illumina) 

was used to deplete rRNA from the samples. Unstranded libraries were created using 

the following primers: 

5' Adapter: 5'-

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCG

ATCT-3', 3' Adapter: 5'-

GATCGGAAGAGCACACGTCTGAACTCCAGTCACATCACGATCTCGTATGCCGTC

TTCTGCTTG-3’. 

2.7 Bioinformatics 

2.7.1 Quality control 

Sequencing data were quality controlled with FastQC [345] and trimmed using bbduk2, 

part of the BBTools suite [346]. For RNA-seq and 16S rRNA amplicon data, only reads 

with a length < 50bp with a quality of 20 or greater and reads that had matching pairs 
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were kept for further processing while adapters and PhiX sequences were removed. 

Oxford nanopore reads were filtered for lengths > 400bp using FiltLong v0.2.0 

(https://github.com/rrwick/Filtlong).  

2.7.2 Host mapping 

RNA-Seq and GridION data were mapped to the GRC38p12 human genome using STAR 

v2.6.1 [271] and Minimap v2.16-r922 [347], respectively. Resulting sam files were 

converted to bam files, separated into human mapped and unmapped reads, and sorted 

using samtools v1.9 [348]. For taxonomic assignment analysis, only unmapped reads 

were retained unless otherwise specified, and additionally for RNA-seq and 16S rRNA, 

only matched paired-reads were retained. Bam files were converted into fastq files with 

bedtools v 2.26.0 [349]. 

2.7.3 Microbiome analysis 

Taxonomic assignment was performed using Kraken2 [350] using customised 

databases. For the taxonomic assignments, a database containing all complete 

assemblies for bacteria, fungi, protists and archaea, as well as the human genome 

(GRCh38p12) was used, termed All_DB (database contents can be found in 

Supplementary Table S2.1). Additionally, the database contained several taxa, 

regardless of the level of assembly completion, associated with CRC. The bacterial 

database (Bac_DB) contained only bacterial genomes, including those associated with 

CRC (database contents can be found in Supplementary Table S2.2). Taxonomic 

databases were constructed on 19 July 2019. Kraken reports were analysed using Pavian 

[351] and transformed into biom format using kraken-biom 

(https://github.com/smdabdoub/kraken-biom). Biom files were analysed using phyloseq 

v1.32 [316], vegan v2.5 [352], and ape v5.4 [353] R packages, and visualised with ggplot2 

v3.3.2 [315] and ggpubr v0.4 packages. 
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2.7.4 Gene quantification and expression data 

Gene quantification data were generated using Salmon. Reads were mapped to the 

human transcriptome using Salmon v1.2.1 [287]. First, a decoy transcriptome was 

constructed from the human transcriptome (GRCh38p12) to reduce low confidence 

mapping of reads to unannotated loci with sequence similarity to annotated regions 

[354]. An index of the transcriptome was constructed from the transcriptome and the 

decoy information, using an auxiliary k-mer hash over k-mer length of 31. The index 

was used for quasi-mapping of RNA-Seq paired-end reads to the human transcriptome 

with a mapping validation score of 30, based on fragment lengths and their level of 

direct mapping to a region; reads with lower mapping scores were discarded. Gene 

count results were visualised with the Integrative Genomic Viewer (IGV) [355] and 

ggplot2 [315]. 

2.7.5 Cellular estimation, prediction and subtyping 

The ESTIMATE [282] package was used to generate predictive tumour purity, immune 

and stromal scores from RNA-Seq gene expression data. CIBERSORT [284] was used to 

estimate the level of immune cell infiltration from RNA-Seq gene expression data. 

2.7.6 Functional and differential analysis 

Reads assigned to bacterial species using Kraken2 were extracted using the 

extract_kraken_reads script in the KrakenTools GitHub repository 

(https://github.com/jenniferlu717/KrakenTools). Extracted reads from assigned bacterial 

taxonomies were aligned to respective genome assemblies using STAR v2.6.1 [271] 

without splice aware alignment. Differential analysis was performed using edgeR [356]. 

Patient identifiers were used as blocking factors in a generalised linear model with 

likelihood testing.  
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2.7.7 Correlations 

Correlations were performed using Spearman’s rank correlation, and point biserial 

correlation using the cor, cor.test, ltm v1.1 [357], and Hmsic v4.4 R packages, using p-

value and false discovery rate correction (FDR) cuttoffs of 0.05, while Benjamini and 

Hochberg [358] was used for false discovery rate (FDR) correction. 

2.7.8 Biomarker analysis 

For the discovery of prognostic biomarkers, microbial taxonomy, immune cell 

infiltrates, and gene expression data were used. A predictive model was built to assess 

the data points most informative of therapeutic outcomes utilising a multi-block 

discriminant analysis, using the mixOmics package v6.12.2 DIABLO (Data Integration 

Analysis for Biomarker discovery using a Latent cOmponents) framework [359]. The 

model's inputs included data from both the normal and tumour tissue gene expression, 

immune cell infiltration, and microbiome data, and a pairwise patient blocked study 

design to mitigate interpersonal variation [360]. The cohort was split into training and 

test datasets, and leave-one-out validation was used to assess error rates. 

2.8 Code availability 

All scripts, supplementary files and R code used can be found on the GitHub 

repository: https://github.com/William-S-Taylor/MSc  

3 CHAPTER 3: METHODOLOGY AND PLATFORM COMPARISONS 

3.1 Introduction 

The gut microbiome and its relationship to human health and disease is an area of 

increasing research. Microbiome composition has been associated with diarrhoea [361], 

developmental disorders [362], immune system changes [290], Crohn’s disease [363], 

psychological disorders [364], irritable bowel disease [365], and CRC [366] the latter of 
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which has a high mortality (9.2% of all cancer deaths in 2018) and increasing global 

incidence (10.2% of all diagnosed cancers in 2018) [367, 368]. Despite this, the 

assessment of microbiomes in a clinical setting is not widely practised due to the lack of 

access to sequencing technology and clinical training for interpreting microbiome data 

[369]. Sampling, library preparation, and sequencing can be expensive and time-

consuming, reducing the feasibility of using the microbiome in clinical settings [303, 

370]. 

When performing metagenomic studies using tissue samples without a bacterial 

selection step, host reads may be misassigned as microbial. To counteract this, reads are 

first mapped to the host genome, and unmapped reads are then classified using a 

bacterial taxonomic database [93, 371]. Mapping the sequencing datasets to the host 

genome before classification is the most time-consuming and computationally intensive 

step of the taxonomic analysis, particularly with increasingly large datasets and host 

organism genomes. 

This chapter consists of two analyses. First, the efficacy of host genome mapping was 

investigated using three different datasets: Oxford Nanopore Technology (ONT) data 

from the CHCH cohort, RNA-Seq data from a CRC cohort from [371], and a synthetic 

RNA-Seq dataset. Taxonomic assignment was performed with Kraken2 and the 

taxonomic databases listed in Section 2.6.3, the Bac_DB and All_DB. Secondly, the three 

platform datasets from the CHCH cohort (16S rRNA, ONT and RNA-Seq) were 

compared using the methods employed in prior CRC tissue studies [93, 371], with 

alterations from the results of Analysis 1.  

My hypotheses for this chapter were as follows: 

- If a taxonomic classifier can be relied on to discriminate between different 

bacteria, it can also be relied upon to classify the host, thereby reducing the steps 
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required for microbiome analysis of patient samples while giving proportional 

information of the sample's microbial content.  

- The host mapping process may lead to increased type 1 classification errors, as 

residual host sequences may be misassigned as microbial. 

- Appropriately classifying residual host reads will improve inter-platform 

concordance. 

3.2 Methods 

Taxonomic assignment was performed using 0.1 confidence scores in Kraken2 v 2.0.7 

unless otherwise specified. The CRC-RNA dataset was comprised of CRC patient data 

(n = 33) from a previous study as described in Section 2.4 [344]. The Rec-ONT dataset 

was comprised of the CHCH cohort samples (n = 20) GridION sequencing data. 

Filtering was performed on the CRC-RNA and Rec-ONT datasets, and to remove any 

assignments with two or fewer counts. ONT, 16S rRNA and RNA sequencing data were 

prepared, and quality checked, as described in Sections 2.5 and 2.6. The R packages 

Pavian v1.0 [351], phyloseq v1.28 [316], VEGAN v 2.5 [352], ggplot2 v3.2.1 [315], stats 

[372] and Venny v2.1 [373] were used to evaluate and visualise the results. Scripts used 

for the analysis can be found here: https://github.com/William-S-Taylor/MSc.  

3.2.1 Statistics 

Statistical operations were performed using R version 3.6. The statistical significance 

between the differences in databases and mapping methodologies were tested using 

Wilcoxon signed-rank tests. The beta-diversity was tested using the adonis function in 

the VEGAN package. Concordance between platforms was investigated using the 

methodology used in [93] and [371], where Spearman’s rank correlation was utilized for 

comparing the level of concordance between different platforms. The stats package was 

used to assess the significance of platform concordance.  
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3.3 Analysis 1: mapping methodology 

3.3.1 Synthetic database 

To establish the effect of host mapping on taxonomic assignment, a large synthetic 

dataset with known bacterial and human content was created (the Synth dataset). The 

Synth dataset consisted of 31 million human and 9.5 million bacterial RNA-Seq paired-

end reads, generated using the same Illumina HiSeq X Ten sequencing platform (see 

Section 2.2). The resulting database was 23.49% bacterial, and 76.5% human (Figure 

3.1a). The reads were either mapped or not mapped against the human genome, and 

subsequently assigned taxonomy using the bacteria only database (Bac_DB) and a 

comprehensive database containing the human genome (All_DB). 

 

Figure 3.1. Classification of bacterial and human reads in the synthetic dataset. a) percentage of reads assigned, b) total numbers 

of reads assigned. All_DB, human genome containing database; Bac_DB, non-human genome containing database. 
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Using the All_DB with prior mapping to the human genome was the most accurate in 

its taxonomic assignment, assigning 2.52% more reads as bacterial than were present, 

followed by using the All_DB without prior mapping at 2.57%, while residual human 

reads not removed by mapping accounted for 11.23% of the post-mapped dataset. 

Using the All_DB and no prior host mapping, the eukaryotic and bacterial proportions 

were accurately assigned with a 0.74% difference between the assigned and expected 

values (Figure 3.1b). Using the Bac_DB, the number of assigned bacterial reads 

increased compared to using the All_DB by 5.6% and 24.8% with and without mapping, 

respectively. Using the Bac_DB and host mapping, there were 7.69% more bacterial 

assignments than existed in the sample, and 26.76% more without host mapping (Figure 

3.1b).  

Assigning taxonomy with the Bac_DB with prior mapping had a three-fold lower 

accuracy compared to the All_DB. Based on the findings from the Synth dataset, it was 

theorized that using the All_DB on other datasets with prior mapping would be the 

most accurate, deviating by ~2.52% and ~2.57%, with and without host mapping, 

respectively.  

3.3.2 Analysis time 

Using the Synth dataset, mapping to the human genome, removing host reads using 

samtools and converting the resulting bam files into fastq files required 1 hour, 10 min 

and 10 seconds of compute time, and subsequent taxonomic classification of those 

unmapped reads with the Bac_DB took 1 min and 15 seconds; totalling 1 hour, 11 

minutes and 25 seconds of compute time. Using the All_DB for taxonomic classification 

with no prior mapping, required 7 min and 27 seconds of compute time. Classification 

and mapping were carried out on a server with an Intel® Xeon® CPU E5-2683 v4 @ 

2.10GHz CPU with 32 cores and 250 GB RAM, running Ubuntu 18.04.3 LTS. 
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Classification time was higher when using the All_DB and no host mapping; however, 

when employing host mapping and the Bac_DB, compute time increased significantly, 

by 9.53-fold (Wilcoxon test p-value = 0.01, 95% confidence intervals (CI): 75.94–1441.64). 

3.3.3 Clinical Datasets 

Using CRC-RNA and Rec-ONT datasets from clinical tissue biopsies, taxonomic 

assignment was compared using the All_DB and the Bac_DB, with and without host 

mapping. 

Using the CRC-RNA dataset, there were a higher number of bacterial assignments in 

each sample using the Bac_DB database than with the All_DB (Table 3.1). There was a 

total bacterial read increase of more than 40% when using the Bac_DB database 

compared to using the All_DB database, with a difference of more than 41,000 bacterial 

reads, regardless of prior host mapping (Wilcoxon p-value = 0.0001, CI: 718–1702).  

Table 3.1. CRC-RNA taxonomic assignment 

 

Mapped Not mapped 

 All_DB Bac_DB All_DB 

Bacterial Percentage 13.05% 100% 2.17% 

Eukaryotic Percentage 86.95% 0% 97.83% 

Total Bacterial Reads 102,450 144,449 102,694 

Total Eukaryotic Reads 682,865 0 4,628,480 

 

Using the All_DB, there were 244 more bacterial reads when host mapping was not 

used; however, this was not statistically significant (Wilcoxon p-value = 0.7275, CI: -3.31 

× 106–5.65 × 105). The difference in bacterial reads assigned with the All_DB compared to 

the Bac_DB was over 40,000, and was significant, with (Wilcoxon p-value < 2.2 × 1016, CI: 

3.99–4.00) or without host mapping (Wilcoxon p-value < 2.2 × 1016, CI: 3.99–4.00). 
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The Rec-ONT DNA dataset had more samples with lower read counts. When using the 

All_DB, there were 545 more bacterial reads when host mapping was not used (Figure 

3.2); however, the difference was not statistically significant (Wilcoxon p-value = 0.9132, 

CI: -3.83 × 105–4.39 × 105).  

Table 3.2. Rec-ONT dataset taxonomic assignment 

 

Mapped Not Mapped 

 

All_DB Bac_DB All_DB 

Bacterial Percentage 3.74% 100% 0.25% 

Eukaryotic Percentage 96.26% 0% 99.75% 

Total Bacterial Reads 34,159 253,172 34,704 

Total Eukaryotic Reads 879,766 0 13,818,571 

 

The difference in bacterial reads assigned with the All_DB compared to the Bac_DB was 

greater than 218,000, and was significant, with (Wilcoxon p-value < 2.2 × 1016, CI: 8.00–

8.99) or without host mapping (Wilcoxon p-value < 2.2 × 1016, CI: 7.99–8.99). When 

assigning taxonomy to the RNA-CRC and Rec-ONT datasets with the All_DB, the 

number of bacterial reads differed by 244 (0.24%), and 545 (1.57%), when prior-host 

mapping was and was not performed, respectively. Additionally, reads assigned to 

Eukaryotes provided information on the samples' relative host content and the 

proportion of residual reads. 

3.3.3.1 Alpha and beta diversity 

The bacterial diversity of the CRC-RNA and Rec-ONT datasets was assessed to 

investigate the impact of host mapping. All reads not assigned bacterial taxonomy, or 

taxa with fewer than two reads assigned were removed before analysis.  

In CRC, the distribution of microbiota in the colon differs depending on location [374]. 

Using the CRC-RNA dataset, diversity was compared between left- and right-sided 
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tumours using observed diversity (richness of the sample), and the Shannon and 

Simpson diversity indexes (measures of evenness and dominance, respectively).  

When using the All_DB, alpha diversity did not change significantly regardless of host 

mapping (Figure 3.2). When using the Bac_DB, alpha diversity was higher compared to 

using the All_DB, with more than double the observed mean diversity when using prior 

host mapping.  

 

Figure 3.2. Alpha diversity measures for comparison of left- and right-sided tumours in the CRC-RNA dataset: a) using the 

All_DB and no prior host mapping, b) using the All_DB and prior host mapping, and c) using the Bac_DB and prior host 

mapping. Outliers are represented in grey. ns: not significant; ***: p <= 0.001; ****: p <= 0.0001. 

There was no statistically significant difference in the mean microbial diversity when 

using the All_DB regardless of prior host mapping (Table 3.3). Differences in mean 

diversity were statistically significant when using the All_DB compared to the Bac_DB, 

except for the Simpson diversity index.  

Table 3.3. CRC-RNA diversity Wilcoxon signed-rank test results 

 

Not Mapped All_DB vs 

Mapped Bac_DB 

Mapped All_DB vs 

Mapped Bac_DB 

Mapped vs not Mapped 

All_DB 

 

p-value 95% CI p-value 95% CI p-value 95% CI 

Observed 2.11 × 109 129–189 2.39 × 109 127–186 0.717 -27–23 
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Shannon 6.30 × 105 0.231–0.639 1.50 × 104 0.21–0.611 0.674 -0.258–0.205 

Simpson 0.382 -0.007–0.022 0.500 -0.008–0.02 0.704 -0.017–0.015 

95% CI: 95% confidence interval. 

When comparing the alpha diversity differences between left- and right-sided tumours 

within the CRC-RNA dataset, no measure was statistically significant (Figure 3.3). 

 

Figure 3.3. Alpha diversity measures for comparison of left and right side tumours within the CRC-RNA dataset: a) using the 

All_DB and no prior host mapping, b) using the All_DB and prior host mapping, and c) using the Bac_DB and prior host 

mapping. Outliers are represented in grey. ns: not significant. 

Using the Rec-ONT dataset, the impact of mapping on the diversity between tumour 

and matched normal tissue microbiomes was investigated.  
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Figure 3.4. Alpha diversity measures for comparison of tumour and normal tissues in the Rec-ONT dataset: a) using the All_DB 

and no prior host mapping, b) using the All_DB and prior host mapping, and c) using the Bac_DB and prior host mapping. 

Outliers are represented in grey. ns: not significant; **: p <= 0.001; ***: p <= 0.001; ****: p <= 0.0001. 

Host mapping when using the All_DB had little impact; however, there was a 

substantial difference between using the All_DB and Bac_DB (Figure 3.4). There was no 

statistically significant difference in any diversity measure if prior host mapping was or 

was not performed when using the All_DB; however, the differences between using the 

All_DB and Bac_DB were statistically significant (Table 3.4). 

Table 3.4. Rec-ONT diversity Wilcoxon signed-rank test results 

 Not Mapped All_DB vs Mapped 
Bac_DB 

Mapped All_DB vs Mapped 
Bac_DB 

Mapped vs not Mapped 
All_DB 

 p-value 95% CI p-value 95% CI p-value 95% CI 

Observed 9.13 × 1014 635–849 9.80 × 1014 635–848 0.873 -27–25 

Shannon 9.74 × 109 0.764–1.473 1.12 × 108 0.793–1.44 0.969 -0.415–0.390 

Simpson 0.0003 0.025–0.0836 0.0001 0.0255–0.0813 0.892 -0.035–-0.035 

 

When comparing the alpha diversity of tumour and normal tissues, only observed 

diversity differences were statistically significant (p < 0.05), regardless of mapping or 
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the database used (Figure 3.5). However, the p-value was six-fold lower when using the 

Bac_DB. 

 

Figure 3.5. Alpha diversity measures for comparison of tumour and normal tissue within the Rec-ONT dataset: a) using the 

All_DB and no prior host mapping, b) using the All_DB and prior host mapping, and c) using the Bac_DB and prior host 

mapping. P-values < 0.05 are considered significant. 

Beta-diversity was investigated using non-metric multi-dimensional scaling (NMDS) of 

Bray–Curtis distances for the CRC-RNA and Rec-ONT datasets. The side and tissue 

effect on the clustering of samples was tested using the adonis2 function in the VEGAN 

package. 

When using the All_DB, the impact of host mapping on the clustering of left- and right-

sided tumours in CRC-RNA dataset was insignificant (Figure 3.6a,b); however, using 

the Bac_DB resulted in a tight clustering of left-sided tumours (Figure 3.6c). 
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Figure 3.6. Bray–Curtis clustering of left- and right-sided tumours in the CRC-RNA dataset: a) using the All_DB and no prior 

host mapping, b) using the All_DB and prior host mapping, and c) using the Bac_DB and prior host mapping. 

 

The effect of side on the clustering of samples was statistically significant when using 

the All_DB and not when using the Bac_DB while the R2 value was similar regardless 

of the database used (Table 3.5). 

Table 3.5. Effect of side on CRC-RNA dataset 

Side All_DB mapped All_DB not mapped Bac_DB mapped 

R2 0.049 0.050 0.052 

Residuals 0.950 0.949 0.947 

p-value 0.037 0.043 0.085 

 

When using the Rec-ONT dataset, the impact of host mapping on the clustering of 

samples by tissue type was minor; however, tumour samples were more closely 

clustered than normal samples when using the Bac_DB and host mapping, which also 

resulted in substantive outliers (Figure 3.7). 
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Figure 3.7. Bray–Curtis clustering of normal and tumour tissues in the Rec-ONT dataset: a) using the All_DB and no prior host 

mapping, b) using the All_DB and prior host mapping, and c) using the Bac_DB and prior host mapping. 

Although the effect was slightly higher using the Bac_DB, the effect of tissue type was 

not statistically significant in the Rec-ONT dataset (Table 3.6). 

Table 3.6. Effect of tissue in Rec-ONT dataset 

Tissue All_DB mapped All_DB not mapped Bac_DB mapped 

R2 0.0241 0.024 0.023 

Residuals 0.975 0.975 0.976 

p-value 0.482 0.391 0.491 

 

3.3.3.2 Sample taxa compositions 

There was only a 0.1% difference in phyla assignment in the CRC-RNA dataset between 

mapped and unmapped samples when using the All_DB. The difference between using 

the Bac_DB and the All_DB with host mapping was substantial; there were 12.7% fewer 

Bacteroidetes, 2.3% fewer Fusobacteria, 2.6% fewer Firmicutes, and 15.6% more 

Proteobacteria when the Bac_DB was used (Table 3.7).  

Table 3.7. CRC-RNA dataset total phyla composition 

Phyla All_DB Mapped All_DB No Mapping Bac_DB Mapped 
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Bacteroidetes 59.5% 59.4% 46.7% 

Proteobacteria 4.4% 4.5% 20.1% 

Firmicutes 26.7% 26.7% 24.1% 

Fusobacteria 8.0% 8.0% 6.3% 

 

The genus-level differences between using the All_DB with or without host mapping 

were minor and did not exceed 0.1% between the top 15 genera (Table 3.8). Of the 15 

top genera when using the Bac_DB, six did not appear when using the All_DB. Klebsiella 

and Pasteurella were the third and second most abundant when using the Bac_DB, 

respectively, along with other genera such as Bacillus, Staphylococcus, Enterobacter and 

Ralstonia. Additionally, Bacteroides, Faecalibacterium and Fusobacterium were detected in 

lower proportions when using the Bac_DB. Those genera detected within the 15 most 

abundant when using the All_DB were Hungatella, Campylobacter, Eubacterium, 

Lachnoanaerobaculum, Leptotrichia and Alistipes. 

Table 3.8. CRC-RNA top 15 genera 

All_DB Mapped All_DB Unmapped Bac_DB Mapped 

Genus % Genus % Genus % 

Bacteroides 57.0 Bacteroides 56.9 Bacteroides 44.0 

Fusobacterium 8.7 Fusobacterium 8.7 Fusobacterium 6.9 

Prevotella 3.9 Prevotella 3.8 Klebsiella 4.3 

Porphyromonas 3.2 Porphyromonas 3.1 Pasteurella 3.3 

Faecalibacterium 3.1 Faecalibacterium 3.1 Lachnoclostridium 3.3 

Hungatella 2.5 Hungatella 2.5 Porphyromonas 2.8 

Roseburia 2.5 Roseburia 2.5 Prevotella 2.6 

Lachnoclostridium 1.9 Clostridium 2.0 Faecalibacterium 2.5 

Clostridium 1.9 Lachnoclostridium 1.9 Staphylococcus 2.3 

Blautia 0.9 Blautia 0.9 Clostridium 1.9 



64 

Campylobacter 0.8 Campylobacter 0.8 Enterobacter 1.8 

Eubacterium 0.7 Eubacterium 0.6 Ralstonia 1.4 

Lachnoanaerobaculum 0.6 Lachnoanaerobaculum 0.6 Roseburia 1.3 

Leptotrichia 0.6 Leptotrichia 0.6 Bacillus 0.9 

Alistipes 0.5 Alistipes 0.5 Blautia 0.7 

 

The Rec-ONT dataset differences at the phylum level when using the All_DB were 

minor, regardless of host mapping (Table 3.9). However, compared to using the 

Bac_DB, the differences were more considerable; Bacteroidetes were 30% higher while 

Proteobacteria and Fusobacteria were 30% and 1.5% lower, respectively. Firmicutes 

were detected at similar proportions regardless of database and host mapping. Using 

the Bac_DB, the differences were the highest for Proteobacteria and Bacteroidetes, with 

the former comprising >50% of the sample totals, and the latter less than 10%.  

Table 3.9. Rec-ONT total phyla 

Phyla All_DB Mapped All_DB No Mapping Bac_DB Mapped 

Bacteroidetes 40.1% 39.6% 9.6% 

Proteobacteria 26.3% 26.9% 57.6% 

Firmicutes 23.5% 23.4% 23.4% 

Fusobacteria 2.4% 2.4% 0.9% 

 

At the genera level, the differences between host mapping and no host mapping using 

the All_DB were less than 1% for the three most abundant genera; however, Salmonella 

and Campylobacter were absent with and without mapping, respectively (Table 3.10). 

Porphyromonas and Fusobacterium abundance were most impacted by host mapping, 

which increased by 1.2% when host mapping was used with the All_DB.  
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Staphylococcus, Pasteurella, Klebsiella, Candidatus Portiera, Ralstonia, Yersinia, Enterobacter, 

Mycoplasma and Burkholderia appeared in the top 15 most abundant genera when the 

Bac_DB was used (Table 3.10). Bacteroides was the most abundant genus when using the 

All_DB at >26% of sample totals; however, using the Bac_DB resulted in the abundance 

of Bacteroides being detected at less than 4% of sample totals. 

Table 3.10. Rec-ONT top 15 genera 

All_DB Mapped All_DB Unmapped Bac_DB Mapped 

Genus % Genus % Genus % 

Bacteroides 29.1 Bacteroides 26.7 Staphylococcus 13.6 

Escherichia 9.8 Escherichia 9.8 Pasteurella 13.3 

Porphyromonas 6.7 Porphyromonas 5.5 Klebsiella 8.2 

Faecalibacterium 3.1 Faecalibacterium 3.3 Candidatus Portiera 5.7 

Fusobacterium 2.6 Alistipes 2.4 Escherichia 5.6 

Alistipes 2.2 Hungatella 2.1 Bacteroides 3.6 

Hungatella 2.0 Oscillibacter 1.9 Ralstonia 3.5 

Oscillibacter 1.6 Pseudomonas 1.6 Yersinia 3.3 

Prevotella 1.3 Fusobacterium 1.4 Enterobacter 3.2 

Campylobacter 1.3 Prevotella 1.4 Mycoplasma 2.4 

Lachnoclostridium 1.3 Streptomyces 1.4 Bacillus 2.0 

Clostridium 1.3 Salmonella 1.4 Clostridium 1.9 

Streptomyces 1.2 Clostridium 1.4 Burkholderia 1.2 

Pseudomonas 1.2 Bacillus 1.3 Streptomyces 0.9 

Bacillus 1.1 Lachnoclostridium 1.2 Porphyromonas 0.9 
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3.4 Analysis 2: RC dataset platform comparison 

Once the appropriate methodology had been established for microbial taxonomic 

assignment of metagenomic sequencing reads, the comparative methodology from 

Section 1 was applied to the Christchurch (CHCH) cohort.  

The dataset contained sequencing data from the same three platform datasets, described 

in Section 2.6 (ONT, 16S rRNA and RNA-Seq). The cohort was comprised of 20 patients, 

with two samples per patient (tumour and adjacent non-malignant tissue).  

The taxonomy of each patient sample and the cross-platform correlations were carried 

out using the same methodology as in [93, 371]; with changes based on the results of 

Analysis 1; utilising a broad taxonomic database containing the host genome, and using 

the same taxonomic database and assignment software for all platform datasets. 

3.4.1 Data processing and information 

3.4.1.1 Quality control and read counts 

16S rRNA read length ranged from 52–247 bp, with per-sequence Phred scores of 28–38 

(Figure 3.8a) and per-base mean Phred scores of 33.8–38.8 (Figure 3.8b). 
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Figure 3.8. 16S rRNA quality scores. a) Per-sequence quality scores, b) mean quality scores 
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Figure 3.9. RNA-Seq quality scores. a) Per-sequence quality scores, b) mean quality scores 
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RNA-Seq reads ranged in length from 52bp–150 bp, with per-sequence Phred scores of 

24–37 (Figure 3.9a), and per-base mean Phred scores of 36.1–36.7 (Figure 3.9b). 
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Figure 3.10. ONT quality scores. a) Per-sequence quality scores, b) mean quality scores. 
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ONT reads had a mean length of 2600, ranging from 499–54,595 bp, with per-sequence 

Phred scores of 2–36 (Figure 3.10a), and per-base mean Phred scores of 2.6–27.8 (Figure 

3.10b). The mean number of raw reads per-sample for 16S rRNA, RNA-Seq and ONT 

were 75,137, 56,672,929 and 358,996, respectively (Table 3.11).  

Table 3.11. Number of reads per-sample 

 Raw Reads Processed/Unmapped Assigned Bacterial Taxonomy 

Sample 16S RNA ONT 16S RNA ONT 16S RNA ONT 

RT1N 47801 65797848 460355 41733 759910 29235 41645 130487 23 

RT1T 72039 50629572 316304 63027 381566 20635 62917 53451 102 

RT2N 64573 58393905 420266 56880 329306 24440 56825 39096 6 

RT2T 65109 67848414 379022 58546 290747 25578 55826 70508 6 

RT3N 146127 58274719 240536 121577 2340228 27625 121410 1653462 2889 

RT3T 51603 68019961 471354 44482 3032153 29651 44417 2330350 565 

RT4N 103582 55679261 318958 85448 357961 20016 85336 32318 195 

RT4T 148125 53838505 174438 121740 5063581 17674 121510 4923353 137 

RT5N 74483 69511002 223418 63375 392221 18646 63324 61397 194 

RT5T 102337 55610236 405361 89884 454105 23709 89837 183595 298 

RT6N 73255 44112606 355170 64091 311903 20377 62426 60026 12 

RT6T 85457 64679678 480529 70208 1177014 29912 70186 923117 2732 

RT7N 71763 44370270 151240 62667 243397 7885 62610 30539 5 

RT7T 33824 75592926 488667 29413 961405 20486 29276 352667 90 

RT8N 92311 45567364 217400 79901 289829 14187 79761 51956 11 

RT8T 35565 76497189 577258 31486 4033741 27791 31441 3717615 82 

RT9N 83232 42691787 487433 72977 327650 25694 72893 46956 11 

RT9T 16849 70245212 376484 15013 470682 23091 14985 19162 46 

RT10N 44944 48311893 362386 38256 292579 20410 38101 21634 2 

RT10T 42297 55048172 483918 37831 468270 24006 37747 64878 42 
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RT11N 97007 74481282 192418 82776 557978 17994 82757 168629 1577 

RT11T 43566 51185511 315209 36290 779596 35373 36253 316816 723 

RT12N 21696 53866573 201183 17493 518465 13572 17182 75546 30 

RT12T 18947 51619614 551584 16519 341611 32887 16478 36449 59 

RT13N 37515 42435289 229239 32781 319737 20156 32715 48729 4 

RT13T 57997 74446240 470690 50836 508365 25345 50751 57156 32 

RT14N 82895 41915825 562818 70257 363086 29696 70213 44746 618 

RT14T 132916 48035590 430829 116631 370048 28358 116350 62063 464 

RT15N 85852 51753938 284966 73510 241447 17462 73377 35652 179 

RT15T 105534 45461331 592632 91832 364479 34997 91699 44542 272 

RT16N 99157 52662204 749205 85535 416219 43843 85463 60039 992 

RT16T 93180 53381132 590318 79794 283392 28118 79741 34855 89 

RT17N 79290 50559600 94358 70685 200144 21259 70490 11568 6 

RT17T 87192 56401397 308720 76826 416337 102428 76742 67920 20 

RT18N 99273 45275146 75278 89013 664194 15774 88949 310182 2 

RT18T 110449 52601165 293778 92579 313101 109087 92420 78856 80 

RT19N 64078 47015510 55087 55196 214147 12505 55149 38604 28 

RT19T 91902 68820033 447806 78645 580995 56856 78539 126030 65 

RT20N 120428 69006835 70049 103244 590887 16026 103175 298105 59 

RT20T 21369 65272435 453176 18738 627297 68762 18714 173641 46 

Mean 75137 56672929 358996 64692 766244 29538 64490 421417 319 

Median 76886 53852539 369435 67149 404220 24223 66755 61730 62 

Std 33762 10467244 164660 28509 1037031 20958 28508 1020002 659 

RT: Rectal tissue; N: normal tissue; T: tumour tissue; 16S: 16S rRNA sequencing; RNA: RNA-Seq; ONT: Oxford 

Nanopore Technology sequencing. 

After mapping and processing, the taxonomy assignment rate was highest for 16S 

rRNA, at 85.8% of raw-reads, while RNA-Seq and ONT reads were assigned taxonomy 

at magnitude lower rates, at 0.007% and 0.001%, respectively (Table 3.12). An 



73 

amplification bias was found in the 16S rRNA dataset at the genus level, resulting in 

excessive levels of the Burkholderia genus, which was not reflected in the other 

platforms, and were removed before relative abundance calculations. 

Table 3.12. Percentage of reads retained and assigned taxonomy 

% Post-processing 
Assigned taxonomy 

Of total Of post-processed 

16S rRNA 86.1% 85.8% 99.7% 

RNA-Seq 1.4% 0.07% 55% 

ONT 8.2% 0.01% 1.1% 

 

3.4.2 Platform concordance 

The correlation between taxa at the phylum level between platforms was found to be 

highest between RNA and 16S rRNA sequencing, and lowest was between ONT and 

RNA sequencing (Figure 3.11), with one sample being negatively correlated; however, 

this was not statistically significant (rs = -0.067, p-value = 0.8987). The mean correlation 

between 16S rRNA and ONT sequencing was higher than between RNA and ONT 

sequencing (Table 3.13). 
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Figure 3.11. Platform comparisons of the RC cohort at the phylum level, A) 16S rRNA vs ONT, B) RNA-Seq vs ONT and C) 

RNA-Seq vs 16S rRNA. The dashed line indicates the sample mean. 



75 

At the genus level (Figure 3.12), there was a more consistent concordance level than at 

the phylum level; however, the mean correlation ranged from 0.48–0.52 for ONT and 

16S rRNA comparisons with RNA-Seq, respectively (Table 3.13). 
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Figure 3.12. Platform comparisons of the RC cohort at the genera level, A) 16S rRNA vs ONT, B) RNA-Seq vs ONT and C) 

RNA-Seq vs 16S rRNA. The dashed line indicates the sample mean. 

At the species level, the concordance was higher than at the genus level (Figure 3.13), 

with both 16S rRNA and RNA sequencing had a mean correlation with ONT 



77 

sequencing of 0.55 (Table 3.13), and between 16S rRNA and RNA-Seq, it was 0.62. One 

sample (RT13N) had a non-statistically significant negative correlation when comparing 

RNA and ONT sequencing (ρ = -0.06, p-value = 0.4375 (Figure 3.13B). 
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Figure 3.13. Platform comparisons of the RC cohort at the species level, A) 16S rRNA vs ONT, B) RNA-Seq vs ONT and C) 

RNA-Seq vs 16S rRNA. The dashed line indicates the sample mean. 
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Table 3.13. Mean correlation between platforms and rectal dataset 

Taxonomic Level 
16S rRNA vs. ONT 16S rRNA vs. RNA ONT vs. RNA 

ρ p-value ρ p-value ρ p-value 

Phylum 0.68 <2.2 × 1016 0.83 <2.2 × 1016 0.58 <2.2 × 1016 

Genus 0.49 <2.2 × 1016 0.53 <2.2 × 1016 0.48 <2.2 × 1016 

Species 0.56 <2.2 × 1016 0.63 <2.2 × 1016 0.55 <2.2 × 1016 

 

In contrast to our published CRC study [371], the overall concordance was higher 

between 16S rRNA and both ONT and RNA sequencing at each taxonomic level (Table 

3.14), with the most considerable improvement being at the species level. The 

concordance between ONT and RNA-Seq decreased at the phyla and genera levels; 

however, there was an improvement seen at the species level. Across all taxonomic 

levels, the highest concordance was seen between 16S rRNA and RNA-Seq.  

Table 3.14. Changes in mean correlation between platforms compared to Taylor et al. 2020 

Taxonomic Level 16S rRNA vs. ONT 16S rRNA vs. RNA-Seq ONT vs. RNA-Seq 

Phyla +0.009 +0.023 -0.092 

Genus +0.135 +0.161 -0.035 

Species +0.363 +0.440 +0.204 

 

Each platform's taxa identification rate was investigated in terms of the number of raw-

reads per species identified (Table 3.15). Read efficiency was evaluated without 

taxonomic filtering, as filtering cut-offs are often arbitrary, and the same cut-off would 

not be applicable cross-platform.  

Table 3.15. Number of different bacterial taxa detected using each sequencing platform 

 RNA-Seq 16S rRNA ONT 

Phyla detected 33 21 7 
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Genera detected 900 314 70 

Species detected 2512 459 129 

Unique phyla 13 1 0 

Unique genera 621 39 0 

Unique species 2111 95 0 

Raw reads per-species 902,435 6548 111,316 

 

For every 900,000 reads, RNA-Seq could identify a species, while 16S rRNA was more 

efficient as reads were amplified from bacterial specific genes and were with 6548 reads 

per species identified, despite 16S rRNA data being known to be less reliable at 

distinguishing between taxa at the species level. ONT data was the least efficient, with 

substantially fewer taxa being detected overall, and even fewer being detected on a per-

raw read basis. Furthermore, no unique taxa were detected when compared to other 

platforms (Table 3.15).  

3.4.3 Platform composition 

Figure 3.14 shows the relative bacterial abundance in the CHCH cohort using each 

platform. The proportions of each phylum varied between platforms (Figure 3.14A), with 

RNA-Seq and 16S rRNA sequencing having more comparable levels of Bacteroidetes and 

Proteobacteria; ONT sequencing detected a comparatively higher proportion of 

Bacteroidetes and Firmicutes.  

The proportional differences between each platform at the genera level were smaller, 

with each displaying more consistent levels of each taxon (Figure 3.14B); however, ONT 

sequencing detected fewer genera overall. In particular, ONT sequencing detected fewer 

Prevotella, Campylobacter and Streptococcus, compared to 16S rRNA and RNA sequencing. 
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Figure 3.14. Comparison of relative abundance in Rectal samples between sequencing platforms. A) The phyla level and B), the 

genus level. 

When comparing the number of species uniquely detected by different platforms, ONT 

sequencing did not detect any unique species, while RNA-Seq and 16S rRNA 

sequencing detected 2548 and 66 unique species, respectively (Figure 3.15). 
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Figure 3.15. Comparison of bacterial species detection between each sequencing platform. 

 

3.4.4 Community standard evaluation 

To assess ONT sequencing's accuracy and to determine the effect of lower read counts 

and quality, a microbial community standard had DNA extracted, was sequenced and 

had taxonomy assigned using the same methodology as other samples. The standard 

contained ten species: two yeast, three gram-negative bacteria and five gram-positive 

bacteria.  
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Figure 3.16. ONT sequencing of microbial community standard using increasing Kraken2 confidence scores. Actual represents 

the proportion of each species advertised in the community standard. 

Yeast species were under detected regardless of the confidence score used. A confidence 

score of 0.2, detected yeast more accurately; however, this was at the expense of 

reduced bacterial detection accuracy. A confidence score of 0.1 gave the most consistent 

and accurate results; however, there was an over-estimation of Enterococcus faecalis and 

reduced detection of Salmonella enterica, Escherichia coli and Pseudomonas aeruginosa 

(Figure 3.16).  

Table 3.16. ONT sequencing of community standard using increasing Kraken2 confidence scores. 

 Kraken2 Confidence Level   

Species 0.1 0.2 0.3 None 
Community standard 

abundance 
Gram 

Enterococcus faecalis 33.87% 45.17% 51.29% 9.46% 12 + 

Bacillus subtilis 12.46% 6.83% 3.35% 4.63% 12 + 

Lactobacillus fermentum 11.87% 13.79% 16.36% 3.77% 12 + 

Staphylococcus aureus 11.72% 12.03% 11.45% 4.93% 12 + 

Salmonella enterica 10.13% 5.45% 3.85% 28.48% 12 - 

Listeria monocytogenes 8.04% 8.39% 6.82% 2.54% 12 + 

Escherichia coli 5.93% 3.53% 3.15% 26.44% 12 - 

Pseudomonas aeruginosa 3.86% 2.621% 1.87% 15.99% 12 - 
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Saccharomyces cerevisiae 1.05% 1.273% 1.20% 0.31% 2 Yeast 

Cryptococcus neoformans 0.51% 0.55% 0.42% 0.15% 2 Yeast 

 

Additionally, microbial compositions contained 0.198%, 0.065% and 0.043%, species not 

in the community standard using 0.1, 0.2 and 0.3 confidence levels, respectively. These 

results show that ONT sequencing is adequate for sequencing and detecting bacterial 

species. 

 

3.5 Discussion  

3.5.1 Analysis 1: mapping methodology 

The tests on the effect of host mapping in different scenarios were performed to test the 

hypothesis that the taxonomic assignment software, Kraken2, could classify reads into 

both prokaryotic and eukaryotic categories, negating the need for host genome mapping 

before assignment.  

Using the Synth dataset, human reads were not wholly removed via mapping, with 

approximately 11% of the resulting data being classified as eukaryotic, and if not 

accounted for were classified as bacterial in origin. The results show that non-bacterial 

reads can be classified if the appropriate reference is included in the database, and that 

host mapping is an imperfect process, with residual host reads leading to higher type 1 

error rates, if not binned by a secondary filter such as during taxonomic classification. 

Using host mapping improved accuracy by 0.05% when using the All_DB; however, 

compute time increased more than a nine-fold with the addition of host-mapping. 

Using the two clinical datasets (CRC-RNA and Rec-ONT) and host mapping, alpha 

diversity was significantly different when using host mapping and the Bac_DB for 
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taxonomic assignment compared to the All_DB. There were no statistically significant 

differences in either dataset when using the All_DB with or without host mapping.  

In the CRC-RNA dataset, differences in mean diversity were statistically significant 

when using the All_DB compared to the Bac_DB, except for the Simpson diversity 

index; implying that taxonomic dominance is not influenced by database choice or prior 

host mapping in the CRC-RNA dataset. In the Rec-ONT dataset differences in Simpson 

diversity were statistically significant when comparing the use of the All_DB to the 

Bac_DB, which may reflect the higher inter-sample read number differences not present 

in the CRC-RNA dataset. 

The results demonstrate that using a database containing only bacterial genomes can alter 

the results of metagenomic analyses. Misassigned residual reads after host mapping may 

result in inflation of microbial diversity or misreporting the presence and abundance of 

clinically relevant taxa. 

Using the All_DB, Bacteroidetes were increased by 10% and more than 30% in the CRC-

RNA and Rec-ONT datasets, respectively, compared to using the Bac_DB. Proteobacteria 

were decreased using the All_DB by four-fold in the CRC-RNA dataset, and by more than 

50% in the Rec-ONT dataset. Additionally, the abundance of Fusobacteria was increased 

when using the All_DB, while regardless of the database or dataset used, the relative 

levels of Firmicutes remained consistent. The differences in detection could be clinically 

relevant as, for example, Bacteroidetes contain several taxa associated with health and 

disease, such as B.fragilis, and health-associated F. prausnitzii and Lactobacillus species. 

Additionally, Proteobacteria contains important pathogens like Shigella flexneri and 

cancer-associated microbes such as Helicobacter pylori and Escherichia coli [375].  

There were also differences at the genus level depending on the taxonomic database used. 

Important and potentially pathogenic genera, such as Klebsiella, Pasteurella, Mycoplasma, 

Yersinia and Staphylococcus were present in the most abundant genera when the Bac_DB 
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was used. Several consequential taxa were found to be among the most abundant when 

the All_DB was used, such as oral microbes Leptotrichia and Lachnoanaerobaculum [376] 

[377], the foodborne pathogen Campylobacter [378], Hungatella, which was recently 

associated with brain aneurysms [379], SCFA-producing Eubacterium [380], and Alistipes 

which has been implicated in cancer, inflammatory disease and mental health [381]. 

Metagenomic data from tissue samples has been used to study microbiome composition 

for classification or grouping of disease states, such as IBD [382], or CRC signatures [93, 

109], and potentially for CRC diagnosis and predicting survival [180, 383]; however, 

without appropriate measures to remove host sequences, the results and interpretation 

of data in these and other studies may be incorrect.  

Overall, the results of the first analysis demonstrate that not only is mapping to the host 

genome before bacterial taxonomic assignment insufficient for removal of host reads, but 

that host mapping may be largely redundant when the host genome is included in the 

taxonomic assignment database. Adopting a broad taxonomic classification database that 

includes the host genome is shown to increase the accuracy and speed of metagenomic 

analyses.  

3.5.2 Analysis 2: RC dataset platform comparison 

In Analysis 2, ONT sequencing was compared to 16S rRNA sequencing and RNA-Seq 

in their ability to analyse RC samples' tissue microbiomes using the methods 

implemented in previous CRC studies [93, 371]. The analysis was carried out using host 

contaminated samples extracted from human tissue. No attempt was made to reduce 

the amount of host genomic material during extraction methods; only 16S rRNA 

sequencing specifically selected microbial DNA via selective PCR primers.  

For ONT sequencing, samples were barcoded and sequenced as multiplexed libraries. 

Due, in part, to lacking an amplification step, the number of bacterial reads were several 
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orders of magnitude lower than the other platforms. In addition, the synthesis-free 

nanopore sequencing method can only read sequences once as they pass through a pore, 

in contrast to the bridge amplification used in Illumina sequencers which can sequence 

the same strand multiple times. Another factor in the low number of post-mapping ONT 

reads was that almost half of the ONT reads were not barcoded, which may introduce 

sampling bias. The loss of barcodes is a common factor in ONT sequencing generally, as 

the high molecular weight DNA becomes prone to breakage as it is purified, and 

stabilising proteins are lost. 

Based on the initial comparative study, concordance results between the sequencing 

platforms was initially promising [371]. Concordance of phyla, genera and species 

assignment between 16S rRNA and ONT sequencing was 67.6%, 35.8% and 19.5%; 

between 16S rRNA and RNA-Seq, 80.5%, 36.7% and 18.9%; and between ONT and RNA-

Seq, 66.7%, 51.5% and 35%. Despite the low numbers of reads acquired using ONT 

sequencing, more than a 1300 species could be taxonomically assigned, most of which 

could also be detected using RNA-Seq data. It has been theorised that long ONT reads 

might compensate for a lower number of reads by being more efficient, as it is possible 

to discriminate between species using larger query sequences; Wommack et al. [384] 

showed that long reads could detect 72% more hits than short read lengths of up to 400bp 

at twice the read depth. Although ONT sequencing is known to have an inherently high 

error rate, which was also observed in this study (Figure 3.10), this can be compensated 

for by using longer reads [385]. Additionally, ONT data is known to suffer at shorter read 

lengths (<1000 bp) in terms of taxonomic classification, and this is particularly the case 

when using Kraken2 [386]. 

Implementing the methodological changes from Analysis 1, the concordance between 

platforms was increased compared to the initial study, likely due to the methodological 

changes; using the All_DB for all taxonomic assignment and a taxonomic confidence 
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score. Removal of excessive Burkholderia levels from the 16S rRNA dataset from 

amplification bias was justified in that it resulted in better concordance (Figure 3.12) and 

preserved genus representation between platforms (Figure 3.14), which was improved 

between both RNA-Seq and ONT compared to the CRC study [371]. Concordance 

increased at the species level when comparing ONT and RNA-Seq; however, 

concordance was reduced at both the phyla and genera levels (Table 3.14), which was 

likely due to residual host sequences no longer being misassigned to the same taxa. The 

highest concordance was between RNA-Seq and 16S rRNA in line with the previous CRC 

study, while the lowest was between ONT and RNA-Seq.  

As Kraken2 has been recently shown to be an accurate method of 16S rRNA taxonomic 

classification [387], the benefit of utilising the same taxonomic database for all 

comparisons likely had the largest impact on concordance compared to the prior CRC 

study [371]. The DADA2 and the SILVA132 databases previously used for 16S rRNA 

taxonomic assignment may have contained naming differences compared to the Bac_DB 

used for the ONT and RNA-Seq reads, and that taxa were absent from one database were 

present in the other, and vice versa. Additionally, removing residual human and non-

bacterial reads may explain the increased concordance between other platforms and 16S 

rRNA sequencing in this study.  

When comparing ONT with RNA-Seq, some samples had low or negative correlations, 

due to some samples having few reads after mapping which could be assigned taxonomy 

and the effect of the relative transform on the dataset. For example, the RNA-Seq 

taxonomy for sample RT13N contained 122 species ranging in abundance from 0.00328 

to 0.2547; however, the ONT taxonomy for the same sample contained a single species 

(Bacteroides cellulosilyticus), giving it an abundance of 1, while it appeared in the RNA-Seq 

dataset an abundance of 0.000328.  
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Using the All_DB also reduced the detection efficiency of all three platforms compared 

to the previous CRC study, with almost 21-fold more reads being required per species 

identified for RNA-Seq, 124-fold more for ONT reads, and 1.75-fold more 16S rRNA reads. 

It should be noted that 16S rRNA is known to discriminate between species poorly; 

however, the efficiency decrease was magnitudes smaller than with other platforms 

when using the All_DB, likely due to the lack of impact from host reads. Despite the 

reduction in species detection, ONT sequencing still outperformed RNA-Seq on a raw-

read per species detection basis, requiring eight-fold fewer reads per species detected.  

ONT sequencing had high error rates, lower concordance with other platforms, and 

detected species less efficiently than in the previous CRC study. To demonstrate that 

ONT sequencing data could be used for microbial community evaluation, a community 

standard was sequenced using the same methodology as the CHCH cohort ONT samples. 

The results showed that ONT sequencing was capable of sequencing bacteria close to the 

proportions of a given sample; however, additional species not included in the 

community standard were classified using different confidence scores. The additional 

species identified did not exceed 0.2% of the compositional total when using the most 

accurate confidence score of 0.1. These additional species may be due to bleed over from 

other multiplexed samples or indicate the limitations that Kraken2 has in identifying 

species. Overall, based on the community standard analysis results, a confidence score of 

0.1 and a species abundance cut-off of 0.2% per sample was utilised for analyses moving 

forward. However, this may not be sufficient for 16S rRNA, and RNA-Seq analyses as the 

community standard was not used with these platforms, and there may be additional 

variance due to sequence quality and read numbers. 

3.6 Conclusions 

This chapter's results show that using a broad taxonomic assignment database that 

contains the human genome improves the accuracy and reduces the time required for 
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metagenomic studies while providing proportional information on the host-microbe 

content of a sample. Additionally, the increased accuracy and reduced interference from 

host reads increases inter-platform concordance; however, this improvement did not 

apply when comparatively few reads were supplied, such as the case for ONT 

sequencing concerning RNA-Seq. 

4 CHAPTER 4: RC MICROBIOME 

4.1 Introduction 

The microbiome has been implicated in sporadic CRC [388]; however, the relationship 

between the microbiome and chemoradiotherapy outcomes has yet to be thoroughly 

investigated. It has been shown that the microbiome can modify the pharmacokinetics 

of anti-cancer drugs, for example, Fusobacterium nucleatum can promote resistance to 5-

FU and platinum-based drugs used to treat CRC [389-392]. Additionally, the role of the 

microbiome in radiotherapy side effects, such as postradiotherapy diarrhoea, mucositis, 

fatigue, and other gastrointestinal side-effects has been well studied [393-396], as well as 

the effect of radiotherapy in altering the microbiome [397-399]. However, a link 

between radiotherapy outcomes and the microbiome has yet to be proven. In terms of 

direct microbiome-radiotherapy interactions, evidence points toward an 

immunomodulatory effect [242], such as gram-positive bacterial depletion with 

vancomycin leading to enhanced anti-tumour immune responses dependant on 

dendritic cell antigen presentation [400]. In contrast, other studies point toward 

microbial metabolites, such as vitamin D metabolism by microbiota contributing to 

radioresistance [401]. 

This chapter aimed to investigate the microbiomes of RC tissues, using RNA-Seq data 

using Kraken2, as described in Chapters 2 and 3. In the first section, alpha diversity was 

compared between tissues and response groups using Observed diversity, the total 
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transcription of taxa; Shannon diversity index, a measure of evenness within the 

sample; and the Simpson index, used to measure the level of dominance within a 

sample [402]. Microbiome composition, differential transcription, and beta-diversity 

were measured across response groups and patient tissues. The effect size of beta-

diversity measures by the response and metadata variables on the microbiome was 

calculated and tested. Transcriptional activity was correlated with response to find 

which taxa were most associated with response in each tissue type. Lastly, 

transcriptional alignment was used to determine the presence of enterotoxigenic 

Bacteroides fragilis.  

4.2 Methods 

Taxonomies were produced using host mapped reads from the sequencing data 

described in Chapter 3, and assigned taxonomy using Kraken2 v2.0.7 and the All_DB 

with a confidence score of 0.1, as described in Chapter 2. Diversity and composition 

were analysed and visualised using the phyloseq v1.28 [316], ape v5.4 [353], Pavian v1.0 

[403] and VEGAN 2.5 [352] R packages. Samples were rarefied to 90% of the sample 

sum of the lowest sample before alpha diversity calculations. The statistical significance 

of alpha diversity differences between tumour and normal tissues and response groups 

was tested using Wilcoxon signed-rank tests, and p-values were adjusted for false 

discovery rate (FDR) using Benjamini and Hochberg (BH) correction [358].  

Filtering was done after alpha-diversity analysis as singletons are rare taxa are used for 

calculating diversity indices. Additionally, there is no gold standard for taxa filtering, 

and thresholds are mostly arbitrary, with choices varying between researchers and the 

data used [404]. Low abundance taxa with a read count lower than 30 in 20% of samples 

were removed after alpha diversity analysis for compositional barplots and differential 

transcription. For beta-diversity analyses, taxa with more than five reads in 20% of 

samples were retained to preserve greater sample heterogeneity. Significance of 
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differences between tissues and response groups in taxa boxplots was measured using 

Wilcoxon signed-rank tests, and p-values were adjusted for FDR with Benjamini and 

Hochberg [358]. 

Effect sizes were calculated using adonis function, and homogeneity of variable 

dispersions was calculated with betadisper, both part of the VEGAN [352] R package. 

Differential microbial transcription was analysed with edgeR [356], relative log 

expression, a likelihood ratio test, and p-values were adjusted for false discovery rate 

(FDR) with Benjamini and Hochberg [358]. Correlations between relative abundance 

and response were calculated using Spearman’s rank correlation, and p-values were 

adjusted for FDR with Benjamini and Hochberg [358]. Extracted reads assigned to B. 

fragilis were aligned to a reference genome using STAR v2.6.1 [271] without splice 

aware alignment. Scripts and code used for the analyses can be found at 

https://github.com/William-S-Taylor/MSc. 

4.3 Results 

First, each platform compared in the previous chapter was tested for sample depth and 

appropriateness for community analysis, then alpha diversity, composition, beta 

diversity and effect sizes were analysed. Finally, RNA-Seq data was used to determine 

if the most transcriptionally active taxa were expressing a particular gene. 

4.3.1 Rarefaction 

Rarefaction curves were calculated from the taxonomies of ONT (Figure 4.1a), 16S 

rRNA (Figure 4.1b) (microbial abundance) and RNA-Seq (Figure 4.1c) (transcriptomic 

activity). The 16S rRNA and ONT datasets contained data from the Christchurch 

(CHCH) cohort (n = 20), while the RNA-Seq dataset contained data from both he CHCH 

and Peter MacCallum cohort (PM). The ONT dataset sample sums ranged from 2714 to 

2 with a standard deviation of 635, and half of the sample sums were below 60; 
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therefore, rarefaction could not be performed without reducing the data considerably. 

Additionally, the 16S rRNA dataset was also adversely affected by rarefaction (reducing 

total taxa from 671 to 489); however, the rarefied RNA-Seq dataset contained the 

greatest number of taxa (1916) and samples and therefore had the greatest likelihood of 

detecting significant response group variability. 

 

Figure 4.1. Dataset rarefaction curves. a) ONT; b) 16S rRNA, c) RNA-Seq. 

Due to the impact of rarefaction and the uneven and lower sample sizes of the other 

taxonomies, only the RNA-Seq taxonomy was utilised for microbiome analysis. 

Rarefaction reduced the number of taxa (Figure 4.2) in the RNA-Seq dataset by 46% 

(3534 to 1916). Post-rarefaction, each sample was normalised to taxa sample sums of 

4216 to give a balanced comparison between samples. 
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Figure 4.2. Effect of rarefaction on the RNA-seq taxonomy. a) RNA-Seq pre-rarefaction, b) RNA-Seq post-rarefaction. 

4.3.2 Alpha diversity 

Alpha diversity differences were tested for statistical significance (p > 0.05) using 

Wilcoxon signed-rank tests, and FDR correction was performed with Benjamini and 

Hochberg. Comparisons were made between tissue types, tissues of Dworak score 

groups, and the differences between tissues when grouped into high and low response 

grades (Dworak Four and Three, and Dworak Two and One, respectively) (Figure 4.3). 

The differences between the Shannon diversity scores of Dworak One and Two normal 

tissues, and the Simpson diversity scores between of Dworak Two tumour and normal 

tissues were found to be statistically significant (p = 0.047 and p = 0.049, respectively) 

(Figure 4.3b); however, no other alpha diversity comparisons were statistically 

significant. 
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Figure 4.3. Alpha diversity of bacterial transcription. a) Tissue comparison, b) Dworak score tissue comparison, c) response 

grade tissue comparison. *: p < 0.05; ns: not statistically significant. Comparisons that were not statistically significant in at 

least one instances are not shown. 

4.4 Microbiome compositions and differential analysis 

The relative level of bacterial transcription within samples was hypothesised to be 

associated with response. These levels would theoretically be different between the 

tumour and normal tissues of different response groups. Therefore, the relative 

transcriptional activity was plotted to compare the phyla and genus expression of 

different tissues and response groups, followed by differential expression analysis to 

determine these differences' statistical significance. Samples were grouped to assess the 

differences between high (Dworak Four and Three) and low (Dworak Two and One) 

response groups. 

4.4.1 Compositions and differential transcription 

At the phylum level, samples were mainly dominated by Proteobacteria, with 25 

samples being comprised of more than 90% Proteobacteria. In comparison, the 

taxonomies of three samples were comprised of mainly Bacteroidetes, the normal tissue 
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of a Dworak One patient, the normal and tumour tissue of a Dworak Two patient, the 

normal tissue of a Dworak Three patient, and the tumour tissue of a Dworak Four 

patient (Figure 4.4). On average, the top three most transcriptional active phyla were 

Proteobacteria, Bacteroidetes and Firmicutes, followed by Fusobacteria and 

Actinobacteria. Fusobacteria transcription was the highest in those samples with a 

Dworak score of Two. Fusobacteria transcription was detected in the normal samples of 

complete responders; however, at less than 1% of total transcriptional abundance. 

Cyanobacteria and Tenericutes had low transcriptional activity. Verrucomicrobia had 

the highest activity in the normal and tumour tissues of a Dworak Three patient (9.5% 

and 2.2%, respectively), followed by the normal and tumour tissues of a Dworak Four 

patient (8.3% and 2.3%, respectively). The Dworak Three patient with the highest 

Verrucomicrobia activity levels also had considerable levels of Spirochates in their 

normal and tumour tissues (38% and 0.5%, respectively) which were 163 and two times 

higher, respectively, than the sample with the next highest level. 

 

Figure 4.4. Relative transcriptional phylum activity ordered by tissue type and Dworak score. 

Analysis of the differential expression of phyla showed that Cyanobacteria had 

statistically significant (FDR corrected p-value < 0.05) differential transcription between 
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tissues (Figure 4.5). Overall, there was 1.55-fold more Cyanobacteria transcription in 

tumour tissues than normal tissues (Figure 4.5a), while in the high and low response 

groups, there was 2.27-fold and 1.33-fold higher Cyanobacteria transcription in tumour 

tissues (Figure 4.5a,b). No other comparison yielded phyla with statistically significant 

fold-change differences. 

 

Figure 4.5. Differential transcription of Cyanobacteria between normal and tumour tissues. a) tumour vs normal, b) high 

responder tumour vs normal, c) low responder tumour vs normal. 

At the genus level, samples were dominated mainly by Bacteroides, the ‘Other’ category, 

and Pseudomonas (Figure 4.6). Fusobacterium transcription was highest in Dworak Two 

patients' tissues, while the least was found in Dworak Four patients, with the majority 

occurring tumour tissues. Bacteroides were most transcriptionally active in Dworak One 

samples, while a Dworak Four patient had the highest transcription levels of 

Faecalibacterium (Figure 4.6).  
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Figure 4.6. Relative genera transcriptional activity, ordered by tissue type and Dworak score. 

After correcting for FDR, analysis of differential expression at the genus level revealed 

that only Corynebacterium had lower expression in tumours compared to normal tissues 

(-0.46), while six genera had statistically significant (p < 0.05) log2 fold change 

differences > 1 (Figure 4.7a). Campylobacter and Porphyromonas  had the highest levels of 

differential transcription between tumour and normal tissues (4.93-fold; p = 1.28 × 10-10 

and 3.13-fold; p = 2.59 × 10-5, respectively), followed by Streptococcus, Clostridium, 

Bacteroides and Collinsella (1.59-fold; p = 0.00014, 1.31-fold; p = 0.00015, 1.24-fold; p = 

0.012, and 1.68-fold; p = 0.016, respectively) (Figure 4.7a).  

In contrast, in the high responder group, 12 genera had higher transcriptional activity in 

tumours than normal tissues with a log2 fold-change higher than one (Figure 4.7b), 

while in the low responder group three genera had higher transcriptional activity 

(Figure 4.7c). Campylobacter had similar fold-differences between tumour and normal 

tissues in both high and low response groups (4.7-fold and 5.03-fold, respectively). 

When assessing the log2 fold changes differences between these groups (fold change 

differences of fold change differences between tumour and normal samples), it was 

found that Hungatella, Butrycimonas, Flavonifractor and Oscillibacter were more 
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transcriptionally active in the high responder compared to the low responder group 

(Figure 4.7d). 

 

Figure 4.7. Differentially expressed genera between tissues. a) tumour vs normal, b) high responder tumour vs normal, c) low 

responder tumour vs normal, d) high and low responder tumour vs normal tissue differences. 

The differences between tissue types of each response group were then tested, showing 

a statistically significant (p < 0.05) log2 fold difference (>1), in the transcriptional activity 

of 21 genera in the tumour tissues of high and low responders (Figure 4.8a). The 

greatest differences in transcriptional activity between high and low responder tumour 

tissues were those of Butyricimonas, Flavonifractor, Odoribacter and Alistipes, all of which 

had higher transcriptional activity in high responders (4.92-fold, 2.60-fold, 2.51-fold and 

2.19-fold, respectively) (Figure 4.8a). Genera with higher transcriptional activity in the 
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tumour tissue of low responders were Veillonella, Staphylococcus, Brevundimonas, 

Cutibacterium and Stenotrophomonas (1.60-fold, 1.32-fold, 1.23-fold, 1.17-fold and 1.01-

fold, respectively) (Figure 4.8a). Between the normal tissues of high and low 

responders, Hungatella were found to have statistically significant higher transcription 

in low responder normal tissues (5.44-fold) (Figure 4.8b). 

 

Figure 4.8. Differential transcription of genera between tissues. a) high responder vs low responder tumour tissue, b) low 

responder normal vs normal tissue. 

Differential relative transcriptional activity of eight species was found between tumour 

and normal tissues (Figure 4.9a). The greatest differences were higher levels in tumour 

tissue of Campylobacter ureolyticus, Lachnospiraceae bacterium GAM79, and Porphyromonas 

asaccharolytica (4.00-fold, 2.29-fold and 1.91-fold, respectively), and lower levels of 

Hungatella hathewayi, Fusobacterium nucleatum and Bacteroides thetaiotaomicron (2.37-fold, 

2.16-fold and 1.76-fold, respectively), in comparison to normal tissues (Figure 4.9a). 
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Between the tumour and normal tissues of high responders, six species were 

significantly higher in tumour tissues, Butyricimonas faecalis, Eubacterium rectale, Alistipes 

finegoldii, Streptococcus pyogenes, Bifidobacterium longum and Clostridium saccharobutylicum 

(4.17-fold, 3.16-fold, 2.95-fold, 2.92-fold, 1.75-fold and 1.98-fold, respectively) (Figure 

4.9b). In contrast, within low responders, two species had significantly higher levels of 

transcription in tumours (C. ureolyticus: 4.79-fold and L. bacterium GAM79: 2.12-fold), 

while three had significantly higher levels in normal tissues (F. nucleatum: 3.11-fold, H. 

hathewayi: 2.93-fold and B. thetaiotaomicron: 2.16-fold) (Figure 4.9c). When assessing the 

differences in the log2 fold changes between response group tissues, it was found that 

the differences in transcription of H. hathewayi, B. faecalis, A. finegoldii and E. rectale were 

higher between the tumour and normal tissues of high compared to those of low 

responders (Figure 4.9d). 
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Figure 4.9. Differential transcription of species between tissues. a) tumour vs normal, b) high responder tumour vs normal 

tissue, c) low responder tumour vs normal tissue, d) high and low responder tumour vs normal tissue differences. 

Between the tumour tissues of high and low responders, 15 species were significantly 

differentially transcribed (Figure 4.10a). Of those with higher transcription in high 

responder tumour tissues, B. faecalis, E. rectale, S. pyogenes and A. finegoldii had the 

greatest differences compared to the tumour tissue of low responders (3.33-fold, 2.35-

fold, 1.98-fold and 1.80-fold, respectively). C. saccharobutylicum was also significantly 

higher in high responder tumour tissue (1.50-fold) (Figure 4.10a), as when compared to 

respective normal tissues (Figure 4.10b). 
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The species with the greatest differential transcription between the tumour tissues of 

response groups were Actinomyces oris, Cutibacterium acnes, Stentrophomonas maltophilla, 

Ralstonia pickettii, R. insidiosa and Cupiavidus metallidurans 1.77-fold, 1.75-fold, 1.67-fold, 

1.37-fold, 1.33-fold, and 1.32-fold, respectively) (Figure 4.10a). H. hathewayi was found to 

be 5.56-fold lower in the normal tissue of the high response group compared to the low 

response group (Figure 4.10b). 

 

Figure 4.10. Differential transcription of species within tissues. a) high responder vs low responder tumour tissue, b) low 

responder normal vs normal tissue. 

Those species found to have significant differential transcription in at least one 

comparison were used in comparisons between Dworak scores and tissue types. 

Significance testing (FDR adjusted p < 0.05) showed nine species to be differentially 

transcribed between different Dworak response group tissues (Figure 4.11). The two 
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species with the highest relative transcription were C. ureolyticus, F. nucleatum and H. 

hathewayi. C. ureolyticus transcription levels were significantly different between the 

tumour and normal tissues of Dworak four patients (Figure 11a), and F. nucleatum 

between Dworak Two tumour and normal tissue, and Dworak Three and Four normal 

tissues (Figure 4.11b). 

 H. hathewayi had significantly different transcription levels between Dworak Four 

tumour and normal tissues, Dworak Four and Dworak Three tumour tissues and 

Dworak Four and Dworak Two and One tumour tissues (Figure 4.11c). Less 

transcriptionally active species with more than one significant difference were 

Paraburkholderia fungorum (Dworak One and Two tumour tissues; Dworak Two tumour 

and normal tissues) (Figure 4.11g), Pseudomonas sp. NC02 (Dworak Two tumour and 

normal tissues; Dworak Two and Dworak One and Three tumour tissues) (Figure 

4.11h), and Ralstonia insidiosa (Dworak One tumour and normal tissues, Dworak Two 

tumour and normal tissues, and between tumour tissues of Dworak One and Two) 

(Figure 4.11i). 
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Figure 4.11. Relative transcription levels of differentially transcribed species with atleast one statistically significant differences 

between Dworak score tissue groups. a) Campylobacter ureolyticus, b) Fusobacterium nucleatum, c) Hungetalla hathewayi, d) 

Clostridium saccharobutylicum, e) Bifidobacterium longum, f) Stenotrophomonas maltophila, g), Paraburkholderia fungorum, h) 

Pseudomonas sp. NC02, i) Ralstonia insidiosa.  *: p < 0.05; **: p <0.01; ***: p < 0.001; **** p < 0.0001. 

4.5 Effect size and beta-diversity 

Beta diversity was investigated between Dworak score groups and tissues using non-

metric dimensional scaling (NMDS) plots and distance metrics: Bray–Curtis 

dissimilarity (compositional dissimilarity), Jensen–Shannon divergence (similarity 
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between probability distributions) and the Jaccard index (similarity between unique 

members). Bray–Curtis (BC) takes taxa abundance into account (in this case, the level of 

transcription) to measure dissimilarity, while Jensen–Shannon divergence (JSD) 

measures similarity and has been used to establish enterotypes [177]. The Jaccard index 

(JI) does not take abundance into account and can be seen as a difference in the presence 

and absence of taxa in respective samples. 

The effect size of gender, age, cohort, Dworak score and tissue on the homogeneity of 

dispersion within nested groups was assessed using adonis R2 values. The homogeneity 

of each variable was tested using betadisper and the distance from centroids. 

4.5.1 Beta-diversity 

Using NMDS plots of calculated distance metrics, little clustering and high 95% 

confidence interval overlap could be seen within Dworak group tumour tissue samples 

(Figure 4.12a–c) or normal tissue samples (Figure 4.12d–f), indicating little difference 

between the groups. Using BC and the JI resulted in very similar clustering of samples. 

Additionally, when clustering samples by tissue types, substantial interpersonal 

variability was seen with each distance metric, with tumour tissues tending to be more 

distant from the centre (Figure 4.12g–i). 
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Figure 4.12. Beta-diversity non-metric dimensional scaling (NMDS) plots of bacterial transcription in tissues and Dworak 

groups. a) Bray–Curtis tumour tissue, b) Jenson–Shannon tumour tissue, c) Jaccard index tumour tissue, d) Bray–Curtis 

normal tissue, e) Jenson–Shannon normal tissue, f) Jaccard index normal tissue. Lines in the following indicate sample pairs; 

circles indicate tumour tissue and triangles are normal tissues.  g) Bray–Curtis tumour and normal tissue, h) Jenson–Shannon 

tumour and normal tissue, i) Jaccard index tumour and normal tissue. Ellipses represent 95% confidence intervals. 

4.5.2 Effect sizes 

In testing individual variables, the effect of Dworak as a variable had the largest single 

effect size (0.032–0.038) with JSD and JD displaying slightly higher effect sizes than BC, 

followed by cohort (0.019–0.023) and tissue (0.014–0.02) (Figure 4.13). However, these 

effect sizes were not found to be statistically significant. 
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Figure 4.13. Variable effect sizes  

As homogeneity of dispersion within variables used is a condition for the use of adonis,  

homogeneity of dispersion was tested using betadisper. It can be seen that there was 

significant dispersion within the cohort variable (Table 4.1), so the lack of significance of 

the above effect size of this variable may not be due to real differences in centroids. 

Table 4.1. Variable homogeneity test results 

Distance  Cohort Dworak Tissue 

Bray–Curtis 

sum of squares 0.128 0.038 0.055 

mean squares 0.128 0.013 0.055 

p-value 0.020 0.690 0.127 

Jensen–Shannon 

sum of squares 0.128 0.020 0.018 

mean squares 0.128 0.007 0.018 

p-value 0.019 0.468 0.124 

Jaccard sum of squares 0.147 0.037 0.088 
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mean squares 0.147 0.012 0.088 

p-value 0.022 0.694 0.062 

 

4.6 Correlation with response 

Species abundance and relative transcription were correlated with response grades to 

determine which species potentially have a role in treatment outcomes. Taxa were 

filtered to those with at least 30 reads in 20% of samples, separated into phylum, family, 

genus and species groups. Their relative abundances were correlated with Dworak 

scores in respective tissues using Spearman correlation with Benjamini and Hochberg 

FDR correction. 

4.6.1 Results 

Within tumour tissues, although no taxa were correlated with Dworak scores overall; 

Bacteroides caccae was positively correlated with a poor response (Dworak One) (Figure 

3.14). Although not statistically significant after FDR correction, the phyla Fusobacteria 

and the family Fusobacteriaceae were negatively correlated with a poor response 

(Dworak one), while the genera Escherichia and the species B. vulgatus were positively 

correlated with a poor response with unadjusted p-values < 0.05 (Figure 3.14). 
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Figure 4.14. Correlation heatmap of tumour tissue taxa and Dworak scores. s_: species; g_: genus; f_family; p_ phylum. X 

symbols indicate no statistical significant correlation (FDR > 0.05). 

Of those taxa with correlations with a poor response (Dworak One), it was seen via 

scatter plots (Figure 4.15) that the correlation of any taxa with response was only slight 

and not statistically significant, and that considerable variation existed within response 

groups, particularly in regards to Dworak Two samples.  

Additionally, as Fusobacteria and Fusobacteriaceae were significantly correlated with a 

poor response, the most transcriptionally active species in the Fusobacterium genus (F. 

nucleatum) was investigated (Figure 4.15f); however, it was not found to have a 

significant association with response.  
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Figure 4.15. Taxa correlated with response in tumour tissues. Blue Line = regression line; grey bars: 95% confidence interval. 

C. ureolyticus correlated negatively with Dworak scores within normal tissues and 13 

other taxa correlated with poor response. However, after FDR correction, ten taxa 

correlated with poor response were statistically significant (Figure 4.16).   
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Figure 4.16. Correlation heatmap of normal tissue taxa and Dworak scores. 

At the Phylum level, Bacteroidetes and Proteobacteria were positively and negatively 

correlated with a poor response (0.39 and –0.39, respectively) (Figure 4.17a,b). The 

families Pseudomonadaceae and Bacteroidaceae correlated with poor response (–0.36 

and 0.39, respectively) (Figure 4.17c,d); Enterobacteriaceae was also negatively 

correlated with poor response, but this was not statistically significant after FDR 

correction (FDR = 0.068). The Pseudomonas and Bacteroides genera were negatively (–

0.42) and positively correlated (0.41) with poor response, respectively (Figure 4.17e,f).  
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Figure 4.17. Phyla, families and genera correlated with response in normal tissues. 

The negative correlations of E. coli, Klebsiella pneumoniae and Salmonella enterica with 

poor response (–0.36,  –0.42 and –0.41, respectively) were statistically significant (Figure 

4.18a,b,c). B. fragilis and Odoribacter splanchicus were positively correlated with a poor 

response (0.36 and 0.35, respectively); however, the later was not statistically significant 

after FDR correction (Figure 4.18d,e). C. ureolyticus, which was negatively correlated 

with response had very low transcription levels across samples except for one Dworak 

Two sample in which considerably higher levels were seen (Figure 4.18e), and after 

FDR correction, was not found to be statistically significant.  
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Figure 4.18. Species correlated with response in normal tissue. 

4.7 Alignment with bacterial genomes 

B. fragilis was the most consistently transcriptionally active species across all samples 

(RNA-Seq reads: mean = 8557, median = 183, max = 346490, min = 2, SD= 43402). Due to 

its correlation with poor response, reads assigned to the species were aligned with a B. 

fragilis reference genome to determine the genes being transcribed which may explain 

its role in response. However, insufficient RNA-Seq reads were present for accurate 

differential expression analysis [405], with only seven samples having more than 10,000 

reads per sample before mapping to the reference genome. All tumour and normal 

tissue reads were aligned to the B. fragilis genome to determine if the bft toxin was being 

expressed. As can be seen in Figure 4.19, no expression of the bft gene was detected at 

the time of sampling. 
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Figure 4.19. Alignment of all Bacteroides fragilis aligned RNA-Seq reads. Red bar indicates the locus of the bft gene. 

 

4.8 Discussion 

4.8.1 Alpha-diversity 

Alpha-diversity between tissues and response groups was not statistically significant in 

most instances. However, Shannon diversity differences were statistically significant 

between Dworak One and Two normal tissues, which could be due to two factors: a) 

the comparative differences in the number of samples; b) the differences found between 

the poorest responders (Dworak One) and moderate responders (Dworak Two) may be 

due to the more selective microenvironment compared to higher responders (which did 

not have statistically significant differences). Of these, the evidence provided would 

suggest a), as the impact of the microenvironment on diversity could not be confirmed 

with such small and uneven sampling.  Additionally, when grouping into high and low 

response groups, no statistically significant difference was seen, supporting the idea 

that the difference in sample sizes contributed to the outcome. 

There was a statistically significant Simpson diversity difference between the tumour 

and normal tissues of Dworak Two patients; again, the difference may be due to the 

higher number of samples in the Dworak Two group (22 of 40, 55%) allowing greater 

discrimination between respective tissues. However, as with Shannon diversity, when 
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combined with Dworak One patients into the low response group, there was no 

statistically significant difference between the low and high responders, again 

indicating that the statistically significant differences resulted from the insufficient 

sample sizes in this study. Alternatively, the difference between Dworak One and Two 

patient tissues' selective microenvironments may make grouping them inappropriate. 

However, under the assumption that the statistically significant findings between 

Dworak Two tissues and between Dworak Two and One normal tissues are valid, the 

results would indicate that there may be increased intrapersonal tissue differences in 

moderate responders. Simultaneously, the increased diversity in the normal tissues of 

the poorest responders (Dworak One) may contain additional taxa from the more 

selective radioresistant tumour environment that does not occur in less radioresistant 

tumours. 

4.8.2 Filtering 

For correlation and differential expression analyses, taxa were filtered to those 

represented by 30 reads in at least 20% of samples, while for beta-diversity analysis, 

taxa with read counts of five or higher in at least 20% of samples were retained. The less 

stringent filtering for beta-diversity analysis was done to retain more variability 

between sample groups, while in correlation and expression analyses, only the most 

accurately identified taxa were retained. 

The filtering threshold was chosen to eliminate taxa that would be uninformative, while 

still retaining some rarer taxa, as excessive filtering would leave only the core 

microbiome. Filtering thresholds have implications for microbiome studies overall, as to 

how researchers decide to group, filter and display sample data can impact results and 

their interpretation. As such, caution is advised when interpreting study results 

utilising less than a few hundred samples per group, as small sample sizes (as used 
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here) can contribute to the loss of taxa from filtering that would otherwise be 

informative to study outcomes [406]. 

4.8.3 Composition and differential transcription 

Proteobacteria transcription dominated most samples, the abundance of which has been 

used as a marker of dysbiosis and disease in the gut [407]; however, this pertains 

mainly to studies performed in faecal samples, the results of which are not directly 

applicable to tissue studies [164]. As many pathogenic taxa are found in the 

Proteobacteria phylum, the compromised and inflammatory gut-tissue environment of 

cancer patients may allow the expansion of such taxa, allowing discrimination between 

response groups microbiome variation between individuals can often be attributed to 

interpersonal differences between Proteobacteria taxa [408].  

Cyanobacteria were the only phyla to have statistically significant higher transcriptional 

activity in tumours, and these differences were higher in high responders than low 

responders. Cyanobacterial toxins have been identified as contributing to modulation of 

the innate immune system in the mucosa, and some have been identified as producing 

carcinogenic compounds [409]. Additionally, species of Cyanobacteria used in food and 

supplements such as Arthrospira sp. are known to have radioresistant properties [410]; 

however, how this might contribute to tumour radiosensitivity is unknown.  

When comparing differentially transcriptionally active genera, Campylobacter was found 

to be five-fold higher in tumour than normal tissues, across response grades; however, 

this is likely due to contributing to and therefore survivability in inflammatory 

environments [411], and maybe an indicator of tissue inflammation more generally. 

Additionally, the Campylobacter species most prominently transcribed in this study, C. 

ureolyticus, was not evenly transcribed across samples, indicating that a few samples 

may drive this result. 
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More interestingly, when comparing the differences between the tumour differences 

between high and low responders, it was found that Hungatella and Butyricimonas were 

6–7-fold and Flavonifrator and Oscillibacter 3-fold more transcriptionally active in high 

responder tumour tissues compared to normal tissues, compared to the differences 

between tissues of low responders. These results indicate that relative differences 

between the transcription of these genera between tumour and normal tissue biopsies 

could be used prognostically to indicate tumour regression outcomes.  

Hungatella are anaerobic bacteria that have been associated with CRC in the past, 

particularly in consensus molecular subtype 1 (CMS1), characterised by 

immunogenicity and hypermutation [93]. Additionally, in a study by Xia et al., 

Hungatella hathewayi colonisation in mice promoted epithelial cell proliferation, 

immunoreactivity, and the methylation of SOX11, THBD, SFRP2, GATA5, and ESR1 

tumour suppressor genes, and could be contributing to hypermethylation more 

generally [412]. In addition to Hungatella hathewayi, Xia et al. also found that and 

Fusobacterium nucleatum was associated with increased methylation of MTSS1, RBM38, 

PKD1, and PTPRT [412]. The above may have implications for response to tumour 

regression. 

Indeed, these two species were identified in this study, along with Bacteroides 

thetaiotaomicron, to have lower differential expression in tumour tissues compared to 

normal tissues in low responders. However, B. thetaiotaomicron has been reported to 

reduce inflammation in irritable bowel disease cell and animal models [413]. 

Additionally, H. hathewayi was seen to be more than 5.5-fold lower in the normal tissues 

of high responders compared to low responders, indicating that they may contribute to 

diverting increased immune activity away from the tumour site in low responders. 

However, this would require further investigation. 
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In this study, high responder tumours contained more than three-fold higher B. faecalis 

compared to low responders and were found to have higher transcription in high 

responder tumours relative to normal tissues, and these differences being five-fold 

higher compared to low responders. Butyricimonas, are anaerobic butyrate producers, of 

which one species has been implicated in causing septic shock in a CRC patient [414], 

indicating that they may have high immunogenicity in addition to their butyrate 

production. Butyrate can upregulate PPARγ signalling maintains epithelial hypoxia by 

driving mitochondria toward β-oxidation of fatty acids and can act as an energy source 

for colonocytes and other bacterial species, such as Salmonella enterica [415].  

Flavonifractor has been reported as more abundant in healthy controls when studying 

CRC microbiomes [416, 417], and its higher transcription was identified here as being 

more than three-fold higher in tumour compared to normal tissues of high responders 

compared to low responders. The above indicates that the tumour microenvironment of 

high responder tumour tissues may be more similar to healthy tissues than poor 

responders. The effect of Flavonifractor on response may involve an immune regulatory 

function, as oral supplementation in of F. plautii has been found to suppress Th2 pro-

inflammatory immune responses [418].  

A. finegoldii was the most prominently transcribed species in the Alistipes genus and was 

found to have higher differential transcription in the tumours of complete responders, 

three-fold higher transcription in tumour than normal tissues in high responders, 

compared to the differences of tumour and normal tissues of low responders. A. 

finegoldii is a propionate producer [419], a SCFA that that can stimulate PYY and GLP-1 

in colonic cells, reducing energy intake [420] and can utilise saturated fatty acids for 

membrane production [421]. Oscillibacter transcription was detected in high responders' 

tumours, which has been correlated with high-fat diets and reduced intestinal barrier 

function [422]. In conjunction, the above species gives further evidence for the benefit of 
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high-fat diets on radiotherapy outcomes, as has been demonstrated in randomised 

controlled studies on ketogenic and high-fat diets in radiotherapy of RC [423], having 

benefits to quality of life and body mass in gastrointestinal cancers [424]. The results 

here indicate a microbial metabolism component that may impact outcomes in the 

tumour microenvironment; however, this requires further investigation as the taxa may 

be selected for by a beneficial diet, rather than having an impact on response 

themselves. 

The above evidence may suggest that the contribution to CRC by H. hathewayi and F. 

nucleatum via methylation of tumour suppressor genes may result in increased 

radiosensitivity due to enhanced immunogenicity and methylation; however, this 

requires further investigation, particularly with the similarly associated Flavonifractor, 

and B. thetaiotaomicron having a role in ameliorating inflammation. Additionally, it may 

be possible that high-fat diets may encourage the colonisation of tissues with 

Oscilliobacter and A. finegoldii, altering tumour metabolism in conjunction with butyrate 

produced by B. faecalis, pushing tumour metabolism toward ketogenic metabolism, and 

starving glucose dependant tumours, reducing cellular proliferation [425]. However, 

although ketogenic diets are generally well tolerated, further investigation is required 

on the interactions between radiotherapy, the microbiome and ketogenic diets in RCs 

[426]. 

4.8.4 Beta diversity and effect sizes 

Beta diversity was measured using Bray–Curtis (BC) Jensen–Shannon distance (JSD), 

and the Jaccard index (JI). It was not possible to use UniFrac measures as they rely on 

phylogenetic relationships between assigned reads. Due to the random nature of total 

RNA-sequencing from tissue samples, the lack of phylogenetic relationship between 

different reads from the same species would result in heavily distorted results. 
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There was little difference between the BC distance and the JI clustering of tumour and 

normal tissues or by Dworak score, indicating that incorporating transcriptional 

abundance does not substantially affect clustering of samples beyond that established 

by the presence or absence of unique taxa. All beta-diversity analysis showed that 

patient tumour tissues might be more diverse than normal tissues; however, the level of 

interpersonal variability and cluster overlap suggests this is not always the case. 

Effect sizes showed that using beta diversity, Dworak scores and tissue variables 

explain little of patients' microbial transcription variability. However, this leaves the 

majority of variability to be explained by other unknown factors, of which genetic 

dissimilarity and differences in environmental exposure between patients are likely the 

major contributing factors. 

4.8.5 Correlations with response 

Only Campylobacter ureolyticus transcription was correlated with Dworak score in 

normal tissues; however, this was not found to be statistically significant and was likely 

driven by two samples with higher than normal levels. Although no statistically 

significant taxa were found to be correlated with Dworak scores, several were seen to be 

correlated with a poor response (Dworak One), but not conversely negatively correlated 

with a complete response (Dworak Four). The phylum Fusobacteria and family 

Fusobacteriaceae were both correlated with poor response, but not F. nucleatum, the 

most transcriptional active member species. Similarly, the Escherichia genus was 

positively correlated with poor response, but not E. coli, its most transcriptionally active 

member species within tumour tissues; however, it was within normal tissues. This 

effect may be due to a species-level assignment limitation as multiple closely related 

species were included in the database.  As most reads assigned to Fusobacteria were 

also assigned to Fusobacteriaceae, only some reads likely had species-specific content; 

most reads assigned to a family or genus would be largely homologous between 
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member species, which indicates that only a minority of reads produced from species-

specific regions can discriminate between species. 

Two Bacteroides species, B. vulgatus and B. caccae, were also positively correlated with a 

poor response. B. vulgatus is known to reduce inflammation by reducing microbial 

lipopolysaccharide production [427], while B. caccae has been implicated in appendicitis, 

intra-abdominal infections [428] and ulcerative collitis [429], indicating it may 

contribute to anti-bacterial inflammatory immune responses.  The Bacteroidetes 

phylum, the Bacteroidaeceae family, and the Bacteroides genus were positively 

correlated with a poor response within normal tissues. B. fragilis was the only species in 

the Bacteroides genus that was significantly correlated with a poor response. B. fragilis 

strains have been implicated in CRC due to bft enterotoxin expression [430], while other 

strains have been suggested as a probiotic and have been shown to enhance 

phagocytosis and polarisation of macrophages to the M1 phenotype [431], which would 

improve tumour clearance. As the most abundant species with consequential strain 

differences, the reads assigned to B. fragilis were extracted and aligned to a 

representative genome to determine the differential expression occurring in different 

tissues and response groups. Although the number of reads was too small to identify 

differentially expressed genes, it was possible to determine that no bft expression was 

occurring in any samples, indicating that if enterotoxigenic strains were present, they 

could not actively express the bft toxin. Due to the limitation in the read depth and 

sampling consistency across samples, it cannot be said what strains of B. fragilis are 

involved or what role they have in radiotherapy outcomes and should therefore be 

further investigated. 

Salmonella enterica was negatively correlated with a poor response; however, there was 

high interpersonal variability. The species S. enterica, similar to B. fragilis, has several 

subdivisions which may have different roles in environments [432], and assignment 
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could not be resolved to the subspecies level. However, considering the previously 

discussed ability to feed on butyrate, one hypothesis for its association with response is 

that in poor responders, it can metabolise available butyrate, depriving host tissues of 

its effects, while in higher responders, it may be selected for higher levels of butyrate, 

but its metabolism does not deplete the pool available for host uptake. Additionally, 

Salmonella species have been suggested as a novel anti-cancer therapy, showing some 

success in animal models alone and in conjunction with radiotherapy, through a direct 

growth inhibition of tumours and immune mediation, inhibiting Tregs and increasing 

CD8 T cell populations [433, 434]. Similarly, E. coli were identified as being negatively 

correlated with poor response and had substantial amounts of variability between 

different strains, which makes forming a hypothesis around the mechanism of effect on 

response difficult. However, as all E. coli are facultative anaerobes, they may reduce the 

available oxygen in the microenvironment. Additionally, as they are one of the fastest 

replicating prokaryotes [435], their relatively high transcription may result from the 

temporary environment of the colonoscopy pre-treatment, after which the biopsies were 

collected. 

 Although both the Pseudomondaceae family and the Pseudomonas genus were 

negatively correlated with poor response, no Pseudomonas species was correlated with 

response. Pseudomonas sp. NC02 transcription was significantly higher in low 

responders' tumours compared to those of high responders; however, given that P. sp. 

NC02 is a soil bacteria with no evidence of human gut colonisation, and that the 

database used for taxonomic assignment contained 127 species and strains of the 

Pseudomonas genus, it is possible that this species was likely misidentified, largely due 

to its 99% similarity to both P. yamanorum and P. fluorescens [436]. Odoribacter 

splanchnicus was also negatively correlated with poor response. However, due to its 

high inter-sample transcriptional variability (mean reads assigned per sample: 340; SD: 
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1353) and that it is closely related to other significantly transcriptionally active species 

in the genus Butyricimonas [437], O. splanchnicus may have also been misidentified. 

Although identification of O. splanchnicus is more likely than P. sp. NC02, as it has been 

reported in the human gut [438]. 

Overall, since taxa were correlated with a poor response but not inversely correlated 

with a complete response or Dworak scores, it may be possible that taxa can contribute 

to or are selected by the tissue microenvironment of poor responders, but not of higher 

responder groups. It could be that the selective environment of poor responders is more 

extreme, with the more subtle selective pressures of other responder groups not being 

assessed with the small sample sizes employed in this study. 

 

4.8.6 Limitations 

A strong limitation of this study was the unbalanced design, using two low powered 

cohorts, and more samples having a Dworak Score of two than any other group. 

Furthermore, the inability to perform differential gene expression on individual taxa or 

to resolve them beyond a species designation leaves only speculative functional 

contributions to tumour regression. Transcriptional sequencing and taxa assignment 

error may play a role in the results of this study. Finally, the speculative cohort effect 

may have further affected the data and subsequent interpretation of results.  

4.9 Conclusions 

Based on the results of this study, microbial alpha or beta diversity does not contribute 

to enhanced or decreased response rates to radiotherapy in RCs. However, the 

increased transcription of individual species such as Hungatella hathewayi, Fusobacterium 

nucleatum, Butyricimonas faecalis, Alistipes finegoldii, Bacteroides thetaiotaomicron, and B. 

fragilis may contribute to response by modulating metabolism and anti-tumour immune 
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responses. Additional research is required with higher sample sizes, more per-response 

group power and higher bacterial read depth; to resolve contributing species to strain 

designations and to evaluate the contribution of differential gene transcription within 

those strains to radiotherapy outcomes. 

5 CHAPTER 5: IMMUNE CELL INFILTRATION 

5.1 Introduction 

The immune system's role in response to therapy is widely accepted [439], with the field 

of immunotherapy taking advantage of this fact [440]. Neo-antigens produced in 

damage-associated molecular patterns (DAMPs) are thought to trigger immune 

responses against tumour tissues, with natural killer T cells and CD8 T cells being most 

implicated in cytotoxicity induced tumour regression [441].  

More recently, macrophages and dendritic cells have also been implicated, with 

different phenotypes having alternative responses [442]. So-called tumour tolerant cells 

such as D0 dendritic cells are implicated in preventing the immune system from taking 

action against tumour cells [443]. M2 tumour-associated macrophages (TAMs) have 

paradoxical roles in increased tumour growth and fibrosis, while M1 or tumour-

sensitive macrophages have been identified as having a tumour clearing role [444, 445]. 

The latter action of these macrophages may be linked to their role in tissue remodelling 

actions [446], such as differentiating from macrophages to osteoclasts [447]. Evidence 

for this role comes from the lipopolysaccharide (LPS) and RANK-L induced 

differentiation to osteoclastic phenotypes, as well as the association of high osteonectin 

with higher responses to radiotherapy [448] [449]. A study in mice has shown that 

osteonectin deletion decreased M1 macrophage levels and fibrosis in heart tissues. 

Overall, the implications of this remain to be thoroughly investigated [450]. 
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The immune system’s interaction with the microbiome has been a source of much 

contention in the research community over the last decade. Irritable bowel syndrome 

(IBS), inflammatory bowel disease (IBD) and other inflammatory diseases are associated 

with dysbiosis, which can cause inappropriate immune responses, resulting in 

pathologies [451]; suggesting that the microbiome can modulate immune activity in the 

gut  [289]. Additionally, different cytokine levels have been associated with disruptions 

to the microbiome, e.g., IL-6 and IL-10, implicated in autoimmune reactions such as 

colitis and Crohn’s disease [452].  

In this chapter, the aim was to measure the abundance of different immune cells within 

RC biopsies of tumour and normal tissues and test if they are correlated with response. 

Immune cells correlated with response to therapy were then correlated with the 

abundance and transcription of identified bacterial species within the respective tissues. 

The hypotheses of this chapter were:  

- Particular immune cells present in tumour tissues modulate the response to 

chemoradiotherapy (CRT) in RCs.  

- The transcription of different bacteria partly regulates relevant immune cells. 

5.2 Methods 

The Salmon tool [287] was used to quantify host gene expression using RNA-Seq data 

from the RC cohort (n = 40), using the GRCH38p12 transcriptome. The relative levels of 

immune cells in each sample were predicted using 500 permutations of the digital 

cytometry tool, CIBERSORT, which utilises support vector regression (SVR) to compute 

the proportion of immune cells based on gene expression data [284]. The ESTIMATE R 

package v1.0.13 was used on RC cohort RNA-Seq gene expression data to provide 

immune and stromal scores, while the ESTIMATE score was used to assess tumour 

purity [282]. Tumour purity was calculated using the formula: Tumour purity = cos 
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(0.6049872018+0.0001467884 × ESTIMATE score). The significance of differences 

between tissue and response groups was measured using Wilcoxon signed-rank tests 

with Benjamini and Hochberg False discovery rate (FDR) correction [453] and Kruskal–

Wallis tests. 

Spearman rank sum correlation with Benjamini and Hochberg correction was used to 

establish a correlation between the level of relative immune cells and response. Bacterial 

transcription levels were evaluated as described in the Methods chapter (Section 2.6), 

with microbial RNA expression being assigned taxonomy with Kraken 2 v2.0.7[338]. 

Taxa were filtered for the most transcriptionally active bacteria with a cut-off of at least 

30 reads in 20% of samples, which were converted to relative levels. Spearman 

correlation was used to ascertain the relationships between taxonomic abundance and 

transcription levels using Benjamini and Hochberg for FDR correction. Scatterplot 

regression lines were built using the linear-model (lm) method in the geom_smooth() 

function of ggplot2 v3.3.2 [315]. 

Scripts and code used for the analyses and supplementary tables can be found at 

https://github.com/William-S-Taylor/MSc. 

5.3 Results 

5.3.1 Immune cell profiling 

Between tumour and normal tissues, there were significantly lower levels of B memory 

cells (4.67-fold), CD8 T cells, (2.77-fold), plasma cells (1.86-fold) detected in tumour 

tissues. In comparison, there were significantly higher levels of activated mast cells (2.3-

fold), M0 macrophages (2.6-fold), neutrophils (3.32-fold) and M1 macrophages (8.76-

fold) (Figure 5.1, Supplementary Table 5.1).  
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Figure 5.1. Statistically significant fold-change differences between immune cells in tumour tissues and normal tissues. 

There were statistically significant differences between tumour and normal tissues in 

the abundance of B memory cells, plasma cells, CD8 T cells, activated mast cells, M0 

macrophages, neutrophils and M1 macrophages (Figure 5.2a–g). The abundance of 

plasma cells, activated mast cells and CD8 T cells had the greatest overlap between 

tissues; however, in terms of the abundance of B memory cells, activated mast cells and 

neutrophils, there were several outliers.  
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Figure 5.2. Abundance of immune cells significantly differentially abundant between normal and tissues. a) memory B cells; b) 

plasma cells; c) CD8 T cells; d) activated mast cells; e) M0 macrophages; f) neutrophils; g) M1 macrophages. * p <= 0.05, ** p <= 

0.01, *** p <= 0.001, **** p <= 0.0001. 

Within Dworak groups, the differences between tissue types were not consistent. The 

largest group, Dworak Two (n = 22), had significant differences between tissues for the 

same immune cells as the entire cohort; however, no other Dworak group had 

statistically significant differences between tissues. 

There were significant differences between detected immune cells in the tumour tissues 

of complete responders (Dworak Four) and the average abundance of incomplete 

responders (Dworak One–Three) in the abundance of Tregs, resting and activated mast 

cells (Error! Reference source not found.). The highest differences were seen for M1 

macrophages (Error! Reference source not found.). There were no statistically 

significant differences between normal tissues (Supplementary Table S5.2). 
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Figure 5.3. Significant fold differences between the detected immune cells in the tumour tissues of complete and incomplete 

responders. 

Dworak scores were grouped into a high response group (Dworak Four and Three) and 

a low response group (Dworak Two and One). No detected immune cells were 

significantly different between the tumour or normal tissues of the two groups, after 

FDR correction. 

However, there were significant differences in the abundances of resting and activated 

mast cells (Figure 5.4a,b), Tregs (Figure 5.4c) and M1 macrophages (Figure 5.4d) 

between the tumour tissues of complete responders (Dworak Four) and incomplete 

responders (Dworak One–Three). 



131 

 

Figure 5.4. The abundance of immune cells significantly differentially detected between tumours of complete and incomplete 

responders. a) activated mast cells; b) resting mast cells; c) T regulatory cells (Tregs); d) M1 macrophages. ** p < 0.01; *** p < 

0.001. 

5.3.2 ESTIMATE scores 

ESTIMATE was used to establish tumour purity within tumour samples, giving stromal 

and immune scores, and an ESTIMATE score used to measure of tumour purity. 

However, there was no statistically significant correlation between tumour purity, 

stromal or immune scores and Dworak scores, before or after FDR correction 

(Supplementary Table S5.2). 

5.3.3 Immune cell correlations with response 

After FDR correction, no immune cells were significantly correlated with Dworak 

scores in normal tissues; however, within tumour tissues, M1 macrophages and resting 

mast cells had statistically significant positive correlations with Dworak scores of 0.46 

and 0.51, respectively (Figure 5.5).  
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Figure 5.5. Immune cell abundance vs Dworak scores in tumour tissues. a) relative abundance of resting mast cells, a) M1 

macrophages, b) resting mast cells. Blue line: regression line; grey bars: 95% confidence interval. 

The significance of differences between immune cells significantly correlated with 

Dworak scores in tumours was tested between response and tissue types (Figure 5.6).  

There were statistically significant differences between the M1 macrophage levels in the 

tumour and normal tissues of Dworak Four and Dworak Two patients and between 

Dworak Four and Dworak One–Three tumour tissues (Figure 5.6a). Comparisons 

between relative levels of resting mast cells in tumour tissues showed statistically 

significant differences between the tumour and normal tissues of Dworak One and 

Dworak Two patients, and between Dworak Four and Dworak One and Two tumours 

(Figure 5.6b). 
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Figure 5.6. Abundance of immune cells correlated with response in tumour cells. a) M1 macrophages, b) resting mast cells. * p < 

0.05; ** p < 0.01. 

5.3.4 Correlation with the microbiome 

In Chapter 4, the microbiome was correlated with chemoradiotherapy response, in a 

possibly immune-mediated manner. The relative transcription of microbial taxa was 

correlated with the abundance of immune cells to investigate possible interactions 

between the microbiome and the immune system. Spearman correlation with Benjamini 

and Hochberg FDR correction was used to find statistically significant correlations 

between bacterial transcription with immune cell abundance. Taxa with more than 30 

reads across at least 20% of samples were retained for the correlation analysis, with a 

focus on taxa correlating with response in Chapter 4. 

5.3.5 Bacteria–immune correlations 

M1 macrophages correlated with Dworak scores within tumour tissues but did not have 

any statistically significant correlation with bacterial transcription. M1 macrophages 

were positively correlated with Campylobacter ureolyticus, Campylobacteraceae, and 

negatively with Cyanobacteria, Bacteroides vulgatus, Desulfovibrio, Alistipes finegoldii and 
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Alistipes; however, these correlations were not statistically significant after FDR 

correction (Supplementary Figure S5.1). 

M1 macrophages were negatively correlated with Pasteurellaceae in normal tissues (r = 

-0.439) (Figure 5.7a). Additionally, Bacteroides vulgatus was negatively correlated with 

resting dendritic cells within tumour tissues (Figure 5.7b). In contrast, activated 

dendritic cells were correlated with Clostridium saccharobutylicum, Salmonella enterica and 

Escherichia coli and its parent genus were positively correlated with activated dendritic 

cells (Figure 5.7c–f). Activated mast cell levels in tumour tissues were negatively 

correlated with Dworak scores (r = 0.303, p = 0.04); however, were not statistically 

significant after FDR correction (FDR adjusted p-value = 0.15). 

 

 

Figure 5.7. Scatterplot of M1 macrophages, dendritic cells and correlated bacterial transcription. a) Pasteurellaceae vs M1 

macrophages; b) Bacteroides vulgatus vs Resting dendritic cells, c) Clostridium saccharobutylicum vs Activated dendritic cells; 

d) Salmonella enterica vs Activated dendritic cells; e) Escherichia vs Activated dendritic cells; f) Escherichia coli vs Activated 
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dendritic cells. r: Spearman’s Rho; FDR: false discovery rate adjusted p-value. Lines of regression are coloured by tissue type; 

grey bars indicate 95% confidence intervals. 

Activated mast cells were positively correlated with Bacteroides dorei transcription 

(Figure 5.8a), while activated mast cells were positively correlated with resting mast 

cells (Figure 5.8b). Bifidobacteriaceae was negatively correlated with resting mast cells, 

but in normal tissues (Figure 5.8c). 

 

 

Figure 5.8. Scatterplot of mast cells and correlated bacterial transcription. a) Bacteroides dorei vs Activated mast cells, b) B. dorei 

vs resting mast cells, c) Bifidobacteriaceae vs Resting mast cells. r: Spearman’s Rho; FDR: false discovery rate adjusted p-value. 

Lines of regression are coloured by tissue type; grey bars indicate 95% confidence intervals. 

The transcription of Bacteroides fragilis was correlated with naïve B cells and CD8 T cells 

in tumour tissues (Figure 5.9a,b), while Eubacterium rectale was correlated with 

eosinophils and resting natural killer (NK) cells (Figure 5.9c,d). Streptococcus pyogenes 

transcription was positively correlated with follicular T helper cells in normal tissues 
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(Figure 5.9e) while the transcription of the family Flavobacteriaceae was in tumour 

tissues (Figure 5.9f).   

 

Figure 5.9. Scatterplot of B, T and eosinophils and correlated bacterial transcription. a) Bacteroides Fragilis vs Naïve B cells; b) 

B. fragilis vs CD8 T cells; c) Eubacterium rectale vs Eosinophils; d) Eubacterium vs Resting natural killer cells; e) Streptococcus 

pyogenes vs Follicular T helper cells, f) Flavobacteriaceae vs Follicular T helper cells. r: Spearman’s Rho; FDR: false discovery 

rate adjusted p-value. Lines of regression are coloured by tissue type; grey bars indicate 95% confidence intervals. 

 

Neutrophils were the immune cell which most correlated with bacterial transcription in 

normal tissues. Although neutrophils had a small negative correlation with Dworak 

scores in normal and tumour tissues (r = -0.191 and -0.032, respectively), this was not 

statistically significant (p = 0.236, FDR = 0.533; p = 0.841, FDR = 0.906, respectively). In 

normal tissue, the transcription of the phyla Proteobacteria and Bacteroidetes were 

negatively and positively correlated with the abundance of neutrophils, respectively 

(Figure 5.10a,b). E. coli transcription and that of the parent genus Escherichia were 
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negatively correlated with neutrophils in normal tissue (Figure 5.10c,d), as well as 

Pseudomonas sp. NC02 and its parent genus Pseudomonas (Figure 5.10e,f). 

 

 
Figure 5.10. Phyla, genera and species transcription correlated with neutrophils. r: Spearman’s Rho; FDR: false discovery rate 

adjusted p-value. Lines of regression are coloured by tissue type; grey bars indicate 95% confidence intervals. 

Additionally, Hungatella hathewayi transcription and that of its parent genus Hungatella 

were positively correlated with neutrophil levels in normal tissues (Figure 5.11b,a), 

along with Butyricimonas faecalis and its parent genus Butyricimonas (Figure 5.11d,c). 
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Figure 5.11. Genera and species correlated with neutrophils. r: Spearman’s Rho; FDR: false discovery rate adjusted p-value. 

Lines of regression are coloured by tissue type; grey bars indicate 95% confidence intervals. 

Transcription of the genus Alistipes and the species’ Flavonifractor plautii, B. fragilis and 

Odoribacter splanchnicus were positively correlated with neutrophil abundance in normal 

tissues (Figure 5.12a,c,e,f). B. fragilis was also negatively correlated with neutrophil 

abundance in tumour tissues, but this was not statistically significant after FDR 

correction (Figure 5.12e). Clostridium saccharobutylicum and Salmonella enterica 

transcription were negatively correlated with neutrophil abundance in normal tissues 

(Figure 5.12b,d) 



139 

 
Figure 5.12. Additional taxa transcription correlated with neutrophil abundance. r: Spearman’s Rho; FDR: false discovery rate 

adjusted p-value. Lines of regression are coloured by tissue type; grey bars indicate 95% confidence intervals. 

M1 macrophage abundance was significantly different between Dworak Two and Four 

tumour and normal tissues, and the tumour tissues of Dworak Four patients and those 

of Dworak Three–One patients, with the highest levels being in Dworak Four tumour 

tissues (Figure 5.13a). Resting mast cell abundance was significantly different between 

tumour and normal tissues of Dworak One and Two patients, as well as between the 

tumour tissues of Dworak Four patients and those of Dworak One and Two patients 

(Figure 5.13b). Additionally, the tumour tissues of Dworak Four patients were the only 

tumour samples to have a consistent abundance of resting mast cells (Figure 5.13b).  

The abundance of activated mast cells was higher across samples than resting mast 

cells, with statistically significant differences between the normal and tumour tissues of 

Dworak One and Two tumour patients, and between Dworak Four, Three, Two and 

One tumour tissues (Figure 5.13c). Eosinophils were most abundant in Dworak Two, 



140 

and Three tumour and normal tissues, respectively, and significant differences were 

found between the normal tissues of Dwoark Four and Three patients, between Dworak 

Three tumour and normal tissues, and between Dworak Three and One normal tissues 

(Figure 5.13h). Neutrophil abundance was significantly different between Dworak Two 

tumour and normal tissues and was in low abundance in normal tissues generally, and 

Dworak Four tumour tissues (Figure 5.13j). The abundance of resting dendritic cells was 

only evident in four samples, one normal sample, and three tumour samples, all from 

Dworak Two patients (Figure 5.13d). In contrast, activated dendritic cells were found in 

abundance across all Dworak groups and tissues (Figure 5.13e); additionally, and along 

with the abundance of naïve B cells (Figure 5.13f) and follicular T helper cells (Figure 

5.13i), were not significantly different between the tissues or Dworak groups. 
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Figure 5.13. Immune cell levels correlated with bacterial transcription. a) M1 macrophages; b) resting mast cells; c) activated 

mast cells; d) resting dendritic cells; e) activated dendritic cells; f) naïve B cells; g) CD8 T cells; h) eosinophils; i) follicular helper 

T cells; j) neutrophils. * indicate significance of FDR adjusted Wilcoxon signed-rank tests; *: p < 0.05; **: p < 0.01. Not 

statistically significant comparisons not shown. 

5.4 Discussion 

5.4.1 Myeloid lineage most correlated with radiotherapy response 

In this study, the common myeloid progenitor lineage was of most consequence for 

response correlations, with mast cells and M1 macrophages being correlated with 

radiotherapy response in tumour tissues; indicating that interference with myeloid 

differentiation is the major contributor to the production of effector cells contributing to 

tumour regression. M1 macrophage correlations with response were likely due to the 
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34-fold higher levels in complete responders compared to other groups. Resting mast 

cells were also positively correlated with response, indicating that the mitigation of an 

allergic response may be prognostically relevant. Macrophages are well understood to 

have a role in radiotherapy and radiation-induced cellular injury where they play a role 

in cellular clearance and fibrotic wound responses; a characteristic of tumour regression 

[450].  

5.4.2 M1 macrophages associations with bacterial transcription 

Although not statistically significant after FDR correction, the negative correlations of 

Campylobacteraceae and C. ureolyticus, and positive correlations of Cyanobacteria, B. 

vulgatus, Desulfovibrio, Alistipes and A. finegoldii transcription with M1 macrophages 

should be further investigated. It is known that Campylobacter can infect macrophages, 

and can direct M1 macrophages to target Campylobacter cells [454], which may 

interfere with their anti-tumour role. Cyanobacteria toxins are known to have 

immunomodulatory and carcinogenic effects [409] [455]; however, the direct interaction 

with M1 macrophages is unknown. [427]. B. vulgatus are known to modulate the 

immune system via lipopolysaccharide production [427], which may decrease M1 

macrophage levels by reducing LPS induced cytokines. Desulfovibrio species have been 

shown to infect macrophages and alter their gene expression [456], and their LPS has 

been shown to stimulate TNF-a secretion more so than other bacterial LPS [457]. 

Alistipes are bile tolerant [458] and in obesity, studies have been shown to alter polarised 

macrophage ratios [459]; additionally, they are produced of short-chain fatty acids 

(SCFAs) and can reduce glucose uptake, and incorporate saturated fatty acids into their 

membranes [419, 421]. Cholesterol uptake by macrophages is the principal cause of 

atherosclerosis, maintaining a pro-inflammatory response [460]. The most compelling 

evidence for M1 macrophage CRC microbiome interactions comes from studies into 

oral bacteria causing differential polarisation of macrophages, particularly in regards to 



143 

Porphyromonas gingivalis [461, 462] [463]; however, this was not detected in this study, 

likely due to the limitations of sample sizes and sequencing depth. Within normal 

tissues, Pasturellaceae were negatively correlated with M1 macrophages, which may be 

due to toxin production causing potential macrophage differentiation to an osteoclastic 

lineage [464]. 

Taking the above into account, it may be that the microbiota in high responders act in a 

lipid-rich environment and limit tumour glucose utilisation. By preventing monocytes 

from being ‘distracted’ by other microenvironment factors such as fat and resident 

microbiota, they can differentiate and polarise to anti-tumour M1 macrophages. 

 

5.4.3 Mast cells and bacterial transcription 

Mast cells have a role in allergen response, pathogen recognition, and wound healing 

[465], and have been shown to dysregulate T cell regulation in CRC [466]. Due to the 

varied roles of mast cells, their abundance alone does not indicate any particular 

pathway for their interaction with tumour regression, which may differ between 

patients. However, their pathogen recognition role may be essential for their 

involvement in tumour regression; indeed, B. dorei transcription was negatively and 

positively correlated with resting and activated mast cells, respectively.  Studies have 

demonstrated that gut commensals and Bacteroides species specifically can suppress 

mast cell degranulation and reduce reactivity [467, 468]; however, these studies did not 

focus on B. dorei. B. dorei may have a role in immune modulation more directly, as has 

been shown by a study which found high levels of the species preceding autoimmunity 

onset [469]. Unfortunately, the species B. vulgatus, B. dorei and B. xylanisolvens are very 

closely related and can be challenging to differentiate from one another [470]. 

Additionally, the negative correlation of Bifidobacteriaceae with resting mast cells 

conflicts with the literature, with Bifidobacteria species being shown to have suppressive 
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effects on mast cells  [471]. B. longum transcription was two-fold higher in tumours 

compared to normal tissues in high responders, which may indicate that its role is 

microenvironment dependant, as otherwise, it would have a similar correlation in 

tumour tissues, where it was found to be more transcriptionally active. Therefore, the 

potential interaction of B. dorei and Bifidobacteraceae species on mast cells in the 

tumour microenvironment should be further investigated.  

Small sample sizes likely influenced the correlation of resting mast cells with 

radiotherapy response, although they were detected mainly within the tumour tissues 

of complete responders (Dworak Four). However, the low abundance of resting mast 

cells indicates that a minority of samples may have driven possible correlations. 

 

5.4.4 Bacterial transcription and immune cells not correlated with response 

Several other immune cells were correlated with bacterial transcription that was 

previously implicated in response in Chapter Four. The correlation of B. fragilis 

transcription with both naïve B cells and CD8 T cell abundances was of particular note, 

as their interaction with these cells, and the immune system more generally has been 

well studied [472], and tumour regression has been suggested to be dependent on CD8 

T cells [473]. B.fragilis capsular polysaccharide A (PSA) is the most immunomodulatory 

aspect of this species, as when binding to B cells, it can result in CD8 T cell anti-

inflammatory IL-10 secretion [474]. The maintenance of a population of naïve B cells, is 

of particular note, as it could indicate that once radiation therapy commences, they can 

uptake and present tumour antigens. In contrast, previously activated B cells would 

present antigens from the tumour microenvironment. Indeed, studies suggest that 

infiltrating B cells are a possible prognostic indicator for radiation therapy [475], which 

be reduced during chemotherapy [476]. The above may indicate that B. fragilis 
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transcription plays a role in maintaining the anti-tumoral potential of the immune 

system before radiation therapy, and prevents non-tumour antigen presentation, which 

would not increase until radiation-induced tumour cell death, and thus, increased 

tumour neo-antigen availability [477].  

 Eubacterium rectale is a well-studied and abundant bacteria in the gut; however, 

maintains many subspecies which are more prevalent in different parts of the world, 

with carbohydrate metabolism, exopolysaccharide and motility operons contributing 

most to their diversity [478]. The correlation of E. rectale transcription with eosinophils 

is interesting, as it was found at much higher levels in tumour tissues of high 

responders, eosinophilia is a rare but known complication of radiation therapy [479], 

and eosinophil levels have been suggested as prognostic markers for several cancers 

[480-482]; being involved in radiation-induced fibrosis in intestinal tissues [483]. NK 

cells are known to play a major role in anti-tumour activity in radiation therapy [484], 

and E. rectale has been associated with a decrease in NK activity in the past [485]. Taken 

together, it may indicate that E. rectale may act before radiotherapy to preserve anti-

tumour immunogenic potential to be activated during therapy generation of tumour 

antigens via tumour ablation [486]. 

Follicular T helper cells are required for the generation of high-affinity antibodies and 

memory B cell formation, which are critical anti-tumour immunity, and mitigation of 

relapse [486, 487]. Flavobacteriaceae and S. pyogenes transcription was correlated with 

follicular T helper (Fth) cells, in normal and tumour tissues, respectively. Fth cells have 

been associated with reduced tumour growth and higher survival rates in some cancers 

[488]. Flavobacteriaceae is the parent family of Flavonifractor, which had more than 2.5-

fold higher transcription in the tumour tissues of high responders compared to low 

responders. As was suggested in the discussion of Chapter Four, Flavonifractor may 

confer a benefit to tumour regression rates in an immune-modulatory way, particularly 
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by suppressing Th2 pro-inflammatory responses [418]. Fths play a role in lowering 

immune reactions to commensal microbiota in the gut by modulating IgA secretion 

[489] and Fth differentiation from the common Th2, and Fth progenitor cell is a STAT3 

dependent process [490, 491], which has been suggested as a therapeutic target in 

cancer therapies as it a known promoter of cellular proliferation [492, 493]. Taking these 

pieces of evidence into account, it may be that the correlation of Flavobacteriaceae with 

Fth, and its child genus’ association with high responder tumour tissue, may indicate 

that they are associated with STAT3 expression, which has been associated with both 

tumour progression inhibition [494] and accelerated tumour growth [495], in a 

microbiota dependent manner. 

 

5.4.4.1 Bacterial transcription associations with dendritic cells 

Activated dendritic cells (aDCs) in tumour tissues were negatively correlated with 

Dworak scores, but this was not statistically significant. Additionally, the transcription 

of E. coli and B. vulgatus were correlated with poor response, while the former was 

positively correlated with aDCs, the latter was negatively correlated with resting 

dendritic cells (rDCs). The transcription of these species could contribute to a poor 

response by generating antigen presentation against them, rather than the tumour. 

Indeed, studies on E. coli antigen presentation by DCs shows that it occurs readily, to 

the extent that has been suggested that E. coli antigen uptake by DCs could be used in 

anti-tumour immunotherapy [496, 497]. However, a recent study showed that E. coli but 

not B. vulgatus was able to attenuate intestinal inflammatory in a colitis model [498]. 

Therefore, these taxa may interact differently with the immune system, and this is likely 

to be strain-dependent.  The transcription of C. saccharobutylicum and S. enterica were 

also implicated in response, and they were both correlated with aDCs. C. 

saccharobutylicum is used in the generation of biobutanol in the biofuel industry; 
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therefore its species assignment may be speculative.  Furthermore, the correlation of 

DCs and response was not statistically significant, and the precise role of DCs in 

radiotherapy response is not well understood [499]; however, they play a critical role in 

tumoural-immunity via antigen presentation. Therefore, further research is needed into 

the role of DCs and their relationship with tumour infiltrating bacteria and 

radiotherapy response; as similar to other immune cells, the preservation of rDCs until 

after radiotherapy may be critical for the uptake of tumoural, rather than bacterial or 

microenvironmental antigens [477].  

 

5.4.4.2 Neutrophils have the most microbial associations 

Neutrophils are a known contributor to radiation therapy responses, contributing to 

radioresistance in some cancers [500], and their abundance has been suggested as a 

biomarker for radiotherapy outcomes, depending on their phenotype (anti-tumour N1, 

pro-tumour N2) [501]. The different phenotypes of neutrophils, similar to the 

polarisation of macrophages, is likely to be dependant on the tumour 

microenvironment [502]. However, CIBERSORT does not differentiate between 

neutrophil phenotypes, so it remains unknown if N1 or N2 was more abundant in the 

study population. It may be that no statistically significant correlation was found as 

neutrophils generally are not correlated with response, but N1 or N2 phenotypes may.  

 

Neutrophil abundance was highest in tumour tissues, and Dworak Four tumours had 

the lowest levels, which may be due to the low sample size (Dworak Four n = 5); it also 

could indicate that neutrophil levels are prognostically relevant for a complete 

response. Despite this, no bacterial transcription was correlated with neutrophil 

abundance in tumour tissues, with all significant correlations being found in normal 

tissues. As the normal tissue biopsies were collected adjacent to tumour tissue, the 



148 

abundance of neutrophils in these tissues could provide a reservoir from which to 

migrate to the tumour microenvironment during radiotherapy as part of the early 

wound repair response [503, 504].  

The transcription of the Proteobacteria phylum generally and the contained species E. 

coli, Pseudomonas sp. NC02, S. enterica, as well as C. saccharobutylicum in the Firmicutes 

phylum, were negatively correlated with neutrophil levels in normal tissues. Low 

neutrophil levels may be due to strains of E. coli being able to cause apoptosis and 

necrosis in neutrophils [505, 506]. Neutrophils also react in different ways to 

Pseudomonas species, with most studies on cystic fibrosis patients showing decreased 

clearance abilities of neutrophils against Pseudomonas [507], and dying and dead 

neutrophils have been shown to facilitate Pseudomonas biofilm production [508]. 

Salmonella species have been shown to use flagellar motility to agonise neutrophil ROS 

production [509], while some Clostridium toxins have been shown to inhibit neutrophil 

proliferation [510]. The above evidence may indicate that the taxa can neutralise 

neutrophils via killing and disrupting their proliferation and bacterial clearance actions, 

triggering biofilm formation that shields the taxa from further neutrophil attention. 

However, as much of this evidence is not specific to the species identified here, further 

investigation is required. 

The transcription of the Bacteroidetes phyla and the contained species Odoribacter 

splanchnicus, B. fragilis, Butyricimonas faecalis and Alistipes, as well as the Firmicutes 

Hungatella hathewayi and Flavonifractor plautii, were correlated with neutrophil 

abundance in normal tissues. Consistent with the literature, Alistipes are known to 

induce and thrive in inflamed environments [381, 511]. At the same time, Hungatella has 

been found in greater abundance in CRC tissues of the immunogenic subtype [93], and 

H. hathwayi specifically is immunoreactive [412]; however, their interaction with 

neutrophils specifically has not been investigated. Additionally, the oral administration 
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of F. plautii has been demonstrated to lower the Th2 immune response [418], in which 

neutrophils have an immunomodulatory role [512] and is thought to be required for 

some neutrophil associated inflammation [513]. O. splanchnicus has been shown to 

reduce neutrophil attraction into mucosa via IL-8 inhibition, while B. fragilis PSA has 

similar anti-inflammatory properties [514]. B. faecalis is a butryate producer, which is 

known to stimulate colonic Tregs, which, in turn, are known to limit neutrophil 

responses [515]. Taken together, it is likely that in comparison to the negatively 

correlated taxa in normal tissues, taxa which were positively correlated with neutrophil 

levels can be explained by immuno-tolerance activities. Therefore they likely do not 

stimulate neutrophil abundance but also do not inhibit their proliferation or migration. 

Overall, the immune system can interact with the complex tumour microenvironment 

in different ways. An allergic pro-inflammatory response can be triggered, causing 

myeloid cells to differentiate via the mast cell lineage. Alternatively, myeloblasts can be 

differentiated to neutrophils, eosinophils or the monocyte/macrophage lineage. The 

monocyte/macrophage lineage can result in anti-microbial effector cells via LPS 

stimulated cytokines, an anti-lipid response similar to that seen in atherosclerosis, or an 

anti-tumour response.  

Based on the correlations with response and with bacterial transcription, the immune 

anti-tumour response may only be achieved when macrophages and other immune 

cells are free to exhibit anti-tumour activity and are not distracted by aspects of the 

tumour microenvironment. Non-tumour immune activity may occur via direct infection 

by microbes and their antigens; generating an antimicrobial response, or effector cells 

may react to other aspects of the tumour microenvironment (i.e., lipids, cellular debris), 

in the absence of potent immunogenic targets and tumour antigens. Furthermore, the 

suppression of antigen presenting cells (APCs) before radiotherapy may be critical, 

preserving naïve and resting APC populations to uptake and display tumour neo-
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antigens as tumour cells die, rather than displaying antigens of the tumour 

microenvironment. 

 

5.4.5 Study limitations 

It is possible that CIBERSORT’s digital cell cytometry for evaluating immune cell 

abundance may not be completely accurate [516]; therefore, real-world cytometry 

should be used in future to confirm these associations, particularly in regards to the 

phenotypic subtypes of immune cells (i.e., neutrophils). The immune cell abundance (as 

seen in Figure 5.13) showed that immune cells were not evenly represented across 

samples, indicating that the identified assocaitions may be due to outlier samples, 

which was particularly evident for less abundant immune cells, and in Dworak Two 

patients. Additionally, the small sample sizes, particularly in regards to the limited 

numbers of Dworak One, Four and Three response groups, reduces the power of this 

study to determine associations of immune cells with radiotherapy response properly. 

Furthermore, Kraken2 may have misclassified some of the bacterial taxa, particularly at 

the species level, and the filtering process may have removed consequential taxa which 

may have been retained with larger sample sizes. Additionally, species-level 

designations do not fully elucidate the capabilities of the taxa identified, and strain and 

subspecies level designations are required for a more accurate analysis. Finally, some 

species correlations, particularly B. dorei with mast cells, B. frag with naïve B and CD8 T 

cells, Flavobacteriaceae with follicular T helper cells, and correlations with neutrophils 

need to be investigated further, as correlations may have been due to the low number of 

samples with an abundance of these immune cells. 

 



151 

5.5 Conclusions 

Overall, the abundance of resting mast cells and M1 macrophage levels in tumour 

tissues were the most robust indicator for chemoradiotherapy response. The results 

indicated that interference with myeloid differentiation might be the major contributor 

to the production of effector cells contributing to tumour regression. The positive role of 

microbial transcription in immune modulation before radiotherapy likely involves 

suppressing the APC and effector cell populations before radiation ablation occurs, 

allowing them to be available for rapid uptake of and action toward tumour antigens. 

Additionally, beneficial microbes prevent the immune system from establishing a non-

tumour response in reaction to elements of the microenvironment (i.e., allergic, anti-fat, 

anti-microbial), which may persist during or inhibit anti-tumour responses once 

radiotherapy commences. 

The association and specific mechanisms and roles of microbial species on immune-

mediated response to radiotherapy require further investigation with larger samples 

sizes, and both in vitro and in vivo laboratory experiments. 

 

6 CHAPTER 6: BIOMARKER ANALYSIS 

6.1 Introduction 

Prognostic markers for CRC radiotherapy treatment have not been well elucidated, 

with 10% to 25% of cases resulting in complete response. Few biomarkers for 

radiotherapy response have been discovered and may not be universally applicable 

[517-523]. The microbiome has been investigated in terms of response to radiotherapy, 

with most studies focusing on the role of the microbiome in radiotherapy side effects 

such as mucositis, radiation-induced diarrhoea and other gastrointestinal symptoms 

[393, 394, 396, 399], and few focusing on the prognostic value of the microbiome [524]. 
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The role of the immune system in terms of differential responses to therapy in RC has 

been increasingly implicated, particularly in regards to antigen-presentation inhibition 

and depletion of tumour infiltrating leukocytes, as well as the abscopal effect of distant 

metastatic tumour regression post-radiotherapy [250, 439-443]. 

In this chapter, the aim was to investigate possible biomarkers based on pre-therapy 

biopsies, from tumour and adjacent normal tissues via block supervised sparse partial 

least squares discriminant analysis (sPLS-DA). The microbiome, gene expression, and 

estimated immune cell infiltrates were the blocks used as putative markers for response 

to therapy, in an attempt to classify patients into response groups before the 

commencement of therapy. By finding biomarkers indicative of response to therapy, it 

would be possible to direct patients to alternative treatments or accelerate them to 

surgery; thus, increasing disease-free survival in RC patients, decreasing unnecessary 

side effects and reducing treatment costs. 

6.2 Methods 

Microbial species relative abundance and relative transcriptional abundance was 

determined as previously described (Section 2.6). Immune cell abundance was 

estimated as described in Section 5.2. The level of gene expression was quantified as 

described in Section 2.6 using SALMON v1.2.1 [287], using the quasi-alignment method, 

which quantifies gene expression based on the reference transcriptome (GRCH38p12) 

and imported into R using the tximport package v1.16.1. The three datasets were input 

to DIABLO (Data Integration Analysis for Biomarker discovery using Latent 

cOmponents) [359], as part of the mixOmics data integration project R package v 6.12.2 

[525]. 

The microbiome species data from the RNA-Seq experiments were utilised, as well as 

the immune dataset. The gene expression dataset was adjusted before analysis using the 
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filterByExpr function in edgeR [356], removing any genes with a count of less than 100 

in all samples in each tissue group (n = 40). Gene expression filtering left 13,613 genes 

out of the original 36,622 for normal and tissue samples. Additionally, it was found that 

pre-sequencing ribodepletion was not complete, with substantive levels of RNA subunit 

genes, particularly RNA28S and 45S, remaining, which were removed. The final gene 

expression dataset contained 13,587 genes. 

Tumour and normal tissue data were normalised separately via centred log-ratio 

transform (CLR), to avoid overcorrection and loss of treatment effects. The CLR 

transform maps a composition in Aitchison-simplex to euclidean vector subspace, 

allowing consequent matrices to be singular, and allow the use of classical multivariate 

dataset analysis [526]. Any potential batch/cohort effect was removed using the 

removeBatchEffect function in limma [527].  

Sparse partial least squares regression (sPLS) was used for variable selection [528], 

which includes Least Absolute Shrinkage and Selection Operator (LASSO) penalisations 

on pairs of loading vectors, allowing minor coefficients to be forced to zero values and 

permitting varied coefficient sizes in the same model [528]. Raw inputs were used to 

establish the categorisation ability using variables which in the immune and bacterial 

transcription data met an R2 threshold of ≥ 0.2 or ≤–0.2 and within the gene expression 

dataset of ≥ 0.01 or ≤–0.01.  

The data was split into training and test sets (1), and the training set was reduced 

manually, variable by variable, to the point where further removal reduced the 

predictive ability of the variable sets, as assessed by 5-fold leave-one-out (loo) cross-

validation centroid distribution in the mixOmics R package (v6.12.2) [525]. Weighted 

vote error rates were used to establish response group classification overall error rates 

and overall balanced error rates; the latter being more accurate due to the uneven 

number of individuals in each response group.  
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Table 6.1. Training and test datasets 

Response Dworak Train Test 

Complete Four 3 2 

Intermediate 
Three 4 2 

Two 17 5 

Poor One 4 2 

 

The goal was to iteratively remove variables to find the most discriminatory set, using 

the lowest number of inputs, and without disrupting the ability to predict response 

groups. Once a reasonable error rate had been reached, the test set response grade was 

established based on the training set output. 

It was determined that Dworak scoring may not be a true continuous variable due to 

the nature of its allocation (different pathologists may assign different scores based on 

different thresholds) and that there may be differences between a potential poor 

responder with an unusually high response, and a potential complete responder with 

an unusually low response. Therefore, it was decided to change the model into one with 

a more simple logical model of three groups, complete (Dworak Four), intermediate 

(Dworak Two and Three) and poor (Dworak one), allowing for simpler categorisation. 

Heatmaps were generating using the cimDIABLO command, a method similar to 

classical hierarchical clustering.  

Gene roles were taken from data acquired from the Human Gene Database: 

https://www.genecards.org/, and Gene Ontology information was taken from 

https://biit.cs.ut.ee/gprofiler/. Supplementary tables and R code used can be found at 

https://github.com/William-S-Taylor/MSc. 
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6.3 Results 

6.3.1 Batch/cohort effect testing and removal 

Post-CLR-normalisation of datasets, the cohort effect was visualised using sPLS-DA 

(Figure 6.1). There was found to be a cohort effect, which was most evident in gene 

transcription data. 

 

Figure 6.1. sPLS-DA plot of the cohort effect on data. N: Normal tissue; T: Tumour tissue; CHCH: Christchurch cohort; PM: 

Peter MacCallum cohort; RT: RC patient. 

Batch correction effectively reduced inter-cohort variability, as shown in the plot in 

Figure 6.2. 
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Figure 6.2. sPLS-DA plot of batch effect adjusted data. 

6.3.2 Initial categorisation 

Once the data had been normalised and adjusted for batch effects, the datasets were 

used for discriminant analysis, using the expression of 13,587 genes, 22 immune cell 

types and 160 bacterial taxa in tumour and normal adjacent tissues (Figure 6.3).  
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Figure 6.3. Heatmap of clustering by Dworak scores using unadjusted data. 

The lack of clustering also impacted the ability to predict response based on the input 

variables. The lowest error rates were found in predicting Dworak Four patients (0.4, 

Table 6.2). Overall error and balanced error rates were high, at 0.74–0.79 and 0.64–0.74, 

respectively, depending on the component used. 

Table 6.2. Classification error rates for Dworak scores using unadjusted data. 

Dworak comp1 comp2 comp3 comp4 comp5 comp6 

One 1.00 0.67 0.67 0.67 0.83 0.67 

Two 0.73 0.86 0.82 0.91 0.82 0.77 

Three 0.83 0.83 0.83 0.83 0.83 0.83 

Four 0.40 0.20 0.40 0.40 0.40 0.60 

Overall.ER 0.74 0.74 0.74 0.79 0.77 0.74 
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Overall.BER 0.74 0.64 0.68 0.70 0.72 0.72 

ER: Error rate; BER: Balanced error rate. 

To maximise the differences between response groups, patients were then grouped into 

response grades, complete (Dworak Four), intermediate (Dworak Two and Three) and 

poor, (Dworak One). There was a similar lack of clustering using the input variables 

using response grades (Figure 6.4), as was seen when using Dworak scores. However, 

this allowed for more straightforward variable selection. 

 

Figure 6.4. Heat map of clustering by response grade using unadjusted data. 

Characterisation of patients by response grade reduced the error rates substantively, as 

distinguishing between three categories is a lower resolution process. The overall and 

balanced error rates decreased by 0.1–0.25 and 0.02–0.22, respectively (Table 6.3). 
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Table 6.3. Classification error rates for response grades using unadjusted data. 

Response comp1 comp2 comp3 comp4 comp5 comp6 

Complete 0.60 0.40 0.20 0.40 0.60 0.80 

Intermediate 0.57 0.54 0.50 0.54 0.46 0.43 

Poor 1.00 0.83 0.67 0.67 0.83 0.83 

Overall.ER 0.64 0.56 0.49 0.54 0.54 0.54 

Overall.BER 0.72 0.59 0.46 0.53 0.63 0.69 

ER: Error rate; BER: Balanced error rate. 

6.3.3 Highly correlated variables 

Sparse partial least squares (sPLS) regression was utilised to identify meaningful 

variables for categorising samples. Each dataset (x) was computed against the CIP 

response grades (y), and variables were retained if the immune and bacterial 

transcription data R2 was ≥ 0.025 or ≤–0.025, and for gene expression, ≥ 0.01 or ≤–0.01. 

The approach yielded 38 and 42 taxa, 13 and 14 immune cells, and 152 and 101 genes for 

tumour and normal tissues, respectively. Compared to the unadjusted dataset, the 

correlated data could characterise patients more effectively (Figure 6.5).  
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Figure 6.5. Heat map of clustering of regression grades post-variable regression. 

The reduced datasets provided improved error rates as low as 0.46 and balanced error 

rates as low as 0.45, depending on the component used (Table 6.4). 

Table 6.4. Error rates post variable regression 

Response comp1 comp2 comp3 comp4 comp5 comp6 

Complete 0.40 1.00 0.80 0.80 0.60 0.80 

Intermediate 0.46 0.43 0.50 0.39 0.43 0.43 

Poor 0.50 0.50 0.50 0.50 0.50 0.50 

Overall.ER 0.46 0.51 0.54 0.46 0.46 0.49 

Overall.BER 0.45 0.64 0.60 0.56 0.51 0.58 

 

At this point, the dataset was split into training and test sets. Within the training set, the 

number of variables was iteratively reduced by one and its impact on clustering and 
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error rate evaluated. If removal of the variable reduced accuracy and clustering, it was 

restored. 

The final iterated datasets contained five and 14 taxa, six and eight immune cells, and 21 

and 18 genes in tumour and normal tissues, respectively. This allowed for the clustering 

of three of four poor responders within the training set, and two of three complete 

responders (Figure 6.6).  

 

 

Figure 6.6. Heatmap of clustering by response grade using the final model. 

When investigating sPLS-DA plots of variable sets used in the classification, tumour 

and normal genes were the most discriminatory, followed by normal immune cells. The 

taxa dataset had a considerable overlap between them in comparison (Figure 6.7). 
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Figure 6.7. Variable sPLS-DA plots 

Validation of the final model showed overall error rates between 0.07–0.43 and 0.1–0.52 

for balanced error rates (Table 6.5). Using component two gave the lowest error and 

balanced error rates at 0.07 and 0.1, respectively. 

Table 6.5. Final model error rates 

Response comp1 comp2 comp3 comp4 comp5 

Complete 0.67 0.00 0.33 0.33 0.67 

Intermediate 0.38 0.05 0.10 0.10 0.14 

Poor 0.50 0.25 0.50 0.50 0.50 

Overall.ER 0.43 0.07 0.18 0.18 0.25 

Overall.BER 0.52 0.10 0.31 0.31 0.44 

However, using component five gave the test set the greatest prediction accuracy, with 

only one intermediate patient being misclassified as a complete responder (Table 6.6). 
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Table 6.6. Prediction accuracy of test set with component five. 

  

Prediction 

  

Complete Intermediate Poor 

Truth 

Complete 2 0 0 

Intermediate 1 6 0 

Poor 0 0 2 

 

Receiver operating characteristic curve calculation showed that the highest 

contributions to accuracy came from gene expression data, followed by immune and 

bacterial transcription (Figure 6.8).  
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Figure 6.8. ROC curves of each dataset in the final model using component five. ROC: receiver operating characteristic; T: 

tumour tissue; N: normal tissue. 

According to the area under the curve (AUC) statistics, gene expression data was the 

most statistically significant measure for predicting response (Table 6.7). The only other 

variable set that was statistically significant was tumour immune cells, which could 

discriminate between poor responders and other patients. 

Table 6.7. Area under the curve (AUC) response grade classification data using component five 

  
Response Score Complete vs Others Intermediate vs Others Poor vs Others 

Ta
xo

no
m

y Normal 
AUC 0.827 0.578 0.625 

p-value 0.069 0.542 0.431 

Tumour AUC 0.400 0.612 0.708 
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p-value 0.578 0.381 0.189 

Im
m

un
e 

C
el

ls
 Normal 

AUC 0.771 0.623 0.722 

p-value 0.053 0.236 0.087 

Tumour 
AUC 0.760 0.687 0.979 

p-value 0.148 0.145 0.003 

G
en

e 
Ex

pr
es

si
on

 Normal 
AUC 0.973 0.850 1.000 

p-value 0.008 0.006 0.002 

Tumour 
AUC 1.000 0.993 1.000 

p-value 0.005 <0.001 0.002 

 

6.3.4 Biomarker investigation 

6.3.4.1 Genes 

Based on the AUC statistics, gene expression data was the strongest and most 

statistically significant for predicting patient responses to radiotherapy. In both tumour 

and normal tissue, no other dataset was more capable of predicting outcomes.  

Most genes had negative loading weights on poor responders in tumours, while the 

greatest loading was from ING4, a tumour suppressor, and LOC101928333, a GRM8 

anti-sense lncRNA. Of genes included in response to therapy in tumour tissues, seven 

were lncRNAs, of which five remain uncharacterised. However, besides LOC101928333, 

LOC112268238 is known to protect formylmethionine-tRNA from hydrolysis (Figure 

6.9a). Tumour genes predictive of complete response had roles as tumour suppressors, 

growth regulation, and glutamate receptor silencing. GO terms related to response in 

tumour tissues were related to immune-related biological processes, including immune 

effector process (GO:0002252), neutrophil-mediated immunity (GO:0002446), myeloid 

leukocyte mediated immunity (GO:0002444), immune system process (GO:0002376), 
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leukocyte mediated immunity (GO:0002443), leukocyte activation (GO:0045321); 

however, no GO term was statistically significant. 

The genes expressed in normal tissues that were retained in the model and had highest 

loading weights toward complete response were for the PRR5-ARHGAP8 read-through 

transcript, of which the role has yet to be determined, PLUT is a lncRNA and has a role 

in transcription upregulation and is associated with diabetes (Figure 6.9b). HLA-DRB3 

is typically expressed in antigen-presenting cells for recognition by CD4 T cells, while 

FBXW4 is involved in ubiquitination and may have a role in WNT signalling. 

The Gene Ontology (GO) terms most related to genes retained in the model in normal 

tissues were response to stimulus (GO:0050896), cell communication (GO:007154), 

signal transduction (GO: 007165), cellular response to stimulus (GO: 0051716), 

signalling (GO: 0023052) and macromolecule metabolic process (GO:0043170); however, 

these were not statistically significant.  

A full list of genes and their roles can be found in Supplementary Table S6.1, while a list 

of GO terms can be found in Supplementary Table S6.2. 

 

 

Figure 6.9. Weight loadings on response from genes on component five. a) tumour genes; b) normal genes. 
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6.3.4.2 Immune cells and bacterial transcription 

According to the AUC statistics, the only statistically significant discriminatory power 

of the immune cell dataset was the abundance of tumour immune cells in 

differentiating poor responders from others. 

Indeed the cells with the highest discriminatory power within tumour tissues were B 

memory cells loading on an intermediate response, while eosinophils and resting 

dendritic cells loaded against an intermediate response. Activated dendritic cells 

weighted toward a poor response (Figure 6.10). 

 

Figure 6.10. Loadings weights on response from tumour immune cells on component five. 

According to the AUC statistics, no bacterial transcription in either tumour or normal 

tissues was statistically significant in terms of their contribution to response. A full list 

of all bacterial transcription, immune cells and gene transcription included in the final 

model can be found in Supplementary Table S6.3. 
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6.4 Discussion 

In the final model, the expression of 21 and 18 genes, the transcription of five and 14 

bacteria, the abundance of eight and six immune cells, in tumour and normal tissues, 

respectively, were used to classify patients into different response groups with 94.1% 

accuracy, with 7.14% overall and 9.92% balanced error rates.  

6.4.1 Biomarkers 

It could be seen in the sPLS-DA plots that the level of overlap between response groups 

indicate that different blocks may compensate for the lack of predictive ability of others.  

6.4.1.1 Bacterial transcription and immune cells 

According to the AUC statistics, there were no taxa that were found to be statistically 

significant in their predictive ability, which was not unsurprising, as in Chapter Four it 

was found that bacterial transcription accounted for little variation between response 

groups. Bacterial transcription may have some role in radiotherapy response; however, 

this is likely indirect and immune dependant. As suggested previously, the microbiota's 

contributing role in complete response may be one of support and non-interference, as 

excessive anti-microbial stimulation before therapy commencement may reduce the 

number of cells available for neo-antigen presentation and differentiation into anti-

tumour effector cells [529]. 

Overall, this may be due to the lesser importance of immune activation before 

radiotherapy, which is thought to stimulate anti-tumour responses. It may be the case 

that immune cells are useful for classifying poor responders as anti-tumour activity is 

less likely to occur than in intermediate and complete responders before therapy. 

However, although tumour immune cells were relevant for predicting poor outcomes, 

this may also be an erroneous conclusion, as their abundance was predicted from gene 
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expression data, so it may be the case that gene expression data effectively inputted to 

the model twice. 

6.4.1.2 Genes 

As normal genes were predicting response demonstrates that normal tissue biopsies can 

deliver untapped and important accessory information for research and clinical 

applications. Tumour genes predictive of response contained five uncharacterised long 

noncoding RNAs, and two characterised lncRNAs, one being an anti-sense silencer for a 

glutamate receptor and ribosomal binding assistance (LOC101928333 and 

LOC112268238, respectively). In normal tissues, LINC01473 remains uncharacterised. 

Overall, this may indicate that lncRNAs have an untapped role as prognostic indicators 

for radiotherapy response; however, they largely remain poorly understood and 

uncharacterised [530]. 

Normal tissue gene expression indicated that genes most predictive of response in 

normal tissues were related to enteric nerve stimulation and repair, immune regulation, 

protein digestion and transcription regulation. Enteric nerve-related genes may indicate 

the rectum's baseline non-pathological status, as it houses extensive enteric nerve 

conditions compared to the rest of the large intestine [531]. As radiation-induced nerve 

damage is a common complication of radiation therapy [532] and maintaining enteric 

nerve function is critical for intestinal health [533], they may provide a novel prognostic 

indicator for post-radiation quality of life. 

ING4, TUSC2, HRASLS2 were three tumour suppressor genes from tumour tissue in the 

final model that weighted loadings toward a complete response, and against a poor 

response, respectively, although the latter only slightly. The above may indicate that the 

gene is not operating the same way in all patients due to: a) The gene is mutated in 

some patients; b) the response element the gene targets is mutated or not expressed; c) 
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there is an issue with being translated to protein via missing chaperone proteins or 

protective RNAs.  

The inclusion of genes associated with GO terms related to macromolecular and protein 

metabolic processes is also of interest and could indicate that these tumours can take 

advantage of necrotic or burst cells in the microenvironment. Alternatively, they may 

have an increased capacity to degrade crosslinked proteins resulting from ionising 

radiation ROS generation, a known radioresistance mechanism in other species [534]. 

6.4.2 Study limitations 

One limitation of this study was the low sample sizes from multiple study centres. 

Although typically a strength, multi-study centres generally increase a studies power; 

however, in this instance, it may contribute to a cohort effect, and adjusting for the 

cohort effect, the treatment effect may be interrupted or have its power otherwise 

reduced. Additionally, due to the inter-cohort differences (only one poor and one 

complete responder in the PM cohort), the predictive model's utility may be restricted 

to geographical regions, reducing their potential application across geographical 

borders. 

Another issue is that Dworak scores should not be considered a true continuous 

variable. Each sample scoring is subjective and relies on the section analysed being 

representative of the area and differences between institutional or individual techniques 

and methodologies. The distinction between groups is based on the histopathologist's 

subjective view; a borderline Dworak Two maybe another pathologist’s Dworak Three, 

and vice versa. The effect may be exacerbated by the study's multi-centre design, as the 

translation from one grading system to another may lead a Dworak Two to be classified 

as Dworak Three in one instance, and not in another.  
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Ideally, a better way to classify tumour regression for future analyses would be the 

percentage of fibrosis over a set area, or tumour size reduction as a percentage of the 

original. Using tumour reduction or overall fibrosis would allow linear allocation of 

variables, rather than utilising classification methods which rely on data which may not 

be truly continuous. Unfortunately, it may not be that tumour regression is in reality, a 

continuous variable with universally defined characteristics. The variability within the 

studied cohort indicates that response to radiotherapy may be a ‘complex trait’ with 

multiple factors to be taken into account, not least of all, the expression of multiple 

genes.  

There were more subtle differences between a moderate response and a near-complete 

response (Dworak Two and Dworak Three), along with the small number of Dworak 

Three samples making them challenging to characterise. Additionally, the molecular 

causation of ‘near-complete’ is likely less distinct, and not necessarily due to a lesser 

variable dose than that received by complete responders, which may be what led them 

to be grouped with other response groups more often. 

Patients were grouped into response grades, complete (Dworak Four), intermediate 

(Dworak Two and Three) and poor, (Dworak One), to better characterise their response 

to therapy. The alternative grouping aimed to increase the signal for the two extreme 

responses, complete and poor; and created a third response category, intermediate, 

which was more easily characterised as not poor or complete. However, using a 

triplicate grouping also presents issues; primarily that a lack of a clear signal for 

intermediate patients may be that they are presenting an inhibited complete response or 

radiosensitisation of a poor response, which is difficult to gauge in the group due to the 

groups’ non-uniformity, and the goal of reducing variables as much as possible. 

Generating a larger, more variable group for non-complete or non-poor responders is 
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an imprecise method of characterisation, and if used in clinical settings, would not be a 

reliable way of determining the extent of tumour regression a patient could expect. 

Overall, the largest issue was the small sample size, making the training and test sets 

even smaller (n = 22 and n = 17, respectively); therefore, the model testing should not be 

considered rigorous and may still contain overfitting. The final model should be tested 

against a larger cohort containing data from multiple geographical locations to 

determine its true prediction accuracy, as the results here may only be valid for the 

studied cohorts. Additionally, the sPLS-DA methodology employed here is one of many 

regression-based machine learning approaches to multi-omics datasets, and alternatives 

such as Random Forest may provide more robust results [535]. Finally, the potential 

biomarkers were derived purely in silico and remain to be validated in a biological 

setting. 

6.4.3 Conclusions and future directions 

The panel of biomarker genes identified here could be used in clinical investigations, as 

RT-qPCR and staining for gene expression and immune cell detection would be most 

appropriate and effective. Providing RNA-Seq for all patients undergoing prognostic 

analysis is not currently feasible; however, if costs and technical limitations are reduced, 

a pipeline utilising the methods in this study could be used to predict response in a 

single step, rather than with sequential staining or microarrays which may be 

complicated and costly with more than 20 targets. 

The multi-omic design employed here benefited from allowing data blocks that were 

predictive of one response but not another to compensate for the non-discrimination of 

another, leading to a more refined signature from a single sequencing experiment. 

Additionally, the predictive model could not be improved by further removing of 

variables; this indicates that response to therapy is a complex and likely further 
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involves genes and cells in the microenvironment unidentified by this study, both 

human and not. 

7 CHAPTER 7: DISCUSSION 

As described in Chapter 1, response to therapy for RC remains unpredictable, which 

carries a high-cost burden, both financially and in terms of patient survival rates and 

quality of life.  Being able to predict which patients would respond to therapy and to 

what extent would be a valuable tool for patients and clinicians to determine which 

patients would likely have a high therapeutic response, which should be directed to 

alternatives and be given an accelerated path to surgery. Of the many aspects of the 

tumour microenvironments, it was discussed that the microbiome might play a role in 

carcinogenesis and these established microbial communities may, in turn, impact 

therapeutic response rates. 

7.1 Methodological improvements 

First, the typical methodology for analysing shotgun sequencing data was assessed and 

improved upon by including the human genome in the taxonomic database. The time-

consuming process of aligning sequencing data to the human genome to remove host 

reads before taxonomic assignment was shown to be incomplete, leaving substantial 

residual host reads that were given taxonomic assignment, affecting the interpretation 

of study results. It was shown that there was a non-statistically significant difference in 

taxonomic assignment accuracy when host mapping was employed in conjunction with 

a taxonomic database containing the host genome, making the rate-limiting step in 

microbiome analysis of host contaminated shotgun sequencing data largely redundant. 

The result of this first study demonstrates that it would be possible to increase the 

speed at which microbiome analysis of shotgun sequencing is performed by more than 

nine-fold, while simultaneously increasing taxonomic assignment accuracy by 
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approximately 11%. However, it remains possible that these results are only applicable 

to the taxonomic assignment and aligning algorithms used in this study. 

7.2 Platform comparisons 

The concordance between three sequencing platforms in their comparative ability to 

evaluate the microbiome: high throughput shotgun RNA-Sequencing; long-read, low 

depth Oxford Nanopore Technology (ONT) multiplexed sequencing; and 16S rRNA 

amplicon sequencing. It was found that ONT data produced the least reads; however, 

the resulting taxonomies remained mostly concordant with the other higher depth 

sequencing platforms at higher taxonomic levels. At the species level, the concordance 

between all platforms was decreased. Overall 16S rRNA sequencing was more 

concordant with RNA-Sequencing taxonomies than either was with those produced by 

ONT sequencing. This result may be due to 16S rRNA sequencing is usually assessed 

with dedicated algorithms and that Kraken2’s ability to accurately assign taxonomies to 

16S rRNA data is a recent development and may not yet be adequately benchmarked. 

Additionally, the three platforms measure different things in fundamentally different 

ways. For instance, 16S rRNA requires amplification of the 16S rRNA markers gene, 

while the RNA-Sequencing relies on cDNA translation of transcripts and allows the 

assessment of actively transcribed genes, and finally, ONT sequencing is a direct DNA 

sequencing method with no amplification or translational steps. All of these techniques 

carry with them inherent flaws, with the low sequence output of ONT sequencing being 

the most severe. The inherent error rates of ONT sequencing and resulting low numbers 

of bacterial reads without the benefit of microbial DNA selection or higher throughput 

resulted in only two taxa identified some samples. It was decided that due to the 

highest and most consistent sample depth across the largest number of samples, RNA-

Sequencing and bacterial transcription should be utilised for further analysis. 
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Additionally, RNA-Sequencing was performed on 40 patient samples, as opposed to the 

other two platforms, which were only performed on the CHCH cohort (n = 20).  

7.3 Microbial transcription in RC 

Assessing microbial transcription in RC tumour and normal tissues showed that alpha 

diversity was not a significant contributor to response and that individual taxa may 

contribute to chemoradiotherapy outcomes in RC. Overall, Proteobacteria transcription 

dominated across all samples and was correlated with a poor response, while 

Bacteroidetes were negatively correlated with poor response in normal tissues.  

Subsequently, taxa within these phyla showed similar correlations, with the 

Pseudomonas and Bacteroides genera positive and negative correlations with response. 

The results showed that species such as C. ureolyticus, B. caccae, B. vulgatus, B. fragilis, E. 

coli, K. pneumonia, S. enterica, and O. splanchicus were most likely to be contributing to 

response to radiotherapy. Due to low read depths at the species level, it was not 

possible to properly investigate their differential gene expression to determine their 

direct contributions to response. However, it was possible to determine that B. fragilis, 

one of the most transcriptionally active species, was not producing the bft toxin, which 

is thought to contribute to carcinogenesis. 

It was hypothesised that due to the number of correlations of microbial transcription 

occurring in normal tissues and what is known about the correlated species identified, it 

was possible that the microbiome impacts response to therapy by modulating the 

immune system directly and via changes in the microenvironment. These changes were 

speculated to be due to altering the metabolism of lipids, reducing allergic 

inflammatory responses and mitigating anti-bacterial responses, which would be 

concordant with the literature on the benefit of high-fat diets during cancer treatments; 
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however, the direct interaction with the microbiome and immune system requires 

additional investigation. 

Additionally, due to most correlations being with poor response and not with response 

generally, the extreme nature of the microenvironment of the poorest responders may 

give them the strongest microbial selection pressure, and thus the strongest microbial 

signature. 

However, not being able to determine the precise activities of putatively involved taxa 

in response rates, and that some bacterial species may have been misassigned means 

that further investigation should be carried out to validate these results and to 

investigate the generated hypotheses. 

7.4 Immune infiltration  

The presence of immune cells in the respective tissues of RC patients was assessed by 

using RNA-Sequencing data and a support vector regression algorithm, which resulted 

in predictions for the abundance of different immune cells and phenotypes within 

patient samples. Each immune cell population was correlated with response and 

bacterial transcription data. 

Statistically significant correlations of M1 macrophages and resting mast cells within 

tumour tissues with response identified them as the strongest immune predictor of 

response. The reasons for this was determined to be the higher populations of these cell 

types within complete responders, with M1 macrophages being involved in tumour 

clearance and mast cells having allergic inflammatory and pathogen clearing roles. It 

was hypothesised that these immune cells are reacting to elements of the 

microenvironment, with the microbiome possibly modulating anti-tumour immune 

responses, preventing the inflammatory role of mast cells and allowing M1 

macrophages to infiltrate and act upon tumour tissues.  
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The abundance of immune cells was correlated with bacterial transcription and was 

found to be associated with a variety of antigen-presenting and effector cells. It was 

hypothesised that bacterial cells allow for the preservation of antigen-presenting cells 

that would otherwise display bacterial antigens or those in the tumour 

microenvironment, instead of tumour neo-antigens that would be produced en masse 

after ablative ionising radiation therapy. The hypothesis was supported by the 

proportion of resting effector cells in conjunction with the transcription of bacteria 

associated with butyrate production, immune tolerance of gut microbiota, changes in 

tissue metabolic uptake of glucose and lipids and immune stimulation.  

Overall, the evidence of the investigation of possible interactions between the 

microbiome and the immune system indicates that, although they may not have a direct 

effect on anti-tumour responses, they may modulate the immune system to prevent 

non-anti-tumour action and maintain the immune system for a rapid anti-tumour 

response upon the commencement of radiation treatment. However, the possibility 

remains that the immune cells identified in silico are not present in the predicted 

proportions and that the phenotypic plasticity of immune cells, particularly neutrophils, 

remains to be evaluated and may play a role in divergent radiotherapy response. 

 

7.5 Biomarker analysis 

In the final analysis, the bacterial transcription, immune cell abundance and gene 

expression data were used to determine if a model could be formed to predict response 

to radiotherapy. The aim was to build a predictive model using the least number of 

predictive markers. The number of discriminant variables was reduced one by one 

using a training dataset of 28 samples, in order to reduce the number of variables that 
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would have to be investigated in a clinical setting while preserving the predictive 

ability of the model.  

The final model contained 21 and 18 genes, the transcription of five and fourteen 

bacteria and the abundance of eight and six immune cells in tumour tissues, normal 

tissues, respectively. The model could accurately classify poor and complete responders 

in the test dataset, while one intermediate responder was incorrectly classified as a 

complete responder. The overall error rate of the final model, as assessed by cross-fold 

validation, was ~7%. The strongest predictive value came from the gene expression in 

tumour and normal tissues, and the infiltration of immune cells in tumour tissues, 

which was of particular note, as it shows that normal tissue biopsies have additional 

prognostic power which could be utilised in future assessments of RC patients. 

Additionally, this may be due to the normal tissue providing a baseline for gene 

expression, which was strengthened in the predictive model when combined with 

pathological tumour gene expression. 

During the formation of the predictive model, it was determined that the variability in 

Dworak Two and Three patients made classifying them into their respective Dworak 

score groups too challenging.  It was surmised that Dworak scores might not be a true 

continuous variable as some Dworak scores were translated from another scoring 

method, and different histopathologists, centres and countries were utilised which may 

add variability of the interpretation of different samples. For instance, a poor responder 

may be a moderate or poor responder depending on the histopathologists’ 

interpretation, the section used and the time between surgery and completion of 

treatment. Additionally, a near-complete response may be due to an inhibited anti-

tumour response that would have otherwise been complete, while another patient’s 

near-complete response may be an enhanced anti-tumour response that would have 

otherwise been moderate or poor.  
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An alternative grouping strategy was adopted to determine the strongest predictors 

utilising the most extreme outcomes of poor and complete response, allowing the 

Dworak Two and Three patients to have their responses categorised as not poor or 

complete. The alternative strategy made finding predictive variables more straight 

forward; however, this came at the cost of more refined classifications. It was suggested 

that an alternative measure of tumour regression could be used which would make 

evaluating it as a true continuous variable more straightforward, such as percentage of 

fibrosis or comparative tumour and lesion sizes in comparison to the pre-treatment 

tumour.  

Besides the categorisation strategy, the predictive biomarker analysis was hindered by 

the number of samples in the respective training and test sets with non-representative 

numbers of responders in each. Additionally, the model may, to an extent, be the result 

of overfitting, as the immune cell abundance was derived from gene expression data; it 

may have led to the inclusion of some variables in the model multiple times, albeit in an 

abstracted way. 

7.6 Study limitations 

This study suffered most from the limits of sample sizes overall and for respective 

response groups in each cohort, with the PM cohort only containing one complete 

responder and one poor responder. Additionally, the lack of full access to the PM 

cohort’s medical history precluded the accounting for additional variables which may 

impact treatment response, such as ethnicity, comorbidities, and other medications 

taken during treatment. Furthermore, the number of samples in each response group 

were not representative, with the majority of samples being moderate responders 

(Dworak Two), while six or less were near complete, complete or poor responders. 

There was also a sex imbalance, with the majority of the patients being male, which may 

have contributed to erroneous study interpretations, particularly in the case of 
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incorporating gene expression data into the biomarker model. Additionally, biopsies 

were collected by different clinicians from different centres, and interpersonal 

differences due to patient condition, tumour size and preference of the clinician may 

have changed the depth and size of biopsies, as well as the distance from the tumour of 

adjacent normal tissue collection.  

7.7 Conclusions and future directions 

This study demonstrated that microbiome assessment accuracy and speed can be 

improved with a simple methodological change, that taxonomies built from ONT 

sequencing are comparable to 16S rRNA amplicon and RNA-Sequencing if read 

numbers are high enough. The study also found a possible interaction between the 

microbiome and the immune system, directly via modulating stimulation and microbial 

immune tolerance, and indirectly by modulating the tumour microenvironment. It was 

hypothesised that the microbiome might influence response to therapy by preventing 

the immune system from acting on aspects of the microenvironment including bacteria, 

lipids or allergic inflammatory responses, and maintaining naïve effector and antigen-

presenting cells to act on neo-antigens produced from radiotherapy-induced tumour 

cell death. 

Finally, the biomarker analysis suggested possible prognostic molecular markers to 

predict response to radiotherapy in RC patients, with tumour infiltrating immune cells 

and tumour and normal tissue gene expression being the key determinants, indicating 

an untapped strength of dual biopsies in clinical practice. 

Overall, this study provides methodological improvements and a panel of potential 

biomarkers that could be used in future validation studies to assess prediction of 

radiotherapy responses in RC patients. The panel of biomarkers should be further 
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investigated in biological and clinical settings and with larger sample sizes to validate 

and potentially refine them. 
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