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Abstract 11 

In this study, we aimed to investigate the sanitizing effects of peracetic acid (PAA), 12 

and the underlying mechanism of its antimicrobial action against Morganella 13 

psychrotolerans. The exposure of M. psychrotolerans to 20 ppm PAA for 5 min led to 14 

its decrease below the detection level, indicating that PAA has a significant 15 

antibacterial effect against M. psychrotolerans in vitro. Moreover, the viable counts of 16 

M. psychrotolerans on saury (Cololabis saira) surface were showed a reduction of 17 

1.40 and 2.23 log CFU/cm2 upon treatment with 80 ppm PAA for 1 and 5 min, 18 

respectively. Further, PAA treatment delayed the growth of M. psychrotolerans on 19 

saury surface during storage at 4°C. Next, the antimicrobial mechanism of PAA 20 

against M. psychrotolerans cells was investigated, and the damage to the cell 21 

membrane and cell surface upon PAA treatment was observed using scanning 22 

electron microscopy (SEM) and epifluorescence microscopy. The chromosomal DNA 23 

and the protein profiles after PAA treatment were also analyzed. Form our results, we 24 

hypothesized that the bactericidal effect of PAA treatment was mainly attributed to 25 

damage the bacterial cell membrane. These results indicate that PAA may be an 26 

efficient disinfectant against M. psychrotolerans and has applications in seafood 27 

processing and storage.  28 

 29 

Keywords 30 
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1. Introduction 33 

The consumption of seafood has increased considerably worldwide, over the past 34 

few decades, because of its rich nutritional composition (Seves et al., 2016). However, 35 

histamine food poisoning is a major concern due to seafood consumption. This kind 36 

of food poisoning is mainly caused by the ingestion of seafood containing high levels 37 

of histamine (Bjornsdottir-Butler, McCarthy, Dunlap, & Benner, 2016). Histamine is 38 

generated from free histidine by the action of the enzyme bacterial decarboxylase. 39 

The psychrotrophic histamine-producing bacteria are of particular concern in the 40 

seafood industry. They can cause outbreaks of histamine poisoning at low 41 

temperatures (Emborg, 2006; Morii & Kasama, 2004). M. psychrotolerans, a 42 

pathogenic psychrotolerant histamine-producing bacterium, belongs to the family 43 

Enterobacteriaceae and is able to grow and produce toxic levels of histamine 44 

(Emborg, 2006; Emborg & Dalgaard, 2006). In previous studies, the link between the 45 

cases of histamine poisoning and seafood contaminated with M. psychrotolerans has 46 

been reported (Dalgaard, Emborg, Kjølby, Sørensen, & Ballin, 2008; Emborg & 47 

Dalgaard, 2006; Emborg, Laursen, & Dalgaard, 2005). In our previous studies, we 48 

revealed the presence of M. psychrotolerans in retail seafood distributed in Japan 49 

(Kato et al., 2017) and also showed that M. psychrotolerans had high 50 

histamine-producing abilities (Wang, Yamaki, Kawai, & Yamazaki, 2020). Therefore, 51 

controlling M. psychrotolerans populations in seafood is a major challenge faced by 52 

the seafood industry.  53 
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In general, sanitizers can generally disinfect foodborne pathogens effectively and 54 

affordably from the seafood surfaces, attributing to their high prevalence within the 55 

food industry (Shen, Luo, Nou, Wang, & Millner, 2013; Rahman, Jin, & Oh, 2011). 56 

Sodium hypochlorite (SH) is an effective disinfectant and is widely used to reduce 57 

microbial counts. However, it has been shown that the improper use of chlorine can 58 

produce carcinogenic by-products and residues, such as chloroform and 59 

bromodichloromethane (Gil, Selma, López-Gálvez, & Allende, 2009; Reckhow, 60 

Singer, & Malcolm, 1990). Therefore, it is necessary to find safer antimicrobial 61 

agents for food sanitization. Peracetic acid (PAA) is a well-known sanitizer generally 62 

used for processing water, fruits, and vegetables (Leggett et al., 2016; Ho, Luzuriaga, 63 

Rodde, Tang, & Phan, 2011; Hilgren & Salverda, 2000; Lambert, Johnston, & Simons, 64 

1999; Rudd & Hopkinson, 1989). PAA by-products are safer than those produced 65 

during SH treatment (Mora, Veijalainen, & Heinonen-Tanski, 2018; Dell'Erba, 66 

Falsanisi, Liberti, Notarnicola, & Santoro, 2007). An earlier report shown that 15 ppm 67 

PAA treatment resulted in the elimination of Vibrio parahaemolyticus cultured in 68 

Luria-Bertani-3 % NaCl culture broth (Wong, Liao, Hsu, & Tang, 2018). Sheng, Shen, 69 

& Zhu (2020) reported that 80 ppm PAA treatment for 2 min resulted in a 1.8 log 70 

CFU/apple reduction in Enterococcus faecium. Moreover, 50 ppm PAA treatment for 71 

240 s was shown to reduce the count of Escherichia coli below the detectable level (< 72 

1 log CFU/g) on pangasius fillets (Thi et al., 2015). However, there are limited 73 



 5 

scientific reports on the sanitizing effects and antimicrobial mechanisms of PAA on 74 

histamine-producing bacteria. 75 

Therefore, in the present study, we evaluated the sanitization effect of PAA against 76 

M. psychrotolerans both in vitro and on saury (Cololabis saira) surface. The effect of 77 

PAA treatment on cell morphology, cell membranes, cellular protein, and 78 

chromosomal DNA was investigated to better understand the disinfection mechanism 79 

of PAA. Our study provides useful insight on the use of PAA as a disinfectant for 80 

seafood to prevent M. psychrotolerans-related histamine food poisoning. 81 

 82 

2. Materials and methods 83 

 2.1. Cell culture conditions 84 

M. psychrotolerans JCM 16473T was cultured in tryptic soy broth (TSB, BD, 85 

Franklin Lakes, NJ) at 25 °C for 24 h. The cell cultures (approximately 109 CFU/mL) 86 

were centrifuged at 6,000 × g for 10 min at 4 °C. The harvested cell pellets were 87 

washed twice with phosphate-buffered saline (0.01 M PBS, pH 7.2) and subjected to 88 

PAA treatments as described below. 89 

 90 

2.2. Evaluation of antibacterial activity of PAA 91 

The minimum inhibitory concentration (MIC) and minimum bactericidal 92 

concentration (MBC) were assessed using a 96-well microplate. The washed bacterial 93 

cells were resuspended in 2-fold TSB at the inoculum concentration of approximately 94 
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5.2×105 CFU/mL. In each plate, 0.1 mL of 2-fold TSB inoculated with M. 95 

psychrotolerans were mixed with 0.1 mL of PAA (Tec P-10, Adeka Clean Aid Co. 96 

Ltd. Tokyo, Japan), and incubated at 25 °C for 48 h. The MICs were determined by 97 

evaluating the lowest concentration of PAA with no bacterial growth observed by the 98 

visual turbidity (Chotigarpa et al., 2018). The MBCs were determined by spreading 99 

the cells on tryptic soy agar (TSA, BD, Franklin Lakes, NJ) plates and incubating at 100 

25 °C for 48 h after the inactivation step. Briefly, the 0.1 mL of the culture broth 101 

without the microorganism growth was inactivated using 0.9 ml of the inactivation 102 

buffer (Lectin 10 g/L, Polyoxyethylene (20) sorbitan monooleate 30 g/L, L-histidine 1 103 

g/L, Tryptone 1 g/L, Na2S2O3˙5H2O 20 g/L) and then inoculated the cells and plated 104 

on the TSA plate. The MBCs were determined by the lowest concentration of PAA 105 

that completely inhibited the M. psychrotolerans colony growth (Meireles et al., 106 

2015). 107 

Next, the bacterial disinfection with PAA treatment was tested in vitro. The washed 108 

bacterial cells were resuspended in PBS at the inoculum size of approximately 109 109 

CFU/mL, and 9 mL of the bacterial suspension was mixed with 1 mL PAA (10, 20, 110 

40, and 80 ppm). Sterile deionized water was used as the control. After treatment for 111 

1, 3, or 5 min, 0.1 mL of treated suspension was immediately mixed with 0.9 mL of 112 

inactivation buffer. The neutralized samples were serially diluted (1:10) with PBS 113 

(pH 7.2) and 0.2 mL from each dilution was spread on agar plates consisting of TSA 114 

supplemented with 0.2 % sodium pyruvate. The M. psychrotolerans survivor colonies 115 
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were counted after incubation at 25 °C for 72 h. 116 

 117 

2.3. Analyses of the disinfectant effect of PAA on saury surfaces 118 

Fresh sauries placed on ice were purchased from a local supermarket in Japan and 119 

immediately transported to the laboratory and stored at -70 °C. The whole saury was 120 

initially placed in tap water for 30-40 min until it was completely thawed and was 121 

then washed three times with 9-fold distilled water. Next, the saury was submerged in 122 

the M. psychrotolerans culture suspension (1:9 w/v, about 109 CFU/mL) for 5 min. 123 

Then, the inoculated sauries were air-dried in a biological safety cabinet for 12 min 124 

(initial inoculum size: approximately 106 CFU/cm2). Next, the samples were dipped 125 

into 9-fold (w/v) of 80 ppm PAA or 100 ppm SH (free available chlorine 126 

concentration; chlorine concentration assayed using the method regulated by the 127 

Ministry of Health, Labour and Welfare, 318, Japan) solutions for 1 or 5 min, 128 

respectively. Sterile deionized water was as control. Thereafter, the saury samples 129 

were immediately dipped into the deionized water (1:9, w/v), to remove the excess 130 

sanitizer. The saury surfaces were then swabbed with a 10 mL phosphate-buffered 131 

saline to perform the attached swab test (Kanto Chemical, Co., Inc, Tokyo, Japan).  132 

For monitoring the growth of M. psychrotolerans on saury surfaces during storage, 133 

the guts and gills were removed from the sauries firstly removed after thawing and 134 

then washed several times with tap water. Thereafter, the sauries were washed three 135 

times using sterile deionized water, again. Washed sauries were inoculated with the 136 
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bacterial suspension. The inoculated sauries were dipped in 80 ppm PAA or 100ppm 137 

SH solutions for 5 min, and then were placed into a stomacher bag (Seward Ltd., 138 

Worthing, U.K.). The samples were stored at 4 °C. The M. psychrotolerans cells were 139 

counted at different time points by swabbing the surfaces. M. psychrotolerans cells 140 

were counted suing the spreading method based on (Niven, Jeferry, & Corlett, 1981), 141 

based on growing the cells on Niven’s agar supplemented with 0.2% sodium pyruvate 142 

at 25 ℃ for 72 h. 143 

 144 

2.4. Scanning Electron Microscopy (SEM) observation 145 

The morphology of M. psychrotolerans cells, that were treated with PAA, was 146 

observed with a scanning electron microscope (SEM). The harvested cells were 147 

centrifuged (3,000 × g, 5 min, 4 °C) and washed three times with 0.2 M phosphate 148 

buffer (PB, pH 7.4). The cells were then fixed with 2% glutaraldehyde–PB (2 h, 149 

25°C), washed, resuspended in the same PB, and placed on a Sempore (φ0.6 μm, 150 

JEOL, Tokyo, Japan) as a 100 μL droplet. After washing three times with PB, the 151 

samples were dehydrated in a graded ethanol solution (50% - 100%). The cells were 152 

washed with t-butyl alcohol (Wako Pure Chemicals Industries, Osaka, Japan) for 30 153 

min and lyophilized. Finally, samples were then sputtered with Pt-Pd and observed 154 

using SEM (JSM-6010LA, JEOL, Tokyo, Japan). 155 

 156 

2.5. Investigation of cell membrane permeability using fluorescent staining 157 
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Following disinfectant treatment, the cells were stained, using Bacteria Live/Dead 158 

Staining Kit (Promokine, PromoCell GmbH, Heidelberg, Germany). The DMAO 159 

(green fluorescence) and EtD-Ⅲ (red fluorescence) dyes were mixed with 0.85% 160 

NaCl to obtain the dye mixture. Next, 1 μL mixture dye was added to 100 μL cell 161 

suspension, followed by dark incubation for 15 min at room temperature. Then, 5 μL 162 

of the stained bacterial cells were placed on a glass slide and immediately visualized 163 

using the epifluorescence microscope (Olympus BX 51-34, Melville, USA). 164 

Fluorescence images were processed using the Image J software package (Schneider, 165 

Rasband, & Eliceiri, 2012). 166 

 167 

2.6. Chromosomal DNA examination by agarose gel electrophoresis 168 

The bacterial DNA was extracted from the PAA treated and control groups 169 

described in section 2.2, using the Genomic DNA Extraction Kit (Macherey-Nagel 170 

GmbH, Germany), according to the manufacturer's instructions. Extracted DNA was 171 

separated by agarose gel electrophoresis (1% agarose). After ethidium bromide 172 

staining, the agarose gel was digitalized, and the DNA bands were visualized using 173 

the UV Transilluminator STAGE-1000 (AMZ, Inc., Japan). 174 

 175 

2.7. SDS-PAGE 176 

After disinfection, the bacterial cells were centrifuged to obtain the cell pellets. The 177 

pellets were washed and resuspended in PBS. The bacterial cells were disrupted with 178 
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the Zirconia Beads Kit (Zircon prep mini, Nippon Genetics Co.Ltd., Tokyo, Japan) 179 

and the Bead Beater (2,500 rpm, 30 min, CD-1000, EYELA, Tokyo, Japan). This was 180 

followed by centrifugation at 6,000 × g for 10 min at 4 °C and the supernatants were 181 

collected. The protein concentrations of the supernatants were determined according 182 

to the Bradford method (Bradford, 1976). Loading samples were prepared according 183 

to the method described by Wang, Chang, Yang, & Cui, (2015). The supernatant (80 184 

μL, protein concentration of approximately 1.2 mg/mL) were mixed with the loading 185 

buffer (20 μL), boiled for 5 min, cooled on ice, and centrifuged at 4,000 × g for 5 min 186 

at 4°C. Finally, 20 μL sample solutions were resolved by SDS-PAGE, and the gel was 187 

stained with Coomassie Brilliant R250 until the bands were clearly visible.  188 

 189 

2.8. Statistical analysis 190 

All experiments were performed in triplicate and the data was presented as the 191 

mean ± standard deviation. The data was analyzed by ANOVA and the least 192 

significant difference (LSD) was calculated for comparison of means. Statistical 193 

significance was evaluated based on ≤ 0.05. All statistical analysis was performed 194 

using RStudio Desktop (RStudio Desktop, Inc., Boston, MA). 195 

 196 

3. Results and discussion 197 

3.1. Sanitizing effect on PAA against M. psychrotolerans in vitro 198 
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The MIC and MBC of PAA against M. psychrotolerans were 7.5 ppm and 12 ppm, 199 

respectively. Bridier, Briandet, Thomas, & Dubois-Brissonnet, (2011) have reported 200 

the MBC of PAA against E. coil PHL628 to be 7.4 ppm. Moreover, our results 201 

showed 10 ppm PAA treatment for 5 min significantly reduced the bacterial cell count 202 

from 8.92 to 2.00 log CFU/mL (p ≤ 0.05). And, 20 ppm PAA treatment for 5 min 203 

reduced the populations of M. psychrotolerans to undetectable levels (< 1.7 log 204 

CFU/mL) (Table 1). Additionally, the antibacterial efficiency of PAA treatment 205 

increased with an increased its concentration. The counts of M. psychrotolerans also 206 

decreased to the undetectable levels upon 40 ppm PAA treatment for 1 min. In a 207 

previous study reported that the 80 ppm PAA treatment for 5 min was lethal for E. 208 

coli O157:H7 (Rodgers, Cash, Siddiq, & Ryser, 2004).  209 

 210 

3.2. Sanitizing effect of PAA against M. psychrotolerans on saury surface 211 

The antimicrobial effects of PAA and SH on M. psychrotolerans present on the 212 

saury surfaces are shown in Figure 1. The control group showed a 0.5 log CFU/cm2 213 

reduction of M. psychrotolerans. Treatments with 80 ppm PAA or 100 ppm SH for 1 214 

min, showed 1.4 and 1.27 log CFU/cm2 reductions, respectively. An increase in 215 

washing time improved the reduction in the M. psychrotolerans counts from the saury 216 

surfaces. Viable cell counts were reduced by 2.23 and 1.99 log CFU/cm2 upon 217 

washing with 80 ppm PAA and 100 ppm SH for 5 min, respectively (Fig 1A). These 218 

results indicate that PAA as well as SH exhibits effective antimicrobial activity 219 
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against M. psychrotolerans on saury surface. 220 

In addition, during the storage of saury samples at 4 °C, the viable counts of M. 221 

psychrotolerans in the control sample reached to 7.11 log CFU/cm2 after 3 days, but 222 

the viable counts of M. psychrotolerans in PAA or SH treated samples reached to the 223 

same level (6.8 log CFU/cm2) after 5 days (Fig. 1B).  In our previous study, we 224 

observed a large amount of histamine accumulation by M. psychrotolerans in broth, 225 

when the viable count of M. psychrotolerans reached 107 CFU/ml (Wang, Yamaki, 226 

Kawai & Yamazaki, 2020; Kato et al., 2017). Therefore, our results suggested that 227 

treatment with PAA was similar to SH during the fish washing process could extend 228 

the shelf life of stored fish. 229 

In a previous study, it has been reported that soaking tomatoes and lettuce in 30 230 

ppm PAA solution for 10 min significantly reduced the E. coli counts by 4.39 and 231 

2.33 log CFU/g, respectively (Keeratipibul et al., 2011). In this study, we reported the 232 

similar reduction in M. psychrotolerans counts on saury surfaces in response to 80 233 

ppm PAA and 100 ppm SH treatments (Fig. 1). The 50-100 ppm SH solution is  234 

conventionally used to disinfect fish fillets (Thi et al., 2013). Park et al. (2012) 235 

reported that PAA can potentially replace SH, as it was shown to be more effective at 236 

an equivalent concentration against E. coli O157:H7, Salmonella Typhimurium, and 237 

Listeria monocytogenes. Lee and Huang (2019) also demonstrated that PAA treatment 238 

generated much less disinfection-related by-products than SH treatment. Based on 239 

earlier studies and our results, we propose that PAA can be a better sanitizer for 240 
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seafood processing than SH. 241 

 242 

3.3. SEM analysis 243 

The sanitizing effect was determined by assessing the impact of PAA on cells 244 

morphology using SEM, The M. psychrotolerans cells exhibited a smooth and intact 245 

surface morphology in control groups (Fig. 2A). After 20 ppm PAA treatment for 5 246 

min, the surface of M. psychrotolerans cells showed no clear differences compared to 247 

the control group (Fig. 2B).  However, after a 5 min treatment with 80 ppm PAA, 248 

some bacterial cells became corrugated (Fig. 2C). This indicates that PAA treatment 249 

impacts the outer membrane of M. psychrotolerans cells and that the level of damage 250 

might depend on PAA concentration. Some studies revealed that the PAA treatment 251 

generates cell surface irregularities and partial grooves, with the damage becoming 252 

increasingly apparent as the sanitizer concentration is increased (Chino et al., 2017; 253 

Ujimine et al., 2017; Park et al., 2013; Mustapha and Liewen, 1989). We did not 254 

observe any grave damage to M. psychrotolerans cell morphology after 20 ppm PAA 255 

treatment. Additionally, it has also been reported that the effectiveness of PAA 256 

treatment on bacterial cell morphology was significantly low below the concentration 257 

of 60 mg/L (Zhang et al., 2019). 258 

 259 

3.4. Evaluation of cell membrane integrity after sanitizing treatment  260 

Bacterial cytoplasmic membrane permeability was evaluated by staining with 261 
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Bacterial Live/Dead Staining Kit. The kit provides two stains, DMAO and EtD-Ⅲ. 262 

DMAO can stain both, live and dead bacteria, with intact and damaged cell 263 

membranes, while EtD-III can stain only dead bacteria with damaged cell membranes 264 

(Kaprelyants and Kell, 1992). M. psychrotolerans cells treated with water displayed 265 

green fluorescence, and the cells from the sanitizer-treated group displayed red 266 

fluorescence (Fig. 3). This indicates that cells lose their membrane integrity upon 267 

PAA treatment. However, the level of damage was unclear by staining the bacterial 268 

cells with this staining kit. Changes in bacterial cell membrane permeability and 269 

integrity might be attributed to various factors, such as inactivation of enzymes and 270 

alterations in membrane potential (Joux and Lebaron, 2000). SYTO 9 and PI staining 271 

of Staphylococcus aureus SA1 and L. monocytogenes cells, after 5000 ppm PAA 272 

treatment for 15 s also revealed cell membrane damage (Lee et al., 2016). Zhang et al. 273 

(2018) reported that PAA disrupts the cell membrane integrity of inactivate microbes. 274 

These results were correspondent with our observations in figures 3. 275 

 276 

3.5. Analyses of chromosomal DNA through agarose gel electrophoresis 277 

Changes in bacterial chromosomal DNA upon PAA treatment were analyzed 278 

through agarose gel electrophoresis (Fig. 4). The DNA extracted from the control and 279 

the test group treated with PAA displayed a bright single band on the agarose gel. 280 

Additionally, an increase in PAA concentration showed no particular difference in the 281 

DNA band profiles. This result suggests that PAA kills M. psychrotolerans cells 282 
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without damaging the bacterial DNA. This finding confirms with the results of 283 

previous study that PAA exerted antimicrobial effects on E. coil TOP10 independent 284 

of affecting the plasmid DNA (Zhang et al., 2019). Leggett et al. (2015) also reported 285 

no damage to the spore's DNA following PAA treatment. The PAA disinfection 286 

mechanism might differ from SH, that damages the bacterial DNA as a disinfectant 287 

(Fukuzaki, 2006). Ujimine et al. (2017) demonstrated that 3.1 ppm SH treatment 288 

damaged the molecular DNA in S. aureus cells and the DNA was undetectable on the 289 

agarose gel. However, there might be variations related to the differences in sanitizer 290 

efficacy, target microorganism, sanitizer concentration and treatment time (Zoellner et 291 

al., 2018). Overall, our observations suggest that the bactericidal activity of PAA is 292 

not related to the damage to the bacterial chromosomal DNA. 293 

 294 

3.6. SDS-PAGE analysis to investigate the bacterial proteins profiles 295 

The cell protein profiles of M. psychrotolerans after PAA treatment are shown in 296 

Figure 5. The protein profile of M. psychrotolerans cells exhibited no major 297 

difference between the PAA-treated and control cells. However, there were some 298 

protein bands that appeared to be slightly faint with increased PAA concentration. In 299 

some studies, the mechanisms of PAA action is reported to include, degradation of 300 

proteins during treatment (Kerkaert et al., 2011), enzyme oxidation and inactivation 301 

(Fraser, et al., 1985) and impairment of lipoprotein cytoplasmic membrane 302 

permeability (Kitis, 2004). In this study, we demonstrated that PAA destroyed the cell 303 
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membrane integrity (Fig. 3), and did not affect the bacterial DNA integrity in the 304 

treated cells (Fig. 4). Therefore, the reduced amount of proteins after treating with 305 

PAA on the gel could be because of the damaged cell membrane proteins (Nakayama 306 

et al., 2013). Also, depending on previous investigations, the difference in the cell 307 

protein profiles after PAA treatment might be attributed to alterations in some 308 

metabolic or protein synthesis pathways upon PAA treatment (Du, Liu, Cao, Zhao, & 309 

Huang, 2018; Liu et al., 2018). Hence, further scientific studies are required to 310 

elucidate the underlying mechanism of PAA disinfectant function. 311 

 312 

4. Conclusion  313 

To the best of our knowledge, this is the first report to investigate the sanitizing 314 

efficacy of PAA against M. psychrotolerans, a histamine-producer responsible for 315 

seafood poisoning. We revealed that PAA could significantly reduction of M. 316 

psychrotolerans, both in vitro and on saury surfaces. And we also demonstrated that 317 

the antimicrobial mechanism of PAA was mainly related to damage the cell 318 

membranes. Our study provides evidence on the disinfectant efficiency of PAA and 319 

its potential application to improve seafood safety. 320 

 321 
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 554 

TABLE AND FIGURE LEGENDS 555 

 556 

Table 1. Survival of M. psychrotolerans under treatment with PAA in vitro.  557 

 558 

Fig. 1. (A) Reduction in bacteria cell counts of M. psychrotolerans on saury surfaces, 559 

after washing with sanitizers for 1 or 5 min; (B) Effect of different sanitizer 560 

treatments against M. psychrotolerans on saury surfaces during storage at 4 °C. White 561 

bars, black bars, and gray bars represent control, 80 ppm PAA and 100 ppm SH, 562 

respectively. Different lowercase letters are significantly different within same 563 

treatment time group (p˂0.05). 564 

 565 

Fig. 2. Scanning electron microscopic (SEM) observations of M. psychrotolerans 566 

undergoing PAA and sodium hypochlorite (SH) treatments. A- Control; B- 20 ppm 567 

PAA treated for 5 min; C- 80 ppm PAA treated for 5 min. 568 

 569 

Fig. 3. Epifluorescence microscopic images of M. psychrotolerans cells, stained with 570 

Live/Dead Kit after PAA treatments. A- Control; B- 20 ppm PAA treated 5 min; C- 80 571 

ppm PAA treated 5 min. 572 

 573 
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Fig. 4. Chromosomal DNA of M. psychrotolerans after PAA treatment. M- Marker; 574 

C- Control; P1- 20 ppm PAA treated 5 min; P2- 80 ppm PAA treated 5 min. 575 

 576 

Fig. 5. SDS-PAGE profiles of protein in M. psychrotolerans cell proteins after PAA 577 

treatment. M- Marker; C- Control; P1- 20 ppm PAA treated 5 min; P2- 80 ppm PAA 578 

treated 5 min. 579 



Table. 1 Wang et al.

Treatment Treatment time (min)
0 1 3 5

Control 8.92 ± 0.04 8.93 ± 0.04a 8.92 ± 0.03a 8.90 ± 0.03a

10 ppm 8.92 ± 0.04 4.59 ± 0.25b 2.07 ± 0.22b 2.00 ± 0.05b

20 ppm 8.92 ± 0.04 1.87 ± 0.18c 1.80 ± 0.17b ND
40 ppm 8.92 ± 0.04 ND ND ND
80 ppm 8.92 ± 0.04 ND ND ND

1Different lowercase letters are significantly different within the same treatment time group (p 
< 0.05). 
2ND:Below detection level: < 1.7 log CFU/mL.



Fig. 1 Wang et al.



Fig. 2 Wang et al.



Fig. 3 Wang et al.



Fig. 4 Wang et al.



Fig. 5 Wang et al.
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