

HOKKAIDO UNIVERSITY

Title	Effects of single and repetitive valproic acid administration on the gene expression of placental transporters in pregnant rats : An analysis by gestational period.
Author(s)	Jinno, Naoki; Furugen, Ayako; Kurosawa, Yuko; Kanno, Yuki; Narumi, Katsuya; Kobayashi, Masaki; Iseki, Ken
Citation	Reproductive toxicology (Elmsford, N.Y.), 96, 47-56 https://doi.org/10.1016/j.reprotox.2020.04.077
Issue Date	2020-05-11
Doc URL	http://hdl.handle.net/2115/81137
Rights	©2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
Rights(URL)	https://creativecommons.org/licenses/by-nc-nd/4.0/
Туре	article (author version)
File Information	HUSCAP.pdf

1	Effects of single and repetitive valproic acid administration on the gene expression of placental
2	transporters in pregnant rats: An analysis by gestational period.
3	
4	Naoko Jinno, Ayako Furugen, Yuko Kurosawa, Yuki Kanno, Katsuya Narumi, Masaki Kobayashi*,
5	Ken Iseki
6	
7	Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of
8	Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo
9	060-0812, Japan
10	
11	*Correspondence to: Masaki Kobayashi, Ph.D. Laboratory of Clinical Pharmaceutics & Therapeutics,
12	Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo,
13	Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
14	Phone: +81-11-706-3772; Fax: +81-11-706-3235; E-mail: masaki@pharm.hokudai.ac.jp
15	

16 Abbreviations

17	ABC, ATP-binding cassette; ANOVA, analysis of variance; BCRP, breast cancer resistance protein;
18	CNT, concentrative nucleoside transporter; ENT, equilibrative nucleoside transporter; FR α , folate
19	receptor alpha; G, gestational day; GLUT, glucose transporter; HDAC, histone deacetylase; IS,
20	internal standard; LAT, L-type amino acid transporter; LC/MS/MS, liquid chromatography tandem
21	mass spectrometry; MCT, monocarboxylate transporter; MDR, multiple drug resistant; MRP,
22	multidrug resistance-associated protein; OATP, organic anion transporting polypeptide; OCT,
23	organic cation transporter; OCTN, organic cation/carnitine transporter; PCR, polymerase chain

24 reaction; SLC, solute carrier; VPA, valproic acid

25 Abstract

26	The use of valproic acid (VPA), an antiepileptic drug, during pregnancy, is known to increase
27	various fetal risks. Since VPA has been known to inhibit histone deacetylases (HDACs); its
28	administration could alter gene transcription levels. However, in vivo effects of VPA administration
29	on placental transporters have not been fully elucidated. The purpose of the present study was to
30	comprehensively evaluate the effects of single and repetitive VPA administration on the expression
31	of placental transporters and analyze them by gestational day. We investigated 18 transporters (8
32	ATP-binding cassette (ABC) and 10 solute carrier (SLC) transporters) in the placentas of pregnant
33	rats that were orally administered 400 mg/kg/day VPA for one or four days, during mid- or late
34	gestation. In the control rats, 4 ABC transporter genes (Abcb1a, 1b, Abcc2, Abcc4) were upregulated,
35	3 (Abcc3, Abcc5, Abcg2) downregulated through gestation, whereas 1 (Abcc1) was not changed.
36	Regarding SLC transporters, 6 genes (Slc7a5, Slc16a3, Slc22a3, Slc22a4, Slco2b1, Slco4a1) were
37	increased, 1 (Slc29a1) decreased through gestation, whereas 3 (Slc7a8, Slc22a5, Slco2a1) showed no
38	significant change. Single VPA administration altered the expression of 9 transporters and repetitive
39	administration, 13 transporters. In particular, VPA remarkably decreased Abcc4 and Slc22a4 in late
40	gestation and increased Abcc5 during mid-gestation. Our findings indicated that VPA administration
41	changed transporter expression levels in rat placenta, and suggested that sensitivity to VPA differs
42	across gestational stages.

- 44 Key words: Placenta; antiepileptic drug; valproic acid; ABC transporter; SLC transporter;
- 45 gestational period; Rat

1. Introduction

48	About 0.3–0.7 % of pregnant women have epilepsy (Viinikainen et al., 2006). Seizure control
49	needs to be maintained by continuous pharmacotherapy throughout pregnancy. Generally,
50	medication use during pregnancy is a fetal risk factor, needing consideration in gestational
51	pharmacotherapy.
52	Valproic acid (VPA) is a well-established and frequently used antiepileptic drug. However, it
53	increases the risk of fetal malformations, autism spectrum disorders, and cognitive defects (Baker et
54	al., 2015; Christensen et al., 2013; Jentink et al., 2010; Tomson et al., 2011). VPA treatment should
55	be avoided in women of childbearing age; however, it is prescribed to pregnant women when
56	required (Ishikawa et al., 2019; Yoshimura et al., 2018). Hence, the effect of VPA on the fetus and
57	related organs needs to be evaluated.
58	The placenta is a crucial temporary organ, which is in contact with both maternal and fetal
59	blood. ATP-binding cassette (ABC) and solute carrier (SLC) transporters play a role in nutrient,
60	metabolic waste, and xenobiotic exchange between mother and fetus (Leazer and Klaassen, 2003;
61	Staud et al., 2012). Hence, the expression levels of placental transporters are one of the factors
62	affecting the intrauterine environment and fetal growth. Since the expression of placental transporters
63	changes across gestation, their evaluation at each gestational stage is important. Additionally,
64	transporters can be affected in a sex-specific manner, in some cases (Song et al., 2017).

65	VPA has been reported to inhibit histone deacetylases (HDACs), which remove acetyl groups
66	from histones. Four classes of HDACs have been identified, and VPA acts predominantly on Class I
67	HDACs, including HDAC 1–3 and 8 (Grabiec and Potempa, 2018; Gurvich et al., 2004). Therefore,
68	VPA likely affects the expression of various genes. So far, there are several reports that have
69	investigated the effects of VPA on placental transporters. An in vitro study indicated that VPA
70	treatment altered the expression and function of breast cancer resistance protein (BCRP)
71	(Rubinchik-Stern et al., 2015). Moreover, we previously showed that VPA exposure induces
72	increased mRNA levels of folate receptor alpha (FR α) and proton-coupled folate transporter in
73	BeWo and JEG-3 cell lines, derived from human choriocarcinoma (Kurosawa et al., 2018).
74	Additionally, perfusion with VPA reportedly has reduced FR α and glucose transporter (GLUT) 1 in
75	ex vivo human placentas (Rubinchik-Stern et al., 2018; Tetro et al., 2019). However, the perfusion
76	time was short and variability among samples was high in the model. In particular, placental
77	structure, function, and transporters are dramatically altered. Therefore, an <i>in vivo</i> study is well
78	suited to sequentially investigate, throughout gestation, and assess the influence of fetal sex on
79	VPA-mediated changes. Although a previous in vivo study indicated that the expression of L-type
80	amino acid transporter (LAT) 1, organic anion transporting polypeptide (OATP) 4a1, and reduced
81	folate carrier were lower in placentas from VPA-treated mid-pregnant mice (Meir et al., 2016),
82	transporter expression level changes were not recorded.

83	This study aimed to comprehensively reveal the effects of both single and repetitive VPA
84	treatment on placental transporters, using pregnant rats. We analyzed the expression of 8 ABC
85	transporters, including multiple drug-resistant (MDR) 1a and 1b (Abcb1a, 1b), multidrug
86	resistance-associated proteins (MRPs) 1–5 (Abcc1–5), and BCRP (Abcg2), as well as 10 SLC
87	transporters, including LAT1 and 2 (Slc7a5 and Slc7a8), monocarboxylate transporter (MCT) 4
88	(Slc16a3), organic cation transporter (OCT) 3 (Slc22a3), organic cation/carnitine transporter
89	(OCTN) 1 and 2 (<i>Slc22a4</i> , 5), equilibrative nucleoside transporter (ENT) 1 (<i>Slc29a1</i>), and OATP2a1,
90	2b1, and 4a1 (Slco2a1, 2b1, 4a1), by gestational age. Furthermore, the results were secondarily
91	analyzed by fetal sex.

92 **2. Material and Methods**

93	2.1. Chemicals and reagents.
94	Valproic acid sodium salt (VPA Na) and valproic acid were purchased from Sigma-Aldrich
95	(St. Louis, MO, USA). Deuterium-labeled valproic acid (VPA-d ₆) and 2-propyl-4-pentenoic acid
96	(4-ene-VPA) were purchased from Toronto Research Chemicals (Toronto, Canada).
97	
98	2.2. Animals.
99	Pregnant female Wistar rats (12-13 weeks old) were provided by CLEA Japan (Tokyo,
100	Japan). The existence of a vaginal plug indicated the first day of gestation (Gestational day 0; G0).
101	G9–13 and G16–20 were considered as mid- and late gestation, respectively (Sun et al., 2015;
102	Kalisch-Smith et al., 2017). The rats were housed at $23 \pm 2^{\circ}$ C and 60 ± 10 % relative humidity under
103	a 12-h light/dark cycle, with ad libitum access to food and water. The experimental protocols were
104	reviewed and approved by the Hokkaido University Animal Care Committee, in accordance with the
105	National Institutes of Health guide for the care and use of laboratory animals.
106	
107	2.3. Drug administration and collection of plasma and placentas.
108	VPA Na was dissolved in distilled water (200 mg/mL), filter-sterilized, and then orally
109	administered to pregnant rats at a daily dose of 400 mg/kg body weight, by gavage. We determined
110	the appropriate experimental dose for observing fetal effects, which does not cause maternal death,

111 based on the findings of a previous study (Vorhees, 1987). Control rats were administered the same

112	volume of distilled water. Rats of the single administration groups were treated on G12
113	(mid-gestation) or G19 (late gestation), and those in the repetitive groups were treated for 4 days on
114	G9-12 (mid-gestation) or G16-19 (late gestation). All pregnant rats were weighed before every
115	administration and euthanization.
116	Thirty minutes and 24 h post-VPA administration, blood was collected from the tail vein and
117	centrifuged at 800 g and 4°C for 15 min, to obtain plasma. Twenty-four hours post the last
118	administration, G13 or G20 rats were anesthetized with sevoflurane and euthanized by decapitation;
119	their placentas were then immediately collected, washed briefly with ice-cold PBS, and weighed.
120	Three to four placentas per dam were used for real-time PCR, and the others were frozen in liquid
121	nitrogen and stored at -80°C until further experiments.
122	
123	2.4. Real-time PCR.
124	Total RNA was extracted from the placental homogenates using ISOGEN II (Nippon Gene,
125	Tokyo, Japan). RNA concentration was measured using Thermo Scientific TM NanoDrop 2000
126	(Thermo Fisher Scientific, Waltham, MA, USA). DNase treatment was performed using the
127	RNase-free DNase Set (QIAGEN, Venlo, Netherlands). Samples after DNase treatment were
128	reverse-transcribed using ReverTra Ace (Toyobo, Osaka, Japan) and iCycler TM (Bio-Rad
129	Laboratories, Hercules, CA), according to manufacturer's instructions. The A260/A280 and
130	A260/A230 ratios of isolated RNA were 1.95 ± 0.05 and 2.00 ± 0.10 , respectively.

131	Real-time PCR was performed using KAPA SYBR® Fast qPCR Kit (Kapa Biosystems,
132	Wilmington, MA, USA) and LightCycler® 480 System II (Roche, Basel, Switzerland), through 40
133	cycles of 95°C for 10 s, 55°C or 60°C for 20 s, and 72°C for 1 s. Primers used for the real-time PCR
134	are shown in Supplemental Table 1. Beta-actin was used as the reference gene. We determined that
135	the reference gene in the rat placenta was not influenced by gestational age or VPA administration.
136	Data were analyzed by the relative standard curve method. As a calibrator, cDNA from a G20
137	placenta (1 lot) was used. The Ct values of rat placenta samples are shown in Supplemental Table 2.
138	Fetal sex was determined by detecting the Y-chromosome-linked gene, Sry, which encodes a
139	sex-determining region Y protein in the placentas, in accordance with a previous study (Song et al.,
140	2017). Placentas with no Sry gene expression (Ct value, >35 or similar to that in negative controls)
141	were considered to be from female fetuses, whereas those with expression (Ct value, <30) were
142	considered to be from male fetuses.
143	
144	2.5. VPA and 4-ene-VPA quantification in rat plasma using liquid chromatography-tandem
145	mass spectrometry.
146	For standard curve generation, blank plasma from control pregnant rats was spiked with VPA
147	and 4-ene-VPA to final concentrations of 10–500 and 0.2–100 μ g/mL, respectively. VPA and
148	4-ene-VPA levels in plasma were determined as previously described (Wu and Lu, 2014; Gao et al.,
149	2011), with some modification. Briefly, 10 μ L of VPA-d ₆ (internal standard (IS), 100 μ g/mL) and 25

150	μ L of hydrochloric acid (1 M) were added to 50 μ L of rat plasma. Next, 1 mL of toluene was added
151	to the solution and mixed for 1 min. The mixture was centrifuged at 13,000 g and 4°C for 10 min,
152	and 800 μ L of supernatant collected and distilled at 37°C under gentle nitrogen steam. The residue
153	was reconstituted in 50 μ L of mobile phase (methanol:10 mM ammonium formate solution, 80:20
154	(v/v)) and 2 μ L injected for HPLC.
155	HPLC was performed using a completely equipped Prominence 20A system (Shimadzu,
156	Kyoto, Japan). VPA and 4-ene-VPA were separated using an Inertsil ODS-3 column (2.1×150 mm,
157	3 μ m; GL Science Inc., Tokyo, Japan). The column temperature was maintained at 40°C and the
158	mobile phase flow rate set at 0.2 mL/min. Multiple reaction monitoring was performed using an
159	API3200 TM LC-MS/MS system (Applied Biosystems, Foster City, CA). This system was operated in
160	the negative ion electrospray mode. Monitoring ions were m/z 143.1 \rightarrow 143.1 for VPA, m/z 141.1 \rightarrow
161	141.1 for 4-ene-VPA, and m/z 149.1 \rightarrow 149.1 for IS. Data were analyzed using Analyst software
162	(Applied Biosystems).
163	
164	2.6. Western blotting
165	Whole proteins were extracted from placentas of G20 pregnant rats that were repetitively
166	administrated VPA or water (control). Placentas were homogenized in ice-cold RIPA buffer (Cell
167	Signaling Technology, Danvers, MA, USA). The lysates were kept on ice for 5 min and sonicated
168	briefly, then centrifuged at 14,000 g and 4°C for 10 min. The supernatant was used for western
169	blotting. The total protein concentration was measured using a Pierce® BCA Protein Assay Kit

170	(Thermo Fisher Scientific). Total protein was mixed with Blue Loading Buffer Pack (Cell signaling
171	Technology, Danvers, MA, USA) and denatured at 100°C for 3 min. The mixture was subjected to
172	SDS-PAGE at 20 ug protein per well and transferred onto nitrocellulose membranes (Bio-Rad
173	Laboratories). The membranes were blocked with 5% non-fat dry milk in TBS containing 0.05%
174	Tween 20 (TBST), at room temperature for 1 h, then incubated with primary antibodies diluted with
175	Can Get Signal® Solution 1 (Toyobo) overnight at 4°C. The following primary antibodies were
176	used: mouse anti-P-glycoprotein (1:200, Merck Millipore, Burlington, MA, #517310) and mouse
177	anti-actin (1:1000, Chemicon, Temecula, CA, #MAB1501) monoclonal antibodies. The bands were
178	detected using HRP-conjugated secondary antibodies (anti-mouse IgG, 1 : 4000, Southern Biotech,
179	Birmingham, AL, #1070-05), and ECL prime TM Western blotting detection reagent (GE Healthcare,
180	Buckinghamshire, England), with Image Quant LAS 4000 (GE Healthcare). The band Intensities
181	were analyzed with ImageJ analysis software (National Institutes of Health, Bethesda, MD, USA).
182	
183	2.7. Statistical analyses.
184	Maternal body weight gain and placental weight were analyzed using Student's t-test for
185	comparison of the control and VPA groups. Gene expression was analyzed using a two-way analysis
186	of variance (ANOVA), with "gestational day (G)" and "VPA" or "sex" and "VPA" as factors. If an
187	interaction was present, the Tukey-Kramer test was used for multiple comparisons. Two-way
188	ANOVA and Tukey-Kramer test were performed using JMP Pro (SAS Institute, Cary, NC, USA).

189 All data are shown as mean with standard deviation (SD), and P < 0.05 was assessed as statistically

190 significant.

191 **3. Results**

192	3.1. Effects of single VPA Na administration on placental transporters at G13 and G20.
193	First, we confirmed the presence of VPA and 4-ene-VPA in the plasma from the pregnant rats
194	30 min (peak) post oral VPA Na administration. In a previous study in pregnant rats, the VPA level
195	peaked at 0.5–0.9 h post-oral VPA Na administration (Binkerd et al., 1988). The plasma levels of
196	VPA and its toxic active metabolite, 4-ene-VPA, 30 min post-administration were approximately 200
197	and 1.5 μ g/mL, respectively (Table 1); this level was similar to that reported in a previous study
198	(Binkerd et al., 1988). After 24 h, their concentrations were less than or close to the lower limit of
199	quantification. There were no differences in the concentrations between mid- and late gestation.
200	Body weight gain of the pregnant rats did not differ significantly between VPA Na single
201	administration and control groups (data not shown).
202	
203	3.1.1. Alteration of placental ABC transporter expression by single VPA Na administration.
204	The expression of 8 ABC transporter mRNAs in the placentas were assessed (Figure 1).
205	Interactions between gestational day and VPA Na administration were statistically significant for
206	rMrp1, rMrp4, and rMrp5. Multiple comparisons revealed that VPA Na decreased rMrp4 by 22 % at
207	G20, whereas increased rMrp5 by 22 % at G13 (Figure 1F and 1G). No significant difference was
208	noted in rMrp1expression (Figure 1C). With the mRNA expression alterations associated with the
209	gestational stage, multiple comparisons showed that rMrp4 increased by2.84-folds (Figure 1F),

210	whereas rMrp5 decreased by 0.67-folds (Figure 1G) at G20, compared with the G13 control groups.
211	The main gestational day effects were significant for rMdr1a, rMdr1b, rMrp3, and rBcrp; rMdr1a and
212	rMdr1b increased to 295 % and 262%, respectively (Figure 1A and 1B), whereas rMrp3 and rBcrp
213	decreased to 33% and 49%, respectively (Figure 1E and 1H). rMrp2 could not be evaluated because
214	it was scarcely expressed at G13 (Figure 1D).
215	
216	3.1.2. Alteration of placental SLC transporter expression by single VPA Na administration.
217	Next, we assessed the expression of 10 SLC transporter mRNAs in the placentas (Figure 2).
218	Interactions between gestational day and VPA Na administration were statistically significant for
219	rLat1, rLat2, rOctn1, rOatp2a1, rOatp2b1, and rOatp4a1. Multiple comparisons revealed that VPA
220	Na increased rLat2 by 36 % and rOatp2a1 by 75 % at G13 (Figure 2B and 2H). In contrast, it
221	decreased rLat1 by 21 %, rOctn1 by 20 %, rOatp2b1 by 21 %, and rOatp4a1 by 18 % at G20 (Figure
222	2A, 2E, 2I, and 2J). No interactions were noted for rMct4, rOct3, and rEnt1(Figure 2C, 2D, and 2G).
223	When compared with levels in the G13 control by multiple comparisons, rLat1, rOctn1, rOatp2b1,
224	and rOatp4a1 increased to 783%, 1660%, 485%, and 585% at G20, respectively (Figure 2A, 2E, 2I,
225	and 2J). rMct4 tended to increase to 210 %, whereas rEnt1 tended to decrease to 46 % (Figure 2C
226	and 2G).

227	3.2. Effects of repetitive VPA Na administration on placental transporters at G13 and G20.
228	The plasma levels of VPA and 4-ene-VPA 30 min post each administration were
229	approximately 100–300 μ g/mL and 1.5–2.0 μ g/mL, respectively (Table 1). After 24 h, the
230	concentrations of both VPA and 4-ene-VPA were less than or close to the lower limit of
231	quantification. There were no substantial differences between mid- and late gestation as well as
232	between single and repetitive administration. Body weight gain of VPA-administered dams was
233	approximately half of that of control dams at G20 in the late gestation group, whereas no difference
234	was noted in the mid-gestation group (Figure 3A). Placental weight was significantly decreased by
235	VPA Na at both G13 and G20 (Figure 3B).
236	
237	3.2.1. Alteration of placental ABC transporter expression by repetitive administration of VPA
238	Na.
239	Interactions between gestational day and VPA Na administration were statistically significant
240	for rMdr1a, rMrp1, rMrp3, rMrp4, rMrp5, and rBcrp, among the eight ABC transporters (Figure 1).
241	Multiple comparisons revealed that VPA Na increased rMrp1 by 43 % and rMrp5 by 67 % at G13
242	(Figure 1C and 1G) and rMdr1a by 34 % at G20 (Figure 1A), whereas decreased rMrp3 by 17 % at
243	G13 and rMrp4 by 46 % at G20 (Figure 1E and 1F). With the mRNA expression alterations
244	associated with gestational stage, multiple comparisons showed that rMdr1a and rMrp4 increased to
245	277 % and 212 % (Figure 1A and 1F), whereas rMrp3, rMrp5, and rBcrp decreased to 35 %, 59 %,

246	and 56 %, respectively (Figure 1E, 1G, and 1H) at G20, compared with at G13. These alterations
247	were similar to those of the single administration. The main effects of VPA and gestational day on
248	rMdr1b were significant, although they did not have an interaction: rMdr1b increased to 247 %
249	through gestation and decreased by 25 % with VPA Na.
250	
251	3.2.2. Alteration of placental SLC transporter expression by repetitive VPA Na administration.
252	Interactions between gestational day and VPA Na administration were statistically significant
253	for Lat1, rLat2, rOctn1, rOctn2, rEnt1, rOatp2a1, and rOatp4a1 (Figure 2). Multiple comparisons
254	showed that VPA Na increased rLat2 by 95 %, rOctn2 by 78 %, rEnt1 by 61 %, and rOatp2a1 by
255	131 % at G13 (Figure 2B, 2F, 2G, and 2H), whereas decreased rLat1 by 18 %, rOctn1 by 51 %, and
256	rOatp4a1 18 % at G20 (Figure 2A, 2E, and 2J). With regards to gene expression alterations during
257	gestation, multiple comparisons showed that rLat1, rOctn1, and rOatp4a1 increased by 7.6-, 17.2-,
258	and 5.7-folds, respectively (Figure 2A, 2E, and 2J). Conversely, rEnt1expression at G20 was
259	0.49-folds lower than at G13 (Figure 2G). These alterations associated with the gestational stages
260	were the same as those of single administration.
261	
262	3.3. Analysis of fetal sexual effects on gene expression.
263	A previous study evaluating placental response to maternal metabolic changes indicated that
264	the expression of signaling factors and nutrient transporters was altered in a sex-specific manner

~

.

265	(Song et al., 2017). We secondarily analyzed the data shown in Figures 1 and 2 by fetal sex to clarify
266	whether differences existed between male and female placentas. The analysis results of G13 and G20
267	placentas are shown in Supplemental Tables 3 and 4, respectively. Interactions between sex and VPA
268	Na were significant for rMdr1a in the G13 single administration groups and rOatp2a1 and rOatp2b1
269	in G20 repetitive administration groups. Alteration of the three transporter mRNAs is shown in
270	Supplemental Figure 1. Multiple comparisons revealed that VPA Na increased rMdr1a by 27 % and
271	decreased rOatp2a1 by 46 % in male placentas, whereas no significant changes were noted in female
272	placentas (Supplemental Figure 1A and 1B). There were no significant changes in rOatp2b1
273	expression in both male and female placentas (Supplemental Figure 1C).

4. Discussion

275	VPA use during pregnancy poses risks to the fetus such as malformations, autism spectrum
276	disorders, and cognitive defects (Baker et al., 2015; Christensen et al., 2013; Jentink et al., 2010;
277	Tomson et al., 2011). Therefore, evaluation of its effects on the placenta, which supports fetal
278	development and health maintenance in pregnancy, is important. In the present study, we
279	comprehensively evaluated the effects of VPA administration on the expression of rat placental
280	transporters.
281	In the study, we determined the experimental dose to observe fetal effects and not cause
282	maternal death, based on the findings of a previous study (Vorhees, 1987). In addition, previous
283	studies that have investigated the effects of prenatal VPA exposure on rat pups, chose the
284	administration dose of approximately 300-800 mg/kg (Roullet FI et al., 2013). No considerable
285	differences between VPA levels and the therapeutic VPA range, which is 42–114 μ g/mL in humans
286	(Kim et al., 2011), were observed in this study. Additionally, accumulation by repetitive
287	administration and differences due to the gestational stage were not observed for VPA or 4-ene-VPA
288	(Table 1). It has been reported that 4-ene-VPA was detected in both humans and rats after
289	administration of VPA, and has been suggested to be involved in toxicity, such as hepatoxicity
290	(Kesterson JW et al., 1984; Tennison MB et al., 1998).
291	VPA administration is known to affect fetal growth and cognitive development in rats as well
292	as humans (Ornoy, 2009; Schneider and Przewłocki, 2005). Maternal body weight loss was shown to

293	occur after the administration of 400 mg/kg VPA on G7-18 (Vorhees, 1987). Our results showed no
294	significant difference in maternal body weight (data not shown); however, body weight gain showed
295	a similar trend (Figure 3). Fetal weight also decreased in the VPA-treated group by approximately
296	1.5 g in a previous study (Vorhees, 1987). Hence, fetal growth restriction might also contribute to the
297	decreased maternal body weight gain. In humans, contradictory studies exist regarding the
298	relationship between VPA and fetal growth. A population-based cohort study indicated that VPA use
299	did not induce fetal growth restriction (Veiby et al., 2014), whereas another cohort study showed that
300	the maternal and umbilical cord levels of VPA were negatively correlated with birth length
301	(Kacirova et al., 2015). Therefore, VPA concentration in the plasma might be important for normal
302	fetal growth.
303	Mdr1a, Mdr1b, Mrp1–3, and Bcrp, which play a key role in predominantly transferring
304	xenobiotics. Mdr1a, Mdr1b, Mrp2, Mrp3 and Bcrp localize to the apical membrane of placenta.
305	Mrp1 localize to the basolateral membrane. Furthermore, Mrp1 and Mrp3 are expressed in fetal
306	vessels (Joshi et al., 2016; Ni and Mao, 2011). In this study, Mdr1a, Mdr1b, and Mrp2 were
307	increased, whereas Mrp3 and Bcrp decreased through gestation (Figure 1). It has been reported that
308	Mdr1a and Mdr1b increased with gestational stage, which was consistent with our results (Novotna
309	M et al., 2004). In regard to Mrp1-3, St-Pierre et al. showed that Mrp1 mRNA was abundantly
310	expressed in the placenta throughout gestation (St-Pierre MV et al., 2004). The group reported that
311	Mrp3 mRNA was expressed throughout gestation, whereas Mrp2 was expressed at a low level in the

312	rat placenta. Repetitive VPA administration decreased Mdr1b throughout gestation and affected
313	Mdr1a, Mrp1, and Mrp3 in a gestational age-specific manner (Figure 1). In the G20 placenta,
314	repetitive VPA administration increased Mdr1a, whereas it tended to decrease Mdr1b. Therefore, we
315	examined the expression of P-gp protein, which is encoded by <i>Abcb1a</i> and <i>Abcb1b</i> , by western
316	blotting (Supplemental Figure 2). P-gp protein tended to increase by repetitive VPA administration,
317	although the difference was not statistically significant. The result suggested that change in Abcb1a
318	affected the P-gp protein expression in rat placenta, and variations of gene expression by VPA can
319	alter protein levels.
320	Bcrp on the apical side and Oatp2b1 on the basolateral side collaborate to transport sulfate
321	conjugates from fetal to maternal circulation (Grube et al., 2007). As gestation progresses, these two
322	genes showed opposite changes as follows: Bcrp decreased to half the initial level (Figure 1H),
323	whereas Oatp2b1 increased by 4-folds (Figure 2I). It has been reported that Bcrp mRNA in the rat
324	placenta peaks on G15 and declines significantly to one third at term (Cygalova L et al., 2008).
325	Oatp2b1 mRNA increased throughout gestation (St-Pierre MV et al., 2004). The tendency was
326	consistent with the present results. Oatp2b1 was decreased on G20 by single VPA administration;
327	however, no significant differences were noted after repetitive treatment (Figure 2I).
328	Mrp4 on the apical side and Mrp5 on the basolateral side contribute to the transport of cyclic
329	nucleotides (Joshi et al., 2016; Wielinga et al., 2003). In this study, Mrp4 increased and Mrp5
330	decreased, following fetal development (Figure 1). Moreover, VPA remarkably decreased Mrp4 on

331	G20 (Figure 1F) and increased Mrp5 on G13 (Figure 1G). Considering these findings, VPA is
332	thought to increase cAMP efflux from the placenta to the fetus on G13, whereas decreasing it from
333	the placenta to mother on G20. In the placentas, one of the cyclic nucleotides, cAMP, is involved in
334	cell fusion and cytotrophoblast syncytialization, which is caused by an increase in Syncytin-1 via
335	cAMP/Protein kinase A signaling (Gupta et al., 2016). Hence, the altered expression of cAMP
336	transporters might affect placental cell differentiation and function.
337	Mrp4 is also involved in transporting prostaglandins (Reid et al., 2003). Additionally,
338	Oatp2a1 has been shown to transport prostaglandins (Gose et al., 2016), which was increased by
339	VPA on G13 in the present study (Figure 2H). Prostaglandin E2 is involved in cell invasion and
340	migration in the placenta (Nicola et al., 2005). Thus, VPA might alter placental kinetics of
341	prostaglandins at both G13 and G20.
342	Lat1 on the apical membrane and Lat2 on both apical and basal membranes are transporters
343	exchanging large neutral amino acids (del Amo et al., 2008; Gaccioli et al., 2015). The expression of
344	Lat1 increased remarkably as gestation progressed (Figure 2A). VPA treatment decreased Lat1 on
345	G20 (Figure 2A), whereas increased Lat2 on G13 (Figure 2B). A previous study indicated the
346	involvement of Lat1 in the transport of branched-chain amino acids in mice fetal brain, and
347	impairment of this transporter led to neurological and behavioral abnormalities associated with
348	autism spectrum disorders (Tărlungeanu et al., 2016). Since VPA induces fetal autism spectrum
349	disorders, evaluation of its effect on placental Lat1 might have important implications. Furthermore,

350	Lat1, Lat2, and Oatp4a1 transport thyroid hormones, which are necessary for fetal growth (Bernal et
351	al., 2015; Forhead and Fowden, 2014). Oatp4a1 was shown to have increased following gestation
352	and decreased by VPA on G20 (Figure 2J). The change in Oatp4a1 mRNA throughout gestation was
353	consistent with the previous results (St-Pierre MV et al., 2004).
354	Ent1 transports pyrimidine nucleosides (Nishimura et al., 2012). Ent1 decreased with
355	gestational stage and was increased by VPA on G13 (Figure 2J). The expression of other nucleoside
356	transporters, Cnt1 and Ent2, was found to be low on G20 (data not shown).
357	Mct4 mediates proton-dependent transport of monocarboxylates. Mct4 was increased by
358	gestational development. It has been reported that the MCT4 protein was strongly detected in rat
359	placentas throughout gestation (Moore et al., 2016). VPA did not affect the expression levels across
360	gestation (Figures 2C).
361	Higher levels of Oct3 in the placenta, rather than in other organs, play a role in the efflux of
362	organic cations from the fetus (Leazer and Klaassen, 2003; Sata et al., 2005). In contrast, Oct2 was
363	present at low levels in the placenta on G20 (data not shown). Oct3 was increased by gestational
364	development or VPA single administration; however, the differences were subtle (Figure 2D). It has
365	been reported that Oct3 mRNA in the rat placenta increased throughout gestation
366	(Ahmadimoghaddam et al., 2013). The tendency was consistent with our results.
367	In this study, Octn1 increased markedly following gestational development and decreased by
368	VPA administration on G20 (Figure 2E). Octn2 increased by VPA repetitive administration on G13

369	(Figure 2F). Octn1 and Octn2 play a crucial role in the uptake of L-carnitine by the placenta (Grube
370	et al., 2005; Wu et al., 2000). The defect in Octn2 was shown to induce embryonic lethality
371	(Shekhawat et al., 2018). Although the role of placental Octn1 has been poorly understood, the
372	decline in Octn1, whose substrates are similar to those of Octn2, might affect fetal growth. The
373	remarkable increase in Octn1 during pregnancy might have a critical impact; thus, further
374	investigation is needed to elucidate its role. Furthermore, previous studies showed that serum
375	carnitine levels were altered after VPA treatment (Moreno et al., 2005). Carnitine was also reported
376	to alter Octn2 expression, which might be involved in Octn2 alteration in the present study (Schürch
377	et al., 2010).
378	In the present study, variation in transporters in the placenta by VPA administration were
379	observed. As described above, repetitive VPA administration increased Mdr1a, whereas it tended to
380	decrease Mdr1b in the G20 placenta. Furthermore, VPA administration significantly decreased Mrp4
381	expression at G20. Because these are efflux transporters at the apical membrane, the changes might
382	cause variation in placental barrier function. In regard to cAMP transporters, Mrp4 and Mrp5 were
383	changed in VPA; Mrp4 decreased at G20, whereas Mrp5 increased at G13. Because cAMP signaling
384	is involved in cell fusion and syncytialization (Gupta et al., 2016), the altered expression of cAMP
385	transporters might affect placental cell differentiation and function. VPA administration affected the
386	expression SLC transporters that mediate transport of nutrition. VPA decreased Lat1, Octn1, and
387	Oatp4a1 in the G20 placenta. These are influx transporters at the apical membrane, and are important

388	for fetal development, such as amino acids, carnitine, and thyroid hormones. Additionally,
389	prostaglandin transporter Oatp2a1 was increased by VPA during G13 in the present study.
390	Prostaglandin E2 was involved in cell invasion and migration in the placenta (Nicola et al., 2005).
391	Therefore, these changes might contribute to impairment of the placental and fetal development by
392	VPA. The present results and previous knowledge suggest that the changes might be linked to
393	placental function and fetal nutrition/development. However, we have not directly evaluated the links
394	between changes in transporters and adverse effects by VPA in the present study. Future studies are
395	required to assess whether the changes of placental transporters affect placental function, fetal
396	nutrition, and development. In addition, we have not revealed changes at the protein levels, except
397	for P-gp. It is essential to evaluate protein levels for precisely justifying placental transport function.
398	Future studies should investigate the changes in proteins and function levels by VPA administration.
399	It has been reported that transporters can be affected in a sex-specific manner in some cases.
400	For instance, a maternal high-fat diet has been shown to increase GLUT3 and system A amino acid
401	transporter 2 only in the placentas from male fetuses (Song et al., 2017). Previous studies evaluating
402	the effects of VPA on the expression of placental transporters did not elucidate fetal sex differences.
403	Therefore, we secondarily analyzed by fetal sex. In this study, Mdr1a on G13 and Oatp2a1 on G20
404	were shown to have higher susceptibilities to VPA in the male placenta (Supplemental Figure 1). A
405	study showed that sex differences altered the behavior of VPA-treated rats; thus, VPA has the
406	potential to affect various aspects in a sex-specific manner (Anshu et al., 2017). However, the present

407	study had a limited number of placentas for each sex because randomized placentas were divided
408	into male or female. Thus, further investigations are needed to determine the effect of fetal sex.
409	In the present study, we used rats as the pregnant animal model to investigate the effects of
410	VPA on placental transporters because an <i>in vivo</i> study is suited to the investigation of changes
411	throughout gestation. However, species difference between human and rat placentas should be
412	considered to understand the results. First, there are structural differences in the placental barrier.
413	The human placental barrier consists of a syncytiotrophoblast layer. In rats, the placental labyrinth
414	has three trophoblastic layers. Layer II and III are thought to be the syncytium, whereas the first layer
415	that faces the maternal side does not represent a barrier (Joshi AA et al., 2016). Second, there are
416	some transporters whose localization are different between humans and rats, although the
417	transporters or orthologs we investigated in the present study have been reported to be expressed in
418	human placentas (Bleasby K et al., 2006; Gaccioli F et al., 2015; Joshi AA et al., 2016). For instance,
419	it has been reported that human MCT4 (SLC16A3) is expressed on the maternal side of placenta,
420	whereas rat Mct4 (Slc16a3) is expressed on the fetal side (Moore NP et al., 2016; Settle P et al.,
421	2004). Other transporter localizations have been reported. It has been reported that both human P-gp
422	(MDR1, ABCB1) and rat P-gp (Mdr1a/1b, Abcb1a/1b), BCRP (ABCG2), Bcrp (Abcg2), ENT1
423	(SLC29A1), Ent1 (Slc29a1), OATP4A1 (SLCO4A1), and Oatp4a1 (Slco4a1) express apical
424	membranes (Akashi T et al., 2016; Joshi AA et al., 2016; Nishikawa M et al., 2010; Nishimura T et
425	al., 2019; Sato K et al., 2003). In addition, human MRP1 (ABCC1) expression at the basolateral side

426	of the syncytiotrophoblast of human placental villi agrees with Mrp1 expression on the basolateral
427	side of the syncytiotrophoblast in the rat labyrinth zone (St-Pierre MV et al., 2004). Human MRP2, 4
428	(ABCC2, 4) and OATP2A1 (SLCO2A1) have been detected in the apical membrane of the placenta
429	(St-Pierre MV et al., 2002; Joshi AA et al., 2016), whereas their localization in the rat placenta have
430	not been determined. Human MRP5 (ABCC5) have been shown to be expressed in the basolateral
431	membrane of the syncytiotrophoblast (Joshi AA et al., 2016), whereas its localization in the rat
432	placenta remains unclear. It has been reported that rat Octn1, 2 (Slc22a4, 5) is expressed in the apical
433	membrane (St-Pierre MV., 2002). Human LAT1, 2 (SLC7A5, 8) have been reported to be present on
434	the apical side of the syncytiotrophoblast, whereas LAT2 is also expressed in the basolateral
435	membrane and in the fetal capillary endothelium (Gaccioli F et al., 2015). Lat1, 2 (Slc7a5, 8) is also
436	expressed in the apical membrane in the rat placenta (Rosario FJ et al., 2011). Third, variation in
437	placental expression of some transporters throughout gestation differs. For instance, human P-gp
438	(MDR1, ABCB1) expression was reported to decrease with advancing gestation, whereas rat P-gp
439	(Mdr1a/1b, Abcb1a/1b) increased (Joshi AA et al., 2016). Human placental OCT3 (SLC22A3)
440	expression during the first trimester was reported to be higher than that at term, whereas rat Oct3
441	(Slc22a3) increased with advancing gestation (Ahmadimoghaddam et al., 2013). Human placental
442	OCTN2 (SLC22A5) expression during the first trimester was reported to be lower than that at term
443	(Bai et al., 2019), whereas rat Octn2 (Slc22a5) was not changed with advancing gestation in the
444	present study.

445	In conclusion, we assessed the effect of VPA on the expression of rat placental transporters
446	during pregnancy and revealed that sensitivity to VPA differed following gestational development.
447	Our findings also indicated that sex differences might exist in these alterations of transporters. To the
448	best of our knowledge, this is the first study to longitudinally and systematically investigate the
449	influence of VPA on various placental transporters. As described above, prenatal exposure to VPA
450	increases various risks. Future studies are required to better understand the association of the effects
451	of VPA with fetal risks and provide an approach for relieving these risks.
452	
453	Acknowledgment
454	Funding
455	This work was supported in part by a grant from the Japan Society for the Promotion of Science
456	(JSPS) KAKENHI (grant number, 18K1497208) (provided to A.F.).
456 457	(JSPS) KAKENHI (grant number, 18K1497208) (provided to A.F.).
456 457 458	(JSPS) KAKENHI (grant number, 18K1497208) (provided to A.F.). Conflicts of Interest

461 **References**

462	Ahmadimoghaddam D, Zemankova L, Nachtigal P, Dolezelova E, Neumanova Z, Cerveny L,
463	Ceckova M, Kacerovský M, Micuda S, Staud F (2013) Organic cation transporter 3
464	(OCT3/SLC22A3) and multidrug and toxin extrusion 1 (MATE1/SLC47A1) transporter in
465	the placenta and fetal tissues: expression profile and fetus protective role at different stages of
466	gestation. Biol Reprod 88(3):55.
467	Akashi T, Nishimura T, Takaki Y, Takahashi M, Shin BC, Tomi M, Nakashima E (2016) Layer II of
468	placental syncytiotrophoblasts expresses MDR1 and BCRP at the apical membrane in rodents.
469	Reprod Toxicol 65:375-381.
470	Anshu K, Nair AK, Kumaresan UD, Kutty BM, Srinath S, and Laxmi TR (2017) Altered attentional
471	processing in male and female rats in a prenatal valproic acid exposure model of autism
472	spectrum disorder. Autism Res 10(12): 1929-1944.
473	Bai M, Zeng Q, Chen Y, Chen M, Li P, Ma Z, Sun D, Zhou H, Zheng C, Zeng S, Jiang H (2019)
474	Maternal Plasma l-Carnitine Reduction During Pregnancy Is Mainly Attributed to
475	OCTN2-Mediated Placental Uptake and Does Not Result in Maternal Hepatic Fatty Acid
476	β-Oxidation Decline. Drug Metab Dispos 47(6):582-591.
477	Baker GA, Bromley RL, Briggs M, Cheyne CP, Cohen MJ, García-Fiñana M, Gummery A, Kneen R,
478	Loring DW, Mawer G, Meador KJ, Shallcross R, and Clayton-Smith J; Liverpool and

479	Manchester Neurodevelopment Group (2015) IQ at 6 years after in utero exposure to
480	antiepileptic drugs: a controlled cohort study. Neurology 84(4): 382-390.
481	Bernal J, Guadaño-Ferraz A, and Morte B (2015) Thyroid hormone transportersfunctions and
482	clinical implications. Nat Rev Endocrinol 11(7):406-417.
483	Binkerd PE, Rowland JM, Nau H, and Hendrickx AG (1988) Evaluation of valproic acid (VPA)
484	developmental toxicity and pharmacokinetics in Sprague-Dawley rats. Fundam Appl Toxicol
485	11(3): 485-493.
486	Bleasby K, Castle JC, Roberts CJ, Cheng C, Bailey WJ, Sina JF, Kulkarni AV, Hafey MJ, Evers R,
487	Johnson JM, Ulrich RG, and Slatter JG (2006) Expression profiles of 50 xenobiotic
488	transporter genes in humans and pre-clinical species: a resource for investigations into drug
489	disposition. Xenobiotica 36(10-11): 963-988.
490	Christensen J, Grønborg TK, Sørensen MJ, Schendel D, Parner ET, Pedersen LH, and Vestergaard M
491	(2013) Prenatal valproate exposure and risk of autism spectrum disorders and childhood
492	autism. JAMA 309(16): 1696-1703.
493	Cygalova L, Ceckova M, Pavek P, Staud F (2008) Role of breast cancer resistance protein
494	(Bcrp/Abcg2) in fetal protection during gestation in rat. <i>Toxicol Lett</i> 178(3):176–180.
495	del Amo EM, Urtti A, and Yliperttula M (2008) Pharmacokinetic role of L-type amino acid
496	transporters LAT1 and LAT2. Eur J Pharm Sci 35(3): 161-174.

497	Forhead AJ and Fowden AL (2014) Thyroid hormones in fetal growth and prepartum maturation.	. J
498	Endocrinol 221(3): R87-R103.	

- 499 Gaccioli F, Aye IL, Roos S, Lager S, Ramirez VI, Kanai Y, Powell TL, and Jansson T (2015)
- 500 Expression and functional characterisation of System L-amino acid transporters in the human
 501 term placenta. *Reprod Biol Endocrinol* 13: 57.
- 502 Gao S, Miao H, Tao X, Jiang B, Xiao Y, Cai F, Yun Y, Li J, and Chen W (2011) LC-MS/MS
- 503 method for simultaneous determination of valproic acid and major metabolites in human
- 504 plasma. J Chromatogr B Analyt Technol Biomed Life Sci 879(21): 1939-1944.
- 505 Gose T, Nakanishi T, Kamo S, Shimada H, Otake K, and Tamai I (2016) Prostaglandin transporter
- 506 (OATP2A1/SLCO2A1) contributes to local disposition of eicosapentaenoic acid-derived

507 PGE3. Prostaglandins Other Lipid Mediat 122: 10-17.

- Grabiec AM and Potempa J (2018) Epigenetic regulation in bacterial infections: targeting histone
 deacetylases. *Crit Rev Microbiol* 44(3): 336-350.
- 510 Grube M, Meyer Zu Schwabedissen H, Draber K, Präger D, Möritz KU, Linnemann K, Fusch C,
- 511 Jedlitschky G, and Kroemer HK (2005) Expression, localization, and function of the carnitine
- 512 transporter octn2 (slc22a5) in human placenta. *Drug Metab Dispos* 33(1): 31-37.
- 513 Grube M, Reuther S, Meyer Zu Schwabedissen H, Köck K, Draber K, Ritter CA, Fusch C,
- 514 Jedlitschky G, and Kroemer HK (2007) Organic anion transporting polypeptide 2B1 and

515 breast cancer resistan

516

breast cancer resistance protein interact in the transepithelial transport of steroid sulfates in human placenta. *Drug Metab Dispos* 35(1): 30-35.

517 Gupta SK, Malhotra SS, Malik A, Verma S, and Chaudhary P (2016) Cell signaling pathways

- 518 involved during invasion and syncytialization of trophoblast cells. *Am J Reprod Immunol*519 75(3): 361-371.
- Gurvich N, Tsygankova OM, Meinkoth JL, and Klein PS (2004) Histone deacetylase is a target of
 valproic acid-mediated cellular differentiation. *Cancer Res* 64(3): 1079-1086.
- 522 Ishikawa T, Obara T, Jin K, Nishigori H, Miyakoda K, Suzuka M, Ikeda-Sakai Y, Akazawa M,
- 523 Nakasato N, Yaegashi N, Kuriyama S, and Mano N (2019) Examination of the prescription of
- 524 antiepileptic drugs to prenatal and postpartum women in Japan from a health administrative
- 525 database. *Pharmacoepidemiol Drug Saf* 28(6): 804-811.
- 526 Jentink J, Loane MA, Dolk H, Barisic I, Garne E, Morris JK, and de Jong-van den Berg LT;
- 527 EUROCAT Antiepileptic Study Working Group (2010) Valproic acid monotherapy in
- 528 pregnancy and major congenital malformations. *N Engl J Med* 362(23): 2185-2193.
- 529 Joshi AA, Vaidya SS, St-Pierre MV, Mikheev AM, Desino KE, Nyandege AN, Audus KL, Unadkat
- 530 JD, and Gerk PM (2016) Placental ABC transporters: Biological impact and pharmaceutical
- 531 significance. *Pharm Res* 33(12): 2847-2878.

532	Kacirova I, Grundmann M, and Brozmanova H (2015) Serum levels of valproic acid during delivery
533	in mothers and in umbilical cord—correlation with birth length and weight. Biomed Pap Med
534	Fac Univ Palacky Olomouc Czech Repub 159(4): 569-575.
535	Kalisch-Smith JI, Simmons DG, Dickinson H, and Moritz KM (2017) Review: Sexual dimorphism
536	in the formation, function and adaptation of the placenta. <i>Placenta</i> 54: 10-16.
537	Kim KB, Seo KA, Kim SE, Bae SK, Kim DH, and Shin JG (2011) Simple and accurate quantitative
538	analysis of ten antiepileptic drugs in human plasma by liquid chromatography/tandem mass
539	spectrometry. J Pharm Biomed Anal 56(4): 771-777.
540	Kesterson JW, Granneman GR, and Machinist JM (1984) The hepatotoxicity of valproic acid and its
541	metabolites in rats. I. Toxicologic, biochemical and histopathologic studies. Hepatology
542	4(6):1143-1152.
543	Kurosawa Y, Furugen A, Nishimura A, Narumi K, Kobayashi M, and Iseki K (2018) Evaluation of
544	the effects of antiepileptic drugs on folic acid uptake by human placental choriocarcinoma
545	cells. Toxicol In Vitro 48, 104-110.
546	Leazer TM and Klaassen CD (2003) The presence of xenobiotic transporters in rat placenta. Drug
547	<i>Metab Dispos</i> 31(2): 153-167.
548	Meir M, Bishara A, Mann A, Udi S, Portnoy E, Shmuel M, and Eyal S (2016) Effects of valproic
549	acid on the placental barrier in the pregnant mouse: Optical imaging and transporter
550	expression studies. Epilepsia 57(6): e108-112.

551	Moore NP, Picut CA, and Charlap JH (2016) Localisation of Lactate Transporters in Rat and Rabbit
552	Placentae. Int J Cell Biol 2016:2084252.
553	Moreno FA, Macey H, and Schreiber B (2005) Carnitine levels in valproic acid-treated psychiatric
554	patients: A cross-sectional study. J Clin Psychiatry 66(5): 555-558.
555	Nicola C, Timoshenko AV, Dixon SJ, Lala PK, and Chakraborty C (2005) EP1 receptor-mediated
556	migration of the first trimester human extravillous trophoblast: the role of intracellular
557	calcium and calpain. J Clin Endocrinol Metab 90(8):4736-4746.
558	Nishikawa M, Iwano H, Yanagisawa R, Koike N, Inoue H, Yokota H (2010) Placental transfer of
559	conjugated bisphenol A and subsequent reactivation in the rat fetus. Environ Health Perspect
560	118(9):1196-1203.
561	Nishimura T, Chishu T, Tomi M, Nakamura R, Sato K, Kose N, Sai Y, and Nakashima E (2012)
562	Mechanism of nucleoside uptake in rat placenta and induction of placental CNT2 in
563	experimental diabetes. Drug Metab Pharmacokinet 27(4): 439-446.
564	Nishimura T, Sano Y, Takahashi Y, Noguchi S, Uchida Y, Takagi A, Tanaka T, Katakura S,
565	Nakashima E, Tachikawa M, Maruyama T, Terasaki T, Tomi M (2019) Quantification of
566	ENT1 and ENT2 Proteins at the Placental Barrier and Contribution of These Transporters to
567	Ribavirin Uptake. J Pharm Sci 108(12):3917-3922.
568	Ni Z and Mao Q (2011) ATP-binding cassette efflux transporters in human placenta. Curr Pharm
569	<i>Biotechnol</i> 12(4): 674-685.

570	Novotna M, Libra A, Kopecky M, Pavek P, Fendrich Z, Semecky V, and Staud F (2004)
571	P-glycoprotein expression and distribution in the rat placenta during pregnancy. Reprod
572	<i>Toxicol</i> 18(6): 785-792.
573	Ornoy A (2009) Valproic acid in pregnancy: how much are we endangering the embryo and fetus?
574	Reprod Toxicol 28(1): 1-10.
575	Reid G, Wielinga P, Zelcer N, van der Heijden I, Kuil A, de Haas M, Wijnholds J, and Borst P
576	(2003) The human multidrug resistance protein MRP4 functions as a prostaglandin efflux
577	transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc Natl Acad Sci USA
578	100(16): 9244-9249.
579	Rosario FJ, Jansson N, Kanai Y, Prasad PD, Powell TL, Jansson T (2011) Maternal protein
580	restriction in the rat inhibits placental insulin, mTOR, and STAT3 signaling and
581	down-regulates placental amino acid transporters. <i>Endocrinology</i> 152(3):1119-29.
582	Roullet FI, Lai JK, Foster JA (2013) In utero exposure to valproic acid and autisma current review
583	of clinical and animal studies. Neurotoxicol Teratol 36:47-56.
584	Rubinchik-Stern M, Shmuel M, Bar J, Kovo M, and Eyal S (2018) Adverse placental effects of
585	valproic acid: Studies in perfused human placentas. Epilepsia 59(5): 993-1003.
586	Rubinchik-Stern M, Shmuel M, and Eyal S (2015) Antiepileptic drugs alter the expression of
587	placental carriers: An in vitro study in a human placental cell line. <i>Epilepsia</i> 56(7):
588	1023-1032.

589	Sata R, Ohtani H, Tsujimoto M, Murakami H, Koyabu N, Nakamura T, Uchiumi T, Kuwano M,
590	Nagata H, Tsukimori K, Nakano H, and Sawada Y (2005) Functional analysis of organic
591	cation transporter 3 expressed in human placenta. J Pharmacol Exp Ther 315(2): 888-895.
592	Sato K, Sugawara J, Sato T, Mizutamari H, Suzuki T, Ito A, Mikkaichi T, Onogawa T, Tanemoto M,
593	Unno M, Abe T, Okamura K (2003) Expression of organic anion transporting polypeptide E
594	(OATP-E) in human placenta. <i>Placenta</i> 24(2-3):144-8.
595	Schneider T and Przewłocki R (2005) Behavioral alterations in rats prenatally exposed to valproic
596	acid: animal model of autism. Neuropsychopharmacology (1): 80-89.
597	Schürch R, Todesco L, Novakova K, Mevissen M, Stieger B, and Krähenbühl S (2010) The plasma
598	carnitine concentration regulates renal OCTN2 expression and carnitine transport in rats. Eur
599	J Pharmacol 635(1-3): 171-176.
600	Settle P, Mynett K, Speake P, Champion E, Doughty IM, Sibley CP, D'Souza SW, and Glazier J
601	(2004) Polarized lactate transporter activity and expression in the syncytiotrophoblast of the
602	term human placenta. Placenta 25(6):496-504.
603	Shekhawat PS, Sonne S, Matern D, and Ganapathy V (2018) Embryonic lethality in mice due to
604	carnitine transporter OCTN2 defect and placental carnitine deficiency. <i>Placenta</i> 69: 71-73.
605	Song L, Sun B, Boersma GJ, Cordner ZA, Yan J, Moran TH, and Tamashiro KLK (2017) Prenatal
606	high-fat diet alters placental morphology, nutrient transporter expression, and mtorc1
607	signaling in rat. Obesity (Silver Spring) 25(5): 909-919.

608	Staud F, Cerveny L, and Ceckova M (2012) Pharmacotherapy in pregnancy; effect of ABC and SLC
609	transporters on drug transport across the placenta and fetal drug exposure. J Drug Target
610	20(9): 736-763.
611	St-Pierre MV, Hagenbuch B, Ugele B, Meier PJ, Stallmach T (2002) Characterization of an organic
612	anion-transporting polypeptide (OATP-B) in human placenta. J Clin Endocrinol Metab
613	87(4):1856-63.
614	St-Pierre MV, Stallmach T, Freimoser Grundschober A, Dufour JF, Serrano MA, Marin JJ,
615	Sugiyama Y, Meier PJ (2004) Temporal expression profiles of organic anion transport
616	proteins in placenta and fetal liver of the rat. Am J Physiol Regul Integr Comp Physiol
617	287(6):R1505-1516.
618	St-Pierre MV, Ugele B, Gambling L, Shiverick KT (2002) Mechanisms of drug transfer across the
619	human placenta-a workshop report. Placenta 23 Suppl A:S159-164
620	Sun B, Fu A, Wang R, and Zhang Y (2015) Influence of carbon dioxide pneumoperitoneum on the
621	growth hormone-insulin-like growth factor I axis in mid- and late-pregnancy rats. J Obstet
622	<i>Gynaecol Res</i> 41(9): 1394-1398.
623	Tărlungeanu DC, Deliu E, Dotter CP, Kara M, Janiesch PC, Scalise M, Galluccio M, Tesulov M,
624	Morelli E, Sonmez FM, Bilguvar K, Ohgaki R, Kanai Y, Johansen A, Esharif S, Ben-Omran
625	T, Topcu M, Schlessinger A, Indiveri C, Duncan KE, Caglayan AO, Gunel M, Gleeson JG,

626	and Novarino G (2016) Impaired amino acid transport at the blood brain barrier is a cause of
627	autism spectrum disorder. Cell 167(6): 1481-1494.e18.
628	Tennison MB, Miles MV, Pollack GM, Thorn MD, and Dupuis RE (1988) Valproate metabolites and
629	hepatotoxicity in an epileptic population. Epilepsia 29(5):543-547.
630	Tetro N, Imbar T, Wohl D, Eisenberg I, Yagel S, Shmuel M, and Eyal S (2019) The effects of
631	valproic acid on early pregnancy human placentas: Pilot ex vivo analysis in cultured placental
632	villi. Epilepsia 60(5): e47-e51.
633	Tomson T, Battino D, Bonizzoni E, Craig J, Lindhout D, Sabers A, Perucca E, and Vajda F; EURAP
634	study group (2011) Dose-dependent risk of malformations with antiepileptic drugs: an
635	analysis of data from the EURAP epilepsy and pregnancy registry. Lancet Neurol 10(7):
636	609-617.
637	Veiby G, Daltveit AK, Engelsen BA, and Gilhus NE (2014) Fetal growth restriction and birth defects
638	with newer and older antiepileptic drugs during pregnancy. J Neurol 261(3): 579-588.
639	Viinikainen K, Heinonen S, Eriksson K, and Kälviäinen R (2006) Community-based, prospective,
640	controlled study of obstetric and neonatal outcome of 179 pregnancies in women with
641	epilepsy. Epilepsia 47(1): 186-192.
642	Vorhees CV (1987) Teratogenicity and developmental toxicity of valproic acid in rats. Teratology
643	35(2): 195-202.

644	Wielinga PR, y	van der Heijde	len I, Reid G, I	Beijnen JH, W	ijnholds J, and Borst P ((2003)
	0)	J	, , ,	J	J	/

- 645 Characterization of the MRP4- and MRP5-mediated transport of cyclic nucleotides from
 646 intact cells. *J Biol Chem* 278(20): 17664-17671.
- 647 Wu CY and Lu CY (2014) Derivatization oriented strategy for enhanced detection of valproic acid
- and its metabolites in human plasma and detection of valproic acid induced reactive oxygen
- species associated protein modifications by mass spectrometry. *J Chromatogr A* 1374: 14-22.
- 650 Wu X, George RL, Huang W, Wang H, Conway SJ, Leibach FH, and Ganapathy V (2000) Structural
- and functional characteristics and tissue distribution pattern of rat OCTN1, an organic cation
 transporter, cloned from placenta. *Biochim Biophys Acta* 1466(1-2): 315-327.
- 653 Yoshimura K, Hashimoto T, Sato Y, Sato A, Takeuchi T, Watanabe H, Terao T, Nakazato M, and
- Iyo M (2018) Survey of anticonvulsant drugs and lithium prescription in women of
- 655 childbearing age in Japan using a public National Insurance Claims Database. *Clinical*
- 656 *Neuropsychopharmacology and Therapeutics* 9: 20-29.

658 Figure legends

Figure 1 Effects of single and repetitive VPA Na administration on the expression of rMdr1a (A),

660 rMdr1b (B), rMrp1 (C), rMrp2 (D), rMrp3 (E), rMrp4 (F), rMrp5 (G), and rBcrp (H) mRNAs in rat

- 661 placentas. Pregnant rats were orally administered 400 mg/kg VPA Na (black) or distilled water as a
- 662 control (white). Rats in the single administration groups were treated during G12 (mid-gestation) or
- 663 G19 (late gestation), and those in the repetitive groups were treated for 4 d during G9–12
- 664 (mid-gestation) or G16–19 (late gestation). Expression of transporters was assessed by real-time PCR.
- Each column represents the mean with SD (Single administration group: n = 9-12 placentas from
- 666 three dams; Repetitive administration group: n = 10-12 placentas from three dams). *: P < 0.05
- 667 when compared to the G20 control. **: P < 0.01 when compared to the G20 control. $\ddagger: P < 0.05$
- when compared to the G13 control. $\dagger \dagger$: *P* < 0.01 when compared to the G13 control. ND: not
- 669 determined because of low expression. G: gestational day. Gene expression was analyzed using an
- 670 ANOVA, with "G" and "VPA" as factors. If an interaction was present, the Tukey–Kramer test was

671 used for multiple comparisons.

672

Figure 2 Effects of single and repetitive VPA Na administration on the expression of rLat1 (A),
rLat2 (B), rMct4 (C), rOct3 (D), rOctn1 (E), rOctn2 (F), rEnt1(G), rOatp2a1 (H), rOatp2b1 (I), and
rOAtp4a1 (J) mRNAs in rat placentas. Pregnant rats were orally administered 400 mg/kg VPA Na
(black) or distilled water as a control (white). Rats of the single administration groups were treated

677	during G12 (mid-gestation) or G19 (late gestation), and those in the repetitive groups were treated
678	for 4 d during G9–12 (mid-gestation) or G16–19 (late gestation). Expression of transporters was
679	assessed by real-time PCR. Each column represents the mean with SD (Single administration group:
680	n = 9-12 placentas from three dams; Repetitive administration group: $n = 10-12$ placentas from three
681	dams). *: $P < 0.05$ when compared to the G20 control. **: $P < 0.01$ when compared to the G20
682	control. ††: $P < 0.01$ when compared to the G13 control. G: gestational day. Gene expression was
683	analyzed using an ANOVA, with "G" and "VPA" as factors. If an interaction was present, the
684	Tukey–Kramer test was used for multiple comparisons.
685	
686	Figure 3 Body weight gain (A) and placental weight (B) of pregnant rats orally administered 400
687	mg/kg VPA Na or distilled water as control for 4 days on G9–12 or G16–19, respectively. (A)
688	Maternal body weight gain was calculated by subtracting the body weight on the first day of
689	administration from those of each gestational day. Each point represents the mean with SD ($n = 3$
690	dams). *: $P < 0.05$ when compared to the control. (B) Each column represents the mean with SD (n =
691	40 placentas for G13 control, 34 for G13 VPA, 32 for G20 control, 33 for G20 VPA placentas from
692	three dams. **: $P < 0.01$ when compared to each control. G: gestational day. Student's t-test was
693	used for comparison of the control and VPA groups.
694	

696	Supplemental Figure 1 Interactive effects of VPA Na administration and fetal sex on rMdr1a
697	expression in G13 rat placentas (A), and those of rOatp2a1 (B) and rOatp2b1 (C) in G20 rat
698	placentas. Pregnant rats were orally administered 400 mg/kg/day VPA Na (black) or distilled water
699	as a control (white) on G12 (A) or G16–19 (B, C). Expression of transporters was assessed by
700	real-time PCR. Each column represents the mean with SD ($n = 3-7$ placentas from two or three
701	dams). *: $P < 0.05$ when compared to the male control. **: $P < 0.01$ when compared to the male
702	control. G: gestational day. Gene expression was analyzed using a two-way analysis of ANOVA,
703	with "sex" and "VPA" as factors. If an interaction was present, the Tukey-Kramer test was used for
704	multiple comparisons.
705	
706	Supplemental Figure 2 Effects of repetitive VPA Na administration on P-gp protein expression in
707	rat placentas (G20). Pregnant rats were orally administered 400 mg/kg/day VPA Na (black) or
708	distilled water as a control (white), for 4 d. Whole proteins were extracted from placentas of G20
709	pregnant rats with repetitive administrated of VPA or water (control). Expression of P-gp was
710	assessed by western blotting. Fetal sex was not determined for the protein samples. (A) Data shown
711	are typical results of three independent experiments. (B) Each column represents the mean with SD
712	(n = 12 placentas from three dams).

				Ν	/lid-gestat	tion			Late gestation						
		Time offer		VI	PA	4-ene	e-VPA		VI	PA	4-ene	-VPA			
		administration		(µg/	mL)	(µg	/mL)		$(\mu g/mL)$		$(\mu g/mL)$				
				Mean	SD	Mean	SD		Mean	SD	Mean	SD			
Single		30 min	G12	211	28.9	1.49	0.288	G19	175	57.2	1.50	0.165			
administration		24 h	G13	а		а		G20	а		0.827	0.543			
	Day 1	30 min	G9	159	38.8	1.62	0.0858	G16	241	4.93	1.41	0.230			
	Day 2	24 h	G10	а		а		G17	а		а				
		30 min		160	14.5	2.02	0.680		261	157	1.36	0.361			
Repetitive	Day 3	24 h	G11	а		а		G18	а		а				
administration		30 min		286	151	1.61	0.205		200	30.1	1.76	0.301			
	Day 4	24 h	G12	а		а		G19	а		а				
		30 min		98.8	67.0	2.08	0.544		146	102	1.95	0.151			
	Day 5	24 h	G13	а		a		G20	а		0.437	0.308			

Table 1 Concentration of VPA and 4-ene-VPA in the plasma of pregnant rats orally administered 400 mg/kg VPA Na.

715 Concentration of VPA and 4-ene-VPA was quantified by LC/MS/MS. Data are shown as the mean with SD (n = 3 dams). a: less than the lower 716 limit of quantification (LLOQ). LLOQs of VPA and 4-ene-VPA were 10 µg/mL and 0.2 µg/mL, respectively.

Supplemental Table 1 Primer sequences for real-time PCR.

134
151
150
150
138
150
139
159
124
121
150
150
158
156
70
70
140
140
02
75
101
101
06
90
172
172
140
149
1((
100
117
11/
122
123
152
153
100
123
120
120

		Ct value Single administration (G20 Control)							
Ge	ene								
	-	Mean	SD						
	rBcrp	29.5	0.6						
	rMdr1a	27.8	0.2						
	rMdr1b	25.1	0.6						
ABC	rMrp1	27.2	0.5						
transporters	rMrp2	30.8	1.3						
	rMrp3	28.7	0.4						
	rMrp4	28.4	0.3						
	rMrp5	27.2	0.3						
	rLat1	24.6	0.4						
	rLat2	30.6	0.6						
	rOctn1	26.6	0.3						
	rOctn2	27.2	0.3						
SLC	rOct3	26.2	0.3						
transporters	rOatp2a1	24.7	0.4						
	rOatp2b1	29.6	0.5						
	rOatp4a1	23.9	0.3						
	rEnt1	29.3	0.6						
	rMct4	23.1	0.2						

724 Supplemental Table 2 Ct value of rat placental samples.

725

726 Data are shown as the mean with SD from placentas of G20 control rats of single administration

groups (n = 9-12 placentas from three dams). ND: not determined because of low expression. G:

gestational day. For measurements of each gene expression, 50-fold (rMrp2, rMrp3 G20, rMrp5, and

rOatp2b1), 100-fold (rBcrp, rMdr1a, rMdr1b, rMrp1, rMrp4, rOctn1, rOctn2, rOct3, rOatp2a1,

rOatp4a1, and rMct4) 200-fold (rMrp3 G13, rLat2), or 500-fold (rLat1 and rEnt1) diluted samples

731 were amplified by real-time PCR.

	Single administration										Repetitive administration								
_	Target gene / beta-actin mRNA (relative to male control) P value								P value	Target gene / beta-actin mRNA (relative to male control)									
Gene		М	ale			Female					М	ale			Fei	male			
	Control		VPA		Cor	Control		PA	To to so the s	Cor	Control		PA	Cor	ntrol	V	PA	Interaction	
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	Interaction	Mean	SD	Mean	SD	Mean	SD	Mean	SD	(P value)	
rBcrp	1.000	0.218	0.950	0.205	0.947	0.265	0.768	0.111	0.4797	1.000	0.215	0.804	0.211	0.984	0.233	0.818	0.062	0.8587	
rMdr1a	1.000	0.081	1.273	0.203	1.001	0.136	1.007	0.093	0.0361	1.000	0.137	0.990	0.200	0.957	0.194	0.931	0.175	0.9103	
rMdr1b	1.000	0.264	1.020	0.202	1.064	0.368	1.079	0.345	0.9871	1.000	0.199	0.624	0.112	0.981	0.170	0.907	0.203	0.0549	
rMrp1	1.000	0.124	1.118	0.143	0.940	0.115	1.104	0.031	0.6424	1.000	0.189	1.555	0.330	1.059	0.080	1.361	0.259	0.2172	
rMrp2	ND		ND		ND		ND			ND		ND		ND		ND			
rMrp3	1.000	0.112	1.252	0.319	1.068	0.220	1.042	0.150	0.1536	1.000	0.129	0.842	0.073	1.001	0.099	0.797	0.054	0.4180	
rMrp4	1.000	0.103	1.024	0.210	0.925	0.128	0.993	0.110	0.7236	1.000	0.145	1.118	0.218	0.872	0.447	1.076	0.117	0.5272	
rMrp5	1.000	0.207	1.274	0.249	1.034	0.313	1.215	0.170	0.6605	1.000	0.311	1.751	0.670	0.913	0.104	1.433	0.590	0.5697	
rLat1	1.000	0.090	0.919	0.123	1.070	0.146	0.966	0.192	0.8769	1.000	0.092	0.893	0.186	1.221	0.336	1.150	0.425	0.8733	
rLat2	1.000	0.240	1.221	0.349	0.927	0.268	1.405	0.294	0.3096	1.000	0.275	2.198	0.920	1.047	0.301	1.826	0.924	0.5018	
rOctn1	1.000	0.143	1.268	0.246	1.238	0.090	1.660	0.489	0.5035	1.000	0.235	1.175	0.365	0.926	0.078	1.035	0.297	0.7831	
rOctn2	1.000	0.309	1.093	0.471	0.951	0.342	1.204	0.185	0.5959	1.000	0.339	1.794	0.753	0.979	0.326	1.726	0.241	0.9065	
rOct3	1.000	0.155	1.382	0.281	1.079	0.209	1.106	0.292	0.0935	1.000	0.100	0.855	0.352	0.985	0.161	1.141	0.216	0.1289	
rOatp2a1	1.000	0.215	1.856	0.743	1.039	0.197	1.721	0.287	0.6349	1.000	0.218	2.534	1.525	0.931	0.115	1.893	0.783	0.4455	
rOatp2b1	1.000	0.151	1.200	0.262	1.047	0.267	1.273	0.406	0.9088	1.000	0.157	1.290	0.274	1.010	0.118	1.071	0.582	0.4055	
rOatp4a1	1.000	0.104	1.091	0.162	1.096	0.143	0.988	0.227	0.1613	1.000	0.132	1.180	0.222	0.976	0.112	1.226	0.341	0.7034	
rEnt1	1.000	0.221	1.204	0.478	1.031	0.448	1.358	0.168	0.7005	1.000	0.278	1.664	0.612	0.965	0.228	1.490	0.439	0.6974	
rMct4	1.000	0.108	1.237	0.173	1.067	0.166	1.095	0.133	0.1174	1.000	0.035	0.862	0.155	0.990	0.051	1.003	0.103	0.0810	

734 Supplemental Table 3 Analysis of fetal sexual effects on gene expression (G13 rat placentas).

735

Data are shown as the mean with SD (n = 5-7 placentas from three dams). ND: not determined because of low expression. The data shown in

Figures 1 and 2 of G13 rat placentas were analyzed by fetal sex. Gene expression was analyzed using a two-way ANOVA, with "sex" and "VPA"

as factors. If p value was < 0.05, an interaction was considered to be present.

		Single administration										Repetitive administration								
		Targe	t gene / be	ta-actin ml	RNA (relative	to male c	ontrol)			Target gene / beta-actin mRNA (relative to male control)										
Gene		М	ale			Female					Male Female									
	Cor	ntrol	V	VPA		Control		VPA Interactio		Cor	ntrol	VPA		Con	trol	VPA		Interaction		
	Mean	SD	Mean	SD	Mean	SD	Mean	SD	(P value)	Mean	SD	Mean	SD	Mean	SD	Mean	SD	(P value)		
rBcrp	1.000	0.144	1.180	0.601	0.906	0.294	0.844	0.086	0.4835	1.000	0.290	1.386	0.451	0.924	0.187	0.756	0.117	0.0701		
rMdr1a	1.000	0.091	0.985	0.148	0.885	0.070	0.949	0.177	0.5206	1.000	0.282	1.319	0.180	0.957	0.271	1.247	0.135	0.9003		
rMdr1b	1.000	0.169	0.950	0.257	1.248	0.486	1.059	0.158	0.6200	1.000	0.121	0.832	0.134	1.274	0.203	1.026	0.022	0.5633		
rMrp1	1.000	0.160	0.942	0.190	1.044	0.112	0.957	0.155	0.8428	1.000	0.190	0.764	0.171	0.893	0.133	0.896	0.003	0.1023		
rMrp2	1.000	0.399	0.761	0.568	0.794	0.612	0.528	0.333	0.9536	1.000	0.933	1.254	0.923	0.693	0.241	0.455	0.186	0.4522		
rMrp3	1.000	0.161	1.218	0.402	1.225	0.393	1.405	0.219	0.8993	1.000	0.158	0.894	0.261	1.017	0.206	0.951	0.231	0.8409		
rMrp4	1.000	0.095	0.742	0.180	1.203	0.330	1.030	0.222	0.6864	1.000	0.186	0.570	0.222	1.118	0.226	0.601	0.113	0.6502		
rMrp5	1.000	0.088	0.914	0.162	0.966	0.169	0.873	0.106	0.9622	1.000	0.219	1.181	0.266	1.022	0.231	0.971	0.135	0.2840		
rLat1	1.000	0.107	0.801	0.044	1.046	0.157	0.812	0.105	0.7224	1.000	0.164	0.745	0.103	0.851	0.090	0.770	0.083	0.1100		
rLat2	1.000	0.137	0.859	0.104	0.967	0.171	0.858	0.229	0.8340	1.000	0.116	0.831	0.213	0.845	0.100	0.943	0.132	0.0702		
rOctn1	1.000	0.111	0.771	0.116	0.927	0.143	0.761	0.185	0.6353	1.000	0.131	0.479	0.074	1.086	0.155	0.601	0.041	0.7378		
rOctn2	1.000	0.107	0.996	0.145	0.871	0.205	0.854	0.194	0.9376	1.000	0.083	0.911	0.200	1.118	0.156	1.277	0.081	0.0916		
rOct3	1.000	0.083	1.032	0.166	1.052	0.134	1.189	0.099	0.3865	1.000	0.398	1.448	0.256	1.282	0.228	1.621	0.577	0.7230		
rOatp2a1	1.000	0.183	0.861	0.159	1.074	0.264	0.779	0.408	0.5357	1.000	0.101	0.541	0.070	1.061	0.149	0.862	0.256	0.0494		
rOatp2b1	1.000	0.118	0.819	0.151	1.003	0.156	0.755	0.129	0.6052	1.000	0.184	1.262	0.156	1.054	0.208	0.928	0.049	0.0240		
rOatp4a1	1.000	0.181	0.812	0.099	0.968	0.151	0.792	0.180	0.9302	1.000	0.240	0.772	0.109	0.973	0.078	0.883	0.049	0.2805		
rEnt1	1.000	0.324	0.879	0.172	1.191	0.091	1.063	0.136	0.9637	1.000	0.113	0.657	0.127	0.828	0.248	0.684	0.184	0.2387		
rMct4	1.000	0.064	0.868	0.167	0.887	0.181	0.926	0.481	0.5004	1.000	0.204	1.146	0.183	1.123	0.181	1.178	0.093	0.5819		

739 Supplemental Table 4 Analysis of fetal sexual effects on gene expression (G20 rat placentas).

740

Data are shown as the mean with SD (n = 3-7 placentas from one to three dams). The data shown in Figures 1 and 2 of G20 rat placentas were

analyzed by fetal sex. Gene expression was analyzed using a two-way ANOVA, with "sex" and "VPA" as factors. If p value was < 0.05, an

743 interaction was considered to be present.

Figure 1 (A) rMdr1a

(C) rMrp1

(D) rMrp2

Single

Repetitive

Single

Repetitive

1.0

0.5

0.0

Figure 3

Α

В

Supplemental Figure 1

Supplemental Figure 2

